
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-12

Ordering Constraints on Trees

Hubert Comon and Ralf Treinen

March 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341



This work appeared in the Proceedings of the Colloquium on Trees in Algebra and
Programming, April 11-13, Edinburgh, Scotland.

This work has been supported by the ESPRIT working group CCL. The second
author has been supported by The Bundesminister für Forschung und Technologie
(FKZ ITW-9105).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1994

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.



Ordering Constraints on Trees

Hubert Comon

CNRS and LRI
Bat� ���� Universit�e de Paris Sud
F��	��
 ORSAY cedex� France

comon�lri�lri�fr

Ralf Treinen

German Research Center for Arti�cial Intelligence �DFKI
Stuhlsatzenhausweg �� D���	�� Saarbr�ucken� Germany

treinen�dfki�uni�sb�de

March �� ����

Abstract

We survey recent results about ordering constraints on trees and discuss their ap�

plications� Our main interest lies in the family of recursive path orderings which enjoy

the properties of being total� well�founded and compatible with the tree constructors�

The paper includes some new results� in particular the undecidability of the theory of

lexicographic path orderings in case of a non�unary signature�

	



Contents

� Symbolic Constraints �

� Ordered Strategies �

� Orderings on Trees �

� Recursive Path Ordering Constraints �

��	 The lexicographic path ordering � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The recursive path ordering with status � � � � � � � � � � � � � � � � � � � � �

��� Partial recursive path orderings � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The �rst�order theory of recursive path orderings � � � � � � � � � � � � � � � 	�

� Extensions ��

�



� Symbolic Constraints

Constraints on trees are becoming popular in automated theorem proving� logic program�
ming and in other �elds thanks to their potential to represent large or even in�nite sets
of formulae in a nice and compact way� More precisely� a symbolic constraint system� also
called a constraint system on trees � consists of a fragment of �rst�order logic over a set of
predicate symbols P and a set of function symbols F � together with a �xed interpretation
of the predicate symbols in the algebra of �nite trees T �F �or sometimes the algebra of
in�nite trees I�F over F � The satis�ability problem associated with a constraint system
is to decide whether a formula has a solution� There are plenty of symbolic constraint
systems� some important examples are�

� uni�cation problems in which the formulae are conjunctions of equations and where
the equality symbol is interpreted as a congruence relation generated by a �nite set
E of equational axioms� �See �	�� for a survey�

� disuni�cation problems in which the formulae are conjunctions of equations and negat�
ed equations �called disequations� or more generally� arbitrary formulae involving no
other predicate symbol than equality� Such formulae are interpreted in the free or
quotient algebras of T �F� �See ��� for a survey�

� membership constraints in which the formulae involve membership constraints of the
form t � � where � belongs to an in�nite set of sort expressions� generally built
from a �nite set of sort symbols� logical connectives and applications of function
symbols� The membership predicate symbols are interpreted using �some kind of
tree automata� �See for example ����

� ordering constraints which are the subject of this survey paper� The set P now
involves� besides equality� a binary predicate symbol �� This symbol is interpreted
as an ordering on trees� we will discuss later which kind of interpretations are relevant�

� many other systems� like set constraints� feature constraints etc� We refer to ��� for a
short survey�

Symbolic constraints� besides their own interest� can be used together with a logical lan�
guage� hence leading to constrained formulae� A constrained formula is a pair ��� c �ac�
tually written �jc where � is a formula in some �rst�order logic built upon a set Q of
predicate symbols and a set F �of function symbols� and c is a formula �called constraint
in some constraint system over P � Q�F � F � As sketched above� any constraint system
comes with a satisfaction relation j� such that� for any assignment � of the free variables
of c� � j� c i� c� holds in the given interpretation� Then� �jc can be simply interpreted as
the �possibly in�nite set of formulae

��� j c�� � f�� j � j� cg
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It should be clear from the above interpretation that constraints may help in express�
ing large or in�nite sets of formulae� For example� uni�cation problems can be used for
compacting the information� allowing for sharing� as in the example�

��f�x� x� x� j x � Bigterm standing for ��f�Bigterm�Bigterm�Bigterm�

The reader is referred to e�g� �	
� for more details�

Constraint systems can also be used in expressing deduction strategies� For example� the
basic strategy for paramodulation and completion can be nicely expressed using the con�
straint system of uni�cation problems �	� 	��� Let us go further in this direction since this
is indeed where ordering constraints come into the picture� First� let us make an excursion
into rewrite system theory�

� Ordered Strategies

Let E be a �nite set of equations� for example the classical three equations de�ning group
theory� ���

��
�x� y� z � x� �y � z

x� 	 � x

x� x�� � 	

A classical problem is to decide whether a given equation� for example �x� y�� � y�� �
x�� in group theory� is a logical consequence of E� This problem� also known as the
word problem� has been subject to intensive research� The brute force search for a proof
using the replacement of equals by equals� although complete� rarely leads to an actual
solution� One of the most successful approaches is to use ordered strategies� Knuth and
Bendix in their famous paper �	�� proposed to use the equations in one way only� i�e� as
rewrite rules� Of course� such a strategy is incomplete in general� but completeness can
be restored using a completion mechanism based on the computation of some particular
equational consequences called critical pairs� One requirement of the original method was
the termination of the rewrite system� the replacement of equals by equals using the ordered
strategies should always end up after a �nite number of replacement steps�

In the above example of group theory� it is quite easy to ful�ll this termination requirement
by choosing carefully the way in which to orient the equations� The situation changes if
we consider the commutative groups� adding the equation x � y � y � x to the above
system� Now the completion procedure fails because commutativity cannot be oriented in
either way without loosing termination� Several solutions have been studied to overcome
this problem� It is beyond the scope of this paper to investigate all of them �see �	���
They can be mainly divided into two families� rewriting modulo and ordered rewriting�
Rewriting modulo seems interesting when the non�orientable axioms are �xed and known�
since it is then possible to tailor the computation of critical pairs and any other operation
required during the completion process� In general� however� it may also fail� In contrast�
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ordered completion never fails but may run forever� The idea is very simple� use every
equation in one way or the other� depending on the ordering on the instances on which it
is applied� For example consider the commutativity axiom and assume a total ordering on
terms� e�g compare lexicographically the arguments of �� from left to right� Then if a � b�
a�b rewrites to b�a using x�y � y�x� but not the other way around� since a�b � b�a�
but b� a �� a� b� This idea is developed in e�g� �		�� To be more precise� let us introduce
some notations�

We use notations consistent with �	��� missing de�nitions can be found there� A set of
positions is a ��nite set of strings of positive integers which is closed by pre�x and by the
lexicographic ordering� � is the empty string� For example f�� 	� �� �	g is a set of position
whereas f�� 	� �	g and f�� �� �	g are not� Given a set of function symbols F � together with
their arity� a term t is a mapping from a set of positions P to F � such that� if p � P and
t�p has arity n� then p �n � P and p � �n�	 �� P � tjp is the subterm of t at position p and
t�u�p is the term obtained by replacing tjp with u in t �see �	�� for the de�nitions� In F ��
we distinguish a particular set of nullary symbols called variables� This subset is denoted
by X � The set of all positions of a term t is written Pos�t and the set of its non�variable
positions is FPos�t�

Now� the deduction rule for the standard completion procedure can be stated as follows�

l	 r g 	 d

l�d�p� � r�
If p � FPos�l and � � mgu�ljp� g

This rule is classically associated with an orientation rule w�r�t� a given ordering on terms�

l � r

l	 r
If l � r

Now the ordered completion consists of a single rule �besides simpli�cation rules which we
do not consider so far�

l � r g � d

l�d�p� � r�
If p � FPos�l� � � mgu�ljp� g� l� �
 r� and g� �
 d�

which deduces a new equation only for equations which actually can form a critical pair�

In the light of constrained logics� this rule can be reformulated as the �classical critical
pair computation between l � r j l �
 r and g � d j g �
 d� Going further in this direction
it is possible to improve the above deduction rule� expressing the conditions at the object
level� thus keeping track of which instances of the equations can lead to a critical pair� We
get then the following constrained deduction rule�

l � r j c g � d j c�

l�d�p � r j ljp � g � c� c� � l � r � g � d
If p � FPos�l

�Note that we replaced here �
 by �� assuming that the ordering is total on ground terms�
This strategy is strictly more restrictive than the ordered deduction rule because we keep






track of the reason why some former equations have been generated� the constraint contains
in some sense the �history� of the deduction� This point of view has been extended to
arbitrary clauses and shown to be complete �see e�g� �����

This new rewriting point of view has however a drawback� at some point it is necessary
to decide whether the constraint is indeed satis�able� all these systems are quite useless if
we are computing with empty sets ��� j c��� This is the motivation for the study of ordering
constraint solving which is the subject of the next sections� First we will precise which
interpretations of the ordering are relevant�

� Orderings on Trees

With respect to ordered strategies in �rst�order logic with equality� the ordering we consider
must have the following properties�

� To be well founded

� To be monotonic i�e� f�� � � � s� � � � � f�� � � � t� � � � whenever s � t�

� To be total on ground terms� �i�e� terms without variables�

Totality is mandatory only for completeness of the strategy� whereas the two �rst properties
are already necessary for the completeness of the rules themselves� Monotonicity is required
because� along the proofs� equality steps can take place at any positions in the terms�

Typical orderings which ful�ll the above three properties are the recursive path orderings
introduced by N� Dershowitz ���� We consider these orderings as well as some extensions
in sections �� 
�

Originating from quite di�erent problems� other interpretations of the orderings have been
studied in the literature� For example� � can be interpreted as the subterm ordering� To
be more precise� let us introduce some terminology� The existential fragment of a the
theory of P �F �in a given interpretation is the set of formulae ��x�� which hold in the
interpretation� where � is any quanti�er�free formula built over P �F and �x is the set
of variables occurring in �� More generally� the �n fragment of the theory is the set of
�closed� i�e� without free variables formulae �� �x�

� �x��
� � � � �xn�� which hold true in the

interpretation� where � is quanti�er free� It is shown in ���� that existential fragment of
the theory of subterm ordering is decidable� On the other side� it is also shown in ���� that
the �� fragment of the theory of subterm ordering is undecidable� which sets up a quite
precise boundary between decidability and undecidability in this case� Subterm ordering
is also studied in the case of in�nite trees� again the existential fragment of the theory is
decidable ��
� and the �� fragment is undecidable �����

Let us �nally consider yet another ordering on trees� the encompassment ordering� We say
that s encompasses t �noted s � t if some instance of t is a subterm of s� For example�
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s � g�f�f�a� b� f�a� b encompasses t � f�x� x since instantiating x with f�a� b� we
get a term t� which is a subterm of s� The encompassment ordering plays a central role
in the so�called ground reducibility problem in rewriting theory� Given a rewrite system
R� a term t is ground reducible w�r�t� R if all the ground instances of t �i�e� instances
without variables are reducible by R� A reducible term is always ground reducible� but
the converse is false� For example� consider R � fs�s��	 �g and t � s�s�x and assume
that the set of function symbols only consists of �� s� Then t is ground reducible because
the tail of any of its ground instances will be s�s��� However� it is not reducible� Ground
reducibility has been shown decidable by D� Plaisted ����� However� as noticed in ���� this
property can be nicely expressed using the encompassment ordering� t is ground reducible
by a rewrite system whose left members are l�� � � � � ln i�

x� �z� x � t	 �x � l� � � � �� x � ln

where �z is the set of variables of t�

Theorem � �	�
� The �rst�order theory of �nitely many unary predicate symbols �l�� � � � �
�ln is decidable�

This shows in particular that ground reducibility is decidable�

� Recursive Path Ordering Constraints

��� The lexicographic path ordering

Given a precedence �F �which we assume so far to be an ordering on F � the lexicographic
path ordering on T �F is de�ned as follows� s � f�s�� � � � � sn �lpo g�t�� � � � � tm � t i� one
of the following holds�

� f �F g and� for all i� s �lpo ti

� for some i� si �lpo t

� f � g �and n � m and there is a j � n such that

� s� � t�� � � � � sj � tj and sj�� �lpo tj��

� and� for all i� s �lpo ti

Theorem � �	� ��
� �lpo is a well�founded ordering� It is monotonic and� if �F is total
on F � then �lpo is total on T �F�

This shows� according to the previous section� that the lexicographic path ordering is a
good candidate for ordered strategies� Fortunately� there is a positive result on constraint
solving in this interpretation�
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Theorem � �	�
� The existential fragment of the theory of a total lexicographic path or�
dering is decidable�

The original proof has been actually simpli�ed in �	�� where two other problems are consid�
ered� the satis�ability over an extended signature and complexity issues� A conjunction of
inequations� built over an initial set of function symbols F is satis�able over an extended
signature if there is an ��nite extension F � F � of the set of function symbols and an
extension of the precedence to this new set of function symbols in which the formula is
satis�able� This kind of interpretation is actually useful for the applications in automated
theorem proving �see �����

Theorem � �	��
� The satis�ability problems for quanti�er�free total LPO ordering con�
straints over a given signature and over an extended signature are both NP�complete�

Actually� the NP�hardness result can be strengthened�

Theorem � Let � be interpreted as a total �lpo� Deciding satis�ability of a single inequa�
tion s � t is NP�complete�

Sketch of the proof� According to the above theorem� we only have to prove NP�
hardness� We encode �SAT� F � ff� g� h� �g with the precedence g � h � f � � and we
assume g unary� h� f binary and � constant� We will use also the abbreviations� 	 � f��� �
and � � f��� f��� �� Then� we use the following translations�

� each positive literal P is translated into h��� xP  � f�h�xP � xP � h��� � which holds
i� xP is assigned to 	�

� each negative literal �P is translated into 	 � xP which holds i� xP is assigned to ��

� each clause s� � t� � s� � t� � s� � t� is equivalent �w�r�t� the �lpo interpretation
to

f�g�C��C��� f�g�C��C��� g�C��C��� h��� g�C�C��

where C�x
def
� f�t�� f�t�� f�t�� x� C��x

def
� f�s�� f�t�� f�t�� x�

C��x
def
� f�t�� f�s�� f�t�� x and C��x

def
� f�t�� f�t�� f�s�� x�

� the conjunction s� � t� � � � �� sn � tn is equivalent to the single inequation

Ch�s�� � � � � sn� t�� � � � � tn �
Cf�Ch�t�� s�� � � � � sn� t�� � � � � tn� � � � � Ch�s�� � � � � sn��� tn� t�� � � � � tn

where Ch and Cf are the right �combs� recursively de�ned by�

C��t� L
def
� 	�t� C��L and C���

def
� � �

�



The coding is in O�n�� It is a routine veri�cation that the resulting inequation is satis�able
i� the set of clauses is satis�able� �

The proposition also holds for satis�ability over an extended signature� with a minor mod�
i�cation� �P has to be translated in a slightly more complicated way� f��� f�	� xP �
f�	� �� f��� f�	� �� f�	� xP  which is in turn expressed using a single inequation as we
did above�

��� The recursive path ordering with status

The recursive path ordering with status is slightly more general than the lexicographic
path ordering� In addition to the precedence� we assume� for each function symbol� given
a status which can be either �multiset� or �lexicographic� �other status are also available�
but w�r�t� constraint solving only these two are relevant�

The de�nition of the ordering is exactly the same as in section ��	 except when f � g�
In that case� we get the status of f and compare the terms as before if the status is
lexicographic� whereas� if the status is multiset� s �rpo t i� fs�� � � � � sng � ft�� � � � � tng
where � is the multiset extension of �rpo �see ��� 	�� for more details� This ordering is
not total on ground terms as permuting the direct subterms of a function symbol whose
status is multiset leads to incomparable terms� However� modulo such permutations� the
�quasi�ordering is total� With such an extension to a total quasi�ordering� constraint
solving is still possible�

Theorem � �	��
� The existential fragment of the theory of a total recursive path �quasi�
�ordering with status is decidable�

Actually� as above� the fragment is NP�complete� Satis�ability over an extended signature
is NP�complete as well �	���

��� Partial recursive path orderings

Although less interesting from the applications point of view� the question arises of whether
the above results can be extended to arbitrary �non�total recursive path orderings� This
turns out to be a di�cult question� which is not answered so far�

The only progress in this direction is the study of tree embedding constraints� This is yet
another interpretation of the ordering on trees� Tree embedding is the least recursive path
ordering� it extends the precedence where any two symbols are uncomparable� It can also
be de�ned as the least monotonic ordering which contains the subterm relation� Up to
our knowledge� there is only one result about tree embedding and� more generally� partial
recursive path orderings�

Theorem � �	�
� The positive existential fragment of the theory of tree embedding is de�
cidable�
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In the positive existential fragment� negation is not allowed in the quanti�er�free part of
the formula�

��� The �rst�order theory of recursive path orderings

Now� extending the language allowing for some more quanti�ers may be useful for deciding
some other properties �such as for simpli�cation rules as described in �	
�� Unfortunately�
we fall into the undecidability side as soon as we try to enlarge the class of formulae�
R� Treinen �rst shows that the �� fragment of the theory of a partial lexicographic path
ordering is undecidable ����� But this leaves still some room and most properties for which
a decision procedure would be welcome can be expressed in the �� fragment� Moreover
the result did not apply to total orderings� which are the most interesting ones� Extending
the technique of ����� it is possible to show the following�

Theorem � The �� fragment of the theory of any �partial or total� lexicographic path
ordering is undecidable� as soon as there is at least a binary function symbol�

We give a sketch of the proof� the full �quite technical proof of this result can be found
in ����

We reduce the Post Correspondence Problem �PCP to the theory of a lexicographic path
ordering following the line of ����� Let F be a �nite set of function symbols� such that � is
a minimal constant� f is a binary function symbol which is minimal in F � f�g and g is a
minimal unary symbol larger than f � Let P � �pi� qii�����n be an instance of the PCP over
the alphabet fa� bg� We can device an injective coding function cw� fa� bg� 	 T �ff� �g
and formulae empty�x and pre�x

v
�x� y for every v � fa� bg�� such that j� empty�x i�

x � cw�
� and that j� pre�x
v
�x� cw�w i� x � cw�v �w� Now it is not hard to device an

injective pairing function pair�T �ff� �g� T �ff� �g	 T �ff� �g and a formula x � y�such
that

pair�x� y � pair�x�� y��
�

�p�q��P

pre�x
p
�x� x� � pre�x

q
�y� y�

and such that � is well�founded but nevertheless t � t� implies t �lpo t�� Intuitively�
t � t� reads �the pair represented by t� is obtained form the pair represented by t by
one construction step of P � It is important that � is a well�founded relation� this can be
achieved by counting in � �not in pair the maximal number of construction steps to go�

The idea is now to design a sentence solv which holds i� there is a sequence t	� � � � � tn
such that t	 � pair�cw�
� cw�
� tn � pair�cw�w� cw�w for some w �� 
 � fa� bg� and
j� ti � ti�� for every � 
 i � n� Let I�x be a formula which holds i� x � pair�cw�
� cw�
�
and let F�x be a formula which holds i� x � pair�cw�w� cw�w for some w �� 
 � fa� bg��
In the following formula solv� some parts are not yet de�ned� The intended meaning of
x head y is that x is the head of the sequence y� nonempty�y expresses that y has a head
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and �x� y� sub y should express that the sequence cons�x� y� is a subsequence of y�

�y� �x� y��I�x � �x� y� sub y�

x� y���x� y� sub y 	 � F�x�
�nonempty�y�� x��x� head y� 	 x � x�

�

Now� we have to show that the above formula solv holds i� P has a solution� We give
�rst some characterizations of the �if� and �only if� parts respectively in terms of prop�
erties of the formulas nonempty�x� x head y and �x�y sub z� Then� we will sketch how
�x�y sub z is constructed� This is the most complicated part� the constructions of x head y
and nonempty�x are skipped here� We will also sketch why �x�y sub z follows the require�
ments�

In order to show that solv holds if P has a solution� we have to design a coding cs of

sequences of elements from T �ff� �g� cs�T �ff� �g�	 T �F � This is given by cs�

def
� ��

and cs�cons�t�  t
def
� f�g�t� cs� t� Now� solv holds if P has a solution� provided that the

following relations are satis�ed�

j� nonempty�cs�s � s �� 


j� t head cs�t	� � � � � tn � t	 � t

j� �t� u� sub cs�t	� � � � � tn � exists i 
 n� t � ti� u� � cs�ti��� � � � � tn �	

Once we have the de�nition of sub with property �	� it follows immediately that solv holds
if P has a solution� We take y to be the coding of the solution to P �

Conversely� P has a solution if solv holds� provided that the following relations are satis�ed�

nonempty�y	 �x x head y ��

�x� y� sub y � x� head y� � x � x� 	 �y�� �x�� y�� sub y ��

This claim is easily proven by well�founded induction on �� The lemmata �� and �� give
exactly the argument needed in the induction step� Using well�founded induction at this
place is a central idea in �����

Appropriate de�nitions of nonempty�y and x head y are given easily� Now� let us sketch
the construction of �x� y subz� The �rst step is the de�nition

���x� y
def
� f�g�x� g�x� y � g�x

It is easily proven by structural induction on u� that j� ���t� u implies that g�t is the
maximal subterm of u which is headed by a symbol not smaller than g� For instance� if g is
the greatest symbol in F � this means that g�t is the maximal g�headed subterm of u� In
this proof� we exploit the fact that f � g� It is not always true� that for any y containing
a g there is an x such that ���x� y� On the other hand� the de�nition of nonempty�y will
have to ensure this fact� as can be seen from the de�nition of sub given below� The formula

		



�x ���x� y does the job but introduces an existential quanti�er at the wrong place� which
would throw solv out of the �� fragment� A working formula ��y using only universal
quanti�ers can be found in the full paper ���� Now it can be shown that always

j� ���x� cs�t	� � � � � tn� x � tn ��

which gives us access to the greatest pair of a list� Note that in our representation of lists�
the greatest term stands at an innermost position� it is by no means obvious that we can
access this term when the ordering might be total� This was a main di�culty which was not
solved in the result on partial precedences in ����� The complete de�nition of �x� y� sub y
is

����x� y � y� � �

��w �f�g�x� f�g�x� y� � y � f�g�x� y� � g�w � g�x� ���w� y

Let us sketch now the main part of the proof� namely that the de�nition of �x� y� sub y
satis�es �	� The ��� direction of �	 is easy� let us prove the ��� direction� If the �rst
case of sub applies� then the claim holds by ��� Otherwise�

j� f�g�t� f�g�t� u� � cs�t	� � � � � tn � f�g�t� u� � g�r � g�t

����r� cs�t	� � � � � tn

holds for some r � T �F � In fact� r � tn by ��� Now� j� g�r � g�t� hence tn �lpo t�
Let i be the smallest index such that ti �lpo t� Such an i exists since tn �lpo t� Hence�
ti� ��lpo t for all i

� � i� Using the lpo rules� cs�t	� � � � � tn �lpo f�g�t� u
� is simpli�ed into

cs�ti� � � � � tn �lpo f�g�t� u
�� hence cs�ti� � � � � tn �lpo u

��

Now let j be the smallest index such that t ��lpo tj � Note that j is well de�ned since
t ��lpo tn� Since f�g�t� f�g�t� u

� �lpo cs�t	� � � � � tn� it follows that f�g�t� f�g�t� u
� �lpo

cs�tj � � � � � tn� Since by construction t ��lpo tj � this inequality is equivalent to u� �lpo

cs�tj � � � � � tn� Together we have

cs�ti� � � � � tn �lpo u
� �lpo cs�tj � � � � � tn

and hence i � j� By our construction of j this means t �lpo ti� On the other hand we have
ti �lpo t� hence t � ti� Using the de�nition of an lpo� we can now simplify

f�g�ti� f�g�ti� u
� �lpo cs�t	� � � � � tn

�� f�g�ti� f�g�ti� u
� �lpo cs�ti� � � � � tn

� f�g�ti� u
� �lpo cs�ti��� � � � � tn

� u� �lpo cs�ti��� � � � � tn

On the other hand� we have

cs�t	� � � � � tn �lpo f�g�ti� u
� �� cs�ti� � � � � tn �lpo f�g�ti� u

�

� cs�ti��� � � � � tn �lpo u
�

	�



Hence� u� � cs�ti��� � � � � tn� �

In case there are only unary symbols we can use another reduction technique and show�

Theorem  The �rst�order theory of strings embedding is undecidable�

The theory of strings involves a binary concatenation function� but the undecidability
result in fact holds if we restrict ourselves to unary functions which pre�x a string with a
�xed symbol� With the representation of strings as terms� this kind of left concatenation
corresponds to the application of a unary function symbol�

Sketch of the proof� We encode the concatenation of words� whose �rst�order theory is
known to be undecidable �see e�g� ����� We use an additional symbol ! and successively
express the following properties�

x! 
 z� where x contains no !�

���x� z
def
� x 
 z � y�!y 
 z � y � �

z � x!y �and x� y are ��free��

���x� y� z
def
� ! �
 x �! �
 y �!! �
 z �

u�!! �
 u	 �z 
 u� ����x� u�!y 
 u�

This reads� �z is minimal with the property that z contains at most one !� x! 
 z and
!y 
 z��

x� y� u are !�free and z � xy�

���x� y� u
def
� �z�����x� y� z�! �
 u � v�u 
 v 
 z � �v � u � v � z

Since u doesn"t contain !� it must be the immediate predecessor of z obtained by deleting
the ! of z� �

The decidability of the theory of a total lexicographic path ordering on strings remains
open�

� Extensions

We list below a number of extensions which have still to be investigated�

� As we have seen in section �� using ordering constraints avoids failure even in pres�
ence of associative�commutative �AC function symbols� This particular case of un�
orientable equations occurs very often� On the other hand� however� although the

	�



use of ordering constraints prevents failure� completion procedures often run forever
in such situations� Hence� from the practical point of view� it is important to de�
sign dedicated techniques for this particular situation� In general� AC equations are
not treated like the other relations� this theory is built�in� which implies the use of
AC�uni�cation �or AC equality constraints� Using ordering constraints in this con�
text requires �rst an AC�compatible ordering which is total on ground terms� For a
long time no such ordering was known� P� Narendran and M� Rusinowitch �	�� were
the �rst to give such an ordering� which is based on polynomial interpretations� An
rpo�style AC�compatible ordering� total on ground terms was then given in ��	�� Is
it possible to design a constraint solving algorithm for such an ordering# This is an
open question which is currently under investigation�

� Another important question is the combination of constraint systems on terms� In�
deed� we may consider the problem of using ordered strategies on constrained equa�
tions �or clauses� The combination of ordering constraints and equations and dis�
uni�cation constraints is quite obvious �equational constraints are already considered
within the ordering constrains and s �� t is equivalent to s � t� t � s when the order�
ing is total� More relevant is the combination with membership constraints� This
is another open question currently under investigation� is the existential fragment of
the theory of ��� �� for a family of unary predicate symbols � �� as explained in
introduction� decidable#

� Finally� we already mentioned some open questions about the theory of recursive
path orderings� In case of partial orderings� we don"t know whether the existential
fragment is decidable� Similarly� the problem of the �rst�order theory of a total
lexicographic path ordering on unary function symbols is open�
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