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1 IntroductionTerminological representation systems can be used to represent the conceptual andtaxonomic knowledge of an application domain in a structured and semanticallywell-understood way. To describe this kind of knowledge one starts with atomicconcepts (unary predicates) and roles (binary predicates), and employs the conceptdescription formalism provided by the system to de�ne more complex concepts.In addition to this terminological component (TBox), most systems also have anassertional component (ABox), in which concepts and roles can be instantiated byindividual names (constant symbols) representing particular elements of the problemdomain.The reasoning services of terminological systems allow the user to retrieve notonly the knowledge that is explicitly stored in TBox and ABox, but to access im-plicitly represented knowledge as well. For a given TBox, the system automaticallycomputes the concept hierarchy according to subconcept-superconcept relationships(subsumption relationships) induced by the structure of the concepts. In addition,it can determine the consistency of the knowledge base (consisting of a TBox andan ABox), and it answers queries regarding the existence of instance relationshipsbetween individuals and concepts.To make these inference services feasible, the description formalism of a termi-nological system must be of limited expressive power. On the other hand, a tooseverely restricted formalism may turn out to be too weak for certain applications.For this reason, several extensions of \core" concept languages have been investi-gated in the literature (see, e.g., [3, 9, 1]). In the present paper, we shall consideran extension that is motivated by the use of terminological systems for solving con-�guration tasks, which is an application domain that is currently gaining more andmore importance (see, e.g., [11, 5, 10, 13, 8]). Technical domains such as con�g-uration seem to be well suited for terminological systems since they usually relyon a large number of terminological conventions, which are in most cases preciselyde�ned. In contrast, more traditional AI applications of terminological systems,such as natural language processing [6], often rely on vague notions and incompleteknowledge, which require the representation of beliefs, as well as probabilistic anddefault information.In contrast to these very demanding, and not yet well-understood extensions ofterminological representation languages, the additional language construct we shallintroduce in this paper is more or less along the lines of traditional constructs, albeitof a rather expressive and thus algorithmically hard to handle nature. It allows oneto express restrictions on the number of elements a concept may have: (� m C)and (� n C) respectively express that the (possibly complex) concept C has atleast m elements and at most n elements, thus restricting the possible models of theknowledge base.The traditional language constructs that most closely resemble this new one are3



the so-called number restrictions, which are present in almost all existing systems.Number restrictions allow one to specify the number of possible role-�llers of a par-ticular role. Such a restriction can, for example, express that an admissible PC mayhave at most 17 parts, by restricting the number of role-�llers of the has-part roleto less or equal 17. If one allows for qualifying number restrictions [9] (which arenot available in most systems), one can also express that the PC must have exactlyone CPU and at most four 1MB memory chips, where CPU and 1MB-memory-chipmay be complex concepts. But these cardinality restrictions are still localized to the�llers of one particular role. In contrast, the cardinality restrictions on concepts wepropose here are global in the sense that they restrict the number of objects belong-ing to a given concept for the whole domain of interest (e.g., the whole technicalsystem that is con�gured). For example, one can express that (in a computer) theremust be exactly one electrical power supply unit, which supplies all the devices withelectrical power. With a conventional concept description language, even one in-cluding qualifying number restrictions, one can only express that every device musthave a power supply, but not that all must have the same (or one out of a speci�ednumber n).The expressive power of the new construct is also demonstrated by the fact thatit can be used to express terminological axioms of the form C := D (see Section 2below), which express that the (possibly complex) concepts C and D have exactlythe same instances. Such axioms are known to be algorithmically hard to handle [12].In the following, we shall �rst formally introduce the terminological formalismconsidered in this paper, which contains both cardinality restrictions on conceptsand qualifying number restrictions. Section 2 also de�nes the relevant reasoningservices for terminological knowledge bases consisting of a terminological and anassertional component. In Section 3 we shortly sketch how these services can beutilized in a con�guration application. Then we shall develop an algorithm that testsa knowledge base for consistency. This is su�cient since all the other interestinginference services can easily be reduced to this task [4]. The consistency algorithmcombines the ideas developed in [2, 7] for handling inclusion axioms (in a languagewith number restrictions), and in [9] for handling qualifying number restrictions.2 The terminological formalismThe expressive power of a terminological system is determined by the constructsavailable for building concept descriptions, and by the way these descriptions canbe used in the terminological (TBox) and the assertional (ABox) component ofthe system. The description language ALCQ de�ned below coincides with theone introduced in [9]. The new expressivity lies in the TBox, where the usualterminological axioms are replaced by cardinality restrictions on concepts. Theassertional component is the standard one.4



The description language The concept descriptions (for short, concepts) of thelanguage ALCQ are built from concept names and role names using the constructorsconjunction (C u D), disjunction (C t D), negation (:C), and qualifying numberrestrictions ((� n R C) and (� n R C)), where C, D stand for concepts, R for arole name, and n for a nonnegative integer.Note that (unqualifying) number restrictions, value restrictions (8R:C) and ex-istential restrictions (9R:C) are not explicitly included in the language since theycan all be expressed with the help of qualifying number restrictions.To de�ne the semantics of concept descriptions, we interpret concepts as subsetsof a domain of interest and roles as binary relations over this domain. More precisely,an interpretation I consists of a set �I (the domain of I) and a function �I (theinterpretation function of I). The interpretation function maps every concept nameA to a subset AI of �I, and every role name R to a subset RI of �I ��I.The interpretation function is extended to arbitrary concept descriptions as fol-lows. Let C, D be concept descriptions, R be a role name, n be a nonnegativeinteger, and assume that CI and DI are already de�ned. Then(C uD)I = CI \DI ; (C tD)I = CI [DI ; (:C)I = �I n CI;(� n R C)I = fa 2 �I j ]fb 2 �I j (a; b) 2 RI ^ b 2 CIg � ng;(� n R C)I = fa 2 �I j ]fb 2 �I j (a; b) 2 RI ^ b 2 CIg � ng;where ]X denotes the cardinality of a set X.The terminological component A terminological axiom is an expression of theform C := D, where C and D are (possibly complex) concept descriptions. A �niteset of such axioms is called a TBox. The semantics of a TBox is quite obvious: aninterpretation I satis�es an axiom C := D i� CI = DI , and it is a model of a TBoxT i� it satis�es all axioms in T .Most systems impose severe restrictions on admissible TBoxes: (1) The conceptson the left-hand sides of axioms must be concept names, (2) concept names occur atmost once as left-hand side of an axiom, and (3) there are no cyclic de�nitions. Thee�ect of these restrictions is that terminological axioms are just macro de�nitions(introducing names for large descriptions), which can simply be expanded beforestarting the reasoning process. Unrestricted terminological axioms are a lot harderto handle algorithmically [12, 2, 7], but they are very useful in expressing importantconstraints on admissible con�gurations (see Section 3 below).Now we introduce a new type of axioms, which we call cardinality restrictionson concepts, and which are even more expressive than unrestricted terminologicalaxioms of the form C := D. Such a cardinality restriction is an expression of the form(� n C) or (� n C), where C is a concept description and n a nonnegative integer.An interpretation I satis�es the restriction (� n C) i� ]CI � n and (� n C) i�]CI � n. 5



Obviously, saying that C and D have the same instances is equivalent to stat-ing that the concept (C u :D) t (:C u D) is empty, i.e., contains at most zeroelements. This demonstrates that terminological axioms can be expressed by car-dinality restrictions. For this reason, a TBox will from now on simply be a �niteset of cardinality restrictions. The interpretation I is a model of such a TBox i� itsatis�es each of its restrictions.The assertional component In this component, facts concerning particular ob-jects in the application domain can be expressed as follows. The objects are referredto by individual names, and these names may be used in two types of assertionalaxioms: concept assertions C(a) and role assertions R(a; b), where C is a conceptdescription, R is a role name, and a; b are individual names. A �nite set of assertionsis called ABox.In order to give a semantics to assertions we extend the interpretation function toindividuals. Each individual name a is interpreted as an element aI of the domainsuch that the mapping from individual names to �I is 1-1. This restriction isusually called unique name assumption (UNA). The interpretation I satis�es theassertion C(a) i� aI 2 CI and the assertion R(a; b) i� (aI ; bI) 2 RI . We say thatan interpretation I is a model of an ABox A i� I satis�es every assertion in A.The reasoning services A terminological knowledge base � = hA;T i consistsof an ABox A and a TBox T . After representing the relevant knowledge of anapplication domain in such a KB, one can not just retrieve the information thatis explicitly stored. Terminological systems also provide their users with servicesthat allow to access knowledge that is only implicitly represented in the KB. Forexample, these reasoning services provide answers to the following queries:1. KB-consistency: Is the given KB consistent? That is, does there exist a modelof the KB (i.e., a model of both the ABox and the TBox)?2. Instance Checking: Given a KB, an individual a and a concept C, is aI 2 CIfor all models I of the KB?Since the instance problem (and all the other inference problems such as sub-sumption and concept satis�ability) can be reduced to KB-consistency or inconsis-tency in linear time (see, e.g., [4]), it is su�cient to devise an algorithm for thisproblem. Before describing such an algorithm for KBs with cardinality restrictions,we give some ideas of how such an algorithm can be employed to solve con�gurationtasks. 6



The TBox:SPARCstation 2 :=(= 1 has-part System Unit) u (= 1 has-part Monitor) u(= 1 has-part Keyboard) u (= 1 has-part Mouse&Pad) u8has-part:(System Unit tMonitor t Keyboard tMouse&Pad tTerminal t Printer)System Unit :=(= 1 has-part Main Logic Board) u(= 1 has-part Power Supply) u(= 2 has-part Hard Drive) u(= 1 has-part Diskette Drive) Main Logic Board :=(= 1 has-part CPU) u(= 16 has-part SIMM slots) u(= 3 has-part SBUS slots)Main Logic Board v (= 1 is-supplied-by Power Supply)Hard Drive v (= 1 is-supplied-by Power Supply)Diskette Drive v (= 1 is-supplied-by Power Supply)Terminal u (� 1 has-type VT100) v (� 1 has-part Female-male null modem cable)Terminal u (� 1 has-type WY-50) v (� 1 has-part Male-male null modem cable)(� 1 Power Supply) The ABox:SPARCstation 2(sparci), has-part(sparci; term), Terminal(term),has-type(term; vt100), VT100(vt100)Figure 1: A sparcstation 23 Application in con�gurationFigure 1 contains some parts of the description of a sparcstation 2 in our termi-nological formalism. The �rst three axioms of the TBox are traditional conceptde�nitions, which (in a top-down manner) introduce names for complex descrip-tions. A sparcstation 2 is de�ned to have four obligatory parts, namely systemunit, monitor, keyboard, and mouse and pad. In addition, it may have as op-tional parts terminals and printers, but no other parts are admissible. The conceptsstanding for the parts are again de�ned by descriptions. In the example, we havejust given the (simpli�ed) descriptions of the system unit, and of the main logicboard, which is a part of this unit. Note that (= n R C) is an abbreviation for(� n R C) u (� n R C).The next �ve axioms are inclusion axioms of the form C v D, which should beread as abbreviations of the corresponding cardinality restrictions (� 0 C u :D).The (complex) concepts main logic board, hard drive, and diskette drive are requiredto have a power supply, and certain types of terminals need speci�c cables. Thequalifying number restrictions in these inclusion axioms express that each part has7



exactly one power supply, but di�erent parts can still have di�erent power supplies.The last terminological axiom, which is a cardinality restriction on the conceptpower supply, makes sure that all parts use the same power supply. It seems tobe impossible to express such a constraint in a traditional terminological formalismunless one allows for role-value maps (which would, however, cause undecidability).Con�guration checking The instance test of a terminological system can beemployed to check whether a computer con�guration is admissible (this idea has,for example, been used in an application of the classic system [13]). In the TBox,one de�nes a concept that describes admissible computer systems, and in the ABoxone describes the actual con�guration of a computer system. The instance test thenchecks whether the individual corresponding to the con�guration is an instance ofthe concept \admissible computer system." The description of the actual con�gu-ration can be done on di�erent levels of abstraction. For example, we can describea sparcstation 2 by saying that it has four �llers of the has-part role that are re-spectively in the concepts System Unit, Monitor, Keyboard, and Mouse&Pad. On alower level of abstraction, the realization that the parts belong to these concepts isalso left to the instance test.In addition, one can also de�ne concepts that describe the most frequent er-rors made when con�guring such a system (e.g., forgetting some cables). Whenthe instance test �nds out that the con�guration belongs to such an error conceptthen one knows the reason why the con�guration was not admissible, and can takeappropriate action.Con�guration generation The con�guration domain is again modeled in theTBox, and the ABox contains a (high level) description of what should be con�gured.The consistency algorithm we shall describe below has the property that it not onlyanswers with \consistent" or \inconsistent." If the KB is consistent, it also yields a�nite model (see the de�nition of the canonical model in Section 4), in which all theimplicit information contained in the TBox and ABox is made explicit. In principle,this model describes an admissible con�guration.In Figure 1, the ABox describes that we want to have a sparcstation 2 with anadditional VT100 terminal. If we invoke the consistency algorithm of Section 4, itwill generate the obligatory parts like system unit, etc. It also makes sure that theintegrity constraints expressed by the inclusion axioms and the cardinality restrictionare satis�ed (more information on this idea of con�guration by model generation canbe found in [8]). 8



4 The consistency algorithmThe method for deciding consistency of a KB presented below is rule-based in thesense that it starts with the original KB (consisting of an ABox A0 and a TBoxT0), and applies certain consistency preserving transformation rules to the ABoxuntil no more rules apply. If the \complete" KB thus obtained contains an obviouscontradiction (called clash) then the original KB hA0;T0i was inconsistent. Other-wise, hA0;T0i was consistent since the complete KB can be used to construct a �nitemodel.The transformation rule that handles number restrictions of the form (� n R C)will generate n new ABox individuals x1; : : : ; xn that stand for the role-�llers requiredby the restriction. Unlike the individuals present in the original ABox (called \old"individuals in the following) these \new" individual names should not be subjectedto the unique name assumption. In fact, in a model they may well be interpretedidentical to an old individual or a new individual introduced by another rule applica-tion. What must be ensured, however, is that x1; : : : ; xn are interpreted by di�erentobjects. In order to express this we need a new type of assertions, called inequalityassertions. Such an assertion is of the form s 6 := t for individuals s; t, and it hasthe obvious semantics, i.e., an interpretation I satis�es s 6 := t i� sI 6= tI. Theseassertions are considered as being symmetric, i.e., saying that s 6 := t 2 A is the sameas saying that t 6 := s 2 A.In the following, we assume that the set of individual names is partitioned intoa set Iold of old individual names (subjected to the UNA) and a set Inew of newindividual names. The elements of Iold are just the individuals present in the originalABox, which means that Iold is �nite. We assume that Inew is in�nite to allow for anarbitrary number of rule applications. We denote individuals of Iold by the lettersa, b, of Inew by x, y, and of I = Iold [ Inew by s, t (all possibly with index).The transformation rule that handles disjunction (as well as the rules concernedwith at-most restrictions) is nondeterministic in the sense that a given ABox istransformed into two (or �nitely many) new ABoxes such that the original ABox isconsistent with the TBox i� one of the new ABoxes is so. For this reason we willconsider generalized KBs of the form hM;T i, where M = fA1; : : : ;Alg is a �niteset of ABoxes. This generalized KB is called consistent i� there is some i, 1 � i � l,such that hAi;T i is consistent.Treatment of cardinality restrictions So far, all that has been said also appliesto rule-based consistency algorithms for less expressive languages (see, e.g., [4]). Nowwe shall point out two new problems that are due to the presence of cardinalityrestrictions.To see the �rst problem, assume that the TBox contains the restriction (� n C),and that all individuals contained in the ABox are either asserted to be in C orin its complement. If the number m of individuals in C is larger than n then we9



know that we must take action, whereas m � n shows that no action is required.In general, however, the ABox will also contain individuals for which no assertionsrelating them to C or :C are present. For these individuals, we do not know a prioriwhether a model of the TBox and ABox will interpret them as elements of C or of:C. Thus we are not necessarily able to decide whether action is required or not.To make sure that in the end all such indeterminate situations are resolved, weintroduce a rule (called choose-rule below) that makes sure that at some stage ofthe transformation process each individual will either be asserted to be in C or itscomplement. (The choice is \don't know" nondeterministic, i.e., both cases have tobe considered.) In a slightly modi�ed way the idea of such a choose-rule was alreadypresented in [9] since qualifying number-restriction of the form (� n R C) cause asimilar problem.The second problem is that, due to the choose-rule, the transformation processneed no longer terminate, unless one takes speci�c precautions to detect cyclic com-putations. In fact, if the concept C from above is of the form (� m R D) (form � 1), then asserting C for an individual s0 causes the introduction of a newindividual s1. Because of the choose-rule, at some stage of the transformation wemust consider an ABox were s1 is asserted to be in C, which causes the introductionof a new individual s2, etc.In order to regain the termination property, we restrict the applicability of trans-formation rules that generate new individuals. The idea is that the application ofsuch rules is blocked for a new individual x if there is another individual s in theABox that has all concept assertions that x has. Termination is then due to thefact that there are only �nitely many di�erent concepts D that can occur in suchassertions. To prevent cyclic blocking, which would destroy the correctness of thealgorithm, we consider an enumeration t0; t1; t2; : : : of I in which all elements ofIold come before all elements of Inew. We write t < t0 i� t comes before t0 in thisenumeration.Now blocking can formally be de�ned as follows: An individual x 2 Inew isblocked by an individual s 2 I in an ABox A i� fD j D(x) 2 Ag � fD0 j D0(s) 2 Agand s < x. Note that only new individuals can be blocked.Similar termination problems are already caused by terminological axioms of theform C := D. For this reason, the idea of blocking is already present in [7]. Themain di�erence between the two notions of blocking is that in [7] equality of sets isrequired whereas we are satis�ed with set inclusion. It turns out that our notion ofblocking facilitates the termination proof. In addition, termination can be shownfor arbitrary sequences of rule applications. It no longer depends on the use of aspeci�c strategy (as required in [7]).Preprocessing In order to facilitate the description of the transformation rules,we start with a preprocessing step that transforms the original KB into a simpli�edform. 10



As usual, all concepts occurring in the KB are transformed into negation normalform, where negation occurs only immediately in front of concept names. Negationnormal forms can be computed in linear time by pushing negation signs into thedescriptions (see, e.g., [4]). The expression �C will denote the negation normalform of the concept :C.In addition, we assume that the TBox contains only restrictions of the form(� n C). In fact, a restriction (� n C) can be expressed in the ABox by addingassertions C(xi) and xi 6 := xj (for 1 � i; j � n; i 6= j), where the xi are newindividuals that did not occur in the original KB.Finally, the UNA for old individuals is made explicit in the ABox by adding theassertions a 6 := b for each pair of distinct elements a; b 2 Iold.The transformation rules As a result of the preprocessing steps, the input ofthe consistency algorithm is a generalized KB hfA0g;T0i where A0 and T0 are in thesimpli�ed form described above. Starting with hfA0g;T0i, the algorithm applies thetransformation rules of Figure 2 as long as possible.The rules should be read as follows. They are applied to a generalized KBhM;T0i (where M is a set of ABoxes). The rules take an element A of M, andreplace it by one ABox A0, by two ABoxes A0 and A00, or by �nitely many ABoxesAi;j. The TBox T0 of the input is left unchanged.The transformation rules are sound in the sense that the ABox A is consistenti� one of the ABoxes it is replaced by is so (see Section 5 for the proof). Thus, ifhM;T0i is obtained from hfA0g;T0i by a sequence of rule applications then hA0;T0iis consistent i� hM;T0i is consistent.The second important property of the set of transformation rules is that thetransformation process always terminates, i.e., there cannot be an in�nite sequenceof rule application (see Section 5 for the proof). Thus, after �nitely many trans-formation steps we obtain a generalized KB to which no more rules apply. Wecall such a generalized KB complete. Consistency of a complete (generalized) KBhfA1; : : : ;Ang;T0i can be decided by looking for obvious contradictions, so-calledclashes, in the KBs hAi;T0i.A KB hA;T i contains a clash i� one of the following three situations occurs:1. fB(s);:B(s)g � A for some individual s and some concept name B.2. f(� n R C)(s); R(s; ti); C(ti); ti 6 := tj j 1 � i; j � n + 1; i 6= jg � A forindividuals s; t1; : : : ; tn+1, a nonnegative integer n, a concept C, and a rolename R.3. (� n C) 2 T and fC(si); si 6 := sj j 1 � i; j � n+ 1; i 6= jg � A for individualss1; : : : ; sn+1, a nonnegative integer n, and a concept C.11



The !u-rulePrecondition: A contains (C1 u C2)(s), but it does not contain both C1(s)and C2(s).Postcondition: A0 is obtained from A by adding C1(s) and C2(s).The !t-rulePrecondition: A contains (C1 t C2)(s), but neither C1(s) nor C2(s).Postcondition: A0 is obtained from A by adding C1(s), and A00 is obtainedfrom A by adding C2(s).The !�-rulePrecondition: A contains (� n R C)(s), s is not blocked in A, and thereare no individual names s1; : : : ; sn such that R(s; si), C(si), and si 6 := sj(1 � i; j � n; i 6= j) are contained in A.Postcondition: A0 is obtained from A by adding R(s; xi), C(xi), and xi 6 := xj(1 � i; j � n; i 6= j), where x1; : : : ; xn 2 Inew are distinct individuals suchthat xi > s0 for all individual names s0 occurring in A.The !choose-rulePrecondition: A contains an individual t such that either1. (� n R C)(s) and R(s; t) are in A, or2. (� n C) is in T0,and A does not contain (C t �C)(t).Postcondition: A0 is obtained from A by adding (C t �C)(t).The !�-rulePrecondition: A contains distinct individuals t1; : : : ; tn+1 such that either1. (� n R C)(s) and R(s; t1); : : : ; R(s; tn+1) are in A, or2. (� n C) is in T0,and C(t1); : : : ; C(tn+1) are in A, and ti 6 := tj is not in A for some i 6= j.Postcondition: For each pair ti; tj such that tj < ti and ti 6 := tj is not in A theABox Ai;j := [ti=tj ]A is obtained from A by replacing each occurrence ofti by tj.Figure 2: Completion rules of the consistency algorithm.Obviously, a KB that contains a clash cannot be consistent. Consequently, if all KBshAi;T0i contain a clash, then hfA1; : : : ;Ang;T0i is inconsistent, which by soundness12



of the rules implies that the original KB hA0;T0i was inconsistent.If, however, one of the KBs �i = hAi;T0i is clash-free then the correspondingcanonical interpretation I�i (as de�ned below) can be used to construct a model ofthe original KB hA0;T0i (see Section 5 for the proof).Let � = hA;T i be a KB. The canonical interpretation I� induced by � is de�nedas follows:� The domain �I� of I� consists of all the individuals occurring in A.� For all concept names A we de�ne AI� = fs j A(s) 2 Ag.� For a role name R we de�ne RI� inductively with respect to the total ordering< on the individual names. If s0 is the least element in �I� then (s0; t) 2 RI�i� R(s0; t) 2 A. Now let s 2 �I� be di�erent from s0.{ If s is not blocked in A then we de�ne (s; t) 2 RI� i� R(s; t) 2 A.{ If s is blocked in A then let s0 be the least (with respect to the ordering<) individual name in �I� that blocks s. By the de�nition of blocking,s0 < s, and thus we can assume that the set ft j (s0; t) 2 RI�g is alreadyde�ned, and we de�ne (s; t) 2 RI� i� (s0; t) 2 RI� .� For an individual s occurring in A we set sI� := s.To sum up, we have seen that the transformation rules of Figure 2 reduce con-sistency of a KB hA0;T0i to consistency of a complete generalized KB hM;T0i. Inaddition, consistency of this complete KB can be decided by looking for obviouscontradictions (clashes). This shows the main result of the paper:Theorem 4.1 It is decidable whether or not a KB hA0;T0i is consistent.5 Proof of correctnessTo prove Theorem 4.1, we �rst show that the transformation rules are sound andterminating. Then it will be proved that the canonical interpretation of a completeand clash-free KB can be used to construct a model of the original KB.5.1 Soundness of the rulesProposition 5.1 Assume that the generalized KB hM0;T0i is obtained from hM;T0iby application of a transformation rule. If hM;T0i is consistent then hM0;T0i isconsistent. 13



Proof. In the following, we restrict our attention to the !�-rule and the !�-rule. The other rules can be treated similarly.(1) Assume that the !�-rule is applied to the ABox A in M, and that M0 isobtained fromM by replacingA byA0. Thus A contains an assertion (� n R C)(s),and A0 is obtained from A by adding R(s; xi), C(xi), and xi 6 := xj (1 � i; j � n; i 6=j), where x1; : : : ; xn 2 Inew are such that xi > s0 for all individual names s0 occurringin A. It is su�cient to show that hA0;T0i is consistent if hA;T0i is consistent.Thus, let I be a model of A and T0. Since the new individual names x1; : : : ; xndo not occur in A, validity of assertions in A does not depend on the interpretationof these names. Because A contains (� n R C)(s), we know that sI 2 (� n R C)I.Thus there exist distinct elements d1; : : : ; dn of �I with (sI ; di) 2 RI and di 2 CI(1 � i � n). Obviously, if we modify I to an interpretation I 0 by interpreting thenew individuals x1; : : : xn as xI0i = di, then I 0 is a model of A0 and T0.(2) Assume that the !�-rule is applied to the ABox A in M. We restrict ourattention to the case where A contains assertions C(t1); : : : ; C(tn+1) and T0 containsthe cardinality restriction (� n C) (the case of the qualifying number restrictionscan be treated analogously). M0 is obtained fromM by replacing A by the �nitelymany ABoxes Ai;j := [ti=tj]A (for tj < ti and ti 6 := tj not in A).Now, let I be a model of A and T0. Since (� n C) 2 T0, we know that CIcontains at most n elements. Thus there exist indices i; j (1 � i; j � n + 1; i 6= j)such that tIi = tIj . Without loss of generality we assume that tj < ti. Since I isa model of A, the assertion ti 6 := tj cannot be contained in A, which implies that[ti=tj ]A is an element of M0. Obviously, I is also a model of [ti=tj ]A and T0.5.2 TerminationProposition 5.2 Let hA0;T0i be a �nite KB. Then any sequence of rule applicationsstarting with hfA0g;T0i is �nite.Before we can prove the proposition we have to introduce some notation. If atransformation rule replaces the ABox A by A1; : : : ;An, we write A ! Ai (for alli with 1 � i � n). In order to express which rule has been applied, the arrow isequipped with the appropriate subscript; e.g., A !� Ai means that the !�-rulehas been applied.For an ABox A and an individual name s, we de�neCA(s;A) := fC j C(s) is a concept assertion in Ag:Obviously, the new individual x is blocked by s in A i� s < x and CA(x;A) �CA(s;A).The following facts are an easy consequence of the way the transformation rulesand CA are de�ned: 14



1. LetA! A0, and let s be an individual inA that is not replaced inA0. Then wehave CA(s;A) � CA(s;A0). If ti is an individual in A that is replaced by tj inA0 then we have tj < ti, CA(ti;A) � CA(tj;A0) and CA(tj;A) � CA(tj;A0).2. Let hA0;T0i be a �nite KB, let hM;T0i be obtained from this KB by a �nitenumber of applications of transformation rules, and let A be an element ofM. For all concepts assertions C(s) 2 A, the concept description C is asubdescription of a description D t �D, where D occurs in hA0;T0i.3. The second fact shows that there can only be �nitely many di�erent setsCA(s;A) for a given sequence of transformations starting from a �nite KB.To prove Proposition 5.2 we assume to the contrary that there exists an in-�nite sequence of rule applications, which yields the KBs hfA0g;T0i, hM1;T0i,hM2;T0i, : : : Since a transformation rule replaces one ABox by only �nitely manynew ABoxes, K�onig's lemma implies that there is an in�nite sequence of ABoxesA1;A2; : : : such that A0 ! A1 ! A2 ! : : :For any individual s occurring in these ABoxes, there are only �nitely manydi�erent concept assertions possible. Each rule application adds concept assertionsfor an individual or removes an individual. Thus, to have an in�nite sequence of ruleapplication, in�nitely many individuals must be generated, which means that the!�-rule must have been applied in�nitely often. In addition, to a �xed individuals, the !�-rule cannot be applied in�nitely many times. This shows that there arein�nitely many individual s1; s2; s3; : : : to which the!�-rule was applied. Since, forany individual name s, there are only �nitely many smaller individual names, wemay without loss of generality assume that s1 < s2 < s3 < : : :, and since Iold is �nitewe may assume that all these individuals are new individuals, i.e., elements of Inew.For all i, let Aji !� Aji+1 be the transformation step at which the !�-rule isapplied to si. Now consider the sets CA(si;Aji). Since there are only �nitely manydi�erent such sets, there must be indices k < l such that CA(sk;Ajk) = CA(sl;Ajl).If sk is still present in Ajl (i.e., it has not been replaced by an application of the!�-rule), then CA(sl;Ajl) = CA(sk;Ajk) � CA(sk;Ajl). Since sk < sl and sl is anew individual, this means that sl should be blocked in Ajl, which is a contradictionto our assumption that the !� is applied to sl in Ajl.If sk is no longer present in Ajl then it has been replaced (possibly iteratively) byanother individual, say t, and we know that t < sk. Since in each replacement stepthe replacing individual inherits all the concept assertions of the replaced individual,we know that CA(sk;Ajk) � CA(t;Ajl). Again, we can conclude that sl is blockedin Ajl. This completes the proof of termination.15



5.3 CompletenessLet hfA0g;T0i be a generalized KB obtained as the result of our preprocessing step.This means that T0 contains only at-most restrictions. The ABox A0 may containconcept assertions and inequality assertions both for old and new individuals, butall role assertions are of the form R(a; b) for old individuals a; b.Assume that hM;T0i is a complete generalized KB that was obtained by startingwith hfA0g;T0i and applying the transformation rules of Figure 2 until no more rulesapply. Let A 2M be such that � = hA;T0i does not contain a clash, and let I� bethe corresponding canonical interpretation. In the following, we show that I� canbe used to construct a model of hA0;T0i.First, note that I� need not be a model of � = hA;T0i. The problem is that anindividual s that is blocked in A need not have been blocked at an earlier stage ofthe transformation process. Thus, at such an earlier stage, the !�-rule may havebeen applied to s, generating an individual t with R(s; t) 2 A. This role assertionneed not be satis�ed by the canonical interpretation (see the de�nition of role-�llersfor blocked individuals in the de�nition of the canonical interpretation).However, I� is a model of a certain subset of A, and this will be su�cient toshow the desired result. We de�ne the set of relevant assertions of an ABox B asfollows: rel(B) := fC(s) j C(s) is a concept assertion in Bg [fR(a; b) j R(a; b) 2 B and a; b 2 Ioldg [fs 6 := t j s 6 := t is an inequality assertion in Bg:Thus, rel(B) is obtained from B by removing all role assertions involving new individ-uals. Since the ABox A0 obtained by preprocessing does not contain role assertionfor new individuals, we know that rel(A0) = A0.Lemma 5.3 Let � = hA;T0i be a complete and clash-free KB. Then the canonicalinterpretation I� is a model of hrel(A);T0i.Proof. First, consider a role assertion R(a; b) 2 rel(A). We know that a; b 2 Iold,and thus a cannot be blocked. By the de�nition of the canonical interpretation,R(a; b) 2 A thus yields (a; b) 2 RI� .Second, consider an inequality assertion s1 6 := s2 2 rel(A). Since individualnames interpret themselves in I�, it is su�cient to show that s1 and s2 cannot beidentical names. Obviously, the ABox A0 obtained after the preprocessing step doesnot contain an inequality assertion of the form s 6 := s, and it is easy to see that thisproperty is invariant under rule application. In fact, the only rule that \identi�es"di�erent individual names is the !�-rule. But this rule is applied for individuals tiand tj only if ti 6 := tj is not contained in the ABox.16



Third, consider a concept assertion C(s) 2 rel(A). We show by induction on thestructure of C that s 2 CI�. Note that C(s) 2 rel(A) i� C(s) 2 A.(1) Assume that C is a concept name B. Then B(s) 2 A implies s 2 BI� byde�nition of the canonical interpretation.(2) Assume that C is of the form :B for a concept nameB. SinceA was assumedto be clash-free, we know that B(s) is not contained in A, and thus s 62 BI� byde�nition of the canonical interpretation.(3) Assume that C is of the form C1 u C2 for concept descriptions C1 and C2.Since the !u-rule is not applicable to A, we know that A contains both C1(s) andC2(s). By induction, we can deduce that s 2 CI�1 and s 2 CI�2 , which obviouslyimplies s 2 (C1 u C2)I�.(4) The case where C is of the form C1 t C2 can be treated analogously.(5) Assume that C is of the form (� n R D). We have to distinguish two cases:s can be blocked or not.(5.1) Assume that s is not blocked. Thus, since the!�-rule is not applicable, weknow that A contains individuals s1; : : : ; sn such that the assertions R(s; si), D(si),and si 6 := sj (1 � i; j � n; i 6= j) are in A. Because s is not blocked, R(s; si) 2 Aimplies (s; si) 2 RI� (by de�nition of I�). In addition, induction yields si 2 DI� .Finally, since we already know that I� satis�es all inequality assertions in A, the siare all di�erent from each other. This shows that s 2 (� n R D)I� .(5.2) Now, assume that s is blocked in A. Let s0 be the least (with respect tothe ordering <) individual name in �I� that blocks s.First, we show that s0 is not blocked. Otherwise, the individual s00 that blocks s0satis�es s00 < s0 < s and CA(s;A) � CA(s0;A) � CA(s00;A). Thus s00 blocks s andis smaller than s0, which is a contradiction.Because CA(s;A) � CA(s0;A) we have (� n R D)(s0) 2 A. As shown in (5.1)this implies that there are distinct individual names s1; : : : ; sn such that (s0; si) 2RI� and si 2 DI� . By de�nition of the canonical interpretation, we also have(s; si) 2 RI� , which yields s 2 (� n R D)I� .(6) Assume that C is of the form (� n R D). In order to show that s 2 (�n R D)I� we assume to the contrary that there exist distinct individuals s1; : : : ; sn+1such that (s; si) 2 RI� and si 2 DI� (for i = 1; : : : ; n + 1). Again, we have todistinguish two cases, depending on whether s is blocked or not.(6.1) Assume that s is not blocked. Then (s; si) 2 RI� implies R(s; si) 2 A.Since the !choose-rule is not applicable, we know that (D t �D)(si) is in A for alli, and since the !t-rule is not applicable, we have for all i that either D(si) or�D(si) is in A. By induction, �D(si) 2 A would yield si 2 (�D)I� = (:D)I�1.Thus, si 2 DI� yields D(si) 2 A for i = 1; : : : ; n + 1. This is a contradiction, since1We assume that the negation sign does not contribute to the size of a concept term. Thus �Dhas the same size as D (cf. [9]). 17



now either the !�-rule must be applicable, or A must contain a clash.(6.2) Now, assume that s is blocked in A. Let s0 be the least (with respect tothe ordering <) individual name in �I� that blocks s.As in (5.2), we can deduce that s0 is not blocked, and that A contains theassertion (� n R D)(s0). In addition, (s; si) 2 RI� implies (s0; si) 2 RI� (byde�nition of I�). Thus we can proceed as in (6.1), with s0 in place of s. Thiscompletes the proof that I� satis�es all the concept assertions in A.Finally, consider an element (� n C) of the TBox T0. Assume that there are n+1di�erent individuals s1; : : : ; sn+1 2 �I� such that si 2 C(si) for i = 1; : : : ; n+1. Asin (6.1) above, the fact that the !choose-rule is not applicable can be used to showthat C(si) 2 A. Again, this is a contradiction, since now either the !�-rule mustbe applicable, or A must contain a clash. This completes the proof that I� is amodel of hrel(A);T0i.Lemma 5.4 Assume that B ! B0 and that I 0 is a model of rel(B0) and T0. Thenthere exists an interpretation I that is a model of rel(B) and T0.Proof. If B0 is obtained from B by an application of the !u-, !t-, !�-, or!choose-rule then B is a subset of B0. Thus, rel(B) � rel(B0), which shows that wecan simply use I := I 0.Thus, the only interesting case is the !�-rule. This means that B0 = [ti=tj]Bis obtained from B by replacing each occurrence of ti by tj (for some individuals tiand tj in B). We know that tj < ti and that ti 6 := tj is not in B. Since ti has beenreplaced by tj, we also know that ti does not occur in B0. Hence, if we de�ne I suchthat I is identical to I 0, with the exception that tIi := tIj , then we know that I is amodel of rel(B0).Let � be the substitution that replaces ti by tj, and leaves all the other individualsunchanged. Since B0 = [ti=tj]B we know for all individuals s in B that C(s) 2 rel(B)(respectively s 6 := t 2 rel(B)) implies C(�(s)) 2 rel(B0) (respectively �(s) 6 := �(t) 2rel(B0)). In addition, by our de�nition of I, we have �(s)I = sI . This shows thatall the concept and inequality assertions in rel(B) are satis�ed by I.Finally, let R(a; b) be a role assertion in rel(B). Thus we know that a and b areold individuals. Neither of these two individuals can be equal to ti. To show this,assume (w.l.o.g.) that a is equal to ti. Since tj < ti = a, this implies that tj is alsoan old individual. But then we have ti 6 := tj in B (because in the preprocessing stepthe unique name assumption for old individuals has been made explicit). This is acontradiction since the !�-rule generates the ABox [ti=tj]B only if ti 6 := tj is notin B.Since a and b are di�erent from ti we know that R(a; b) is also contained inrel(B0), and we are done.To sum up, Lemma 5.3 shows that I� is a model of the clash-free and complete18
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