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Logic-based Plan Recognition forIntelligent Help SystemsMathias Bauer and Gabriele PaulGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanye-mail: flastnameg@dfki.uni-sb.deAbstractIntelligent help systems aim at providing optimal help to the users of complexapplication systems. In this context plan recognition is essential for a cooperativesystem behaviour in that it allows the prediction of future user actions, the ascer-tainment of suboptimal action sequences or even serves as a basis for user-adaptedtutoring or learning components. In this paper a new approach to incremental planrecognition based on a modal temporal logic is described. This logic allows for anabstract representation of plans including control structures such as loops and con-ditionals which makes it particularly well-suited for the above-mentioned tasks incommand-language environments. There are two distinct phases: With a general-ized abductive reasoning mechanism the set of valid plan hypotheses is determinedin each recognition step. A probabilistic selection, based on Dempster-Shafer The-ory, then serves to determine the \best" hypotheses, in order to be able to providehelp whenever required.
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1 IntroductionPlan recognition is the identi�cation of a user's plans or goals from the available evidence,which comprises his actions as well as, e.g., information about his preferences contained ina user model (see, e.g., [Car90b]). This knowledge of a user's pursued goals is a prerequisitefor cooperative behaviour in the context of help systems (cf. [GL92]). Plan recognitioncomponents in user interfaces allow, for example, the prediction of future actions whichforms the basis for o�ering semantic plan completion to the user. Furthermore, therecognition of suboptimal user behaviour is a prerequisite for proposing optimal plans inthe context of an active help system. Recognizing the sources of a plan execution failure,e.g., by determining an unsatis�ed plan precondition, allows for exible error handlingwhich is adapted to the current context of the user. More cooperative help systemscan also be obtained by the incorporation of plan monitoring or tutoring based on planrecognition results. Adding a probabilistic reasoning module makes plan recognition evenmore e�ective as it allows taking into account quantitative measures of user preferencesand enables the choice of one most likely hypothesis whenever required. The approachdescribed in the following sections is a combination of logic-based plan recognition andsuch a probabilistic selection.The problem of determining an agent's goals or plans can be viewed as a naturalapplication of abductive reasoning: Plans are, in general, hypotheses that are plausible atthe current state of knowledge and account for or explain the observed actions carried outto date.1 The idea behind abduction is a kind of inverted Modus Ponens, i.e., from anoccurrence of an observation ! and the rule \' implies !", an occurrence of ' is inferredas a plausible hypothesis or explanation for ! (see [Gou50], [Pei58]). Thus, abductionis a form of \defeasible" inference, i.e., the formulae sanctioned are just plausible andsubmitted to veri�cation.The notion of abduction in the context of plan recognition has only been consideredlately and the opinion evolved that all plan recognition is inherently a kind of abductiveproblem independent of the actual plan recognition model (see [May92]): \The traditionalapproach to plan recognition, found in seminal works of Wilensky (...) and Allen (...) isto chain together a sequence of abductive inferences" (cf. [All79], [Wil78]).Using the advantages of a formal logic-based theory|like clear semantics|our ap-proach is based on the modal temporal logic LLP (cf. section 3). This logic has proved tobe an e�ective means of plan recognition as well as of planning (see [BBD+93]) so that oneuniform formalism su�ces for both tasks. The incorporation of control structures suchas conditionals and loops in LLP makes it especially suited to applications in commandlanguage environments (see also [BDK92]). As many complex software packages fall intothis class, there is a broad range of potential applications in the context of intelligenthelp systems. The examples given below are taken from the domain of electronic mailunder UNIX and provide evidence for the existence of practical applications of our formalframework. On the other hand, the control structures and additional features of LLPlike temporal abstraction allow to describe user behaviour in a more concise way and ona more abstract level, which implies that a user can also be given help in a way whichenables him to understand better the underlying structure of a plan.Up to now there are no abductive approaches for modal logics like LLP (see also[BN92]). It is argued in section 2 that temporal modal logics seem to require special1For a detailed overview on abduction see [KKT92], or [Pau93].2



criteria for explanations, as the adoption of the predicate logic de�nition of abductionmay result in counterintuitive results.Goodman and Litman (see [GL92]) present some constraints for plan recognition thatshould be respected to obtain systems which are on the one hand theoretically well-founded but on the other hand also well-suited to the di�erent plan recognition tasks:The ability to predict future actions is an essential component of plan recognizers. Toincrease e�ciency they suggest incremental recognition after each observation, using thecontext to prune the search space in each recognition step. This is what is realized byour plan recognition approach. One further point is the incorporation of probabilistic orheuristic reasoning to cope with ambiguity and to allow quali�ed help. It seems rea-sonable to constrain the set of all feasible plan hypotheses in order to prevent over- orundercommitment or loss of information by adopting a more abstract plan rather than adisjunction.In order to be able to force a decision among the various hypotheses if, for example,the user directly asks for help to complete his plan, there must be a criterion to judge the\quality" of a plan hypothesis which enables the \best" guess of the actually pursued planto be made. Such a criterion can be obtained by encoding the knowledge of the user'stypical behaviour and the possible impact of new observations in a numerical formalism fordealing with uncertainty and incomplete knowledge, where the numerical values representthe probability of a given hypothesis.Candidates for such a formalismare|among others|probability theory and Dempster-Shafer Theory (DST). Similar to [Car90a], we will adopt an extended version of DST forour purposes. This choice will be motivated in section 5.The rest of this paper is organized as follows: After a short motivating example inthe next section, we will introduce the logical foundations of our work in section 3. Sec-tions 4 and 5 describe the phases of abductive plan recognition and DST-based selection,respectively. We summarize our work and discuss related approaches in section 6.2 A Motivating ExampleIn this section we will give a small example for the recognition of plans taken from thedomain of electronic mail. Using this example we want to introduce and explain the basicnotions of our plan recognition scenario and furthermore motivate our new approach toabductive recognition and probabilistic selection in a modal temporal logic.A prerequisite for the recognition of plans2 is knowledge of a user's possible actionsand the combination of these actions in complex action sequences, which describe typicaluser behaviour. In general, this knowledge is stored in a plan hierarchy as introduced byKautz, e.g., in [Kau87]. Apart from the information on the decomposition of plans thehierarchy also contains information on abstractions of hierarchy elements.For example, the two actions ex(save) and ex(write)|where the predicate ex is usedto refer to actions| are both used in a mail system to store a message. Thus they canbe summarized by the abstract action ex(store message). ex(store message) itself couldbe a part of the complex action sequence read and store, e.g., if this sequence can bedecomposed into the actions ex(read) and ex(store message). In the graphic representationin �gure 1 preconditions that might exist are omitted. Abstractions are characterized by2unless so-called novel plans shall be recognized (cf. [GL92]).3



read and deleteex(store message)ex(save) ex(write) ex(read) ex(delete)read and storeFigure 1: Example of a simple plan hierarchy (PH1)dashed arrows, decompositions by solid ones. The representation of the decompositiondoes not imply an order.The logical representation of the abstraction hierarchy is8x:ex(save(x))� ex(store message(x)) (1)8x:ex(write(x))� ex(store message(x)) (2)The decomposition of a plan is given by a plan formula which may also contain pre-conditions or constraints. Consider the plan read and store. A modal formula using theoperators } (read: sometimes) and ; (read: chop) for temporal abstraction and sequentialcomposition, resp., looks as follows: } (ex(read(x)); ex(store message(x))). Thus thedecomposition part of the hierarchy is38x[read and store(x) � } (ex(read(x)); ex(store message(x)))] (3)8x[read and delete(x) � } (ex(read(x)); ex(delete(x)))] (4)Now suppose the user is seen to execute action ex(read(3)).4 Intuitively valid explanationsfor this observation are the assumptions that the user at some time reads and then storesmessage 3 or that he reads and then deletes it, because ex(read(3)) �ts into the correspond-ing plans } (ex(read(x)); ex(store message(x))) and } (ex(read(x)); ex(delete(x))) from(3) and (4).However recalling the \classical" de�nition of abduction (see also section 4) whichrequires for sound hypotheses that the observation can be inferred from the hypothe-ses and the given theory, these plans would not be accepted as explanations (cf. alsosection 4).5 In the following, we argue that for this reason, this condition should be weak-ened, i.e., having observed ex(read(3)), the plans } ex(read(3)); ex(store message(3)) and} ex(read(3)); ex(delete(3)) will be assumed to be explanations. Thus we are able to pre-dict the user's next actions and we might give him the option of executing the rest of theplan automatically.We argue that hypotheses are valid, whenever the original assumptions|in this case} ex(read(x)); ex(store message(x)) and } ex(read(x)); ex(delete(x))|can be re�ned bythe observation, which means that it is possible to incorporate the observation into thehypothesis by �lling the gaps left by temporal or other abstractions such as missingvariable instantiations. This re�nement corresponds to a selection of those models of thehypothesis in which the observation is true. The formal de�nition is given in section 4.3Note that the hierarchy in the �gure does not reect the order implied by the chop-operator.4Observations will always be sentences of the form ex(command).5Here and in the following we will use the terms \hypothesis" and \explanation" as equivalent.4



In general, there may be several possible re�nements, as the temporal structure maynot be unique. Take for example the plan } ex(read(x)); ex(store message(x))) and theobservation ex(read(3)). Either the observed read is the one expected in the plan, or weexpect the action once again at a later point in time, e.g., with another parameter.Thus, we have a new condition for valid explanations, but still no method of deter-mining which explanations should be tested for this condition. \Good" hypotheses shouldsatisfy several criteria (cf. [Pei58]): They should not only be veri�able, but also be e�-ciently computable. In general, the de�nition of some prede�ned set of abducibles avoidsan explosion of search space and serves to conduct the generation of explanations. Formodal logics this is even more important as the language is very expressive. For example,the observation a could give rise to the hypotheses } a;} b; : : : ; a; b; : : :. To overcome thisproblem we will use quite strong heuristics to guide the construction of re�nements inorder to reach only those plans which are of interest in plan recognition.Apart from the modal hypotheses for which we use the re�nement condition mentionedabove, the plan hierarchy contains also more abstract explanations, for example, theplan read and store(3). For the generation of those explanations which contain no modaloperators and thus require no re�nement, we will make a constructive proof guided byproof strategies following the paradigm of tactical theorem proving as proposed in [Con86],[HRS90], and [BDK92]. The feasibility of this method in our context will also be discussedin section 4.The abductive mechanism sketched above expresses no preference of one hypothesisover another. If, however, we take into account the user's preferences, we may obtain acriterion for doing so. Suppose we can assign numerical values to the various plan hy-potheses which reect our knowledge of the user's typical behaviour. We will do so byconstructing a so-called basic probability assignment (bpa) from Dempster-Shafer The-ory which will be described in section 5. Such a bpa allows lower and upper boundsfor the probabilities of certain hypotheses to be compactly represented without needingto completely specify all possible joint and conditional probabilities. In the above ex-ample, we might have the following values:6 fread and storeg � 0:1; fread and deleteg �0:0; fread and store; read and deleteg�0:9: This means that we know very little about theuser, but that the read and store plan is slightly preferred over read and delete.The decomposition part of the plan hierarchy is encoded in a set of weighted rulesmapping observations to hypotheses. Assumewe have|among others|a rule which statesthat the occurrence of a read command strongly supports our belief in the user pursuingread and store (with strength 0.7) and weakly supports our belief in read and delete (withstrength 0.3). The application of this rule is allowed because in the above phase of planrecognition both hypotheses were considered feasible explanations for the observation.Its result is a new bpa which assigns the values 0.72 and 0.28 to read and store andread and delete, respectively (see also section 5). Therefore, if it were necessary to opt forone alternative, the former one would be selected.3 The Logical LanguageThe interval-based modal temporal logic LLP (Logical Language for Planning) which isthe formal basis of our abductive approach to plan recognition was designed for planning6Here, a non-empty set stands for the disjunction of its elements.5



purposes in command language environments (see [BDK92]). LLP is a linear-time logicthat is essentially a combination of the temporal logic for programs (cf. [Kr�o87]) and a�rst-order version of choppy logic from Rosner and Pnueli (see [RP86]). In the following,we will give a short review of the basic concepts.Let �F and �P be signatures of function and predicate symbols, respectively. Wede�ne � = �F [�P . The set of variables V is determined by V G[V L with V G being theset of all global variables and V L the set of all local variables. The global variables actas \classical" logical variables whereas a local variable may change its value from state tostate. A special predicate ex is used to describe actions with ex(a) denoting the executionof action a. T� is the set of all �-terms which is formed in the usual manner. The set F�of well-formed �-formulae is de�ned byDe�nition 1 (well-formed formulae) F� is the smallest subset of (V[�[f:;^;8;;}; ; g)� with the usual quanti�er and connectives for negation and conjunction, and ' 2F� (\next"), }' 2 F� (\sometimes"), and '; 2 F� (\chop") for '; 2 F�.Notation: We use the usual reading for the abbreviations � and �.From the de�ned operators others can be derived which are particularly useful in thecontext of planning and plan recognition in command language environments. ut' isused as an equivalent to :}:'. We have the following control structures:if c then � else � � (c � �) ^ (:c � �) andwhile c do � od ;� � if c then (�; while c do � od ;�) else �:The assignment := is de�ned as a special action with a:=b having the e�ect of giving ain the next state the current value of b.Logical formulae are interpreted over intervals � that are de�ned as non-empty se-quences of states (� = (�0; �1; : : :)). The values of terms are determined by a �-interpre-tation I parameterized with a set of intervals W : Global variables are interpreted by anassignment � : V G ! D into domain D. The value of a local variable with respect to aninterval � = (�0; : : : �n) is its value in the initial state, i.e., states are assignment func-tions for the local variables. Additionally, they contain information about the commandcurrently being executed. More complex terms are interpreted as usual with functionsymbols|just as predicate symbols|treated as globals.The validity of a formula ' under the interpretation I is determined with respect toan interval � 2 W (written � j=I). We continue giving an informal description of themodal operators ;} and chop. A formal de�nition can be found in [BDK92]. ' issaid to be true in � = (�0; �1; : : :) if ' is true in the interval beginning with the nextstate , i.e., in (�1; : : :). }' holds in � if there is some su�x subinterval of � in which 'holds. The chop operator \;" extends classical temporal logics as it provides a means ofconcatenating time intervals. We say '; is true in � = (�0; : : : ; �i�1; �i; �i+1; : : :) if �can be split into two subintervals �1 = (�0; : : : ; �i�1; �i) and �2 = (�i; �i+1; : : :) where 'is true in �1, and  is true in �2. We say that I is a model of ' if and only if � j=I ' forall � 2 W .In the following sections the adoption and selection of hypotheses will be described inmore detail. 6



4 Plan Recognition with Abductive ReasoningAs already outlined in section 2 there are cases of intuitively valid hypotheses which arenot generated by \classical" abduction. To discuss the reasons in greater detail, we recallthe de�nition of abduction.De�nition 2 (classical abductive explanation) Let T be a logical theory de�nedover the �rst-order language L and A a set of sentences of L called abducibles. ' is anexplanation for ! if(1) T [ ' is consistent(2) T [ ' j= !(3) ' is a ground instance of some abducible s 2 A.The hypothesis } a would not be accepted as an explanation for observation a, becausecondition (2)|the correctness criterion for abduction|is not ful�lled: } a 6j= a, for T = ;.This problem is overcome by using a weaker correctness condition. An explanation P isvalid, if it can be re�ned with the observation !. The re�ned explanations are determinedby those models of P which are also models of ! (cf. also section 2). More formally wehaveDe�nition 3 (re�ned explanations) Let T be a logical theory de�ned over LLP, Pan LLP formula, and ! an observation. The set C of re�ned explanations is determinedby CP;! = fY jMOD(T [ Y ) =MOD(T [ P) \MOD(!)g;where MOD(') denotes the set of models of formula '.Consider again the hypothesis } a and observation a. The re�ned hypotheses are deter-mined by those models of } a which are also models of a. These models can be split intothose in which the action a occurs exactly at the �rst state and those in which it occursin state one but also at some later point in time, which results in C} a;a = fa; a ^} ag.Note that a can be inferred from both formulae, i.e., the correctness is guaranteed . } ais called the explanation for a.De�nition 4 (explanation) Let T be a logical theory de�ned over LLP, P an LLPformula, and ! an observation. P is an explanation for !, if(1) T [ P is consistent;(2) For P there exists at least one re�ned explanation P 0 for which T [ P 0 j= !;(3) P is a ground instance|up to the current point in time|of some abducible.Remarks:Owing to a lack of space we are a bit careless with respect to point (3). An instantiationof the hypothesis is built by a special rule which uses a substitution obtained by theinstantiations in the re�ned explanations. 7



ex(write)ex(save)
read and store oneex(store message) ex(type)ex(read)

process message ex(read message)read and store allread and write all read and save allFigure 2: The plan hierarchy (PH2)If we have 8x(bird(x) � flies(x)) and flies(Tweety), then bird(Tweety) is a valid expla-nation with respect to our de�nition as well, i.e., the explanations in the \classical sense"are also valid in our framework.To determine the re�ned hypotheses we use an equivalence preserving transformationof LLP formulae into a speci�c graph syntax. The graph of formula P represents themodels of P with nodes corresponding to interval states. Labelled arrows are used todetermine the temporal order of states, e.g., the immediate successor (corresponding tothe -operator) or the subsequence relationship (corresponding to } ). Incorporating anobservation into the graph means moving through it and �lling nodes with the observa-tion if this is feasible. Owing to a lack of space we are forced to omit a more detaileddescription. Example: Consider the example hierarchy PH2 given below.7Abstractions are formed as described in section 2. The plans contained in the decompo-sition hierarchy aren := 1; while n < length(mbox)do ex(read message(n)); ex(store message(n));n := n + 1 od (5)n := 1; while n < length(mbox) do ex(read(n)); ex(write(n));n := n+ 1 od (6)n := 1; while n < length(mbox) do ex(read(n)); ex(save(n));n := n+ 1 od (7)ex(read message(x)); ex(store message(x)) (8)for which the decomposing plans are read and store all (for (5)), read and write all (for (6)),read and save all (for (7)), and read and store one (for (8)), respectively. Let all elementsof the hierarchy be abducible. Suppose now that the user is seen to read message 1, i.e.,we observe ex(read message(1)). This observation �ts into plan (5), as can be seen in thefollowing. The while-plan is re�ned by �rst extracting the body of the loop for the currentiteration according to the de�nition of while as a derived operator (cf. section 3), i.e., (5)7which is quite similar to the Cooking Domain hierarchy of Kautz in [AKPT91], Chapter 2.8



becomesn := 1; if n < length(mbox)then ex(read message(n)); ex(store message(n));n := 2;while n < length(mbox) do : : : (9)Assuming length(mbox) = 5 the re�ned explanation isex(read message(1)); ex(store message(1));n := 2; while n < 5 do : : :because in those models of (9) in which ex(read message(1)) is true we exactly expectex(store message(1)) as the next action and then the while-loop to be continued.The problem is now how to �nd the explanations to test for re�nement. We arguethat for our application it is su�cient and more e�cient to use heuristics to guide thisselection. Thus, we will �rst of all test only those plans contained in the hierarchy whichform a decomposition, in our example plans (5) to (8). For abstract plans and actions, e.g.,read and store all or read message, we use the original stronger condition for explanations,i.e. T [ P j= !, because the re�nement step has already been made when adopting the\decomposed plans". These more abstract explanations are found by proving T [P j= !with the aid of tactics. Thus, roughly said, to �nd these explanations we encode theformulae making up the plan hierarchy as sequent rules in a sequent calculus and thetactic is to choose only these rules when constructing hypotheses.8These strategies allow us to produce only those plans which are of interest, i.e., con-tained in the hierarchy. This seems feasible to us, as otherwise the expressiveness of thelanguage would give rise to a large set of explanations which would be of little use forplan recognition and be dismissed anyway, if the set of \best" explanations is determined.Examples are } b;} c; : : : as explanations for a.The result of plan recognition gives rise to a set of possible explanations among whichthe best ones may be selected according to a probabilistic criterion (cf. section 5) or alsoaccording to speci�city. In our help system context it may be desirable to have the mostspeci�c general explanation. This means we search for a plan as a hypothesis, not for anabstract action, but among the plans a speci�c one generally provides more information.For example, the while-plan (9) is more informative than the abstraction process message.Example (continued): Consider again the observation ex(read message(1)). When planrecognition starts we search for explanations with valid re�nements. These are (5), (6),(7), and (8). As we want to extract the complete set of feasible explanations, we also tryto �nd those actions P which are classical abductive explanations, i.e., with T [ P j= !.These are ex(read(1)) and ex(type(1)). For ex(read(1)) we can again �nd an explanationwhich has a re�nement for this command, namely (5).The set of abstract plans P for which we can prove T [P j= � for all � resulting from theprevious steps is V = fread and store all; process message; read and store one(1)g. Thusafter the �rst recognition step the complete set of plan hypotheses is V [f(5); (6); (7); (8)g.Observing in the next step the action ex(save(1)), we �rst test the re�nements obtainedso far for validity. This is not the case for (6) so this hypothesis is discarded and with itall dependent explanations as, e.g., read and write all.In the following section we will describe how to choose one hypothesis among thehypotheses obtained.8The use of tactics for plan generation in LLP is discussed in [BDK92].9



5 Selection of Plan HypothesesIn this section, we will motivate the choice of Dempster-Shafer Theory, introduce its mostimportant basic concepts, and show how they can be applied to the task of judging thequality of several hypotheses. Owing to a lack of space, we refer the reader to [Sha76,KSH91] for more details of DST.There are two reasons for choosing DST instead of probability theory: First of all, DST(see [Sha76]) allows to work with underspeci�ed models. This means that|in contrast toprobability theory|it is not necessary to know all conditional and a priori probabilities orto introduce arbitrary independence assumptions in order to start computation. Instead,it is su�cient to give lower and upper bounds for the probabilities of some events and toleave the rest unspeci�ed. This corresponds exactly to our situation: It is hardly possibleto determine exactly the probability of a given plan hypothesis even on the basis of long-term observations of the user's behaviour|our knowledge of his preferences will alwaysremain incomplete. DST enables such partial ignorance to be taken into account andto be distinguished from uncertainty, while probability theory requires the application ofsome meta-criterion likemaximal entropy to arti�cially \complete" the given information.The second reason is that the use of Dempster's rule for the combination of severalpieces of evidence allows the process of narrowing the set of possible hypotheses to beadequately modeled when new observations are available as is the case for incrementalplan recognition. With DST as the basic numerical formalism for dealing with uncertainty,we thus have a tool for modeling the initial situation in a granularity correspondingto our state of knowledge and the dynamic process of updating this description in thelight of new evidence. In contrast, systems adopting probability theory|like Wimp3(cf. [CG91]) which is based on dynamically created Bayesian networks| have to makenumerous equiprobability assumptions in order to establish the required numerical values.The basic idea of DST is that incoming information from a so-called evidence spaceinduces a distribution of an evidence mass on the hypothesis space. This means that anobservation makes us assign a certain degree of con�dence to the various hypotheses. Astime passes, new information will cause the evidence mass to be concentrated on a smallernumber of hypotheses until eventually the correct one remains.Now let 
 be the set of all single hypotheses, the so-called frame of discernment. Wehave thenDe�nition 5 (basic probability assignment, belief, plausibility) A mapping m :2
 ! [0; 1] is a basic probability assignment (bpa) i�m(;) = 0 and XA�
m(A) = 1:Given m, the functions Belm and P lm : 2
 ! [0; 1], called belief and plausibility, resp.,can be derived: Belm(A) = XB�Am(B); P lm(A) = XB\A6=;m(B):Wherever possible, the index m will be omitted.From a logical point of view, a non-singleton subset A of 
 stands for the disjunction ofall its members. While m(A) represents the amount of con�dence that can be attributedexactly to A (but owing to a lack of knowledge not to its subsets), Belm(A) is the total10



degree of con�dence which can be assigned to A and its constituents, and P lm(A) isthat part of the evidence mass which might eventually be moved into A, given newinformation. That means, Belm(A) and P lm(A) form lower and upper bounds for the\true" but unknown probability of A. The numerical di�erence between both values isthe degree of ignorance we have about A.Remark: Using a bpa m0 with m0(
) = 1 and m0(X) = 0 for all proper subsets X of
, we can represent a state of total ignorance in which we only know that 
 contains the\true" value we are looking for. The corresponding belief function is called the vacuousbelief function.Two independent pieces of evidence|encoded in bpa's|can be combined using Demp-ster's rule the result of which is a new bpa which represents the information contained inboth functions (cf. [Dem67]). The e�ect of applying this rule is that the evidence mass isconcentrated on hypothesis sets being supported by both sources while diminishing theamount attributed to the others.How can these notions be related to our needs in plan recognition? As the observationsconsist mainly of the user's actions, the set Cmd of all commands forms the evidence space,while the abstraction hierarchy PHA of the plans is our hypothesis space. The fact thatPHA is typically not of the form 2
 has several implications which will be discussed below.We still lack a means of representing the decomposition of plans. We do so by introducinga mapping � between the evidence and hypothesis space:� : (2Cmd � ;)! 2PHA�[0;1] (10)which can be compactly written as a set of rules:9if evidence ! then H1 with strength s!;1...then Hn with strength s!;nfor all ! � Cmd, where Hi 2 PHA and s!;i 2 [0; 1] such that Pi s!;i = 1. Such a rule canbe read as follows: If the (disjunctive) observation ! occurs and it \�ts" into H1 in thesense that H1 can be re�ned with !, then we assign to the (disjunctive) hypothesis H1an evidence mass of s!;1 and so on for all Hi. If ! satis�es the structural requirements ofall its consequences Hi, the application of such a rule induces a bpa s! on the hypothesisspace via the various s!;i. If, however, this connection between observation and hypoth-esis cannot be established in certain cases, the remaining s!;i have to be divided by anappropriate factor to ensure the properties of a bpa. Causes of such a (partial) failureof a rule include incompatibilities between the actual parameters of ! and the variablebindings in Hi or a conict because of the temporal structure of Hi (that means, ! wasexpected for another point in time).The selection phase of the plan recognition process now works as follows: Assumewe are given a bpa m0 over the set of plan hypotheses which represents either an initialvaluation in the sense of a user model or the result of the last plan recognition step. Asa new observation ! occurs, the corresponding rule is applied using information aboutits applicability provided by the abductive recognition module which yields a new bpa s!9� actually is a generalization of the multivalued mapping � from [Dem67] which|given a sensorspace with a probability function|induces a bpa on the hypothesis space. The foundations for thisextension can be found in [Yen86, Yen89, GB91]. 11



over the plan hypotheses. m0 and s! are combined with Dempster's rule and the resultingbpa m1 now mirrors the impact of the recent observation on the numerical valuation ofthe hypotheses. This result can now be used to de�ne various selection criteria as will bedemonstrated in the following example.Example (continued): Assume that after the �rst observation ex(read message(1)), wehave the bpa m1 which assigns 0.2 to fread and write allg, 0.5 to read and store all, 0.1to fread and store oneg,and 0.2 to process message. Here, read and store all stands for theset f read and write all, read and save all g of hypotheses being subsumed by it in theplan hierarchy depicted in �gure 2. Accordingly, process message acts as the name of theset of all single hypotheses. This bpa tells us that the user obviously tends to processthe whole contents of his mailbox at once, because the probability for the most generalhypothesis describing this behaviour (read and store all) lies between 0.7 and 0.9, whereasread and store one ranges between 0.1 and 0.3. The second observation ex(save(1)) triggersthe following ruleif evidence save then fread and save allg with strength 0.4read and store all with strength 0.3fread and store oneg with strength 0.3which is completely applicable and|after combination with m1 using Dempster's rule|yields the resultread and store all � 0:362; fread and save allg � 0:483; fread and store oneg � 0:155:This means that our belief in the user pursuing one of the plans concerning the wholemailbox has grown to 0.845, with the variant using the save command being preferred overthe one applying the write command. If the system is now forced to opt for one single plan,the output will be read and save all because this is the one with the highest valuation: Ourbelief in it is 0.483. Another selection criterion might be the highest plausibility valueamong the single hypotheses, which|in this case|would yield the same result.Remarks: As mentioned above, the idea of considering only a part of the whole power setof all hypotheses has several implications (cf. [GS85]): In this case, bpas can be combinedin polynomial time (instead of exponential time in the general case), but this combinationis no longer associative, i.e., the order of combinationmay inuence the result. In addition,the plausibility of a hypothesis A no longer corresponds to 1 � Bel(A)10 if A does notbelong to that part of the hypothesis space currently being considered, thus violating abasic equation from DST.6 Conclusion and OutlookIn the preceding sections we have presented a new concept for plan recognition based ona generalized approach to abduction in the modal logic LLP. A Dempster-Shafer basedselection module serves to determine the most plausible hypotheses at any time.The �rst formal theory of plan recognition based on deductive inferences in a closedplan hierarchy (cf. also section 2) was developed by Kautz (see [Kau87], [KA88]). Recentwork in plan recognition focuses on the problems not solved by this approach (compare10Here, A stands for the complement of A. 12



[GL92]). For example, Appelt and Pollack (cf. [AP90]) use the concept of weighted ab-duction (also see [HSME89]) to allow the indeterministic choice of a single plan or thedetermination of more likely plans to prevent overcommitment, i.e., the premature se-lection of one plan, if required. However as Goodman and Litman state (see [GL92])all these works are of a more theoretical importance as the algorithms developed arenot adapted to the actual use of plan recognition in intelligent systems. In contrast, weprovided evidence for the fact that our formal framework for plan recognition possessespractical applications in realistic scenarios, because|among others|it allows plans con-taining control structures such as loops and conditionals to be recognized. As the logicLLP is also well suited to planning tasks (cf. [BDK92]), a uniform framework for bothplanning and plan recognition tasks is obtained (see also [AKPT91]).Concerning the handling of uncertainty, we take into account a priori probabilities ofthe hypotheses and keep the numerical computations for the next recognition step as thebasis of decision-making instead of heuristics. This is in contrast to Carberry's approachin [Car90a].The concepts described above are currently being implemented within the project PHI(Plan-based Help Systems) at the German Research Center for Arti�cial Intelligence (seealso [BBD+93]).Acknowledgments: We would like to thank Susanne Biundo for helpful comments onan earlier version of this paper.References[AAA86] Proceedings of the 5th National Conference of the American Association forArti�cial Intelligence, Philadelphia, PA, August 1986.[AKPT91] J.F. Allen, H.A. Kautz, R.N. Pelavin, and J.D. Tenenberg. Reasoning AboutPlans. Morgan Kaufmann, Los Altos, CA, 1991.[All79] J.F. Allen. A plan-based approach to speech act recognition. Technical Re-port (Doctoral Dissertation) 131/79, University of Toronto, Department ofComputer Science, 1979.[AP90] D.E. Appelt and M. Pollack. Weighted abduction for plan ascription. Technicalreport, Arti�cial Intelligence Center and Center for the Study of Language andInformation, SRI International, Menlo Park, California, 1990.[BBD+93] M. Bauer, S. Biundo, D. Dengler, J. K�ohler, and G. Paul. PHI|a logic-basedtool for intelligent help systems. In Proceedings of the 13th International JointConference on Arti�cial Intelligence, Chamb�ery, France, August 1993. MorganKaufmann Publishers.[BDK92] S. Biundo, D. Dengler, and J. K�ohler. Deductive planning and plan reusein a command language environment. In Proceedings of the 10th EuropeanConference on Arti�cial Intelligence, pages 628{632, 1992.[BN92] H.-J. B�urckert and W. Nutt. On abduction and answer generation throughconstrained resolution. Research Report RR-92-51, DFKI, 1992.13
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