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Queries, Rules and De�nitionsas Epistemic Sentencesin Concept LanguagesFrancesco M. Donini� Maurizio Lenzerini�Daniele Nardi� Werner Nutty Andrea Schaerf�AbstractConcept languages have been studied in order to give a formal account of thebasic features of frame-based languages. The focus of research in concept lan-guages was initially on the semantical reconstruction of frame-based systemsand the computational complexity of reasoning. More recently, attention hasbeen paid to the formalization of other aspects of frame-based languages, suchas non-monotonic reasoning and procedural rules, which are necessary in orderto bring concept languages closer to implemented systems. In this paper wediscuss the above issues in the framework of concept languages enriched withan epistemic operator. In particular, we show that the epistemic operatorboth introduces novel features in the language, such as sophisticated queryformulation and closed world reasoning, and makes it possible to provide aformal account for some aspects of the existing systems, such as rules andde�nitions, that cannot be characterized in a standard �rst-order framework.
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1 IntroductionStructured or taxonomical representations of knowledge have been studied in Arti-�cial Intelligence with the aim of providing for both a compact representation ande�cient reasoning methods. Semantic networks and frames are well known examplesof this kind of knowledge representation languages.Concept languages (also called terminological languages or description logics)have been studied for several years in order to provide a formalization of structuredknowledge representation languages and to analyze the computational propertiesof the associated reasoning tasks [3, 5, 6, 19, 28]. However, concept languages aregiven a set-theoretic �rst-order semantics and leave out several aspects of practicalsystems. Therefore, it seems now appropriate to enrich such languages both toexplore novel language features and to account for some of those aspects that cannotbe easily described in a standard �rst-order framework.This need is discussed in the literature (see for example [11, 29]) and can be easilyrecognized by looking at recent knowledge representation systems based on conceptlanguages such as [2, 30]. Work in this direction has already begun with proposals ofextending concept languages to deal with di�erent forms of non-monotonic reasoning(see for example [1, 23]).We proposed in [7] to enrich concept languages with an epistemic operator de�nedin the style of [14, 15, 25]. While the main emphasis of that paper was to showthat answering queries formulated in the epistemic concept languages can be doneby extending the calculus for instance checking developed in [10], here we aim atdiscussing in more detail the advantages provided by such an extension both forenhancing the capabilities of concept languages, and for formalizing non-standardfeatures of existing systems.In particular, we focus our attention on the use of the epistemic operator inorder (1) to de�ne a more powerful query language; (2) to be able to formulatequeries requiring some forms of closed world reasoning; (3) to formalize the notionof procedural rule; (4) to precisely characterize weak forms of concept de�nition.All these aspects show that the epistemic operator turns out to be 
exible enoughto account for several di�erent notions in an elegant and uniform way.With regard to Point (1), we provide several examples that show how the newquery language allows one to address both aspects of the external world as repre-sented in the knowledge base, and aspects of what the knowledge base knows aboutthe external world. It is worth noting that one advantage of the extended querylanguage is the formalization of integrity constraints, which are viewed as sentencesreferring to what the knowledge base knows about the world (see [7]). This aspect,however, is not further discussed in the present paper.With regard to Point (2), we show that a careful usage of the epistemic operatorallows one to express queries whose processing forces the system to assume completeknowledge about (part of) the knowledge base. Note that this approach is di�er-ent from assigning a closed world semantics to the knwoledge base itself. In fact,3



the nonmonotonicity is not in the semantics of the knowledge base, but a form ofnonmonotonic reasoning is achieved by the system when answering special kinds ofqueries.Points (3) and (4) are concerned with the formalization of two important fea-tures of some existing systems. In particular, systems like [2, 12, 22, 30] includesuitable structures for the representation of procedural rules, enabling both behav-ioral models of objects and expertise in an application domain to be expressed. Wepropose to express procedural rules as special epistemic sentences in the knowledgebase. While procedural rules are usually de�ned informally in existing systems, weshow that a nice formalization of these features can be achieved in our framework,thus clarifying both their semantics, and their interaction with the other parts of theknowledge base. Moreover, we show that epistemic sentences provide an account forweak forms of concept de�nitions similar to those found in LOOM [16] and othersystems. This formalization makes it clear that weak de�nitions provide a form ofincomplete reasoning that is both computationally advantageous, and semanticallywell founded.The paper is organized as follows. Section 2 recalls the basic notions about theconcept language ALC, which is a powerful concept language (including conceptconjunction, disjunction, negation, as well as existential and universal quanti�cationof roles), together with its usage in the de�nition of knowledge bases. Section 3presents the epistemic concept language ALCK, obtained by adding an epistemicoperator to ALC. Section 4 elaborates on the features of ALCK when used as aquery language over knowledge bases expressed in ALC. Section 5 focuses on someforms of closed world reasoning that can be expressed with the epistemic operator.Section 6 proposes a formalization of procedural rules as special classes of epistemicsentences, while Section 7 discusses the use of epistemic sentences in expressingweak forms of concept inclusions and de�nitions. Finally, conclusions are drawn inSection 8.2 Concept Knowledge BasesWe make use of the concept language ALC (see [5, 28]) to de�ne a knowledgebase.1 Like any concept language, ALC allows one to express the knowledge aboutthe classes of interest in a particular application through the notions of conceptand role. Intuitively, concepts represent the classes of objects in the domain to bemodeled, while roles represent relationships between objects. Starting with primitiveconcepts and roles, one can construct complex expressions by means of variousconcept forming operators.The syntax and semantics of ALC are as follows. We assume that two alphabetsof symbols, one for primitive concepts, and one for primitive roles, are given. The1Although we restrict our attention to ALC, our framework can be applied to other languagesas well. 4



letter A will always denote a primitive concept, and the letter P will denote a role,which inALC is always primitive. The concepts (denoted by the letters C and D) ofthe language ALC are built out of primitive concepts and primitive roles accordingto the syntax rule:C;D �! A j (primitive concept)> j (top)? j (bottom)C uD j (intersection)C tD j (union):C j (complement)8P .C j (universal quanti�cation)9P .C (existential quanti�cation):We use parentheses whenever we have to disambiguate concept expressions. Forexample, we write (9P .D) uE to indicate that the concept E is not in the scope of9P .An interpretation I = (�I; �I) consists of a nonempty set �I (the domain of I)and a function �I (the interpretation function of I) that maps every concept to asubset of �I and every role to a subset of �I��I such that the following equationsare satis�ed: >I = �I?I = ;(C uD)I = CI \DI(C tD)I = CI [DI(:C)I = �I n CI(8P .C)I = fd1 2 �I j 8d2 : (d1; d2) 2 P I ! d2 2 CIg(9P .C)I = fd1 2 �I j 9d2 : (d1; d2) 2 P I ^ d2 2 CIg:An interpretation I is a model for a concept C if CI is nonempty. A concept issatis�able if it has a model and unsatis�able otherwise. We say that C is subsumedby D if CI � DI for every interpretation I.In terminological systems, the knowledge base includes both an intensional part,called terminology or simply TBox, and an extensional part, called assertional boxor simply ABox. The TBox is constituted by a set of inclusion statements of theform C v Dwhere C, D are concepts. Inclusion statements are interpreted in terms of setinclusion: an interpretation I satis�es C v D if CI � DI . An interpretation I is amodel for a TBox if it satis�es all of its inclusions. As pointed out in [4], inclusionsare more general than de�nitions, since de�nitions like A := C can be expressed as5



A v C and C v A. Moreover, cyclic de�nitions are admitted and interpreted bythe descriptive semantics [19].The ABox is constituted by a set of assertions that specify either that an in-dividual is instance of a concept or that a pair of individuals is instance of a role.Let O be an alphabet of symbols, called individuals. Syntactically, assertions areexpressed in terms of membership statements, of the formC(a)P (a; b)where a and b are individuals, C is a concept, and P is a role. C(a) means that ais an instance of C, while P (a; b) means that a is related to b by means of P . Inorder to give a formal semantics to assertions,the interpretation must be enrichedwith an injective function from O to �I, i.e. each individual is associated with aunique domain element (Unique Name Assumption). Therefore an interpretation isnow a triple I = (�I; �I ; 
I), and an assertion C(a) is satis�ed by I if 
I(a) 2 CI.Similarly, an assertion P (a; b) is satis�ed by I if (
I(a); 
I(b)) 2 P I .To summarize we de�ne an ALC-knowledge base as follows:De�nition 1 An ALC-knowledge base is a pair � = hT ;Ai, where T is a set ofinclusion statements, and A is a set of membership assertions, whose concepts androles belong to the language ALC. An interpretation I is a model for � = hT ;Aiif it is a model for both T and A.We say that � is satis�able if it has a model. The set of models of � is denotedas M(�). � logically implies � (written � j= �), where � is either an inclusionstatement or a membership assertion, if every model in M(�) satis�es �.The most common kind of query to a knowledge base � is asking whether C(a)(or P (a; b)) is logically implied by �. Notice that the semantics associated withconcept languages is an open world semantics: the answer to a query Q will beYES if Q is true in every model for �, NO if Q is false in every model, and UNKNOWNotherwise.It is well known (see for example [4]) that query answering in ALC-knowledgebases is reducible to satis�ability. A calculus for knowledge base satis�ability inALC is presented in [9] and shown to be complete and terminating.3 An Epistemic Concept LanguageIn this section we present the epistemic concept language ALCK, previously intro-duced in [7], which is an extension of ALC with an epistemic operator. Generallyspeaking, we follow [25], and use KC to denote the set of individuals known to beinstances of the concept C in every model for the knowledge base. The syntax of6



ALCK is the following (where C;D denote concepts, R denotes a role, A denotes aprimitive concept and P a primitive role):C;D �! A j (primitive concept)> j (top)? j (bottom)C uD j (intersection)C tD j (union):C j (complement)8R.C j (universal quanti�cation)9R.C j (existential quanti�cation)KC (epistemic concept)R �! P j (primitive role)KP (epistemic role):The semantics of ALCK is an adaptation to the framework of concept languagesof the one proposed in [14, 15, 25]. As in the cited papers, some issues typical of�rst-order modal systems arise. Such issues concern the interpretation structuresand are dealt with by the following assumptions:� every interpretation is de�ned over a �xed domain, called � (Common DomainAssumption);� for every interpretation the mapping from the individuals into the domainelements, called 
, is �xed (Rigid Term Assumption).An epistemic interpretation is a pair (I;W) where I is an interpretation and Wis a set of interpretations such that the following equations are satis�ed:>I;W = �?I;W = ;AI;W = AIP I;W = P I(C uD)I;W = CI;W \DI;W(C tD)I;W = CI;W [DI;W(:C)I;W = � n CI;W(8R.C)I;W = fd1 2 � j 8d2. (d1; d2) 2 RI;W ! d2 2 CI;Wg(9R.C)I;W = fd1 2 � j 9d2. (d1; d2) 2 RI;W ^ d2 2 CI;Wg(KC)I;W = \J2W(CJ ;W)(KP )I;W = \J2W(PJ ;W): 7



Notice that, since the domain is �xed independently of the interpretation, it ismeaningful to refer to the intersection of the extensions of a concept in di�erentinterpretations. It follows that KC is interpreted inW as the set of objects that areinstances of C in every interpretation belonging to W. In this sense, KC representsthose objects known to be instances of C in W. Notice also that if one discards Kand W in the equations, one obtains the standard semantics of ALC.An ALCK-knowledge base 	 is a pair 	 = hT ;Ai, where T is a set of inclu-sion statements and A is a set of membership assertions, whose concepts and rolesbelong to the language ALCK. The truth of inclusion statements and membershipassertions in an epistemic interpretation is de�ned in a straightforward way. Anepistemic model for 	 is a pair (I;W), where I 2 W and W is any maximal set ofinterpretations such that for each J 2 W, every sentence (inclusion or membershipassertion) of 	 is true in (J ;W).Notice that the semantics of an ALCK-knowledge base could be equivalentlyde�ned in terms of an accessibility relation on a set of possible worlds. More specif-ically, the constraints posed by the semantic equations on KC and KP , correspondto a structure of possible worlds each one connected with all the others. Therefore,the accessibility relation would be an equivalence relation, as in the modal systemS5. However, the epistemic models of a knowledge base correspond to S5 modelswith a maximal set of worlds. In particular, if � is an ALC-knowledge base, i.e.it does not contain epistemic operators, then its epistemic models are all the pairs(I;M(�)) for every I 2 M(�).An ALCK-knowledge base 	 is said to be satis�able if there exists an epistemicmodel for 	, unsatis�able otherwise. 	 logically implies an assertion �, written	 j= C(a), if � is true in every epistemic model for 	.4 ALCK as a Query LanguageIn this section, we use ALCK as a query language to ALC-knowledge bases. Firstof all we introduce the notion of epistemic query.De�nition 2 Given an ALC-knowledge base �, an ALCK-concept C, and an in-dividual a, the answer to the query C(a) posed to � is YES if � j= C(a), NO if� j= :C(a), and UNKNOWN otherwise. Moreover, the answer set of C w.r.t. � is theset fa 2 O� j � j= C(a)g, where O� is the set of individuals appearing in �.To answer epistemic queries posed to an ALC-knowledge base � one can checkwhether � plus the negation of the query is unsatis�able. In [7], we de�ned asound and complete calculus to answer epistemic queries to an ALC-knowledgebase consisting of an ABox only. Although such a calculus does not consider theTBox, it can be suitably extended in order to treat inclusion statements in thespirit of [4, 9]. We do not present the extended calculus in this paper. It is reported8



in [8], where the decidability of the problem of answering epistemic queries to anALC-knowledge base is proved and its computational properties are discussed.Our goal here is to show that the use of epistemic operators in queries allows fora more sophisticated interaction with the a knowledge representation system. Forthis purpose we provide an example of an ALC-knowledge base and discuss variouskinds of queries that can be posed to it using the language ALCK.In Figure 1 we show an ALC-knowledge base �1 = hT1;A1i describing informa-tion about a university. The TBox T1 contains information about the various classesof persons working in the university and the courses supplied by the university. Weuse D := C as a shorthand for C v D and D v C. The ABox A1 keeps track ofthe actual persons and courses involved in the university, together with the relationsbetween them. The ABox A1 is also shown in graph form in Figure 2.It can be easily shown that �1 is satis�able and that it has several di�erentmodels. In fact, it does not have complete knowledge about the represented world.For example, since EE282 is an intermediary course, �1 knows that at least onegraduate student is enrolled in EE282, but it doesn't know who she/he actually is.Similarly, �1 knows that Susan is either a graduate or an undergraduate, withoutknowing which one.Notice that the information in T1 plays a role in the deduction of properties ofindividuals in A1. For example, �1 knows that Mary is a graduate student, becauseshe has a bachelor's degree and thus, according to T1, she falls under the descriptionof graduate student.We consider now various ALCK queries directed to �1. In particular, in order tounderstand the role of the epistemic operator K, we consider both ALC queries andmodi�ed versions of them including K. The comparison between their respectivesemantics highlights the role of K in the query language.We start with a pair of queries involving one single existential quanti�er:� Query 1a: �1 j= 9ENROLLED.Grad(ee282) ? Answer: YES.� Query 1b: �1 j= 9KENROLLED.KGrad(ee282) ? Answer: NO.Query 1a asks whether there is a graduate student enrolled in EE282. Theanswer is YES because EE282 is an intermediary course and therefore, according toT1, there is at least one graduate student enrolled in it. However, as we alreadymentioned, the name of the enrolled student is unknown. It might either be one ofthe individuals named in �1 or a di�erent one about whom no information is given.Moreover, it is not even ensured that it is the same one in all models.On the other hand, Query 1b asks whether there exists an individual who isknown both to be enrolled in EE282 and to be a graduate student. In other words, itasks for an individual, say fred, such that both the assertions ENROLLED(ee282;fred) and Grad(fred) hold in every model for �1. Such an individual does not exist,thus the answer to the query is NO. 9



AdvCourse := Course u 8ENROLLED.Grad;BasCourse := Course u 8ENROLLED.Undergrad;IntCourse := Courseu9ENROLLED.Gradu9ENROLLED.Undergrad;9TEACHES.Course v Grad t Professor;Grad := Student u 9DEGREE .Bachelor,Undergrad := Student u :GradThe TBox T1Professor(bob); TEACHES(bob; ee282); TEACHES(john; cs324);TEACHES(john; cs221); Course(cs221); Course(cs324);IntCourse(ee282); ENROLLED(ee282; peter); ENROLLED(cs221;mary);ENROLLED(cs221; susan); ENROLLED(cs324; susan);ENROLLED(cs324; peter); Undergrad(peter); Student(susan);Student(mary);DEGREE(mary; bs); Bachelor(bs)The ABox A1Figure 1: The ALC-knowledge base �1
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Figure 2: A pictorial representation of the ABox10



The next pair of queries shows the interaction of the epistemic operator with thedisjunction constructor:� Query 2a: �1 j= Grad t Professor(john) ? Answer: YES.� Query 2b: �1 j=KGrad tKProfessor(john) ? Answer: NO.Query 2a asks whether John is either a graduate student or a professor. Theanswer is YES, and it can be derived by the fact that it is stated in the ABox thathe teaches two courses, and, according to the TBox, everybody who teaches at leastone course is either a graduate student or a professor.Query 2b, instead, asks whether he is either known to be a graduate student orknown to be a professor. It is easy to verify that none of them is true and thereforethe answer to this query is NO.We consider now queries that involve also universal quanti�ers:� Query 3a: �1 j= 8TEACHES.(IntCourse t :Course)?(bob) Answer:UNKNOWN.� Query 3b �1 j= 8KTEACHES.?K(IntCourse t :Course)(bob) Answer:YES.Query 3a asks whether every course taught by Bob is an intermediary one. Theanswer is UNKNOWN because there are models for �1 in which Bob teaches only in-termediary courses as well as models in which he teaches also courses that are notintermediary.Query 3b, instead, asks whether everything that is known to be taught by Bobis also known to be either an intermediary course or not to be a course. Since theonly thing taught by Bob is EE282, and it is indeed an intermediary course, theanswer to Query 3b is YES.In the above example the addition of K has changed the answer from UNKNOWN toYES. Notice that it is also possible that Query 3a could be answered NO and Query3b still be answered YES: Suppose that the assertion 9TEACHES.AdvCourse (bob)is added to �1 and then the same queries are asked. Query 3a now gets the answerNO, because AdvCourse and IntCourse are disjoint concepts. However, the set ofknown courses taught by Bob is not changed, and therefore the answer to Query 3bis still YES.We now consider some queries involving nested quanti�ers: Queries 4a and 4binvolve two levels of existential quanti�cation. The innermost quanti�er is carriedby the concept IntCourse, which has existential quanti�ers in its de�nition in T1.� Query 4a: �1 j= 9TEACHES.IntCourse(john) ? Answer: YES.� Query 4b: �1 j= 9KTEACHES.KIntCourse(john) ? Answer: NO.11



Query 4a asks whether John teaches an intermediary course. At a super�cialreading of the query, it might seem that the answer should be NO. The answer NOis supported by the fact that none of the courses taught by John is known to bean intermediary course, i.e. neither IntCourse(cs221) nor IntCourse(cs324) is alogical consequence of �1. Nevertheless, the correct answer is YES, and in orderto get it, one must reason by case analysis: As we have already remarked, theknowledge base does not provide the information as to whether Susan is a graduateor an undergraduate; however, since she is a student, according to T1, she musteither be one or the other. This fact ensures that in every model for �1 eitherGrad(susan) or Undergrad(susan) holds. Consider now the set of models for �1in which Grad(susan) holds. In each of these models, the course CS324 is taken byboth a graduate (Susan) and an undergraduate (Peter), thus it is an intermediarycourse. Similarly, consider the set of the remaining models for �1, i.e. the ones inwhich Undergrad(susan) holds. It is easy to see that in every model for this set thecourse CS221, this time, is taken by both a graduate (Mary) and an undergraduate(Susan), and therefore it is an intermediary course.In conclusion, in every model for �1 either CS324 or CS221 is an intermediarycourse. It follows that in every model for �1 John teaches an intermediary course,proving that the correct answer to Query 4a is YES.On the other hand, Query 4b asks whether John is known to teach a course thatis known to be an intermediary course. The courses known to be taught by Johnare CS221 and CS324 and the only known intermediate course is EE282, thereforenone of them is within the conditions required by the query.Query 4a shows how, in some cases, the �rst order semantics might not agreewith the intuitive reading of a query. In fact, most people tend to read Query 4aas requiring the reasoning pattern that is actually associated with the semantics ofQuery 4b. In other words, they tend to rule out the case analysis from the compu-tation. One good reason to do so is that case analysis generally makes reasoningharder. In fact, as proved in [26], the problem of answering queries with existentialquanti�cation under the �rst order semantics, is in general coNP-hard. Whereas, asshown in [7], queries involving existential quanti�cation only of the form 9KP .KCcan be answered in polynomial time w.r.t. the size of the knowledge base. However,there are also cases in which the intuition agrees with the �rst order interpretation.For this reason, in our opinion, it is important to have the operator K, which givesthe possibility to choose between the two alternative readings of the query.Regarding the interaction between the epistemic operator and the quanti�ers,notice that we have always considered queries of the form 9KP .KC and 8KP .KC,i.e. queries in which the K operator is placed in front of both the concept and therole. Such queries usually have an easy intuitive interpretation and therefore arethe most interesting. Nevertheless, it might be worthwhile to consider even otherpossible variations of them, for example queries like 9KP .C or 8P .KC. Such queriesare perfectly legal in ALCK, however, in some cases, they may lack an intuitivemeaning. The reason is that they amalgamate ALC-concepts with epistemic ones,12



resulting in something to which it is usually hard to give an intuitive meaning.In other cases, though, they can play a useful role. As an example consider thefollowing queries:� Query 4c: �1 j= 9KTEACHES.IntCourse(john) ? Answer: YES.� Query 4d: �1 j= 9TEACHES.KIntCourse(john) ? Answer: UNKNOWN.Notice that Query 4c gets the same answer (YES) as Query 4a. In fact, sinceTEACHES(john; cs221) and TEACHES(john; cs324) are known, the additionof K in front of TEACHES does not change the answer to the query. Query 4d,instead, is answered UNKNOWN because the only known intermediate course is EE282and we can neither prove nor exclude that John teaches it.The fact that Query 4c gets the answer YES and Query 4d the answer UNKNOWNmay help us understand the answers to Query 4a and 4b. In particular, it clari�eswhich is the actual reason that makes Query 4a and 4b di�erent: It tells us that theincompleteness of the knowledge base is related to the concept IntCourse and not tothe role TEACHES. In fact, TEACHES(john; cs324) and TEACHES(john; cs221)are both true in �1, while IntCourse(cs324) and IntCourse(cs221) are not|onlytheir disjunction is true.5 Closed World ReasoningThe reason for the open world semantics of concept languages is that they aregenerally used in applications where one has to account for incomplete information.For example, even if all the known courses taught by Bob are intermediary, one doesnot want to conclude that all possible courses that Bob teaches are intermediary.On the other hand, there are situations where it is natural to query a knowledgebase under the Closed World Assumption. Referring to the knowledge base �1 ofFigure 1, consider the following examples:� Query 5a: �1 j= 8TEACHES.9ENROLLED.>(john) ? Answer: UNKNOWN� Query 5b: �1 j= 8KTEACHES.9ENROLLED.>(john) ? Answer: YESQuery 5a gets the answer UNKNOWN because there is a model for �1 where Johnteaches a course z, but there are no students enrolled in z, i.e. z is not an instance ofthe concept 9ENROLLED.>. On the other hand, the correct reading of Query 5bis as follows: Is it true that for every course z that John is known to teach, there isat least one student enrolled in z? It is easy to see the answer to the query is YES.The above example shows that the use of K allows one to pose queries to aknowledge base � asking the system to assume complete knowledge on a certainindividual a and a certain role P in � (john and TEACHES in the example). Inparticular, assuming complete knowledge on a and P here means assuming that for13



every pair (a; b) such that � 6j= P (a; b), the assertion P (a; b) is false in �. It is clearthat this kind of reasoning is a form closed world reasoning.We show here that under certain restrictions, our query language allows us toachieve at least the expressive power of the (naive) Closed World Assumption (CWA)(see [24]). The restrictions a�ect both the content and the language of the knowledgebase. We say a knowledge base is simple if it does not contain inclusion statements.In the following we consider simple knowledge bases where the ABox is expressedin the language AL0, whose concepts are formed according to the rule:C;D �! A j :A j C uD j 8R.C:More complex languages and knowledge bases and more powerful forms of closedworld reasoning (e.g. Generalized CWA [18]) require a more sophisticated treatment,which is outside the scope of this paper.We brie
y reformulate the CWA in the setting of a simple AL0 knowledge base�. Let �CWA be the knowledge base obtained from � by adding :A(a) or :P (a; b),respectively, for every assertion A(a) or P (a; b) that is not entailed by �. Now,for any concept C the statement C(a) follows from � under the CWA, written� j=CWA C(a), if C(a) follows from �CWA.In the following, we assume that the ALC-concepts used for querying a knowl-edge base are in negation normal form, i.e. negations signs are pushed down untilthey only occur in front of primitive concepts (see [28]). Given an ALC-concept Cin negation normal form, we de�ne the ALCK-concept C as follows:A = KA:A = :KAC uD = C uDC tD = C tD9P .C = 9KP .C8P .C = 8KP .C:The above transformation puts an epistemic operator in front of every primitiveconcept and primitive role. Now, it is possible to show that, if � is a simple AL0-knowledge base, C is an ALC-concept, and a is an individual, then � j=CWA C(a)if and only if � j= C(a). Moreover, checking whether � j= C(a) can be done in timepolynomial in the size of both the query and the knowledge base. This is in sharpcontrast to answering queries that are formulated with arbitrary ALC-concepts,which is a PSPACE-hard problem even for a �xed AL0-knowledge base.Intuitively, the reason for the above result is that for an AL0-concept C theassertion C(a) is logically equivalent to a �nite set of Horn clauses and, therefore,simple AL0 knowledge bases are equivalent to sets of Horn clauses. As a conse-quence, if such a knowledge base is satis�able, it always has one minimum model,say I0. Hence, evaluating a query under the CWA amounts to evaluating it in I0.14



Now, putting a K in front of every primitive concept A and role P has the e�ectthat A and P are taken as the intersection of their interpretations in all models of�, i.e., they are interpreted in I0. This explains why closed world reasoning can beenforced through the use of K. That queries can be answered in polynomial timeis due to the fact that on the one hand the Horn clauses corresponding to a simpleAL0-knowledge base do not contain function symbols and on the other hand thatconcepts have a hierarchical structure that makes them suitable for e�cient bottomup evaluation.Notice that transforming a query C into C implies answering the query underthe assumption that the knowledge about every role is complete, like for examplein [19, p. 113]. On the other hand, as noted in [13], there are situations where wewould like to apply the closed world assumption only to some of the concepts andthe roles of the knowledge base.We argue that the use of epistemic operators as described in the previous sectionsis a natural way to achieve such a 
exible way of interacting with the knowledge base.Indeed, the careful introduction of the epistemic operator into the query induces thesystem to answer queries under the assumption that part of the knowledge base iscomplete, in contrast to assigning a closed world semantics to the knowledge baseitself.Consider the following query to the knowledge base �1 given in Section 4:� Query 4e: �1 j= 9KTEACHES.K(Course u 9ENROLLED.Grad u9ENROLLED.(Student u :KGrad))(john) ? Answer:YES.Notice that Query 4e is syntactically equal to Query 4b, except that the conceptIntCourse is replaced by the ALCK-conceptCourse u 9ENROLLED.Grad u 9ENROLLED.(Student u :KGrad): (1)Concept (1) di�ers from the de�nition of IntCourse in the fact that Undergrad isreplaced by (Studentu:KGrad). Concept (1) should be interpreted as the conceptdescribing the courses that are intermediary under the assumption that every studentis an undergraduate, unless the contrary is known. In fact, a course belongs to sucha concept if both a graduate and a student not known to be a graduate are enrolledin it. It is easy to see that the course CS221 is an instance of Concept (1), andtherefore the answer to Query 4e is YES.Notice that asking queries like Query 4e is completely di�erent from giving somekind of closed world semantics to the knowledge base. In fact, in our frameworkthe knowledge base is perfectly monotonic, whereas using the epistemic operatorthe queries can be formulated in such a way that the reasoning which is required tocompute the answers is nonmonotonic. 15



6 Rules as Epistemic StatementsIn the previous sections we considered knowledge bases constituted by inclusionsand membership assertions in ALC. We now consider the case where epistemicsentences of a special kind are introduced into the knowledge base, and show thatthis extension formalizes the usage of procedural rules (or simply rules), as providedin many practical systems based on concept languages. In fact, systems such asCLASSIC [2] and LOOM [17], in addition to inclusions and membership assertionsprovide another mechanism for expressing knowledge, by means of so-called rules.Such rules are sentences the form C ) Dwhere C, D are concepts. The meaning of a rule is \if an individual is proved tobe an instance of C, then derive that it is also an instance of D" (see [2]), and itsbehavior of rules is usually described in terms of a forward reasoning process thatadds to the knowledge base the assertion D(a) whenever C(a) is proved to hold. Wecall procedural extension of a knowledge base � w.r.t. a set of rules the knowledgebase resulting from such a forward reasoning process.Rules in the context of frame-based systems are often de�ned informally. At-tempts to precisely capture the meaning of such rules are based either on viewingthem as knowledge base updates (see for example the TELL operation of [14]), oron ad hoc semantics (see [27]). Our aim in this section is to show that rules can benicely formalized as particular epistemic sentences.In the following we consider ALCK-knowledge bases of the form hT ;Ai, whereT = T 0 [ R with T 0 being a set of ALC-inclusion statements, and R a set ofepistemic sentences, each one of the form2KC v Dwhere C and D are ALC-concepts. We call these sentences trigger rules, since theyare our formal counterpart of the rules C ) D. We also call C the antecedentand D the consequent of the trigger rule. As a notational convenience we write theALCK-knowledge base hT ;Ai as h�;Ri, where � = hT 0;Ai.From the de�nition of the semantics of ALCK-knowledge bases it follows thatan epistemic interpretation (I;W) satis�es the trigger rule KC v D if (KC)I;W �DI;W . Intuitively, the set of epistemic sentences R restricts the set of models for �to the maximal subsets that satisfy every trigger rule in R. More precisely, it canbe shown that if (I;W) is an epistemic model for � = h�;Ri, thenW is a maximalsubset of M(�) such that for each J 2 W, (J ;W) satis�es every sentence in R.Because of the form of such sentences, it can also be shown that there exists only2In [7] we used the notation KC )KD. The two notations are equivalent in the semantics wegive. 16



one maximal subset W of M(�) such that for all J 2 W, (J ;W) satis�es everysentence in �.Observe that when a concept C is equivalent to >, i.e. CI = � for every inter-pretation I, a trigger rule KC v D is equivalent to the inclusion > v D. Besidesthis case, however, trigger rules are not expressible by inclusions. Indeed, the maindi�erence between rules and inclusions is that the formers are intended to provide areasoning mechanism which applies them in one direction only, namely from the an-tecedent to the consequent. Our formalization of rules with the epistemic operatorcorrectly captures this property, as shown in the following example.Consider the knowledge base � = hh;; f:B(a)gi; fKA v Bgi, and observe thatthere exists an epistemicmodel (I;W) of � such that 
(a) 62 :AI. Therefore, :A(a)is not a logical consequence of �.In order to characterize the notion of procedural extension we now introduce theconcept of �rst-order extension of an ALCK-knowledge base h�;Ri. The �rst-orderextension of � = h�;Ri, where � = hT ;Ai, is the ALC-knowledge base �R, whichis the least solution (w.r.t. to set inclusion) of the following equations:X = hT 0;A0iwhere T 0 = T [ f> v D j KC v D 2 R and X j= > v CgA0 = A [ fD(a) j KC v D 2 R and X j= C(a)g:We do not delve into the details of the computation of the �rst-order extension.We simply remark that the solution of the above equations is unique and can beincrementally constructed starting from � in a number of steps which is polynomialw.r.t. the size of �.First-order extensions are linked to the semantics by the following property. Let� = h�;Ri be an ALCK-knowledge base, let (I;W) be an epistemic model for�, and let �R be the �rst-order extension of �. Then W coincides with the set ofmodels for the ALC-knowledge base �R. In other words, the result of the forwardreasoning process on a knowledge base and set of trigger rules, which is representedby the least solution of the above equations, is correctly captured by the semanticsof the ALCK-knowledge base �, where the trigger rules are expressed as epistemicsentences.We now show an example of the usage of rules in our framework. Consider theALCK-knowledge base � = h�;Ri:� = h;; fTEACHES(bill; cs248); Grad(bill)giR = fKGrad v 8TEACHES.BasCourseg:The �rst-order extension of � is�R = h;; fTEACHES(bill; cs248); Grad(bill); 8TEACHES.BasCourse(bill)gi:17



Obviously, �R j= BasCourse(cs248). From the semantics, one can verify that for ev-ery epistemic model (I;W) for �, we have 
(bill) 2 (8TEACHES.BasCourse)I;Wand 
(cs248) 2 BasCourseI;W , i.e., both the assertion 8TEACHES.BasCourse(bill) and BasCourse(cs248) are logical consequences of �, as one would expect.It is worth noting that the calculus for answering epistemic queries, mentionedin Section 4, can be e�ectively used in the computation of the �rst-order extensionof an ALCK-knowledge base. In fact, the application of a trigger rule KC v Drequires to compute the answer set of the query KC, which can be done by meansof that calculus.7 Weak Inclusions as Epistemic StatementsRecent studies on the formal properties of concept languages [4, 20, 21] show thatone of the critical aspects of the implementation of knowledge representation sys-tems based on concept languages is the treatment of inclusions. This problem isaddressed for example in LOOM [16] by adopting a weak form of inclusion, whichapplies only to known individuals and disregards many inferences based on the useof contrapositives.In this section we argue that the class of epistemic sentences used in the for-malization of trigger rules can be regarded as a form of weak inclusion which maylead to signi�cant computational advantages in comparison to inclusion statementsas de�ned in Section 2.To this purpose we introduce the notion of weakening of an ALCK-knowledgebase, which is the ALCK-knowledge base obtained by replacing every inclusionstatement C v D by the epistemic statement KC v D. More formally, let � =hhT ;Ai;Ri be an ALCK-knowledge base as de�ned in the previous section. Theweakening of � is the ALCK-knowledge base�� = h�0;R0iwhere �0 = h;;Aiand R0 = R[ fKC v D j (C v D) 2 T g:Intuitively, every inference we can make in �� can be done in � as well, while theconverse of course is not true. Hence, �� can be regarded as a sound approximationof �, where the lost inferences are traded with a gain in the e�ciency of reasoning.Before addressing in more detail this computational aspect, we present an exampleof the weakening transformation.Consider the knowledge base �1 = h�1; ;i, where �1 = hT1;A1i is the knowledgebase used in Section 4. The weakening ��1 will be hh;;A1i;R1i, where R1 is shownin Figure 3. Recall that all de�nitions of the form C := D are a shorthand for C v Dand D v C. 18



KAdvCourse v (Course u 8ENROLLED.Grad);K(Course u 8ENROLLED.Grad) v AdvCourse;KBasCourse v (Course u 8ENROLLED.Undergrad);K(Course u 8ENROLLED.Undergrad) v BasCourse;KIntCourse v(Course u 9ENROLLED.Grad u 9ENROLLED.Undergrad);K(Course u 9ENROLLED.Grad u 9ENROLLED.Undergrad) vIntCourse;K9TEACHES.Course v Grad t Professor;KGrad v (Student u 9DEGREE.Bachelor);K(Student u 9DEGREE .Bachelor) v Grad,KUndergrad v (Student u :Grad);K(Student u :Grad) v UndergradFigure 3: The trigger rules of ��1 , obtained by weakening the inclusions of T1It can be veri�ed that all queries asked to �1 in Section 4 have the same answerin ��1 , except for queries 4a and 4d, reported here for the sake of clarity.� Query 4a: �1 j= 9TEACHES.IntCourse(john) ? Answer: YES.� Query 4d: �1 j= 9KTEACHES.IntCourse(john) ? Answer: YES.These queries receive the answer YES in �1 because of a case analysis on Susan.Recall that, according to T1, the TBox of �1, the two concepts Grad and Undergradpartition the concept Student. Being a student, Susan can be either a graduateor an undergraduate. In the �rst case, the course CS221 is an inetrmediary course,while in the second case CS324 is an inetrmediary course. Hence, in both cases Johnteaches an inetrmediary course.On the contrary, it is easy to see that this does not happen in ��1 , as shown bythe following queries.� Query 4f: ��1 j= 9TEACHES.IntCourse(john) ? Answer: UNKNOWN.� Query 4g: ��1 j= 9KTEACHES.IntCourse(john) ? Answer: UNKNOWN.This is because in ��1 the two concepts Grad and Undergrad do not partition theconcept Student. What we just know is that individuals known to be undergradu-ates are inferred to be students and nongraduates, and vice versa, that individualsknown to be students and nongraduates are inferred to be undergraduates. SinceSusan is in neither of the two conditions, we cannot infer anything about her. In19



fact, there are now epistemic models for ��1 where Susan is neither a graduate noran undergraduate. Therefore, the two queries 4f and 4g receive the answer UNKNOWN.One can also verify that contrapositives are not applicable in ��1 . Compare theanswer to :9DEGREE .Bachelor(peter) in the two knowledge bases:� Query 5a: �1 j= :9DEGREE .Bachelor(peter) ? Answer: YES.� Query 5b: ��1 j= :9DEGREE .Bachelor(peter) ? Answer: UNKNOWN.In fact, in �1 Peter is known to be an undergraduate, hence a student who is anongraduate. Since graduates are de�ned as students with a bachelor's degree, wecan infer that Peter has none by using the contrapositive of the inclusion (Studentu9DEGREE.Bachelor) v Grad. Instead, in ��1 we only can infer that Peter is astudent and a nongraduate. This does not activate the contrapositive of the triggerrule K(Student u 9DEGREE .Bachelor) v Grad.Let us now go back to the computational advantages of weakening an ALCK-knowledge base. In order to show such advantages, consider an ALCK-knowledgebase � = h�;Ri, where � = hT ;Ai, and let �� = h�0;R0i, where �0 = h;;Ai, beits weakening. Furthermore, assume that no rule in R0 has an antecedent which isequivalent to >.Extending the results of the complexity analysis carried out in [4, 9], one canshow that query answering in � can be solved in exponential space and doubleexponential time [8]. Since query answering inALC-knowledge bases with inclusionsis known to be EXPTIME-hard [4], we do not expect to �nd any algorithm workingin polynomial space, unless EXPTIME = PSPACE. On the other hand queryanswering in �� amounts to solving the same problems in �0R0 , which is the �rst-order extension of �0 = h;;Ai w.r.t. R0. Observing that �0R0 is a knowledge baseconstituted by an ABox only, we know from [7] that this problem can be solved inpolynomial space. Since the size of �0R0 is polynomially related to the size of ��,and therefore of � too, the above observation shows that weakening the inclusionsof an ALCK-knowledge base leads to an exponential decrease of the space requiredfor query answering.We can conclude that the notion of weakening proposed here provides a form ofincomplete reasoning that is both computationally advantageous and semanticallywell-founded.8 ConclusionIn this paper, we discussed the advantages of using an epistemic operator both forenhancing the capabilities of concept languages, and for formalizing non-standardfeatures of existing knowledge representation systems based on concept languages.We have shown that the epistemic operator is 
exible enough to account for several20
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