DFKI Research

Report
93-22

Weak Looking-Ahead and its Application
to Computer-Integrated Process Planning

Manfred A. Meyer and Jorg P. Muller

April 1993

Deutsches Forschungszentrum fiir Kiuinstliche Intelligenz GmbH

Erwin-Schrodinger-Strafie
D-6750 Kaiserslautern, Germany
Tel.: + 49 (631) 302-3211
Fax: 4+ 49 (631) 302-3210

Weak Looking-Ahead and its Application
to Computer-Integrated Process Planning

Manfred A. Meyer and Jorg P. Miller
German Research Center for Artificial Intelligence (DFKI)
P. O. Box 20 80, D-W-6750 Kaiserslautern, Germany
email: meyer@dfki.uni-kl.de, jpm@dfki.uni-sh.de

Abstract

Constraint logic programming has been shown to be a very useful tool for know-
ledge representation and problem-solving in different areas. Finite Domain extensions
of PROLOG together with efficient consistency techniques such as forward-checking
and looking-ahead make it possible to solve many discrete combinatorial problems
within a short development time. In this paper we present the weak looking-ahead
strategy (WLA), a new consistency technique on finite domains combining the com-
putational efficiency of forward-checking with the pruning power of looking-ahead.
Moreover, incorporating weak looking-ahead into PROLOG’s SLD resolution gives
a sound and complete inference rule whereas standard looking-ahead itself has been
shown to be incomplete. Finally, we will show how to use weak looking-ahead in
a real-world application to obtain an early search-space pruning while avoiding the
control overhead involved by standard looking-ahead.

This paper will also be published by Gordon and Breach Publishers in the Proceedings of
the Sixth International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (IEA/AIE-93), Edinburgh, Scotland, June 13-4 1993.

Contents

1 Introduction 3
2 Finite Domain Consistency Techniques 3
2.1 Forward-Checking - The Principle 0 L. 4
2.2 Forward-Checking - Properties and Drawbacks 4
2.3 Looking-Ahead - The Principle L L. 5
2.4 Looking-Ahead - Properties and Drawbacks 5
3 The Theoretical Background of WLA 6
4 Using Weak Looking-Ahead for Tool-Selection 7
4.1 The Problem Domain 8
4.2 The Lathe-Tool Selection Problem 8
4.3 The Variables 9
4.4 The Constraints L 10
4.5 A FiDo Program for Tool Selection 11
4.6 Trace and Assessment of Program Execution 12
5 Conclusion 15

1 Introduction

Many problems in different areas such as Operations Research, Hardware Design, and Arti-
ficial Intelligence applications can be regarded as constraint satisfaction problems (CSPs).
Logic programming offers a convenient way of representing CSPs due to its relational,
declarative and nondeterministic form. Unfortunately, standard logic programming lan-
guages such as PROLOG tend to be inefficient for solving CSPs, since what could be called
constraints in PROLOG is used only in a passive a posteriori manner, leading to symptoms
such as late recognition of failure, unnecessary and unintelligent backtracking and multiple
computation of the same solutions.

There have been intensive research efforts in order to remedy this. One of them, which has
caught increasing attention over the past few years, is the Constraint Logic Programming
approach: By integrating a domain concept for logic variables and consistency techniques
such as forward-checking or looking-ahead into PROLOG, the search space can be restricted
in an a priori manner. Thus, a more efficient control strategy can be achieved, preserving

the 'clean’ dual PROLOG semantics.

When using these consistency techniques to implement real-world applications, it turned
out that forward-checking and looking-ahead as provided in most finite-domain PROLOG
extensions are not totally satisfactory: forward-checking itself often does not give any
pruning at all until variables become singletons, whereas standard looking-ahead forces
strong pruning of the search-space but induces serious control overhead.

In this paper we present a consistency technique on finite domains, which combines the
efficiency of forward-checking with the pruning power of standard looking-ahead: The basic
idea of this weak looking-ahead (WLA) strategy is to apply looking-ahead only once to a
constraint and to use forward-checking for further restricting the domains of its arguments.

What makes this paper more than "just another paper about just another consistency
technique” is the way weak looking-ahead came into being, which stood in a close relation
to a real-life application: In the ARC-TEC project at DFKI we have been developing a
knowledge-based system (pCAD2NC, [Boley et al., 1991]) generating workplans for lathe
CNC machines. It transforms CAD-like geometries of rotation-symmetric workpieces into
abstract NC programs using declarative term representations for all processing steps. After
we decided to solve the subproblem of selecting appropriate lathe tools for the various
processing steps by using constraints, we experimented with several consistency algorithms.
Soon we realized that on one hand, forward-checking is too weak for some applications where
an earlier pruning of the search space is desired. On the other hand, using looking-ahead for
this application is a bit like breaking the butterfly on the wheel. These observations entailed
the wish for a new technique which causes only little more cost than forward-checking, but
which can achieve much better pruning results in many cases.

2 Finite Domain Consistency Techniques

Over the past years, increasing attention has been paid to using constraints in logic pro-
gramming [Jaffar et al., 1986; Jaffar and Lassez, 1987; Jaffar and Michaylov, 1987; van Hen-

tenryck, 1989] for it presents a very powerful incorporation of the advantages both of logic

programming (declarativity, relational form, nondeterminism) and consistency techniques
for constraint solving problems. By using consistency techniques it is possible to overcome
the basic shortcomings of logic programming languages, which are mainly caused by their
poor, mostly backtracking-like control strategies. Techniques such as forward-checking and
looking-ahead are used to restrict the domains of variables in an active manner and to
achieve an a priori pruning of the search space.

In this section, we will give a short informal description of both forward-checking and
looking-ahead according to [van Hentenryck, 1989]). In the next section, we present the
weak looking-ahead method which is essentially based on these techniques.

2.1 Forward-Checking - The Principle

The idea of forward-checking is formally expressed by the forward-checking inference rule
(FCIR). Informally, a constraint C can be used in a forward-checking manner as soon as
all except one of its domain-variable arguments, say X, are instantiated to a ground value.
Then, C is called forward-checkable. C can be considered a unary predicate C’'(X), and the
set of possible values that can be given to X can be restricted to those elements a satisfying
C'(a).

For example, let C(X,Y,Z) be X \= Y + Z, with X = 4, Z = 1 and Y ranging over
{1,2,3}. Then C'(V) = V \= 3. Thus, the domain of ¥ can be restricted to the set {1,2}.
Furthermore, if the domain of a variable becomes singleton, the variable is instantiated
to the singleton value. Thus, other constraints can become forward-checkable, keeping
constraint propagation going on.

2.2 Forward-Checking - Properties and Drawbacks

Forward-checking has turned out to be one of the most popular consistency techniques for
several reasons:

o Forward-checking is a technique which can be easily implemented. For example, [de
Schreye et al., 1990; Miiller, 1991] use PROLOG systems with coroutining facilities
to implement it, whereas [Hein, 1992; Stein, 1992] show how forward-checking can be
integrated into PROLOG by adding a set of new WAM instructions.

o [t yields reasonable pruning results for many applications, keeping the computational
costs fairly low.

o There exist sound and complete proof procedures based on normal SLD resolution
combined with forward-checking (see [van Hentenryck, 1989]).

The main drawback of forward-checking is its strong applicability precondition: A predicate
can be executed by the FCIR only if all except one of its variables are instantiated to a
ground value. Thus:

o For predicates with many arguments and/or many variables, at a given point of
computation, there is only a relatively small probability that forward-checking can be
applied to them.

e Especially when computation starts, it is very often the case that no constraint is
forward-checkable. That means that choices have to be made, i.e. variables are in-
stantiated in a more or less random manner. Thus, the devil of backtracking which
we would like to exorcize by the use of consistency techniques, returns through the

back door.

e Some constraints, such as =, >, < should not be executed by forward-checking at
all, because they embody a great deal of structural information about the relation
between their arguments®.

2.3 Looking-Ahead - The Principle

Looking-Ahead [van Hentenryck, 1987a; van Hentenryck, 1987b; Mackworth, 1977; Lau-
riere, 1978] offers a powerful possibility to reduce the number of values that can be assigned
to variables of a constraint, even if this constraint is not yet forward-checkable.

For every domain variable X appearing as an argument of an N-ary constraint C, and
for every value within the domain of X, it must be checked whether there exists at least
one admissible value from the domain of each domain variable Y appearing in C so that
the constraint C is satisfied. The arguments of C which are no domain variables must be
ground.

For example, let C(X,Y, Z) be X > Y+ 7, where X, Y, and Z range over {1,2,3,4}. Using
looking-ahead, the domains can be immediately restricted to X = {3,4},Y = Z = {1,2}.
Note that if we used forward-checking instead, no pruning at all would be achieved since
no forward-condition would be fulfilled. From now on, each time a value is removed from
one of the domains, looking-ahead has to be repeated.

2.4 Looking-Ahead - Properties and Drawbacks

By using looking-ahead, the search space can be pruned at an early stage of computation.
However, the trouble with standard looking-ahead is that it is a very expensive method
of ensuring arc-consistency. Therefore, for most applications it is considered inappropriate
[de Schreye et al., 1990; Dechter, 1989]. Nevertheless, it would be a shame to forgo all the
benefits brought about by the strong pruning capabilities of the Looking-Ahead Inference
Rule (LAIR). In the next section, we present weak looking-ahead, which can be regarded
a compromise between forward-checking and looking-ahead. Let us assume that, in our
above looking-ahead example, we would perform the first looking-ahead step as shown, but
after that, we would not do any more looking-ahead, but instead solve the (now simplified)
problem by normal resolution or by forward-checking. This procedure expresses the main
idea of the weak looking-ahead strategy which we will point out in more detail in the
following.

IFor example, the information that two variables X and Y are equal should not only be used if X or
Y are ground. Rather, the equality constraint should be maintained from the moment it has been stated

(see [Miiller, 1991]).

3 The Theoretical Background of WLA

The basic theoretic work in the area of using consistency techniques in logic programming
has been done by van Hentenryck [van Hentenryck, 1989]. This research has contributed
a great deal to both forming a solid framework and preserving the logic part of the pro-
gramming languages developed while achieving a much better control behaviour than that
achieved by standard logic programming languages such as PROLOG. This is an aspect of
crucial significance, because, to quote Jaffar and Michaylov [Jaffar et al., 1990]: ”Forsaking
the logic in PROLOG in order to remove some limitations of the language s like throwing
out the baby with the bath water.”

In this section, we will give a formal definition of the weak looking-ahead inference rule,
and we will present the basic formal properties such as soundness and completeness of the
proof procedure defined on top of WLA. The terminology we use and the sense we use it
are basically the same as in [van Hentenryck, 1989].

The weak looking-ahead strategy combines the use of LAIR and FCIR. A similar technique
has been informally proposed in [de Schreye et al., 1990] as "first-order looking-ahead”.
We present a generalized technique we call weak looking-ahead. This name seems more
appropriate for expressing what the underlying algorithm really does. The basic idea of
WILA is that each constraint can be selected by the looking-ahead part not more than once,
and that this should happen at an appropriate time. After this, only the FCIR (or normal
inference) can be applied to it. This idea is covered by the following definitions.

Definition 1 An atom p(t1,...,1,) is called WLA-checkable if p is a constraint and

o p(t1,...,1n) is lookahead-checkable and has not yet been selected by the WLA, or

o p(t1,...,1n) is forward-checkable and has already been selected by the WLA.

Definition 2 (WLA) Let P be a program, G; = T—Ay,..., Ag, ..., A, a goal and 0,41 a
substitution. Gy is derived by the WLA along with o411 from G; and P if A s WLA-
checkable with x4, ...,x, being the WLA vartables in Ay and the following holds:

o [f Ay is lookahead-checkable and the WLA has not been applied to Ay, in the actual proof,
then:
For each x;, the new domain e; is e; = {v;€d; | Jv1€dy, ..., vj1€dj_1,v41Edj41, ..., v, Ed,,
such that o(Ag) with o = {x1v1,..., 2,0, } is a logical consequence of P}.
For each x;, if e; has become a singleton, i.e. e; = {c}, then the new value y; is the
constant ¢, otherwise a new variable ranging over e;. ;11 then is defined as 0,41 =
{1 — Y1,y — Yn}.
Gliyr ts either 7= 0i41(Ax, ooy Ak—1, Akg1y ooy Am), if at most one y; is a domain variable,
or Gip1 is 7=0i41(A1, ...y Ap), otherwise.

o [f Ay ts forward-checkable, then:

Let x4 be the forward variable inside Ayx. Then, the new domain e is defined as e = {a €
d| PEA{xg—a}} #£0.

o1 is defined as 0,41 = {xg — ¢}, if e = {c}, i.e. € has become a singleton. Otherwise,
oir1 = {xg « Y.}, where y. is a new domain variable ranging over e.

Gi-l—l = 7- O'Z'+1(A1,...,Ak_1,Ak+1,...,Am).

Properties of Weak Looking-Ahead The main point of the above definition is point 6,
which uses SLDFC resolution (SLD resolution with forward-checking, cf. [van Hentenryck,
1989]), whose soundness and completeness have been proved, in order to finish the proof
after some prepruning has been done by using the LAIR in a definite way. Thus, if we want
to prove soundness and completeness of the WLA, we basically have to check the LAIR
part. Since this part gets involved not more than once for each goal, and since this happens
as early as possible (due to point 2 of the definition), the disadvantages of the LAIR such
as its incompleteness and the high computational overhead can be avoided.

Proposition 1 (Soundness of WLA) Let P be a program, and let G; be the goal 7-
Ay, Ay A, and Ay be WLA-checkable. Let the goal Gy be derived by WLA along
with o1 from G; and P as Gipy = 7=0i41(A1, ooy Ap1, Apg1y oo Am). Gy ois a logical con-
sequence of P iff Giyq1 is a logical consequence of P.

The next result concerns the completeness of WLA. This means that we can define a
complete proof procedure using weak looking-ahead.

Definition 3 (SLDW-resolution) A first-order resolution proof procedure is called SLDW-
resolution, if it uses weak looking-ahead for WLA-checkable goals and normal SLDD-derivation
(SLD-derivation with domain variables) for other goals.

We can prove the completeness of such a proot procedure by making use of the completeness
of the FCIR, showing that by applying the LAIR not more than once to each goal, no
solutions are lost. The completeness result is expressed by the following proposition:

Proposition 2 (Completeness of WLA) P be a logic program, G be a goal. If there
exists an SLDD-refutation of PU{G}, then there also exists an SLDW-refutation of PU{G}.
Moreover, if o is the answer substitution from the SLDD-refutation of PU{G}, and p is the
answer substitution from the SLDW-refutation of PU{G}, then p < o.

For the proofs of the propositions 1 and 2 we refer to [Miiller, 1991]. In the next section
we will demonstrate weak looking-ahead by an example from our application domain.

4 Using Weak Looking-Ahead for Tool-Selection

In this section we will show the usability of the weak looking-ahead inference rule by an
example from the concrete domain of the ARC-TEC project at DFKI that constitutes an
AT approach towards implementing the idea of computer-integrated manufacturing (CIM).
Along with conceptual solutions, it provides a continuous sequence of software tools for
the Acquisition, Representation, and Compilation of TEChnical knowledge (cf. [Bernardi
et al., 1991]). Tt combines the KADS knowledge-acquisition methodology [Wielinga et al.,

7

1992], the KL-ONE representation theory [Brachman and Schmolze, 1985], and WAM com-
pilation [Hein and Meyer, 1992] and constraint-handling technologies [Meyer et al., 1992].
For its evaluation, an expert system for production planning has been developed.

4.1 The Problem Domain

The input to the production planning system is a very low-level description of a rotational-
symmetric workpiece as it comes from a CAD system. Geometrical description of the
workpiece’s surfaces and topological neighborhood relations are the central parts of this
representation. If possible at all, production planning with these data starting from (nearly)
first principles would require very complex algorithms. Thus, planning strategies on such
a detailed level are neither available nor do they make sense. Instead human planners
[Schmalhofer et al., 1991] have a library of skeletal plans in their minds. Each of these
plans is associated with a more or less abstract description of a (part of a) workpiece,
which are called workpiece features [Klauck et al., 1991]. Such a feature is defined by its
association to a corresponding manufacturing method.

The generation of an abstract feature description of the workpiece is the first step of the
production planning process. The obtained features characterize the workpiece with respect
to its production. In a second step the skeletal plans (associated to the features) are
retrieved and merged resulting in an abstract NC program, which is then transformed into
code for the concrete CNC machine.

4.2 The Lathe-Tool Selection Problem

The application problem we are dealing with for the rest of this paper will be to find
appropriate lathe tools to manufacture the workpiece. According to the shape, the material
and other attributes of the lathe part to be manufactured, the workplan consists of a number
of different steps. A typical workplan may provide one step for roughing, another step for
finishing and a third (facultative) step for doing the fine finishing of the lathe part. However,
a workplan can be much more complicated. For each processing step, appropriate tools have
to be chosen.

This tool selection heavily depends on a lot of geometrical (e.g. the edge-angle) as well
as technological parameters (e.g. material, process etc.). Moreover, the tool system itself
consists of subparts that have to be combined, e.g. the tool holder, the material of the
plate and its geometry. In practice, there are a lot of restrictions, 'which holder to use for
which plate’, "which kind of plate geometry to use for which workpiece contour’ and so on.
Figure 1 shows a typical lathe workpiece together with the selected tools for the different
manufacturing features and lathe-turning steps.

The lathe-tool selection problem can naturally be formulated as a constraint satisfaction
problem (CSP). To keep things simple, we may assume that a lathe tool consists of two basic
parts: the cutting plate, which actually cuts the material, and the tool holder, which serves
to hold the cutting plates. We can exchange either the cutting plate only or both plate
and holder. In our application, we are now concerned with finding a well-suited tool—or
rather: a number of well-suited tools—starting from a set of constraints which describe the
actual problem, i.e. information about the process to be performed, about the lathe part

Figure 1: An example workpiece with its selected lathe tools

to be processed, and internal information about the compatibility of holders and cutting-
plates as well as about holder and plate geometries. Tool selection will then result in a
set of possible holder/tool combinations for each skeletal plan or manufacturing feature.
Using this information, the planning layer can finally perform the optimizations necessary
to obtain a (sub)optimal workplan.

4.3 The Variables

When formalizing the tool selection problem as a CSP, the first thing we have to do is
to restrict the number of input parameters, which crucially determines the complexity of
the problem, since each parameter corresponds to a variable in the constraint net. For our
small example we will use the following variables:

e Holder: This variable denotes the tool holder. In the beginning, it ranges over the
domain of all holders. During constraint propagation, it will be restricted to the set
of holders which can currently be chosen.

e Plate: This variable denotes the cutting plate to be chosen. Analogously to the holder
variable, it ranges over the set of all cutting plates and will be restricted subsequently.

e Process: This variable corresponds to the actual kind of processing.

e WP-material: This variable contains the material of the lathe workpiece.

Beta-Max: This variable denotes the maximal angle 3 appearing within the range of

one feature of the workpiece.?

?In general, each of these features corresponds to a single working process.

e Edge-Angle: This variable embodies the most important geometrical attribute of a
cutting-plate, its edge-angle ¢.

e TC-Edge-Angle: The tool cutting edge-angle y is a geometrical characteristic of the

tool holder. It denotes the angle between the horizontal cutting direction and the
marginal cutting axis of the holder.

Figure 2 gives a better understanding of the geometrical items introduced above.

cutting direction

holder cutting plate

TC-Edge-Angle Edge-Angle
Beta-Max
N\
lathe part _
rotation axis

Figure 2: The Angle Constraint

4.4 The Constraints

Having identified the problem variables, the constraints can be put on the variables. In the
following, we will consider only the most important constraints:

e holder_tcea(Holder, TC-Edge-Angle): This constraint describes the functional re-
lation between a holder and its tool-cutting edge-angle. It is represented as a primitive
or database constraint by enumerating all the possible combinations.

e plate ea(Plate, Edge-Angle): This constraint is a database-constraint, too. It
denotes the fact that each plate has its own edge-angle®.

e compatible(Holder, Plate): This constraint expresses the compatibility condition
between tool holders and cutting plates.

e hard enough(Plate, WP-Material): For materials with different degrees of hard-
ness, different cutting-plates have to be used. Processing hardened steel, e.g., may
require ceramic or even diamond cutting plates, whereas aluminum can be cut with
other, cheaper plates. Note, however, that hardness is just one of many attributes of
a material which are important in order to choose the right cutting plate.

e process holder(Process, Holder): For the different steps of processing, different
types of holders are appropriate.

30f course, we could have implemented the plate as a more complex data structure containing its edge-
angle as an attribute. For the sake of uniformity, we implemented it as a constraint, just as we did with
the holder_tcea constraint.

10

