
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-93-17

Regular Path Expressions
in Feature Logic

Rolf Backofen

May 1993

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszen-
trum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken
is a non-profit organization which was founded in 1988. The shareholder com-
panies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM,
Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Re-
search projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal is
to construct systems with technical knowledge and common sense which - by
using AI methods - implement a problem solution for a selected application area.
Currently, there are the following research areas at the DFKI:2 Intelligent Engineering Systems2 Intelligent User Interfaces2 Computer Linguistics2 Programming Systems2 Deduction and Multiagent Systems2 Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops for
shareholders and other interested groups in order to inform about the current state
of research.

From its beginning, the DFKI has provided an attractive working environment for
AI researchers from Germany and from all over the world. The goal is to have a
staff of about 100 researchers at the end of the building-up phase.

Friedrich J. Wendl
Director

Regular Path Expressions in Feature Logic

Rolf Backofen

DFKI-RR-93-17

Parts of this report have been published in the Proceedings of the FifthInternational Conference on Rewriting Techniques and Applications,
and in the Proceedings of the 31st Annual Meeting of the Associationfor Computational Linguistics
This work has been supported by a grant from The Federal Ministry
for Research and Technology (FKZ ITWM-9002 0).

c Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Deutsche Forschungszentrum
für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledge-
ment of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

Regular Path Expressions in Feature LogicRolf BackofenDeutsches Forschungszentrum f�ur K�unstliche IntelligenzSaarbr�uckenbackofen@dfki.uni-sb.de
AbstractWe examine the existential fragment of a feature logic, which isextended by regular path expressions. A regular path expressionis a subterm relation, where the allowed paths for the subtermsare restricted to any given regular language. We will prove thatsatis�ability is decidable. This is achieved by setting up a quasi-terminating rule system.

Contents1 Introduction 32 The Method 43 Preliminaries 74 Feature Trees 105 Prime, Pre-Solved and Solved Clauses 116 The First Phase 146.1 A Set of Rules : 146.2 Some Properties of the Rule System : : : : : : : : : : : : : : 196.3 Soundness and Completeness : : : : : : : : : : : : : : : : : : 226.4 Quasi-Termination : 297 The Second Phase: Satis�ability of Pre-Solved Clauses 308 Conclusion 34
2

1 IntroductionFeature descriptions are used as the main data structure of so-called uni�-cation grammars, which are currently a popular family of declarative for-malisms for processing natural language [Shi86]. More recently, feature de-scriptions have been proposed as a constraint system for logic program-ming [AKN86, AKLN87, AKP91, AKPS92b, ST92]. They provide for apartial description of abstract objects by means of functional attributescalled features. As an example consider the feature description (in matrixnotation): x : 9y 266666664 womanfather : " engineerage : y #husband : " painterage : y # 377777775 ;which may be read as saying that x is a woman whose father is an engineer,whose husband is a painter and whose father and husband are both of thesame age.Feature description have been proposed in various forms with various for-malizations [AK86, KR86, RK86, Joh88, Smo92, Joh91]. We will follow thelogical approach introduced by Smolka [Smo92], where feature descriptionsare standard �rst order formulae interpreted in �rst order structures. Inthis formalization features are considered as functional relations. Atomicformulae (which we will call atomic constraints) are of the form A(x) orxfy, where x; y are �rst order variables, A is some sort predicate and f is afeature (written in in�x notation). Then we can express the above featuredescription by the (admittedly less suggestive) formula9y ; x1 ; x2 (woman(x) ^x father x1 ^ engineer(x1) ^ x1 age y) ^x husband x2 ^ painter(x2) ^ x2 age y):This feature logic has been investigated in detail. A complete axiomatizationof the standard model (so-called feature graphs) is given in [BS93]. Thereit was shown that the standard model is elementarily equivalent to a treemodel. Additionally, a connection to �rst order constructor terms has beenexamined [ST92].In this paper we will be concerned with an extension to feature descriptionsintroduced as \functional uncertainty" by Kaplan and Zaenen [KZ88], andKaplan and Maxwell [KM88]. This extension is made by adding a subterm3

relation, where the allowed paths for the subterms are restricted to any giv-en regular language. It was invented for handling so-called long-distancedependencies in the grammar formalism LFG [KB82]. For a detailed de-scription the reader is referred to [KZ88]. Further applications can be foundin [Kel91].To accomplish this extension we must �rst generalize the constraints of theform xfy to constraints of the form xwy, where w = f1 : : : fn is a string offeatures (called a feature path). Such feature paths are interpreted usingsimple relational composition.This generalization is just syntactic sugar (see Smolka [Smo88]). This is nolonger the case if we add functional uncertainty in form of constraints xLy,where L is a regular expression denoting a regular language of feature paths.A constraint xLy holds if there is a word w 2 L such that xwy holds. By thisexistential interpretation a constraint xLy can be seen as the disjunctionxLy =_fxwy j w 2 Lg:As this disjunction may be in�nite, functional uncertainty yields additionalexpressivity. Note that the constraint xwy is a special case of a functionaluncertainty constraint.Kaplan and Maxwell [KM88] have shown that the satis�ability problemof the pure existential fragment (i.e. the satis�ability of formulae built withA(x), xLy and equations x := y) is decidable, provided that a certain acyclic-ity condition is met. Baader et al. [BBN+91] have shown that satis�abilityis undecidable if we add unrestricted negation. It has, however, remainedan open problem whether satis�ability of the purely existential fragment isdecidable in the absence of additional conditions (such as acyclicity). In thispaper we will show that it is indeed decidable.2 The MethodWe will �rst sketch the method for testing satis�ability of the standardfeature descriptions, and then turn to the systems as extended by functionaluncertainty. To get a good intuition note that some sort of tree model iscanonical for satis�ability; a pure existential formula is satis�able if it issatis�able in this tree model. Thus, the feature paths used in the languagecan be compared directly with paths in trees.Consider a clause � = xp1y1^xp2y2 (in the rest of the paper we will call pureconjunctive formulae clauses). Although only subterm relations for x; y1 andx; y2 are contained in this clause, an additional subterm or equality relation4

can be implied depending on the paths p1 and p2. If p1 equals p2, weknow that y1 and y2 must be equal, which implies that � is equivalent toxp1y1^y1 := y2. If p1 is a pre�x of p2 and hence p2 = p1p0, we can transform� into the equivalent formula xp1y1 ^ y1p0y2, thus additionally stating thaty2 is a subterm of y1. The reverse case is handled similarly. If neither pre�xnor equality holds between the paths, there is nothing to do. By and large,clauses where the last condition holds for every x and every pair of di�erentconstraints xp1y1 2 � and xp2y2 2 � are the solved forms of [Smo88], whichare satis�able.If we consider a clause of the form � = xL1y1 ^ xL2y2, then we have againto check the relation between y1 and y2. But now there is in general nounique relation determined by �, since this depends on which paths p1 andp2 are used out of L1 and L2. Hence, we have to select non-deterministicallya relation between p1 and p2 before we can calculate the relation betweeny1 and y2. In the following, we will often just say \guess" instead of \selectnon-deterministically".But there is a problem with the original syntax, namely that it does not allowone to express any relation between the chosen paths1. Therefore, we ex-tend the syntax by introducing so-called path variables (written �; �; �0; : : :),which are interpreted as feature paths. If we use in addition the modi�edsubterm relation x�y and a restriction constraint � :2L, a path expressionxLy can be expressed by the equivalent clause x�y ^ � :2L (� new).Using this extended (two-sorted) syntax we are now able to reason aboutthe relations between di�erent path variables. To do this we introduce addi-tional constraints � := � (equality), � :� � (pre�x) and � :q � (divergence).Divergence holds if neither equality nor pre�x does. Now we can describe anormal form equivalent to the solved clauses in Smolka's work, which we willcall pre-solved clauses. A clause � is pre-solved if for each pair of di�erentconstraints x�y1 and x�y2 in � there is a constraint � :q � in �. Additional-ly, we require pre-solved clauses to contain at most one constraint � :2L foreach path variable �. We call these clauses pre-solved, since these clausesare not necessarily satis�able: it may happen that the divergence constraintstogether with the restrictions of the form � :2 L are inconsistent (think ofthe clause � :2 f+ ^ � :2 ff+ ^ � :q �, e.g.). But pre-solved clauses have theproperty that if we �nd a valuation for the path variables, then the clauseis satis�able.Our algorithm �rst transforms a clause into a set of pre-solved clauses, which1Maxwell and Kaplan solved this problem by using operations on regular languagessuch as intersection and calculating pre�x languages directly. The use of this methodforced them to introduce a new variable each time a transformation rule was applied. Fora feature description that contains a cycle of the form xL1y1 ^ : : : yn�1Lnx this resultedin the introduction of an in�nite number of variables.5

is (when viewed as a disjunction) equivalent to the initial clause. In a secondphase the pre-solved clauses are checked for satis�ability with respect tothe path variables. In both phases we use a set of deterministic and non-deterministic transformation rules.Before starting with the technical part we will illustrate the �rst phase, sinceit is the more di�cult. For the rest of the paper we will write clauses as setsof atomic constraints. Consider the clause = fx�y; �1 :2L1; x�z; � :2L2g.Initially, one guesses the relation between the path variables � and �. In ourexample there are four di�erent possibilities. Therefore, can be expressedequivalently by the set of clauses1 = f� :q �; x�y; � :2L1; x�z; � :2L2g2 = f� := �; x�y; � :2L1; x�z; � :2L2g3 = f� :� �; x�y; � :2L1; x�z; � :2L2g4 = f� :� �; x�y; � :2L1; x�z; � :2L2g:The clause 1 is pre-solved. For the others we must evaluate the relationbetween � and � as follows. In 2 we substitute � for � and y for z, whichyields fy := z; x�y; � :2L1; � :2L2g:We keep only the equality constraint for the �rst order variables since weare interested only in their valuation. Combining f� :2 L1; � :2 L2g intof� :2 (L1 \ L2)g will then give us an equivalent pre-solved clause. For 3we know that the variable � can be split up into two parts, one of themcovered by �. We can use concatenation of path variables to express this,that means we can replace � by the term ���0 with �0 new. This would leadto the clause f� :� ���0; x�y; � :2L1; x���0z; ���0 :2L2g:But this could easily be expressed more simply. First, the constraint � :����0 is superuous. Second, the constraint x���0z in combination with x�ycan also be expressed by fx�y; y�0zg. We now obtain the clause 03 = fx�y; � :2L1; y�0z; ���0 :2L2g:This shows that we do not need concatenation of path variables withinsubterm agreements, and we will avoid them for simplicity.The only thing that remains in order to achieve a pre-solved clause is toresolve the constraint ���0 :2L2. To do this we have to guess a decompositionP; S of L2 with P �S = fps j p 2 P; s 2 Sg � L2 such that � :2P and �0 :2Sholds. In general, there can be an in�nite number of decompositions (thinkof the possible decompositions of the language f�g). But as we use regular6

languages, there is a �nite set of regular decompositions which covers allpossibilities. Finally, reducing f� :2L1; � :2Pg to f� :2(L1 \ P)g will yield apre-solved clause.Note that the evaluation of the pre�x relation in 3 has the additional e�ectof introducing a new constraint y�0z. In general this implies that afterthe evaluation of pre�x constraints there may be some path variables whoserelation is unknown. Hence, after reducing the terms of form � := � or � :� �,we may have to repeat the non-deterministic choice of relation between pathvariables. In the end, the only remaining constraints between path variablesare of form � :q �.Now let's turn to an additional point we have to consider, namely that therules we present will (naturally) loop in some cases. Roughly speaking, onecan say that this occurs if a cycle in the graph co-incides with a cycle in theregular language. To see this let us vary the above example and let be theclause fx�x; � :2f; x�z; � :2f�ggThen a possibly looping derivation could bef� :� �; x�x; � :2f; x�z; � :2f�gg adding relation � :� �fx�x; � :2f; x�0z; ���0 :2f�gg splitting � into ���0fx�x; � :2f; x�0z; � :2f�; �0 :2f�gg decomposing ���0 :2f�gfx�x; � :2f; x�z; �0 :2f�gg joining �-restrictionsBut we will prove that we get a quasi-terminating rule system, which meansthat the rule system may cycle, but produces only �nitely many di�erentclauses (see [Der87]). This is achieved by the following measures: �rst, wewill guarantee that the rules do not introduce additional variables; second,we restrict concatenation to length 2; and third, we will show that the rulesystem produces only �nitely many regular languages. In order to showthat our rewrite system is complete, we must additionally show that everysolution can be found in a pre-solved clause.3 PreliminariesThroughout this paper we assume a signature consisting of a set of sortsS (A;B; : : :), features F (f; g : : :), �rst order variables X (x; y; : : :) andpath variables P (�; �; : : :). We use a �nite set of features and in�nite setsof variables and sorts. The sets S, F , X and P are pairwise disjoint.7

A path is a �nite string of features. We say that a path u is a pre�x of apath v (written u � v) if there is a non-empty path w such that v = uw.Note that � is neither symmetric nor reexive. We say that two paths u; vdiverge (written u q v) if there are features f; g with f 6= g, and possiblyempty paths w;w1; w2, such that u = wfw1 ^ v = wgw2: It is clear that qis a symmetric relation.Proposition 3.1 Given two paths u and v, then exactly one of the relationsu = v, u � v, u � v or uq v holds.A path term (p; q; : : :) is either a path variable � or a concatenation ofpath variables ���. We will allow complex path terms only in divergenceand restriction constraints, but not in pre�x or equality constraints. Theset of atomic constraints is given byc! Ax sort restrictionx := y agreementx f1 : : : fn y subterm agreement 1x�y subterm agreement 2p :2L path restrictionp :q q divergence� :� � pre�x� := � path equalityWe exclude empty paths in subterm agreements, since x�y is equivalent tox := y. Therefore, we require f1 : : :fn 2 F+. L is a regular expression denot-ing a regular language L(L) � F+. In the following we will not di�erentiatebetween the regular expression and the language it denotes, and we will feelfree to mix both.A clause is either the special symbol ? (\false") or a �nite set of atomicconstraints denoting their conjunction. We will say that a path term ���is contained (or used) in some clause � if � contains either a constraint��� :2L or a constraint ��� :q q.2 Constraints of the form p :2L, p :q q, � :� �and � := � will be called path constraints.An interpretation I is a standard �rst order structure, where every featuref 2 F is interpreted as a binary, functional relation F I , and where sortsymbols are interpreted as disjoint, unary predicates (hence AI \ BI = ;for A 6= B). A valuation is a pair (VX ; VP), where VX is a standard �rstorder valuation of the variables in X and VP is a function VP : P ! F+.We de�ne VP(���) to be VP(�)VP(�).2We will not distinguish between p :q q and q :q p.8

The validity of an atomic constraint in an interpretation I under a valuation(VX ; VP) is de�ned as follows:(VX ; VP) j=I Ax :() VX (x) 2 AI(VX ; VP) j=I x := y :() VX (x) = VX (y)(VX ; VP) j=I x f1 : : : fn y :() VX (x) F I1 � : : : � F In VX (y)(VX ; VP) j=I x�y :() (VX ; VP) j=I x VP(�) y(VX ; VP) j=I p :2L :() VP(p) 2 L(VX ; VP) j=I p :� q :() VP(p) � VP(q) for � 2 fq;�;=gNote that subterm agreement 2 is the only constraint where an interactionbetween VX and VP happens. The validity of sort restriction, agreement andsubterm agreement 1 depend only on VX and I. Hence, we will sometimesomit the path valuation VP and write VX j=I � if � consists only of theseforms of constraint and � is valid under I and VX . Similar, validity of pathconstraints depend only on the path valuation. We will write VP j= � if �is a clause consisting of path constraints that are valid under VP .For checking satis�ability of clauses we will use a set of deterministic andnon-deterministic transformation rules. Which set of rules is used will de-pend on the initial clause. Let � be a clause and r be a rule instance. Wesay that r is applicable on � if � matches the de�nition of r and the ap-plication conditions noted in the de�nition of r are satis�ed. We will write� !r if r is applicable on � and the result of the application is . For aset of rules R we say � !R if there is an r 2 R with � !r . � is calledR-irreducible if no rule instance r 2 R applies to �. We will say that aclause � is R-reducible if � is not R-irreducible. A sequence�0 !r0 �1 � � ��i !ri �i+1 � � �is called a derivation. A clause is called a (�;R)-derivative if there isa derivation from � to that uses only rule instances of R.Since we have a two-sorted logic, we have to rede�ne the notions of soundnessand preservingness. For a set � � X we de�ne =� to be the following relationon �rst order valuation:VX =� V 0X i� for all x 2 � the equation VX (x) = V 0X (x) holds:Similar we de�ne =� with � � P for path valuations. Let # � X [P be a setof variables. For a given interpretation I we say that a valuation (VX ; VP)is a #-solution of a clause � in I if there is a valuation (V 0X ; V 0P) in I suchthat VX =X\# V 0X ; VP =P\# V 0P and (V 0X ; V 0P) j=I �:9

The set of all #-solutions of � in I is denoted by [[�]]I#. We call X -solutionsjust solutions and write [[�]]I instead of [[�]]IX . A clause � is #-equivalent toa clause (resp. a set of clauses �) if for every interpretation I [[�]]I = [[]]I#(resp. [[�]]I# = S2�[[]]I#). Again we use equivalent as short for VX -equivalent.A rule R is #-sound if �!R implies [[�]]I# � [[]]I# for every interpretationI. R is called #-preserving if � !R implies [[�]]I# � [[]]I# for every I.And R is globally #-preserving if8I : [[�]]I# � [�!R[[]]I#:4 Feature TreesIn this section we will establish two di�erent interpretations, namely thefeature tree structure and the rational feature tree structure. These inter-pretations are canonical for satis�ability. This means that if a clause issatis�able, then it is also satis�able in these interpretations. These modelswere introduced in [AKPS92a], [ST92] and [BS93]. In [BS93] a completeaxiomatization of the the full �rst order theory of these models with respectto a restricted syntax has been set up. The restricted syntax uses only Ax,xfy and x := y as atomic constraints.A tree domain is a nonempty set D � F? of paths that is pre�x-closed,that is, if wu 2 D, then w 2 D. Note that every tree domain contains theempty path.A feature tree is a partial function �:F? ! S whose domain is a treedomain. The paths in the domain of a feature tree represent the nodesof the tree; the empty path represents its root. We use D� to denote thedomain of a feature tree �. A feature tree is called �nite [in�nite] if itsdomain is �nite [in�nite]. The letters � and � will always denote featuretrees.The subtree w�1� of a feature tree � at a path w 2 D� is the feature treede�ned by (in relational notation)w�1� := f(q; A) j (wu;A) 2 �g:A feature tree � is called a subtree of a feature tree � if � is a subtree of �at some path w 2 D� , and a direct subtree if w = f for some feature f .A feature tree � is called rational if (1) � has only �nitely many distinctsubtrees and (2) � is �nitely branching (i.e., for every w 2 D�, the setfwf 2 D� j f 2 Fg is �nite). Note that for every rational feature tree �there exist �nitely many features f1; : : : ; fn such that D� � ff1; : : : ; fng?.10

The feature tree structure T is de�ned as follows:� the universe of T is the set of all feature trees� � 2 AT i� �(") = A (i.e., �'s root is labeled with A)� (�; �) 2 fT i� f 2 D� and � = f�1� (i.e., � is the subtree of � at f).The rational feature tree structureR is the substructure of T consistingonly of rational feature trees.5 Prime, Pre-Solved and Solved ClausesIn this section, we will de�ne the input and output clauses for both phasesof the algorithm.Let � be some clause and x, y be di�erent variables. We say that � bindsy to x if x := y 2 � and y occurs only once in �. Here it is important thatwe consider equations as directed, that is, we assume that x := y is di�erentfrom y := x. We say that � eliminates y if � binds y to some variable x. Aclause is called basic if it is either ? or:1. an equation x := y appears in � if and only if � eliminates y; and2. for every path variable � used in � there is at most one constraintx�y 2 �.A clause � is called prime if � is basic, � does not contain a path term ofthe form ��� and � does not contain an atomic constraint of form p :q q,� :� � or � := �.As mentioned, Kaplan and Maxwell stated the satis�ability problem forfunctional uncertainty in an unsorted syntax. Essentially, this syntax con-sists of the atomic constraints Ax, x f1 : : :fn y and x := y together with theadditional constraint xLy. This constraint is interpreted asxLy =_fxwy j w 2 Lg:It is easy to show that every clause in this syntax can be transformed intoan equivalent prime clause.Proposition 5.1 Every clause � in the Kaplan/Maxwell syntax can betranslated into a prime clause such that for every interpretation I andfor every �rst order valuation VXVX j=I � () there is a VP with (VX ; VP) j=I :11

Proof. The translation can be de�ned by the two rewrite rules(Rename) fxLyg [fx�y; � :2Lg [� new(Elim) fx := yg [fx := yg [[x y] x 6= y; x 2 VarsX ()It is easy to check that the system consisting of these two rules will alwaysterminate and that the result satis�es the required conditions. 2This implies that it su�ces to check satis�ability of prime clauses in order tocheck satis�ability of clauses in the Kaplan/Maxwell syntax. Hence, primeclauses are the input clauses for the �rst phase.Now we turn to the output clauses of the �rst phase. A basic clause is saidto be pre-solved if it is either ? or the following hold:1. Ax 2 � and Bx 2 � implies A = B.2. � :2L 2 � and � :2L0 2 � implies L = L0.3. � :2; is not in �.4. � contains no terms of form ���,5. � contains no constraints of form � := � or � :� �,6. � :q � 2 � if and only if � 6= �, x�y 2 � and x�z 2 �.Lemma 5.2 Let � be a pre-solved clause di�erent from ?. Then � is sat-is�able i� there is a path valuation VP with VP j= �p, where �p is the set ofpath constraints in �.Proof. Without loss of generality we can assume that for every x 2VarsX (�) there is a sort restriction Ax 2 �. Let = fxVP(�)y j x�y 2 �g [fAx 2 �g:Then for each interpretation I and each �rst order valuation VX we have(VX ; VP) j=I � i� VX j=I .Let T be the feature tree model as de�ned before. For a feature tree � andeach word w 2 F+ we de�ne w� to be the feature treew� = f(wu;A) j (u;A) 2 �g:12

It is easy to check that w�1w� = � holds, but not in general ww�1� = �.For every n 2 N we de�ne V nX to be the following �rst order valuation onVarsX ():1. V 0X (x) = f(�; A)g, where Ax 2 ,2. V n+1X (x) = f(�; A)g]]xwy2 wV nX (y), where Ax 2 .The union in the de�nition of V n+1X (x) is a disjoint union as w 2 F+ and8xwy; xuz 2 : w 6= u) w q u by the pre-solved conditions 5{6. Thus wecan prove by induction that for each n � 11. xwy 2 implies w�1V nX (x) = V n�1X (y).2. V nX (x) � V n�1X (x) and3. V nX (x) is a partial function F?! S.Now we de�ne VX to be the valuation withVX (x) = [n2N V nX (x)By the above propositions for V nX we know that w�1VX (x) = VX (y) holds foreach xwy 2 . Although VX (x) is a partial function F? ! S for every x, itis not yet a valuation in T since the VX (x) are not necessarily pre�x-closed.This can be overcome by de�ning V 0X to be the valuationV 0X (x) = VX (x)] f (w;A) j 8C : (w;C) 62 VX (x)^ 9u 6= �; B : (wu;B) 2 VX (x) g;where A is an arbitrary but �xed sort symbol. Then again w�1VX (x) =VX (y) holds for each xwy 2 . This implies that V 0X (x)wT V 0X (y) holds andhence V 0X j=T . But then we get (V 0X ; VP) j=T �. Since the feature treesV 0X (x) are even rational, we get also (VX ; VP) j=R � 2Note that this implies that the structure T (resp. R) is canonical for pre-solved clauses; that is, a normal form clause is satis�able if it is satis�ablein T (resp. R). Since in the �rst phase we transform each prime clause intoan equivalent set of pre-solved clauses, we know that T is also canonical forprime clauses.In the second phase we will check satis�ability of a pre-solved clause bytransforming it into an equivalent set of solved clauses. A clause � is calledsolved if it is either ? or 13

1. Ax 2 � and Bx 2 � implies A = B.2. � :2L 2 � and � :2L0 2 � implies L = L0.3. � :2; is not in �.4. � contains no terms of form ���,5. � contains no constraints of form � := �, � :� � or � :q �.6. for every pair of variables �; � such that � 6= �, x�y 2 � and x�z 2 �we have � j= � :q �.Here � j= means that for every I and every (VX ; VP) in I (VX ; VP) j=I� implies (VX ; VP) j=I . Note that the de�nition of pre-solvedness andsolvedness di�er in the last two conditions and that every solved clause isalso a prime clause.Lemma 5.3 Every solved clause di�erent from ? is satis�able.Proof. For every solved clause � there is a VX [VP-equivalent clause suchthat is pre-solved. Thus, a solved clause � is (by lemma 5.2) satis�able ifthere is a path valuation VP with VP j= �. But this is guaranteed by theconditions 2{5 in the de�nition of solvedness. 26 The First Phase6.1 A Set of RulesThe �rst rule is the non-deterministic addition of relational constraints be-tween path variables. In one step we will add the relations between one�xed variable � and all other path variables � which are used under thesame node x as �. We will consider only the constraints � := �, � :q �and � :� � but not � :� �. Thus the rule can be described by the followingpseudo code:Choose x 2 VarsX (�) (don't care)Choose x�y 2 � (don't know)For each x�z 2 � with � di�erent from � and � :q � 62 �add � :�� � with :�� 2 f :=; :�; :qg (don't know)Formally, this rule is written as 14

(PathRel) fx�yg [f� :�� � j x�z 2 ^ � 6= � ^ � :q � 62 g [fx�yg [where :�� 2 f :=; :�; :qg.This rule will only by applied if� contains no pre�x and path equality constraint,� contains no path concatenation,� the rule adds at least one constraint.Although we have restricted the relations :�� to f :=; :�; :qg, this rule is global-ly preserving since we have non-deterministically chosen x�y. To see this let� be a clause, I be an interpretation and (VX ; VP) be a valuation in I with(VX ; VP) j=I �. To �nd an instance of (PathRel) such that (VX ; VP) j=I where is the result of applying this instance, we choose x�y 2 � withVP(�) �-minimal in fVP(�) j x�z 2 �g:Then for each x�z 2 � with � 6= � and � :q � 62 � we add � :�� � whereVP(�) �� VP(�) holds. Note that :�� equals :� will not occur since wehave chosen a path variable � the interpretation of which is �-minimal.Therefore, the restriction :�� 2 f :=; :�; :qg is satis�ed.The de�nition of (PathRel) is more complex than the naive one in the intro-duction. The reason for this is that only by using this special de�nition canwe maintain the condition that concatenation of path variables is restrictedto binary concatenation. To see this suppose that we had added both �1 :� �and � :� �2 to a clause . Then �rst splitting up the variable �2 into ���02and then � into �1��0 will result in a substitution of �2 in by �1��0��02. Bythe de�nition of (PathRel) we have ensured that this does not happen.The second non-deterministic rule is used in the decomposition of regularlanguages. For decomposition we have the following rules:(DecClash) f��� :2Lg [? if fw 2 L j jwj > 1g = ;(LangDec�) f��� :2Lg [f� :2Pg [f� :2Sg [P �S � Lwhere L; P; S � F+ and � is a given �nite set of reg. lan-guages with L; P; S 2 �. L must contain a path w withjwj > 1. 15

The clash rule is needed since we require regular languages not to containthe empty path.We use � in (LangDec�) as a global restriction, which means that for every� we get a di�erent rule (LangDec�) (and hence a di�erent rule systemR�). This is done as the rule system is quasi-terminating. By restricting(LangDec�) we can guarantee that only �nitely many regular languages areproduced.For (LangDec�) to be globally preserving we need to �nd, for every possiblevaluation of � and �, a suitable pair P; S in �. Therefore, we require � tosatisfy 8L 2 �; 8w1; w2 6= � :[w1w2 2 L) 9P; S 2 � : (P �S � L ^ w1 2 P ^ w2 2 S)]:We will call � closed under decomposition if it satis�es this condition.Additionally, we have to ensure that L 2 � for every L that is contained insome clause �. We will call such a set � �-closed.The remaining rules are listed in �gure 1. Note that we have not consideredclauses containing subterm agreement 1, since these constraint are superu-ous for checking satis�ability. A constraint x f1 : : : fn y can be expressed bythe equivalent clause fx�y; � :2f1 : : : fng (� new).The (Pre) rule needs some additional explanation. One might expect (Pre)to be of the form(Pre') f� :� �g [fx�yg [fx�zg [fx�yg [fy�0zg [[� ���0] �0 new.But as we have mentioned, we have to de�ne our rules in a way such that noadditional variables are introduced. This is not satis�ed by the rule (Pre').For solving this problem note that � is not used in the result of applying(Pre'). Hence, we can substitute �0 by �, which has the e�ect that no newvariable is needed. This leads to the de�nition of (Pre) as presented in�gure 1.The following proposition and lemma will show that the de�nition of(LangDec�) is meaningful.Proposition 6.1 If � is �-closed and closed under intersection, then � is-closed for all (�;R�)-derivatives .Proof. We will prove this lemma by induction over the length of derivations.We use the term reg() to denote the set of regular languages used in .Then R� is -closed if reg() � �. 16

(Eq) f� := �; x�y; x�zg [fy := z; x�yg [[� �; z y] (Join) f� :2L; � :2L0g [f� :2(L \ L0)g [L 6= L0(Div1) f� :q �0g [f��� :q �0g [f� :q �0g [(Div2) f��� :q ���0g [f� :q �0g [(DClash1) f��� :q �g [? (DClash2) f� :q �g [?(Empty) f� :2;g [? (SClash) fAx; Bxg [? A 6= B(Pre) f� :� �; x�y; x�zg [fx�yg [fy�zg [[� ���] � 6= �Figure 1: Simpli�cation rules
17

Let be some (�;R)-derivative. For the base step = � the lemmaholds trivially. For the induction step let satisfy the induction hypothesesreg() � � and let r 2 R� be a rule such that !r 0.If r is some clash rule, then reg(0) = ;.If r is not a clash rule and not in (LangDec�) or (Join), then reg(0) = reg()and therefore reg(0) � � by induction hypotheses. If r 2 (LangDec�), thenr adds only regular languages P; S 2 �.Now let r0 = f� :2L; � :2L0g [f� :2(L \ L0)g [2 (Join):By induction hypotheses we know that L; L0 2 �. But then (L \ L0) 2 �since � is closed under intersection. 2Lemma 6.2 For every prime clause � there is a �nite � such that � is�-closed, closed under intersection and decomposition.Proof. We de�ne a deterministic automaton A over F to be a tuple(QA; iA; �A; F inA), where1. QA is a �nite set of states,2. iA 2 QA is the initial state,3. �A : QA �F ! QA is a transition function,4. and FinA � QA are the �nal states.With ��A we mean the unique extension of �A to F�. The regular languagethat is accepted by an automaton A is de�ned asL(A) = fw j ��A(iA; w) 2 FinAg:Let reg(�) = fL1; : : : ; Lng � P (F+) be the set of regular languages usedin � and let Ai = (QAi ; iAi ; �Ai ; F inAi) be �nite, deterministic automatonssuch that Ai accepts Li. For each Ai we de�ne dec(Ai) to be the setdec(Ai) = fLqp j p; q 2 QAig;where Lqp = fw 2 F+ j ��Ai(p; w) = qg.Of course, each dec(Ai) is �nite and contains Li. Furthermore, it is al-so closed under decomposition. The complete set of decompositions for alanguage Lqp 2 dec(Ai) consists of the languagesP = Lsp and S = Lqs for s 2 QAi :18

We de�ne �0 to be Sni=1 dec(Ai). �0 contains each Li 2 reg(�) and is closedunder decomposition. Now let � = fi (�0)be the least set that contains �0 and is closed under intersection. Then �is �nite and �-closed, since it contains each Li 2 reg(�).We will prove that � is also closed under decomposition. Given some L 2 �and a path w = w1w2 2 L, we have to �nd an appropriate decompositionP; S in �. Since each L in � can be written as a �nite intersectionL = m\k=1Lkwith Lk in �0, we know that w = w1w2 is in Lk for 1::m. As �0 is closedunder decomposition, there are languages Pk and Sk for k = 1::m withw1 2 Pk, w2 2 Sk and Pk�Sk � Lk. Let P = Tmk=1 Pk and S = Tmk=1 Sk.Clearly, w1 2 P , w2 2 S and P �S � L. Furthermore, P; S 2 � as � is closedunder intersection. This implies that P; S is an appropriate decompositionfor w1w2. 26.2 Some Properties of the Rule SystemFor the rest of the paper we will call clauses that are derivable from primeclauses admissible.Lemma 6.31. Every admissible clause is basic.2. If � :� �, � := � or � :q � is contained in some admissible clause �,then there is a variable x such that x�y and x�z is in �.Proof. The proof of the �rst claim is left to the reader. The second claimwill be proved by induction over the length of derivations. For prime clausesthe claim holds trivially. For the induction hypotheses assume that we haveproven the claim for every admissible clause � that is derivable from a primeclause in n steps and let � !r �0. If r is di�erent from (Pre), (PathRel),(Eq) or (Div2), there is nothing to prove. Thus we have the following cases:r 2 (PathRel): the claim holds by de�nition of (PathRel).19

r 2 (Eq): the claim is invariant under substitution of one variable � byanother variable � if both x�y and x�z are contained in �.r 2 (Pre): then � = f� :� �; x�y; x�zg [and �0 = fx�y; y�zg [[� ���]. The only subterm agreement constraint that is changed is x�z.But as � is substituted by ���, �0 does not contain any path equalityor pre�x constraints involving �.r 2 (Div2): then � = f��� :q ���0g[and �0 = f� :q �0g[. We will provebelow that if ��� is contained in some admissible clause , then thereare variables x; y; z such that x�y and y�z are contained in . Thiswill complete the proof, since then ��� :q ���0 in � implies that thereare variables x; y; z and x0; y0; z0 with fx�y; y�z; x0�y0; y0�0z0g � �.But as � is admissible, it is also basic by the �rst claim. Hence, xequals x0 and y equals y0. Therefore, both y�z and y�0z0 are in � andin �0.Thus it remains to show that if ��� is used in some admissible clause ,then there are variables x; y; z such that x�y and y�z are in . Let � bean admissible clause for which this holds, and let !r 0. The only ruleswe have to consider are (Eq) and (Pre). For (Eq) note that the claim isinvariant under consistent variable renaming. If r 2 (Pre), then we have tocheck the path term ��� that is introduced by r. But by de�nition of (Pre)the clause 0 must contain both x�y and y�z. 2This lemma implies that (Eq) can always be applied if a constraint � := �is contained in some admissible clause. The next lemma will show thatdi�erent applications of (Pre) or (Eq) will not interact. This means theapplication of one of these rules to some pre�x or path equality constraintwill not change any other pre�x or path equality constraint contained in thesame clause.Lemma 6.4 Given some prime clause � and a derivation� = �0 !r0 �1 � � ��n�1 !rn�1 �n = that contains an application of (PathRel). Then � := � 2 (resp. � :� � 2) implies � := � 2 �i (resp. � :� � 2 �i) for i > k, where k is the numberof the last application of (PathRel). Furthermore, if ��� is contained in ,then either ��� or � :� � is contained in �i for i > k.Proof. We will use induction over length of derivations. Assume that wehave proven the lemma for admissible clauses that are derivable in n steps20

and let !r 0 with r 62 (PathRel). If r is di�erent from (Eq) or (Pre), thenthere is nothing to prove. If r 2 (Eq), then a constraint � :� � or � := � in 0 can be missing in if and only if contains a constraint � := �0 or � :� �0(resp. �0 := � or �0 :� �) and r is of the formf� :=�0; : : :g [: : : with �0 6= � (resp. f� :=�0; : : :g [: : : with �0 6= �):Hence, must contain at least two pre�x or path equality constraints, theleft sides of which are di�erent. By induction hypotheses these path equalityor pre�x constraints must have been introduced by the last application of(PathRel). But this contradicts to the de�nition of (PathRel). A similarargument can be given for the part of the lemma concerning path terms ofform ���.If r is in (Pre), then we have to check only the second claim of the lemma,namely that ��� contained in 0 implies that either � :� � is in or ��� isused in . For the all path terms in 0 that are not introduced by thisapplication of (Pre) this holds trivially. For the path term ��� that isintroduced, this is guaranteed by the application condition of (Pre), namelythat must contain � :� �. 2We can derive from this lemma certain syntactic properties of admissibleclauses which are needed for proving completeness and quasi-termination.Corollary 6.5 If � :� � is contained in an admissible clause �, then � isdi�erent from �. Furthermore, there is no other pre�x or equality constraintin � involving � and neither ���0 nor �0�� is in �.Note that by lemma 6.3 together with this corollary, the rule (Pre) is al-ways applicable if a constraint � :� � is contained in an admissible clause.Furthermore, an application of (Pre) causes no violation of the restrictionsthat we have imposed on the syntax. This means that concatenation doesnot occur in pre�x or path equality constraints; and concatenation of pathvariables is restricted to binary concatenation.Lemma 6.6 If ��� :q �0 is contained in an admissible clause � with �di�erent from �0, then � contains a constraint of form � :q �0, � := �0 or� :� �0.Proof. We will prove a stronger result, namely that if f� :� �; � :q �0g � �or f��� :q �0g � �, then � contains a constraint of form � :q �0, � := �0 or21

� :� �0. We will prove this by induction over length of derivations. Assumethat we have proven the claim for every admissible clause � that is derivablein n steps from a prime clause and let �!r �0. Again we have to check onlythe rules (Pre), (PathRel), (Eq) or (Div2):r 2 (PathRel): we have to check only constraints � :q �0 that are alreadyin �. By lemma 6.3 we know that if � :q �0 is in �, then there is avariable x with both x�y and x�0z in �. Hence, if (PathRel) adds theconstraint � :� �, it must by de�nition also add a constraint � :q �0,� := �0 or � :� �0.r 2 (Eq): the claim is invariant under consistent variable renaming.r 2 (Pre): then � = f� :� �; x�y; x�zg [and �0 = fx�y; y�zg [[� ���]. The only case that we have to check is that � contains a con-straint � :q �0. Then �0 contains ��� :q �0. By induction hypotheses� must contain a constraint c of form � :q �0, � := �0 or � :� �0. Since(Pre) does not change c, this must holds also for �0.r 2 (Div2): then � = f��� :q ���0g[and �0 = f� :q �0g[. The only newdivergence constraint that comes in is � :q �0. But as � contains both��� and ���0, it may not contain � :� � or � :� �0 by corollary 6.5.Hence, �0 does not contain such a constraint. 2This lemma ensures that a constraint ��� :q �0 is always reducible. If �0equals �, then we could apply (DClash1). If � :q �0 is in �, we can apply(Div1). If � := �0 is in � we can apply (Eq) followed by (DClash1). If � =f� :� �0; ��� :q �0g [, then we can apply (Pre) yielding f��� :q ���0g [0,where we can apply (Div2).6.3 Soundness and CompletenessProposition 6.7 The rules (Eq), (Div1,2), (SClash), (Join), (Empty) and(DClash1,2) are X [P-sound and X [P-preserving.Proposition 6.8 The rule (Pre) is X -sound and X -preserving.For (Pre) we can even characterize pairs of path valuations which preservethe X -solutions. 22

Proposition 6.9 Let � = f� :� �; x�y; x�zg [and be the result ofapplying (Pre) to �. Given a pair of path valuations VP ; V 0P withVP =P�f�g V 0P and VP(�) = VP(�)V 0P(�) = V 0P(�)V 0P(�);then for each interpretation I and for each �rst order valuation VX(VX ; VP) j=I � () (VX ; V 0P) j=I :Proposition 6.10 If � is closed under decomposition, then (LangDec�)is X [P-sound and globally X [P-preserving. Furthermore, (PathRel) isX [P-sound and globally X [P-preserving.Finally, we have to prove that the rules are complete. This means that givenan input clause �, for every solution VX of � in some interpretation I thereis a pre-solved clause derivable from � such that VX is a solution of . Ifthe rule system is terminating, then for completeness one has to prove thatthe pre-solved clauses are just the irreducible clauses.In our case this is not enough since the rule system can loop. Therefore, wehave to prove explicitly that each solution of a given prime clause � can befound in some pre-solved �-derivative. We de�ne Irred(�;R�) to be the setall (�;R�)-derivatives which are R�-irreducible, and Pre-Solved(�;R�) tobe the set of all pre-solved clauses which are derivable from �. A set of rulesR� is said to be �-complete w.r.t. to a set of variables # if1. Irred(�;R�) = Pre-Solved(�;R�),2. for every interpretation I[[�]]I# � [2Pre-Solved(�;R�)[[]]I#:We will show that for every prime clause � there is a set of regular languages� such that R� is �-complete w.r.t the �rst order variables X .Theorem 6.11 (Completeness I) Given a prime clause �. If � is a setof regular languages that is �-closed, closed under intersection and closedunder decomposition, then every (�;R�)-derivative that is not pre-solvedis R�-reducible.Proof. Let be a (�;R�)-derivative that is not pre-solved. We will checkall conditions that are stated in the de�nition on page 12.If one of the conditions 1{3 is not satis�ed by , then one of the rules(SClash), (Join) or (Empty) will apply.Now let's check the conditions 4 and 5:23

 contains a constraint ��� :2L. As � is �-closed, we know that � is al-so -closed by lemma 6.1. Therefore we can apply (LangDec�) or(DecClash). contains a constraint ��� :q �0��0. By lemma 6.4 we know that �equals �0. Hence, we can apply (Div2). contains a constraint ��� :q �0. If �0 equals �, then we can directlyapply (DClash1). Otherwise, there is by lemma 6.6 a constraint � :=�0, � :� �0 or � :q �0 in . If � := �0 is in , we can apply (Eq)by lemma 6.3. This will result in the substitution of �0 by �. Theremaining constraint ��� :q � can be reduced using (DClash1). If� :� �0 is in , then we can apply (Pre) by lemma 6.3 and corollary 6.5.We will obtain the constraint ��� :q ���0, which can be reduced using(Div2). The last case is that � :q �0 is in , where we can apply (Div1). contains a constraint � := �. Then (Eq) is applicable by lemma 6.3. contains a constraint � :� �. Then (Pre) is applicable by lemma 6.3and corollary 6.5.The remaining case is that does not satisfy the last condition of a pre-solved clause, namely that � :q � with � 6= � in if and only if x�y andx�y in . Given the above, we can now assume that does not contain apath concatenation or a pre�x or path equality constraint.There are three possibilities for to violate the last condition. The �rstis that contains a constraint of the form � :q �. Then (DClash2) isapplicable. The second is that there is a constraint � :q � with x�y 2 andx0�y0 2 such that x is di�erent from x0. But this is excluded by lemma 6.3.The last case is that there are di�erent path variables � and � such thatx�y and x�z are in but � :q � is not. As contains no concatenation andno path equality or pre�x constraints, the rule (PathRel) is applicable. 2Next we have to prove the second property for �-completeness, namely thatfor every interpretation I and for every solution VX of � there is a pre-solved �-derivative with VX 2 [[]]I. This property is needed since our rulesystem can loop. Let us recall an example of a looping derivation in orderto explain the main idea involved in the second part of the completenessproof. In contrast to our �rst example of a looping derivation (see page 7),we will now omit the path restrictions, since they are not needed for whatwe want to demonstrate. Let � be the clause� = fx�x; x�yg:24

A looping derivation can consist of an application of (PathRel) yielding theclause �1 = f� :� �; x�x; x�yg, followed by an application of (Pre) on yielding �2 = �.3 As one can imagine, the reason for looping derivation isthe rule (Pre). We will later prove that indeed every in�nite derivation mustuse the (Pre) rule in�nitely often.For proving the second completeness property we restrict the set of allowedderivations depending on some arbitrary but �xed valuation (VX ; VP) with(VX ; VP) j=I �. This control will guarantee that1. VX is a solution of every clause in the derivation,2. under this control, all derivations are �nite.Will we additionally show that even under this control the irreducible clausesare just the pre-solved clauses. Hence, this control will give us, for everyclause � and every initial solution VX , a pre-solved �-derivative that has VXas an solution.We will add this further control only on the non-deterministic rules(PathRel) and (LangDec�), thus restricting the set of instances of theserules that may be applied. We allow only those instances which preservethe valuation (VX ; VP). Using our above example, if VP satis�esVP(�) = f and VP(�) = gwe may apply only that instance of (PathRel) which transforms � into �1 =f� :q �; x�x; x�yg. Since the choice of the instances depends only on thepath valuation, we will call such restricted derivations VP-strict.It is easy to see that the above restriction will always enforce �niteness ofderivations if the initial path valuation VP satis�esVP(�) 6� VP(�) where � 6= � ^ x�y 2 � ^ x�z 2 �:One could say that in this case VP is pre�x free with respect to �.For the initial path valuations which are not pre�x free we must have a closerlook at the (Pre) rule, since this rule is the reason for looping derivations.As (Pre) is a rule which is not P-preserving, the path valuation has to bechanged in a VP-strict derivation when (Pre) is applied. This implies thatwe can yield �niteness of VP-strict derivations if we guarantee that aftera �nite number of (Pre) applications the initial path valuation has beentransformed into a pre�x free path valuation.3The �rst example of a looping derivation on page 7 shows that the situation is nodi�erent if we add path restrictions. 25

We will again turn to our example to clarify this. If the initial path valuationVP for � is of the formVP(�) = f and VP(�) = fffg;the �rst rule in a VP-strict �-derivation could be an application of (PathRel)transforming � = �0 into �1 = f� :� �; x�x; x�yg. Now we are able to apply(Pre), which implies that we have to change VP . Using proposition 6.9 wecan use the following V 0P :V 0P(�) = f and V 0P(�) = ffg:Proposition 6.9 guarantees that this can be done without loosing X -preservingness. Note that we have shortened VP(�) by f . Now we coulditerate this twice more before ending up with a pre�x free path valuation.After these remarks we can turn to the technical part.Theorem 6.12 (Completeness-II) Let � be a prime clause, let � be aset of regular languages which is �-closed, closed under intersection anddecomposition. Then R� is �-complete w.r.t. the �rst order variables X .First we need an additional lemma.Lemma 6.13 There are no in�nite derivations using only �nitely manyinstances of (Pre).Proof. Assume there is such a derivation. Then there exists an in�nitesub-derivation not using any instance of (Pre). Let � be the starting pointof such a derivation. Let be some clause. Then we de�ne the followingfunctions on :�1() = number of concatenations in �2() = number of di�erent path variables in ��() = number of constraints � :� � with :� 2 f :=; :�; :qg,�; � 2 VarsP(�) and � :� � not in �() = total number of constraints in We de�ne �() to be the tuple h�1();�2()i. Using the functions �, ��and � we can construct a partial order on clauses by de�ning <� 0 i�(�() < �(0))26

�1 �2 �� �(PathRel) = = <(Eq) = <(LangDec�) < =(Join) = = = <(Div1) < =(Div2) < =Table 1: Monotonicity of the rules w.r.t the measure functions.or (�() = �(0)) ^ (��() < ��(0))or (�() = �(0)) ^ (��() = ��(0)) ^ (�() = �(0)):Here < is the lexicographic ordering on tuples for �() and elsewhere theusual numeric comparison. It is easy to check, that <� de�nes a well-founded, partial ordering on clauses.Let be some derivation of �. Now VarsP() � VarsP(�) holds, which isimportant for the value of ��. In table 1 we have summarized for every non-clash rule other than (Pre) the variation of �(), ��() and �()4. Theclash rules are not considered because they automaticly terminate everyderivation. The table shows that for every rule r !r 0 implies 0 <� .Because <� is a well-founded ordering and therefore cannot have in�nitedescending chains, this contradicts our assumption that there is a in�nitederivation not using (Pre). 2Corollary 6.14 There are no in�nite derivations using only �nitely manyinstances of (PathRel).Proof. By the above lemma we know that there are no in�nite derivationswithout in�nite use of (Pre). But (Pre) removes the constraints � :� �,the existence of which is an application condition for (Pre). But additionalconstraints of form � :� � are only introduced by (PathRel). 2Proof of theorem 6.12 (Completeness II). The �rst condition for �-completeness was proved in theorem 6.11 (Completeness I). For the second,4If a rule decreases the �-value, the clause resulting from applying this rule is smallerthan the input clause w.r.t <� independently of the e�ects of the rule on the ��-part.Therefore, we omit the corresponding ��-entries in this case; and similarly for the �-part.27

let I be some interpretation and (VX ; VP) be a valuation with (VX ; VP) j=I �.We have to show that there is a (�;R�)-derivative which is pre-solved andsatis�es 9V 0P : (VX ; V 0P) j=I . This will be done by de�ning VP-strictderivations, which will always end up in a pre-solved clause. As we havementioned, we have to rede�ne the path valuation every time (Pre) is ap-plied. This leads to the following de�nition: a derivation� = �0 !r0 �1 � � ��n !rn �n+1 � � �is called VP-strict if there is a family of path valuations (V iP) such that1. V 0P = VP ;2. for each i the proposition (VX ; V iP) j=I �i holds; and3. for each i� ri 62 (Pre) implies V iP = V i+1P and� ri = f� :��; ��� g [��� 2 (Pre) impliesV iP =P�f�g V i+1P and V iP(�) = V i+1P (�)V i+1P (�):Now for every VP-strict (�;R�)-derivation� = �0 !r0 �1 � � ��n�1 !rn�1 �nwhere �n is not pre-solved, there is a VP-strict continuation, as the followingargumentation shows. If �n is not pre-solved, then there is (by theorem 6.11)a rule which is applicable. We have to show that there is an applicable ruleinstance such that a corresponding V n+1P can be found.If the applicable rule is di�erent from (Pre), then we know that there is anappropriate path valuation V n+1P , as all rules di�erent from (Pre) are eitherX [P-preserving or globally X [P-preserving. If (Pre) is applicable, thenproposition 6.9 shows that we can �nd an appropriate V n+1P .Next we must show that there is no in�nite VP-strict (�;R�)-derivation,which �nally proves the lemma. This is done by introducing a norm on pathvaluations. For a path valuation VP we de�ne jVP j� to be:jVPj� = X�2VarsP(�) jVP(�)j:Now let �i !ri �i+128

be a step in some VP-strict (�;R�)-derivation and let V iP ; V i+1P be the cor-responding path valuations. If ri 62 (Pre) we know that V iP = V i+1P andhence jV iPj� = jV i+1P j�. If ri 2 (Pre) we know by the third condition ofVP-strictness that there are � and � such thatV iP =P�f�g V i+1P and V iP(�) = V i+1P (�)V i+1P (�):As VarsP(�i+1) � VarsP(�i) � VarsP(�) this implies jV i+1P j� < jV iPj�.As there are no in�nite derivations without in�nite use of (Pre) this provesthat there are no in�nite VP-strict derivations. 26.4 Quasi-TerminationLemma 6.15 Let � be a prime clause and � be a �nite �-closed set ofregular languages. Then the set of all (�;R�)-derivatives is �nite.Proof. We will �rst consider the sets C which contains every atomic con-straint that occur in at least one (�;R�)-derivative. C could be seen as theunion of all (�;R�)-derivatives. We will show that C is �nite. As every(�;R�)-derivative is a subset of C this will prove the lemma.First we know that no rule adds new variables. This implies that thereare at most n1 = jVarsP(�)j+ jVarsP(�)j2 many di�erent path terms. Bylemma 6.1 we know that � is -closed for every (�;R�)-derivative, whichimplies that at most j�j di�erent regular languages are used in the (�;R�)-derivatives.Therefore C contains at most jVarsX (�)j2 node agreements, jVarsX (�)j �jVarsP(�)j�jVarsX (�)j subterm agreements, n21 path divergence constraints,jVarsP(�)j2 pre�x and equality constraints and n1 � j�j path restrictionconstraints. Since no rule adds new sort symbols we know that C containsat most n2 � jVarsX (�)j di�erent node restrictions, where n2 is the numberof sort symbols in �. 2Theorem 6.16 For every prime clause � there exists a set of regular lan-guages � such that R� is �-complete w.r.t. X and the set Pre-Solved(�;R�)is �nite and computable.Proof. Let reg(�) be the set of regular languages used in �. By lemma 6.2there must be a �nite � such that � is �-closed, closed under intersectionand decomposition. Then R� is �-complete w.r.t. X by theorem 6.12. Bylemma 6.15 we know that Pre-Solved(�;R�) must be �nite. Hence, it su�cesto prove that the set Pre-Solved(�;R�) is computable.29

To do this we will consider loop-free derivations. A derivation is calledloop-free if it is not of the form�0 !r1 : : :!ri �i : : :!rk �k : : : ;where �i = �k. In order to generate the set of derivatives (or a subset ofthem) it is enough to consider loop-free derivations. This is because forevery pair ; 0 every -derivation which yields 0 and is not loop-free canbe replaced with a shorter derivation by removing some loop. Iterating thisstep �nally yields a loop-free -derivation for 0.Furthermore, the set of all loop-free (�;R�)-derivations must be �nite sinceR� can only generate �nitely many (�;R�)-derivatives by lemma 6.15, andthere are only �nitely many rules ofR applicable on every (�;R�)-derivative.But as we have mentioned we need to consider only the loop-free derivations,which shows that Pre-Solved(�;R�) is computable. 2Corollary 6.17 For every prime clause � there exists a �nite and com-putable set of pre-solved clauses � such that � is equivalent to �.Proof. Follows from the last theorem and the fact, that every rule is atleast VX -sound. 27 The Second Phase: Satis�ability of Pre-SolvedClausesIn this section we will present a rule system that transforms each pre-solvedclause into an equivalent set of solved clauses, which are satis�able by lem-ma 5.3.We will �rst make a minor rede�nition of divergence. We say that two pathsu; v are directly diverging (written uq0 v) if there are features f 6= g suchthat u 2 fF� and v 2 gF�. Then u q v holds if there are a possible emptypre�x w and paths u0; v0 such that u = wu0 and v = wv0 and u0q0 v0. Usingthis de�nition of divergence and the additional atomic constraint� :q0 � direct divergence;we can (non-deterministically) transform a clause � = f�1 :q �2g [intoeither f�1 :q0 �2g [or f�1 := ���01; �2 := ���02; �01 :q0 �02g [:5 By5The �rst case is needed because we do not allow values of path variables to be emptypaths. 30

the de�nition of q0 we can reduce (non-deterministically) the constraints ofform �1 :q0 �2 into f�1 :2fF�; �2 :2gF�g with f 6= g. The aim is to processall divergence constraints this way in order to achieve a solved clause.But we have to reformulate the reduction of divergence constraints. The rea-son is that we have to evaluate constraints of the form �1 := ���01. This canproduce constraints of the forms ��� :2L and ��� :q �0. The second is prob-lematic as we must guess the relation between � and �0. This complicatesthe termination proof.We will avoid this problem by using a special property of pre-solved clauses,namely that � :q � is in a pre-solved clause � i� x�y and x�z are in �.Hence, if � :q � and � :q � are in �, then � :q � is also in �. This impliesthat we can write � as :q (A1)] : : :] :q (An)] , where :q (A) is syntacticsugar for f� :q �0 j � 6= �0 ^ �; �0 2 Ag;A1; : : : ; An are disjoint sets of path variables and contains no divergenceconstraints. Now given such a constraint :q(A); suppose that a whole set ofpath variables A1 � A diverge with the same pre�x. Then we can replace:q (A1) � :q(A) by A1 = ��A01 [:q 0(A01);where � is new, A01 = f�01; : : : ; �0ng is a fresh copy of A1 = f�1; : : : ; �ngand A := ��A01 abbreviates the clause f�1 := ���01; : : : ; �n := ���0ng. :q 0(A)is de�ned similarly to :q (A). Under the additional assumption that thecommon pre�x � is maximal, it follows that � :q � holds for � 2 (A� A1).If we consider also the e�ects of A1 := ��A01 on the subterm agreements in�, then we get the following non-deterministic rule:(Reduce1) xA1Y1 [:q(A) [fx�zg [zA01Y1 [:q0(A01) [:q (f�g[A2) [0where 0 = [�1 ���01; : : : ; �n ���0n], A1] A2 = A,jA1j > 1 and z; � new. A01 is a disjoint copy of A1. xA1Y1 isshort for fx�1y1; : : : ; x�nyng. may not contain constraintsof form ���0 :2L in .Note that we have avoided constraints of the form ��� :q �0. Additionally,we use the non-deterministic rules 31

(Reduce2) :q(A)[:q0(A)[(Solv) :q0(A)[f� 2 f��F � j � 2 Ag [f� 6= f�0 for � 6= �0:(Reduce2) is needed as path variables always denote non-empty paths. Wewill see (Reduce1) and (Reduce2) as one single rule (Reduce). To completeour rule system, we need the rules (LangDec�), (DecClash), (Join) and(Empty). Since we will show that the rule system is terminating, we canreplace (LangDec�) by a simpler version, namely(LangDecdfun) f��� :2Lg [f� :2Pg [f� :2Sg [P �S � L; (P; S) 2 dfun(L)L must contain a path w with jwj > 1.Here dfun : P(F+) ! P(F+) � P(F+) is a decomposition function thatassigns to each regular language L a �nite set of decompositions. dfun iscalled decomposition complete if for every regular language L and everypath w = w1w2 2 L there is a pair (P; S) in dfun(L) with w1 2 P andw2 2 S. The complete set of rules is denoted RSolvdfun.After the explanation of the rule system we can commence the technicalpart. Since we have added constraints of the form � :q0 �, we have to extendcondition 5 in the de�nition of a solved clause as presented on page 13. Werequire solved clauses not to contain constraints of the form � :q0 �.A clause � is called partitioned if the set of divergence constraints of � isof the form :q (A1)] : : :] :q (Ak)] :q 0(Ak+1)] : : :] :q 0(An), where the Aiare disjoint.Proposition 7.1 There exists a decomposition function dfun that is decom-position complete.Proof. See proof of lemma 6.2 for the construction of such a function. 2Proposition 7.2 Let � be a pre-solved clause and let be a (�;RSolvdfun)-derivative. Then is partitioned. Furthermore, for every pair of variables�; � such that � 6= �, x�y 2 and x�z 2 we have j= � :q �.32

Proposition 7.3 For every partitioned clause � the rule (Reduce)= (Reduce1) + (Reduce2) is VarsX (�)-sound and globally VarsX (�)-preserving. The rule (Solv) is VX [VP-sound and VX [VP -preserving. Ifdfun is decomposition complete, then (LangDecdfun) is VX [VP-sound andVX [VP-preserving.Lemma 7.4 RSolvdfun is terminating.Proof. For (Solv), (Join), (LangDec), (DecClash) and (Empty) it is trivialto see that there are no in�nite derivations using only these rules. Fur-thermore, there are no derivations which use (Reduce) in�nitely often, sinceduring every application of (Reduce) at least one divergence constraint is re-moved (note that jA1j > 1 is an application condition of (Reduce1)). Hence,there are no in�nite RSolvdfun-derivations. 2Lemma 7.5 Let � be a pre-solved clause. If dfun is decomposition complete,then a (�;RSolvdfun)-derivative is RSolvdfun-irreducible if and only if it is solved.Proof. Let be a (�;RSolvdfun)-derivative. We have to show that if is notsolved, then one of the rules applies. We will check all conditions that arestated in the de�nition on page 13.Condition 1 is satis�ed by every (�;RSolvdfun)-derivative since � is pre-solvedand we do not add or change any sort restriction constraint. If one of theconditions 2 or 3 is not satis�ed, then one of the rules (Join) or (Empty)will apply. Condition 6 is satis�ed by every (�;RSolvdfun)-derivative by propo-sition 7.2. Now let's check the conditions 4 and 5: contains a constraint ��� :2L. (LangDecdfun) or (DecClash) is applica-ble. contains a constraint � :q0 �. Then is of the form :q 0(A) [byproposition 7.2, which implies that (Solv) is applicable. contains a constraint � :q �. By proposition 7.2 we know that in thiscase is of the form :q (A) [. Given the above we can assume that(Reduce) is applicable. 2Lemma 7.6 For every pre-solved clause � there is a �nite and e�ectivelycomputable set of solved clauses � such that for every I[[�]]IVarsX(�) = [2�[[]]IVarsX(�):33

Proof. Follows from propositions 7.1, 7.2 and 7.3 and lemmas 7.4 and 7.5.2Corollary 7.7 Satis�ability of pre-solved clauses is decidable.Finally, we are able to combine both phases.Theorem 7.8 Satis�ability of prime clauses is decidable.Proof. Follows from the corollaries 6.17 and 7.7. 28 ConclusionWe have shown that the pure existential fragment of feature logic extendedby regular path expressions is decidable. The main prerequisite for achievingthis result was to switch from the original, unsorted syntax to a two-sortedsyntax. For each clause in the original syntax we get an equivalent clause inthe new syntax by translating a regular path expression xLy into fx�y; � :2Lg with � new.The result of the translation constitutes a special class of clauses: the classof prime clauses. The main restriction imposed on prime clauses is thatfor each path variable � there is at most one constraint x�y contained in aclause. For prime clauses we have presented an algorithm that transformsa clause into an equivalent set of pre-solved clauses. In a second phasepre-solved clauses are checked for satis�ability by transforming them intoan equivalent set of solved clauses. Since every solved clause is prime, theresult may be reused for later computation.Our syntax is more expressive than the original one. Although restriction toprime clauses was su�cient for our purposes, it may be interesting to exam-ine whether decidability can be preserved in the absence of the restriction.AcknowledgementsI would like to thank Jochen D�orre, Joachim Niehren, Stephen Spackmanand Ralf Treinen for helpful discussions and reading draft versions of thepaper. In particular, I am grateful to Joachim Niehren for his comments onan earlier draft.The research reported in this paper has been supported by the Bundes-ministerium f�ur Forschung und Technologie under contract ITW 9002 0(DISCO). 34

References[AK86] Hassan A��t-Kaci. An algebraic semantics approach to the e�ec-tive resolution of type equations. Theoretical Computer Science,45:293{351, 1986.[AKLN87] Hassan A��t-Kaci, Patrick Lincoln, and Roger Nasr. Le Fun:Logic, equations, and functions. In Proceedings of the 1987Symposium on Logic Programming, pages 17{23. IEEE Com-puter Society, 1987.[AKN86] Hassan A��t-Kaci and Roger Nasr. Login: A logic programminglanguage with built-in inheritance. The Journal of Logic Pro-gramming, 3:185{215, 1986.[AKP91] Hassan A��t-Kaci and Andreas Podelski. Towards a meaning ofLIFE. In Proc. of the PLILP'91, Springer LNCS vol. 528, pages255{274. Springer-Verlag, 1991.[AKPS92a] H. A��t-Kaci, A. Podelski, and G. Smolka. A feature-basedconstraint system for logic programming with entailment. InFifth Generation Computer Systems 1992, pages 1012{1021,Tokyo, Japan, June 1992. Institute for New Generation Com-puter Technology.[AKPS92b] Hassan A��t-Kaci, Andreas Podelski, and Gert Smolka. Afeature-based constraint system for logic programming with en-tailment. In Fifth Generation Computer Systems 1992, pages1012{1021, Tokyo, Japan, June 1992. Institute for New Gener-ation Computer Technology.[BBN+91] Franz Baader, Hans-J�urgen B�urckert, Berhard Nebel, WernerNutt, and Gert Smolka. On the expressivity of feature log-ics with negation, functional uncertainity, and sort equations.Research Report RR-91-01, DFKI, Postfach 2080, 6750 Kaisers-lautern, Germany, 1991.[BS93] Rolf Backofen and Gert Smolka. A complete and recursive fea-ture theory. In Proc. of the 31 th ACL, Columbus, Ohio, 1993.To appear. Full version has appeared as Research Report RR-92-30, DFKI, Stuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Ger-many.[Der87] Nachum Dershowitz. Termination of rewriting. Journal of Sym-bolic Computation, 3:69{116, 1987.35

[Joh88] Mark Johnson. Attribute-Value Logic and the Theory of Gram-mar, volume 16 of CSLI Lecture Notes. CSLI, 1988.[Joh91] M. Johnson. Logic and feature structures. In Proceedings ofIJCAI-91, Sydney, Australia, 1991.[KB82] Ronald M. Kaplan and Joan Bresnan. Lexical-Functional Gram-mar: A formal system for grammatical representation. InJ. Bresnan, editor, The Mental Representation of GrammaticalRelations, pages 173{381. MIT Press, Cambridge (MA), 1982.[Kel91] Bill Keller. Feature logics, in�nitary descriptions and the logi-cal treatment of grammar. Cognitive Science Research Report205, Univerity of Sussex, School of Cognitive and ComputingSciences, 1991.[KM88] R. M. Kaplan and J. T. Maxwell III. An algorithm for function-al uncertainty. In Proceedings of the 12th International Confer-ence on Computational Linguistics, pages 297{302, Budapest,Hungary, 1988.[KR86] Robert T. Kasper and William C. Rounds. A logical seman-tics for feature structures. In Proceedings of the 24th AnnualMeeting of the ACL, Columbia University, pages 257{265, NewYork, N.Y., 1986.[KZ88] Ronald M. Kaplan and Annie Zaenen. Long-distance depen-dencies, constituent structure, and functional uncertainty. InM. Baltin and A. Kroch, editors, Alternative Conceptions ofPhrase Structure. University of Chicago Press, Chicago, 1988.[RK86] William C. Rounds and Robert Kasper. A complete logicalcalculus for record structures representing linguistic informa-tion. In Proc. of the Symposium on Logic in Computer Sciences,pages 38{43, Cambridge (MA), 1986. IEEE Computer Society.[Shi86] Stuart M. Shieber. An Introduction to Uni�cation-Based Ap-proaches to Grammar, volume 4 of CSLI Lecture Notes. Stan-ford University, Stanford (CA), 1986.[Smo88] Gert Smolka. A feature logic with subsorts. LILOG-Report 33,IWBS, IBM Deutschland, Stuttgart, May 1988.[Smo92] Gert Smolka. Feature constraint logics for uni�cation gram-mars. Journal of Logic Programming, 12:51{87, 1992.36

[ST92] Gert Smolka and Ralf Treinen. Records for logic programming.In Krzysztof Apt, editor, Proceedings of the Joint Internation-al Conference and Symposium on Logic Programming, pages240{254, Washington, USA, 1992. The MIT Press. Full versionhas appeared as Research Report RR-92-23, DFKI, Stuhlsatzen-hausweg 3, 6600 Saarbr�ucken 11, Germany.

37

