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1 IntroductionA general characteristic of many proposed Terminological Knowledge Repre-sentation Systems (TKRSs) such as kripton [BPL85], nikl [KBR86], back[QK90], loom [MB87], classic [BBMAR89], KRIS [BH91], and others (see[Ric91, WS92]), is that they are made up of two di�erent components. In-formally speaking, the �rst is a general schema concerning the classes ofindividuals to be represented, their general properties and mutual relation-ships, while the second is a (partial) instantiation of this schema, containingassertions relating either individuals to classes, or individuals to each other.This characteristic, which the mentioned proposals inherit from the seminalTKRS kl-one [BS85], is shared also by several proposals of Database modelssuch as Abrial's [Abr74], candide [BGN89], and taxis [MBW80].Retrieving information in actual Knowledge Bases (KBs) built up usingone of these systems is a deductive process involving both the schema (TBox)and its instantiation (ABox). In fact, the TBox is not just a set of constraintson possible ABoxes, but contains intensional information about classes. Thisinformation is taken into account when answering queries to the KB.During the realization and use of a KB, a TKRS should provide a me-chanical solution for at least the following problems (from now on, we usethe word concepts to refer to classes):1. Concept satis�ability: given a KB and a concept C, does there exist atleast one model of the KB assigning a non-empty extension to C? Thisis important not only to rule out meaningless concepts in the KB designphase, but also in processing the user's queries, to eliminate parts of aquery which cannot contribute to the answer.2. Subsumption: given a KB and two concepts C and D, is C more gen-eral than D in any model of the KB? Subsumption detects implicitdependencies among the concepts in the KB.3. KB-satis�ability: are an ABox and a TBox consistent with each other?That is, does the KB admit a model? A positive answer is useful inthe validation phase, while the negative answer can be used to makeinferences in refutation-style. The latter will be precisely the approachtaken in this paper.4. Instance checking: given a KB, an individual a and a concept C, is aan instance of C in any model of the KB? Note that retrieving all indi-viduals described by a given concept (a query in the Database lexicon)can be formulated as many parallel instance checkings.3



The above questions can be precisely characterized once the TKRS is givena semantics (see next section), which de�nes models of the KB and gives ameaning to expressions in the KB. Once the problems are formalized, onecan start both a theoretical analysis of them, and|maybe independently|a search for reasoning procedures accomplishing the tasks. Completenessof procedures can be judged with respect to the formal statements of theproblems.Up to now, all the proposed systems (except for KRIS) give incompleteprocedures for solving the above problems 1{4. That is, some inferences aremissed, in some cases without a precise semantical characterization of whichones are. If the designer or the user needs a (more) complete reasoning,she/he must either write programs in a suitable programming language (asin the Database proposal of Abrial, and in taxis), or de�ne appropriate in-ference rules completing the inference capabilities of the system (as in back,loom, and classic). From the theoretical point of view, for several systems(e.g. loom) it is not even known if complete procedures can ever exist|i.e.,the decidability of the corresponding problems is not known.Recent research on the computational complexity of subsumption hadan in
uence in many TKRSs on the choice for incomplete procedures. Theresearch started with [BL84], which analyzed complexity of subsumption be-tween pure concept expressions, abstracting from KBs (we call this problemin the sequel as pure subsumption). The motivation for focusing on sucha small problem was that pure subsumption is a fundamental inference inany TKRS. It turned out that pure subsumption is tractable (i.e. worst-casepolynomial-time solvable) for simple languages, and intractable (e.g. NP-hard, coNP-hard or PSPACE-hard) for slight extensions of such languages,as subsequent research de�nitely con�rmed [Neb88, DLNN91a, DLNN91b,SSS91, DHL+92]. Also, beyond computational complexity, pure subsump-tion was proved undecidable in the two TKRS kl-one [SS89] and nikl[Pat89].Note that extending the language results in enhancing its expressiveness,therefore the result of this research could be summarized as: The more aTKRS language is expressive, the higher is the computational complexity ofreasoning in that language|as Levesque �rst noted [Lev84]. This result hasbeen interpreted in two di�erent ways, leading to two di�erent TKRSs designphilosophies:1. `General-purpose languages for TKRSs are intractable, or even unde-cidable, and tractable languages are not expressive enough to be ofpractical interest'. Following this interpretation, in several TKRSs(such as nikl, loom and back) incomplete procedures for pure sub-4



sumption are considered satisfactory (e.g. see [MB92] for loom). Oncecompleteness is abandoned for this basic subproblem, completeness ofoverall reasoning procedures is not an issue anymore; but other issuesarise, such as how to compare incomplete procedures [HKNP92], andhow to judge a procedure \complete enough" [Mac91]. As a practicaltool, inference rules can be used in such systems to achieve the expectedbehavior of the KB w.r.t. the information contained in it.2. `A TKRS is (by de�nition) general-purpose, hence it must providetractable and complete reasoning to a user'. Following this line, otherTKRSs (such as kripton and classic) provide limited tractable lan-guages for expressing concepts, following the \small-can-be-beautiful"approach (see [Pat84]). The gap between what is expressible in theTKRS language and what is needed to be expressed for the applicationis then �lled by the user, by a (sort of) programming with inferencerules. Of course, the usual problems present in program developmentand debugging arise [McG92].What is common to both approaches is that a user must cope with incom-plete reasoning. The di�erence is that in the former approach, the burdenof regaining useful yet missed inferences is mostly left to developers of theTKRS (and the user is supposed to specify what is \complete enough"), whilein the latter this is mainly left to the user. These are perfectly reasonable ap-proaches in a practical context, where incomplete procedures and specializedprograms are often used to deal with intractable problems. In our opinion in-complete procedures are just a provisional answer to the problem|the bestpossible up to now. In order to improve on such an answer, a theoreticalanalysis of the general problems 1{4 is to be done. But most importantly,theoretical analysis is needed for making terminological cycles (see [Neb90a,Chapter 5]) fully available in TKRSs. Such a feature is of undoubtable prac-tical interest [Mac92], yet present TKRSs can only approximate cycles, byusing forward inference rules.Previous theoretical results do not deal with the problems 1{4 in theirfull generality. For example, the problems are studied in [Neb90a, Chapter4], but only incomplete procedures are given, and cycles are not considered.In [DLNS92] the complexity of instance checking has been analyzed, but onlyKBs without a TBox are treated. Instance checking has also been analyzed in[Vil91], but addressing only that part of the problem which can be performedas parsing.Previous theoretical work on cycles was done in [Baa90b, Baa90a, BBH+90,Neb90a, Neb91, Sch91], but considering KBs formed by the TBox alone.Moreover, these approaches do not deal with number restrictions (except5



for [Neb90a, Section 5.3.5]), which are a basic feature already provided byTKRSs, and the techniques used do not seem easily extensible to reason-ing with ABoxes. We compare in detail several of these works with ours inSection 5.In this paper, we propose a TKRS equipped with a highly expressivelanguage, including constructs of practical interest, and prove decidabilityof problems 1{4. In particular, our system uses the language ALCNR,which supports general complements of concepts, number restrictions androle conjunction. Moreover, the system allows one to express inclusion state-ments between general concepts and, as a particular case, terminologicalcycles. We prove decidability by means of a suitable calculus, which is devel-oped extending the quite well established framework of constraint systems(see [DLNN91a, SSS91]), thus exploiting a uniform approach to reasoning inTKRSs. Moreover, our calculus can easily be turned into a decision proce-dure.The paper is organized as follows. In Section 2 we introduce the lan-guage, and we give it a Tarski-style extensional semantics, which is the mostcommonly used. Using this semantics, we establish relationships betweenproblems 1{4 which allow us to concentrate only on KB-satis�ability. InSection 3 we provide a calculus for KB-satis�ability, and show correctnessand termination of the calculus. Hence, we conclude that KB-satis�abilityis decidable in ALCNR, which is the main result of this paper. The calcu-lus we provide to show decidability works in double exponential space. InSection 4 we consider a re�nement of our calculus, working in exponentialspace. In Section 5 we compare our approach with previous results on de-cidable TKRSs, and we establish the equivalence of general (cyclic) inclusionstatements and general concept de�nitions using the descriptive semantics.Finally, we discuss in detail several practical impacts of our results in Sec-tion 6.2 PreliminariesIn this section we �rst present the basic notions regarding concept languages.Then we describe knowledge bases built up using concept languages, andreasoning services that must be provided for extracting information fromsuch knowledge bases. 6



2.1 Concept LanguagesIn concept languages, concepts represent the classes of objects in the domainof interest, while roles represent binary relations between objects. Complexconcepts and roles can be de�ned by means of suitable constructors appliedto primitive concepts and primitive roles. In particular, concepts and rolesin ALCNR can be formed by means of the following syntax (A denotes aprimitive concept, Pi (for i = 1; . . . ; k) denotes a primitive role, C and Ddenote arbitrary concepts and R an arbitrary role):C;D �! A j (primitive concept)> j (top)? j (bottom)(C uD) j (conjunction)(C tD) j (disjunction):C j (complement)8R.C j (universal quanti�cation)9R.C j (existential quanti�cation)(� nR) j (� nR) (number restrictions)R �! P1 u � � � u Pk (role conjunction)When no confusion arises we drop the brackets around conjunctions anddisjunctions. A subconcept of a concept C is any substring of C (including Citself) that is a concept, according to the syntax rules. Di�erent occurrencesof substrings of C are considered as di�erent subconcepts, even if they aresyntactically equal. Notice that the number of subconcepts of C is boundedby the length of the string expressing C.We interpret concepts as subsets of a domain and roles as binary relationsover a domain. More precisely, an interpretation I = (�I; �I) consists of anonempty set �I (the domain of I) and a function �I (the extension functionof I) which maps every concept to a subset of �I and every role to a subsetof �I ��I , such that the following equations are satis�ed (]fg denotes thecardinality of a set):>I = �I?I = ;(C uD)I = CI \DI(C tD)I = CI [DI(:C)I = �I n CI(8R.C)I = fd1 2 �I j 8d2 : (d1; d2) 2 RI ! d2 2 CIg(9R.C)I = fd1 2 �I j 9d2 : (d1; d2) 2 RI ^ d2 2 CIg7



(� nR)I = fd1 2 �I j ]fd2 j (d1; d2) 2 RIg � ng(� nR)I = fd1 2 �I j ]fd2 j (d1; d2) 2 RIg � ng(P1 u � � � u Pk)I = P I1 \ � � � \ P Ik2.2 Knowledge BasesA knowledge base built by means of concept languages is generally formedby two components: The intensional one, called TBox, and the extensionalone, called ABox.We �rst turn our attention to the intensional component of a knowledgebase, i.e. the TBox. As we said before, the intensional level speci�es theproperties of the concepts of interest in a particular application. Syntacti-cally, such properties are expressed in terms of so-called inclusion statements(see [Neb90a, Chapter 3]). An inclusion statement (or simply inclusion) hasthe form C v Dwhere C and D are two arbitrary concepts. Intuitively, the statement spec-i�es that every instance of C is also an instance of D. More precisely, aninterpretation I satis�es the inclusion C v D if CI � DI .A TBox is a �nite set of inclusions. An interpretation I is a model for aTBox T if I satis�es all inclusions in T .Many TKRSs provide the user with mechanisms for stating concept def-initions (e.g. [Neb90a, Section 3.2]) of the form A := D (interpreted as setequality), or A _� D (primitive concept de�nition, interpreted as set inclu-sion), with the restrictions that the left-hand side concept A must be a con-cept name1, that for each concept name at most one de�nition is allowed,and that no so-called terminological cycles are allowed, i.e. no concept namemay occur|neither directly nor indirectly|within its own de�nition.We do not impose any of these restrictions to the form of inclusions,obtaining statements that are syntactically more expressive than conceptde�nitions. In particular, a de�nition of the form A := D can be expressedin our system using the pair of inclusions A v D and D v A, whereas aninclusion of the form C v D, where C and D are arbitrary concepts, cannotbe expressed with concept de�nitions. Moreover, cyclic inclusions are allowedin our statements, realizing terminological cycles.1In many TKRSs, what we call \primitive concepts" are called concept names, preserv-ing the term \primitive concept" for concept names that do not appear on the left handside of a de�nition. However, in our setting this distinction is not necessary, since we donot use concept de�nitions. 8



As shown in [Neb91], there are at least three types of semantics for ter-minological cycles, namely the least �xed point, the greatest �xed point, andthe descriptive semantics. However, �xed point semantics apply only to �xedpoint statements like A := D (where D is a \function" of A, i.e. A appearsin D), which are less general than our inclusion statements. Instead, thedescriptive semantics interprets statements as just restricting the set of pos-sible models, with no de�nitional import. Hence, it can be suitably extendedto our case, and is exactly the one we adopt.We can now turn our attention to the extensional level, i.e. the ABox.The ABox essentially allows one to specify instance-of relations between in-dividuals and concepts, and between pairs of individuals and roles.Let O be an alphabet of symbols, called individuals. Instance-of relation-ships are expressed in terms of membership assertions of the form:C(a); R(a; b)where a and b are individuals, C is a concept, and R is a role. Intuitively, the�rst form states that a is an instance of C, whereas the second form statesthat a is related to b by means of the role R.In order to assign a meaning to membership assertions, the extensionfunction �I of an interpretation I is extended to individuals by mappingthem to elements of �I in such a way that aI 6= bI if a 6= b (Unique NameAssumption). An interpretation I satis�es the assertion C(a) if aI 2 CI,and satis�es R(a; b) if (aI; bI) 2 RI . An ABox is a �nite set of membershipassertions. I is a model for an ABox A if I satis�es all the assertions in A.An ALCNR-knowledge base � is a pair � = hT ;Ai where T is a TBoxand A is an ABox. An interpretation I is a model for � if it is both a modelfor T and a model for A.We can now formally de�ne the problems 1{4 mentioned in the introduc-tion. Given a KB �:1. Concept Satis�ability : C is satis�able w.r.t �, if there exists a modelI of � such that CI 6= ;;2. Subsumption : C is subsumed by D w.r.t. �, if CI � DI for everymodel I of �;3. KB-satis�ability : � itself is satis�able, if it has a model;4. Instance Checking : a is an instance of C, written � j= C(a), if theassertion C(a) is satis�ed in every model of �.9



In the sequel, we describe interpretations by giving only �I , and thevalues of I on primitive concepts and primitive roles. It is straightforward tosee that all values of I on complex concepts and roles are uniquely determinedimposing that I must satisfy the equations given at the end of previoussubsection.Example 2.1 Consider the following knowledge base � = hT ;Ai:T = f9TEACHES.Course v (Studentu 9DEGREE.BS) t Prof;Prof v 9DEGREE.MS;9DEGREE.MS v 9DEGREE.BS;MS u BS v ?gA = fTEACHES(john; cs156); (� 1 DEGREE)(john); Course(cs156)g� is a fragment of an hypothetical knowledge base describing the organizationof a university. The �rst inclusion, for instance, states that the personsteaching a course are either graduate students (students with a BS degree)or professors. It is easy to see that � is satis�able. For example, the followinginterpretation I satis�es all the inclusions in T and all the assertions in A,and therefore it is a model for �:�I = fjohn; cs156; csbg; johnI = john; cs156I = cs156StudentI = fjohng; ProfI = ;; CourseI = fcs156g; BSI = fcsbgMSI = ;; TEACHESI = f(john; cs156)g; DEGREEI = f(john; csb)gNotice also that it is possible to draw several non-trivial conclusions from �.For example, we can infer that � j= Student(john). Intuitively this can beshown as follows: john teaches a course, thus he is either a student with aBS or a professor. But he can't be a professor since professors have at leasttwo degrees (BS and MS) and he has at most one, therefore he is a student.We now show that, given the previous semantics, the problems 1{4 canall be reduced to KB-satis�ability (or to its complement) in linear time. Infact, given a KB � = hT ;Ai, two concepts C and D, an individual a, andan individual b not appearing in �, the following relations hold:C is satis�able w:r:t � i� hT ;A [ fC(b)gi is satis�ableC is subsumed by D w:r:t: � i� hT ;A [ f(C u :D)(b)gi is not satis�able� j= C(a) i� hT ;A [ f(:C)(a)gi is not satis�ableConsequently, we can concentrate just on KB-satis�ability in the nextsection. 10



3 Decidability ResultIn this section we provide a calculus for deciding KB-satis�ability. In partic-ular, in Subsection 3.1 we present the calculus and we state its correctness.Then, in Subsection 3.2, we prove the termination of the calculus. This willbe su�cient to assess the decidability of all problems 1{4, thanks to therelationships between the four problems.3.1 The calculus and its correctnessOur method makes use of the notion of constraint system [DLNN91a, SSS91,DLNS91], and is based on a tableau-like calculus [Fit90] that tries to builda model for the logical formula corresponding to a KB.Consider an alphabet of variable symbols V (disjoint from the other alpha-bets de�ned so far). The elements of V are denoted by the letters x; y; z; w.In the sequel we use the term object as an abstraction for individual andvariable (i.e. an object is an element of O [ V). Objects are denoted by thesymbols s; t and, as in Section 2, individuals are denoted by a; b.A constraint is a syntactic entity of one of the forms:s:C; sP t; 8x.x:C; s 6 := t;where C is a concept and P is a primitive role. Concepts are assumed tobe simple, i.e. the only complements they contain are of the form :A, whereA is a primitive concept. Arbitrary ALCNR-concepts can be rewritten intoequivalent simple concepts in linear time [DLNN91a]. A constraint systemis a �nite nonempty set of constraints.Given an interpretation I, we de�ne an I-assignment � as a function thatmaps every variable of V to an element of �I , and every individual a to aI(i.e. �(a) = aI for all a 2 O).A pair (I; �) satis�es the constraint s:C if �(s) 2 CI, the constraintsP t if (�(s); �(t)) 2 P I , the constraint s 6 := t if �(s) 6= �(t), and �nally, theconstraint 8x.x:C if CI = �I (notice that � does not play any role in thiscase). A constraint system S is satis�able if there is a pair (I; �) that satis�esevery constraint in S.An ALCNR-knowledge base � = hT ;Ai can be translated into a con-straint system S� by replacing every inclusion C v D 2 T with the con-straint 8x.x::C tD, every membership assertion C(a) with the constrainta:C, everyR(a; b) with the constraints aP1b; . . . ; aPkb ifR = P1u. . .uPk, andincluding the constraint a 6 := b for every pair (a; b) of individuals appearingin A. It is easy to see that � is satis�able if and only if S� is satis�able.11



In order to check a constraint system S for satis�ability, our techniqueadds constraints to S until either an evident contradiction is generated oran interpretation satisfying it can be obtained from the resulting system.Constraints are added on the basis of a suitable set of so-called propagationrules.Before providing the rules, we need some additional de�nitions. Let Sbe a constraint system and R = P1 u . . . u Pk (k � 1) be a role. We saythat t is an R-successor of s in S if sP1t; . . . ; sPkt are in S. We say that tis a 1-successor of s in S if for some role R, t is an R-successor of s. Wecall 1-predecessor the inverse relation of 1-successor. If S is clear from thecontext we simply say that t is an R-successor or a 1-successor of s (or 1-predecessor). Moreover, we denote by successor the transitive closure of therelation 1-successor, and we denote by predecessor its inverse.We denote by S[x=s] the constraint system obtained from S by replacingeach occurrence of the variable x by s.We say that s and t are separated in S if the constraint s 6 := t is in S.Given a constraint system S and an object s, we de�ne the function �(�; �)as follows: �(S; s) := fC j s:C 2 Sg. Moreover, we say that two variablesx and y are S-equivalent, written x �s y, if �(S; x) = �(S; y). Intuitively,two S-equivalent variables can represent the same element in the potentialinterpretation built by the rules, unless they are separated.The propagation rules are:1. S !u fs:C1; s:C2g [ Sif 1. s:C1 u C2 is in S,2. s:C1 and s:C2 are not both in S2. S !t fs:Dg [ Sif 1. s:C1 t C2 is in S,2. neither s:C1 nor s:C2 is in S,3. D = C1 or D = C23. S !8 ft:Cg [ Sif 1. s:8R.C is in S,2. t is an R-successor of s,3. t:C is not in S4. S !9 fsP1y; . . . ; sPky; y:Cg [ S12



if 1. s:9R.C is in S,2. R = P1 u . . . u Pk,3. y is a new variable,4. there is no t such that t is an R-successor of s in S andt:C is in S,5. if s is a variable there is no variable w in S such that wis a predecessor of s and s �s w5. S !� fsP1yi; . . . ; sPkyi j i 2 1::ng [ fyi 6 := yj j i; j 2 1::n; i 6= jg [ Sif 1. s: (� nR) is in S,2. R = P1 u . . . u Pk,3. y1; . . . ; yn are new variables,4. there do not exist n pairwise separated R-successors ofs in S,5. if s is a variable there is no variable w such that w is apredecessor of s and s �s w6. S !� S[y=t]if 1. s: (� nR) is in S,2. s has more than n R-successors in S,3. y; t are two R-successors of s which are not separated7. S !8x fs:Cg [ Sif 1. 8x.x:C is in S,2. s appears in S,3. s:C is not in S.We call the rules !t and !� nondeterministic rules, since they canbe applied in di�erent ways to the same constraint system. All the otherrules are called deterministic rules. Moreover, we call the rules !9 and !�generating rules, since they introduce new variables in the constraint system.All other rules are called nongenerating ones.The use of the condition based on the S-equivalence relation in the gen-erating rules (condition 5) is related to the goal of keeping the constraintsystem �nite even in presence of potentially in�nite chains of applications ofgenerating rules. Its role will become clearer in the sequel.One can verify that rules are always applied to a system S either becauseof the presence in S of a given constraint s:C (condition 1), or, in the case ofthe!8x-rule, because of the presence of an object s in S. When no confusionarises, we will say that a rule is applied to the object s (instead of saying thatit is applied to the constraint system S).13



Proposition 3.1 (Invariance) Let S and S 0 be constraint systems. Then:1. If S 0 is obtained from S by application of a deterministic rule, then Sis satis�able if and only if S 0 is satis�able.2. If S 0 is obtained from S by application of a nondeterministic rule, thenS is satis�able if S 0 is satis�able. Furthermore, if a nondeterministicrule applies to S, then it can be applied in such a way that it yields aconstraint system S 0 which is satis�able if and only if S is satis�able.Given a constraint system, more than one rule might be applicable to it.We de�ne the following strategy for the application of rules:1. apply a rule to a variable only if no rule is applicable to individuals;2. apply generating rules only if no nongenerating rule is applicable;3. apply a generating rule to a variable x only if no rule is applicable toa predecessor of x.Notice that a constraint system S can be seen as a directed graph with theobjects in S as nodes and an arc from s to t, if there is a constraint sP t in S.If a constraint system is derived from anALCNR-knowledge base � then thecorresponding graph has some particular properties. Namely, every variablehas a single 1-predecessor and, for each variable, the subgraph composed byitself and its successors is always a tree. We refer to this property in whatfollows as the tree structure property.In the sequel, we assume that rules are always applied according to thisstrategy and that we always start with a constraint system S� coming froman ALCNR-knowledge base �. The following lemma is a direct consequenceof these assumptions.Lemma 3.2 (Stability) Let S be a constraint system and x be a variablein S. Let a generating rule be applicable to x according to the strategy. Let S 0be any constraint system derivable from S by any sequence (possibly empty)of applications of rules. Then1) A variable y is a predecessor of x in S i� it is a predecessor of x in S 02) No rule is applicable to a predecessor y of x in S 03) �(S; x) = �(S 0; x) 14



Proof. (Sketch)1) A case analysis considering all rules shows that no predecessors areadded or discarded.2) By contradiction: Suppose S � S0 !� S1 !� � � � !� Sn � S 0, where� 2 ft;u;9;8;�;�;8xg and a rule is applicable to a predecessor y ofx in S 0. Then there exists a minimal i, i � n, such that this is the casein Si. Note that i 6= 0 because of the strategy. So no rule is applicableto any predecessor of x in S0; . . . ; Si�1. By an exhaustive analysis ofall rules we see that|whichever is the rule applied from Si�1 to Si|no rule is applicable to any predecessor y of x in Si, contradicting theassumption.3) By contradiction: Suppose �(S; x) 6= �(S 0; x). Then a rule must havebeen applied to the direct predecessor of x or to x itself. The formercannot be because of 2). A case analysis shows that the only rules whichcan have been applied to x are generating ones and the !8 and the!� rules. But these rules add new constraints only to the successorsof x and not to x itself and therefore do not change �(�; x)In particular Lemma 3.2 proves that for a variable x which has a successor,�(�; x) is stable, i.e. it will not change because of subsequent applications ofrules.A constraint system is complete if no propagation rule applies to it. Acomplete system derived from a system S is also called a completion of S.A clash is a constraint system having one of the following forms:� fs:?g� fs:A; s::Ag, where A is a primitive concept.� fs: (� nR)g [ fsP1ti; . . . ; sPkti j i 2 1::n+ 1g[ fti 6 := tj j i; j 2 1::n+ 1; i 6= jg,where R = P1 u . . . u Pk.A clash is evidently an unsatis�able constraint system. Therefore, anyconstraint system containing a clash is unsatis�able. The purpose of thecalculus is to generate completions, and look for the presence of clashes inside.If a completion S contains no clash, we prove that it is always possible togenerate a model for � on the basis of S. Before looking at the technicaldetails of the proof, let us consider an example of application of the calculusfor checking satis�ability. 15



Example 3.3 Consider the following knowledge base � = hT ;Ai:T = fItalianv 9FRIEND.ItaliangA = fFRIEND(peter; susan);8FRIEND.:Italian(peter);9FRIEND.Italian(susan)gThe corresponding constraint system S� is:S� = f8x.x::Italiant 9FRIEND.Italian;peterFRIENDsusan;peter:8FRIEND.:Italian;susan:9FRIEND.Italianpeter 6 := susangA sequence of applications of the propagation rules to S� is as follows:S1 = S� [ fsusan::Italiang (!8-rule)S2 = S1 [ fpeter::Italiant 9FRIEND.Italiang (!8x-rule)S3 = S2 [ fsusan::Italiant 9FRIEND.Italiang (!8x-rule)S4 = S3 [ fpeter::Italiang (!t-rule)S5 = S4 [ fsusanFRIENDx; x:Italiang (!9-rule)S6 = S5 [ fx::Italiant 9FRIEND.Italiang (!8x-rule)S7 = S6 [ fx:9FRIEND.Italiang (!t-rule)S8 = S7 [ fxFRIENDy; y: Italiang (!9-rule)S9 = S8 [ fy::Italiant 9FRIEND.Italiang (!8x-rule)S10 = S9 [ fy:9FRIEND.Italiang (!t-rule)One can verify that S10 is a complete clash-free constraint system. In par-ticular, !9-rule is not applicable to y. In fact, since x �S10 y condition 5 isnot satis�ed. From S10 one can build an interpretation I, as follows:�I = fpeter; susan; x; ygpeterI = peter, susanI = susan, �(x) = x, �(y) = y,ItalianI = fx; ygFRIENDI = f(peter; susan); (susan; x); (x; y); (y; y)gIt is easy to see that I is indeed a model for �.In order to prove that it is always possible to obtain an interpretationfrom a complete constraint system we need some additional notions. Let Sbe a constraint system and x, w be variables in S. We call w a witness of xin S if the three following conditions hold:1. x �s w 16



2. w is a predecessor of x in S3. no rule is applicable to any predecessor of x.Notice that the third condition ensures that no new constraint will beimposed on x. We say x is blocked (by w) if x has a witness (w) in S.The following lemma states some properties of witnesses.Lemma 3.4 Let S be a constraint system, x a variable in S. If x has awitness then (i) x has no successor and (ii) x has exactly one witness.Proof. (i) By contradiction: Suppose that x is blocked in S and xPy is inS. During the completion process leading to S a generating rule must havebeen applied to x in a system S 0. It follows from the de�nition of the rules,that in S 0 for every predecessor w of x we had x6�s0w. Now from Lemma 3.2we know, that for the constraint system S derivable from S 0 and for everypredecessor w of x in S we also had x6�sw. Hence there is no witness for xin S, contradicting the hypothesis that x is blocked.(ii) By contradiction: Assume there are two witnesses w1 and w2 of x inS, then w1 �s x �s w2. Then one must be the predecessor of the otherbecause no variable has more than one 1-predecessor, i.e. because of the treestructure property. Let's say w1 is the predecessor of w2. Because no rule isapplicable to w1, w2 is blocked by w1. Then we have a successor (x) for ablocked variable (w2). This contradicts (i).As a consequence of Lemma 3.4, in a constraint system S, if w1 is a wit-ness of x then w1 cannot have a witness itself, since both the property ofbeing a predecessor and of S-equivalence are transitive. The uniqueness ofwitness for a blocked variable is important for de�ning the following partic-ular interpretation out of S.Let S be a constraint system. We de�ne the canonical interpretation ISand the canonical IS-assignment �S as follows:1. �IS := fs j s is an object in Sg2. �S(s) := s3. s 2 AIS i� s:A is in S4. (s; t) 2 P IS i�(a) sP t is in S or(b) s is a blocked variable, w is the witness of s in S and wPt is in S.17



We call (s; t) a P-role-pair of s in IS if (s; t) 2 P IS , we call (s; t) a role-pair of s in IS if (s; t) is a P-role-pair for a role P . We call a role-pair explicitif it comes up from case 4.(a) of the de�nition of the canonical interpretationand we call it implicit if it comes up from case 4.(b).From Lemma 3.4 it is obvious that a role-pair cannot be both explicitand implicit. Moreover, if a variable has an implicit role-pair then all itsrole-pairs are implicit and they all come from exactly one witness, as statedby the following lemma.Lemma 3.5 Let S be a completion and x a variable in S. Let IS be thecanonical interpretation for S. If x has an implicit role-pair (x; y), then1. all role-pairs of x in IS are implicit2. there is exactly one witness w of x in S such that for all roles P in Sand all P -role-pairs (x,y) of x the constraint wPy is in S.Proof. Point 1 follows from (i) of Lemma 3.4 and point 2 follows from (ii)of Lemma 3.4 together with the de�nition of IS .We have now all the machinery needed to prove the main theorem of thissubsection.Theorem 3.6 (Correctness) Let S be a complete constraint system. S issatis�able i� it contains no clash.Proof.\)" Clearly, a system containing a clash is unsatis�able. Hence, S is satis-�able only if it contains no clash.\(" Suppose S contains no clash. Let IS and �S be the canonical interpre-tation and I-assignment for S. We prove that the pair (IS ; �S) satis�es everyconstraint c in S. If c has the form sP t or s 6 := t, then (IS; �S) satis�es themby de�nition of IS and �S . If c has the form s:C, we show by induction onthe structure of C that s 2 CIS .Base case: If C is a primitive concept, then s 2 CIS by de�nition of IS . IfC = >, then obviously s 2 >IS . Finally, if C = ?, then s:? cannot occurin S, since S is clash-free.Induction step: we analyze in turn each possible form of the concept C.:A) if s::A is in S then A is a primitive concept since all concepts aresimple. Then the constraint s:A is not in S since S is clash-free. Thens 62 AIS , that is, s 2 �IS n AIS . Hence s 2 (:A)IS .C1 u C2) if s:C1uC2 2 S then (since S is complete) s:C1 is in S and s:C2 is in S.By induction hypothesis, s 2 CIS1 and s 2 CIS2 . Hence s 2 (C1uC2)IS .18



C1 t C2) Similar to the previous case.8R.D) We have to show that for all t with (s; t) 2 RIS it holds that t 2 DIS .If (s; t) 2 RIS , then according to Lemma 3.5 one of the following twocases must occur:1. t is an R-successor of s in S. Since S is complete, t:D must alsobe in S. Then by induction hypothesis we have t 2 DIS .2. s is blocked by a witness w in S and t is an R-successor of w in S.Then by de�nition of witness, w:8R.D is in S and then becauseof completeness of S, t:D must be in S. By induction hypothesiswe have again t 2 DIS .9R.D) We have to show that there exists a t 2 �IS with (s; t) 2 RIS andt 2 DIS . Since S is complete one of following two cases must occur:1. There is a t that is an R-successor of s in S and t:D is in S. Thenby induction hypothesis and the de�nition of IS we have t 2 DISand (s; t) 2 RIS .2. s is a variable blocked by a witness w in S. Hence w:9R.D is inS. Since w cannot be blocked and S is complete, we have thatthere is a t that is an R-successor of w in S and t:D is in S. Soby induction hypothesis we have t 2 DIS and by the de�nition ofIS we have (s; t) 2 RIS .(� nR)) By contradiction: Assume that s 62 (� nR)IS . Then there exist atleastn+ 1 distinct objects t1; . . . ; tn+1 with (s; ti) 2 RIS ; i 2 1::n+ 1. Thismeans that, since R = P1 u . . .uPk there are pairs (s; ti) 2 P ISj , wherei 2 1::n + 1; j 2 1::k. Then according to Lemma 3.5 one of the twofollowing cases must occur:1. All sPjti for j 2 1::k; i 2 1::n + 1 are in S. Because of com-pleteness the !� -rule is not applicable. This means that allthe ti's are pairwise separated, i.e. that S contains the constraintsti 6 := tj; i; j 2 1::n + 1; i 6= j. This contradicts the fact that S isclash-free.2. There exists a witness w of s in S with all wPiti for j 2 1::k; i 21::n+ 1 are in S. But this leads to the same contradiction.(� nR)) By contradiction. Assume that s 62 (� nR)IS . Then there exist atmostm < n (m possibly 0) distinct objects t1; . . . ; tm with (s; ti) 2 RIS ; i 21::m. We have to consider two cases:19



1. s is not blocked in S. Since there are only m R-successors of sin S, the !� -rule is applicable to s. This contradicts the factthat S is complete.2. s is blocked by a witness w in S. Since there are m R-successorsof w in S, the !� -rule is applicable to w. But this leads to thesame contradiction.If c has the form 8x.x:D then, since S is complete, for each object t in S, t:Dis in S|and, by the previous cases, t 2 DIS . Therefore, the pair (IS ; �S)satis�es 8x.x:D. Finally, since (IS ; �S) satis�es all constraints in S, (IS ; �S)satis�es S.3.2 Termination of the calculusLemma 3.7 Let S be a constraint system, let n be the number of conceptsappearing in S (including subconcepts), and let S 0 be derived from S by meansof the propagation rules. If in S 0 there are more than 2n variables, then thereare at least two variables x,y such that x �s0 y.Proof. Each constraint x:C 2 S 0 may contain only concepts of the constraintsystem S. Since there are n such concepts, given a variable x there cannotbe more than 2n di�erent sets of constraints x:C in S 0.Lemma 3.8 Let S be a constraint system, let n be the number of conceptsin S, and let S 0 be any constraint system derived from S by applying thepropagation rules with the given strategy. Then, every variable in S 0 canhave at most 2n predecessor variables.Proof. Suppose there is a variable x having at least 2n + 1 predecessors.From Lemma 3.7, we know that in the set of variables constituted by allpredecessors of x there are at least two variables y1, y2 such that y1 �s y2,and because of the tree structure property of variables one variable is apredecessor of the other|say, y1 is a predecessor of y2. From the de�nitionsof witness and blocked we know that y2 is blocked and y1 is its witness.Hence, from Lemma 3.4, y2 cannot have any successor, contradicting thehypothesis that x was a successor of y2.Theorem 3.9 (Termination) Let S be a constraint system. Every com-pletion of S is �nite. 20



Proof. This follows from Lemma 3.8 and the tree structure of constraintsystems.We come now to the main result of this section.Theorem 3.10 (Decidability) Given an ALCNR-knowledge base �, check-ing whether � is satis�able is a decidable problem.Proof. This follows from Theorems 3.6 and 3.9 and the fact that � is satis-�able if and only if S� is satis�able.Notice that, since the domain of the canonical interpretation �IS is al-ways �nite, we have also implicitly proved that ALCNR-knowledge baseshave the �nite model property, i.e. any satis�able knowledge base has a �nitemodel. This property has been extensively studied in modal logics [HC84]and dynamic logics [Har84]. In particular a technique, called �ltration, hasbeen developed both to prove the �nite model property and to build a �nitemodel for a satis�able formula. This technique allows one to build a �nitemodel from an in�nite one by grouping the worlds of a structure in equiva-lence classes based on the set of formulae that are satis�ed in each world. Itis interesting to observe that our calculus, based on witnesses, can be con-sidered as a variant of the �ltration technique where the equivalence classesare determined on the basis of our S-equivalence relation. However, becauseof number restrictions, variables that are S-equivalent cannot be grouped,since they might be separated (e.g. they might have been introduced by thesame application of the!�-rule). Nevertheless, they can have the same suc-cessors, as stated in point 4.(b) of the de�nition of canonical interpretation.This would correspond to grouping variables of an in�nite model in such away that separations are preserved.4 A Calculus Working in Exponential SpaceThe calculus proposed in the previous section requires to compute all thecompletions of the constraint system S�. Unfortunately, such completionsmay be of double exponential size w.r.t. the size of �. This can be seenby considering the tree structure of variables in S: each branch may haveexponential size, and there can be an exponential number of branchesFor an exponential space algorithm it is therefore crucial not to keep anentire complete constraint system in the memory but to store only smallportions at a time. Let's make this idea more precise.We give propagation rules, called trace rules, that build up only a portionof complete constraint systems. 21



The trace rules consist of the!u-,!t-,!8-,!8x- and the!�-rule (thenongenerating rules) together with the following two generating rules thatreplace the !9- and the!�-rule and are obtained from them by adding anfurther condition (n. 6):40: S !T9 fsP1y; . . . ; sPky; y:Cg [ Sif 1. s:9R.C is in S,2. R = P1 u . . . u Pk,3. y is a new variable,4. there is no t such that t is an R-successor of s in S andt:C is in S5. if s is a variable, then there is no variable w in S suchthat w is a predecessor of s and s �s w,6. for all constraints tPx in S, t is a predecessor of s ors = t50: S !T� fsP1yi; . . . ; sPkyi j i 2 1::ng [ fyi 6 := yj; j i; j 2 1::n; i 6= jg [ Sif 1. s: (� nR) is in S,2. R = P1 u . . . u Pk,3. y1; . . . ; yn are new variables,4. there do not exist n pairwise separated R-successors ofs in S,5. if s is a variable, then there is no variable w such thatw is a predecessor of s and s �s w,6. for all constraints tPx in S, t is a predecessor of s ors = tLet T be a constraint system obtained from S� by application of the tracerules. We call T a trace of S� if no trace rule applies to T .If the trace rules are applied according to the strategy, they exhibit thefollowing behavior (see Figure 1): Given an object s, if at least one gener-ating rule is applicable, all its 1-successors y1; . . . ; yn are introduced. Then,after nongenerating rules are applied, one variable yi is (nondeterministically)chosen, and all 1-successors of yi are introduced. Unlike normal propagationrules, no successor is introduced for any object di�erent from yi. Then, onevariable is chosen among the 1-successors of yi, only its 1-successors are addedto the constraint system, and so on.The reason why we introduce all the 1-successors of the \chosen" objectis the following. For every chosen object s all 1-successors of s must bepresent simultaneously at some stage of the computation, since only theinterplay of role conjunction and number restrictions forces us to identifycertain successors. This is important because, when identifying variables,22
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Figure 1: A tracethe constraints imposed on them are combined, which may lead to clashesthat otherwise would not have occurred.Trace rules have been de�ned in [DLNN91a] for deciding satis�ability andpure subsumption between ALCNR-concepts. Algorithms that generate allcomplete constraint systems derivable from a constraint system while keepingonly one trace in memory at a time have been given (for sublanguages ofALCNR) in [SSS91, HN90, HNSS90].Proposition 4.1 Let � be an ALCNR-knowledge base, S� its associatedconstraint system, and let n be the size of �. Then:1. The length of a trace rule derivation issuing from S� is bounded by 2n.2. Every complete constraint system extending S� can be obtained as theunion of �nitely many traces.3. Suppose S is a complete constraint system extending S� and T is a�nite set of traces such that S = ST2T T . Then S contains a clash ifand only if some T 2 T contains a clash.Proof. (sketch) For part (1), reminding that the number of concepts(including subconcepts) appearing in � is bounded by n, the claim follows23



from Lemma 3.8. Part (2) is obvious considering the tree structure of aconstraint system. Part (3) is obvious considering the de�nition of clash andtrace.Part (3) of the above proposition says that to detect clashes in a constraintsystem S, it su�ces to inspect the traces S is formed by, one trace at a time.Since an ALCNR-knowledge base � is satis�able if and only if thereexists a complete constraint system derivable from S� without a clash, it fol-lows from Proposition 4.1 that satis�ability of an ALCNR-knowledge basecan be decided nondeterministically with exponential space. A possible al-gorithm using space 2p(n) where p(n) is a polynomial in the size of S� maybe the following: compute one complete constraint system, one trace at atime, guessing (in the application of the nondeterministic rules!�,!t) thechoices leading to traces without a clash.Then from Savitch's theorem (see e.g. [HU79, Theorem 12.11]) it is wellknown that NSPACE (2p(n)) � DSPACE (22�p(n)):Hence we can conclude with the main result of this section.Theorem 4.2 Satis�ability of an ALCNR-knowledge base � can be decidedwith exponential space.A lower bound of the complexity of KB-satis�ability in obtained exploit-ing previous results about the language ALC, which is a sublanguage ofALCNR that does not include number restrictions and role conjunction.We know from McAllester [McA92], and (independently) from an observa-tion of Werner Nutt [Nut92] that KB-satis�ability in ALC-knowledge basesis EXPTIME-hard (and hence it is hard for ALCNR-knowledge bases, too).Hence, we do not expect to �nd any algorithm solving the problem in poly-nomial space, unless PSPACE=EXPTIME. Nevertheless, the algorithm out-lined above may require double exponential time. It is still open whetherthere exists an algorithm working in (simple) exponential time.5 Relation to previous workIn this section, we discuss the relation of our paper to previous work aboutreasoning with inclusions. In particular, we �rst consider previously proposedreasoning techniques that deal with inclusions and terminological cycles, thenwe discuss the relation between inclusions and terminological cycles.24



5.1 Reasoning TechniquesAs mentioned in the introduction, there is work done by Baader et. al.[BBH+90], Baader [Baa90b, Baa90a], Nebel [Neb90b, Neb91] and Schild[Sch91].In [Neb90b] the language T F , containing concept conjunction, univer-sal quanti�cation and number restrictions, and TBoxes containing (possiblycyclic) concept de�nitions, role de�nitions and disjointness axioms (statingthat two primitive concepts are disjoint) are considered. Nebel shows thatsubsumption of T F -concepts w.r.t. TBoxes is decidable. However, the argu-ment he uses is not constructive. He shows that it is su�cient to consider�nite interpretations of a size bounded by the size of the TBox in order todecide subsumption.In [Baa90b] the e�ect of the three types of semantics|descriptive, great-est �xed-point and least-�xed-point semantics|for the language FL0, con-taining concept conjunction and universal quanti�cation, is described withthe help of �nite automata. Baader reduces subsumption of FL0-conceptsw.r.t. TBoxes containing (possibly cyclic) equivalences of the form A := C(which he calls terminological axioms) to decision problems for �nite au-tomata. In particular, he shows that subsumption w.r.t. descriptive seman-tics can be decided in polynomial space using B�uchi automata.Using results from [Baa90b], in [Neb91] a characterization of the abovesubsumption problem w.r.t. descriptive semantics is given with the help of de-terministic automata (whereas B�uchi automata are nondeterministic). Thisalso yields a PSPACE-algorithm for deciding subsumption.In [BBH+90] the attention is restricted to the language ALC. In particu-lar, that paper considers the problem of checking the satis�ability of a singleequation of the form C = >, where C is an ALC-concept. This problem,called the universal satis�ability problem, is shown to be equivalent to check-ing the satis�ability of an ALC-TBox (see Proposition 5.1 in the sequel).In [Baa90a], an extension of ALC, called ALCreg, is introduced, whichsupports a constructor to express the transitive closure of roles. By meansof transitive closure of roles it is possible to replace cyclic de�nitions of theform A v D with equivalent acyclic ones. The problem of checking thesatis�ability of an ALCreg-concept is solved in that paper. It is also shownthat using transitive closure it is possible to reduce satis�ability of an ALC-concept w.r.t. an ALC-TBox T = fC1 v D1; . . . ; Cn v Dng into the conceptsatis�ability problem in ALCreg (w.r.t. the empty TBox). Since the problemof concept satis�ability w.r.t. a TBox is trivially harder than checking thesatis�ability of a TBox, this paper extends the result given in [BBH+90].The technique exploited in [BBH+90] and [Baa90a] is based on the notion25



of concept tree. A concept tree is generated starting from a concept C in orderto check its satis�ability (or universal satis�ability). The way a concept treeis generated from a concept C is similar in 
avor to the way a completeconstraint system is generated from the constraint system fx:Cg. However,the extension of the concept tree method to deal with number restrictionsand individuals in the knowledge base is neither obvious, nor suggested inthe cited papers; on the other hand, the extension of the calculus based onconstraint systems is immediate, provided that additional features have acounterpart in First Order Logic.In [Sch91] some results more general than those in [Baa90a] are obtainedby considering languages more expressive than ALCreg and dealing with theconcept satis�ability problem in such languages.The results in [Sch91] are obtained by establishing a correspondence be-tween concept languages and Propositional Dynamic Logics (PDL), and re-ducing the given problem to a satis�ability problem in PDL. Such an ap-proach allows Schild to �nd several new results exploiting known results inthe PDL framework. However, it cannot be used to deal with every con-cept language. In fact, the correspondence cannot be established when thelanguage includes some concept constructors having no counterpart in PDL(e.g. number restrictions, or individuals in an ABox).In conclusion, all these approaches, i.e. reduction to automata problems,concept trees and reduction to PDL, deal only with TBoxes and they don'tseem to be suitable to deal also with ABoxes. On the other hand, the con-straint system technique, even though it was conceived for TBox-reasoning,can be easily extended to ABox-reasoning, as also shown in [Hol90], [BH91]and [DLNS92].5.2 Inclusions versus Concept De�nitionsNow we compare the expressive power of TBoxes de�ned as a set of inclusions(as done in this paper) and TBoxes de�ned as a set of (possibly cyclic)concept de�nitions of the form A _� D and A := D.Unlike [Baa90a] and [Sch91], we consider reasoning problems dealing withTBox and ABox together. Moreover, we use the descriptive semantics for theconcept de�nitions, as we do for the inclusions. The result we have obtainedis that inclusion statements and concept de�nitions actually have the sameexpressive power. In details, we show that the satis�ability of a knowledgebase � = hA;T i, where T is a set of inclusion statements can be reducedto the satis�ability of a knowledge base �0 = hA0;T 0i such that T 0 is aset of concept de�nitions. The other direction, from concept de�nitions toinclusions, is trivial since de�nitions of the form A := D can be expressed by26



the pair of inclusions A v D and D v A, while a primitive concept de�nitionA _� D can be rewritten as the inclusion A v D (as already mentioned inSection 2).As a notation, given a TBox T = fC1 v D1; . . . ; Cn v Dng, we de�nethe concept CT as CT = (:C1 t D1) u � � � u (:Cn t Dn). As pointed outin [Baa90a] for ALC, an interpretation satis�es a TBox T i� it satis�es theequation CT = >. This result easily extends to ALCNR, as stated in thefollowing proposition.Proposition 5.1 Given a TBox T = fC1 v D1; . . . ; Cn v Dng, an inter-pretation I satis�es T i� it satis�es the equation CT = >.Proof. An interpretation I satis�es an inclusion C v D i� it satis�es theequation :C t D = >; I satis�es the set of equations :C1 t D1 = >,. . . ,:Cn tDn = > i� I satis�es (:C1 tD1) u � � � u (:Cn tDn) = >. The claimfollows.Given a knowledge base � = hA;T i and a concept A not appearing in�, we de�ne the knowledge base �0 = hA0;T 0i as follows:A0 = A [ fA(b) j b is an individual in �gT 0 = fA _� CT u 8P1.A u � � � u 8Pn.Agwhere P1; P2; . . . ; Pn are all the primitive roles appearing in �. Note thatT 0 has a single inclusion, which could be also thought of as one primitiveconcept de�nition.Theorem 5.2 � = hA;T i is satis�able i� �0 = hA0;T 0i is satis�able.Proof. In order to simplify the machinery of the proof, we will use for T 0the following (logically equivalent) form:T 0 = fA v CT ; A v 8P1.A; . . . ; A v 8Pn.Ag\(" Suppose � = hA;T i satis�able. For Theorem 3.6, there exists acomplete constraint system S without clash, which de�nes a canonical in-terpretation IS which is a model of �. De�ne the constraint system S 0 asfollows: S0 = S [ fw:A j w is an object in Sgand call IS0 the canonical interpretation associated to S 0. We prove that IS0is a model of �0.First observe that every assertion in A is satis�ed by IS0 since IS0 isequal to IS except for the interpretation of A, and A does not appear in A.27



Therefore, every assertion in A0 is also satis�ed by IS0 , either because it isan assertion of A, or (if it is an assertion of the form A(b)) by de�nition ofS0. Regarding T 0, note that by de�nition of S 0, we have AIS0 = �IS0 = �IS ;therefore both sides of the inclusions of the formA v 8Pi.A (i = 1; . . . ; n) areinterpreted as �IS0 , hence they are satis�ed by IS0 . Since A does not appearin CT , we have that (CT )IS0 = (CT )IS . Moreover, since IS satis�es T , we alsohave, by Proposition 5.1, that (CT )IS = �IS , therefore (CT )IS0 = (CT )IS =�IS = �IS0 . It follows that also both sides of the de�nition A v CT areinterpreted as �IS0 . In conclusion, IS0 satis�es T 0.\)" Suppose �0 = hA0;T 0i satis�able. Again, because of Theorem 3.6,there exists a complete constraint system S 0 without clash, which de�nes acanonical interpretation IS0 which is a model of �0. We show that IS0 is alsoa model of �.First of all, the assertions in A are satis�ed because A � A0, and IS0satis�es every assertion in A0. To prove that IS0 satis�es T , we �rst provethe following equation: AIS0 = �IS0 (1)Equation 1 is proved by showing that, for every object s 2 �IS0 , s is in AIS0 .In order to do that, observe a general property of constraint systems: everyvariable in S 0 is a successor of an individual. This comes by the de�nitionof the generating rules, which add variables to the constraint system onlyas 1-successors of existing objects, and at the beginning S�0 contains onlyindividuals.Then, the above equation is proved by observing the following three facts:1. for every individual b in �IS0 , b 2 AIS0 ;2. if an object s is in AIS0 , then because IS0 satis�es the inclusions AIS0 �(8P1.A)IS0 ; . . . ; AIS0 � (8Pn.A)IS0 , every 1-successor of s is in AIS0 ;3. the successor relation is closed under the 1-successor relationFrom the Fundamental Theorem on Induction (e.g. cfr. [Wan80, page 41]we conclude that every object s of �IS0 is in AIS0 . This proves that Equation1 holds.From Equation 1, and the fact that IS0 satis�es the inclusion AIS0 �(CT )IS0 , we derive that (CT )IS0 = �IS0 , that is IS0 satis�es the equationCT = >. Hence, from Proposition 5.1, IS0 satis�es T , and this completesthe proof of the theorem.Note that the above reduction strongly relies on the fact that disjunction`t' is within the language (in order to express all inclusions inside the concept28



CT ). Therefore, the proof does not hold for those TKRS not allowing fordisjunction of concepts (such as back).The machinery present in this proof is not new. In fact, realizing thatthe inclusions A v 8P1.A; . . . ; A v 8Pn.A simulate a transitive closure onthe roles P1; . . . ; Pn, one can recognize similarities with the proofs given bySchild [Sch91] and Baader [Baa90a]. The di�erence is that their proofs rely onthe notion of connected model (Baader uses the equivalent notion of rootedmodel). In contrast, the models we obtain are not connected, when theindividuals in the knowledge base are not. What we exploit is the weakerproperty that every variable in the model is a successor of an individual.6 DiscussionIn this paper we proved the decidability of the main inference services of aTKRS based on the concept language ALCNR. We believe that this result isnot only of theoretical importance, but has the following impacts on existingTKRS.First of all, a complete procedure working in exponential space can be eas-ily devised from the calculus provided in Section 4. From this procedure, onecan build more e�cient (but still complete) ones by applying standard op-timization techniques such as those described in [BHN+92]. Such proceduremight work well in practical cases, despite their worst case intractability.Secondly, a complete procedure (possibly optimized) o�ers a benchmarkfor comparing incomplete procedures, not only in terms of performance, butalso in terms of missed inferences. Let us illustrate this point in detail, byproviding a blatant paradox: consider the mostly incomplete constant-timeprocedure, answering always \No" to any check. Obviously this useless pro-cedure outperforms any other one, if missed inferences are not taken into ac-count. This paradox shows that incomplete procedures can be meaningfullycompared only if missed inferences are considered. But to recognize missedinferences over large examples, one needs exactly a complete procedure|evenif not an e�cient one|like ours.Thirdly, new incomplete procedures can be obtained from the calculusby modifying some of the propagation rules. Since the rules build up amodel, modi�cations to them have a semantical counterpart which gives aprecise account of the incomplete procedures obtained. For instance, de�nethe depth of a variable x as the number of variables which are predecessors ofx. Then, an incomplete calculus could be devised, which generates variablesonly to a given depth|say, linear depth in the size of the KB. This calculuswould miss contradictions (and hence inferences, by refutation) occurring in29
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