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Abstract

To integrate CA*-systems with other applications in the world of CIM, one prin-
cipal approach currently under development is based on feature representation. It
enables any CIM component to recognize the higher-level entities — the so-called
features — out of a lower-data exchange format, which might be the internal rep-
resentation of a CAD system as well as some standard data exchange format. In
this paper we present a 'made-to-measure’ editor for representing features in the
higher-level domain specific representation language FEAT-REP — a representation
language based on a (feature-) specific attributed node labeled graph grammar. This
intelligent tool, shortly called GGD, supports the knowledge engineer during the rep-
resentation process by structuring the knowledge base using a conceptual language
and by verifying several characteristics of the features.

Figure 1: Neighborhoodgraphs of surfaces
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1 Motivation

Research in feature-based CA*-systems like Computer Aided Design (CAD), or Com-
puter Aided Process Planning (CAPP), has been motivated by the understanding
that geometric models represent a workpiece in greater detail than it can be utilized
e.g. by a designer or process planner. When CA*-experts look at a workpiece, they
perceive it in terms of their own expertise — the so-called features. Features are
domain- and company-specific description elements based on the geometrical and
technological data of a workpiece that an expert in a domain associates with cer-
tain informations [2]. They are build upon a syntaz (shape description: geometry
and technology, given here by productions of a graph grammar) and a semantics
(description of related informations, e.g. skeletal plans in manufacturing or func-
tional relations in design) and they provide an abstraction mechanism to facilitate
e.g. the creation, manufacturing or analysis of workpieces or more general to bridge
the gap between several systems in the world of Computer Integrated Manufacturing
(CIM). Features that are required e.g. for design may differ considerably from those
required e.g. for manufacturing or assembly, even though they may be based on the
same geometric and technological entities [6].

So representing features is one necessary step to bridge the gap between several
CA*-systems and an important step towards truly Computer Integrated Manufac-
turing. The expected advantages of a close coupling of CA*-systems are: The infor-
mation interchange shall lead to a better knowledge transfer, to shorter turnaround
times and to improved feedback. At the end, higher Qexibility and generally better
results are expected.

In current research one method to represent features is based on graph grammars
(cf. [3, 6, 15]). This area is a well established field of research and provides a pow-
erful set of methods like parsing, and knowledge about problems, their complexity
and how they could be solved efficiently [5]. So in consideration of the feature char-
acteristics ‘'made-to-measure’ tools must be developed to make the recognition and
representation process more efficient.

From this point of view we present in this paper an implementation of the high
level domain-specific feature representation language FEAT-REP [10]. This imple-
mentation is realized by the Graph Grammar Developer (GGD) — an intelligent tool
to support users of FEAT-REP to fill the knowledge base with definitions of features.



2 What are Features ?

To become more familiar with the effect of feature characteristics to our representa-
tion formalism, we would like to introduce brie€dy the most important characteristics
of its descriptions. Detailed explanations and the analogue to graph grammars can
be found in [10]. Some of the most important syntactical characteristics of features
are:
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Figure 2: Overlapping of shoulders or angles

Similar definitions: In an application the knowledge base containing the feature
descriptions will be large. Many of these descriptions will be similar to each
other, descriptions for a single feature as well as those for various features, with
respect to a has-parts (e.g. figure 3) and a is-a hierarchy.

Component overlapping: Features may have relations to features of different
workpieces (e.g. bearing).

Dependence of Dimensions: In dependence of dimensions, the same structures
may be identified as different features (e.g. groove and insertion).

Fragmentizing: Parts of features are not always in direct neighborhood (e.g.

FRAGM-LONGTURN in figure 3).

Ambiguity: In the terminology of features an expert often have different alternative
descriptions for the same structure (e.g. groove or pocket).

Neighborhood: Feature descriptions form graphs of features and/or surfaces (see
figure 1), where edges represents the neighborhood.

Interaction: Areas of features can overlap (see figure 2).

Additional characteristics are contextsensitivity (e.g. LONGTURN-OUT and
GROUND-OF-GROOVE in figure 3) and defectivity.

4



3 Attributed Node Labeled Feature Graph
Grammars

In this section we will brie€Q)y define the terminology of attributed node labeled graph
grammars as used in this paper. Introduction and survey can be found in more detail

e.g. in [5].

In our paper the term (feature-) graph means an attributed finite undirected
node labeled graph, in the sequel shortly called graph. Such a (feature-) graph FG
is defined as a 4-tupel F'G := (V. E X, ), where V is a finite (nonempty) set of
attributed nodes, F C V x V is a set of undirected edges, ¥ is a finite (nonempty)
alphabet of node labels or sorts and ¢ is a labeling function, with ¢ : V. — X.
Workpieces are represented by such graphs. The nodes of a workpiecegraph represent
geometric primitive surfaces, the node label decode the type of the surface (e.g.
cylinder jacket), the attributes carry detailed geometric and technologic information
(e.g. tolerances) and the edges decode the topology of the workpiece, i.e. two nodes
are adjacent if the corresponding surfaces touch each other.
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Figure 3: A workpiece and its feature structure

An attributed node label (feature-) graph grammar (ANLFGG) is a 4-tuple
GG := (T, N, P, goal), where T is a finite (nonempty) set of terminals, N is a finite
(nonempty) set of non-terminals, P is a finite set of productions and goal € N is the
start node. A production (rule) p € P is a 4-tuple (lhs,rhs, e, ¢) where [hs € N is a
single node, the left hand side of p, rhs is a (nonempty) (feature-) graph over TU N,
the right hand side of p, € is an embedding specification and c is a finite set of con-



ditions over [hs and rhs, the so-called dependency relations. The conditions or the
so-called constraints ¢ serve two purposes: First to proof or generate informations
by calculating attributes and second to lay down certain restrictions and attributes
given by a description of a feature.

The most graph grammar formalisms are distinguished by the embedding spec-
ification €. In our case we define ¢ in that way that always an edge in a (feature-)

graph of a derivation step represents the neighborhood of the two incident nodes.
For details of our ANLFGG and the analogue to features see [11] and [10].

4 System Architecture of GGD

In contrast to other more general tools editing graph grammars (cf. [7, 9]) the
GGD is specialized to edit FEAT-REP — the 'made-to-measure’ (feature-) graph
grammar formalism. Figure 4 shows the most important components of GGD and
their interrelations.
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Figure 4: Structure of the GGD

The visualization component is the graphical user interface of the GGD. It offers
the user an easy possibility to enter, view and manipulate definitions of features (see
figure 8). A part of this component is a text-editor (Constraints for ...) to enter
conditions. Using the designated menus all functions of the other components could
be called. The GGD could also be used without taking advantage of the visualization
component.

In figure 4 and 5 the visualization of a typical feature is shown. The user may
add or delete nodes, neighborhoods and overlaps. For any of the nodes the sort
has to be given, a label representing a second more specific name given by the user
is optional but useful; the numbers are used for the parser GraPaKL as a kind of
heuristics to specify an order in which he will try to find instances for the nodes.
So they may change during the lifetime of the specified production. The optional



labels support the descriptions of the conditions in a more natural way to identify
the nodes in mind. Additional functions are provided to close or resize windows, or
to move nodes and edges.

As shown the features are entered as graphs, which is a very abstract way to
represent features. To give a more vivid illustration we currently develop a tool to
show features as they would look as part of a workpiece. A first prototype is shown
in figure 8.
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Figure 5: The rules forming a pocket

Figure 5 shows the feature Pocket and the corresponding features as they are
represented by the GGD. Not shown in this illustration are any conditions belonging
to the rules.

The representation component stores the entire knowledge. Several functions
are provided for access and modification of the (feature-) graph grammar. Integrated
in this component is a concept language based on KL-ONE (Knowledge Language
ONE), called TAXON [8], which is developed for technical domains.

One drawback which concept languages based on KL-ONE have is that all the
terminological knowledge has to be defined on an abstract logical level. In many
applications like ours, one would like to be able to refer to concrete domains and
predicates on these domains when defining concepts. Examples for such concrete
domains are the integers, the real numbers or also non-arithmetic domains, and
predicates could be equality, inequality or more complex predicates. TAXON realize
a scheme for integrating such concrete domains into concept languages rather than
describing a particular extension by some specific concrete domain. The used algo-
rithms such as subsumption, instantiation and consistency are not only sound but
also complete. They generate subtasks which have to be solved by a special purpose
reasoner of the concrete domain [1].

TAXON is used to handle the feature characteristic of many similar definitions
by defining a hierarchy of the productions. The right hand side of any production
is compiled to a convenient form to be stored in TAXON. It was necessary to find a
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Figure 6: TAXON in the GGD
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representation which allows the concept language to compute exactly the subsump-
tion hierarchy we respectively the expert have in mind. This has to be done efficient
as the (feature-) graph grammar may be large. In TAXON a production a subsumes
a production b, if b is an expansion of a, i.e. b can be generated out of a by inserting
nodes into the right hand side of «.

According to the feature characteristic of many similar definitions TAXON hold
to kinds of hierarchy: One for all feature definitions and one for every feature. Note
that the latter is not just a part of the former.

Figure 7 shows a simple hierarchy of three features. Shoulder-2 and Shoulder-4
are expansions of Shoulder-1, Shoulder-3 of Shoulder-1 and Shoulder-2. 1t should be
noted that our hierarchy is more extensive than just a subgraph relation. In future
work the similarity of conditions will also be taken into account.

The GGD offers several consistency checks and verify the defined grammar
for soundness. This will be performed during the development of a (maybe new)
(feature-) graph grammar. The tests are adapted to our purpose, the aim is to
prevent the description of features. This offers the user the possibility to detect and
to eliminate the most errors as early as possible. Some of the performed tests are:

e A grammar can’t be used without a start node. So it has to be checked if it
has been defined and if it appear in any production on the right hand side. In
the case of manufacturing or design features this should be a production for
workpiece.

e Our definition requires that every feature graph is connected. Therefore the
system checks if the productions right hand side is connected.
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Figure 7: A hierarchy of features

o GGD verifies if the defined grammar sounds [4]. This verification contains the
following checks:

— There is no non-terminal (production) with an empty right hand side.

— Every non-terminal can be expanded to a terminal graph. (Is there any
senseless non-terminal 7)

— For every non-terminal or terminal the start node can be expanded to a
graph containing this symbol. (Is there any unreachable symbol 7)

e The GGD performs the task to check for a correct syntax of the conditions.

o A test is performed if every sort used by a production and its conditions is
defined in the associated hierarchy. In addition GGD proof the hierarchy for
cycle-free definitions.

Some checks are performed when a new or changed production and its associated
conditions are saved by the user to the knowledge base. The complete check (see
figure 3: check rulebase) is only performed on a request from the user.

The FEAT-REP compiler has the capability to read and to write files of this
specific graph grammar formalism [10]. These files represent the knowledge base
containing the descriptions of features. They are usable by programs for recognizing
features (parse) and also by programs for feature based design (generate).

The program Graph Parser KaisersLautern (GraPaKL, [11]) is a heuristic driven
chart based parser for our (feature-) graph grammars ANLFGG, adopted to recognize
features of workpieces. The GraPaKL compiler translates the data stored in
the representation component of GGD to files processable by the GraPaKL, say
to its internal representation formalism. GraPaKL realize an abstraction step by
transforming the geometrical and technological description of a workpiece into the
qualitative level of the feature terminology. As result a feature structure is expected
(see e.g. figure 3).



5 Developing a Feature Graph Grammar with

GGD

The most important components of our graph grammar ANLFGG are the set of
productions specifying the feature definitions and a hierarchy of sorts where every
production is associated to one sort. If a production in the GGD is defined without
specifying the associated sort, GGD automatically prompt an editor for defining it.

To develop a feature graph grammar the following sequence of steps is recommend
to be performed:

Define the set of sorts specifying the super- and subsort relations. Querying the
consistency check for the knowledge base maybe defined cycles will be found.
Additionally GGD will point out, that there are no associated productions.

Define the set of productions. A copy-function can be used to specify similar
rules. Also all conditions associated to a production have to be specified.
After defining a production, GGD automatically check the (syntactical) cor-
rectness of this production. Also it is possible to check the classification of this

production by TAXON.

Perform the consistency check for the grammar. After defining the set of
sorts and the set of productions, during 4 stages the integrity of the knowledge
base is checked. Errors or Warnings are maybe given by GGD.

Save the defined grammar in a FEAT-REP file. This file can be read again
by GGD to modify the defined grammar or to generate a file for the parser.
So a knowledge base have not to be defined in one session; interruptions are
possible even though some errors occur during the previous step. GraPaKL
files should be saved only if there are no errors in the knowledge base.

A successful feature graph grammar provided the drawing up (as a kind of a knowl-
edge acquisition step) of a catalog containing the feature descriptions (syntax and
semantics) in an informal manner. From one’s own experience a typical sketch of
the described features make this step more easy and more effective. It is important
that this step is performed together with a knowledge engineer or at least by using
domain specific acquisition tools (e.g. [13, 16]).

After describing the feature graph grammar GraPaKL is recommend to be used
for checking the knowledge base of features on concrete workpieces. This test may
show that there are still some errors in the descriptions of features which appear only
during the runtime of GraPaKL and that some descriptions are incomplete, say that
GraPaKL recognize not the intend features
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6 Conclusion

We introduced an intelligent system to support the representation and the developing
of features in CAD/CAM. "Made-to-measure’ graph grammars are used as a formal
foundation, which is well suited, to represent the characteristics of features. Our
tool GGD to edit our ANLFGG’s should be efficient enough to handle even large
and sophisticated (feature-) knowledge bases. The computation of hierarchies and
the enforcement of several integrity checks make an efficient development of the
grammar possible.

The knowledge representation and the integration of TAXON are already imple-
mented. Until today this system is used by our CAPP-system called PIM (Planning
In Manufacturing, [12]) to generate and maintain the knowledge base for manufac-
turing features. But it is also usable as domain independent editor for the specified
graph grammar.
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Figure 8: User interface of GGD

Future extension will be additional semantics checks, an improved user interface
and a tool to generate graphs representing workpieces. GGD will also be integrated
with the editor V-SKEP-EDIT [18] to offer the possibility of describing features
and the associated skeletal plans in one session. Also a visualization of the defined
features as shapes will be generated in future research. Figure 8 illustrate the today
implemented user interface of GGD. In one window the user can highlight the features
on the workpiece recognized by GraPaKL — the feature recognizer.

Currently GGD was used by a mechanical engineer to specify design features [17].
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The training period takes about one week. No special knowledge about TAXON and
the semantics checks was needed. Just the syntax of the language to specity the
conditions of the features (Constraints for ... Window) which is like COMMON-
Lisp takes a little bit time to learn.
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