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ABSTRACT: This paper presents a new approach to the partitioning of large 
dictionaries by virtual views. The basic idea is that additional knowledge 
sources of text recognition and text analysis are employed for fast dictionary 
look-up in order to prune search space through static or dynamic views. The 
heart of the system is a redundant hashing technique which involves a set of 
hash functions dealing with noisy input efficiently. Currently, the system is 
composed of two main system components: the dictionary generator and the 
dictionary controller. While the dictionary generator initially builds the system 
by using profiles and source dictionaries, the controller allows the flexible inte
gration of different search heuristics. Results prove that our system achieves a 
respectable speed-up of dictionary access time. 

KEYWORDS: contextual post-processing, word validation, large vocabularies, 
dictionary look-up, fast access, indirect hashing, views, filter, 
exact string matching. 
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1 Introduction 

In this paper we describe how lexical knowledge is efficiently used to sup
port document analysis resulting in a hybrid dictionary organization. Our work 
has been influenced by [15] integrating various knowledge sources in text 
recognition where the dictionary (or lexicon) is some special kind of contextual 
knowledge. 

The paper shows the consequent continuation and implementation of the 
dictionary architecture presented in [5] and [6]. Our actual prototype conforms 
with the dictionary requirements for document analysis also stated in [5]. For 
character recognition, the requirements comprise in brief: fast access for the 
verification of correct words, efficient pattern matching for noisy input, toler
ance and robustness towards different kinds of errors, compact storage alloca
tion, flexibility for dictionary maintenance, openness as well as the definition of 
views on the dictionary. 

The dictionary is a central component of our document analysis system im
proving results of character recognition as well as enabling partial document 
understanding. The goal of the document analysis system is to close the gap be
tween traditional printed products and the electronic medium. Exemplary, the 
structure and partial semantics of German business letters are analyzed. The 
system is model-driven and based on the ODA (Office Document Architecture) 
platform, an international standard for the representation and the exchange of 
documents. The system includes several interlocked phases of analysis: layout 
extraction, logical labeling, text recognition, and partial text analysis. Details and 
experimental results of the analysis system are given in [1]. 

layout 
extraction 

logical 
labeling 

text 
recog
nition 

text 
analysis 

lexical 
knowledge 

base 

Fig. 1: Phases of document analysis and role of dictionary 
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In this particular article, we concentrate on the central dictionary module. 
Fig. 1 illuminates the role of the dictionary in our analysis system. The dictio
nary is based on a hybrid architecture involving two different data structures 
(hash tables, tries) to deal with different types of noisy input most efficiently 
[2]. 

For accessing the dictionary, additional knowledge sources of text recogni
tion and text analysis can be used to prune search space and to speed up search 
in case of noisy input. For example, the context of a word according to the logi
cal structure of a document often comprises a relative small set of words such 
as relevant words of addresses (names, streets, cities, zip codes) or company
specific data (employees, products, tasks, etc.). Thus, the inherent complexity of 
a complete search over the entire and large dictionary can be avoided. 

Consequently, our dictionary allows the definition of what we call views. 
Views can be seen as contextual restrictions on a large dictionary 2, i.e. the dic
tionary is virtually (not physically!) partitioned into several parts. In other 
words, a completely new access structure is attached to the dictionary speeding 
up word verification. 

If post-processing of recognized words has additional information about 
possible views, e.g. structural information of a document, word verification is 
facilitated drastically. Because our view concept is rather general, arbitrary 
types of views can be defined: logical views (determined by document struc
ture such as address), letter-based views (significant characters, n-grams, word 
length, etc.), syntactic views (e.g. noun, verb, adjective, etc.) as well as dynamic 
views (determined by document contents such as employee names, products, 
etc.). 

The paper is organized as follows: Chapter 2 sketches the overall process of 
dictionary look-up. While Chapter 3 gives a reason for organizing our dictio
nary by hash tables, Chapter 4 presents the central idea of the paper, i.e. the 
partitioning of large dictionaries using static and dynamic views. Then, the next 
chapter explains the two major components of the system, the dictionary genera
tor and the dictionary controller as well as a special filter concept. After having 
presented the related work in Chapter 6, we list some results showing perfor
mance improvement by using our view concept. Finally, Chapter 8 concludes 
the paper and indicates the current research activities. 

2 Overall process 

Applying contextual knowledge for the validation of results of optical char
acter recognition (OCR) [14] can generally be classified into three main ap
proaches [3]: dictionary look-up methods, probabilistic methods (Markov 
models, Viterbi algorithm) and combined methods. While Markov methods use 
a priori, i.e. statistical, knowledge about transition probabilities of characters 
(usually by bigrams or trigrams), dictionary look-up techniques check the cur
rent input string against a legal set of words being collected in a dictionary. 

2 We call a dictionary large if it is a real-life collection of more than 100,000 entries. 
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We use a dictionary-based approach for two reasons: First, while statistical 
methods are very fast and efficient, they are extremely sensitive in case of noisy 
input. Moreover, our tests with bigrams and trigrams of the German language 
for the rejection of illegal words yielded poor results. Second, storing dictionary 
entries associated with appropriate lexical information enables a subsequent 
partial analysis of the document's contents (keyword analysis and syntactic 
parsing [1]). 

In Fig. 2 the overall process of dictionary look-up is depicted. 

uEor 

Different Alternatives 

computer computer 
cemputer cemputcr 
compufer compufcr 
cempu£er cempu£cr 

~ 
( Dictionary Lookup ) 

~ 
computer 

Fig 2: Contextual post-processing of recognition results 

While designing our dictionary, we had to consider several system restric
tions: 

• Because of the large vocabulary, the dictionary should not be kept in main 
memory-it rather should be primarily organized on secondary storage (files). 

• Keeping the vocabulary in a modular way facilitates maintenance of the 
dictionary allowing the modification of entries as well as the adaptation to 
other domains. 

• Avoid redundant information: Redundancy, i.e. storing entries several 
times, would blow up our files and renders all maintenance tasks more diffi
cult. 

These additional requirements were decisive for organizing the dictionary 
using hash tables which is motivated in the next section. 
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3 Dictionary organization and access 

A review of literature shows that a multitude of dictionary organizations 
and corresponding access techniques have been developed. Knuth [8] and 
Elliman [3] give a survey of adequate data structures for the representation of 
dictionaries. Harris [4] also compares different dictionary structures (binary 
search, indexing, tries, hashing) and furthermore indicates a possible syntax of 
lexical entries. However, sophisticated techniques which are adapted to the 
special needs of character recognition dealing with incomplete input are hardly 
found in literature. 

Our studies mainly apply two competitive dictionary data structures-hash 
tables [8] and letter trees (tries) [2, 5, 18]-combining inherent advantages of 
both. The dictionary kernel, however, is based on hashing. In the next, we will 
give some reasons for this important design issue. For a definition of hash ta
bles and hash functions see [8]. 

Hashing is space efficient. Handling collisions by chaining [8] requires one 
additional pointer per bucket to the next entry of the same hash code. This is 
the only overhead. In contrast, tries allow on the one hand a very compact rep
resentation of words by storing common prefixes exactly once, while on the 
other hand trie nodes contain much more housekeeping information such as 
next/previous char, end-of-word flag, max/min length, etc. [2] 

Hashing is fast. When using a large, i.e. realistic, vocabulary, we want to 
keep our lexical information on a mass-storage medium (e.g. hard-disc) in or
der to save main memory. This means that the number of accesses to the dic
tionary will be minimized for the reason of speed. Our tests have shown, that 
on complete word keys, the average number of collisions has only a length less 
than two if an adequate hash table size has been chosen. Sorting the entries of 
the dictionary in decreasing access frequency may lead to even better results, 
where a trie data structure always takes n storage accesses to find a word of 
length n. 

Noisy input. When dealing with incomplete words, we have to rely on par
tial hash information. This requires additional hash tables and hash functions 
which compute their hash codes, for instance, by the beginning or the end of 
the spelling or even by other features such as length or shape of a word (e.g. 
word envelopes [14]) . Here the problem is to develop appropriate hash func
tions. Once a hash code has been calculated, the dictionary system can easily 
traverse its collision chains and pass all matching entries to the calling applica
tion. Again, a trie needs a lot more storage accesses to build a list of matching 
words (e.g. recursively traversing a subtree by a depth-first search). 

Hash tables are static. When creating hash tables, respective hash function 
values are computed in advance. That implies we are forced to develop clever 
hash functions dealing with noisy input, e.g. using a half-word or significant 
characters of a word as hash information. Thus, the drawback of a hashing
based architecture is the need for an initial generation process. But at the same 
time such a dictionary initialization reveals some further interesting advan
tages: 
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• The source dictionaries are kept in an easy editable (ASCII-) format 
providing good maintenance and exchange, 

• they are separated in different files (modularity) and 
• the dictionary can easily be adjusted to another domain or another 

purpose. 
After all, we consider hashing as the best technique to meet our goal 

handling the above system restrictions. 

4 View concept 

Dictionary access can be seen as post-processing the results of character 
recognition where the input is often noisy. Typically, character recognition is 
capable to provide the dictionary look-up routine with further information 
about the current word hypothesis, e.g. the word was found in the address part 
of the letter. 

To make use of this kind of knowledge we decided to define views. Such 
views separate our dictionary into several parts each carrying words of differ
ent attributes or features. For instance, we can define a view on the length of a 
word, a view on all logical objects of a document (e.g. sender, recipient, date, 
body of a letter) as well as the view on the part-of-speech (e.g. noun, verb, ad
jective, etc.). 

There are several ways to solve the problem of organizing views: 
1) First, we could keep multiple copies of our dictionaries, each being cre

ated by another view-but this method causes a lot of redundant information 
when words belong to many views. 

2) Next, we could physically split our dictionary into several views. This 
will result in a large number of small subdictionaries each of them holding 
words which are unique on all of our views, e.g. a subdictionary containing all 
nouns of word length 5 within an address. However, when looking for a word 
without any view identification, we have to consult all the different subdic
tionaries successively to find possible word candidates or to reject a word hy
pothesis. A second problem arises from the fact that the intersection of views is 
in general not empty (e.g. views on logical objects of a document). 

3) As a solution, we decided to virtually divide our dictionary into several 
parts, called virtual views. All corresponding information of a word has to be 
kept once thus proving minimal redundancy and easy maintenance. Words be
longing to one single view are linked together by a separate collision chain. 
This structure requires n*m additional pointers per entry where n is the num
ber of different hash functions for redundant hash addressing and m is the 
number of the views defined. 

As shown in Fig. 3, we use three distinct hash functions (HI, H2, H3) for in
direct hashing. Consequently, three respective hash tables are provided. While 
hash function HI primarily deals with complete input, H2 applies the left half 
of the input word for dictionary access, or H3 applies the right half, respec
tively [5]. For H2 and H3, however, the hash tables refer to separate view entry 
tables each giving the first entries of a view. 
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t 
Hash Key 

1\ 

H1 / Hash Tables 

• • I 

H2 

view entry points (H3) 

DISK 

Main Dictionary 

normal collision chain (H2) 

compressable 

1 st entry - attribute verb (H2) 

compare 

I 
1 st entry - attribute noun (H3) 

transputer 

compression 

Fig. 3: Architecture of hashing-based dictionary 

For example: The regular expression "c[oa]mpu[tf]?r" is passed to the dictio
nary and some other specialist, e.g. a parser, tells us that we are looking for a 
noun 3. Neither the beginning nor the end of the word (hash information of 4 
letters) are accurately recognized, but the beginning includes less alternatives 
("comp", "camp") than the end following a hypothesize and test strategy. Now, 
we have to look within the collision chains of "comp" and "camp" (H2) to 
identify a noun matching "c[oa]mpu[tf]?r". Look-up in the view entry table of 
H2 identifies the first noun in the collision chain of the view "noun". Now, 
traversing all the corresponding collision pointers and matching the keys 
against the input pattern yields the hypothesis "computer". 

In principle, we distinguish between two types of virtual views, static views 
and dynamic ones. Both are now explained in more detail. 

4.1 Static views 

So far, we have motivated the intention and mechanisms of static views. 
"Static" means that the definition of one of these views causes the mandatory 
allocation of a fixed (or static) amount of memory for every entry of the dictio
nary, regardless whether a word belongs to a view or not (Fig. 4). This makes 
static views expensive in terms of disk usage. 

3 The example also holds for other contextual restrictions such as view "address" or length of 
word. 
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For a dictionary of about 100,000 words, two hash functions using static 
views and a pointer size of four byte almost consume one megabyte of sec
ondary storage per static view (100,000*2*4 byte). However, this view can be 
reused for several chains when the words of the different chains are disjoint, i.e. 
have no common elements. Typical examples of static views are the different 
attributes of part-of-speech of a word or a view on different word lengths. 

The major advantage of static views is the reduction of disk accesses since 
only words within a specified view will be found when traversing the chain. 
This leads to a reduction of search space and accelerates search time dramati
cally. Some results mirroring these performance improvements are reported in 
Section 7 of this paper. 

Key Encoded Normal Collision Pointers of 
Syntax Collision Pointers Static Views 

October Olalla . . . ~ 4 • 4 • 4 
Bit Vector and • •• Dynamic View Pointers 

:::J :::J :::J 
:::J :::J :::J :::J 
CD CD CD CD 

CD CD CD X X X ~ ~ ~ ~ - - -
I I I I I I I 

N c:.v N c:.v ...... N c:.v , , , , 
< < < < 
co' co' co' co' 
~ ~ ~ ~ 
...... ...... N N I. , I. , 1 , , 

Fig. 4: Structure of lexicon entry w.r.t. static view 

4.2 Dynamic views 

In addition, we developed another class of views, called dynamic or concep
tual views. These views join arbitrary sets of words together, regardless of their 
cardinality. Dynamic views need one reference pointer exclusively for those 
words that belong to a view. A bit vector which has to be kept for every entry 
signals the membership of a word to any of the defined dynamic views (Fig. 5). 
In principle, dynamic views are independent of hash functions, i.e. spelling of 
word keys 4. 

The purpose of dynamic views is either to get a list of all words in a view 
solely by specifying the view's name (e.g. give me all employee names) or to 
get a list of views in which a certain word is defined. They were primarily de
signed to meet the special needs of text analysis as well as to realize views on 
logical objects of a document. A hierarchical definition of dynamic views is also 
possible. 

4 We use an A VL-tree accessing the first entry of such a view. 
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Bit Vector of Collision Pointers of 
Key Information Dynamic Views Dynamic Views 

October Collision Pointers, Syntax, etc. 0001 0 01101000 0 t t t 

::J ::J ::J ::J 
co co co co 

signaling membership of temporal words - ~ ~ ~ ~ - ::E ::E ::J co 0 0 0 
signaling membership of date 3 ., a c 

"0 a. ::J 

signaling membership of body 
0 0 0 ., - -~ a. g 

signaling membership of nouns :i! ~ a. a., CD , r '<, , 
Fig. 5: Structure of lexicon entry w.r.t. dynamic view 

4.3 Definition of views 

Views can be defined in three different ways: 
o The user can specify a list of words that should be collected in a certain 

view (dynamic view). 
• The user can specify the entries of a view by some attributes given in the 

lexical description of a word, for instance, all nouns or all employee names 
(static view, dynamic view). 

• The user can define views as composition of already defined views which 
we call hierarchical views. For instance, the address of a letter may be composed 
of names, streets, zip codes, city names, etc. (dynamic view) . 

While all three methods can be arbitrarily combined to define a dynamic 
view, only the second one can be applied to static views. In other words, a hier
archy of static views is not possible. 

5 System implementation 

5.1 Dictionary generator 

As mentioned above, we can take a set of source dictionaries as input for the 
generation process. These sources are either word lists or can include simple 
lexical information about a word such as part-of-speech. Actually, the source 
dictionaries involve German nouns, verbs and adjectives, typical words of ad
dresses (employees, titles, German cities, countries, etc.), German abbrevia
tions, domain-specific words for business letters and some other word lists for 
logical objects (e.g. date). 

Furthermore, we have some profiles (see Fig. 6), which tell the generator 
how to build the different static and dynamic views, how to encode/ decode the 
syntactic information and how to define text phrases being an additional fea
ture. 

After the successful termination, the generator has created some new dictio
nary files which keep all relevant information of the hash tables and first entry 
addresses of views in different hash chains as well as the file containing the 
main, virtually partitioned dictionary. Another file, called system info file, keeps 
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the path names of the profiles, the path names of the generated files and the 
lengths of the hash tables. When using the dictionary, only the latter file has to 
be specified. 

( Profiles 

Source Dictionaries 
Main Dictionary 

(virtually partitioned) 

Fig. 6: Generation phase of dictionary 

The profiles are needed during run time and must not be edited unless a 
new generation process is restarted. While Fig. 6 summarizes dictionary gener
ation, Fig. 7 reveals the run time system, i.e. the dictionary controller. 

5.2 Dictionary controller 

After termination of the generation process, the dictionary system can be 
used as follows: 

1) Finding a word by its spelling and static view identification: 
• Search argument is a string similar to a regular expression of UNIX (csh, 

ed) representing the actual recognized word hypothesis. The dictionary con
troller now examines this string for wildcards (,?', '*') as well as alternatives at 
some word positions indicated by '[' and ']' 

(a) If the word was entirely recognized, a search with complete hash infor
mation is initiated (HI in Fig. 2) . In this case the corresponding hash code is 
calculated by interpreting letters as digits of base 30 (cardinality of German al
phabet including German umlauts and s-zet). Since we do not expect long col
lision chains, the view information is not considered in this case. 

(b) Searching for an incomplete word is explained by an example: Assume 
the input argument is "g[eco]rm[ao]ny" ADDRESS. The input word contains 
alternatives at position 2 and 5. The total length of the word is well defined 
since no '*' -wildcard was found. The characteristic string for the search has 
length 3 (= minimum of (word length 7 div 2) and maximum half-word con
stant 4). Evaluation of the word beginning "g[eco]r" results in three distinct 
hash codes: H("ger" ), H("gcr") and H("gor") . Evaluation of the word end 
"[ao]ny" results in only two hash codes: H("any") and H("ony"). Because of the 
smaller number of alternatives, the dictionary controller decides to use the end 
of the input word for subsequent search. 

• The additional parameter ADDRESS tells the system that it should take 
the collision chain of the view named ADDRESS containing all words that 
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might occur within the address part of the letter that is provided by logical la
beling [1]. 

• Now, the dictionary system is initialized for the search: the search mode
either complete word, beginning or end of word-and a static view have been 
specified. Next, we have to traverse the respective collision chains for all rele
vant hash codes. Every word matching the input "g[eco]rm[ao]ny" is then 
given back to the caller. 

System Profile 

Phrases 

Syntax Profile 

Static Views 

Calling Application (character recognition, textanalysis) 
Lisp - C - Interface 

C-library of dictionary system 

Search Strategy 
. Hash Functions 

Filter System 
Information Decoding 

etc . 

.... ~_-.... ~ Information Flow .. - - - -.. Control Flow 

Fig. 7: Run-time system of dictionary 

2) Finding words by specifying a dynamic view: 

Hash Tables 

View Entry Points 

Main Dictionary 

(virtually partitioned) 

• The calling application invokes the dictionary controller for search by 
naming a dynamic view. 

• Consultation of the internal (A VL-)search tree gives the entry points as 
well as the ordinal of this dynamic view in the corresponding bit vector. 

3) Traversing the dictionary and handing back information: 
Main parts of the text recognition as well as text analysis components were 

implemented in Common Lisp. For reasons of speed and limited resources the 
entire dictionary has been implemented using C. This requires an interface 
which is able to call C functions from Lisp. The respective functions of the 
Common Lisp interface allocate memory for the arguments passed and even 
strings are transformed which makes the interface to some kind of bottleneck 
with respect to information flow. 

Due to this fact only matching words are passed through the interface. The 
user traverses the dictionary in a step by step manner, always getting the next 
matching word or the next view member, respectively. 

If the calling application addresses words that are members of a specified 
dynamic view, this can be done by using filters before passing the interface. 
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5.3 Filter 

A special filter concept has been designed to get disjunctions or conjunctions 
of views without evaluating large word lists. The system provides several fil
ters that can be set for one or more dynamic views. Setting one filter several 
times causes a conjunction of the corresponding views, whereas setting differ
ent filters results in a disjunction. Filters might be negated: in this case, only 
words that are not within the specified view will pass through it. 

If any filter is set, at least one of them has to be passed before a word is given 
back (to the Lisp process via a C-Lisp foreign function interface). According to 
dynamic views, the essential mask information for the interpretation of filters 
are bit vectors that are provided for every lexicon entry. 

6 Related work 

While general hash table methods have extensively been developed over the 
last two decades and were well explored, there is a pressing need for sophisti
cated hashing which is tailored and specialized to improve character recogni
tion. Here, only a few papers can be found ([9], [12], [16]). 

While [12] also proposes a twofold hash code access via the left and right 
half of a word, our approach is much more flexible allowing the integration of 
different hash functions as well as the definition of views. [9] presents a scheme 
of redundant hashing based on trigrams as significant word features. This pro
cedure was primarily developed for dealing with distorted phonemic strings in 
speech recognition. 

In [6], [10] and [11] a concept is shown partitioning the dictionary physically 
either by frequency or by word contents (technical words, multi-lingual, etc.). 
Other dictionary concepts are based on conventional, i.e. relational, database 
technologies [7] . A hierarchical structuring of the dictionary for address recog
nition can be found in [13]. As far as we are concerned, there does not exist a 
comparable dictionary approach based on virtual views yet. 

7 Results 

All system components of the dictionary are fully implemented in C on Sun 
SP ARCstation with exception of the external Common Lisp interface. The 
source dictionaries are ASCII-files .either containing word lists or simple lexical 
information. 

To get an idea of the performance of our dictionary, we performed some 
comparative tests showing the run time for specific regular input patterns. The 
tests give an impression of the dictionary access time in comparison with stan
dard UNIX utilities. The competitive processes were "agrep" (a very fast UNIX 
tool for approximate string matching [19]), "look" (a UNIX tool for finding 
words or lines in an alphabetically sorted list) and our dictionary system. The 
word list we used has either a size of 160,086 or 103,023 German words. The re
sults are illustrated in the following tables. 
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access time [msec] 

word pattern agrep dictionary matches 

?nlo[ee]k*Cl 720,0 87,5 1 
b? [gClj][ ceo list *I't 770,0 245,8 1 
be*orsch u n [gq] 830,0 1105,8 1 
d'?? [II] P? I reI. . n 1) a .. ac Ie 670,0 12,5 1 
e[ij] [rnlll]zel [h k b] ?bine 670,0 3,3 1 
??'?ehleicht 660,0 238,3 1 
geb[ ax jE'u [d a] [ec]sicheru?? 6050,0 6,6 1 
gemi*t 690,0 21,6 5 
[bh k ]errl1 *rten 740,0 625,8 1 
*otten[hk]rieg? 1.170,0 258,3 1 
??edit.i* 750,0 1.431,6 8 
*turftl* 710,0 32.920,0 4 
ober*ung[ xs ]ger[ji] [ec]ht 1.5.50,0 105,8 1 

Table 1 

access time [msec] 

word pattern look dictionary 

anlockend 4,0 0,167 
begeistert 4,0 0,250 
berufsforschung 3.0 0,333 
d reiei n hal bfache 4,0 1,667 
einzelkabine 6,0 1,333 
erschleieht 4,0 1,583 
gebaelldesicherung 4,0 1,667 
gemildert .5,0 1,333 
herruehrten 2,0 0,167 
h ugenott.enkriege 1,0 0.333 
kreditiert 2,0 0,333 
kulturfilm 3,0 0,083 
olwrvcrwal t u ngsgerich t 05,0 1,583 

Table 2 

In Table I, dictionary access versus the "agrep" command reveals a maximal 
improvement by a factor of 200 (fifth word pattern). However, in some rare 
cases when the input word begins and ends with a wildcard of arbitrary length, 
our dictionary fails (second last word pattern). In comparison to the "look" 5 

command (Table 2), the maximal improvement of access time is about a factor 
of 16 (second last word pattern). 

5 Note that "look" does not allow regular expressions as input. 
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access time [msec] 

word pattern without ma.tehes II with matches 
view view 

[rn] [eeo] [ee] [h k] [10'0] na n 1* 60,0 1 37,5 1 
[bh ][eco ]si[ft]* [oc]sigk[eeo]i [ft] 10,8 1 5,8 1 
c[oa]m pur tf]?r 7.5 1 5,0 1 
d [eco]s[ oc]?[oe] ris?[ ft.]ion 226,7 1 207,5 1 
dipl[oc]m?[ft] [eeo]nse[k Il]r[eeo]i[bh][ ft] *[k h] 05,8 1 4,2 1 
f[ eco]ri [eco] n? lls[ft]? II * [k h] 10,0 1 9,2 1 
g[ eco]sc[k h ]ickl i* k [c('Q]i [ft] 36,7 2 16,7 1 
gul?sc[kh ]k?n[oc]n[eco] 9,2 1 9,2 1 
h ?ndf[eco]g[eco]r S,s,S 1 90,8 1 
hin [ft] [eco] rl ?ss[eco] nse[k h] ?f[ ft] IS,S 1 8,3 1 
i[oc]n [eeo]nw? nd [('co ]rll ng 399,2 1 260,0 1 
ka.iseH 12,.5 28 6,7 18 
kr?nk [eco] ng[eco]se[k h ]ic[kh] [ft] [eeo] 70,0 1 605,0 1 
I[eco ]l1c[k h] [ft] r?k[ eco] [ft] [eco] 16.7 1 6,7 1 
me[eo] r[ec]sl [eco]lI e[k h] [ft] [eco] n 8,3 1 7,5 1 
m?nito* 83,:3 2 47,5 2 
n ?[bh][eco] ls[ft]r?ng 492,.5 1 463,3 1 
s[f'co]1 [bh ]s[ft.]kos[ft.] [eco] ns[eco] n ku ng 75,8 1 64,2 1 
s[ft)? d [ft ]s[ ft.] r[ cco ]ic[k h] [eco] r .59.5,0 1 410,8 1 
u r[ft.]i[eco ]re[k h] [<,co] n 8,3 1 5,8 1 
V [f'('Q] r?rsc[k h] II ng 181,7 1 1505,8 1 
z[eeo] n[ft]i 111 [('10] [ft] keo ]rm ?ss 12,.5 1 7,5 1 

Table 3 

dictionary generation [sec] 

dict ionary without any one static 
size VIews VIew 

1.000 4,2 7,6 

2.000 10,0 15 ,6 
3.000 27,9 45,5 
4.000 37,8 64,4 
5.000 51,4 79,6 
7.500 92,8 139,1 

10.000 145,0 211,1 
15.000 285,4 401,5 
20.000 498,2 696,9 

107.427 - 17.222,3 

Table 4 

Another test reports the speed-up when searching for a pattern applying the 
concept of virtual views (Table 3). Here, we compare a normal search without 
using views and a search where the system knew about the word category. We 



16 

took a dictionary of 103,023 German words including a static view over the 
part-of-speech. The results are given in Table 3 indicating a slight improvement 
of search time as well as the reduction of word alternatives (word pattern 
"kaiser ... " is a noun). 

Generation time for different dictionaries is given in Table 4 where the com
plexity is O(n2) (n = number of words in dictionary). The diagrams in the 
Appendix present the mean dictionary access time per word over a sample of 
about 100 business letters using our own OCR (dictionary size is 10,000). In 
addition, the last diagram compares dictionary access/word in average for two 
dictionary sizes (10,000 and 100,000). 

8 Conclusion and future work 

In this paper, we presented a new approach of partitioning large dictionaries 
by virtual views. The main idea is that additional knowledge sources of text 
recognition and text analysis can be applied for fast dictionary access by prun
ing the search space. Our results have shown that this approach speeds up dic
tionary look-up for complete as well as for noisy input drastically. Moreover, 
we have implemented two main system components: the dictionary generator 
and the dictionary controller. The controller allows a flexible integration of dif
ferent search heuristics including approximate string matching techniques. 

While testing our dictionary, we decided to integrate some additional fea
tures to the current implementation: 

• Currently, the time complexity of dictionary generation is O(n2) because 
all collision chains of the main dictionary are traversed for finding the right end 
to put in a new dictionary entry (n = number of words in dictionary) . This can 
be improved to O(n) by the recording of last entries of the collision chains. 
Incidentally, the generation process of a virtually partitioned dictionary includ
ing one static view "part-of-speech" with four attributes, sixteen virtual views · 
and a size of 103,023 word entries takes about five hours on a Sun 
SP ARCstation. 

• Dynamic extension of the existing dictionary by new entries without start
ing the time consuming generation process once again. 

• Definition of links between dictionary entries. We would like to provide 
some additional storage to create links from one entry to another, for example, 
combining synonyms, phrases or variants. 

• Our matching component is only capable of exact string matching, i.e. 
words can only be found if each set of character alternatives includes the right 
letter. Thus, misspelled words are the problem. Consequently, the integration 
of an approximate string matching component, e.g. dealing with edit opera
tions of exactly one character (insertion, deletion, substitution of one character; 
cf. [17]), is one of our most important future improvements. 
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