
Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik , Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM , Insiders , Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology , by
the shareholder companies , or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently , there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community . There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

On Virtual Partitioning of Large Dictionaries for Contextual
Post-Processing to Improve Character Recognition

Rainer Hoch

DFKI-RR-93-45

This report is an improved and longer version of a paper published in the
Proceedings of Second IAPR Conference on Document Analysis and Recognition
(ICDAR'93). Tsukuba Science City, Japan, October 20 - 22, 1993 (the paper is one
of only 20 long papers from 216 accepted papers in total)

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9003 0).

© Deutsches Forschungszentrum fUr Kunstliche Intell igenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

On Virtual Partitioning of Large Dictionaries
for Contextual Post-Processing

to Improve Character Recognition 1

Rainer Hoch

German Research Center for Artificial Intelligence (DFKI)
P.O. Box 20 80, D - 67608 Kaiserslautern, Germany

Phone: (++49) 631-205-3584, Fax: (++49) 631-205-3210
hoch@dfki.uni-kl.de

ABSTRACT: This paper presents a new approach to the partitioning of large
dictionaries by virtual views. The basic idea is that additional knowledge
sources of text recognition and text analysis are employed for fast dictionary
look-up in order to prune search space through static or dynamic views. The
heart of the system is a redundant hashing technique which involves a set of
hash functions dealing with noisy input efficiently. Currently, the system is
composed of two main system components: the dictionary generator and the
dictionary controller. While the dictionary generator initially builds the system
by using profiles and source dictionaries, the controller allows the flexible inte
gration of different search heuristics. Results prove that our system achieves a
respectable speed-up of dictionary access time.

KEYWORDS: contextual post-processing, word validation, large vocabularies,
dictionary look-up, fast access, indirect hashing, views, filter,
exact string matching.

1 This work has been supported by the Germany Ministry for Research and Technology BMFf
under contract I1W 9003 O.

2

TABLE OF CONTENTS:
1 Introduction 3
2 Overall process 4
3 Dictionary organization and access 6
4 View concept 7
4.1 Static views 8
4.2 Dynamic views 9
4.3 Definition of views 10
5 System implementation 10
5.1 Dictionary generator 10
5.2 Dictionary controller 11
5.3 Filter 13
6 Related Work 13
7 Results 13
8 Conclusion and future work 16
Acknowledgements 16
Bibliography 17
Appendix 19

3

1 Introduction

In this paper we describe how lexical knowledge is efficiently used to sup
port document analysis resulting in a hybrid dictionary organization. Our work
has been influenced by [15] integrating various knowledge sources in text
recognition where the dictionary (or lexicon) is some special kind of contextual
knowledge.

The paper shows the consequent continuation and implementation of the
dictionary architecture presented in [5] and [6]. Our actual prototype conforms
with the dictionary requirements for document analysis also stated in [5]. For
character recognition, the requirements comprise in brief: fast access for the
verification of correct words, efficient pattern matching for noisy input, toler
ance and robustness towards different kinds of errors, compact storage alloca
tion, flexibility for dictionary maintenance, openness as well as the definition of
views on the dictionary.

The dictionary is a central component of our document analysis system im
proving results of character recognition as well as enabling partial document
understanding. The goal of the document analysis system is to close the gap be
tween traditional printed products and the electronic medium. Exemplary, the
structure and partial semantics of German business letters are analyzed. The
system is model-driven and based on the ODA (Office Document Architecture)
platform, an international standard for the representation and the exchange of
documents. The system includes several interlocked phases of analysis: layout
extraction, logical labeling, text recognition, and partial text analysis. Details and
experimental results of the analysis system are given in [1].

layout
extraction

logical
labeling

text
recog
nition

text
analysis

lexical
knowledge

base

Fig. 1: Phases of document analysis and role of dictionary

4

In this particular article, we concentrate on the central dictionary module.
Fig. 1 illuminates the role of the dictionary in our analysis system. The dictio
nary is based on a hybrid architecture involving two different data structures
(hash tables, tries) to deal with different types of noisy input most efficiently
[2].

For accessing the dictionary, additional knowledge sources of text recogni
tion and text analysis can be used to prune search space and to speed up search
in case of noisy input. For example, the context of a word according to the logi
cal structure of a document often comprises a relative small set of words such
as relevant words of addresses (names, streets, cities, zip codes) or company
specific data (employees, products, tasks, etc.). Thus, the inherent complexity of
a complete search over the entire and large dictionary can be avoided.

Consequently, our dictionary allows the definition of what we call views.
Views can be seen as contextual restrictions on a large dictionary 2, i.e. the dic
tionary is virtually (not physically!) partitioned into several parts. In other
words, a completely new access structure is attached to the dictionary speeding
up word verification.

If post-processing of recognized words has additional information about
possible views, e.g. structural information of a document, word verification is
facilitated drastically. Because our view concept is rather general, arbitrary
types of views can be defined: logical views (determined by document struc
ture such as address), letter-based views (significant characters, n-grams, word
length, etc.), syntactic views (e.g. noun, verb, adjective, etc.) as well as dynamic
views (determined by document contents such as employee names, products,
etc.).

The paper is organized as follows: Chapter 2 sketches the overall process of
dictionary look-up. While Chapter 3 gives a reason for organizing our dictio
nary by hash tables, Chapter 4 presents the central idea of the paper, i.e. the
partitioning of large dictionaries using static and dynamic views. Then, the next
chapter explains the two major components of the system, the dictionary genera
tor and the dictionary controller as well as a special filter concept. After having
presented the related work in Chapter 6, we list some results showing perfor
mance improvement by using our view concept. Finally, Chapter 8 concludes
the paper and indicates the current research activities.

2 Overall process

Applying contextual knowledge for the validation of results of optical char
acter recognition (OCR) [14] can generally be classified into three main ap
proaches [3]: dictionary look-up methods, probabilistic methods (Markov
models, Viterbi algorithm) and combined methods. While Markov methods use
a priori, i.e. statistical, knowledge about transition probabilities of characters
(usually by bigrams or trigrams), dictionary look-up techniques check the cur
rent input string against a legal set of words being collected in a dictionary.

2 We call a dictionary large if it is a real-life collection of more than 100,000 entries.

5

We use a dictionary-based approach for two reasons: First, while statistical
methods are very fast and efficient, they are extremely sensitive in case of noisy
input. Moreover, our tests with bigrams and trigrams of the German language
for the rejection of illegal words yielded poor results. Second, storing dictionary
entries associated with appropriate lexical information enables a subsequent
partial analysis of the document's contents (keyword analysis and syntactic
parsing [1]).

In Fig. 2 the overall process of dictionary look-up is depicted.

uEor

Different Alternatives

computer computer
cemputer cemputcr
compufer compufcr
cempu£er cempu£cr

~
(Dictionary Lookup)

~
computer

Fig 2: Contextual post-processing of recognition results

While designing our dictionary, we had to consider several system restric
tions:

• Because of the large vocabulary, the dictionary should not be kept in main
memory-it rather should be primarily organized on secondary storage (files).

• Keeping the vocabulary in a modular way facilitates maintenance of the
dictionary allowing the modification of entries as well as the adaptation to
other domains.

• Avoid redundant information: Redundancy, i.e. storing entries several
times, would blow up our files and renders all maintenance tasks more diffi
cult.

These additional requirements were decisive for organizing the dictionary
using hash tables which is motivated in the next section.

6

3 Dictionary organization and access

A review of literature shows that a multitude of dictionary organizations
and corresponding access techniques have been developed. Knuth [8] and
Elliman [3] give a survey of adequate data structures for the representation of
dictionaries. Harris [4] also compares different dictionary structures (binary
search, indexing, tries, hashing) and furthermore indicates a possible syntax of
lexical entries. However, sophisticated techniques which are adapted to the
special needs of character recognition dealing with incomplete input are hardly
found in literature.

Our studies mainly apply two competitive dictionary data structures-hash
tables [8] and letter trees (tries) [2, 5, 18]-combining inherent advantages of
both. The dictionary kernel, however, is based on hashing. In the next, we will
give some reasons for this important design issue. For a definition of hash ta
bles and hash functions see [8].

Hashing is space efficient. Handling collisions by chaining [8] requires one
additional pointer per bucket to the next entry of the same hash code. This is
the only overhead. In contrast, tries allow on the one hand a very compact rep
resentation of words by storing common prefixes exactly once, while on the
other hand trie nodes contain much more housekeeping information such as
next/previous char, end-of-word flag, max/min length, etc. [2]

Hashing is fast. When using a large, i.e. realistic, vocabulary, we want to
keep our lexical information on a mass-storage medium (e.g. hard-disc) in or
der to save main memory. This means that the number of accesses to the dic
tionary will be minimized for the reason of speed. Our tests have shown, that
on complete word keys, the average number of collisions has only a length less
than two if an adequate hash table size has been chosen. Sorting the entries of
the dictionary in decreasing access frequency may lead to even better results,
where a trie data structure always takes n storage accesses to find a word of
length n.

Noisy input. When dealing with incomplete words, we have to rely on par
tial hash information. This requires additional hash tables and hash functions
which compute their hash codes, for instance, by the beginning or the end of
the spelling or even by other features such as length or shape of a word (e.g.
word envelopes [14]) . Here the problem is to develop appropriate hash func
tions. Once a hash code has been calculated, the dictionary system can easily
traverse its collision chains and pass all matching entries to the calling applica
tion. Again, a trie needs a lot more storage accesses to build a list of matching
words (e.g. recursively traversing a subtree by a depth-first search).

Hash tables are static. When creating hash tables, respective hash function
values are computed in advance. That implies we are forced to develop clever
hash functions dealing with noisy input, e.g. using a half-word or significant
characters of a word as hash information. Thus, the drawback of a hashing
based architecture is the need for an initial generation process. But at the same
time such a dictionary initialization reveals some further interesting advan
tages:

7

• The source dictionaries are kept in an easy editable (ASCII-) format
providing good maintenance and exchange,

• they are separated in different files (modularity) and
• the dictionary can easily be adjusted to another domain or another

purpose.
After all, we consider hashing as the best technique to meet our goal

handling the above system restrictions.

4 View concept

Dictionary access can be seen as post-processing the results of character
recognition where the input is often noisy. Typically, character recognition is
capable to provide the dictionary look-up routine with further information
about the current word hypothesis, e.g. the word was found in the address part
of the letter.

To make use of this kind of knowledge we decided to define views. Such
views separate our dictionary into several parts each carrying words of differ
ent attributes or features. For instance, we can define a view on the length of a
word, a view on all logical objects of a document (e.g. sender, recipient, date,
body of a letter) as well as the view on the part-of-speech (e.g. noun, verb, ad
jective, etc.).

There are several ways to solve the problem of organizing views:
1) First, we could keep multiple copies of our dictionaries, each being cre

ated by another view-but this method causes a lot of redundant information
when words belong to many views.

2) Next, we could physically split our dictionary into several views. This
will result in a large number of small subdictionaries each of them holding
words which are unique on all of our views, e.g. a subdictionary containing all
nouns of word length 5 within an address. However, when looking for a word
without any view identification, we have to consult all the different subdic
tionaries successively to find possible word candidates or to reject a word hy
pothesis. A second problem arises from the fact that the intersection of views is
in general not empty (e.g. views on logical objects of a document).

3) As a solution, we decided to virtually divide our dictionary into several
parts, called virtual views. All corresponding information of a word has to be
kept once thus proving minimal redundancy and easy maintenance. Words be
longing to one single view are linked together by a separate collision chain.
This structure requires n*m additional pointers per entry where n is the num
ber of different hash functions for redundant hash addressing and m is the
number of the views defined.

As shown in Fig. 3, we use three distinct hash functions (HI, H2, H3) for in
direct hashing. Consequently, three respective hash tables are provided. While
hash function HI primarily deals with complete input, H2 applies the left half
of the input word for dictionary access, or H3 applies the right half, respec
tively [5]. For H2 and H3, however, the hash tables refer to separate view entry
tables each giving the first entries of a view.

8

t
Hash Key

1\

H1 / Hash Tables

• • I

H2

view entry points (H3)

DISK

Main Dictionary

normal collision chain (H2)

compressable

1 st entry - attribute verb (H2)

compare

I
1 st entry - attribute noun (H3)

transputer

compression

Fig. 3: Architecture of hashing-based dictionary

For example: The regular expression "c[oa]mpu[tf]?r" is passed to the dictio
nary and some other specialist, e.g. a parser, tells us that we are looking for a
noun 3. Neither the beginning nor the end of the word (hash information of 4
letters) are accurately recognized, but the beginning includes less alternatives
("comp", "camp") than the end following a hypothesize and test strategy. Now,
we have to look within the collision chains of "comp" and "camp" (H2) to
identify a noun matching "c[oa]mpu[tf]?r". Look-up in the view entry table of
H2 identifies the first noun in the collision chain of the view "noun". Now,
traversing all the corresponding collision pointers and matching the keys
against the input pattern yields the hypothesis "computer".

In principle, we distinguish between two types of virtual views, static views
and dynamic ones. Both are now explained in more detail.

4.1 Static views

So far, we have motivated the intention and mechanisms of static views.
"Static" means that the definition of one of these views causes the mandatory
allocation of a fixed (or static) amount of memory for every entry of the dictio
nary, regardless whether a word belongs to a view or not (Fig. 4). This makes
static views expensive in terms of disk usage.

3 The example also holds for other contextual restrictions such as view "address" or length of
word.

9

For a dictionary of about 100,000 words, two hash functions using static
views and a pointer size of four byte almost consume one megabyte of sec
ondary storage per static view (100,000*2*4 byte). However, this view can be
reused for several chains when the words of the different chains are disjoint, i.e.
have no common elements. Typical examples of static views are the different
attributes of part-of-speech of a word or a view on different word lengths.

The major advantage of static views is the reduction of disk accesses since
only words within a specified view will be found when traversing the chain.
This leads to a reduction of search space and accelerates search time dramati
cally. Some results mirroring these performance improvements are reported in
Section 7 of this paper.

Key Encoded Normal Collision Pointers of
Syntax Collision Pointers Static Views

October Olalla . . . ~ 4 • 4 • 4
Bit Vector and • •• Dynamic View Pointers

:::J :::J :::J
:::J :::J :::J :::J
CD CD CD CD

CD CD CD X X X ~ ~ ~ ~ - - -
I I I I I I I

N c:.v N c:.v N c:.v , , , ,
< < < <
co' co' co' co'
~ ~ ~ ~
...... N N I. , I. , 1 , ,

Fig. 4: Structure of lexicon entry w.r.t. static view

4.2 Dynamic views

In addition, we developed another class of views, called dynamic or concep
tual views. These views join arbitrary sets of words together, regardless of their
cardinality. Dynamic views need one reference pointer exclusively for those
words that belong to a view. A bit vector which has to be kept for every entry
signals the membership of a word to any of the defined dynamic views (Fig. 5).
In principle, dynamic views are independent of hash functions, i.e. spelling of
word keys 4.

The purpose of dynamic views is either to get a list of all words in a view
solely by specifying the view's name (e.g. give me all employee names) or to
get a list of views in which a certain word is defined. They were primarily de
signed to meet the special needs of text analysis as well as to realize views on
logical objects of a document. A hierarchical definition of dynamic views is also
possible.

4 We use an A VL-tree accessing the first entry of such a view.

10

Bit Vector of Collision Pointers of
Key Information Dynamic Views Dynamic Views

October Collision Pointers, Syntax, etc. 0001 0 01101000 0 t t t

::J ::J ::J ::J
co co co co

signaling membership of temporal words - ~ ~ ~ ~ - ::E ::E ::J co 0 0 0
signaling membership of date 3 ., a c

"0 a. ::J

signaling membership of body
0 0 0 ., - -~ a. g

signaling membership of nouns :i! ~ a. a., CD , r '<, ,
Fig. 5: Structure of lexicon entry w.r.t. dynamic view

4.3 Definition of views

Views can be defined in three different ways:
o The user can specify a list of words that should be collected in a certain

view (dynamic view).
• The user can specify the entries of a view by some attributes given in the

lexical description of a word, for instance, all nouns or all employee names
(static view, dynamic view).

• The user can define views as composition of already defined views which
we call hierarchical views. For instance, the address of a letter may be composed
of names, streets, zip codes, city names, etc. (dynamic view) .

While all three methods can be arbitrarily combined to define a dynamic
view, only the second one can be applied to static views. In other words, a hier
archy of static views is not possible.

5 System implementation

5.1 Dictionary generator

As mentioned above, we can take a set of source dictionaries as input for the
generation process. These sources are either word lists or can include simple
lexical information about a word such as part-of-speech. Actually, the source
dictionaries involve German nouns, verbs and adjectives, typical words of ad
dresses (employees, titles, German cities, countries, etc.), German abbrevia
tions, domain-specific words for business letters and some other word lists for
logical objects (e.g. date).

Furthermore, we have some profiles (see Fig. 6), which tell the generator
how to build the different static and dynamic views, how to encode/ decode the
syntactic information and how to define text phrases being an additional fea
ture.

After the successful termination, the generator has created some new dictio
nary files which keep all relevant information of the hash tables and first entry
addresses of views in different hash chains as well as the file containing the
main, virtually partitioned dictionary. Another file, called system info file, keeps

11

the path names of the profiles, the path names of the generated files and the
lengths of the hash tables. When using the dictionary, only the latter file has to
be specified.

(Profiles

Source Dictionaries
Main Dictionary

(virtually partitioned)

Fig. 6: Generation phase of dictionary

The profiles are needed during run time and must not be edited unless a
new generation process is restarted. While Fig. 6 summarizes dictionary gener
ation, Fig. 7 reveals the run time system, i.e. the dictionary controller.

5.2 Dictionary controller

After termination of the generation process, the dictionary system can be
used as follows:

1) Finding a word by its spelling and static view identification:
• Search argument is a string similar to a regular expression of UNIX (csh,

ed) representing the actual recognized word hypothesis. The dictionary con
troller now examines this string for wildcards (,?', '*') as well as alternatives at
some word positions indicated by '[' and ']'

(a) If the word was entirely recognized, a search with complete hash infor
mation is initiated (HI in Fig. 2) . In this case the corresponding hash code is
calculated by interpreting letters as digits of base 30 (cardinality of German al
phabet including German umlauts and s-zet). Since we do not expect long col
lision chains, the view information is not considered in this case.

(b) Searching for an incomplete word is explained by an example: Assume
the input argument is "g[eco]rm[ao]ny" ADDRESS. The input word contains
alternatives at position 2 and 5. The total length of the word is well defined
since no '*' -wildcard was found. The characteristic string for the search has
length 3 (= minimum of (word length 7 div 2) and maximum half-word con
stant 4). Evaluation of the word beginning "g[eco]r" results in three distinct
hash codes: H("ger"), H("gcr") and H("gor") . Evaluation of the word end
"[ao]ny" results in only two hash codes: H("any") and H("ony"). Because of the
smaller number of alternatives, the dictionary controller decides to use the end
of the input word for subsequent search.

• The additional parameter ADDRESS tells the system that it should take
the collision chain of the view named ADDRESS containing all words that

12

might occur within the address part of the letter that is provided by logical la
beling [1].

• Now, the dictionary system is initialized for the search: the search mode
either complete word, beginning or end of word-and a static view have been
specified. Next, we have to traverse the respective collision chains for all rele
vant hash codes. Every word matching the input "g[eco]rm[ao]ny" is then
given back to the caller.

System Profile

Phrases

Syntax Profile

Static Views

Calling Application (character recognition, textanalysis)
Lisp - C - Interface

C-library of dictionary system

Search Strategy
. Hash Functions

Filter System
Information Decoding

etc .

.... ~_-.... ~ Information Flow .. - - - -.. Control Flow

Fig. 7: Run-time system of dictionary

2) Finding words by specifying a dynamic view:

Hash Tables

View Entry Points

Main Dictionary

(virtually partitioned)

• The calling application invokes the dictionary controller for search by
naming a dynamic view.

• Consultation of the internal (A VL-)search tree gives the entry points as
well as the ordinal of this dynamic view in the corresponding bit vector.

3) Traversing the dictionary and handing back information:
Main parts of the text recognition as well as text analysis components were

implemented in Common Lisp. For reasons of speed and limited resources the
entire dictionary has been implemented using C. This requires an interface
which is able to call C functions from Lisp. The respective functions of the
Common Lisp interface allocate memory for the arguments passed and even
strings are transformed which makes the interface to some kind of bottleneck
with respect to information flow.

Due to this fact only matching words are passed through the interface. The
user traverses the dictionary in a step by step manner, always getting the next
matching word or the next view member, respectively.

If the calling application addresses words that are members of a specified
dynamic view, this can be done by using filters before passing the interface.

13

5.3 Filter

A special filter concept has been designed to get disjunctions or conjunctions
of views without evaluating large word lists. The system provides several fil
ters that can be set for one or more dynamic views. Setting one filter several
times causes a conjunction of the corresponding views, whereas setting differ
ent filters results in a disjunction. Filters might be negated: in this case, only
words that are not within the specified view will pass through it.

If any filter is set, at least one of them has to be passed before a word is given
back (to the Lisp process via a C-Lisp foreign function interface). According to
dynamic views, the essential mask information for the interpretation of filters
are bit vectors that are provided for every lexicon entry.

6 Related work

While general hash table methods have extensively been developed over the
last two decades and were well explored, there is a pressing need for sophisti
cated hashing which is tailored and specialized to improve character recogni
tion. Here, only a few papers can be found ([9], [12], [16]).

While [12] also proposes a twofold hash code access via the left and right
half of a word, our approach is much more flexible allowing the integration of
different hash functions as well as the definition of views. [9] presents a scheme
of redundant hashing based on trigrams as significant word features. This pro
cedure was primarily developed for dealing with distorted phonemic strings in
speech recognition.

In [6], [10] and [11] a concept is shown partitioning the dictionary physically
either by frequency or by word contents (technical words, multi-lingual, etc.).
Other dictionary concepts are based on conventional, i.e. relational, database
technologies [7] . A hierarchical structuring of the dictionary for address recog
nition can be found in [13]. As far as we are concerned, there does not exist a
comparable dictionary approach based on virtual views yet.

7 Results

All system components of the dictionary are fully implemented in C on Sun
SP ARCstation with exception of the external Common Lisp interface. The
source dictionaries are ASCII-files .either containing word lists or simple lexical
information.

To get an idea of the performance of our dictionary, we performed some
comparative tests showing the run time for specific regular input patterns. The
tests give an impression of the dictionary access time in comparison with stan
dard UNIX utilities. The competitive processes were "agrep" (a very fast UNIX
tool for approximate string matching [19]), "look" (a UNIX tool for finding
words or lines in an alphabetically sorted list) and our dictionary system. The
word list we used has either a size of 160,086 or 103,023 German words. The re
sults are illustrated in the following tables.

14

access time [msec]

word pattern agrep dictionary matches

?nlo[ee]k*Cl 720,0 87,5 1
b? [gClj][ceo list *I't 770,0 245,8 1
be*orsch u n [gq] 830,0 1105,8 1
d'?? [II] P? I reI. . n 1) a .. ac Ie 670,0 12,5 1
e[ij] [rnlll]zel [h k b] ?bine 670,0 3,3 1
??'?ehleicht 660,0 238,3 1
geb[ax jE'u [d a] [ec]sicheru?? 6050,0 6,6 1
gemi*t 690,0 21,6 5
[bh k]errl1 *rten 740,0 625,8 1
*otten[hk]rieg? 1.170,0 258,3 1
??edit.i* 750,0 1.431,6 8
turftl 710,0 32.920,0 4
ober*ung[xs]ger[ji] [ec]ht 1.5.50,0 105,8 1

Table 1

access time [msec]

word pattern look dictionary

anlockend 4,0 0,167
begeistert 4,0 0,250
berufsforschung 3.0 0,333
d reiei n hal bfache 4,0 1,667
einzelkabine 6,0 1,333
erschleieht 4,0 1,583
gebaelldesicherung 4,0 1,667
gemildert .5,0 1,333
herruehrten 2,0 0,167
h ugenott.enkriege 1,0 0.333
kreditiert 2,0 0,333
kulturfilm 3,0 0,083
olwrvcrwal t u ngsgerich t 05,0 1,583

Table 2

In Table I, dictionary access versus the "agrep" command reveals a maximal
improvement by a factor of 200 (fifth word pattern). However, in some rare
cases when the input word begins and ends with a wildcard of arbitrary length,
our dictionary fails (second last word pattern). In comparison to the "look" 5

command (Table 2), the maximal improvement of access time is about a factor
of 16 (second last word pattern).

5 Note that "look" does not allow regular expressions as input.

15

access time [msec]

word pattern without ma.tehes II with matches
view view

[rn] [eeo] [ee] [h k] [10'0] na n 1* 60,0 1 37,5 1
[bh][eco]si[ft]* [oc]sigk[eeo]i [ft] 10,8 1 5,8 1
c[oa]m pur tf]?r 7.5 1 5,0 1
d [eco]s[oc]?[oe] ris?[ft.]ion 226,7 1 207,5 1
dipl[oc]m?[ft] [eeo]nse[k Il]r[eeo]i[bh][ft] *[k h] 05,8 1 4,2 1
f[eco]ri [eco] n? lls[ft]? II * [k h] 10,0 1 9,2 1
g[eco]sc[k h]ickl i* k [c('Q]i [ft] 36,7 2 16,7 1
gul?sc[kh]k?n[oc]n[eco] 9,2 1 9,2 1
h ?ndf[eco]g[eco]r S,s,S 1 90,8 1
hin [ft] [eco] rl ?ss[eco] nse[k h] ?f[ft] IS,S 1 8,3 1
i[oc]n [eeo]nw? nd [('co]rll ng 399,2 1 260,0 1
ka.iseH 12,.5 28 6,7 18
kr?nk [eco] ng[eco]se[k h]ic[kh] [ft] [eeo] 70,0 1 605,0 1
I[eco]l1c[k h] [ft] r?k[eco] [ft] [eco] 16.7 1 6,7 1
me[eo] r[ec]sl [eco]lI e[k h] [ft] [eco] n 8,3 1 7,5 1
m?nito* 83,:3 2 47,5 2
n ?[bh][eco] ls[ft]r?ng 492,.5 1 463,3 1
s[f'co]1 [bh]s[ft.]kos[ft.] [eco] ns[eco] n ku ng 75,8 1 64,2 1
s[ft)? d [ft]s[ft.] r[cco]ic[k h] [eco] r .59.5,0 1 410,8 1
u r[ft.]i[eco]re[k h] [<,co] n 8,3 1 5,8 1
V [f'('Q] r?rsc[k h] II ng 181,7 1 1505,8 1
z[eeo] n[ft]i 111 [('10] [ft] keo]rm ?ss 12,.5 1 7,5 1

Table 3

dictionary generation [sec]

dict ionary without any one static
size VIews VIew

1.000 4,2 7,6

2.000 10,0 15 ,6
3.000 27,9 45,5
4.000 37,8 64,4
5.000 51,4 79,6
7.500 92,8 139,1

10.000 145,0 211,1
15.000 285,4 401,5
20.000 498,2 696,9

107.427 - 17.222,3

Table 4

Another test reports the speed-up when searching for a pattern applying the
concept of virtual views (Table 3). Here, we compare a normal search without
using views and a search where the system knew about the word category. We

16

took a dictionary of 103,023 German words including a static view over the
part-of-speech. The results are given in Table 3 indicating a slight improvement
of search time as well as the reduction of word alternatives (word pattern
"kaiser ... " is a noun).

Generation time for different dictionaries is given in Table 4 where the com
plexity is O(n2) (n = number of words in dictionary). The diagrams in the
Appendix present the mean dictionary access time per word over a sample of
about 100 business letters using our own OCR (dictionary size is 10,000). In
addition, the last diagram compares dictionary access/word in average for two
dictionary sizes (10,000 and 100,000).

8 Conclusion and future work

In this paper, we presented a new approach of partitioning large dictionaries
by virtual views. The main idea is that additional knowledge sources of text
recognition and text analysis can be applied for fast dictionary access by prun
ing the search space. Our results have shown that this approach speeds up dic
tionary look-up for complete as well as for noisy input drastically. Moreover,
we have implemented two main system components: the dictionary generator
and the dictionary controller. The controller allows a flexible integration of dif
ferent search heuristics including approximate string matching techniques.

While testing our dictionary, we decided to integrate some additional fea
tures to the current implementation:

• Currently, the time complexity of dictionary generation is O(n2) because
all collision chains of the main dictionary are traversed for finding the right end
to put in a new dictionary entry (n = number of words in dictionary) . This can
be improved to O(n) by the recording of last entries of the collision chains.
Incidentally, the generation process of a virtually partitioned dictionary includ
ing one static view "part-of-speech" with four attributes, sixteen virtual views ·
and a size of 103,023 word entries takes about five hours on a Sun
SP ARCstation.

• Dynamic extension of the existing dictionary by new entries without start
ing the time consuming generation process once again.

• Definition of links between dictionary entries. We would like to provide
some additional storage to create links from one entry to another, for example,
combining synonyms, phrases or variants.

• Our matching component is only capable of exact string matching, i.e.
words can only be found if each set of character alternatives includes the right
letter. Thus, misspelled words are the problem. Consequently, the integration
of an approximate string matching component, e.g. dealing with edit opera
tions of exactly one character (insertion, deletion, substitution of one character;
cf. [17]), is one of our most important future improvements.

Acknowledgements

We would like to thank Dr. George Nagy and Hans-Gunther Hein for valu
able discussions and their careful reading of the first draft of this paper.

17

Bibliography

[1] A. Dengel, R. Bleisinger, R. Hoch, F. Fein, F. Hones. From Paper to Office
Document Standard Representation. IEEE Computer Magazine, vol. 25, no.
7, July 1992, 63-67.

[2] A. Dengel, A. Pleyer, R. Hoch. Fragmentary String Matching by Selective
Access to Hybrid Tries. Proc. of 11th International Conference on Pattern
Recognition, The Hague, Sept. 1992, vol. II, 149-153.

[3] D. G. Elliman, I. T. Lancaster. A Review of Segmentation and Contextual
Analysis Techniques for Text Recognition. Pattern Recognition, vol. 23, no.
3/4, 1990,337-346.

[4] M. D. Harris. Introduction to Natural Language Processing. Reston Publishing
Company Inc., Reston, Virginia, 1985.

[5] R. Hoch. Hybrid Structured Dictionary for Improving Text Recognition.
Proc. of IAPR Workshop on Machine Vision Applications (MVA '92), Tokyo,
Japan, December 7-9, 1992, 295-298.

[6] R. Hoch, M. Malburg. Designing a Structured Lexicon for Document
Image Analysis. Proc. of Seventh IntI. Summer SchooL on Information
Technologies&Programming, Sofia, July 1992, 71-76.

[7] N. M. Ide, J. Veronis, J. Le Maitre. Outline of a Database Model for Elec
tronic Dictionaries. Proc. of RIAO 91 Intelligent Text and Image Handling,
Barcelona, April 2-5, 1991, vol. 1,375-393.

[8] D. E. Knuth. The Art of Computer Programming, vol. 111: Sorting and Searching.
Addison-Wesley, Reading, Mass., 1973.

[9] T. Kohonen, E. Reuhkala. A very fast associative method for the recogni
tion and correction of misspelt words, based on redundant hash address
ing. Proc. of Fourth IntI. Joint Conference on Pattern Recognition, Kyoto,
Japan, Nov. 7-10, 1978,807-809.

[10] J. L. Peterson. Computer Programs for Detecting and Correcting Spelling
Errors. Communications of the ACM, vol. 23, no. 12, December 1980,676-687.

[11] H. Richy, P. Frison, E. Picheral. Multilingual String-to-String Correction in
Grif, a Structured Editor. Proc. of Electronic Publishing '92, Lausanne, Cam
bridge University Press, 1992, 183-198.

[12] J. Schiirmann. Multifont Word Recognition System. IEEE Transactions on
Computers, vol. c-27, no. 8, August 1978.

[13] K. Seino, Y. Tanabe, K. Sakai. A linguistic post processing based on word
occurrence probability. In: From Pixels to Features 111: Frontiers in Handwrit
ing Recognition, S. Impedovo, J. C. Simon (eds.), Elsevier Science
Publications B. V., 1992.

[14] R. M. K. Sinha. On Partitioning a Dictionary for Visual Text Recognition.
Pattern Recognition, vol. 23, no. 5, 1990,497-500.

18

[15] S. N. Srihari, J. J. Hull, R. Choudhari. Integrating Diverse Knowledge
Sources in Text Recognition. ACM Transactions on Office Information
Systems, vol. I, no. 1. January 1983, 68-87.

[16] H. Takahashi, N . Itoh, T. Amano, A. Yamashita. A Spelling Correction
Method and its Application to an OCR System. Pattern Recognition, vol. 23,
no. 3/4, 1990,363-377.

[17] R. A. W agner, M. J. Fischer. The String-to-String Correction Problem.
Journal of the Association for Computing Machinery, vol. 21, no. I, January
1974, pp. 168-173.

[18] c. J. Wells et al., Fast Dictionary Look-Up For Contextual Word Recogni
tion. Pattern Recognition, vol. 23, no. 5, 1990,501-508.

[19] S. Wu, U. Manber. Fast text searching allowing errors. Communications of
the ACM, vol. 35, no. 10, October 1992, 83-91.

10

100
101
102
103
104

105
106
107

108
109

110

111
112

113
11 4
115
116

117
118

11 9
12

120

121
122
123
124
125
126

127
128

129
I'D - 13

130 -I'D 131 ...
132

::l 133

C 134

3 135

e- 136
I'D 137 .,

138
1.
16
17

18
21

22
23
2.

25

26
27

29
34

36

37

39
40

41
.2
43

50
51

56
57
62
63
64
83
84
85
88

89
90
92

93

6t

o
<.n
o

number of words

o
o

<.n
o

N
o
o

N
<.n
o

w
o
o

~
c::
3
C"
(l) .,
0 -
== 0 .,
a.
en

"C
(l) .,
CD --(l) .,

X!puaddV

20

f="

E E6
l6
06
69
99
5 9
. 9
E9
.9
E9
19
is
9S

15
OS
E.
l.
I.
Ot
&E

LE
9E
ot
6l
a
n
5l
H
El
U
Il
91
£ I
91
.1
9EI
lei

9EI
SEI
tEL

(1) EEL
C) l EI
CU lEI ...

OEI ...
(1)

E I Q)

> .0
CU ell E 911

s:::: al ::J
C

911
511

...
"C Q) ll --0 Ell ~
3: III - I l I
(/) Oll
(/) l I
(1) 611
0 [811
0
CU

£11
911

>- 5 I I11
CU Ell
s:::: III
0 III - 011
0 eOI

"C 901
£01
901
SOL
tOI

I
EOI
lOI
101
001
01

I
£
9

0 l!) 0 l!) 0 l!) 0
C") N N

oasw u! aWl. ssaooe

(1)

en
m ...
(1)

> m
c:

"C ...
0
3 -en
en
(1)
0
0 m
>-... m
c:
0 -0

"C

0
0 0
0 0
0 0
0 0

0 •

o
CO

o
<.D

o
C\J

o
o

o
CO

o
<.D

o
C\J

:>asw u! aW!l ssa:>:>e

~

~

¥fL

o

21

co
'0
.0

o. ..
5' ..
C, ..
to ..
L5

' 5
'5
.5
C, ..
" ••
OC

it

' C
.C

O'
il

9' ..
" tz

lZ
, . ..
" ..
.. '
Lt, ...
.. ' ...
ct' ...
.. ,« (1)

c' .tl
oz' E ." ::J
Ll' C
'Z' .. '

(1)
'Z ' --C" ~ zz,
,.,
." z,
0 " ."
'" ."
5"

c"
z"

." .. , .. '
L.' .. ,
5.' .. '
C. '
Z.,
'., .. , .,

Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-42
John Nerbonne :
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck. Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-4S
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre. Wolfgang Finkler. Win fried Graf.
Thomas Rist. Anne Schauder. Wolfgang Wahlster:
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

DFKI
-Bibliothek
PF 2080
67608 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-S0
Stephan Busemann:
Generierung nattirlicher Sprache
61 Seiten

RR-92-51
Hans-Jurgen Burckert. Werner NUll :
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan. Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR-92-55
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-S8
Franz Baader. Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson : On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster, Elisabeth Andre, Wolfgang
Finkler, Hans-Jurgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hol/under, Bernhard
Nebel, Hans-Jurgen Profitlich, Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Tenninological Representation Systems
28 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit :
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination Tech
niques and Decision Problems for Disunification
29 pages

RR-93-06
lIans-Jurgen Burckert, Bernhard lIoliunder, Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jurgen Burckert, Bernhard Hollunder, Armin
Laux: Concept Logics wilh Function Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilalion Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jorg Wurtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrol/es: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski.RalfTreinen:
Equational and Membership Constraints for
Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof K16ckner,
Volker SchOlles, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jorg Wurtz: Object
Oriented Concurrent Constraint Programming in
Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Tenninological Cycles and the
Propositional Jl-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hol/under:
Embedding Defaults into Tenninological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jorg Muller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Oltmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach to
Modeling the Transportation Domain
93 pages

RR-93-26
Jorg P. Muller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Lau.x: Representing Belief in Multi-Agent
Worlds viaTerminological Logics
35 pages

RR-93-33
Bernhard Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, Fran~ois Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI
Programmierung - Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LA YLAB: A Constraint-Based
Layout Manager for Multimedia Presentations
9 pages

RR-93-42
Hubert Comon, RalfTreinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

DFKI Technical Memos

TM-91-15
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung eines
Compilers zur Transformation von
W erkstiickreprasen tationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jurgen Muller, Jorg Muller , Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
0110 Kuhn , Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof Kremer:
Konzeption einer deklarativen Wissensbasis tiber
recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Giinther Hein: Propagation Techniques in
WAM-based Architectures - The FIoo-III
Approach
105 pages

OFKI Oocuments

0·92·19
Stefan Dillrich. Rainer Hoch : Automatische,
Deskriptor-basierte Unterstiitzung der Dokument
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

0·92·21
Anne Schauder: Incremental Syntactic Generation
of Natural Language with Tree Adjoining
Grammars
57 pages

0·92·22
Werner Stein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

0·92·23
Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

0·92·24
lurgen Muller. Donald Steiner (IIrsg.):
Kooperierende Agenten
78 Seiten

0·92·25
Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle
31 Seiten

0·92·26
Enno Tolzmann :
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

0·92·27
Mar/in Harm. Knut Hinkelmann. Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

0·92·28
Klaus-Peter Gores. Rainer Bieisinger: Ein Modell
zur Reprasentation von Nachrichtentypen
56 Seiten

0·93·01
Philipp Hanschke. Thom Fruhwirth: Terminological
Reasoning with Constraint Handling Rules
12 pages

0·93·02
Gabriele Schmidt. Frank Peters.
Gernod Laujk6l1er: User Manual of COKAM+
23 pages

0·93·03
Stephan Busemann. Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

0·93·04
DFKI WissenschaftIich-Technischer Jahresbericht
1992
194 Seiten

0·93·05
Elisabeth Andre. Winfried Graf, lochen Heinsohn.
Bernhard Nebel. Hans-lurgen Profitlich. Thomas
Ris/, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

0·93·06
lurgen Muller (Hrsg.):
Beitrage zum Griindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbriicken 29.-
30. April 1993
235 Seilen
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0·93·07
Klaus-Peter Gores. Rainer Bieisinger:
Ein erwartungsgesteuerter Koordinator zur
partiellen Textanalyse
53 Seilen

D·93·08
Thomas Kieninger. Rainer Hoch: Ein Generator
mit Anfragesystem fUr strukturierte Worterbiicher
zur Unterstiitzung von Texterkennung und
Textanalyse
125 Seilen

0-93-09
lIans-Ulrich Krieger. Ulrich Schafer:
TDL ExtraLight User's Guide
35 pages

0·93·10
Elizabeth Hinkelman. Markus Vonerden.ChrislOph
lung: Natural Language Software Registry
(Second Edition)
174 pages

0·93·11
Knut Hinkelmann, Armin Laux (Eds.):
DFKI Workshop on Knowledge Representation
Techniques - Proceedings
88 pages

0·93·12
Harold Boley, Klaus Elsbernd. Michael Herfert,
Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations and
Functions Made Easy
86 pages

0·93·14
Manfred Meyer (Ed.) : Constraint Processing
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

I

\

On Virtual Partitioning of Large Dictionaries for Contextual Post-Processing
to Improve Character Recognition

Rainer Hoch

RR-93-45
Research Report

