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Abstract 

We show, under some assumption on the signature, that the V*3* fragment of the theory of 
any lexicographic path ordering is undecidable. This applies to partial and to total prece
dences . Our result implies in particular that the simplification rule of ordered completion 
is undecidable. 
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1 Introduction 

The recursive path orderings are orderings on terms introduced by N. Dershowitz. They are 
the most popular orderings used for proving the termination of term rewriting systems (see [4] 
for a survey). The reason for the usefulness of these orderings lies in their stability properties: 
if s >rpo t, then, for every context C, C[s] >rpo Crt] (this is the monotonicity property) and, 
assuming that variable symbols are uncomparable with any other term (except themselves), 
s >rpo t implies that su >rpo tu for any substitution u. These two stability properties are 
important because, when they hold, proving the termination of a rewrite system amounts to 
proving that every left hand side of a rule is strictly larger than the corresponding right hand 
side. A classical problem in term rewriting systems is however the impossibility of orienting 
an equation such as x + y = y + x without losing termination. Several approaches have been 
proposed since the early 80's to overcome this problem. One of the most interesting ones is to 
orient the equation, depending on which instance of it is applied. In other words, if ~ is a total 
monotonic ordering on terms, then we may see s = t as the two constrained rules s -t tis > t 
and t -t sit> s which are respectively interpreted as the set of all su -t tu such that su ~ tu 
and the set of all tu -t su such that tu ~ su. This allows to use ordered strategies, even in 
presence of equations that are not uniformly orientable. A similar approach was used for the 
unfailing completion [8] and was described in its full generality in [13] where the completeness 
of a set of deduction rules is also proved. This powerful (yet simple) approach however requires 
constraint solving techniques for ordering constraints that are built over the> symbol, which 
is interpreted as a monotonic ordering on ground terms, typically a recursive path ordering. 

The constraints which have to be solved depend on the deduction rules that are used on 
constrained equations. At least the existential fragment of the theory of the ordering must be 
decidable. The case of a total lexicographic path ordering has been considered by H. Comon and 
its existential fragment has been shown decidable [2]. This fragment is actually NP-complete, 
as shown by R. Nieuwenhuis [12]. The existential fragment of the theory of any total recursive 
path ordering is actually decidable [9]. On the other side, R. Treinen has shown that the full 
first-order theory (actually the V*:3*V*:3* fragment) of the theory of a partial recursive path 
ordering is undecidable [15]. This leaves as open questions the existential fragment of a partial 
recursive path ordering on the one hand, and the first-order theory of a total recursive path 
ordering on the other hand. These problems were listed as Problem 24 in the lists of open 
problems in rewriting theory in [6] and further in [7]. A partial answer to the first question 
has been given by A. Boudet and H. Comon: the positive existential fragment of the theory 
of tree embedding is decidable [1]. The second problem remained open up to now. We answer 
this question here, showing that the V*:3* fragment of a total lexicographic path ordering is 
undecidable. This also improves Treinen's result for the partial case by reducing the number 
of quantor alternations of the undecidable fragment. 

The question of decidability of V*:3* fragment of a total lexicographic path ordering is of great 
importance to constrained deduction. Indeed, one problem with constrained equational rea
soning is to define simplification rules (which are essential in rewriting techniques). Such a 
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simplification rule could be defined as follows: 

s-Hlc u-+vlc' 
If T(F) F 'v'Var(s)3Var(u).c::} (sip = u /\ c') 

u -+ v I c' s[v]p = tic' /\ sip = u 

This rule is called "total simplification" in [10]; it can be read as: "the rule s -+ tic is simplified 
by the rule u -+ v I c' at position p in s if, for all instances of s -+ t that satisfy the constraint 
c, there is an instance of u -+ v which satisfies c' and which reduces sip". This rule requires 
to solve a formula in the '1*3* fragment of the ordering. Actually it is equivalent to the '1*3* 
fragment: as a consequence of our undecidability result, we get that the applicability of the 
above simplification rule is undecidable. 

The undecidability proof follows the ideas developed by R. Treinen in [15]: we encode the 
Post Correspondence Problem thanks to a direct simulation of sequences. The coding is not 
very difficult. However, the formula which expresses the main property of the coding, though 
simple, is not starightforward . . 

2 Statement of the problem 

We use mainly the notations of [5]. Terms are built from an alphabet F of function symbols 
each of which is associated with a fixed arity. Typical elements of Fare 1, g, h, k, O. In addition, 
we use variable symbols out of a set X. All these symbols are assumed to have arity O. The 
set of terms built over F only is written T(F). We write T(F, X) insteadt of T(F U X). 

Assuming an ordering ?F on F, the lexicographic path ordering ?lpo on T(F) is defined as 
follows (see e.g. [4]). 

1(SI,"" sn) >lpo g(tl" .. , tm ) iff one of the following holds: 

Si ?lpo g(tl" .. , tn) for some i 

1 >F 9 and I(SI,"" sn) >lpo ti for all i = 1, ... , m 

1 = 9 and the two following properties are satisfied: 

• I(SI,"" sn) >lpo ti for all i = 1, ... , m 

• there is an index i E {I, ... , n} such that SI = tl /\ ... /\ Si-l = ti-l and 
Si >lpo ti 

In this definition (and in the following) we use s >lpo t as an abbreviation for s ?Ipo t and 
s::j:. t. 

The following properties of ?Ipo can be found in the literature (see the survey of N. Der
showitz [4]) . 

Proposition 2.1 The relation ?lpo defined on T(F) is an ordering. Moreover: 
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• it is monotonic, i.e. f(SI,"" Sn) ?Ipo f(tl' ... , tn) whenever Si ?Ipo for all i = 1, ... , n, 

• it has the subterm property: itt is a strict subterm 0/ s, then s >/po t . 

We consider the logical language built on the two binary predicates = and ? . More precisely, 
we consider 'v'*3* formulas, which can be written 'v'x, 3y.P where P is a Boolean combination 
(using connectives A, V, -.) of expressions s = t and s ? t where s, t E T(F, X). Let L be this 
logical language. 

The formulas of L are interpreted in the domain of (ground) terms T(F) where = is the 
(syntactic) equality between terms and? is the lexicographic path ordering generated by some 
precedence ?F on F. We write such a model as AF,> F or shortly as A, when F and ?F are 
clear. 

Our concern is to show that A F <I> is undecidable for <I> E L. 

We assume here that F is any finite set of function symbols. ?F is any ordering on F such 
that 0 is a constant (symbol of arity 0) which is minimal among the constant symbols. f is 
a binary function symbol and it is minimal in F - {O}. 9 is a minimal symbol larger than / . 
For convenience, we assume that 9 is unary, but it can be actually any non-constant function 
symbol. 

Lemma 2.2 For every t E T(F) and every u E T( {f, O}), if t < /po u, then f(O , t) ~ Ipo U . 

Proof 

Let t <Ipo u. We proceed by induction on It I + lui, the total number of function symbols 
occurring in t and u. The term u cannot be 0 since t contains a constant a and, by the subterm 
property of ?'Ipo, u >Ipo t ?Ipo a. This contradicts the minimality of 0 among the constants of 
F. Hence u = /(Ul, U2). First, observe that 

(1) 

The first inequality holds because either Ul = 0 and this follows from U2 ?Ipo 0, or else Ul >Ipo 0 
and this follows from f(Ul, U2) >Ipo Ul. The second inequality holds since 0 ~Ipo Ul. 

Let t = h(t). According to the assumptions on the precedence, there are three cases: h 1.lpo / , 

h = 0 and h = /. 

hi./ By the Ipo definition, t ~Ipo Ul or t ~Ipo U2 and the equality does not hold because 
the top symbols of the terms are distinct. Hence, by induction hypothesis, we have 
t ~Ipo /(0, Ul) or t ~Ipo /(0, U2). Form (1) we get that, in any case, /(0, t) ~Ipo f(Ul, U2). 

h = 0 The inequality is obvious since Ul ?Ipo 0 and U2 ?Ipo O. 

h = f Let t = f(h, t2)' If t ~Ipo Ul or t ~Ipo U2, then /(0, t) ~Ipo f(O, ud or /(0, t) ~Ipo 
f(O, U2). In both cases, the claim is a consequence of (1). 
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If UI "I 0, then in fact UI >lpo ° since U consists only of the symbols ° and I. From the 
assumption that I(UI, U2) >lpo I(tl' t2) it follows that I(UI, U2) >lpo 1(0, I(tl ' t2)). 

Otherwise, either ° = UI = tl and U2 >lpo t2 or else ° = UI >lpo tl and U >lpo t2 . The 
second case can not occur, since ° >lpo tl contradicts the minimality of ° among the 
constants. 

In the first case, we apply' the induction hypothesis to t2 </po U2 and obtain 1(0, t2) ~/po 
U2· Hence, 1(0, t) = 1(0,/(0, t2)) ~lpo 1(0, U2) = u. 0 

3 Coding the Post Corrrespondence Problem 

In this section we present the overall framework that we employ in the reduction of the Post 
Correspondence Problem to the theory of a lexicographic path ordering. The frame presented 
here is a modification of the method presented in [15]. 

An instance P of the Post Correspondence Problem [14] over the alphabet {a, b} is a given by 
a finite set of the form {(pi, qi) I ° ~ i ~ m; Pi, qi E {a, b } +}. P is solvable if there is a sequence 
i l . . . in E {I, ... , m} + such that Pi

l 
••• Pin = % ... qin. Solvability of an instance of the Post 

Correspondence Problem is one of the most famous undecidable problems [14] . 

Let I(x), F(x) and Sp(x, x') be formulae such that Sp(x, x') defines a well-founded ordering 
on A, that is there no infinite sequence to, tl, ... of ground terms with A F Sp(t;, t ;+l) for 
all i. We show how to construct a formula solvabler,sp,.r such that A F solvabler,sp ,.r 
holds if and only if there is a sequence (to, ... , tn ) E A- with A F I(to), A F F(tn ) and 
A F Sp(ti' t;+d for every i < n. 

Having such a solvabler,sp,.r at hand, we can encode the solvability of an instance P = 
{(Pi, qi) I i = 1, ... , n} of the Post correspondence problem over an alphabet {a, b} . First note 
that there is a straightforward representation of strings over the alphabet {a, b} as terms in 
T(F) as follows: 

• the empty string is represented as the term 0, 

• the function Aw.cons(a, w) on words corresponds to the function AX.f(O, x) on terms, 

• the function Aw.cons(b, w) on words corresponds to the function AX.f(J(O, 0), x) on terms. 

This induces an injective (but not surjective) representation function cw: {a, b}- -t T(F). For 
instance, cw(ab) = 1(0, I(J(O, 0), 0)). In the following, we will often identify a string with its 
term representation and write w instead of cw( w). For every fixed word v E {a, b} - we can now 
easily define a formula x = pref iXVX' with the property that for all w E {a, b} - and tEA, we 
have 

AFt = prefixvcw(w) iff t = cw(append(v , w)) 
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f f 

~ ~ 
a cw(l) f c 

~ 
o cw(r) 

Figure 1: The term cw(l, r). 

In the Post Correspondence Problem, we have in fact to consider sequences of pairs of strings. 
A first attempt of a pairing function could be to map (l, r) to the term f(cw(l), cw(r)). With 
this approach, we can not have both Lemma 3.4 and Lemma 3.5. We therefore take an other ap
proach and code a pair (l, r) as the term f(J( a, cw(l)), f(J(O, cw(r)), c)), where a = f(J(O, 0),0) 
and where c is a term which serves an index in a sequence of pairs (see Figure 1). We now 
define 

I(x) 

F(x) 

Sp(x, x') 

::Iz.x = f(J(O', 0), f(J(O, 0), z)) 

::Ixl.X = f(J(O" xL), f(J(O, XI), 0)) /\ XI =1= 0 

::lxI, x r , Z, x;, x~, Z'. X = f(J(O" XI), f(J(O, Xr ), z)) 

/\X' = f(J(O', xD, f(J(O, x~), Zl)) 

/\z = f(O, Zl) /\ f(J(O, x r ), z) < x' 

/\ V (x; = prefixpxl/\ x~ = prefixqxr ) 

(p,q)EP 

where 0'= f(J(O, 0), 0). 

Lemma 3.3 An instance P of the Post Correspondence Problem has a solution if and only if 
there is a sequence (to, ... , tn) E A'" with A F= I(to), A F= F(tn) and A F= Sp(ti' ti+d for every 
i < n. 
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Proof 

Any such sequence (to, ... , t n ) obviously exhibits a solution to P. On the other hand, let 
(la, ro), ... , (In, rn) be a solution of P, where 10 = ro = CW(E) and In = rn =I- CW(E). We 
define the sequence (to, ... , t n ) by t; = f(J(a, cw(l;)), f(J(O, cw(r;)), r-;(O))) where we take 
the inductive definition 

° 1(0, r(O)) 

Now, every two consecutive elements of the sequence are in the relation Sp, as the reader easily 
verifies. Note that, by the definition of the coding function cw, f(a, cw(v)) >/po f(O, cw(w)) 
for all v, wE {a, b}*. 0 

The following lemma will be used in Section 4. 

Lemma 3.4 If A F= Sp(t, t'), then t </po t'. 

Proof 

By the definition of Sp(t, t'), we know that 

t = f(J(a, tI), f(J(O, t r ), u)) and t' = f(J(a, t/), f(J(O, t~), u')) . 

Furthermore, by the definition of the Post Correspondence Problem, ti >/po t/ and t~ >/po tr · 

Hence, f(a, ti) >/po f(a, t/). The claim follows, since t' >/po f(J(O, tr ), u) by definition of 
Sp(t, t'). 0 

Lemma 3.5 Sp defines a well founded relation on A, that is there tS no infinite sequence 
to, tl,· .. of ground terms with A F= Sp(t;, t;+d for every i. 

Proof 

This follows immediately form the fact that the "z-component" is decreasing with respect to 
the subterm relation. 0 

The construction of solvableI,Sp,F uses some subformulas. constructionSp,F y will express 
the fact that y can be interpreted as a sequence (to, ... , tn ) with A F= F(tn ) and A F= Sp(t;, ti+l) 
for every i < n. x head y is intended to express that x is the head of the list y, (x, y') sub Y 
is intended to express that the sequence with head x and tail y' is a subsequence of y and 
nonempty y will express that the list y has a head. 

Now we can define 

sol vableI,Sp,F 3x, y. I(x) 1\ constructionSp,F y 1\ 3y'(x, y') sub y 

constructionSp,F y .- \Ix, y'. (x, y') sub y-+ 

{F(x) V (nonemptyy' 1\ \lx'.x' head y' -+ Sp(x, x'))} 
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We have to verify that A F solvableI S :F if and only if P has a solution. The two following , p, 

lemmata show what needs to be done in order to prove this equivalence. We define 

Seq:= {(to , ... , tn ) E A'" A F F(tn ) and A F Sp(ti,ti+d for all i < n} 

Lemma 3.6 Let ct: Seq -+ A such that for all t, u E A and s E Seq we have 

A F non empty ct( s) iff s =1= 0 
A F thead ct(s) iff s = cons(t, c') for some c' E Seq 

A F (t , u) sub ct(s) iff u = ct(s') for some s' E Seq 

and cons(t, s') is a subsequence of s 

If P has a solution, then A F solvableI,Sp,:F· 

Proof 

This follows directly from Lemma 3.3. 

Lemma 3.7 Suppose that the following statements hold: 

(2) 

(3) 

(4) 

o 

'v'y.nonemptyy -+ 3x.xheady (5) 

'v'x, x', y, y'.(x, y') sub Y /\ x'heady' /\ Sp(x, x') -+ 3y".(x', y") sub y (6) 

If A F solvableI,Sp,:F, then P has a solution. 

Proof 

Suppose that A F constructionsp,:F b. Using (5), (6) and Lemma 3.5, we show that if 
A F (t, u') sub u, then there is a sequence to, . .. , tn E A" such that t = to, A F F(tn) and 
A F Sp(t;, ti+d for all i < n. We proceed by induction on the relation Sp which is well 
founded by Lemma 3.5. If A F F(t), then we can take the sequence to be (t), and we are 
done. Otherwise, A F nonempty u holds. By (5), there is an t' with AFt' head u. From the 
definition of construct ionI,Sp ,:F y we get that A F Sp(t, t'). Hence, by (6), there is a u" such 
that A F (t',u") subu. Now we can apply the induction hypothesis on t', which yields the 
claim. By Lemma 3.3, P has a solution. 0 

The number of quantor alternations of the formula solvableI,Sp,:F depends of course on the 
quantifier prefix in the subformulas. The reader easily checks that sol vableI,Sp,:F has the 
quantifier prefix 3"'v''' (that is the best we can get with this approach) if and only if 

I(x) 
Sp(x, x') 
F(x) 

has quantifier prefix 3"'v''', 

has quantifier prefix 'v''', 
has quantifier prefix 'v''', 
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nonempty y has quantifier prefix 'v''', 

xheady has quantifier prefix 3", 

(x,y') suby has quantifier prefix 3·. 



f 

~ 
9 f 
I r---. to .... 

. -----
f 

~ 
o 

Figure 2: The term ct((to, . .. ,tn )). 

The formula I(x) is already in the required form, but for Sp(x, x') and F(x) we have to find 
equivalent formulae in the V· -fragment. This can be achieved with the quantifier elimination 
method of [3] . For the case of Sp(x, x') we have to extend this to inequalities. We illustrate 
this extension only with a simpler example: 3y, y'.x = f(y, y') 1\ y < y' is equivalent to 

Vu. 1\ x i= g(u) 1\ Vy, y'.x = f(y, y') -+ y < y' . 
gi-i 

4 The undecidability proof 

Following the method presented in Section 3, we will define the predicates nonempty y , x heady, 
(x, y') sub y and the coding function ct and verify the conditions 5, 6, 2, 3, 4. 

4.1 The coding function 

In this section we provide the missing definitions of the coding function and the predicates and 
prove Lemma 3.6. A sequence (to, .. . , t n ) E Seq will be coded as 

ct(to, . . . , tn ) = f(g(to), f(g(t 1), .. '0' f(g(tn ), 0) .. . )) 

which is depicted in Figure 2. The empty sequence will be encoded as O. 

Before we give the complete definition of the predicates, we first define an intermediate formula 

<Pl(X,y):= f(g(x),g(x)) ~ y > g(x) 
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The following lemma explains its meaning: 

Lemma 4.8 LetA F= (Pt(t,u) . Then 

• g(t) is a subterm of u 

• for every subterm go(v) ofu with go f:.F g, we have g(t) ~/po go(v). 

Proof 

For the second claim let go(v) be a subterm of u with go f:.F g. By the subterm property and 
since f # go (since 9 >F I), the first inequality of 4>1(t,U) yields f(g(t),g(t)) >/po go(v). Now, 
since go iF f, we have g(t) ~/po go(v) by definition of ~/po' 

For proving that g(t) is a subterm of u, we use an induction on the structure of u = h(Ul, . . . , un) . 

• If h iF f, then decomposing f(g(t), g(t)) >/po u according to the lpo definition , we get 
g(t) ~/po u which contradicts u >/po g(t). Hence, this case cannot occur. 

• If h <F f, then, for some Ui, f(g(t),g(t)) >/po Ui ~/po g(t). There are two cases: 

- Ui = g(t). In this case, g(t) is a subterm of u. 

- Ui >/po g(t). By induction hypothesis, g(t) is a subterm of Ui. Hence, g(t) is a 
subterm of u . 

• If h = f, then the second inequality of 4>1 (t, u) yields Ul ~/po g(t) or U2 ~/po g(t). If 
for some i equality holds, then the claim is proven. Otherwise, the first inequality of 
4>dt, u) yields g(t) >/po Ul and f(g(t), g(t)) >/po U2. Since this contradicts Ul >/po g(t), 
U2 >/po g(t) must hold. Hence, by induction hypothesis, g(t) is a subterm of U2 and 
consequently of u. 0 

Corollary 4.9 For every term u, if A F= 3X.4>1 (x, u) then there is a unique term gs( u) such 
that A F= 4>1 (gs( u) , u) . 

If we want to ensure the existence of an x such that A F= 3x .4>1 (x, u) we have to assume more 
hypotheses on u. More precisely, let 

1j;(y) = g(O) < y < g(g(O)) 

l\'Vx.y # g(x) 

l\'Vx.y> f(g(x), g(x)) -+ y > g(l(O, x)) 

l\'Vx. 1\ --,(y> JI(x) 1\ Y > h(x')) 
h .hEF\{O} 

h -(.Fh . f2~Ffl 

Lemma 4.10 Let u E T(F). Then A F= 1j;(u) -+ 3X.4>I(X, u). 
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Proof 

From the inequality g(g(O)) >lpo u, we infer that every symbol in u is equal to or smaller than 
g. From this and the fact that g(O) <lpo u we infer that u contains at least one occurrence of g. 

By the last part of 1f;(u) , u cannot contain two uncomparable function symbols. This means 
in particular that all subterms of u are comparable w.r.t. ?:lpo' Since u contains at least one 
occurrence of g, there is a greatest term w such that g(w) is a subterm of u. We will show that 
A 1= 4>1 (w, u). 

We have of course u ?:lpo g(w). Moreover, u is not equal to g(w) by the second part of 1f;(u) . 
Now, if f(g(w),g(w)) "llpo u, we have u >lpo f(g(w),g(w)) since all symbols of wand u are 
comparable w.r.t. >F. From the third part of 1f;(u) we conclude that u >lpo g(J(O, w)). This 
contradicts the maximality of w, Hence f(g(w), g(w)) ?:lpo U. 0 

Lemma 4.11 For all sequences s = (to, ... ,tn ) with n ?: 1, we have A 1= 1f; ( ct( s)) . 

Proof 

The formula 1f;(ct(s)) consists of four parts. 

1. A 1= g(O) < ct(s) < g(g(O)). This follows immediately from the definition of <lpo' 

2. A 1= Vx.ct(s) =1= g(x) since ct(s) = f(g(to, u)). 

3. A 1= Vx.ct(s) > f(g(x),g(x)) -+ ct(s) > g(J(O, x)). If ct(s) >lpo f(g(t),g(t)), then 
t; >lpo t holds for some i. By Lemma 2.2, this implies ti ?:lpo f(O, t). Hence, ct(s) >lpo 

g(t;) ?:lpo g(J(O, t)). 

4. Every term smaller than ct(s) contains only symbols smaller than or equal to g. By our 
assumption on the precedence, all these symbols are comparable. This proves the ' last 
part of 1f;(ct(s)). 0 

Corollary 4.12 For all sequences s = (to, ... , tn) with n ?: 1, we have A 1= 4>1 (tn, ct(s)). 

Proof 

By Lemma 4.11, A 1= 1f;(ct(s)). By Lemma 4.10, there is a t with A 1= 4>(t, ct(s)). By 
Lemma 4.8, t must be equal to tn. 0 

Now, let (x, y') sub y be the formula (this is the main trick): 

( 4>1 (x, y) 1\ y' = 0) v 3w. f (g (x) , f (g (x) , y')) > y ?: f (g (x) ,y') > 9 ( w) > 9 (x) 1\ 4>1 ( w, y) 

Lemma 4.13 Property (..1) holds. 
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Proof 

We have to prove for all (to, ... , tn) E Seq: 

A F (t, u') subct(to, ... , tn) <===> exists i ~ n with t = ti and y' = ct(ti+1, .. . , tn). 

It is understood that (tn+l,' .. , tn) is the empty sequence. First, note that tn >Ipo ... >Ipo to 
by definition of Seq and Lemma 3.4. This implies in particular that gs(ct(to, ... , tn)) = tn. 

For the direction from left to right we have to consider two cases. If A F <i>I (t, ct(to, ... , t n)) 1\ 
u' = 0, then t = tn and the claim is proven. 

Otherwise, 

A F f(g(t), f(g(t), u')) > ct(to, . .. , tn) ~ f(g(t), u') > g(r) > g(t) 1\ <PI (r, ct(to, . .. , tn)) 

holds for some rEA. By Lemma 4.8, in fact r = tn. Now, A F g(r) > g(t), hence tn >Ipo t. 
Let i be the smallest index such that ti ~Ipo t. Such an i exists since tn >Ipo t . Hence, 
ti' i:.lpo t for all i' < i . Using the lpo rules, ct(to, . . . , tn) ~Ipo f(g(t), u') is simplified into 
ct(ti, . .. , tn) ~Ipo f(g(t), u'), hence ct(ti, ... , tn) >Ipo u'. 

Now let j be the smallest index such that t i:.lpo tj. Note that j is well defined since t i:.lpo tn· 
Since f(g(t), f(g(t), u')) >/po ct(to, ... , tn), it follows that f(g(t), f(g(t), u')) >Ipo ct(tj, ... , tn). 
Since by construction t 'tlpo tj, t his inequality is equivalent to u' "?lpo ct(tj, ... , t n ). Together 
we have 

ct(ti' ... , tn) >Ipo u' ~Ipo ct(tj, ... , tn) 

and hence i < j. By our construction of j this means t ~Ipo ti. On the other hand we have 
ti ~/po t, hence t = ti. Using the definition of an lpo, we can now simplify 

f(g(ti), f(g(ti), u')) >Ipo ct(to, ... , tn) =>* f(g(ti), f(g(ti), u')) >Ipo ct(ti, ... , tn) 

=> f(g(ti), u') >Ipo ct(ti+l,"" tn) 

=> U' ~Ipo ct( ti+1, ... , tn) 

On the other hand, we have 

ct(to, ... , tn) ~/po f(9(ti), u') =>* ct(ti, . .. , tn) ~/po f(g(ti), u') 

=> ct(ti+1, ... , tn) ~Ipo u' 

Hence, u' = ct(ti+1,"" tn). 

For the direction from right to left we only have to check that 

A F 3w. f(g(ti),f(g(ti),ct(ti+1, ... ,tn))) > ct(to, . . . ,tn ) 

~ f(g(ti), ct(ti+l,"" tn)) > g(w) > g(ti) 

1\4>1 (w, ct(to, ... , tn)) 
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for all i < n and that A 1= 1>1 (tn, ct(to, .. . , tn)). Both properties follow from tn >lpo . . . >lpo to 
and the definition of '?lpo' (For the first property, we choose w = t n ). 0 

Now we define 

xheady 

nonemptyy 

3y'.y = f(g(x), y') 1\ 3w.(x < w 1\ 1>1 (w, y)) V y' = 0 

Vu, u' . 1\ y i= J'(u) 1\ 1\ y i= f(g'(u) , u') 1\ 1jJ(y) 
'f'#f 9'#9 

Nix, y'.(y = f(g(x), y') -+ (y' = 0 V 'v'W'(¢1 (w, y) -+ x < w))) 

Lemma 4.14 Properties (2) and (3) are satisfied with the above definitions. 

Proof 

We have to prove 4 implications 

1. If A 1= nonemptyct(s) then s i= 0. Let us first note that 

Vu, u'. 1\ y i= J'(u) 1\ 1\ y i= f(g'(u), u') 
f'#f 9'#9 

is logically equivalent to 
3x, y'.y = f(g(x), y') 

(thanks to the results of [3] for example). This means that the sequence is indeed non
empty. 

2. If s i= 0, then A 1= nonemptyct(s). We split this proof in three parts corresponding 
respectively to the three parts in the formula nonempty y. 

• When s is not empty, ct(s) = f(g(to), u) for some u. Hence the first part of the 
formula is valid: 

A 1= Vu, u'. 1\ ct(s) i= J'(u) 1\ 1\ ct(s) i= f(g'(u) , u') 
1'#f 9'#9 

• A 1= 1jJ(ct(s)) has been proven in Lemma 4.11. 

• For the last part of the formula let ct(s) = f(g(to), u). If u = 0, then the formula 
holds. Otherwise, u must be of the form f(g(tl), v) with tl >lpo to. By construc
tion, g(O) <lpo u <lpo g(g(O)). Furthermore, for all w such that 1>dw,ct(s)) holds, 
g(w) '?lpo g(t1) >/po g(to) thanks to Lemma 4.8. As a consequence , w >/po to holds. 

Hence, in all cases, A 1= nonemptyct(s). 

3. If A 1= theadct(s) then s = cons(t, s') for some s' E Seq. Indeed, by definition of 
x heady, we must have A 1= 3y'.ct(s) = f(g(t), y') which means that s = (t, t1, . . . , tn) 
and s' = ct(t1 , ... , tn ). 
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4. If s = cons(a, c') for some c' E Seq, then A F aheadct(s). Indeed, ct(s) = f(g(a), u) for 
some u. If u = 0, then the claim is proven. Otherwise, tn >/po a and A F <PI (tn, ct(s)) 
by Corollary 4.12. 0 

Note that actually some parts of the definitions of x heady and nonempty yare unnecessary for 
this lemma. However, they will be useful for proving property 6. 

4.2 Properties of the predicates 

In this subsection we prove Lemma 3.7. We are left to prove properties 6 and 5, which is the 
subject of the next two lemmas. 

Lemma 4.15 Property (5) holds. 

Proof 

We have already seen that the first part of the formula nonempty u implies that there are t, u 
such that u = f(g(t), u') If u' = 0, then we are done. Otherwise, since A F 'l/;(u) there is by 
Lemma 4.10 a t' with A F <Pdt', u). From the last part ofnonemptyu it follows that AFt < t'. 
o 

Lemma 4.16 Property (6) holds. 

Proof 

Assume that (t, u') sub u and t' head u' and Sp(t, t') hold. A ~ t' head 0, hence A F (t , u') sub u 
implies that 

A F 3w·f(g(t), f(g(t), u')) > u ~ f(g(t), u') > g(w) > g(t) 1\ <PI (w , u) (7) 

holds. Moreover, by definition of t' head u' we have that for some u" 

A F u' = f(g(t'), u") 1\ (u" = ° v 3w'.<pdw', u') 1\ t' < w') 

Moreover, by Lemma 3.4, A F Sp(t, t') implies that t' >/po t. 

We shall show that 

A F (u" = 01\ t' = gs(u)) V (J(g(t') , f(g(t'), u")) > u ~ f(g(t'), u") > g(gs(u)) > g(t') 

Note that, by (7) and (8), gs(u) and gs(u') exist. Ther~ are two cases: 

(8) 

t' = gs(u) . From (7) and Lemma 4.8, we know that u ~/po f(g(t), u') >/po u' ~/po g(gs(u')) . 
By the lpo rules, there must be a subterm h(f) of u with h I..F 9 and h(f) ~/po g(gs(u')) . 
By the second part of Lemma 4.8, this means g(gs(u)) ~/po h(f) ~/po g(gs(u')), hence 
gs(u) ~/po gs(u'). This contradicts t = gs(u) </po gs(u'), hence u" = ° follows from (8). 
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t' =1= gs(u) . We have to prove four inequalities 

1. A F f(g(t'), f(g(t'), u")) > u. From (8) and form t' >Lpo t, we get 

f(g( t'), f (g( t'), u")) = f (g(t'), u') > Lpo f(g (t), f (g (t), u')) > Lpo u . 

2. A F u ~ f(g(t')' u"). From the assumptions, we get 

u ~Lpo f(g(t), u') = f(g(t), f(g(t'), u")) >Lpo f(g(t'), u") . 

3. A F f(g(t')' u") > g(gs(u)) . Indeed, A F f(g(t), f(g(t'), u")) > g(gs(u)) which 
simplifies, since by (7) t <Lpo gs(u), to f(g(t'), u") ~ g(gs(u)). The two terms 
cannot be equal since they have distinct head symbols. 

4. A F g(gs(u)) > g(t'). Let u = r[gl(ih), ... ,gn(vn)] where all symbols occurring in 
r are strictly smaller than 9 and gl, ... ,gn are not strictly smaller than g. In other 
words, gdV1), ... , gn(vn) are the maximal subterms of u headed by symbols which 
are not smaller than g. By Lemma 4.8, g(gs(u)) ~Lpo gi(Vi) for every i. On the 
other hand, u >Lpo g(t'). Now, using the lpo rules, this means that there is some j 
such that gj(Vj) ~Lpo g(t'). Altogether, g(gs(u)) ~Lpo g(t') . But, by hypothesis, the 
equality does not hold. Hence g(gs(u)) >Lpo g(t'). 0 

Theorem 4.17 Let F contain (at least) one binary symbol f, one unary symbol 9 and one 
constant O. The 'v'*3* fragment of the theory of a lexicographic path ordering extending a 
precedence in which 0 is a minimal constant, f is minimal in F - {O} and 9 is a minimal 
symbol greater than f is undecidable. 

Proof 

The reduction of the Post Correspondence Problem to the validity of'v'*3* formula is established 
on the on hand by Lemma 3.6, Lemma 4.14 and Lemma 4.13, and on the other hand by 
Lemma 3.7, Lemma 4.15 and Lemma 4.16. 0 

5 Undecidability of the simplification rule 

Let us recall the simplification rule given in introduction and which corresponds to the "total 
simplification rule" of [10]. 

s-+tlc u-+vlc' 

u -+ v I c' s[v]p = tic' /\ sip = u 
If T(F) F V'Var(s)3Var(u).c =} (c' /\ sip = u) 

When writing a constrained rule like s -+ tic, it is understood that Var(c) ~ Var(s, t). We 
consider the constraint system consisting of constraints of the form 3Y1, ... ,Yn.b where b is 
boolean combination of equalities and inequalities. 
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Theorem 5.18 Under the same assumption on the signature than in Theorem 4.17, the set 
of instances of the simplification rule is undecidable. This also holds, when c is instantiated to 
be T. 

Proof 

We reduce the validity problem <;>f a '1*3* sentence VXo, .. . , xn3yo , ... , Yrn . c to the problem of 
determining instances of the simplification rule. This sentence is obviously equivalent to 

VXo, ... , xn3z0, ... , Zn, Yo,·· · , Yrn· Zo = Xo /\ ... /\ Zn = Xn /\ c[zo/xo, . .. , zn/xn] (9) 

where Zo, ... , Zn are fresh distinct variables. We use the abbreviations 

F(x) f(xo, f(·. ·f(xn , 0) ... )) 
F(z) f(zo, f( . . . f(zn, 0) ... )) 

c' c[zo/xo , ... , zn/xn] 

Now, (9) is equivalent to 

VXo, .. . , xn3z0 , .. . , Zn, Yo, . .. , Yrn. c' /\ F(z) = F(x) 

This sentence is valid in A if and only if 

F(x) -+ 0 I T F(z) -+ 0 I c' 

F(z) -+ 0 I c' 0 = 0 I c' /\ F(x) = F(z) 

is an instance of the simplification rule. o 

6 Concluding Remarks 

We proved the undecidability of the '1*3* fragment of lexicographic path orderings . This proof 
assumes some (weak) hypotheses on the precedence. Chosing 0 as a minimal constant is not a 
restriction. The main restrictions are 

1. among the minimal symbols of F\ {O} w.r.t. ?'F, there should be a (at least) binary one 
(w hich we called f); 

2. among the minimal symbols larger than f the should be a non-constant one (which we 
called g). 

We believe that assumption 2 above can be removed, at the price of some additional coding, 
which we avoid here for sake of simplicity. However, condition 1 cannot be removed easily. 
Actually, the decidability of the first-order theory of a total lexicographic path ordering on a 
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signature containing only unary symbols and constants remains open. Our method cannot be 
applied in this case, because we have no means by which we could encode sequences. Note 
however that we are able to prove the undecidability of the '1*:3*'1* fragment of the theory 
when assumption 1 is weakened to" "there is at least one non-unary and non constant function 
symbol". Indeed, using a larger fragment of the theory, we do not need lemma 2.2 which is the 
only place where we use minimality hypotheses on f . 
Similarly, our method cannot be applied directly to multiset path orderings. Indeed, lemma 
4.13 does not hold: we took advantage of the fact that 

x > x' F= f(x, y) > f(x', y') H f(x, y) > y' 

which does not hold for multiset path orderings. Moreover, this property is important since 
this is the way we "go down" in the terms, retrieving subterms. 

On the positive side, our method might be applied for proving undecidability of confluence 
of ordered rewrite systems (see [11]) which use a lexicographic path ordering. Indeed, strong 
ground confluence of such systems is expressed using a '1'":3'" sentence over ~Ipo. But there are 
still difficulties because in the problem, as it is stated in [11], the constraints only consist in 
single inequalities I > r for each rule I -+ r. It is possible to encode any quantifier-free formula 
over ~Ipo into a single inequation, using additional function symbols. However, we would need 
existential quantifications in the constraints. This can only be achieved through rules which 
introduce new variables. But then, we get only inequalities in which existentially quantified 
variables are all on the same side of the inequality, which is not sufficient for our purpose. 
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