LAYLAB:
A Constraint-Based Layout Manager for Multimedia Presentations

Winfried H. Graf

August 1993
Deutsches Forschungszentrum für Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other related subfields of computer science. The overall goal is to construct systems with technical knowledge and common sense which - by using AI methods - implement a problem solution for a selected application area. Currently, there are the following research areas at the DFKI:

- Intelligent Engineering Systems
- Intelligent User Interfaces
- Computer Linguistics
- Programming Systems
- Deduction and Multiagent Systems
- Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts technology transfer workshops for shareholders and other interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of the building-up phase.

Friedrich J. Wendl
Director
LAYLAB:
A Constraint-Based Layout Manager for Multimedia Presentations

Winfried H. Graf

DFKI-RR-93-41
This report is a revised version of a paper that is published in G. Salvendy and M. J. Smith (Eds.), *Proceedings of HCI International'93 (5th International Conference on Human-Computer Interaction jointly with 9th Symposium on Human Interface, Japan)*, Amsterdam: Elsevier, 1993, pp. 446-451.

This work has been supported by a grant from The Federal Ministry for Research and Technology (FKZ ITW-8901 8).
LAYLAB:
A Constraint-Based Layout Manager for Multimedia Presentations

Winfried H. Graf

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
Phone: (+49 681) 302-5264
Fax: (+49 681) 302-5341
E-mail: graf@dfki.uni-sb.de

Abstract

When developing advanced intelligent user interfaces composing text, graphics, animation, hypermedia etc., the question of automatically designing the graphical layout of such multimedia presentations in an appropriate format plays a crucial role. This paper introduces the task, the functionality and the architecture of the constraint-based multimedia layout manager LayLab.
Contents

1 Introduction 3

2 Related Research 3

3 Adaptive Multimedia Layout 4

4 The Architecture of the LayLab System 4

5 Integration and Implementation 6

6 Conclusions and Future Work 7
1 Introduction

Due to the growing complexity of information that has to be communicated by current AI systems, there comes an increasing need for building sophisticated intelligent user interfaces that take advantage of a coordinated combination of different media and modalities, including graphics, canned and generated text, animation, hypermedia, virtual realities etc., to produce a flexible and efficient information presentation. Therefore, to communicate generated multimodal information to the user in an expressive and effective manner, a knowledge-based layout component should be an integral element of each intelligent multimedia presentation system. A layout manager has at its disposal a wide range of multimedia output and will seek to combine these to best effect. In order to achieve a coherent and consistent output, it must be able to reflect certain semantic and pragmatic relations specified by a presentation planner [Rist & André 93].

As with many other interesting AI design problems, the determination of an aesthetically pleasing layout can be viewed as a discrete combinatorial problem. In this paper, we will illustrate the exploitation of advanced constraint processing techniques such as constraint hierarchies, intelligent backtracking mechanisms and incremental compilation by the example of the LayLab testbed system [Graf 92], the automatic layout manager of the multimedia presentation system WIP (Knowledge-based Presentation of Information, cf. [Wahlster et al. 92, André et al. 93]). LayLab addresses a dynamic adaptation of multimedia presentations to achieve an expressive and effective output with high coherence. Here, we view layout as an important carrier of meaning.

2 Related Research

As graphics hardware becomes more and more sophisticated, computer-based multimedia communication achieves a crucial role in intelligent user interfaces (cf. [Sullivan & Tyler 91, Ortony et al. 92, Catarci et al. 92, Maybury 93]). While much work in this area has been focused on the automatic synthesis of graphics, the automatic layout design of multimedia presentations has only recently received significant attention in artificial intelligence research. Some interesting early efforts focused on rules and design grids to automating display layout (e.g., [Beach 85, Feiner 88]). Recent approaches investigate more sophisticated techniques such as constraint-based and case-based reasoning methods for representing graphical design knowledge (e.g., [MacNeil 90, Graf 91]). The importance of a deeper treatment of multimodal constraints in information presentation in order to address the ergonomic aspects of layout has also been stressed by [Dale 92].

Further representative research related to in this paper entered the area between interactive graphics and constraint systems, e.g., the constraint-oriented simulation
laboratory *ThingLab* [Borning 81, Maloney et al. 89] developed at Xerox PARC. Up to now only rudimentary work has been done in the area of layout of dynamic presentations. *Animus* [Duisberg 87] is one of the first systems that allows for easy construction of an animation with minimal concern for lower-level graphics programming. Here temporal constraints are used to describe the appearance and structure of a picture as well as how those pictures evolve in time. In an application of the *Kaleidoscope* language [Freeman-Benson 90], temporal constraints are used to update the display of graphical objects which are manipulated by mouse actions interactively and maintain their consistency requirements.

The importance of the text layout dimension has also been stressed by recent work at USC/ISI [Hovy & Arens 91] that involves the generation of formatted text exploiting the communicative function of so-called textual devices.

3 Adaptive Multimedia Layout

A fundamental goal of our work is to construct a universal framework for automatic layout management, as an integrated component of a multimedia presentation system, that makes intelligent use of human visual abilities and design parameters whenever arranging multimedia output in any kind of presentation. Thus, from the functional viewpoint the main task of a knowledge-based layout manager is to convey certain semantic and pragmatic relations specified by a presentation planner to arrange the visual appearance of a mixture of multimedia fragments delivered by media-specific generators, i.e., to determine the precise size of the individual layout elements and the exact coordinates for positioning them in the presentation space (see Fig. 1). *LayLab* deals with page layout as a rhetorical force, influencing the intentional and attentional state of the reader.

One of our major design goals is the generation of highly adaptive interfaces which can be tailored to the needs and requirements of an intended target audience and situation. So, the generation of a layout is controlled by a set of design parameters such as user’s layout preferences, presentation type, presentation intention, output mode (incremental vs. complete only), resource limitations, output medium, and more.

4 The Architecture of the LayLab System

The design of LayLab’s conceptual architecture follows a modular approach embedding a positioning component, a grid generation module, an intelligent typographer, a document beautifier and an interaction handler (see Fig. 2).
A central idea underlying automatic layout of multimedia presentations is the incorporation of application domain-specific knowledge as well as commonsense knowledge about basic design heuristics into the design process, i.e., an encoding of procedural and declarative geometric knowledge (cf. also [Graf 92]). We use automatically generated superimposed grid structures as an ordering framework for efficiently designing functional layouts. As has been proven in previous work (e.g., [Graf 91]), constraint processing techniques provide an elegant mechanism to specify layout requirements in graphical environments as well as to declaratively state design-relevant knowledge about heterogeneous geometrical relationships, characterizing properties between different kinds of multimedia items that can be maintained by the underlying system.

Therefore, Laylab exploits a sophisticated constraint solver model comprising two dedicated solvers for handling different kinds of graphical constraints defined on constraint hierarchies and finite domains. An incremental constraint hierarchy solver based on the DeltaBlue algorithm [Freeman-Benson et al. 90] and a domain solver that handles finite domains using forward checking (cf. [Hentenryck 89]) are integrated in a layered model and are triggered from a common meta level by rules and defaults. The underlying constraint language is able to encode graphical design knowledge expressed by semantic/pragmatic, geometrical/topological, and temporal relations. As in interactive graphical environments constraints frequently have only local effects and the constraint solver must be capable of finding solutions without reducing the direct manipulation responsiveness, they have to be incrementally generated by the system on the fly. The text layout problem has also been addressed
by a constraint-based approach. Here, high-level specifications of relations between textual devices are expressed by constraints which can be compiled into low-level text formatting routines.

5 Integration and Implementation

Considering this architecture, a complete layout design is achieved stepwise via a refinement process. So, layout considerations can influence the early stages of the presentation planning process and constrain the media-specific generators. To handle dependencies between content generation and layout generation, WIP enables bidirectional communication to take place between the layout manager and the presentation planner. In case a revision of layout is deemed necessary layout manager and presentation planner must negotiate.

A prototype version of the LayLab system has been implemented on a Symbolics XL 1200 Lisp machine and several MacIvory workstations under Genera 8.0 using Symbolics Common Lisp/CLOS and Flavors for object-oriented interface programming and it is fully integrated in the overall WIP system.
6 Conclusions and Future Work

As a first step towards a conceptual framework for managing layout of multimedia presentations we have outlined the architecture of the multimedia layout manager LayLab. While the previous work has concentrated on constraint formalisms for supporting the layout design of static text-picture presentations, most of our current research is concerned with generalizing this constraint-based approach towards interactive layout design including further modalities like dynamic and canned presentation parts (e.g., hypermedia, animation, video). Here, the layout manager will be concerned with arranging the generated multimedia output as well as managing the interface to the user and the application. Since animated multimedia presentations can enhance the effectiveness and expressiveness of both, the visualization of the incremental layout process and dynamic application scenarios, animated layout is another area of our future research. A next version of the system will allow the user to tailor the interface to his needs by editing incrementally laid out presentations, changing default layout schemata interactively or working on virtual displays.

Acknowledgements

The research reported in this paper has been carried out in the WIP project which is supported by the German Ministry for Research and Technology under contract ITW 8901 8. I would like to thank Wolfgang Wahlster, Elisabeth André and Thomas Rist for valuable comments on this work. The implementation has benefited from the contributions of our students Wolfgang Maaß, Stefan Neurohr and Dudung Soetopo.

References

DFKI Publications

The following DFKI publications or the list of all published papers so far can be ordered from the above address. The reports are distributed free of charge except if otherwise indicated.

DFKI Research Reports

RR-92-40
Philipp Hanschke, Knut Hinkelmann: Combining Terminological and Rule-based Reasoning for Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards Group Scheduling
32 pages

RR-92-42
John Nerbonne: A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck, Jakob Mauss: A Heuristic driven Parser for Attributed Node Labeled Graph Grammars and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist, Elisabeth André: Incorporating Graphics Design and Realization into the Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth André, Thomas Rist: The Design of Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth André, Wolfgang Finkler, Winfried Graf, Thomas Rist, Anne Schauder, Wolfgang Wahlster: WIP: The Automatic Synthesis of Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler: Plan Modifications versus Plan Generation: A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck, Ralf Legleitner, Ansgar Bernardi: Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann: Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt: On Abduction and Answer Generation through Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar Dengler, Jana Koehler, Gabriele Paul: PHI - A Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan, Susanne Biundo: A New Logical Framework for Deductive Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel Kader Diagne, Stephan Oepen: Natural Language Semantics and Compiler Technology
17 pages
RR-93-23
Andreas Dengel, Otmar Lutzy: Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel: Document Highlighting — Message Classification in Printed Business Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach to Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger: Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne, Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-33
Bernhard Nebel, Jana Koehler: Plan Reuse versus Plan Generation: A Theoretical and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster: Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske (Eds.): Neuere Entwicklungen der deklarativen KI-Programmierung — Proceedings
150 Seiten
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar Bernardi, Christoph Klauck, Ralf Legletiner, Gabriele Schmidt: Von IDA bis IMCOD: Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of Printed Scores and Transformation into MIDI
24 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-Based Layout Manager for Multimedia Presentations
9 pages

DFKI Technical Memos

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation: Developing a Compiler from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel: ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann: Prototypical Concept Formation An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung eines Compilers zur Transformation von Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh: A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel, Ralf Scheidhauer: On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg Thoben: The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical skeletal plan refinement: Task- and inference structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive Integrated Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta: Conflict Resolving Negotiation for COoperative Schedule Management
21 pages
DFKI Documents

D-92-19
Stefan Dittrich, Rainer Hoch: Automatische, Deskriptor-basierte Unterstützung der Dokument-analyse zur Fokussierung und Klassifizierung von Geschäftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generation of Natural Language with Tree Adjoining Grammars
57 pages

D-92-22
Werner Stein: Indexing Principles for Relational Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.): Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations- und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmodsuls mit Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas Labisch: Integrating Top-down and Bottom-up Reasoning in COLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell zur Repräsentation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke, Thom Frühwirth: Terminological Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters, Gernrod Laufköster: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems: Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-05
Elisabeth André, Winfried Graf, Jochen Heinsohn, Bernhard Nebel, Hans-Jürgen Profitlich, Thomas Rist, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jürgen Müller (Hrsg.):
Beiträge zum Gründungsworkshop der Fachgruppe Verteilte Künstliche Intelligenz Saarbrücken 29.-30. April 1993
235 Seiten
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur partiellen Textanalyse
53 Seiten

D-93-08
Thomas Kieninger, Rainer Hoch: Ein Generator mit Anfragesystem für strukturierte Wörterbücher zur Unterstützung von Texterkennung und Textanalyse
125 Seiten

D-93-09
Hans-Ulrich Krieger, Ulrich Schäfer:
TDL ExtraLight User's Guide
35 pages

D-93-10
Elizabeth Hinkelma, Markus Vonerden, Christoph Jung: Natural Language Software Registry
(Second Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.):
DFKI Workshop on Knowledge Representation Techniques — Proceedings
88 pages

D-93-12
Harold Boley, Klaus Elsbernd, Michael Herfert, Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations and Functions Made Easy
86 pages

D-93-14
264 pages
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$.).
LAYLAB:
A Constraint-Based Layout Manager for Multimedia Presentations

Winfried H. Graf