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Object-Oriented Concurrent Constraint 
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Abstl'act 

Oz is a n f' Xl )f' rill lf'n t.al highf' r-ordf'r concurrf' nt. cons t.ra int. p rogramming sys­
t.f' m IInd f' r df'w lop lll f' nt. a t, DFKI. It. cOl llhines id f'as fro lll log ic a nd concurrent. 
prog ra mmillg in a s impl f' yf' t. f'xpl't~ss ivl' la ngll agl' . Frolll logic prog ra lllluing 
Oz inh f' rit.s log ic vari a bll's a nd logic d at.a st.rur.t.llI'f'S, which prov idf' fo r a 
progra mmiug s t.y lf' wllf' re pa rt.i a l info l'lw\,t.i o n a ho llt. tl lf' va lll f' s of va ri a bl f's 
is impmwd concurrf' nt.I y a nd in Cl'f' llw nt.ally . A nowl ff'a t.lIl'f' of Oz is t.h a t. 
it. accommo d a t.es h ighf' r-ordf' r p rogra mming wit.ho ut. sacr ificing t.h a t. dpll o t.a­
t.io n a nd equa lit.y of va ri a hlf's cu I' capt.llrf' d hy firs t.-ordf' r logic . Allo t.her Ilew 
fl'at. llrp of O z is cons t.ra int. commtlllicat.ion , a nf' W fo rm of asyn chrono us com­
municat.io n I'x plo it.ing log ic vari a bl l's. COlls t.ra int. communicat.i on avo ids t.h p 
p rohlpm s o f st. rl'am commllnicat.ion , UtI' convent.io ll a l commllni cat.io ll m echa­
nism Pll1ployed in CO Il CIIITI' Il t. log ic p rog ra mming. Cons t.ra int. comllllllli cat.i on 
call I)f' Sf'f' 1l as prov idillg a minim al fo rlll o f s t. a t.1' full y compa t.ihl l' wit.h log ic 
d a t. a s t.nt c.t. ures. 

Basl'd on cons t.ra int. communicat.ion a nd higher-order p rog ra mllling, Oz 
readily support.s a va rie t.y of ohj l'd -orient.Pd progra mmillg st.yl l's incllldillg 
mlllt.iplf' inherit.a ll cl'. 
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1 Introduction 

Oz is an attempt. to create a high-level concurrent prograllllIlillg language bringing 

together the merits of logic and object-oriented programming. 

Our starting point was con current. constraint programming [14], which brings to­

gether ideas from constraint and concurrent logic programming. Const.raint. logic 

programming [R, 4], on t.he one hand, originat.ed wit.h Prolog II [5J and was prompt.­

ed by t.he nf'f'd to int.egrat.e nlllllbers and dat.a stl"llct.ures in an operat.ionally ef­

ficient., yf't. logically sOllnd manner. COnClIlTf'nt. logic programmillg [1.1], on the 

ot.her hand, originat.f'd wit.h t.hf' Rf'lat.ional Lallgllagf' [:3J and was prolllotf'd hy 

t.he Japanf'sf' Fifth Gf'lll:'ril.t. ioll Projf'ct., whf're logic programmillg was collcl:'ivcd 

as the basic syst.em progril.lliming language and tillls ha.d 1.0 aCCOllllt. for COllClIr­

rency, synchrouizat.ion and illdl:'t.l:'J"lninislll. For this purpose, till' cOllvent.ional 

SLD- resolu tion sc hellie had to he rf'placed wi t.h a lIew com I'll tat.ioll model ba.sed 

on the not.ion of collllllit.t.f'd choicf'. At first., tile nf'W modf'l developf'd as an ad Iloc 

const.ruction, bllt. fillally Maher [11J reil.\ized t.hat commitment of il.gent.s call be 

capturedlogicil.lly as cOllstril.illt f'ntailment.. A major laudlllark in the uew field of 

concurrent const.raint programilling is AKL [OJ, t.he first iJllplelllcnted conClJ)"rellt 

const.raiut lallgllil.ge accollllliodatilig search and (\Pep gUil.rds. 

The concu !Tent cOllst.raint. llloclf'l [14 J Cil.lI il'("("ollllllodat.e ob ject-orif'1l t.ed program­

lIling along t.he lilles of Shapiro alld Takf'lIchi's strealll-basl:'dlllOdel for Concllrrent 
Prolog [IG, 10]. Unfort.ll11at.ely, this lIIodel is illt.olerably low-level, which hecollles 

flllly apparent whell 011f' collsiders inheritance [7J. VlIlcan, Polka, and A'UM are 

attempt.s t.o create high-level objf'ct-orient.ed languages on top of concurrent logic 
languages (see [10J for references). DlIf' t.o the wide gap these languages have to 

bridge, t.hey however loosf' t.hf' silllplicity and flexibility of t.hf' lI11derlying base 
languages. 

Oz avoids t.hese difficlllt.if's by f'xtending the conCllrrent collst.ril.illt. lliodel with the 

feat lUes needf'd for a high-level object. lIlodel: a higher-order progralllllling facilit.y 

il.nd il. COllllllllllicil.t.ion prilllit.ive avoidillg t.he clulllsiness of st.ream comlllunication. 

With tllf'se ext.ensions t.he llf'f'd for a separat.e object.-orient.edlangllage disappears 

since t.hf' base language it.sl:'lf call express object.s a.lld illheritallce in il. cOllcise il.lld 

elegil.ut Wil.y. 

The Wil.y Oz provides for higher-order progril.lIlllling is ulliqlle ill t.hil.t. denot.il.tion 

and eqllalit.y of variil.bles il.re llevert.heless capt.ured by first.-order logic ollly. In 
fact, denotation of variables and the facility for higher-order programming are 

complet.p]y orthogonal concept.s in Oz. This is in contril.st to existing approaches 

to higher-order logic programllling [n, 2J. 
Constraint comlllunication is asynchronous and indeterlllinistic. A communica­

tion event. replaces two complementary communication tokens with an equality 

constraint. linking t.he part.ners of the commllnicat.ion. Constraint communica­

tion int.roduces a. minimal form of st.ate t.hil.t is fully compatihle with logic data. 

struct.ures. Efficient implement.ation of fair constraint communication is straight­

forward. 



The new concepts in Oz cannot be accounted for within the estahlished semantical 
frameworks . Thus the semantics of Oz is specified by a new mathematical model, 
called the Oz Calculus, whose technical setup was inspired by the 7r-calculus [12], 
a recent foundationally motivated model of concurrency. 

The paper is organized as follows. The next section outlines a simplified version of 
the Oz Calculus. Section 3 shows how the constraint system of Oz accommodates 
records, which are the congenial data structure for object-oriented programming. 
Section 4 introduces the concrete language. Section 5 presents one possible style 
of object-oriented programming in Oz featuring multiple inheritance. 

2 The Oz Calculus 

The operational semantics of Oz is defined by a mathematical model called the 
Oz Calculus [17]. In this section we outline a simplified version sufficing for the 
purposes of this paper. 

The basic notion of Oz is that of a computation space. A computation space 
consists of a number of agents connected to a blackboard (see Fig. 1). Each agent 
reads the hlackboard and reduces once the blackboard contains the information 
it is waiting for. The information on the blackboard increases monotonically. 
When an a.gent reduces, it may put new information on the blackboard and create 

o 

Agent 

\ 
Agent 

I A 
o 0 

A Blackboard 

o 0 

Figure 1: The blackboard metaphor 

new agents. Agents themselves may have one or several local computation spaces. 
Hence the entire computation system is a tree-like structure of computation spaces 
(see Fig. 1). 

The agents of a computation space disappear as soon as they reduce. We will see 
later how one can express long-lived agents with persistent identity. 

Formally, a computation state is an expression (T according to Fig. 2. (If ~ is a 
syntactic category, ~ denotes a possibly empty sequence ~ . .. ~.) Constraints, ab­
stractions and communication tokens resicle on the blackboard. Applications and 
conditionals are agents . Composition and quantification are the glue assembling 
agents and blackboard items into a computation space. Quantification introduces 
local variables . Abstractions may be seen as procedure definitions and applications 
as procedure calls. 
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:t:, !J, Z 

a,T,,,. 
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if w 
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weise a 

3J:'(a then T) 
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COllstraill t 
alJstrllCt.ioll 
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get tokell 

afJ pi ira/.ioll 

colldit.iollal 

colllposit.ioll 

CJ II illl /;i Ii rilt. iOll 

Figme :2: Expressions of t.he Oz Calclllus 

The clauses of a conditiollal a.re ullordered. Theil' guards, i.e., a in 3x(a then T), 
const.it.l1t.e local rOltlput.at.ioll spa.ces. Not.e t.hat any expression ran be takell a.s a 
gnarci; one speaks of a flat gua.rd if the guard is a const.raillt.. 

There are t.wo variable binders: qllallt.ificat.ion 3:/:a binds 
abstract.ion :t:: y / a binds the variables ill y wi t.h scope a. 
expression are defined accordin),';ly. 

:t: wi t.h scope a, and 
Free vMiables of an 

Computat.ion is defilled as redllct.ion (i.e., rewrit.ing) of expressions. A reduction 
st.ep is perforllled hy applying a redllction l'IIle t.o a suhexpression sat.isfyillg t.he 

i'I.pplicat.ion condit.ions of t. he rille. There is no bi'l.ckt.rackillg. Control is provided 
by the provisioll t.hat. redllct.ion l'IIles lllllSt. IlOt. he applied to lIJllte suhexpressions, 
i.e., suhexpressiolls t.hat. occllr wit.hill bodies of clauses, else PMt.S of condit.ion­
als, or hodies of i'I.bstri'l.ctiolls. It. is up t.o the illlplement.i'I.tioll whirh nOn-lIlllt.e 
sllbexpression is rewrit.tell by which applici'l.ble rule. 

Reduction "a -+ T" is defilled modulo structmal congruellce "a = T" of expres­
sions, that is, satisfies the inference rille 

a = a' a' -+ T' T' = T 
a-+T 

Structmal congruence is a ll ahst.ract. equality for computation states tl1l'ning them 

from plll'ely syntactic objects into semantic objects. Structlll'al congruence pro­

vides for associativity and commut.at.ivit.y of composit.ion, renaming of hound vari­
ables, quantifier Illohilit.y 

3:t:a 1\ T = 3:t:( a 1\ T) if :/: does not occur free in T, 

constraint simplificatioll, and infol'luatioll propagatioll from globa.l blackboards to 
local hli'l.ck hoards. 



2.1 Constraints 

Constraints (</>,'lj; in Figure 2) are formulas of first-order predicate logic providing 
for data structurE's. Logical conjunction of constraints coincides with composition 
of expressions. Constraints express partial information about the values of vari­
ables. The semantics of constraints is defined logically by a first -order theory b. 
and is imposed on the calculus by the congruence law 

if b. 1= ¢ - 'lj; . 

This law closes the black board under entailed constraints (since b. 1= ¢ ---- 7jJ iff 
b. 1= </> - ¢ 1\ 7jJ ). The congruence law 

if y is free for :/: in a 

extends equalities on the black hoard to the rest of the cornpu tation space (O"[y / xl 
is obtained from 0" by replacing every free occurrence of :/: with y). Equality of 
variables is strictly first-order: Two variables x, yare equal if the constraints on the 
blackboard entail x == y, and different if the constraints on the blackboard entail 
...,(x == V). The information on the blackboard may be insufficient to determine 
whether two variables are equal or different. Moreover, an inconsistent blackboard 
entails both ;/:==y and ...,(x==y). 

The Anullation Law 

:lx(¢ 1\ y:1Y) == T 

if b. 1= :Ix </> and y ~ £(x, ¢), where 

£(x,</» := {y E x I Vz: ¢ I=~ y==z ::} z Ex} 

provides for the deletion of quantified constraints and abstractions not affecting 
visible variables . £(x, </» is the set of all variables in x that are not eqnated to 
variables outside of x hy the constraint ¢ . 

2.2 Application 

An application agent xy waits until an ahstraction for its link ;/: appears on the 
blackboard and then reduces as follows: 

:l:y 1\ x:z/O" ---- :lz (z==y 1\ a) 1\ x:z/O" 

if Y and z are disjoint and of equal length . 

Note that the blackhoard y:z/O" 1\ x == y contains an abstraction for x due to 
the congruence laws stated ahove. Since the link x of an abstraction x: y /0" is a 
variable like any other, abstractions can easily express higher-order procedures. 
Note that an abstraction ;r:y/cr does not impose any constraints (e.g., equalities) 
on its link x. 
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2.3 Constraint Communication 

The semantics of the t.wo COllllllllllication t.okens is defined hy t.lw Communication 
Rule: 

:1: ! y 1\ z"? y -+ :1: = z . 

Application of t.his rule amount.s to a.n indeterministic transition of the blackboard 
replacing two complementary colllmunication tokens sharing the same link y with 
an equality constraint. The COlllmunication Rule is the only rule deleting items 
from the blackboard. Since agents read only constraints and abst.ractions, the 
information visihle to agent.s nevertheless increases monot.onically. 

2.4 Conditional 

It. relllains to expla.in t.he selllflntics of a conditional agent. 

if :lx1 (a1 then rd . .. :lxn (a" then Tn) else II .. 

The guards a ; of t.he clauses are local COllI pu tation spaces red uci ng concurrent­
ly. For the local cOIllPutations to he lllf'allingful it is essent.ial tha.t information 
from global hlackhoa nis is visihle OIl local hlackboards. This is achieved with t.he 
Propagation Law (recall t.hat t.he clauses are unordered): 

7r 1\ if 3x((7 then r) weise II. 

= 
7r 1\ if:lx (7r 1\ (7 then r) weise II. 

if 7r is a constraint 01' abstraction and 
no varin.hle ill x appears free in 7r. 

Read from top to hottom, the law provides for copying inforlllation from global 
blackboards to local blackhoards. Read from bot.tom to top, the law provides 
for deletion of local information that. is present globally. An example illustrating 
t.he application of the Propagfl.t.ion Law in hoth directions (as well as constraint 
simplification) is 

:1: = 1 1\ if (:t: = 1 then a) (:1: =2 then r) else II. 

=: :1: = 1 1\ if (T then a) (.1.. then r) else II .. 

The example ass umes t.hat the constraiIlt theory ent.ails that 1 and 2 are different. 

Operationally, the constrn.int silllplification and propagation laws can be realized 
with a so-called relative sil1lplification procedure [IJ. Relative simplification for 
the constraint system ullderlying Oz is investigated in [18J. 

There are two distinguished forms a guard of a clause may eventually reduce to, 
called sa.tisfiecl and fa.iled . If a guarci of a clause is sa.tisfied, the conditional can 
reduce hy cOlllmitting to this clause: 

if :lx(a then r) weise p. -+ :lx(a 1\ r) if :lxa =: T. 

7 



Reduction puts the guard on the glohal blackboard and releases the body of the 
clause. 

A guard is failed if the constraints on its black hoard are unsatisfiable. If the guard 
of a clause is failed, the clause is simply discarded: 

if 3x (1. /\ (1 then r) weIse Jl ~ if weIse Il. 

Thus a conditional may end up with no clauses at all, in which case it reduces to 
its else part: 

if else Il ~ /1 .. 

The reduction 

x=,=l /\ if (x=,=l then (1) (x=,=2 then r)else,l ~ x =,=l /\ (1 

is an example for the application of the first rule, and 

x='=3 /\ if (x=,=l then (1) (:t=,=2thenr)elseJl ~* x='=3/\ P 

is an example employing the other two reclllction rules . 

2.5 Logical Semantics 

The sub calculus obtained hy weakening the Anullation Law to 

3:;:</> == T if ~ 1= 3:;: </> 

and disallowing communication tokens and conditionals with more than one clause 
enjoys a logical semantics, which is obtained by translating expressions into foI'lllU­
las of first -order predicate logic as follows: composition translates to conjunction, 
quantification to existential quantification, and abstraction , application and con­
ditional translate as follows: 

',):: V / (1 ~ \IV (apply( xy) f-+ (1) 

xy ~ apply( xV) 

if 3:;:((1 then r) else 1" ~ 3x((1/\ r) V (--dx(1/\ II,). 

Under this translation, reduction is a.n equivalence transformation, that is, if (1 ~ r 
or (1 == r, then ~ 1= (1 f-+ r. Moreover, negation can be expressed since -,(1 is 
equivalent to if (1 then 1. else T. 

2.6 Unique Names 

A problem closely related to equality and of great importance for concurrent pro­
gramming is the dynamic creation of new and unique names. Roughly, one would 
like to have a construct gensym( :1:) such that gensym( x) /\ gensym(y) is congru­
ent to a constraint entailing -'( :1: ='= V). For this purpose we assume that there 
are infinitely many distinguished constant symbols called na.mes such that the 
constraint theory ~ satisfies: 

8 



1. ~ F= -,( (/. ~ b) for every two distinct names a, b 

2. validity of sentences wit.h respect to ~ is invariant under permutation of 
names. 

Now gensym(:r) is modeled as a generalized quantification 3(/( :1: ~ a), where the 
quant.ified nallle a is subject to a-renaming. With that. and quallt.ifier mobilit.y as 
stated above we in fact ob tain a constraint ent.ailing that. :r ami yare different: 

Note that. composit.ioll is not idempot.ent. Hence t.he expressions 3(/( :1: ~ (/) and 
3(/,(:1: ~ a) 1\ 3a( :i: ~ (/) == ..L are not. congruent. 

3 Records 

The const.raint. syst.em 1Ilideriyilig Oz [IX] provides a dOllla.in of so-called feat.me 
trees that is dosed Hllder record c'onstl'llction. Since records are t.he congC'uiai data 
structure for 1Il0<iellillg object-oriellt.ed progralliltlillg, we ollt.lille their constraillt. 
t.heory as far as is needed for t.he pnrposes of this paper. We will he very Ii heral 
as it comes t.o syntax. The reader may cOllsult [18] for details. 

Records are obt.ained with respect to an alphabet of constant. symbols, called 
atoms, and denotecl hy a, fl, j,!J. Records are constrllcted (and possihly decolll­
posed) by COllst.ra.ill t. s of t.he form 

where J is t.he la/H:·l, (/.1, ... , (1,,1/. are t.he pairwise dist.inct field nallles, and :/:1, ... , :1:.", 

are t.he vaiues of the record :/:. The order of the fields is 1Iot significallt. A zero-fi.eld 
record JO is identified with the at.om j. The selllallt.ics of record const.rllctioll is 
defined by t.he two axiom schemes 

fen: x) ~ fen: y) +--* X ~ Y 

fen: x) ~ g(b: y) -+ ..L if J -=I 9 or [71.] -=I [1)] 

where [71.] is t.he set of element.s of t.he sequence a. Field selectioll :1:.y is a part.ial 
fHnction OIl records satisfyillg the axiom schemes 

f (n:xb:y).b ~ y 

J(n: x) . b ~ y ~ ..L if b ~ [71.]. 

The function label( :r) yields t.he label of a record according to the scheme 

label(J(· .. )) ~ f. 

Finally, record adjunction "adjoinAt( :r., y, z)" adjoins a field y: z to a record x: 

adjoinAt(J(a: x b: y), b, z) 

adjoinAt(J(n: x), b, z) 

....:.. 

....:.. 

9 
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We write f(xl"'x n ) as a short hand for the record f(l:xl ... n:xn ). Thus we 
obtain Prolog tenns as a special case of records. The outlined constraint system 
is in fact a conservative extension of Prolog II's rational tree system. 

4 The Programming Language 

Having glimpsed at the mathematical model of Oz, we are now ready to see the 
concrete programming language. 

A procedure P taking 11 arguments can he defined with the concrete syntax 

proc {P Xl ... Xn} a end 

standing for the abstract expression 

P:Xl ... Xll/a A 3a(P==proceclure(name:aarity:n)). 

Thus a procedure definition iutroduces an abstraction and equips it with a unique 
identity. This construction ensures that a. variable can link at. most one ab­
straction on a consistent blackboard. Since the variable P denotes the record 
procedurt>(nallle: a arity: 11) rather than the abstraction, we can test for equality 
between P and other variables. The resulting first-class equality for procedures 
(Le., procedure identities) provides for useful programming techniques. The fact 
that procedures have uniqne identity is also important for the efficient implemen­
tation of the reduction rule for applications. 

The following expression defines a map function for lists in concrete Oz syntax: 

proc {Map X P Y} 
if H Tin 

X = HIT 
then 
y = {P H} I {Map T P} 

else 

fi 
end 

X = nil 
Y = nil 

The atom nil stands for the empty list, and HIT abbreviates the record cons(H T) 
representing the list whose head is H and whose tail is T. The "H T in" prefix 
quantifies the variables Hand T in both the guard and the body of the clause. 
Composition is written as juxtaposition. Variahles start with an upper-case letter 
and are thns distinguished from atoms, which start with a lower-case letter. The 
line Y = {P H}I{Map T P} contains two nested applications, which are eliminated 
using auxiliary variables and composition: 

3 U 3 V (Y == cons( U V) A PH U A Map T P V). 

10 



proc {Producer} 
exists Ack in 
item ('yellow brick' Ack ok) ! Channel 
if Ack = ok then {ProducE'r} fi 

end 
proc {Consumer} 

exists X Ack in 
itE'IIl (X ok Ack) ? Channel 
if Ack = ok then {AddToRoad X} {ConsulIler} fi 

end 

Figme 3: SYllchronized prodllcN-consulller COllllllllllicat.ioll 

We will use nE'stE'd llot.ation frequclltly, thus alleviatillg the vE'rhoseness of the 
pmely rE'lational ca.lculus. (The Oz Calcullls is designed purely relational sillce 
this setup provides for thc lIIinilllal and orthogonal orgallizatioll of its constructs; 
for instance, cOllstraillts are cOlllplE'tE'ly sPj>aratE'd froIll the ot.her constrllcts.) 

Constraint COllllllllllicatioll is aSYllchronous. Synchronous COllllllllnicatioll can 
be exprE'ssed by colllhinillg collstraillt COllllllullicatioll wit.i1 tlw condit.ional III 
the producer-collsllluer exalllple in Figlll'e :3 , colllputatioll susppnds IIntil (0111-

lllllnication has taken place (signaled hy all acknowledgelllen t). The default 
for a missing E'\se part of a cOlldi tiollal is else true. The lIesteel get. t.okell 
itellJ(X ok Ark) ? Cllcl.lllH:'1 t.ra.llslaJ.es into 

3 Y ( Y == il./:'lIl( X ok Ark) 1\ Y't Cha1llH:'I). 

5 Objects 

An ohject is a persistent agent procE'ssillg messages froIll tile out.side world. It. has 
a stat.ic aspect, it.s method tahle, alld a dynalllic aspect, it.s st.ate. Although t.heir 
state lIlay change, objects do have a persistent identity. Methods are possihly 
indeterministic functions 

method: sta.te x In/:'ssage -+ sta.te 

defining the behavior of ohjects. Messages are processed as follows: First obtain 
the method llame frolll the lIlE'ssage, then obtain the corresponding met.hod from 
the objE'ct's method table, ancl finally change t.o a possihly new state by applying 
the met.hod to the currellt state and the message. 

There are several possihilities for expressing ohjects in Oz. The one we will present 
here reprE'sents an object 0 as a procednre "sending" the message given as its 
argument. 
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proc {O Message Continuation} 
if Method in 

Method = MethodTable. {Label Message} 
then exists State in 

State? Channel 
if {Label State} = state 
then {Method State Message} Channel 

{Continuation} 
ft 

fi 
end 

A message is represented as a record whose label is taken as the name of the re­
quested method. The method table is represented as a record whose field names 
act as method names . The state of the ohject resides on the blackboard as a put to­
ken State !Chanllel, where only the object 0 is supposed to know the link Channel. 
The state is represented as a. record whose fields act as the attributes of the object. 
The guard {Label State} = state suspends the application of the method until the 
state is known on the blackhoard. 

The argument Contin uation of the procedure 0 is is a zero-argument procedure 
to be applied concurrently with the method. It provides for synchronization upon 
and sequentialization of message sending. 

There is sugared syntax for message sending (local is a variant of exists having 
a closing end): 

O-M; (1 ~ local P in {O M P} proc {P} (1 end end . 

Moreover, O-M ahbreviates O-M; true. Thus O-M; O-N sends first message 
M and then message N to the object O. Since we are in a concurrent setting, it 
is possible that 0 takes other messages hetween M and N. 

Since objects are represented as procedures, they enjoy in fact persistent identity 
(recall the translation of proc ... end given in Section 4). Thus one can test for 
identity of two objects 01,02 using a condi tional if 01 = 02 then· . . ft . 

Note that many agents may know an object 0 and thus may concunently attempt 
sending messages . Handling the state with constraint communication ensures mu­
tual exclusion: the respective method applications are implicitly and indetermin­
istically sequentialized since there will be at most one put token holding the state 
on the blackboard. 

Since procedures are first-class citizens, we can write a generic procedure creating 
a new object from a method table and an initializing message: 

proc {Create MethodTahle IMessage O} 
exists Channel in 
{MethodTable. {Label IMessage} state( self: 0 ) IMessage} Channel 
proc {O Message Continuation} end 

end 
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local Set Inc See in 
COllnter = {Create lilt( set:Set inc:lnc see:See) set.( O)} 
proc {Set InState Message OutState} 

OutState = {AdjoinAt InState val Message.l} 
end 
proc {Inc InState Message Ou t.State} 

Out.State = {AdjoinAt InSt.at.e val (InStat.e.val + I)} 
end 
proc {See InState Message Ou tSt.at.e} 

Out.St.at.e = InSt.ate 
Message.l = InSt.at.e. val 

end 
end 

Figl\l'e 4: A count.er ohject. in plain synt.ax 

The not.ion of "self" is captured straightforwardly hy equipping the init.ial stat.e 
~ta. te(sf:'lf: 0) with a self-reference. Note t.hat t.he object's stat(· is cncapsulat.ed 
since (l'lantifiration ensures t.hat only t.he procedure 0 knows the link Channel. 

To sllllllllarize, we are now in a position where we can creat.e a concurrent objcct 
by simply a.pplying t.he pron'dl\l'e Create t.o a lIlethod t.i1.ble and an initii1.lizing 
message. The method tahle lIli1.y he seen as the class of the ohject.. 130t.h t.he 

object and its class are fi rst-class citizens having uniqne identity. A message is 
sent by simply applying t.he ohject. t.o it.. 

5.1 A Counter Object 

Figme 4 shows how a counter can he set up as an ohject having methods for 
initializing, increltlent.ing and reading its value. The initializing message sel;( 0) 
adjoins the new at.t.ribute val: 0 to the initial state state(self: COIIIJtf .. r). In fact, 

due to t.he semantics of AdjoiIJAt (see Section 3), every method llIay adjoin new 
attributes to an object's state. 

Reduction of COllllter~see(X) constrains the variahle X to the cunellt value of 
COllllter. Reductioll of 

C' ~ (X) C' ~. C' ~. . C ~ (r: ) ,oullter set ; .... ounter mc; ,ounter IIIC; ounter see .) 

constrains the variable X to 3, provided no one else is sendillg intervening messages 
to COllllter. We will see in the next section how this can be prevented. The 
".bove reductioIl illustrates the smooth integration of the notions of state and 
logic variahle. 

Oz supports special syntax for object creation and method definition, which allows 
writing the expression in FiglUe 4 as follows: 
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create Counter with set (0) 
meth set (X) val +- X end 
meth inc val +- @val + 1 end 
meth see(X) X = @val end 

end 

5.2 Inheritance 

The behavior of an object is determined by its method table. Inheritance thus 
means that the ltlethod table of a new object is obtained by combinillg and ex­
tending method tables of existing objects. Since method tables are represented as 
first-class values, combining and extending them is straightforward (e.g., by record 
adjunction) . To make the methods of an object accessible, we will now represent 
an ohject as a record 

ohject(tahle: MT send: Q) 

where MT is the method table and Q is the previous object representation. The 
sugared syntax for synchronized messil.ge sending translates now as follows: 

O~M; (T ~ local P in {O.senel M P} proc {P} (T end end . 

With the new object representation we can create an object DecCollIlter by inher­
iting the methods of COllnter and adding a method for decrementing the value: 

local Dec in 
DecCounter = {Create {AdjoinAt Connter. tahle dec Dec} set (0) } 
proc {Dec InState Message Ou tState} 

end 
end 

OutState = {AdjoinAt InState val (InState.val - I)} 

In sugared syntax we can write more nicely: 

create DecCounter from Counter with set (0) 
meth dec val +- @val - 1 end 

end 

To create a new counter C having exactly the same methods as DecCollnter and 
taking X as initial villne, we simply write 

create C from DecCounter with set (X) end. 

Observe that our model alleviates the distinction between classes iI.nd their in­
stances by combining object creation and inheritance into one single operation. 

In a concurrent sett ing it is sometimes essential to send an object a block of 
messages to be processed without intervening messages. The ability to obtain and 
release locks on objects is equally important. To this purpose we define an object 
with a single method ba.tch taking iI. list of messages as argument [10]: 
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create BaJ.chObject with batch (lIil) 
meth batch (L ) 

if H T in L= HIT then (( @self H)) (( ([~self bat.c h ( T ))) fi 
end 

end 

The two consecutive IJle,.;"age applications are threaded wit.]1 all illt.PrIll ediat.e state 

3State ( IlJState (( (f))"eif H))State 1\ Stat.e (( Cij"elf batclJ( T))) Ollt .. )tat.e ) 

an d a th readed message application IlJState (( 0 M e,,:;ilge)) 011 t.St.at.e f'X pall cis ill to 

{O. table. {Lahel MessagE'} InState MessagE' OntStat.e} . 

The notation for lIIessagl:' a.ppliratioll ('xploits the fact. that ill onr 1II0del every 
method III of I:'vl:'ry objl:'rt. 0 ca.ll bl:' rdl'ITf'd to hy O.ta.lJle .Ill. Illcidplltally, 01\1' 

notation for message applicatioll also serves the pll1"pose of SlIIallta.lk's "super" 
Hotation. 

A decrell1entahle counter with a hatch lI1ethod call HOW be oht.a.illecl by II1Illt.iple 
illheritance froll1 DpCC0I111ter ancl Ba.tchOlJject: 

create C from DE'cConllter BatrhOhject with set.( 0) end 

The method tahlE' of c: is ohtained hy adjoillillg the tahles of Dec(,'0I111ter and 
BatcJ,Ohject. Now 

C-ha,tch(set(X) I illc I inc I see(5) Inil) 

is gnaranteecl to collstrain X 1.0:3 (colIl\mre with the exalliple ill SectioH .'i.l). 

6 Summary 

Oz is an attempt to create a high-level concurrent programming language bringing 
together the merits of logic and ohject-oriented programllling. For this )llll'pose, 
we extend the COnC1llTellt constraint 1I10dei with a facility for higher-order pro­
gramming and the new notion of constra.illt comll1unication. The selllalltics of 
Oz is specified hy a new mathematica.! model, called the Oz Calcnlns. In addi­
tion to higher-order progra.llIl1ling and constraillt COlllmlll1icatioll, the Oz Calculus 
provides an abstract COlli positional semantics for deep guards and the dynamic 
creation of new and unique names. 

We have shown how concurrent objects created by multiple inheritance can be 
expressed concisely and natnra.lly in Oz. Objects, classes, methods and messages 
are all modeled as first-class citizens. Although ohjects change their state, they 
enjoy persistent identity. The object lllodel profits from the fact that the constraint 
system underlyillg Oz provides records as logic data structme. 

An implementation of Oz hased on a compiler and an abstract machine written 
III C++ exists ancl shows encolll'aging perforlllance. Efficient implementation of 
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constraint communication is not difficult. The construction of new states by record 
adjunction can be safely optimized to destructive assignment (i.e., compile-time 
garbage collection) if the compiler enforces certain syntactic restrictions. 
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