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Abstract

Oz 1s an experimental higher-order concurrent constraint programming sys-
tem under development at DFKI. It combines ideas from logic and concurrent
programiing in a simple yet expressive langnage. From logic programming
Oz inherits logic variables and logic data structures, which provide for a
programming style where partial information about the values of variables
1s imposed concurrently and incrementally. A novel feature of Oz is that
it accommodates higher-order programming without sacrificing that denota-
tion and equality of variables are captured by first-order logic. Another new
feature of Oz is constraint communication, a new form of asynchronous com-
munication exploiting logic variables. Constraint communication avoids the
problems of stream communication, the conventional communication mecha-
nism employed in concurrent logic programming. Constraint communication
can be seen as providing a minimal form of state fully compatible with logic
data structures.

Based on constraint communication and higher-order programming, Oz
readily supports a variety of object-oriented programming styles including
multiple inheritance.
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1 Introduction

Oz is an attempt to create a high-level concurrent programming language bringing
together the merits of logic and object-oriented programming.

Our starting point was concurrent constraint programming [14], which brings to-
gether ideas from constraint and concurrent logic programming. Constraint logic
programming (8, 4], on the one hand, originated with Prolog II [5] and was prompt-
ed by the need to integrate numbers and data structures in an operationally ef-
ficient, yet logically sound manner. Concurrent logic programming [15], on the
other hand, originated with the Relational Language [3] and was promoted by
the Japanese Fifth Generation Project, where logic programming was conceived
as the basic system programming language and thus had to account for concur-
rency, synchronization and indeterminism. For this purpose, the conventional
SLD-resolution scheme had to be replaced with a new computation model hased
on the notion of committed choice. At first, the new model developed as an ad hoc
construction, but finally Maher [11] realized that commitment of agents can be
captured logically as constraint entailment. A major landmark in the new field of
concurrent constraint programming is AKL [9], the first implemented concurrent
constraint language accommodating search and deep guards.

The concurrent constraint model [14] can accommodate object-oriented program-
ming along the lines of Shapiro and Takeuchi’s stream-based model for Concurrent
Prolog [16, 10]. Unfortunately, this model is intolerably low-level, which becomes
fully apparent when one considers inheritance [7]. Vulcan, Polka, and A’UM are
attempts to create high-level object-oriented languages on top of concurrent logic
languages (see [10] for references). Due to the wide gap these languages have to
bridge, they however loose the simplicity and flexibility of the underlying base
languages.

Oz avoids these difficulties by extending the concurrent constraint model with the
features needed for a high-level object model: a higher-order programming facility
and a communication primitive avoiding the clumsiness of stream communication.
With these extensions the need for a separate object-oriented language disappears
since the base language itself can express objects and inheritance in a concise and
elegant way.

The way Oz provides for higher-order programming is unique in that denotation
and equality of variables are nevertheless captured by first-order logic only. In
fact, denotation of variables and the facility for higher-order programming are
completely orthogonal concepts in Oz. This is in contrast to existing approaches
to higher-order logic programming [13, 2].

Constraint communication is asynchronous and indeterministic. A communica-
tion event replaces two complementary communication tokens with an equality
constraint linking the partners of the communication. Constraint communica-
tion introduces a minimal form of state that is fully compatible with logic data
structures. Efficient implementation of fair constraint communication is straight-
forward.



The new concepts in Oz cannot be accounted for within the established semantical
frameworks. Thus the semantics of Oz is specified by a new mathematical model,
called the Oz Calculus, whose technical setup was inspired by the 7-calculus [12],
a recent foundationally motivated model of concurrency.

The paper is organized as follows. The next section outlines a simplified version of
the Oz Calculus. Section 3 shows how the constraint system of Oz accommodates
records, which are the congenial data structure for object-oriented programming.
Section 4 introduces the concrete language. Section 5 presents one possible style
of object-oriented programming in Oz featuring multiple inheritance.

2 The Oz Calculus

The operational semantics of Oz is defined by a mathematical model called the
Oz Calculus [17]. In this section we outline a simplified version sufficing for the
purposes of this paper.

The basic notion of Oz is that of a computation space. A computation space
consists of a number of agents connected to a blackboard (see Fig. 1). Each agent
reads the blackboard and reduces once the blackboard contains the information
it is waiting for. The information on the blackboard increases monotonically.
When an agent reduces, it may put new information on the blackboard and create

o
Agent ... Agent /\
N/ o o
Blackboard /\
o o

Figure 1: The blackboard metaphor

new agents. Agents themselves may have one or several local computation spaces.
Hence the entire computation system is a tree-like structure of computation spaces
(see Fig. 1).

The agents of a computation space disappear as soon as they reduce. We will see
later how one can express long-lived agents with persistent identity.

Formally, a computation state is an expression o according to Fig. 2. (If £ is a
syntactic category, £ denotes a possibly empty sequence £ ...£.) Constraints, ab-
stractions and communication tokens reside on the blackboard. Applications and
conditionals are agents. Composition and quantification are the glue assembling
agents and blackboard items into a computation space. Quantification introduces
local variables. Abstractions may be seen as procedure definitions and applications
as procedure calls.
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Figure 2: Expressions of the Oz Calculus

The clauses of a conditional are unordered. Their guards, i.e., o in 37 (¢ then 1),
constitute local computation spaces. Note that any expression can be taken as a
guard; one speaks of a flat guard if the guard is a constraint.

There are two variable binders: quantification Jeo binds @ with scope o, and
abstraction x:7/o binds the variables in 7 with scope o. Free variables of an
expression are defined accordingly.

Computation is defined as reduction (i.e., rewriting) of expressions. A reduction
step is performed by applying a reduction rule to a subexpression satisfying the
application conditions of the rule. There is no backtracking. Control is provided
by the provision that reduction rules must not be applied to mute subexpressions,
i.e., subexpressions that occur within bodies of clauses, else parts of condition-
als, or bodies of abstractions. It is up to the implementation which non-mute
subexpression is rewritten by which applicable rule.

Reduction “o — 77 is defined modulo structural congruence “o = 77 of expres-
sions, that is, satisfies the inference rule

c=o o -7 =71

g =T

Structural congruence is an abstract equality for computation states turning them
from purely syntactic objects into semantic objects. Structural congruence pro-
vides for associativity and commutativity of composition, renaming of bound vari-

ables, quantifier mobility
deo AT =3Fx(a AT) if « does not occur free in 7,

constraint simplification, and information propagation from global blackboards to
local blackboards.



2.1 Constraints

Constraints (¢, in Figure 2) are formulas of first-order predicate logic providing
for data structures. Logical conjunction of constraints coincides with composition
of expressions. Constraints express partial information about the values of vari-
ables. The semantics of constraints is defined logically by a first-order theory A
and is imposed on the calculus by the congruence law

=y HAEG .

This law closes the blackboard under entailed constraints (since A | ¢ — ¢ iff
A ¢ — ¢ A1p). The congruence law

x=yANo = z=yAa[y/x] ifyis free for z in &

extends equalities on the blackboard to the rest of the computation space (o[y/x]
is obtained from o by replacing every free occurrence of x with y). Equality of
variables is strictly first-order: Two variables «, y are equal if the constraints on the
blackboard entail # = y, and different if the constraints on the blackboard entail
=(z = y). The information on the blackboard may be insufficient to determine
whether two variables are equal or different. Moreover, an inconsistent blackboard
entails both =y and ~(z=y).

The Anullation Law
(o ATGa)=T
if A |E 37 ¢ and § C L(T, ¢), where
L(Z,¢) = {yeT|Vz: ¢ Fay=2 = 2z €T}

provides for the deletion of quantified constraints and abstractions not affecting
visible variables. L(7,¢) is the set of all variables in T that are not equated to
variables outside of T by the constraint ¢.

2.2 Application

An application agent x7 waits until an abstraction for its link = appears on the
blackboard and then reduces as follows:

xy AN 2:Zfoc — FZ(Z=FAo) A 2:Z]o
if 7 and % are disjoint and of equal length.

Note that the blackboard y:Z/o A @ = y contains an abstraction for z due to
the congruence laws stated above. Since the link # of an abstraction z:y/o is a
variable like any other, abstractions can easily express higher-order procedures.
Note that an abstraction x:7/c does not impose any constraints (e.g., equalities)
on its link .
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2.3 Constraint Communication

The semantics of the two communication tokens is defined by the Communication
Rule:
elyAnzly - 2=z

Application of this rule amounts to an indeterministic transition of the blackboard
replacing two complementary communication tokens sharing the same link y with
an equality constraint. The Communication Rule is the only rule deleting items
from the blackboard. Since agents read only constraints and abstractions, the
information visible to agents nevertheless increases monotonically.

2.4 Conditional

It remains to explain the semantics of a conditional agent
if 37, (¢y then 1) --- 37, (0, then 7,,) else 4.

The guards a; of the clauses are local computation spaces reducing concurrent-
ly. For the local computations to be meaningful it is essential that information
from global blackboards is visible on local blackboards. This is achieved with the
Propagation Law (recall that the clauses are unordered):

© A if 37 (0 then 1) © else p

© A if 37 (7 Ao then 1) @ else i

if mis a constraint or abstraction and
no variable in ¥ appears free in 7.

Read from top to bottom, the law provides for copying information from global
blackboards to local blackboards. Read from bottom to top, the law provides
for deletion of local information that is present globally. An example illustrating
the application of the Propagation Law in both directions (as well as constraint
simplification) is

=1 A if (=1 then o) (r=2then 7)else
= ax=1 A if (T then o) (L then 7) else .

The example assumes that the constraint theory entails that 1 and 2 are different.

Operationally, the constraint simplification and propagation laws can be realized
with a so-called relative simplification procedure [1]. Relative simplification for
the constraint system underlying Oz is investigated in [18].

There are two distinguished forms a guard of a clause may eventually reduce to,
called satisfied and failed. If a guard of a clause is satisfied, the conditional can
reduce by committing to this clause:

if 37 (o0 then ) Welsepy — 3T (a A T) if3To=T.



Reduction puts the guard on the global blackboard and releases the body of the
clause.

A guard is failed if the constraints on its blackboard are unsatisfiable. If the guard
of a clause is failed, the clause is simply discarded:

if 37 (L Ao then7) Welsepy — if @ else .

Thus a conditional may end up with no clauses at all, in which case it reduces to
its else part:
if else u — p.

The reduction

x=1 A if (z=1theno)(z=2thent)elsey — az=1 Ao
is an example for the application of the first rule, and

r=3 A if (r=1theno)(z=2thenr)elsey —* =3 A pu

is an example employing the other two reduction rules.

2.5 Logical Semantics

The subcalculus obtained by weakening the Anullation Law to
o =T ifAE3ITP

and disallowing communication tokens and conditionals with more than one clause
enjoys a logical semantics, which is obtained by translating expressions into formu-
las of first-order predicate logic as follows: composition translates to conjunction,
quantification to existential quantification, and abstraction, application and con-
ditional translate as follows:
x:J/o = Vy(apply(z7) < o)
ay = apply(a7)

if 37 (0 thent)elsep = 3IT(c AT) V (-3To A p).

<

Under this translation, reduction is an equivalence transformation, that is, ifc — 7
or 0 = 7, then A | ¢ < 7. Moreover, negation can be expressed since - is
equivalent to if o then L else T.

2.6 Unique Names

A problem closely related to equality and of great importance for concurrent pro-
gramming is the dynamic creation of new and unique names. Roughly, one would
like to have a construct gensym(x) such that gensym(z) A gensym(y) is congru-
ent to a constraint entailing —(2 = y). For this purpose we assume that there
are infinitely many distinguished constant symbols called names such that the
constraint theory A satisfies:



1. A =(a=0b) for every two distinct names a, b

2. validity of sentences with respect to A is invariant under permutation of
names.

Now gensym(x) is modeled as a generalized quantification Ja(x = a), where the
quantified name « is subject to a-renaming. With that and quantifier mobility as
stated above we in fact obtain a constraint entailing that o and y are different:

Ja(x=a) A Ja(y=a) = Ja(x=a)AI(y=0) = Fa3b(e=a A y=Db).

Note that composition is not idempotent. Hence the expressions Ja(x = a) and
Ja(x=a) A Ja(x=a) = L are not congruent.

3 Records

The constraint system underlying Oz [18] provides a domain of so-called feature
trees that is closed under record construction. Since records are the congenial data
structure for modelling object-oriented programming, we outline their constraint
theory as far as is needed for the purposes of this paper. We will be very liberal
as it comes to syntax. The reader may consult [18] for details.

Records are obtained with respect to an alphabet of constant symbols, called
atoms, and denoted by a,b, f,g. Records are constructed (and possibly decom-
posed) by constraints of the form

g & Fheg: my o0 oo Ta)

where f is the label, ay, ..., a, are the pairwise distinct field names, and xy,..., 2,
are the values of the record . The order of the fields is not significant. A zero-field
record f() is identified with the atom f. The semantics of record construction is
defined by the two axiom schemes

f@s) = g(hyg) — L if f# g or[a # [0]

where [@] is the set of elements of the sequence @. Field selection x.y is a partial
function on records satisfying the axiom schemes

fl@Tbey)ib = vy
fla®).b =y — L if b ¢ [a].

The function label(z:) yields the label of a record according to the scheme
label(f(---)) = f.
Finally, record adjunction “adjoinAt(x,y,2)” adjoins a field y: z to a record z:

adjoinAt(f(@:7 b:y), b,2) = f(a:Tb:2)
adjoinAt(f(@:T), b, 2z) = f(a:Tb:z) if b¢[a].



We write f(xy...2,) as a short hand for the record f(l:a,...n:2,). Thus we
obtain Prolog terms as a special case of records. The outlined constraint system
is in fact a conservative extension of Prolog II’s rational tree system.

4 The Programming Language

Having glimpsed at the mathematical model of Oz, we are now ready to see the
concrete programming language.

A procedure P taking n arguments can be defined with the concrete syntax
proc {P X;...X,} o end
standing for the abstract expression
P:X;...Xp/e A Ja(P=procedure(name: a arity: n)).

Thus a procedure definition introduces an abstraction and equips it with a unique
identity. This construction ensures that a variable can link at most one ab-
straction on a consistent blackboard. Since the variable P denotes the record
procedure(name: a arity: n) rather than the abstraction, we can test for equality
between P and other variables. The resulting first-class equality for procedures
(i.e., procedure identities) provides for useful programming techniques. The fact
that procedures have unique identity is also important for the efficient implemen-
tation of the reduction rule for applications.

The following expression defines a map function for lists in concrete Oz syntax:

proc {Map X P Y}

M He Ean
X =H|T
then
Y = {P H}|{Map T P}
else
X =mil
Y =il
fi
end

The atom nil stands for the empty list, and H|T abbreviates the record cons(H T)
representing the list whose head is H and whose tail is T. The “H T in” prefix
quantifies the variables H and T in both the guard and the body of the clause.
Composition is written as juxtaposition. Variables start with an upper-case letter
and are thus distinguished from atoms, which start with a lower-case letter. The
line Y = {P H}|{Map T P} contains two nested applications, which are eliminated
using auxiliary variables and composition:

JU IV (Y=cons(UV) A PHU A MapTPV).
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proc {Producer}
exists Ack in
item ("yellow brick’ Ack ok) ! Channel
if Ack = ok then {Producer} fi
end
proc {Consumer}
exists X Ack in
item (X ok Ack) ? Channel
if Ack = ok then {AddToRoad X} {Consumer} fi
end

Figure 3: Synchronized producer-consumer communication

We will use nested notation frequently, thus alleviating the verboseness of the
purely relational calculus. (The Oz Calculus is designed purely relational since
this setup provides for the minimal and orthogonal organization of its constructs;
for instance, constraints are completely separated from the other constructs.)

Constraint communication is asynchronous. Synchronous communication can
be expressed by combining constraint communication with the conditional. In
the producer-consumer example in Figure 3, computation suspends until com-
munication has taken place (signaled by an acknowledgement). The default
for a missing else part of a conditional is else true. The nested get token
item(X ok Ack) 7 Channel translates into

Y (Y =item(X ok Ack) A Y?Channel).

5 Objects

An object is a persistent agent processing messages from the outside world. It has
a static aspect, its method table, and a dynamic aspect, its state. Although their
state may change, objects do have a persistent identity. Methods are possibly
indeterministic functions

method: state X message — state

defining the behavior of objects. Messages are processed as follows: First obtain
the method name from the message, then obtain the corresponding method from
the object’s method table, and finally change to a possibly new state by applying
the method to the current state and the message.

There are several possibilities for expressing objects in Oz. The one we will present
here represents an object O as a procedure “sending” the message given as its
argument.

11



proc {O Message Continuation}
if Method in
Method = MethodTable.{Label Message}
then exists State in
State 7 Channel
if {Label State} = state
then {Method State Message} ! Channel
{Continuation}
fi
fi
end

A message is represented as a record whose label is taken as the name of the re-
quested method. The method table is represented as a record whose field names
act as method names. The state of the object resides on the blackboard as a put to-
ken State! Channel, where only the object O is supposed to know the link Channel.
The state is represented as a record whose fields act as the attributes of the ob ject.
The guard {Label State} = state suspends the application of the method until the
state is known on the blackboard.

The argument Continuation of the procedure O is is a zero-argument procedure
to be applied concurrently with the method. It provides for synchronization upon
and sequentialization of message sending.

There is sugared syntax for message sending (local is a variant of exists having
a closing end):

O"M;0 = local Pin {OMP} proc {P} ¢ end end.

Moreover, O”M abbreviates O~ M; true. Thus O"M; O"N sends first message
M and then message N to the object O. Since we are in a concurrent setting, it
is possible that O takes other messages between M and N.

Since objects are represented as procedures, they enjoy in fact persistent identity
(recall the translation of proc - - - end given in Section 4). Thus one can test for
identity of two objects O1, 02 using a conditional if O = O2 then --- fi.

Note that many agents may know an object O and thus may concurrently attempt
sending messages. Handling the state with constraint communication ensures mu-
tual exclusion: the respective method applications are implicitly and indetermin-
istically sequentialized since there will be at most one put token holding the state
on the blackboard.

Since procedures are first-class citizens, we can write a generic procedure creating
a new object from a method table and an initializing message:

proc {Create MethodTable IMessage O}
exists Channel in
{MethodTable.{Label IMessage} state(self:0) IMessage} ! Channel

proc {O Message Continuation} --- end
end

12



local Set Inc See in
Counter = {Create mt(set:Set inc:Inc see:See) set(0)}
proc {Set InState Message OutState}
OutState = {AdjoinAt InState val Message.l}
end
proc {Inc InState Message OutState}
OutState = {AdjoinAt InState val (InState.val + 1)}
end
proc {See InState Message OutState}
OutState = InState
Message.l = InState.val
end
end

Figure 4: A counter object in plain syntax

The notion of “self” is captured straightforwardly by equipping the initial state
state(self: O) with a self-reference. Note that the object’s state is encapsulated
since quantification ensures that only the procedure O knows the link Channel.

To summarize, we are now in a position where we can create a concurrent ohject
by simply applying the procedure Create to a method table and an initializing
message. The method table may be seen as the class of the object. Both the
object and its class are first-class citizens having unique identity. A message is
sent by simply applying the object to it.

5.1 A Counter Object

Figure 4 shows how a counter can be set up as an object having methods for
initializing, incrementing and reading its value. The initializing message set(0)
adjoins the new attribute val: 0 to the initial state state(self: Counter). In fact,
due to the semantics of AdjoinAt (see Section 3), every method may adjoin new
attributes to an object’s state.

Reduction of Counter”see(X) constrains the variable X to the current value of
Counter. Reduction of

Counter~set(X); Counter”inc; Counter”inc; Counter”see(5)

constrains the variable X to 3, provided no one else is sending intervening messages
to Counter. We will see in the next section how this can be prevented. The
above reduction illustrates the smooth integration of the notions of state and
logic variable.

Oz supports special syntax for object creation and method definition, which allows
writing the expression in Figure 4 as follows:

13



create Counter with set(0)
meth set(X) val — X end

meth inc val — @val + 1 end
meth see(X) X = @val end
end

5.2 Inheritance

The behavior of an object is determined by its method table. Inheritance thus
means that the method table of a new object is obtained by combining and ex-
tending method tables of existing objects. Since method tables are represented as
first-class values, combining and extending them is straightforward (e.g., by record
adjunction). To make the methods of an object accessible, we will now represent

an object as a record
object(table: MT send: Q)

where MT is the method table and @ is the previous object representation. The
sugared syntax for synchronized message sending translates now as follows:

O"M; 6 = local Pin {O.send M P} proc {P} ¢ end end.

With the new object representation we can create an object DecCounter by inher-
iting the methods of Counter and adding a method for decrementing the value:

local Dec in
DecCounter = {Create {AdjoinAt Counter.table dec Dec} set(0)}
proc {Dec InState Message OutState}
OutState = {AdjoinAt InState val (InState.val — 1)}
end
end

In sugared syntax we can write more nicely:

create DecCounter from Counter with set(0)
meth dec val — @val — 1 end
end

To create a new counter C having exactly the same methods as DecCounter and
taking X as initial value, we simply write

create C from DecCounter with set(X) end.

Observe that our model alleviates the distinction between classes and their in-
stances by combining object creation and inheritance into one single operation.

In a concurrent setting it is sometimes essential to send an object a block of
messages to be processed without intervening messages. The ability to obtain and
release locks on objects is equally important. To this purpose we define an object
with a single method batch taking a list of messages as argument [10]:

14



create BatchObject with batch(nil)
meth batch(L)
if H T in L=H|T then ((@self H)) ((@self batch(T))) fi
end
end

The two consecutive message applications are threaded with an intermediate state
3State (IS aselr H)StAte o S @gelf hateh(T)) Ottt )
and a threaded message application I"Sm""((O Mvs.s'age))o”"‘g"“"" expands into
{O.table.{Label Message} InState Message OutState}.

The notation for message application exploits the fact that in our model every
method m of every object O can be referred to by O.table.m. Incidentally, our
notation for message application also serves the purpose of Smalltalk’s “super”
notation.

A decrementable counter with a batch method can now be obtained by multiple
inheritance from DecCounter and BatchODbject:

create C from DecCounter BatchObject with set(0) end

The method table of (' is obtained by adjoining the tables of DecClounter and
BatchObject. Now

C"batch(set(X) | inc |inc | see(5) | nil)

is guaranteed to constrain X to 3 (compare with the example in Section 5.1).

6 Summary

Oz is an attempt to create a high-level concurrent programming language bringing
together the merits of logic and object-oriented programming. For this purpose,
we extend the concurrent constraint model with a facility for higher-order pro-
gramming and the new notion of constraint communication. The semantics of
Oz is specified by a new mathematical model, called the Oz Calculus. In addi-
tion to higher-order programming and constraint communication, the Oz Calculus
provides an abstract compositional semantics for deep guards and the dynamic
creation of new and unique names.

We have shown how concurrent objects created by multiple inheritance can be
expressed concisely and naturally in Oz. Objects, classes, methods and messages
are all modeled as first-class citizens. Although objects change their state, they
enjoy persistent identity. The object model profits from the fact that the constraint
system underlying Oz provides records as logic data structure.

An implementation of Oz based on a compiler and an abstract machine written
in C++ exists and shows encouraging performance. Efficient iinplementation of



constraint communication is not difficult. The construction of new states by record
adjunction can be safely optimized to destructive assignment (i.e., compile-time
garbage collection) if the compiler enforces certain syntactic restrictions.
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