
Deutsches
Forschungszentrum
fUr Kunstliche
Intelligenz GmbH

Research
Report

RR-93-16

Object-Oriented Concurrent Constraint
Programming in Oz

Gert Smolka, Martin Henz, Jorg Wurtz

April 1993

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kunstiiche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders , Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation .

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J . Wendl
Director

Object-Oriented Concurrent Constraint Programming in Oz

Gert Smolka, Martin Henz, Jorg Wurtz

DFKI-RR-93-16

This work has been supported by a grant from the Bundesminister fOr Forschung und
Technologie (FKZ ITW-91 05) and by the ESPRIT basic research project 7195
(ACCLAIM).

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that
all such whole or partial copies include the following: a notice that such copying is by permission of Deutsches
Forschungszentrum fUr KOnstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

Object-Oriented Concurrent Constraint
Progranllning in Oz

Ger t. Smolka., Ma.rt in Henz, .Jorg Wiir tz

Gf' rman Rl'sf'arch (> nt.er for Art.ifi cia l Int.ell igf' nce (DFKI)

St.uhlsat.zf' nh a uswf'g 3 , 0 -6600 Saarbrii cken , Germ a ny

E-m a il : {sm olka. hf. nz . wU f' rt.z} @dfki .uni-sh .dl'

Abstl'act

Oz is a n f' Xl)f' rill lf'n t.al highf' r-ordf'r concurrf' nt. cons t.ra int. p rogramming sys­
t.f' m IInd f' r df'w lop lll f' nt. a t, DFKI. It. cOl llhines id f'as fro lll log ic a nd concurrent.
prog ra mmillg in a s impl f' yf' t. f'xpl't~ss ivl' la ngll agl' . Frolll logic prog ra lllluing
Oz inh f' rit.s log ic vari a bll's a nd logic d at.a st.rur.t.llI'f'S, which prov idf' fo r a
progra mmiug s t.y lf' wllf' re pa rt.i a l info l'lw\,t.i o n a ho llt. tl lf' va lll f' s of va ri a bl f's
is impmwd concurrf' nt.I y a nd in Cl'f' llw nt.ally . A nowl ff'a t.lIl'f' of Oz is t.h a t.
it. accommo d a t.es h ighf' r-ordf' r p rogra mming wit.ho ut. sacr ificing t.h a t. dpll o t.a­
t.io n a nd equa lit.y of va ri a hlf's cu I' capt.llrf' d hy firs t.-ordf' r logic . Allo t.her Ilew
fl'at. llrp of O z is cons t.ra int. commtlllicat.ion , a nf' W fo rm of asyn chrono us com­
municat.io n I'x plo it.ing log ic vari a bl l's. COlls t.ra int. communicat.i on avo ids t.h p
p rohlpm s o f st. rl'am commllnicat.ion , UtI' convent.io ll a l commllni cat.io ll m echa­
nism Pll1ployed in CO Il CIIITI' Il t. log ic p rog ra mming. Cons t.ra int. comllllllli cat.i on
call I)f' Sf'f' 1l as prov idillg a minim al fo rlll o f s t. a t.1' full y compa t.ihl l' wit.h log ic
d a t. a s t.nt c.t. ures.

Basl'd on cons t.ra int. communicat.ion a nd higher-order p rog ra mllling, Oz
readily support.s a va rie t.y of ohj l'd -orient.Pd progra mmillg st.yl l's incllldillg
mlllt.iplf' inherit.a ll cl'.

Contents

1 Introduction 3

2 The Oz Calculus 4

2.1 Constraints 6

2.2 Application 6

2.3 Constraint Communication 7

2.4 Conditional 7

2.5 Logical Semantics. 8

2.6 Unique Na.mes 8

3 Records 9

4 The Programming Language 10

5 Objects 11

5.1 A Counter Object 13

5.2 Inheritance 14

6 Summary 15

2

1 Introduction

Oz is an attempt. to create a high-level concurrent prograllllIlillg language bringing

together the merits of logic and object-oriented programming.

Our starting point was con current. constraint programming [14], which brings to­

gether ideas from constraint and concurrent logic programming. Const.raint. logic

programming [R, 4], on t.he one hand, originat.ed wit.h Prolog II [5J and was prompt.­

ed by t.he nf'f'd to int.egrat.e nlllllbers and dat.a stl"llct.ures in an operat.ionally ef­

ficient., yf't. logically sOllnd manner. COnClIlTf'nt. logic programmillg [1.1], on the

ot.her hand, originat.f'd wit.h t.hf' Rf'lat.ional Lallgllagf' [:3J and was prolllotf'd hy

t.he Japanf'sf' Fifth Gf'lll:'ril.t. ioll Projf'ct., whf're logic programmillg was collcl:'ivcd

as the basic syst.em progril.lliming language and tillls ha.d 1.0 aCCOllllt. for COllClIr­

rency, synchrouizat.ion and illdl:'t.l:'J"lninislll. For this purpose, till' cOllvent.ional

SLD- resolu tion sc hellie had to he rf'placed wi t.h a lIew com I'll tat.ioll model ba.sed

on the not.ion of collllllit.t.f'd choicf'. At first., tile nf'W modf'l developf'd as an ad Iloc

const.ruction, bllt. fillally Maher [11J reil.\ized t.hat commitment of il.gent.s call be

capturedlogicil.lly as cOllstril.illt f'ntailment.. A major laudlllark in the uew field of

concurrent const.raint programilling is AKL [OJ, t.he first iJllplelllcnted conClJ)"rellt

const.raiut lallgllil.ge accollllliodatilig search and (\Pep gUil.rds.

The concu !Tent cOllst.raint. llloclf'l [14 J Cil.lI il'("("ollllllodat.e ob ject-orif'1l t.ed program­

lIling along t.he lilles of Shapiro alld Takf'lIchi's strealll-basl:'dlllOdel for Concllrrent
Prolog [IG, 10]. Unfort.ll11at.ely, this lIIodel is illt.olerably low-level, which hecollles

flllly apparent whell 011f' collsiders inheritance [7J. VlIlcan, Polka, and A'UM are

attempt.s t.o create high-level objf'ct-orient.ed languages on top of concurrent logic
languages (see [10J for references). DlIf' t.o the wide gap these languages have to

bridge, t.hey however loosf' t.hf' silllplicity and flexibility of t.hf' lI11derlying base
languages.

Oz avoids t.hese difficlllt.if's by f'xtending the conCllrrent collst.ril.illt. lliodel with the

feat lUes needf'd for a high-level object. lIlodel: a higher-order progralllllling facilit.y

il.nd il. COllllllllllicil.t.ion prilllit.ive avoidillg t.he clulllsiness of st.ream comlllunication.

With tllf'se ext.ensions t.he llf'f'd for a separat.e object.-orient.edlangllage disappears

since t.hf' base language it.sl:'lf call express object.s a.lld illheritallce in il. cOllcise il.lld

elegil.ut Wil.y.

The Wil.y Oz provides for higher-order progril.lIlllling is ulliqlle ill t.hil.t. denot.il.tion

and eqllalit.y of variil.bles il.re llevert.heless capt.ured by first.-order logic ollly. In
fact, denotation of variables and the facility for higher-order programming are

complet.p]y orthogonal concept.s in Oz. This is in contril.st to existing approaches

to higher-order logic programllling [n, 2J.
Constraint comlllunication is asynchronous and indeterlllinistic. A communica­

tion event. replaces two complementary communication tokens with an equality

constraint. linking t.he part.ners of the commllnicat.ion. Constraint communica­

tion int.roduces a. minimal form of st.ate t.hil.t is fully compatihle with logic data.

struct.ures. Efficient implement.ation of fair constraint communication is straight­

forward.

The new concepts in Oz cannot be accounted for within the estahlished semantical
frameworks . Thus the semantics of Oz is specified by a new mathematical model,
called the Oz Calculus, whose technical setup was inspired by the 7r-calculus [12],
a recent foundationally motivated model of concurrency.

The paper is organized as follows. The next section outlines a simplified version of
the Oz Calculus. Section 3 shows how the constraint system of Oz accommodates
records, which are the congenial data structure for object-oriented programming.
Section 4 introduces the concrete language. Section 5 presents one possible style
of object-oriented programming in Oz featuring multiple inheritance.

2 The Oz Calculus

The operational semantics of Oz is defined by a mathematical model called the
Oz Calculus [17]. In this section we outline a simplified version sufficing for the
purposes of this paper.

The basic notion of Oz is that of a computation space. A computation space
consists of a number of agents connected to a blackboard (see Fig. 1). Each agent
reads the hlackboard and reduces once the blackboard contains the information
it is waiting for. The information on the blackboard increases monotonically.
When an a.gent reduces, it may put new information on the blackboard and create

o

Agent

\
Agent

I A
o 0

A Blackboard

o 0

Figure 1: The blackboard metaphor

new agents. Agents themselves may have one or several local computation spaces.
Hence the entire computation system is a tree-like structure of computation spaces
(see Fig. 1).

The agents of a computation space disappear as soon as they reduce. We will see
later how one can express long-lived agents with persistent identity.

Formally, a computation state is an expression (T according to Fig. 2. (If ~ is a
syntactic category, ~ denotes a possibly empty sequence ~ . .. ~.) Constraints, ab­
stractions and communication tokens resicle on the blackboard. Applications and
conditionals are agents . Composition and quantification are the glue assembling
agents and blackboard items into a computation space. Quantification introduces
local variables . Abstractions may be seen as procedure definitions and applications
as procedure calls.

4

:t:, !J, Z

a,T,,,.

w

¢
.t:: y / a
.r ! !J
.I'?y

.I'y
if w

al\T
3:l'a

weise a

3J:'(a then T)

1- I T I oS == t I r(;<i) I ¢ 1\ '1/'

COllstraill t
alJstrllCt.ioll

Pllt tokell

get tokell

afJ pi ira/.ioll

colldit.iollal

colllposit.ioll

CJ II illl /;i Ii rilt. iOll

Figme :2: Expressions of t.he Oz Calclllus

The clauses of a conditiollal a.re ullordered. Theil' guards, i.e., a in 3x(a then T),
const.it.l1t.e local rOltlput.at.ioll spa.ces. Not.e t.hat any expression ran be takell a.s a
gnarci; one speaks of a flat gua.rd if the guard is a const.raillt..

There are t.wo variable binders: qllallt.ificat.ion 3:/:a binds
abstract.ion :t:: y / a binds the variables ill y wi t.h scope a.
expression are defined accordin),';ly.

:t: wi t.h scope a, and
Free vMiables of an

Computat.ion is defilled as redllct.ion (i.e., rewrit.ing) of expressions. A reduction
st.ep is perforllled hy applying a redllction l'IIle t.o a suhexpression sat.isfyillg t.he

i'I.pplicat.ion condit.ions of t. he rille. There is no bi'l.ckt.rackillg. Control is provided
by the provisioll t.hat. redllct.ion l'IIles lllllSt. IlOt. he applied to lIJllte suhexpressions,
i.e., suhexpressiolls t.hat. occllr wit.hill bodies of clauses, else PMt.S of condit.ion­
als, or hodies of i'I.bstri'l.ctiolls. It. is up t.o the illlplement.i'I.tioll whirh nOn-lIlllt.e
sllbexpression is rewrit.tell by which applici'l.ble rule.

Reduction "a -+ T" is defilled modulo structmal congruellce "a = T" of expres­
sions, that is, satisfies the inference rille

a = a' a' -+ T' T' = T
a-+T

Structmal congruence is a ll ahst.ract. equality for computation states tl1l'ning them

from plll'ely syntactic objects into semantic objects. Structlll'al congruence pro­

vides for associativity and commut.at.ivit.y of composit.ion, renaming of hound vari­
ables, quantifier Illohilit.y

3:t:a 1\ T = 3:t:(a 1\ T) if :/: does not occur free in T,

constraint simplificatioll, and infol'luatioll propagatioll from globa.l blackboards to
local hli'l.ck hoards.

2.1 Constraints

Constraints (</>,'lj; in Figure 2) are formulas of first-order predicate logic providing
for data structurE's. Logical conjunction of constraints coincides with composition
of expressions. Constraints express partial information about the values of vari­
ables. The semantics of constraints is defined logically by a first -order theory b.
and is imposed on the calculus by the congruence law

if b. 1= ¢ - 'lj; .

This law closes the black board under entailed constraints (since b. 1= ¢ ---- 7jJ iff
b. 1= </> - ¢ 1\ 7jJ). The congruence law

if y is free for :/: in a

extends equalities on the black hoard to the rest of the cornpu tation space (O"[y / xl
is obtained from 0" by replacing every free occurrence of :/: with y). Equality of
variables is strictly first-order: Two variables x, yare equal if the constraints on the
blackboard entail x == y, and different if the constraints on the blackboard entail
...,(x == V). The information on the blackboard may be insufficient to determine
whether two variables are equal or different. Moreover, an inconsistent blackboard
entails both ;/:==y and ...,(x==y).

The Anullation Law

:lx(¢ 1\ y:1Y) == T

if b. 1= :Ix </> and y ~ £(x, ¢), where

£(x,</» := {y E x I Vz: ¢ I=~ y==z ::} z Ex}

provides for the deletion of quantified constraints and abstractions not affecting
visible variables . £(x, </» is the set of all variables in x that are not eqnated to
variables outside of x hy the constraint ¢ .

2.2 Application

An application agent xy waits until an ahstraction for its link ;/: appears on the
blackboard and then reduces as follows:

:l:y 1\ x:z/O" ---- :lz (z==y 1\ a) 1\ x:z/O"

if Y and z are disjoint and of equal length .

Note that the blackhoard y:z/O" 1\ x == y contains an abstraction for x due to
the congruence laws stated ahove. Since the link x of an abstraction x: y /0" is a
variable like any other, abstractions can easily express higher-order procedures.
Note that an abstraction ;r:y/cr does not impose any constraints (e.g., equalities)
on its link x.

6

2.3 Constraint Communication

The semantics of the t.wo COllllllllllication t.okens is defined hy t.lw Communication
Rule:

:1: ! y 1\ z"? y -+ :1: = z .

Application of t.his rule amount.s to a.n indeterministic transition of the blackboard
replacing two complementary colllmunication tokens sharing the same link y with
an equality constraint. The COlllmunication Rule is the only rule deleting items
from the blackboard. Since agents read only constraints and abst.ractions, the
information visihle to agent.s nevertheless increases monot.onically.

2.4 Conditional

It. relllains to expla.in t.he selllflntics of a conditional agent.

if :lx1 (a1 then rd . .. :lxn (a" then Tn) else II ..

The guards a ; of t.he clauses are local COllI pu tation spaces red uci ng concurrent­
ly. For the local cOIllPutations to he lllf'allingful it is essent.ial tha.t information
from global hlackhoa nis is visihle OIl local hlackboards. This is achieved with t.he
Propagation Law (recall t.hat t.he clauses are unordered):

7r 1\ if 3x((7 then r) weise II.

=
7r 1\ if:lx (7r 1\ (7 then r) weise II.

if 7r is a constraint 01' abstraction and
no varin.hle ill x appears free in 7r.

Read from top to hottom, the law provides for copying inforlllation from global
blackboards to local blackhoards. Read from bot.tom to top, the law provides
for deletion of local information that. is present globally. An example illustrating
t.he application of the Propagfl.t.ion Law in hoth directions (as well as constraint
simplification) is

:1: = 1 1\ if (:t: = 1 then a) (:1: =2 then r) else II.

=: :1: = 1 1\ if (T then a) (.1.. then r) else II ..

The example ass umes t.hat the constraiIlt theory ent.ails that 1 and 2 are different.

Operationally, the constrn.int silllplification and propagation laws can be realized
with a so-called relative sil1lplification procedure [IJ. Relative simplification for
the constraint system ullderlying Oz is investigated in [18J.

There are two distinguished forms a guard of a clause may eventually reduce to,
called sa.tisfiecl and fa.iled . If a guarci of a clause is sa.tisfied, the conditional can
reduce hy cOlllmitting to this clause:

if :lx(a then r) weise p. -+ :lx(a 1\ r) if :lxa =: T.

7

Reduction puts the guard on the glohal blackboard and releases the body of the
clause.

A guard is failed if the constraints on its black hoard are unsatisfiable. If the guard
of a clause is failed, the clause is simply discarded:

if 3x (1. /\ (1 then r) weIse Jl ~ if weIse Il.

Thus a conditional may end up with no clauses at all, in which case it reduces to
its else part:

if else Il ~ /1 ..

The reduction

x=,=l /\ if (x=,=l then (1) (x=,=2 then r)else,l ~ x =,=l /\ (1

is an example for the application of the first rule, and

x='=3 /\ if (x=,=l then (1) (:t=,=2thenr)elseJl ~* x='=3/\ P

is an example employing the other two reclllction rules .

2.5 Logical Semantics

The sub calculus obtained hy weakening the Anullation Law to

3:;:</> == T if ~ 1= 3:;: </>

and disallowing communication tokens and conditionals with more than one clause
enjoys a logical semantics, which is obtained by translating expressions into foI'lllU­
las of first -order predicate logic as follows: composition translates to conjunction,
quantification to existential quantification, and abstraction , application and con­
ditional translate as follows:

',):: V / (1 ~ \IV (apply(xy) f-+ (1)

xy ~ apply(xV)

if 3:;:((1 then r) else 1" ~ 3x((1/\ r) V (--dx(1/\ II,).

Under this translation, reduction is a.n equivalence transformation, that is, if (1 ~ r
or (1 == r, then ~ 1= (1 f-+ r. Moreover, negation can be expressed since -,(1 is
equivalent to if (1 then 1. else T.

2.6 Unique Names

A problem closely related to equality and of great importance for concurrent pro­
gramming is the dynamic creation of new and unique names. Roughly, one would
like to have a construct gensym(:1:) such that gensym(x) /\ gensym(y) is congru­
ent to a constraint entailing -'(:1: ='= V). For this purpose we assume that there
are infinitely many distinguished constant symbols called na.mes such that the
constraint theory ~ satisfies:

8

1. ~ F= -,((/. ~ b) for every two distinct names a, b

2. validity of sentences wit.h respect to ~ is invariant under permutation of
names.

Now gensym(:r) is modeled as a generalized quantification 3(/(:1: ~ a), where the
quant.ified nallle a is subject to a-renaming. With that. and quallt.ifier mobilit.y as
stated above we in fact ob tain a constraint ent.ailing that. :r ami yare different:

Note that. composit.ioll is not idempot.ent. Hence t.he expressions 3(/(:1: ~ (/) and
3(/,(:1: ~ a) 1\ 3a(:i: ~ (/) == ..L are not. congruent.

3 Records

The const.raint. syst.em 1Ilideriyilig Oz [IX] provides a dOllla.in of so-called feat.me
trees that is dosed Hllder record c'onstl'llction. Since records are t.he congC'uiai data
structure for 1Il0<iellillg object-oriellt.ed progralliltlillg, we ollt.lille their constraillt.
t.heory as far as is needed for t.he pnrposes of this paper. We will he very Ii heral
as it comes t.o syntax. The reader may cOllsult [18] for details.

Records are obt.ained with respect to an alphabet of constant. symbols, called
atoms, and denotecl hy a, fl, j,!J. Records are constrllcted (and possihly decolll­
posed) by COllst.ra.ill t. s of t.he form

where J is t.he la/H:·l, (/.1, ... , (1,,1/. are t.he pairwise dist.inct field nallles, and :/:1, ... , :1:.",

are t.he vaiues of the record :/:. The order of the fields is 1Iot significallt. A zero-fi.eld
record JO is identified with the at.om j. The selllallt.ics of record const.rllctioll is
defined by t.he two axiom schemes

fen: x) ~ fen: y) +--* X ~ Y

fen: x) ~ g(b: y) -+ ..L if J -=I 9 or [71.] -=I [1)]

where [71.] is t.he set of element.s of t.he sequence a. Field selectioll :1:.y is a part.ial
fHnction OIl records satisfyillg the axiom schemes

f (n:xb:y).b ~ y

J(n: x) . b ~ y ~ ..L if b ~ [71.].

The function label(:r) yields t.he label of a record according to the scheme

label(J(· ..)) ~ f.

Finally, record adjunction "adjoinAt(:r., y, z)" adjoins a field y: z to a record x:

adjoinAt(J(a: x b: y), b, z)

adjoinAt(J(n: x), b, z)

....:..

....:..

9

J(n:xb:z)

J(n:xb:z) if b ~ [a] .

We write f(xl"'x n) as a short hand for the record f(l:xl ... n:xn). Thus we
obtain Prolog tenns as a special case of records. The outlined constraint system
is in fact a conservative extension of Prolog II's rational tree system.

4 The Programming Language

Having glimpsed at the mathematical model of Oz, we are now ready to see the
concrete programming language.

A procedure P taking 11 arguments can he defined with the concrete syntax

proc {P Xl ... Xn} a end

standing for the abstract expression

P:Xl ... Xll/a A 3a(P==proceclure(name:aarity:n)).

Thus a procedure definition iutroduces an abstraction and equips it with a unique
identity. This construction ensures that a. variable can link at. most one ab­
straction on a consistent blackboard. Since the variable P denotes the record
procedurt>(nallle: a arity: 11) rather than the abstraction, we can test for equality
between P and other variables. The resulting first-class equality for procedures
(Le., procedure identities) provides for useful programming techniques. The fact
that procedures have uniqne identity is also important for the efficient implemen­
tation of the reduction rule for applications.

The following expression defines a map function for lists in concrete Oz syntax:

proc {Map X P Y}
if H Tin

X = HIT
then
y = {P H} I {Map T P}

else

fi
end

X = nil
Y = nil

The atom nil stands for the empty list, and HIT abbreviates the record cons(H T)
representing the list whose head is H and whose tail is T. The "H T in" prefix
quantifies the variables Hand T in both the guard and the body of the clause.
Composition is written as juxtaposition. Variahles start with an upper-case letter
and are thns distinguished from atoms, which start with a lower-case letter. The
line Y = {P H}I{Map T P} contains two nested applications, which are eliminated
using auxiliary variables and composition:

3 U 3 V (Y == cons(U V) A PH U A Map T P V).

10

proc {Producer}
exists Ack in
item ('yellow brick' Ack ok) ! Channel
if Ack = ok then {ProducE'r} fi

end
proc {Consumer}

exists X Ack in
itE'IIl (X ok Ack) ? Channel
if Ack = ok then {AddToRoad X} {ConsulIler} fi

end

Figme 3: SYllchronized prodllcN-consulller COllllllllllicat.ioll

We will use nE'stE'd llot.ation frequclltly, thus alleviatillg the vE'rhoseness of the
pmely rE'lational ca.lculus. (The Oz Calcullls is designed purely relational sillce
this setup provides for thc lIIinilllal and orthogonal orgallizatioll of its constructs;
for instance, cOllstraillts are cOlllplE'tE'ly sPj>aratE'd froIll the ot.her constrllcts.)

Constraint COllllllllllicatioll is aSYllchronous. Synchronous COllllllllnicatioll can
be exprE'ssed by colllhinillg collstraillt COllllllullicatioll wit.i1 tlw condit.ional III
the producer-collsllluer exalllple in Figlll'e :3 , colllputatioll susppnds IIntil (0111-

lllllnication has taken place (signaled hy all acknowledgelllen t). The default
for a missing E'\se part of a cOlldi tiollal is else true. The lIesteel get. t.okell
itellJ(X ok Ark) ? Cllcl.lllH:'1 t.ra.llslaJ.es into

3 Y (Y == il./:'lIl(X ok Ark) 1\ Y't Cha1llH:'I).

5 Objects

An ohject is a persistent agent procE'ssillg messages froIll tile out.side world. It. has
a stat.ic aspect, it.s method tahle, alld a dynalllic aspect, it.s st.ate. Although t.heir
state lIlay change, objects do have a persistent identity. Methods are possihly
indeterministic functions

method: sta.te x In/:'ssage -+ sta.te

defining the behavior of ohjects. Messages are processed as follows: First obtain
the method llame frolll the lIlE'ssage, then obtain the corresponding met.hod from
the objE'ct's method table, ancl finally change t.o a possihly new state by applying
the met.hod to the currellt state and the message.

There are several possihilities for expressing ohjects in Oz. The one we will present
here reprE'sents an object 0 as a procednre "sending" the message given as its
argument.

11

proc {O Message Continuation}
if Method in

Method = MethodTable. {Label Message}
then exists State in

State? Channel
if {Label State} = state
then {Method State Message} Channel

{Continuation}
ft

fi
end

A message is represented as a record whose label is taken as the name of the re­
quested method. The method table is represented as a record whose field names
act as method names . The state of the ohject resides on the blackboard as a put to­
ken State !Chanllel, where only the object 0 is supposed to know the link Channel.
The state is represented as a. record whose fields act as the attributes of the object.
The guard {Label State} = state suspends the application of the method until the
state is known on the blackhoard.

The argument Contin uation of the procedure 0 is is a zero-argument procedure
to be applied concurrently with the method. It provides for synchronization upon
and sequentialization of message sending.

There is sugared syntax for message sending (local is a variant of exists having
a closing end):

O-M; (1 ~ local P in {O M P} proc {P} (1 end end .

Moreover, O-M ahbreviates O-M; true. Thus O-M; O-N sends first message
M and then message N to the object O. Since we are in a concurrent setting, it
is possible that 0 takes other messages hetween M and N.

Since objects are represented as procedures, they enjoy in fact persistent identity
(recall the translation of proc ... end given in Section 4). Thus one can test for
identity of two objects 01,02 using a condi tional if 01 = 02 then· . . ft .

Note that many agents may know an object 0 and thus may concunently attempt
sending messages . Handling the state with constraint communication ensures mu­
tual exclusion: the respective method applications are implicitly and indetermin­
istically sequentialized since there will be at most one put token holding the state
on the blackboard.

Since procedures are first-class citizens, we can write a generic procedure creating
a new object from a method table and an initializing message:

proc {Create MethodTahle IMessage O}
exists Channel in
{MethodTable. {Label IMessage} state(self: 0) IMessage} Channel
proc {O Message Continuation} end

end

12

local Set Inc See in
COllnter = {Create lilt(set:Set inc:lnc see:See) set.(O)}
proc {Set InState Message OutState}

OutState = {AdjoinAt InState val Message.l}
end
proc {Inc InState Message Ou t.State}

Out.State = {AdjoinAt InSt.at.e val (InStat.e.val + I)}
end
proc {See InState Message Ou tSt.at.e}

Out.St.at.e = InSt.ate
Message.l = InSt.at.e. val

end
end

Figl\l'e 4: A count.er ohject. in plain synt.ax

The not.ion of "self" is captured straightforwardly hy equipping the init.ial stat.e
~ta. te(sf:'lf: 0) with a self-reference. Note t.hat t.he object's stat(· is cncapsulat.ed
since (l'lantifiration ensures t.hat only t.he procedure 0 knows the link Channel.

To sllllllllarize, we are now in a position where we can creat.e a concurrent objcct
by simply a.pplying t.he pron'dl\l'e Create t.o a lIlethod t.i1.ble and an initii1.lizing
message. The method tahle lIli1.y he seen as the class of the ohject.. 130t.h t.he

object and its class are fi rst-class citizens having uniqne identity. A message is
sent by simply applying t.he ohject. t.o it..

5.1 A Counter Object

Figme 4 shows how a counter can he set up as an ohject having methods for
initializing, increltlent.ing and reading its value. The initializing message sel;(0)
adjoins the new at.t.ribute val: 0 to the initial state state(self: COIIIJtf .. r). In fact,

due to t.he semantics of AdjoiIJAt (see Section 3), every method llIay adjoin new
attributes to an object's state.

Reduction of COllllter~see(X) constrains the variahle X to the cunellt value of
COllllter. Reductioll of

C' ~ (X) C' ~. C' ~. . C ~ (r:) ,oullter set ; ounter mc; ,ounter IIIC; ounter see .)

constrains the variable X to 3, provided no one else is sendillg intervening messages
to COllllter. We will see in the next section how this can be prevented. The
".bove reductioIl illustrates the smooth integration of the notions of state and
logic variahle.

Oz supports special syntax for object creation and method definition, which allows
writing the expression in FiglUe 4 as follows:

13

create Counter with set (0)
meth set (X) val +- X end
meth inc val +- @val + 1 end
meth see(X) X = @val end

end

5.2 Inheritance

The behavior of an object is determined by its method table. Inheritance thus
means that the ltlethod table of a new object is obtained by combinillg and ex­
tending method tables of existing objects. Since method tables are represented as
first-class values, combining and extending them is straightforward (e.g., by record
adjunction) . To make the methods of an object accessible, we will now represent
an ohject as a record

ohject(tahle: MT send: Q)

where MT is the method table and Q is the previous object representation. The
sugared syntax for synchronized messil.ge sending translates now as follows:

O~M; (T ~ local P in {O.senel M P} proc {P} (T end end .

With the new object representation we can create an object DecCollIlter by inher­
iting the methods of COllnter and adding a method for decrementing the value:

local Dec in
DecCounter = {Create {AdjoinAt Connter. tahle dec Dec} set (0) }
proc {Dec InState Message Ou tState}

end
end

OutState = {AdjoinAt InState val (InState.val - I)}

In sugared syntax we can write more nicely:

create DecCounter from Counter with set (0)
meth dec val +- @val - 1 end

end

To create a new counter C having exactly the same methods as DecCollnter and
taking X as initial villne, we simply write

create C from DecCounter with set (X) end.

Observe that our model alleviates the distinction between classes iI.nd their in­
stances by combining object creation and inheritance into one single operation.

In a concurrent sett ing it is sometimes essential to send an object a block of
messages to be processed without intervening messages. The ability to obtain and
release locks on objects is equally important. To this purpose we define an object
with a single method ba.tch taking iI. list of messages as argument [10]:

14

create BaJ.chObject with batch (lIil)
meth batch (L)

if H T in L= HIT then ((@self H)) ((([~self bat.c h (T))) fi
end

end

The two consecutive IJle,.;"age applications are threaded wit.]1 all illt.PrIll ediat.e state

3State (IlJState (((f))"eif H))State 1\ Stat.e ((Cij"elf batclJ(T))) Ollt ..)tat.e)

an d a th readed message application IlJState ((0 M e,,:;ilge)) 011 t.St.at.e f'X pall cis ill to

{O. table. {Lahel MessagE'} InState MessagE' OntStat.e} .

The notation for lIIessagl:' a.ppliratioll ('xploits the fact. that ill onr 1II0del every
method III of I:'vl:'ry objl:'rt. 0 ca.ll bl:' rdl'ITf'd to hy O.ta.lJle .Ill. Illcidplltally, 01\1'

notation for message applicatioll also serves the pll1"pose of SlIIallta.lk's "super"
Hotation.

A decrell1entahle counter with a hatch lI1ethod call HOW be oht.a.illecl by II1Illt.iple
illheritance froll1 DpCC0I111ter ancl Ba.tchOlJject:

create C from DE'cConllter BatrhOhject with set.(0) end

The method tahlE' of c: is ohtained hy adjoillillg the tahles of Dec(,'0I111ter and
BatcJ,Ohject. Now

C-ha,tch(set(X) I illc I inc I see(5) Inil)

is gnaranteecl to collstrain X 1.0:3 (colIl\mre with the exalliple ill SectioH .'i.l).

6 Summary

Oz is an attempt to create a high-level concurrent programming language bringing
together the merits of logic and ohject-oriented programllling. For this)llll'pose,
we extend the COnC1llTellt constraint 1I10dei with a facility for higher-order pro­
gramming and the new notion of constra.illt comll1unication. The selllalltics of
Oz is specified hy a new mathematica.! model, called the Oz Calcnlns. In addi­
tion to higher-order progra.llIl1ling and constraillt COlllmlll1icatioll, the Oz Calculus
provides an abstract COlli positional semantics for deep guards and the dynamic
creation of new and unique names.

We have shown how concurrent objects created by multiple inheritance can be
expressed concisely and natnra.lly in Oz. Objects, classes, methods and messages
are all modeled as first-class citizens. Although ohjects change their state, they
enjoy persistent identity. The object lllodel profits from the fact that the constraint
system underlyillg Oz provides records as logic data structme.

An implementation of Oz hased on a compiler and an abstract machine written
III C++ exists ancl shows encolll'aging perforlllance. Efficient implementation of

15

constraint communication is not difficult. The construction of new states by record
adjunction can be safely optimized to destructive assignment (i.e., compile-time
garbage collection) if the compiler enforces certain syntactic restrictions.

Acknowledgements

We thank all members of the Programming Systems Lab at DFKI for inspiring
discussions on all kinds of subjects and objects; particularly many suggestions
came from Michael Mehl, Ralf Scheidhaller, and Ralf Treinen. The research re­
ported in this paper has heen supported by the Bundeslllinister fiir Forschung
und Technologie , contract ITW 9105 (Hydra), and by the ESPRIT basic research
project 719.5 (ACCLAIM).

References

[IJ H. Ai't-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system
for logic programllling with entailment. In FGCS'92 [6], pages 1012- 1021.

[2J W. Chen, M. Kifer, and D. S. Warrell. Hilog: A foundation for higher-order
logic programming . .Jollfllal of Logic PrograInming, 15:187- 230,1993.

[3J K. Clark and S. Gregory. A relational language for parallel programming.
In Proc. of the ACM Conference Oil FUlIctional Prograll1ming Lallguages and
Computer Arcilitectllre, pages 171- 17R, 1981.

[4J A. Colmerauer and F. Benhamou, editors. Constraint Logic Programming:
Selected Research. The MIT Press, Cambridge, Mass., 1993. To appear.

[5J A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical princi­
ples and CUlTellt trends . Technology and Science ofInfonnatics, 2(4):2,15- 292 ,
1983.

[6J Proceedillgs of the III tematiollal COli ferell ce OIl Fifth Generation COlJlPU tel'
SysteIns , Tokyo , J<I.pan, 1992. IeOT.

[7J Y. Goldberg, W. Silvermall , and E . Shapiro. Logic progralJls with inheritallce.
In FGCS '92 [6], pages 9!j1- 9GO.

[8J .1 . .Jaffar and .J.-1. Lassez. Constraint logic programming. In Proceedings of
the 14th ACM Sywposillm OIl Principles of ProgralJlming Langll<lges, pages
111- 119, M1Inich, Gerlllany, Jan. 19R7.

[9J S. Janson and S. Harieli. Programming paradigms of the Andorra kernel lan­
guage. In V. Saraswat anei K. Ueda, editors, Logic Progr<l.m1l1illg, Proceedillgs
of the 1991 IlItel'llational SYlllposillm, pages 167- 186, San Diego, USA, 1991.
The MIT Press.

If)

[10] K. Kahn. Ohject s: A fresh look. In Proceedings of the Thirc/ European Con­
ference on O/Jject Orientec/ Prograllllllillg, pages 207- 22:3. Call1hridge Uni­

versity Press , Camhridge, MA, 1989.

[11] M .. J. Maher. Logic sellla.nt.ics for a class of rOIllIllit.1.('d-choin' prograllls . III

.T.-L. La.ssez, editor, Logic ProgralllIlIillg, Proceedillgs of /.lll:' FOllr/.h IIl/.(,rIJa­
tional Call ferell ce, pages :-:!)~-87(j, Call1hridge, MA, 19,1.\7 . Th!' MIT PH'SS.

[12] R. Milner. The polya<lic 7r-calculus: A tutorial. ECS-LFCS Rpport. Sf'I'i('s

91-1RO, Lahoratory for Foundat.ions of COIllPUt.f'I' Sciellce, Universit.y of Ed­
inburgh , E<lillhmgh Ell!) :l.1Z, Oct.. 19!)1.

[13] G. Nadatillll' and D. Miller. An oV('I'view of ,),Prolog . III H. A. I\:owaiski alld

K. A. Bowen, edit.ors, Proreedillgs of /.he Fif/.h IIl/;erIJa/.ioll(ll eOllf~'rellCe (ll/(l
S'yllJposirllll 011 Logic Progr(llllllling, pages HI0- R27, S('att.le, Wash., 19~H. The

MIT Press .

[14] V. Saraswat and M. Rinard . Concurrent const.raillt. prograJllllllng . In 1'1'0-
ceeC/illgs of the 7th Annual ACM S'yllJposirlllJ 011 PrillCipll:'s of J>rograJIJJlIing

Lallgll(lges, pages :,n2- 24ri, San Francisco, CA, .Janllary 19f)().

[15] E. Shapiro . The falIIily of concurrent. logic progralllilling languages. AeM
Comprll.illg SlIrve'ys, 210):41:3- ri11, S('pt. 19:-:9.

[Hi] E. Shapiro alld 1\. T akellchi. Ohject oriellt.ed prograIIlIllillg III COIlCIIITl'llt.

Prolog. NI'W GeJH'r(l/.ioll COJllplltillg, 1 :L-I - 4:-:, 19:-::3 .

[17] G. SIIIolka. A calcullls for highpr-on!Pr COllCIlITt'IIt. co nstraint. progralllllIillg.

Research repor t, DFI":I, PostJarh LO:-:O, (;7riO l\ai sprs la.ll t.f'I'll , CNIIIa.llY, 19D:L
Fort.hcolllillg.

[18] G. SlIIolka. alld R. Treinen. Records for logic progra.IlIJllillg. III K . Apt., ('<Iit.or,

Pro reedings of the .Join/. Illterllatiollal (,'ollfen'lIce (l.Ilc/ S'yJlIposillJll all Log­
ic ProgralJJ1JJing, pages 240- 254, Washingt.on, USA, 1992. The MIT Press.

FilII vprsion has app('ared as Research Report. RR-92-2:3, DFKI, St.uhlsat.zt'l1-
hallsweg 3, (;(;00 Saarhriickell 11, Gf'I'lIIany.

17

Deutsches
Forschungszentrum
far KOnstliche
Intelligenz G m b H

DFKI Publikationen

Die folgenden DFKI VerMfentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kl>nnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-21
Jorg-Peter Mohren, Jurgen Muller
Representing Spatial Relations (part II) -The
Geometrical Approach
25 pages

RR-92-22
Jorg Wurtz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka, Ralf Treinen :
Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-25
Franz Schmalhofer, Ralf Bergmann, OUo Kuhn,
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer, Thomas Reinartz,
Bidjan Tschaitschian: Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems
16 pages

RR-92-27
Franz Schmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu , Ansgar Bernardi, Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautern
FRO

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-30
Rolf Backofen, Gert Smolka:
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster:
Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader, Philipp Hanschke:
Extensions of Concept Languages for a Mechanical
Engineering Application
15 pages

RR-92-37
Philipp Hanschke : Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke , Manfred Meyer:
An Alternative to H-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke. Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne :
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck . Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-4S
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages
RR-92-46
Elisabeth Andre. Wolfgang Finkler. Winfried Gra/.
Thomas Rist. Anne Schauder. Wolfgang Wahlster:
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-S0
Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR-92-S1
Hans-Jurgen Burckert. Werner NUlt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-S2
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR-92-S4
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR-92-SS
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-S6
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-S8
Franz Baader. Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-S9
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta : Defaults, Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-Jiirgen Profitlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader. Berhard Hollunder. Bernhard Nebel.
Hans-Jiirgen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-0S
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jiirgen Biirckert. Bernhard Hollunder. Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jiirgen Biirckert. Bernhard Hollunder. Armin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley. Philipp Hanschke. Knut Hinkelmann.
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke. Jorg Wurtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit. Francesco M. Donini. Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel. Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren. Andreas Podelski..RalfTreinen:
Equational and Membership Constraints for Infmite
Trees
33 pages

RR-93-1S
Frank Berger, Thomas Fehrle, Kristof Klockner,
Volker SchOlles, Markus A. Thies. Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz. Jorg Wurtz: Object­
Oriented Concurrent Constraint Programming in Oz
17 pages

DFKI Technical Memos

TM-91-12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT-PA1R: Eine Erweiterung des
D-PA 1R zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-1S
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung eines
Compilers zur Transformation von
Werkstiickreprasentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jiirgen MUlier. Jorg Muller, Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kuhn. Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

DFKI Documents

D-92-11
Kerstin Becker: Ml>glichkeiten der Wissensmodel­
lierung fiir technische Diagnose-Expertensysteme
92 Seiten

D-92-12
Otto Kuhn. Franz Schmalhofer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery (Integrierte
Wissensakquisition zur Fertigungsplanung fiir
Drehteile: eine Bildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application­
Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur Reprlisentation
von Features in CIM
98 Seiten

D-92-IS
DFKI Wissenschaftlich-Technischer lahresbericht
1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft­
warekomponenten fiir nattirlichsprachliche Systeme
189 Seiten

D-92-17
Elisabeth Andre. Robin Cohen. Winfried Graf,
Bob Kass. Cecile Paris. Wolfgang Wahlster (Eds.) :
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich. Rainer Hoch: Automatische,
Deskriptor-basierte Unterstiitzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
GescWlftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

D-92-22
Werner Stein : Indexing Principles for Relational
Languages Applied to PROLCXJ Code Generation
80 pages

D-92-23
Michael Her/ert: Parsen und Generieren der Prolog­
artigen Syntax von RELFUN
51 Seiten

D-92-24
Jurgen Muller. Donald Steiner (Hrsg.) :
Kooperierende Agenten
78 Seiten

D-92-2S
Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm. Knut Hinkelmann . Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

D-92-28
Klaus-Peter Gores. Rainer Bleisinger: Ein Modell
zur Reprlisentation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke. Thom Fruhwirth: Terminological
Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt. Frank Peters.
Gernod LaufkOtter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann. Karin Harbusch(Eds.) :
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer lahresbericht
1992
194 Seiten

D-93-06
Jurgen MUller (Hrsg.):
Beitrlige zum Griindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbrucken 29.-
30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

"

Object-Oriented Concurrent Constraint Programming in Oz

Gert Smolka, Martin Henz, JOrg Wurtz

RR-93-16
Research Report

