
Deutsches
Forschungszentrum
fUr KOnstliche
Intelligenz GmbH

PLUS

Research
Report

RR-93-15

Plan-based User Support

Final Project Report

Frank Berger, Thomas Fehrle, Kristof Kleckner,
Volker Schelles, Markus A. Thies, Wolfgang Wahlster

March 1993

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslaulem, FRG
Tel. : (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft , GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently , there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

PLUS - Plan-based User Support

Frank Berger, Thomas Fehrle, Kristof Klockner, Volker Scholies,
Markus A. Thies, Wolfgang Wahlster

DFKI-RR-93-15

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

PLUS

Plan-based User Support

Fillal Project Report

Frank Berger, Markus A. Thies, \Volfgang Wahlster
Gennan Research Center for Art.ificial Intelligence (DFKI)

S tllhlsatzenhallsweg 3
W - 6600 Saarhriid\:f'n 11, Genllany

ThOlnas Fehrle, Kristof I~lockner, Volker Scholles
IBM Lahoratory Bohlingen

Sc:honaidH:'r Str. 220
\V - 7030 Bohllllgell, GenllallY

Abstract

This paper presents the results of the project PLUS (Plan-based User Support).
The overall objective of PLUS was the design and the implementation of a plan
based help system for applications that provide a graphical and direct-manipulative
interface.

The design of graphica,l llser illterfaces is based OIL the principle that "the user'
is always in c01/,tml" , This lllf'anS that the user is responsible for performing his
tasks according to his OWll strategy. This leads to a great degree of flexibility in
task execution as opposed, for inst.allce, to lllenu-oriented user interfaces, Usually,
neither a defillite sequence of illteractions uor a fixed number of actions are required
to accomplish a specific task. In adcli tiou, 1II0deless user interfaces allow the user
to work on differellt. t.asks in parallel aud t.o arbitrarily switch between them.

Within the project PLUS we developed variolls help strategies, including graphi
cal representation of t he Cllrrent. int.eraction context, t.utoring modes, and animated
help, to support novice and occasional users duriug their work with applications
that provide graphical user interfaces,

Contents

1 Overview

2 Objectives

3 The Design of PLUS
3.1 The Modt"ling of Plans

3.1.1 Actions
3.1.2 Plaw;

3.1.3 The Input of a Plan Base
3.2 The Processing of Plans
3.3 Controlling the Plan Processing
3.4 Animat.ed Help

4 The Realization of PLUS
4.1 The Architecture of PLUS
4.2 The Definition of a Plan Basf'

4.3 The Plan Pl'OCf'ssor . . .
4.3.1 Plal1Rec.ognizE'l'+
4.3.2 Plan Completion
4.3.:3 Plall Genel'atioll .

4.4 The Modulf' InCome+
4.5 The Module AuiS+ ...

4.6 Stand-Alone Tutorial ..
4.7 Steps towards Integrat.ion

4.7.1 Challges in the Objec.t.ivf's
4.7.2 Ac.t.ivit.if.'s for t.he Integration

5 Results of the PLUS Project
5.1 Integration of PLUS into SCl't"f'nView

5.1.1 A Short Sketch of Scref'n View
5.1.2 Code Inspec.tion

5.1.3 The CUlTf'nt State of t.he Int.egra.t.ion
5.2 Usability Eva.luation

6 Publications, Talks and Presentations
6.1 Publications.
6.2 Talks
6.3 Presentat.ions

1

2

4
4

· 4

5
6
6
7
8

10
10
11
13
13
14
16
17
21
23
23
23
24

25
25

25
25
26
26

27
27
28
29

Foreword

PLUS belongs to a n~w g~lleratiol1 of user int.erfac~s which possess some understanding
of what the users are trying t.o do, and how they need to go about doing it. An intelli
gent user interface like PLUS mimics S0111e of the key capabilities of a human assistant:
observing and forming models of the user, inferring user intentions based upon those ob
servations, and formulating plans alld actions to help the user achieve those intentions.

The results report.ed h~l"(> grew out. of an f'ffort to determine whether plan-based help
technology can SUl'viVf' out.side the resf'arch laboratories.

The gap that exists bet.wf'ell research alld cieveiopmellt. needs to be bridged if innovation
is to b~ achi~ved. Ollf' of DFKI's cballel1g(~s is finding new ways to spin research results
into new software developments of its shareholder companies.

For us at the DFKI , t.lle PLUS project. is a sbowcase f'ffort. of teaming applied research
and development. ill ordf'!' t.o spef'd lip t.he t.f'cbnology transfer process. PLUS is also an
excellent examplf' of wllat. we call a talldf'111 Pl'Ojf'ct. at. DFKI, i.e. an application-oriented
project that exploit.s resll lt. s from more ha,sic research ill another st.rategic DFKI project
funded by the Germall Minist.ry for Research alld Technology (BMFT). I was very pleased
about the fruitflll int.eraction and rross-fert.ilizat,ioll het.ween t.he PLOS project and the
PHI (Plan-based Help Syst.ems) project. wbic!l is sponsored by BMFT.

Transferring technology bet.weell a resf'arch organizat.ion like DFKI and a development lab
like IBM Boblingf'll Software Systems reqllirps a cOllcerted efFort. along many dimensions.

Special thanks to Volker Scholles and Dr. Thomas Febrle from IBM for making our jour
ney through this t.echnology t.raIlsh~r procf'SS an ~njoyable one.

I would like t.o t.hank Ma.rkus Tilies and Frank B~rgel' fl'Olll my res~arch division at DFKI,
who did a tremendous job 111f'(~t.ing a.ll t.lw deCl.dlines for t.lle various milestones and finally
delivering a piece of soft.waH", wllicll sl\l'pa,ssed t.he expectat.ions of t.he industrial partner
and pleased the sponsors. I would also like t.o t.llank Dr. Kristof Klockner and Dr. Teufel
from IBM for their excP.!lf'nt. management. and support. of tbis project. Finally, lowe a
great deal of gratit.udf' a.nd a.ppreciat.ion t.o Prof. Endres aud Prof. Glatthaar from IBM,
who initiated this fruitful collaboration and fost.ered a sense of technological excitement
about the project illside their compally.

I think that the PLUS project was a breakthrough in making plan-based help systems a
demonstrable technology n~ad'y for widespread CI.pplication.

Prof. Wolfgang Wahlster

Preface

At the end of this year a fruitful cooperatioll between the German Research Center for
Artificial Intelligence (DFKI) and IBM Boblingen Software Systems came to an end. As
manager of the department participating in this partnership I would like to look back at
the past two years and give a brief assessment of its importance to us.

From the PLUS project we expected an exploration of context (i.e. task) sensitive help
for direct manipulation user interfaces, a problem that came to our attention in usability
evaluations of system mana.gement applications with graphical frontends. Consequently,
our people from advanced software development, human factors and product development
took part in this joint effort.

We chose the DFKI as a project partner because of its excellent reputation in knowl
edge based user interfa.ces due to prior work by Prof. Wahlster and others on plan-based
help systems. Therefore we felt, we could expf'ct a significant transfer of technology to
the lab. Our expectations were surpassed, even if ultimately no direct introduction to a
product could be achif'ved.

All technical project. goals were achievf'd on schedule and additional aspects that came
up dlll:ing the investigations (lik~ animat.ion or tutor support.) were also able to be covered.
In retrospect, this SUCCf'SS is duf' to a great. f'xt~Jlt. to a devf'lopment process of iterative
refinement of prototypes which was faciiitatf'd by an object oriented methodology. Being
able to demonstrate the power of the plall- based approach through early prototypes was
helpful in converting init.ial scepticism in the product. areas into enthusiastic support.

The experiences gained with the PLUS proj~ct have been influential beyond the im
mediate project context, both within the lab and without. Several publicat.ions as well
as demonstrations and presentations within th~ IBM technical community and 3 masters'
theses attest the scientific success.

I wish to thank the project. part.icipant.s Markus Thies and Frank Berger from the
DFKI and Volker Scholles and Dr. Thomas Fehrle from IBM who ha.ve set an excellent
example of cooperation between advancf'd product development and applied science. I
would also like to thank all supporters who made this project possible , Prof. Glatthaar,
who provided additional funds from IBM Germany, Dr. Teuffel, the first IBM project
manager and especially mentors Prof. ElHlr~s and Prof. \Vahlster.

Dr. Kristof Klockner, Mgr. End Us~r Products Development 3

1 Overview

The project PLUS (PLan-based U ser Support) was a joint project between the IBM
Laboratory Boblingen, the IBM Germany GmbH, and the German Research Center for
Artificial Intelligence (DFKI), Saarbri.icken. PLUS was carried out from 1 October 1990
to 31 December I~H):2.

The following research scientists were involved in the PLUS project:

• Prof. Dr. Wolfgang Wahlster (project leader DFKI)

• Dr. Thomas F(~hrle (initial project leader IBM Lab)

• Dr. Kristof Klockner (following project leader IBM Lab)

• Dipl.-Infonn. Frank Berger (DFKI)

• Dipl.-Inform. Volkf'r Scholles (IBM Lab)

• Dipl.-Infonl1. Markus A. Thif's (DFKI)

There has bf'en a closf' and Vf'ry produrt.ivf' coolwrat.ioll bet.ween t.he two groups at the
DFKI and at the IBlVI La.horatory. R.esult.s from t.1\(~ work were frequently exchanged
during periodicallll~et.illgs Iwld aJtt'rIla.t.dy a.t the DFKI and at the IBM Lab. In addition,
further information alld codf' was f'Xcllangf'd as required via Illternet. Intermediate results
were examined twice by a. rf'view board cOllsisting of members from the three joint parties.
The first review took place in May 1991 at the IBM Lab, the second review was held in
December 1091 at the DFKI. With regard to the planned integration of the PLUS System
into Screen View, a code inspection cOllcerning the quality of the produced Small talk code
was conducted in Decemlwr UJ9 1 at. tllf' IBl\1 Lab (d. section 5.1.2). Within the periodical
SAB I Review at the DFKI, the project PLUS was reviewd four times and it constantly
received a very positive feedback.

The following resourcf'S witit regard to the hardware and software environment have been
provided by IBM:

Hardware: IBM PS/2 Model 80 workstat.ions with 6 (initally) to 10 (final stage) MB
main storage.

Implementation: Small t a.lk V /PM, an object-oriented programming environment run
ning under OS/2.

Design Rules: IBM's SAA/C01l11l1011 User Access (d. [IBM 01]).

First Application Domain: HCD (d. [IBM ~J2a]), a hardware configuration tool run
ning under Scref'n View:.!. HCD was developed at the IBM Laboratory Boblingen.

Second Application Domain: The Screen View sample application OrgChart which
displays the organization of an enterprise (d. [IBM 92b], pp. 79-86).

lThe Scient.ific Atlvisory Board is composed of well-knowll int.ernat.ional research scientists.
2Screen View is a set. of servic.es aimed at. t.he development. and running of applications with a consistent

user interface (d. [IBM 92b]).

1

2 Objectives

The overall objective of the PLUS project. was the design and the prototypical implemen
tation of a plan-based help l:iYl:item 3 . Rathel' than carrying out basic research, the state
of-the-art methods in several fields of Artificial Intell igence including Knowledge Repre
sentation and Plan-based Systems should be incorporated. Unlike previous help systems
that were mostly developed for command language environments (see, e.g., [Finin 83],
[Fischer et a1. 85], [Wilensky et a1. 88], [Wahlster et a1. 93], [Bauer et a1. 91]), PLUS was
designed to cope with applications which offer graphical user interfaces (GUI), whose
main interaction principle is based on a user-directed dialog by means of direct manip
ulation - so-ca.lled D irect Ma.nipulation User Interfaces (DMI) (d. [Shneiderman 83],
[Shneiderman 87]).

The design of graphical user interfaces is based on the principle that "the user is always
in cont1'01". This means that the user is responsi ble for performing his tasks according to
his own strategy. This leadl:i to a great degree of flexibility in task execution as opposed,
for instance, to menu-orient.ed user interfaces. lhually, neither a definite sequence of in
teractions nor a fixed number of actions are required to accomplish a specific task. In
addition, modeless user interi'acel:i allow the Ul:ier to work on different tasks in parallel and
to arbitrarily switch between them. The flexibility provided by t.hese graphical user in
terfaces from a human factors point of view, makes the use of software products easier on
the one hand but more difficult. on the other hand depending on the user type. It will be
easier and more producti ve for an expert Ul:ier to work ill such an environment. Novice and
occasional users, however, may easily get. confusf'd and they need assistance in performing
their tasks. Usability tel:its conducted in this area have shown that t.est participants, who
are traditional host users, need advice, in order to work with objects, actions, views, and
settings in an object-oriented user interface. Available online information could not be
used to solve their problems, because

• by presenting help infol'lnatioll using hypertf'xt information is split into units, which
are too small,

• static help information does not tale into consideration the current system state or
the previously performed user actions, ami

• textual help is not adequate in presenting information concerning the dynamic be
haviour of graphical user interfaces.

Rather than asking for static offline (i .e., manuals) and online help, the user might wish
to ask an experienced colleague for advice . P lan-based help ::;ystems satisfy the user's
need for task-oriented help, which i::; generatf'd at runtime in order to reflect the current
dialog context.

We wished to fulfill the following aims with t.he PLUS System:

l. Offerin g help which r eflects t he current dialog context and system state
User actions are mapped to typical user ta::;ks, hypotheses of intended user goals are
formed, and sequences of actions to reach .these goals are deduced and presented to
the user .

3See [Fehrle 90] for the initial project. descript.ion.

2

2. Increasing the acceptance of online help
The accept.ancf' of onlinf' help is quit.e lowly rat.ed by it.s users. In general, they miss
out. on a short aud clear solut.ion t.o t.heir IHf'Sf'nt. prohlf'Ill , a solution which can be
offered by PLUS.

3. Offering suitable help in graphical user interfaces
Graphical present.at ion and/or animation is the best way of explaining how to use

graphical user int.erfaces. People tend to deal more and more with other media
rather than text..

4. Reducing the effort of learning
Users are curious. They wish t.o run softwarf' immediately after installation and
without readillg Illanuals. Plan-based help systf'IllS act as an aid to this behaviour
of exploring cUld t.1lf' process of learning by doillg.

TI1f' following 11f'lp st.nl.t.egi(~s slloldd hI-' incorporat.ed int.o PLUS, in order t.o meet these

demands:

• Passive help:
The user explicit.ly rf'Cillf'sts help.
Cont.ext.-sensit.ivf' hf'lp illformat.ioll is gellf'I"Cl.tf'd.

• Activf' help:
The user l"f'cf'ives hf' lp wit.hont. f'xplicit.ly rf'f[nest.illg it.

For example, the syst(~ lll ofFf'rs t.ht" IISf'r an optimized interaction sequence in order
t.o reach a specific goal.

• Cooperative help:
The user recei ves help w hen he makes errors.
The system ::;uggf'st.s possiblf' corrections or recommends alternative solutions t.o the

user.

• Implicit help:
The system a.da.pt.s it.self by, e .g.,
- changing tlw SCl'f'el] layollt.,

- focusillg t.lw llser 's at.t.ent.ion ,
- setting default.s.

As stated above, 011f' of our main goal::; was to provide graphical help, because this seems

to be the most adequatf' way of supporting users working with graphical user interfaces.

In order to provide thf' llser with a 'coillmon look and feel' concerning the application and
the help system, the PLUS System should be integrated into the graphical environment

of the applications.

3 The Design of PLUS

3.1 The Modeling of Plans

There exists a series of plan-based help systems for which a plan language has been de
fined that is suitablf' for the problems arising within their respective domains. We took
concepts used within the plan languages of the systems REPLIX (cf. [Dengler et a1. 87]),
MATHILDE (d. [Hirschmann 90]), and PLANET (d. [Quast 91]) and extended the lan
guage to adapt it to our needs (d. [Berger & Thies 92] for a comprehensive overview of
all properties that we used for the definition of plans).

We decided to choosp. a hierarchical plan base as the basis for the plan processor . There

are three main reasons for this decision:

(1) From a simple point of view, a plan consists of a series of actions that have to be
performed in order to successfully complete the plan and thus to reach the goal
associated with that plan. But if we take a closer look at common tasks a user is
performing when he is working wit.h an application, we notice that small sequences
of actions are often part of several plans. To avoid redundancies, it is sensible to
combine such sequences to separate plans . These plans, or rather their associated
goals , can be included as s'u/Jgoals within more abstract plans. We thereby obtain a
plan hierarchy with several layers .

(2) Another reason for working witll a hierarchical plan base is our aim of offering the
user an adequa.t.e a.ssistance on a suit.able abstraction level. A typical help scenario
might look like t.he following: A user st.art.s working on a task consisting of several
steps, but after reaching a certain point, he does not know how to proceed. If he
asks for help in such a case, he certainly does not want to get instructions about the
whole plan he is pursuing, but only for the part (the subplan) he has problems in.
Moreover, if he can ident.ify parts of a larger plan as logically independent subplans,
it is then easier for him to reuse what he has learned about a subplan, if this subplan
occurs in a second task.

(3) Obviously, a plan recoguition process working on a plan hierarchy is generally much
more efficient than one working on a flat plan base. Firstly, the amount of memory
needed to store t.he plan hypotheses may be considerably smaller because of the
redundancies (d. (l)) that occur within a flat plan base. Secondly, performing
inference and search processes in a plan hierarchy is much more efficient than in a
flat plan base.

3 .1.1 Act ions

We use the term action within the PLUS System for pull down choices which are se
lectable within the application. However there are two additional types of actions within
a graphical interface environment. We will define them in the following paragraphs.

Generic Actions The PLUS System is designed to run with applications that are
running under ScreenView. Usually, these applications offer both application-specific
actions and so-called generic actions which are common to all Screen View applications .
These generic actions essentially comprise actions for clipboard management (i.e ., Create

4

and Paste) and for the visualization of application obje-cts within the different windows
(e.g., Include).

Navigational Actions Apart from the action~ wliich are selectable via pulldown choices
within the application, there are also actions for the navigation within the graphical user
interface. Tht> te-rm //.a 'l)'iga.tional actio//. denotes actiollS like se1'oliing} restoring windows}
and selecting Objf·cfs.

We believe that tllf' t'xcl USiOll of generic actions and navigational actions from the plan
recognition proce~~ is sensible. Goal recognition based on navigational or generic actions
is not possiblp, becallst" the-se actions are usually part. of any plan that a lIser may have in
mind to reach a goal. To overcome th is restriction of the plan recognition process, the lIser
must have thp opport.unit.y to access help concerning ge-neric actions alld/or navigational
actions. Adequatt> prest"llt.at.iolls of gelleric a.lld Ilavigational a.ctiolls would be a tutor-like
mode telling the lIser wha.t iictions t.o perform and how to perform them, and an animated
help ~howing the user IIOYV t.o perform actiolls Oil t.he current use-r interface.

3.1.2 Plans

In the context of plan-bast"c\ help syst.ellls, a pia1/. is a. sequence of actions that have to
be executed to perform a give task, allli tllerehy to achieve ~pecific goals. Given the
reason~ above, we t"xp li ci t. ly distillguish Iwtweell plalls a lld goals. A goal can be achieved
ill different ways, ead l of t.ltell1 rt"prcsellttJd hy ,\.II a lt.erll at.ive plall. Each plan, however,
leads to exact ly one goal.

Plan Types VVt" allow t.1lt" ass iglll1H"llt. of a type t.o each plan, ide-ntifying it as an optimal}
subo]Jliuw.l, or 'fI)/'O!l.g WiiY t.o reach Lite goa.! associated with t.he plan. This information
can be used by tilt" dift't"rt"llt COlllpOIlt"nt.s of t.he PLUS System to decide what kind of help
is suitable for t he use-r (e.g, act ive Il eip or cooperat ive help, d. sect ion 1).

Parameter Constraints USlla.l ly, t!tp stpps of a plan work on a common set of ap
plication objects. Eiicll st.ep has ii. llllllllwr of paramet.ers. The parameters of an action
are placeholders for the app li cat.ioll ob jpct.s t.hat. are provided with the action when it
is written to tile dialog history. III addi t ioll, we allow goal::; to have parameters. The
goal paramete/'s are placeholders for thp application objects t.hat are substantial for the
achievement of the goal. Goal paramet.t"rs are used for the definition of parameter con
straints, if the goa.! is used as a suhgoa.! within higher level plans (see below). Moreover,
goal parameter~ can lw lIsed within the dpscl'iptions of a goa.l to establish a context sen
sitivity of the descriptions.

In order to reflect. the relati onship Iwtwp("J} the application objects involved in a plan, it
is necessary to defilw tIlt" constraints between the parameters of the plan's actions and
goals. We oft'el' t he possihility of defining Equaldy and [Inequality constraints. Due to
the fact that applicatiolls a.ddressed by the PLUS System deal with object hierarchies, we
offer a third kind of cOllstraint., thp Df;jif'lu!nd Of relation.

Sequence Constraints Olle of the major benefits of graphical user interfaces - in
contrast to command-oriented or menu-based user interfaces - is the possibility of pro-

cessing tasks in parallel and of performing actions in (almost) any order independently
from each other. That is, plans in PLUS enforce no strict sequence of actions to be per
formed. Therefore, we basically view plans as a set of steps without any total ordering.
However, there are usually some temporal relations between the steps of a plan that have
to be maintained in order for the plan to be meaningful. We distinguish between two
kinds of sequence constraints:

Absolute Positions It. might be necessary for a certain step to occur at a particular
position when a plan is being performed by the user. A typical example is a plan
working on a file. The first action of this plan is to open the file, and the last action
is to close it. Therefore, we offer the possibility of as"igning an absolute position to
each step of a plan.

Relative Positions It might be necessary for a part.icular step to occur before other
steps, as a pia!) is being accomplislIf'ci hy t1lf' user. For example, before any action
can be performecL on an applicatioll object, t.his object. has to first. be created.
Therefore, we offer t.he possi bili ty of defining a set. of predecessors for each step of
a plan which specify t.he steps t.hat. have t.o be performed beforehand.

As an additional feature, it. is possible t.o define whatever a step of a plan is compulsory or
optional. In contrast. to compulsory steps, opt.ional st.eps do not. necessarily have to occur
in order to achieve t.he goal associated with a plan, however their occurrence strengthens
the hypothesis that a plan is being followed by the user.

3.1.3 The Input of a Plan Base

Tools for the application or information developf'r in order t.o model the plan base should
be part of the system. These t.ools should offer an easy mechanism of interactively specify
ing plans without. requiring a deep knowledge of the formal descript.ion of plans. Therefore
a plan language which is easily used by applying concepts of an interactive graphical en
vironment should be designed inst.ead of a pure syntactical plan language.

3.2 The Processing of Plans

The main module of a plan-based hf'lp syst.em IS a plan rf'cognizf'r. While the user in
teracts with the applicatioll, the plan rf'cognizf'r tries to map the performed actions to
plans, thereby making assumptions about the user's goals. These plan hypotheses form
the basis for offering various kinds of help to tlw user.

Two different approaches exist for plan-based systems. On the one hand, there are sys
tems that generate plans during run-time using a plan generation system. This approach
is also called plan recogni tion from .fi1'St p'rinciples. On the other hand, there are systems
that use a predefined plan-base as an input. for t.he plan recognition component (plan
recognition from second vrinciples). In t.he last few years, a lot of research has been
done within the area of plan recognit.ion hom first principles (see, e.g., [Bauer et al. 92],
[Koehler 92]). However, the plan recognit.ion components developed within these projects
are far from being suitable for use within help syst.ems which are intended to be inte
grated into sophisticated applications, since t.hey require a complete axiomatization of an
arbitrary application domain. Therefore, we decided to employ a plan recognizer that
is based upon the second principles approach. Plan recognition from second principles

exploits predefin~d plan lihra rif's.

In order to cope wit.h t.1l(-' difff' rf'nt. OMI f'WIlt.S, Wf' plannf'd t.o realize a two-level plan
recognition avproa,ch. TIl(-' first If'wl sllOuld proc~ss low-level f'vents like mouse-clicks

and keystrokes . It was pla,llJwd that. a.ll ATN-based parser to do the low-level processing

should be employed. Tlw second level processes the a ppli cation actions performed by the
user, e.g., by selecting pull down I1wnu it.ems. With t.his two-level approach, we are able

to process thf' low-lf'v~l events witbout. stressing t.he actual plan recognition process.

In the first level Wf' protocol the user's favorite interaction styles (i.e., does he mainly use

the mouse, or dof'S Ilf' preff'r 'short-paths') and we build up a simple user model to reflect

the user 's preferences (for user modf'ling see, [Wahlster & Kobsa 89], [Rich 89]). Firstly,
this simple user model can be employed in adapting help information to the user's habits

by considering his pref~lTed interaction styles, and sf'conclly, it allows the detection of al

ternative interactiou principlf's that arf' unknown to the user. Moreover, while generating
help sequences, tlw first. level of t. lte pla,1l recognition can 1)(" uSf'd in ord~r to determine
the most efficieut. int.era,ctioll t.edllliq1\P for performing a, specific adion. The results of

this first plan rf'coguit.ioll level cu e tlw application-specific actious perform~d by the us~r.

These adiolls arf' rf'cor<if'd wit.hiu it DirJ/o!} Hislo,.y t.hat servf'S as an input for the second

l~ve l plan rf'coguition 11l·O(,f'SS.

The second If'Vf'1 plan rf'cognit.ioll process is hasf'ci upou a hierarchical plan base called

s/.rdic Ii/an base as ciescri bf'ci in sf'ction :3. 1 above. We decicif'd t.o use a spTfruiing activa
I.ion algorithm for t.ile plan processing. A simi lar a lgorithm has been employed within the
system PLANET (d. [Quast. ~Jl]). Tlte plan recognition component tri~s to map actions

stored in the dialog history to plans cont.ained in t.he plan hierarchy. A so-called dynamic
plau base is thereby b1\ilt up at. rtIn-tinw. Th~ dynamic plan basf' cont.ains a ll hypotheses
conce1'lling plaus aud goals heing pmsued hy t.lte 1\Sf'r at. a cf'rtain state of the dialog. To

gether with a knowledge basf' cont.ainiug common help strategies extended by rules and
facts about genf'ric int.erface cOllcept.s, t.besf' hypotheses serve as the basis for the various

help components realized wit.hin PLUS (d. section 4).

3.3 Controlling the Plan Processing

As stated earlier, OMI f'nvirollll1f'nts allow tlte USf'r t.o act iu a. Vf'ry flexible manner. As the

user keeps on working wit.h t.he applica.tioll, t.h~ dynamic plan base may quickly grow and

may thus contain plan Itypot.lwses wlliclt are no 101lger plausible. Therefore, additional

mechanisms whicb keep t.llf' dY llamic piau basf' clear by rej ect ing unlikely hypotheses are

required. Within PLUS, t. lw following focusing methods are employed:

(1) For each pIau, it is possible to specify a. li st of cancel actions and/or goals (briefly

called cancels). Tlte execution of a. cancel action or the achievement of a cancel

goal immediately d ismisses the respect.ive plan hypothesis. A typical cancel action

is the closing of a window whose prf'Sf'nce is f'ssential for the successful execution of

a plan.

(2) A special kind of canc~ l action is the deletion of an application object which has

been used by a plan's previously pf'rfol'lned actions. We therefore introduced the

concept of so-called geneTic cancels. This mechanism causes every plan hypothesis

7

to be inunediatf.'ly dismissf'd from the dynamic plan base, if one of the involved
objects is deleted.

(3) We introd uced a Time Frame concept (see figure 1) that enables the PLUS System
to categorize plan hypotheses into different state:; depending on the number of user
actions that have been performed since a plan hypothesis was last activated (i.e.,
since the last assignment of a step to a plan hypothesis). As soon as an action
activates a plan hypothesis, Wf' call this plan focused. If more than Tl actions (Tl
i:; called Timf' F,.ame Focus) are performed without a new activation of the plan
hypothesis, it. changes its state to sleeping. If it gets no further activation for another
T2 steps (T2 is called Time Fmme Sleep), then the plan llypothesis is dismissed from
the dynamic plan base (it is unlikely that the user will continue to carry out this
plan).

>= T2

all compulsory

Dynamic Plan Base

FigUl'f' 1: Sta.tf' Tra.llsit.ions USillg Time Frames

3.4 Animated Help

Object-oriented graphical user interfaces entail new demand:; in providing the user with
adequate help. Static and knowledge-basf'd hP-lp :;ystems with a pure textual help (d.
[Wilensky et al. 84]' [Breuker 90], [Bauer et. al. 91], [Wahlster et al. 93]) reach their lim
its as soon as the u:;er needs assistance in performing interaction:;. For example, if the

user addresses a question like: "How do I include obJect A into container-obJect B ?",
a generated textual help could possibly sound like: "Move the mouse to the position of
obJect A and press the Zrjt mouse button. Now mO'pe the mouse with the left mouse button

still pressed to the position of the contoine?' object B . Then release the mouse button." We
think that an animated presentation of thf.'se interaction steps is more adequate than a
pure textual de:;cription.

As soon as the user need:; assi:;tance in performing interactions within the graphical inter

face, an animated sequence demonstrat.illg the nf.'ce:;sary interaction steps on top of the
current interface seems t.o be the most. adf'quat.f' way of supporting the user.

In contrast to earlier approaches to allima.tf.'ci · help (d. [Neiman 82]' [Sukaviriya 88],
[Sukaviriya & Foley 90]), the animation systf.'l1l of PLUS generates animated presenta
tions of interaction steps in the context of the current task which a user is carrying out.

8

The animation presentatioll comprises both the movement of the mouse on the interface
and the manipulation of objects (e.g, menus, scrollbars, windows, application objects)
with the mouse. In addition, the shape of the mouse changes in order to reflect mouse
actions like single-click or double-click with the left or right mouse button .

In order to provide the user with a better understanding of the reason why the animation
system performs the current mouse action, a text describing the goal of the animation and
the current mouse a.ction is presented in an adequate form (e.g., through speech output
from a speech synthetiizer).

4 The Realization of PLUS

4.1 The Architecture of PLUS

Figure 2 shows the overall architecture of the PLUS System. PLUS can be divided into
three functional parts:

(1) The Plan Processor including the Plan Recognition, Plan Completion, and Plan
Generation components.

(2) The End U ser I n terface including the modules InCome+ and Anis+, and a
context-sensitive entry to a hypertext-based help facility.

(3) The module PlanEdit+ as a tool for application developers for specifying plans.

These modules work on four different data resources:

• The Dialog Histo7"!) containing information on the user interactions recorded by the
application. The Dialog History is shared by the application and PLUS via the
OS/2 Dynamic Data Exchange (DDE) mechanism .

• The Static Plan Base containing typical user tasks . The static plan base is generated
by an application specialist using P lanEdit+.

• The Dynamic Plan Base containing hypotheses about the plans and goals the user
is currently pursuing.

• The Genemtion I{nowledge Ba.se containing rules that model the interface syntax,
the application semantics, and generic interface concepts (e.g, how to perform nav
igational interaction steps).

1
(""

PlanEdit+
Dialog

"- 1 Q) f(Passive J History
C) "... T r -.....,
as Help/ I"--. ./ c:

Dynamic r(Plan]' Static l:-as
:E I---- -~-

Recognition Plan Base "C

(Income+) - ;6.
"C c: -_.

0 I(Plan)
(') - Completion
Q)

as -_. - 0 c: -
Q) ()

"... :l
en AniS+ f Plan)J ~ ~
Q) Generation - Generation
"- Knowledge c.. !/

Figure 2: Architecture of P LUS

10

4.2 The Definition of a Plan Base

For each application ruuning wi t. h t.h~ PLUS System, a separate piau base has to be built
up. Typical t.ask::; perforIllf'd by a user when he is working wit.h the application should
be modeled within t.his plan base. We describe user tasks in terms of actions, plans, and
goals. These objects are contained wit.hin a plan hienn'chy called siatic plan base that is
structured as follows (see figure 3):

• The lowest. layer consists of t.he actions representing the application actions that
can b~ perforlllf'd by the user via pulldown or popup menu choices or by direct
manipulation illt.eractiollS . Act.ions are part. of plans.

• A pla.n represt'llt.s oue way of reaching a specific goal. It consists of a set of actions
and/or subgoa.ls (i.e., goals on a lower hierarchica.llevel). Each plan leads to exactly
one goal.

• A goal is a syst.elll st.ate t.hat. a user wallts to achieve while interacting with the
application. A goal may he reached ill different ways, each of them represented by
an aJternat.ive plan. Goals may he cOllta.ill~d as subgoa.ls witliin higher level (i.e.,
more abstract) plalls.

Goal layer

Plan layer

Goal layer

Plan layer

Act ion layer

o
o
o

o 0 0

Figur~ :3: The Structure of a Plan Base

For the definition of tlw static plan base, w~ d~veloped the language GPL+ (Goal Plan
Language) that provides Illechanisms to build hierarchical structures. GPL + has been
designed to cope with specific features of graphical user interfaces like rnultipLe selection)
optionality) IJ(J.ralldity, objfcl hiem.nhic8, and m.ultiph: vif:l/JS on objects. In addition,
features common to plan rf'cognition like JUI.nt.mete1· and temporal constraints) pLan can
cellation, and pia'//, i1l.tc1'fI.ctio1l..'i can be modeled with GPL +. [Berger & Thies 92] contains
a comprehensive sUllllllary of all properties that can be defined for the elements of a plan
base.

PLUS offers a cOllveuiellt. t.ool for specifying a plan base without the need for a deep knowl
edge of the formal df'scription of plans. The module PlanEdit+ (cf. [Berger & Thies 92])
provides a graphical user int.erface t.hat allows the plan designer to build up the plan base
interactively by means of direct manipulation, and to generate the appropriate Smalltalk
objects that are used by the plan processor for the plan recognition and plan completion
processes.

11

Figure 4 shows the PlanEdit+ main window, in which most of the interaction takes place.
The elements of the plan base are displayed as graphical objects. Each object consists
of an icon representing the element's type and the element's name. The Type Box in
the lower left corner of the main window contains icons for the three types of elements
contained in the plan base: actions, plans and goals. These icons can be used to generate
new elements of the respective types. The properties of the elements may be defined
within a series of dialog boxes .

. ~ I : I.<~'.)I!.~li! ~~_::..~:!::.~?L.I:~~: I .. I . !~J~li .~ ')~!:?~: r.~.(: r.(~(? ').t! f}.~~~~i~~~ _._._. ____ ._...:_~_
File Edit OQtions Navlga!e Help

F1 F1 +

GPrepProtRoot GPrepBootParam

j j I-

PrepProtRoot PrepBootParam

F~
..

A A A
CrProtRoot GPrep Comp BootParam RelnitBoot I-

i
Prep

Type Box

111F1 A A A
DetFsSize InsOsTape SelDirs

.. , ,
~~ ______ L-______________________ ~ __________________ ~ •

Figure 4: PlanEdit+ Main Window

Cont Fl
GP<eCJVNP

ons

Prep RevArp

Fl
GPrepBootFile

I
ReinitRevArp(Server)

Fl
A

Ins EntryNet(Server Client)

.OJ

GP<epBootRle(Clnt SI
TRASH

Figure 5: PlanEdit+: Various Window Types

12

The contents of th~ main window may become confusing for the user as the plan base
grows. Therefore, w~ add~d a st'cond window t.ype enabling the separate examination of
the structme of prev iously defined plans and goals, and the easy modification of their
properties. Figurt'!) shows an exampl~ of a plan window on top of the main window.
In the main window, t.llt' elements of the plan base may be arranged arbitrarily without
considering the str1lcture of the plan base. Within a plan window, however, the layout of
the obj ects corresponds to the logical sequence of the elements within the plan, as defined
through the sequenct' const raints .

A second tool for t.h~ g~neration of a plan base has been developed at the IBM Lab
as part of a masters t.lwsis (d. [Braune 92]). This t.ool introduces a textual format for
the definition of an AND-OR. tree representing the structure of a plan base, and for the
specification of the prop~rti es of t.he ~ leIllents colltain~d ill a plan base. The textual format
is based upon tlH~ Abst'mct S'yut rl1: (AS) developed by IBM. The AS has been extended to
meet the requi rt'1l1e Jlt. s JI(ct'ssary for t.he definit.ion of a plan base.

The text. ual descript.ion of a plan base can be ent.ered and edit.ed within a conventional
text editor. Addit.ionally, tools for tlH" mut.ual conversion between the textual format and
the intel'l1al format. used wit.hin PlanEdit.+ have been developed. This means that both
format.s can be employ~d in parallel and that. t.he plan designer can use whichever tool he
prefers, depen ding 011 t.lIf' C1IITt'nt. sit.uat.ioll.

4.3 The Plan Processor

The plan proct'ssor is t.lt e core of t.11(' PLlJS SySt,f lll. It. consist.s of three parts, the plan
recognition compOlwn t. P lct.nRecogni zt-' r+ , t.he pla.lI complet ion component, and the plan
generation component.. The plan complet.ion component and the plan generation compo
nents serve as the basis for the visualizat.ion .of possible future actions within InCome+
(d. section 4.4) and for t.he animation component AniS+ (d. section 4.5).

4.3.1 PlanRecognizer+

Within the PLUS Syst.em, PlanRt'cogllizer+ plays t.be part. of the plan processor. It
receives input from t.lw application via tlIf' dialog history.

The dialog history is updated each t.ime t.ht' user performs an action within the application.

Each update triggers Pla.nR.ecogllizer+ which works as follows (d. figure 6) assuming the
new entry within t.he dialog hist.ory is act.ion a:

1. The correspoudillg action within the static plan base is identified and a new instance
is created .

2. The dynamic plall bast> is looked lip for t'xisting plan hypotheses to which a could
be assigned.

3. All constraints that are defined for a within the static plan base are verified for each
plan hypothesis that is determined by tht' previous step.

4. If the verification has been successful, a is assigned to the corresponding plan hy
potheses.

13

5. In addit ion, for each plan to which a could be assigned, a new plan hypothesis is
created and again all constraints defined for a are verified. Each new hypothesis to
which a could not be assigned is dismissed.

6. If a plan hypothesis is completed by the execution of a then it changes its state to
recognized.

7. Each plan hypotheses that changed its state to recognized spreads its activation to
all plans to which it could belong by using this algorithm, modified by replacing
action a with plan hypothesis.

Static Plan Base Dynamic Plan Base

f1 G3

I

abc d e

D
Action Plan Goal

The execution of action a
activates the plans P and Q

Plan P is recognized,
thus goal G1 is achieved,

which In turn activates plan O.

Figure 6: Spreading Activation

During the plan recognit.ion process, P lanRecognizer+ keeps a record of t.he plan recog
nition process. When an ent.ry within the dialog history has been processed, PlanRe
cognizer+ sends t.he record t.o the context. visualizing component InCome+. Based on the
information cont.ained in the record, InCome+ builds an internal representation of the
plan recognition process and of the interaction context (d. section 4.4).

4.3.2 Plan C ompletion

The term Plan Completion describes t.he generation of a sequence of actions that perform
a specific plan. The execut.ion of the generat.ed actiom; leads to the goal associated with
the plan. The sequence is generated according to the definition of the plan. The definition
includes various ('Ollst.raints that had been defined for the elements of that plan during
the design of the stat.ic plan base. The sequence is called to be valid, if the constraints are
solved . This is done by considering sequence constraints, minimum/maximum iteration
constraints, and parameter constraints.

14

A special case appears when the elements of a plan have minimum iteration constraints
with 0 value. The 0 value means that these elements are optional. An element that is
defined to be optional wi t hin a plan must not necessarily occur when persuing that plan.
Consequently, during the generation of a valid sequence, the plan completion component
considers only elements that are mandatory for the plan to be completed.

A speciality of the spreading activation algorithm must be handled by the plan com
pletion component: The spreading activation algorithm allows spreading of activation only
for elements that have just been recognized or for actions that have just been executed
by the user, i.e. the user can st art a plan (focused plan) without its corresponding goal
being activated (due to the unrecognized plan). If the plan completion component then
generates a sequence for another plan that starts with a goal, it must consider all focused
plans that could lead to that starting goal. All constraints that are defined for the starting
goal must be satisfied (IS far as the parameters of the focused plan are already known.
If the plan completion component did not consider tbis foc'Ilsed plan, the generated se
quellce would include steps t.bat IJ(t,d o.ln-'(t,dy 1weu perfOl'llled by the user. In order to
suppress this misleadillg informat.ioll, tlw plan completion component examins focused
plans which are in Ulf' dynamic piau base dming generat.ioll of a sequence (d. step 6 of
the plan completion algorithm).

The plan completion component may gel1(~rat.e valid sequences for plans that are al
ready in the dynamic plan base and may generate valid sequences for plans that are not
yet activated by the plan recognizer. Recall that a plan in the riynam,ic plan base is acti
vated by the plan recognizer due to the assignment of actions performed by the user to
that plan (during the s]J'reading activation phase).

The generated sequences are used by InCome+, its tutor, and the stand-alone tutor.
The elements of the SpClUPI1CP will bp visua.iized to provide the user with the information
he needs to resume or to finish his work.

The plan completiou component is activated by a request for it from InCome+ or from
the stand-alone tutor.
The algorithm for the plan completion works as follows:

1. Determine the appropriate plan.

2. Determine the steps of all elements of t.hp plan specification that are not yet per
formed and that. arf' maudat.ory (//I.1:88il/,g slf:jJs).

3. Determi ne the ahsoll1 top])osi tiom of t he missing steps, usi ng the seq lIence constraints
Absolute Positions for them, and place the miss-ing steps within the new sequence
refiecting their absolute positions.

4. Determine the relat ive positions of the missing steps, using the sequence constraints
Relative Positions for them. Order the missing steps according to their relative
positions within the new sequence.

5. Place all remaining steps (i.e. not yet placed) within the new sequence considering
the positions already occupied .

6. Take the first step within the sequence and try to assign a plan that has already
been activated to that position by verifying the defined constraints.

15

7. Replace each step in tllP new sequence with a newly created instantiation of the
class corresponding t.o that step . Steps assigned during step 6 are omitted.

8. Propagate parameter types and values within the new sequence.

9. Answer the new sequence.

4.3.3 Plan Generation

The plan generation component is used by the How to ... tutor and the animation system
AniS+. The plan generation component works upon a knowledge base using a simple back
ward chaining algorithm. The knowledge base is split into an application part, a generic
part and an interface part. The application part includes information about application
specific actions, the generic part includes information about actions that are common
to all applications (due to the SAA/Common User Access) and the interface part con
tains information on how to access application-specific runtime information. Within the
knowledge base, pn~- and postconditiolls for actions are defined along with specifications
for the tutor and the animation system. The knowledge is packed into so called chunks.

These chunks include, depending on the part of the knowledge base for which they are
defined, varioLls slots: name, pr'd 70nrl, }JostConrl, stcpsAS, st cpsPG, and builtIn. The
slots stepsAS and stepsPG contain information that is collected when the corresponding
chunk is processed successfully. The information collected builds up a sequence of steps
that must be carried out. to reach the specified goal The slot stcpAS is used for AniS+
and the slot stepsPG is used for the How t.o ... tutor. The contents of the slot builtIn is a
function that queries runtime information from the connected application.

In order to understand the dependencies between the precondit.ions, the postcondi
tions, and the chunks defi~led in the knowledge base, a closer look at the inference process
performed by the Ba.cJ.:wfl ,tri-Clwine'l · (Be) is required.

InCome+ notifies the BC about an application action that has to be performed by
the animation system or that has to be explained to a user, who asked a 'How to .. .'
question. For example, two applicat.ion objects should be connected using the menu
function "connect" . The Be tries to map the menu function "connect" together with
the provided arguments to the name and the placeholders of an application chunk, If a
suitable chunk is found, the BC checks t.he preconditions of that chunk by trying to verify
the conditions defined in t.he slot 1n-eConrl. The verification is done as follows: if there is an
interface chunk with the same postcondition as t.he precondition to be verified, the built-in
method defined in this interface chunk is performed. If no such interface chunk exists, or
if the built-in method answers fa./s e, the Be searches in the generic knowledge part of the
knowledge base for chunks with a postcondition t.hat is identical to the precondition to
be verified. Thereby a list of chunks is created and sorted according to the sequence of
the chunks as defined in the knowledge base. The first entry in the list is taken and the
BC process reCLlrses to reach the new goal. If the derivation fails, the next entry in the
list is taken, and so on. If the list is empty, the BC fails to reach the specified goal and
terminates. Otherwise, the inference process has been successful and the BC returns a list
of (either animation or generation) steps necessary to perform the application action.

16

4.4 The Module InCome+

One of the central components for graphical help within the system PLUS is the In
teraction Control Manager' InCome+ (d. [Thies 90], [Fehrle & Thies 91]). It provides a
graphical visualization of the current dialog context, the dialog history, and possible fu
ture interactions. InCome+ gives the user a quick and helpful reminder of the system
state to resume suspended tasks. It supports the user in leaving system states unfamiliar
to him and in exploring actions (d. [Paul 89]) that can next be executed when completing
unfinished tasks.
InCome+ meets the following demands:

• Adequate visualization of user interactions,

• Display of different levels of abstraction selectable by the user,

• Visualization of possible future interactions,

• Graphical navigation services, and

• Display of plan interactions, like embedded, overlapping, and interrupted plans.

PlanRecognizer+ and the plan completion component form the backbone of InCome+.
The plan completion component. generates, on demand, a valid sequence of actions for
plan hypotheses that are contained in the dynamic plan base. Several constraints defined
within the hierarchical plan base are satisfied . For example, sequence constraints are

solved and parameter values t.hat are a.!ready known are propagated according to param
'eter constraints (cf. section ;3.1).

PlanRecognizer+ notifies InCome+ about. t.he ongoing plan recognition process. On receiv
ing the incoming data, In Come+ generat.es an int.ernal representation of the interaction
context. and displays it. as a graph st.ructure on the screen (see figure 10). The instances
of the object. classes action,])Ia.1£, and goal are represented as nodes. An action is repre
sented by an icon that looks like a single sheet of paper, a plan is represented by a stack
of papers, and a goal is represented by a goal banner (see figures 7-9).

Figure 7: Action Figure 8: Sequence of Ac
tions

Figure 9: Goal

The visualized structure resembles a directed graph reflecting the chronological order of
the performed int.eractiom; from top to bott.om. Objects belonging to the same plan are
connected by arcs. The sequence is ended by a goal banner representing the associated
goal (d. figure 10). InCome+ runs in its own window. The presented nodes are selectable
via mouse clicks. User action!:i provided by InCome+ can be divided into four categories
(d. [Thies 92] for a comprehensive description of the functionality offered by InCome+):

• Graphical N a.vigat.ion,

• Hiera.rchical Navigation,

17

• Tutor Activation, and

• Remote Application Interaction.

Graphical Navigation includes actions like scrolling, including, excluding and removing
nodes, and seal'ching for specific nodes.

..

Figurf> 10: InCome+

Hierarchical Navigation supports the user in viewing plans on different abstraction
levels. InCome+ offers actions for expanding and collapsing plans. Expanding is equal to
a dowJlward movement in the hierarchy and collapsing is equal to an upward movement in
the hierarchy. Expanding and collapsing of plans are realized within InCome+ by group
ing together sequences of actions into plalls or by replacing plans with their sequences of
actions.

In addition to the navigat.ion through t.lw hierarchy, InCome+ is able to visualize vari
ous plan interactions like plan inte1"T'uption, plan embedding, and overlapping of plans.
Figure 11 shows a snapshot of an interaction context where two plans, namely Ad
dCU2Config(C01, HCD2. TEST. IODF) and AddDevice2Config(D01, HCD2. TEST. IODF) ,
overlap each other and where both plans include embedded plans, e.g., plan AddCU2Config

includes two embedded plans: Cl'eateObject and ConnectCU2Proc. Both plans overlap at
the action Connect(C01, DOl).

18

Figure 11: Pla.n Interactions

Tutor Activation is carried out by selecting a goal and activating the tutorial mode. The
user is guided by the system t.o reach t.he chosen goal After activating the tutorial mode,
InCome+ requests an optimal sequence of actions in order to reach the goal selected from
the plan completion component . In this context, optimal means the most efficient sequence
of actions carried out in order to reach a goal. The attribute optimal is defined at the
plan level within the static plan base and is therefore predefined. The plan completion
component generates this sequence by considering various constraints (cf. section 3.1)
defined in the hierarchical plan base. Known argument values are propagated. The
sequence of actions is textually represented in a separate window like a to-do-list (see
figure 12).

..r Connect(C01.DOI)
COl and DOl connected.

.. +J
.. !

How 10... I
Iq'm'!IJj,i=';IN~Ci~IIM~*A~t~m~ ~& iijJ ___ An_I_m_at_e_d~
Conneo(D01 .an OS) ~

':J
~

..ti
Oose

S(~I(!ct ot.llects [)(I"I and 1m b()h~ri(' al)(1 p!?rtorrn 1;0nIH!ct I.Ind,?f' $(?I(!ctNI to int .• ,rlink tlH! oiJjects.
AddDevice2Config(DOI.HCD2.TEST.IODF)
Add DOl 10 an exisling configuration.
, Actions 10 perform: 2

Figure 12: Tutorial Mode and Actions Performed

The Tutor li sts ea.ch action necessary to reach the selected goa.l and supervises the actions
performed by the user. The user receives feedback from the Tutor by marking the corre
sponding entry with a check mark, if t.he action performed is part of the sequence of steps

19

required (see figure 12). If each action listed is performed, the user receives notification
that the chosen goal has been reached. If the user has made a mistake by performing
an action that hinders the achievement of .the selected goal, the Tutor informs the user
about this.

To offer the user help concerning generic and navigational actions, we implemented a
second tutor-like mode that conveys how to perform an action within the current inter
action context. After the How to mode has been activated, a window pops up, listing
from top to bottom, navigational actions that have already been performed by the user,
and navigational actions that are still necessary for the execution of the selected action
on which the How to mode has been activated. Navigational actions which have formerly
been executed are marked by a sign in front of their respective entries.

Three dots (...) are a special sign, indicating that the system can not predict subsequent
navigational actions because the result. of the navigational action listed above the three
dots cannot be anticipated. If the navigational action above the three dots is executed,
the three dots disappear and the next navigational actions can be anticipated by the sys
tem. After the user has performed the first navigational action that has no mark before
its entry, the system anticipates the next navigational actions necessary. The window is
updated, the executed navigational action is marked with a sign, and the next naviga
tional actions are added to the list.

The How to... window is closed if no more navigational actions are necessary for the
execution of the selected action. The user is notified by a message about the successful
execution.

E L! • •
File Help

~ 0 SeledionNew(D01 .HCD2.TEST.IODF) .1 001 created in window HCD2.TESTIODF.

~ 0 SeledionNew(C01 .HCD2.TESTIODF) 1 Cal created in window HCD2.TESTIODF.

~ 0 Connect(C01 .D01)

Cal and DOl conneded. .a.

~-----------------------=~[]
Figure 13: Linear Dialog History

Remote Application Interaction is provided by the animation system AniS+ that can
be activated within InCome+. In addition to AniS+ (d. section 4.5), some ideas were
developed in order to provide access to the undo- and redo-mechanisms of an application.
InCome+ could provide an interface to these mechanisms. In order to be able to deal with
two different principles for undo (function-oriented vs. state-oriented; see also [Rathke 87],
[Rathke 89], [Yang 90]), InCome+ uses an extended function-oriented approach by han
dling Ireezing-p01:nts (d. [Paul 89]). Freezing-points are snapshots of system states that
are saved within the application. It is possible to reset the application state to one of
these freezing-points by activating an appli cation function. By representing the interac
tion context in a more abstract way than by a linear dialog history, the user can perform
undo-actions and redo-actions on plans rather t.han actions. This is called undoing on a

20

semantic level. An undo applied to tasks without reversing successor tasks is not sup
ported ('freies undo' (unrestricted-undo), d. [Rathke 87]).

In addition to the visualized interaction context, a window is provided that presents the
linear dialog history. The visualization emphasizes reversible actions and freezing-points
that are set within the application. The lower left window in figure 13 represents the
linear dialog history. Within figure 13, the arrows on the right side of actions denote
reversible actions.

4.5 The Module AniS+

As a substantial extension of the graphical user assistance, we integrated the presenta
tion of animated help within the PLUS System. Within the PLUS System, animation is
performed by the component AniS+ (d. [Thies 93]). AniS+ generates animated presen
tations of interaction steps in the context of the current task being performed by a, user.
The animation presentation comprises the movement of the mouse on the display and
the manipulation of objects (e.g, menus, scrollbars, windows, application objects) with
the mouse. The shape of the mouse is varied to reflect mouse actions like single-click or
double-click with the left 01' right mouse button (see figures 14 and 15).

:,: , , D 0 ~ Illc~)rnZj l.\r\!Ch:~rt __ , : D iD i
j:nterp!ise ~elected ~dit ~Iew !::!elp Elle ~~e~~d, __ ~d~t_~lew __ Qptlon - Belp)

.~~
J

1
DFKI HW SW

D 0
Qlvlsion ~elected Yiew !::!elp

'II -
ww

[ET~] mJ I1il
PHI PLUS RAP v.1P

......
~~ .. I

I am going to perform 'Connect(a Manager,RAP)' therefore .. ,
, I am selecting Hanager(WW) in window DFKI - Complex View,

Figure 14: AniS+ generates navigational actions, ..

The mouse movements and clicks are simulated by sending corresponding mouse events
to the interface in such a way that the interface and also the application are acting on
these events as if they were performed by the user. Thus, the actions are really executed
within the application.

21

A text describing the goal of the animation and the current mouse action is displayed in
order to provide the user with a better understanding of why AniS+ performs the current
mouse action. By variable substitutions, the prestored text fragments are adapted to the
current application context.

An action sequence generated by the plan completion component serves as an input
to AniS+. AniS+ works with a two phase planning loop to incrementally generate the
interaction steps (e.g., mouse movements and clicks) necessary for the execution of the
generated action sequence. The inner loop considers the changes within the interface
context (e.g., selecting an object, scrolling the window) and uses a backward-chaining
algorithm. The outer loop considers the changes of the application context that take
effect after the execution of an action and involves both the plan recognition process by
reacting upon the performed action and the plan completion component by reflecting new
parameter values provided by the user.

)1'1:)(n
_ J;nterp!iSe ~elected

.~~
DFKI HW SW

.!;.onnect ~cb
Qisconne~ lJ
[~r~.[i]

Pili ?LUS RAP W1P
J

',1. ,

:1

~ 0. P!OJeClF~ho.ye(<

I
'j

Select Objects Manager a Manager and prOject]
__ ~ ____ 1J Connect(a Manager,RAP2.

a i'ni,'j·t _. ,,_.. . _____ J
I am going to perform 'Connect(a Nanager,RAP)' therefore ...
I ilm activatin!J till' tunction "Corml'c!'" Un(IN "SI'Ii~r: t~!(f' to connect obj(!cts
1.1ar1<lger(WW) and Project(RAP).

Figure 15: ... and varies the mouse shape

During the backward-chaining process, AniS+ accesses a knowledge base that defines spe
cific pre- and postconditions for each action. Informal examples of such preconditions
are "to apply an action to all object, it must be selected" and "an object can only be
selected if it is visible". The representation of generic interface concepts allows us to
generate navigational interaction steps (e.g., steps to scroll the visible area of a window).
In addition, the knowledge base models the interface syntax (e.g., clicking on an object
changes its state to be selected) and the application semantics (e.g., which objects can be
visualized in which types of windows (Iml which actions are applicable to which objects).

22

There is an interface to the application for accessing information about, e.g., selected ob
jects, visibility of objf'cts and the applicahility of actions within specific types of windows.
Although selected ohjects are considered as replacements for missing parameters during
the execution of the animation, not every parameter can be anticipated from the result
of the plan complet.ion process. For that reason, the llser is prompted to provide missing
parameters.

Animation as part. of a plan-based help system is a sensible extension for supporting the
user in performing interaction steps ill an interactive graphical environment. It fills the
gap between the collcepts of an interactive graphical interface and a textual representa
tion of help. Although animation can bf' valuable, merely using animation in help does
not deliver a perfect. lwlp system. Minimal textual explanations are presented with the
animation to help a user to generalize concepts (see the lower part of figures 14 and 15).

4.6 Stand-A lone Tutorial

A stalld-aIOllf' tutorial IMgf'l y hast'd 011 t.1J(J PLUS Syst.PIll has bf'f'll implemented at the
IBM Lab as a ll1ast.('r's t.lwsis (d. [Sclwidpl ~)2]). Tlw t.ut.orial is a frallwwork allowing the
information dpvplopl ' r t.o ill t.t'grat.e pl ,IIIS a.lld add fmt.\wr informat.ion as well as hints in a
more didactic way. Lparlling inforlllatioll is st.rllct,lJrpd by lessolls cOllsisting of a number
of paragraphs. Each pCl.ragravl1 df'scrihps a, goal and a corresponding plan to reach this
goal. A paragraph is displayed ill a spparate willdow with several areas containing

• a summary of tlw ta,sk,

• a detai If'd t.f'xt ual descri pt.ion ,

• preconditions which have t.o I)f' satisfif'd , alld

• the graphical visllalizat.ioll of d plan (a('cordi IIg to the visualizatioll used by In Come+,
extended by icolls J't~ presellt.illg Ilavigcltiollal act.iolls).

In contrast to the PLUS Syst.em t.he st.allcl-alol1f' tutorial does not. communicate with the
application. It illvo\.;:es t.he plan processor by a handle identifying a specific plan and
recei ves the com plt't.I~ in t.eraction seq uellce needed to accom plish this plan .

4.7 Steps towards Integration

4.7.1 Changes in the Objectives

During the project. period, we decided t.o shift t.he foclIs of the PLUS System towards a
possible integratioll of tlw PLUS Syst.pm int.o an IBM product. Due to the switch towards
the product integrat.ion , we had t.o cut. t.he initial PLUS activity plan:

• The first level of our plan recognition concept (ATN-based event handler) has not
been impleIllf'nt.ed. Tllf'refore , tlw information contained within the dialog history
is directly provided by the a.pplication.

• Different help strategies (a.ctiw, cooperative, implicit help) could not be realized.

However, little extra effort is Ilecessary in implf'menting the active help component, be
cause the concepts of optima.l, suboptimal, and wroug plans are already incorporated
within the PLUS Systf'm.

4.7.2 Activities for the Integration

As a re~ult of thp intendpd integration of the PLUS System into the Screen View product,
PLUS had to aclhert' to SOllle rule~ and st.andards used therein.

Error Handling If a Screen View module detects a bad return code of another Screen
View service or an operating system service, then an error message is written into the
Screen View error log. This message may also be presented to end users. Within Screen
View, the error handling OLL is implemented a~ a multi-threaded OLL. Therefore, we
implemented a server process which i~ able to communicate with multi-threaded OLLs.
This server communicates through a pipe with a client, who, in turn, is called from
Smalltalk V jPM. Thi~ client is implemented as a single-threaded OL1.

National Language Support The concept of National Language Support (NLS) is
realized within thp PL US Sy~teIl1. All t.ext. strings appearing at the surface are internally
coded by unique id~. At. ruutime, t.hes!" id~ are ~ub~tituted by the respective strings
contained in a dictiollary that. i~ filled at. st.artup t.ime frOlll a corresponding OLL. For
each target language, a sppa.ra.te OLL cont.ainillg the la.ngllage-specific dictionary will be
supplied with the PLUS Syst.em.

III t.he CUITent version of PLOS, tllf' servict"s t.hat 1ll11~t. he delivered from the application are
implemented withill t.llt" PLUS System and wit.hin the Smalltalk prototypes of the target
applications. On tllf' olle hand, thest' services t.ransmit. information about the objects and
the actions used within the a.pplicatiolls and about. their relations (e.g., which objects are
includable in which t.ypes of windows, which action~ can be applied to a particular object).
On the ot.her hand, dynamic informat.ion required by t.he plan generation component at
runtime concerning tilt' CUlTent st.at.t' of t.1lt' int.erface (e.g., which windows are visible,
which object~ are selectpd) is t.rallsmit.ted. In t.h(~ fut.ure, the former are to be substituted
by services acces~ing information contained wit.hin the Abstm.ct 5'ynta:J: Ta.ble that exists
for each Screen View application. These services have been implemented as part of a
masters thesi~ at the IBM Lab (d. [BrauIlP 92]).

24

5 Results of the PLUS Project

5.1 Integration of PLUS into Screen View

In the following subsections, we will briefly describe the platform Screen View in which the
PLUS System will be implemented, the results of a code inspection of the PLUS System,
and the state of the integration.

5.1.1 A Short Sketch of ScreenView

Screen View (d. [IBM nb]) is the central platform implementing the End- Use Dimension
of System View. Screen View is an integrated environment for developing and running
applications in the area of system management products. The implementation of Screen
View follows a strict separation of interface logic and function logic. While the interface
logic resides on a workstation, the function logic can be distributed between the host and
a workstation. Screen View services and t.ools support user interactions as follows :

• A work area provides application access by means of a graphical user interface.

• A generic navigation, object and view handler - called GenOVHa - enables the
user to navigate through complex objf'ct structures using a graphical object-oriented
user interface.

5.1.2 Code Inspection

Due to the planned integration of the PLUS System into Screen View, a code inspection
concerning the quality of the produced Smal\t.alk code has been carried out at the IBM
Lab in December l~HJl . For that purpos~, a comprehensive specification of the PLUS
System has been supplied (d. [Thies & Berger 92c]). The architecture of PLUS has been
presented, and the object-orient.ed d~sign of PLUS and the SmalltaJk code have been
inspected by experi enced IB M em ployees from variolls departments that are related to
PLUS.

The following is a summary of their remarks:

• The high quality of the documentation was appreciated.

• The PLUS architecture was essentially approved.

• The design was accepted completely, and its fun ctionality was considered to be ad
equate. It was suggested to point out known limitations.
Some sensi ble recommendatiolls concerni ng possi ble code improvements were real
ized thereafter.

• It was confirmed that the code is completely readable.

• Some work items, necessary for the integration into Screen View, were listed: Error
Handling, NLS, and integration into t.he User Interface Services of Screen View.

• The expected costs for tests have been est imated differently due to their limited
experience to date concerning tht> testing of software written with an object-oriented
programming language.

5.1.3 The Current State of the Integration

So far, no real integration of PLUS into Screen View has been achieved. Rather, the PLUS
System has been successfully tested wi til Sma.lltalk prototypes of the two Screen View ap
plications RCD and OrgChart. The communication between the PLUS System and the
applications is realized using the Dynamic Data Exchange (DDE) concept provided by
OS/2. There are different 'communication paths' that follow a defined protocol. It should
be possible to take over these protocols almost unchanged when the integration is per
formed.

The actual integration of PLUS into Screen View will be carried out at the IBM Lab at
a later date. To assist this integration as far as possible, a comprehensive documen
tation of the PLUS System, including a full specification of the implemented Smalltalk
classes, the external and internal interfaces, and known limitations, has been provided
(cf. [Thies & Berger ~)2c l).

5.2 Usability Evaluation

To obtain some qua.litative data about the user value of PLUS, we exploited a usability
test of the Screen View product and demonstrated PLUS to several test participants.
Following is a summary of t.heir remarks:

• They request a task-oriented system introduction and confirm that PLUS is a good
vehicle.

• They confirm that the dynamic concept of PLUS supports users in all interaction
states. In addition, they appreciated having the choice of a completely user-driven
dialog, a completely system-driven dialog, 01' a mixed dialog form.

• During animation sequences, they like having to enter parameters for functions
interactively, because this gives tltem an active learning role.

• They claim that PLUS supports their way of learning a new application - to play
around interactively without reading much hard-copy information.

• They think that PLUS allows a quick revision of 'how to work with an application',
if users had not worked with that appli cation for a long time.

The test showed that the users were able to correctly apply the strategies that they had
learned during the PLUS demonstration. In general, we can conclude that PLUS meets
many requirements and demands of users that are familiarizing themselves with a new
application.

Beside this usability test, the PLUS System has been tested very extensively by the PLUS
project members and by several research assistants during the design and implementation
phases, so that a lot of improvements and rectifications could be conducted beforehand.

:26

6 Publications , Talks and Presentations

6.1 Publicat ions

The following papers abou t PLUS have been publis lwd:

• InCo '17l,r: A Syst f ln to Nrl'l1igalf through Interactions and Plans by T. Fehrle and

M.A. Thif's , ill: Human Aspf'ct.s in Comput.ing: Design anel Use of Interactive

Systems and Information Managf'Illent, Procf'edings of the HCI International '91,
Stuttgart, Germany.

• Plan-Based Omp/I'ical Help 1.11 Obj,-ct-Ol"iented User Intc'/jaccs by M.A. Thies anel

F, Bergf'r, ill: Procf'f'dings of t.Iw workshop 011 "Advanced Visual Interfaces", May

'92, Romf', Italy,

• Plauuasinh ,fJ mph /schr HiUr i/l, objd:1 OI'/rll/if'l'i f ' /I, B rnut:;(:1'ouf.7jliichen by M, A,

Thies and F, BC'rg(Jr , ill: Illllovative Prograll1111 if'l'Illf'tilodf'1I flir Graphische Systeme,

Procf'f'dillgs of t.1lt-' GI-Facbgespra,cb. JUIlf' '!)2, BOlln, Gf'rmany,

• Pn's]Jr/.:i'i'l1f"lI :; /11' [\'oll/hi/wli(J'/I '11011 (f'/II01I1{J/ischf/1I. A1/,im,utionsrif'sign unrJ planba
sirdrl' Hi/l" by W, (~raf (nlt-'ll1\wr of t.lle WIP project at, t.hf' DFKI) and M.A. Thies

in tllf' 1\1 jOllrlldl Volllll1e (i, Nllllllwr ·1, l(n~,

• T{Jsk-Ol'if'lItn/ (lSI'/' Assist(/Iln Iol' 11I1'/'f/di'P' (,'mphic(// E'II'Pinm,'llLrnls , by M.A,
Thi(-'s d,lId F, l:krg('I' , ill: Proc('('dillgs of t.lte .')t lt III1.t'l'lld,1.ioll<d COllf(-'rence on Hliman

Computer lllt.erd,ct,ioll, HCI lllf,erllat.iollal 'In, Allgllst., 1!H3, Orlando, Florida, USA

(d, [Thies & Berger !>:3]).

• A'/I,imatf'f/ HdjJ {Js a .'If''/I,siblf E:rf(lIsio/l, of a P!a'/l.-Basf:f! Hr:lp Systfm, by M.A. Thies,

ill: Procf'f'dings of til(-' !it.h Illt.el'llationa.l Conff'rf'lIcf' 011 Human-Computer Interac

tion, HeI Illt.el'llat,iolld.l '9:~, AlIgllst , UH~, Orlando, Florida, USA (d, [Thies 93]),

Furthermol'f' , some workillg p<1.IJf'rs summillg up rf'slIits of distillct arf'as of PLUS have

been writtell:

• PL [IS Systf'lll Spf'('i/ic(I/ioll.s (cf. [Thies s.r. Bf'rgf'r 92c]).

• P/rmErlil+ [f.'WI' 's U'II';'" (d. [Bf'rgf'l' & T ll if's 92]) - plallned to be published also

as DFKI Memo,

• InCo'll/,('+ { !.w,.'", (,''IIi([' (d, [Tll ies 92]) -- plallllf'ci t.o be published also as DFKI

Memo,

An art.icif' about til!' PLUS project II<ts \W('II pllhlislled witllill t.llf' IBM Nachrichten, Num

ber :10~), J lIl1f' '92, TI \(' pap(-'r A [\'II.(),(I1/f'rlfjf'-/}(f,Sf(/ fir-II' Envi1'Onm,cnt for Task-oriented
Assistance 1:11. G'f'{lphica/ UW"f' hdf'lfuCfS has bf'f'll submit.ted to appear in the IBM Infor

mation Developlllf'1I t. N (-'\,vslettf'l', l/!H.

27

6.2 Talks

The following conference talb have been given by members of the PLUS project, partially
combined with publications within the respective conference proceedings:

• Int elligente Benutzer'schnittstellen by W. Wahlster at the BTW Tagestutorium,
March '91, Kaiserslautern, Germany.

• Tutorial User Modeling and Pla.u R ecognition by W. Wahlster at the International
Summer School on AI , July '91, Prag, CSFR.

• In Come: A System to Navigate through Interactions and Plans by M.A. Thies at
the HCI International '91, Stuttgart, Germany (d. [Fehrle & Thies 91]) .

• PLan-based User' Support - an Implementation of a Knowledg e-based Help Envi

ronment for Graph£cal Use." Int e.,j'aces by T. Fehrle at the workshop on "Future
Trends of User Interface Technology", organized by the IBM Academy, April '92,
Somers, New York.

• Planerkenmmg als Gr'undZage fih ' intelligente B enutzerschnittstellen by W. Wahlster
at the DEC-Symposium, November '91, K61n , Germany.

• Plan-Based Graphical Help £n Objfct-01'£ented Use1' Int erfa ces by M.A . Thies at the
workshop on "Advanced Visual Interfaces", May '92, Rome, Italy (d.
[Thies & Berger 92a]) .

• Planbasie1'ie g'l'aphisch f Hiflc in objeldO'l'ientie'l'ten B en'll tze1'O be1jliichen by M.A.
Thies at t.he GI-Fachgespra,cb "Innovative Programmiermethoden fur Graphische
Systeme" , June '92, Bonn , Gennany (d. [Thi e::; & Berger 92b]).

• Int eUigente Muiti'llwr/a.le B C'II,'nt::f."rschnittstellen by W. Wahlster at the Siemens AG,
October '92, Muni ch , Germany.

• Keynote lecture Int elligent e Bf'lt'llt:: f1'schnittstellen (lIs Gnmdlage erfolgreich en In

f01'mationsmanagc17H'nts by W. Vhhlster at t.he opening of the "Saarlandische Tech
nologiemes::;e", October '92, Saarbriicken, Germany.

• PLan-based Use '/' S'Il]JJW'I't (PLUS) - a P1'Ototype of a Knowledge-based Help Environ
ment for' Gmphical USfT Int n :f'uCfs by V. Sch611es at t.he "Interdivisional Technical
Liaison (ITL) on Expert Systems", October '92, Yorktown Heights, New York.

• E xperiences wdh (/. Snwlltalk Implcnl.f;ntation of (J Plan-based Help Environm ent

(PLUS) by V. Sch611es at. the European Object-oriented Software Symposium, Oc
tober '92 , B6blingen , Germany.

• Keynote lecture P f 1'S]Jf'. kti'IJen intdhgentc/', plan-ba.sierter B emdzerschnittstellen by
W. Wahlster at the IBM-Kolloqium for Prof. Endres, December '92, B6blingen,
Germany.

28

6 .3 Present ations

A PLUS System demonstration has hf'f'n Pf'rfOl'llled at. the Third International Workshop
on User Modeling (UM ' ~)2) ill August. '92 at SchloB Dagstuhl, Germany (d.
[Andre et al. 92]) .

At the following IBM-internal conferences, presentations of the PLUS System have been

performed:

• ITL on Expert Systems (see above)

• European Objf'ct-oriented Software SymposiuIll (see above)

• ITA Expert Systems , April and Df'cember '91, St.uttgart and Boblingen.

Furthermore, a lot. of demollst,ratiolls of t.he PLUS System have been carried out both in
various depart.mE'lI t.s of t.lw I B!VI Lahorat.ory Bohl i Ilgf'11 alld at tilt' D FI(1.

29

Bibliography

[Andre et a.l. 92] E. Andre , R. Cohen , ' !I/. Graf, B. Kass , C. Paris, und W. Wahlster
(Hrsg.). [1M '92. Tit inl 1111 (TI/.(/.Iion (1./ Wo,.I.:,<;h OIl on USf"I' Madding, Saarbrucken,
Germany, August 1992. DFEJ.

[Bauer et a1. 91] M. Bauer, S. Biundo, D. Dengler, M. Hecking , J. Kohler , und
G. Merziger. Integrated Plun Genendion anrl Recognition - A Logic-Based Ap
p1'Oach. In : W. Brauer und D. Hernandez (Hrsg.), Verteilte Kiill stliche Intelligenz
und koopera.t.ives Arbeitell. 4. Internationaler GI-Kongress Wissensbasierte Sys
teme, Berlin, Heidelberg, 19~Jl. Springer. Also DFKI Research Report RR-91-26.

[Bauer et a!. 92] M. Bauer, S. Biundo, D. Dengler, J. Koehler , und G. Paul. PHI
- A Logic-Based Tool fo 'l' Intdh:g fnt Help Systems. Research Report RR-92-52,
DFKI, 1992.

[Berger & Thies 92] F. Berger ulld M. A. Thies, Developing a Plan Base for the PLUS
Hdjl SYSi.f'lII, w1l.It PlflnErld+. DoclIllH-'nt, German Research Center for AI (DFKI),
Saarbriickf'lI, Gf'rmallY, 1992.

[Braune 92] H. Braune , PLUS (PLan -/lf/.srd [lSfT SUjljlo1'l) - Entwicl.:I'U,ng 'und Implemen
tie1"//.1I,g '''0'11. Too ls. Diplomarlwit., Fachhochschule Furtwangen, Germany, 1992.

[Breuker 90] .1. Breuker (Hrsg.), EUROHELP, D(:vr;/o jl i'll.g [I/.t:dhgcnt Help Systems.
Kopenhagf'll, Amsterdam: Ee, I ~)~)(),

[Dengler et a1. 87] D. Dengler , 1\1, Gutmann , und G. Hector. Der Planerkenner'
REPLIX. Memo Hi , Inst it.ut. fiir Illformati k, Universitii.t. des Saarlandes, September
1987.

[Fehrle & Thies 91] T. Fehrle und M. A. Thies. In Come: A System to Navigate through
Int er-actions and Plans, In : H.-J . Bullinger (Hrsg.), Human Aspects in Computing:
Design and Use of Int.eract ive SYSt.f'IllS and Information Management, Amsterdam,
London, New York, Tokyo, UH)l. Elsevier Science Publishers B.V.

[Fehrle 90] T. Fehrle. PLfJ.1/,uaSf'd U.S(,/, SUpjlort (PL [1S') Pr-ojd:tlif.schrei/J'Ung. IBM intern,
IBM Laborat.ory, Boblingen, Germal1Y, l~) ~)O .

[Finin 83] T. W. Finin . Pl'o'/1iding Hrlll (Inri Ad'nice in Task Oriented Systems. In: Pro
ceedings of t.1l<" 8th Intel'llat.ional Joiut Conferellce on Artificial Intelligence, S.
176- 178, Karlsruhe, Germany, 1~)8:3.

[Fischer et a1. 85J G, Fischer, A. Lemke, und T. Schwab. I{nowledge-based Help Sys
tems. In : Proceedings of the CHI'S!) Conference on Human Factors in Computing
Systems. acm Press, 1 ~) 8!).

[Hirschma.nn 90] A. Hirschmann. D(ls Hi~lf.; .c;yste11l. MATHILDE. Dissertation , Univer
sitat Regensburg, 1990.

[IBM 91] IBM. C01nmon User ACCfS8, AdvfJ.1icerl Int erfa ce Design Guide. Systems Ap
plication Architecture. Internat. ional Business Machines Corporation, 1991. SC34-
4289-00.

30

[IBM 92a] IBM. AIVS/ESA SP 4.:1 H{f.'I'(I'll1f1:rf Con.fi.g'llmtion Definition User's Guide.
International Business Machines Corporation, 1992. GC33-6457-03.

[IBM 92b] IBM. S('f't'fU Vicw USCI' 's Guide. IBM Systems Application Architecture,
Screen View. Intel'l1at.ional Business Machines Corporation , 1992. SC33-6451-00.

[Kobsa &. Wahlst.f'l' 8~)] A. Kobsa ulld W. Wahlster (Hrsg.). Use?' Models in Dialog
Systems. Symbolic Comput.at.ioll. Berlin, Heidelberg, New York: Springer, 1989.

[Koehler 92] J. Koehler . TO'l/}{f.nis (f. logical treat'ment of plan reuse. In: Proceedings
of the 1st International Confel'f'l1ce on Artificial Intelligence Planning Systems, S.
285- 286, Washington, D.C., 1992. Morgan Kaufmann, Menlo Park.

[Neiman 82] D. Neiman. Oraphic{f.l A nimation from I{nowledge. In: Proceedings of the
2nd N ationa.l Conference of the American Association for Artificial Intelligence,
Pittsburgh, PA, 1982. AAAI Pl'f'ss.

[Paul 89] H. Paul. E:r;plo1'(/,ti'IJfs Agif"l'fooll. ill. intf'f'(J.ktivC'lt EDV-Systemeu. In: B. Endres
Niggemeyel' , T. Hf'lTmann , A. Kobsa, und D. R.osner (Hrsg.), Interaktion und
Kommunikationmit. dem Computf'l'. Illformatik Fachbericht 238. Berlin: Springer
Verlag, 1989.

[Quast 91] K.-J. Quast. PLANET, Planf1'kenuu1/.g m,il aktivic'rten Handl'llngsnetzen.
Sankt Augustin: GMD, 1991.

[Rathke 87] M. Rathke . UNDO/REDO - S:::nw:l'icn unrl AnJonle'f"llUgen .Fir eine an
we1/.du1/.gsnt:'/IJndr h7lp/f111.f'nl'i.f/"l/.ny. In : M. Paul (Hrsg.), GI - 17. Jahrestagung
Computerillt.egl'if'rt.f'r Arbeit.splat.z illl Biiro, Berlin, Heidelberg, New York, Lon
don, Paris , Tokyo, 1987. Spl'ingf'l.

[R.athke 89] M. Rathke . E1"lIJfitc'f"IlUg ill.tC1'(/,/.:ti 'l1e1' Anwendu1/.gen U7n Undo-Mechanismen.
In: Software Ergonomie: A ufgaJwnol'ientierte Systemgestaltung und Funktion
a.litat , GI Band :32, Stutt.gart. , 1989. Teubner.

[Rich 89] E. Rich. Ste'f'f:otypes and [1S('1 ' Modeling. In: Kobsa und Wahlster
[Kobsa &. Wahlster 8!)], S. 3,5- 51.

[Scheidel 92] H. Scheidel. Intdhgentf''<; OIl.!i-lI.f- Trd01'iaZ mitttls pla.niJas£er·te1' Vcrfahren.
Diplomarbeit, Fachbf'reich Informatik , Universitat Stuttgart, Germany, 1992.

[Shneiderman 83] B. Shneiderman. Din:ct ManipuirLfion: A step beyond programming
Langv.(l.gcs. IEEE Computer, 16, 198;3.

[Shneiderman 87] B. Shneiderman. DC8igning the User Interfaces: Strategies for effec
t?>oe H1lmrm-Computer Interaction. Massachusetts: Addison Wesley, 1987.

[Sukaviriya &. Foley 90] P. Sukaviriya und J. D. Foley. COllpi1:ng a UI Fmme'Ulork with
A'lltomai1:c Gcnf;rrt.ii01l. of Conl f:!:l-S'fU8iti'l1f Anim,rded Help. In: Proceedings of the
ACM SIGGRAPH Symposium 011 User Interface Software (UIST'90), New York,
1990. ACM SIGGRAPH, acm Prf'ss.

31

[Sukaviriya 88] P. Sukaviriya. Dynamic Consi1"uction of Animated Help from Appli
cation Conte:r:t. In: Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software (UIST'88), New York, 1988. ACM SIGGRAPH, acm Press.

[Thies & Berger 92a] M. A. Thies und F. Berger. Plan-Based Graphical Help in Object
Oriented Use'I" Interfaces. In: T. Catarci, M. F. Costabile, und S. Levialdi (Hrsg.),
Proceedings of the International Workshop AVI'92, Advanced Visual Interfaces,
Band 36: World Scientific Series in Computer Science, Rome, Italy, May 1992.
World Scientific.

[Thies & Berger 92b] M. A. Thies und F. Berger. Planbasierte graphische Hilfe in ob
jektorientie:rten Benlltzllngsoberjiiichen. In: K. Kansy und P. Wifikirchen (Hrsg.),
Innovative Programmiermethoden fur Graphische Systeme, Berlin Heidelberg New
York, 1992. Springer-Verlag.

[Thies & Berger 92c] M. A. Thies und F. Berger. Tlu; PLUS System - A Plan-Based

Help System. System specifications, German Research Center for AI (DFKI),
Saarbrticken, Germany, 1~H)2.

[Thies & Berger 9:3] M. A. Thies und F. Berger. Task-Oriented User' Assistance for In
teractive Gnlphical Environments. In: Proceedings of the 5th International Confer
ence on Human-Computer Interaction, HCI International '93, Orlando, FL, USA,
August 1993. Forthcoming.

[Thies 90] M. A. Thies. Intem.ction Cont-rol Manager: Ein System zum Navigieren
d1l1'ch Intenddionen und Pli/7l.f'. Diplomarbeit, Fakultiit Informatik, Universitat
Stuttgart, 19~JO.

[Thies 92] M. A. Thies . InCO'Ine+ - Use'I"'s Guide. Technical memo, German Research
Center for AI (DFKI), Saarbrticken, Germany, 1992.

[Thies 93] M. A. Thies . Animated Help as a Sensible E:r:tension of a Plan-Based Help

System. In: Proceedings of the 5th International Conference on Human-Computer
Interaction, HCI Intel'llational '9:3, Orlando, FL, USA, August 1993. Forthcoming.

[Wahlster & Kobsa 89] W. Wahlster ulld A. Kobsa. Use'r Models in Dialog Systems.

In: Kobsa und Wahlster [Kobsa & Wahlstf'r 89], S. 4- ;34.

[Wahlster et al. 93] W. Wahlster , D. Dengler, M. Reeking, und C. Kemke. SC: The

SINIX Consultant. In: P. Norvig, W. Wahlster, und R. Wilensky (Hrsg.), Intel
ligent Help Systems for Unix - Case Studies in Artificial Intelligence. Heidelberg:
Springer, 1993. forthcoming.

[Wilensky et al. 84] R. Wilensky, Y. Arens , und D. Chin. Talking to UNIX in English:

An Overview of uc. Communications of the ACM, 27(6), June 1984.

[Wilenskyet al. 88] R. Wilensky, D. N. Chin , M. Luria, J. Martin, J. Mayfield,
und D. Wu. The Br.1'!.:dey UNIX Consultant Pr·oject. Computational Linguistics,
14:35- 84, 1988.

32

[Yang 90J Y. Yang. OIl,,,,(·l/.t AplJl'Oachf.-; ti Nf"(/J Guirllrlinf.'i for Undo Support Design.

In: H.-J. Bullil1g~r und B. Shackf'l (Hrsg.), Human-Computer Interaction - IN
TERACT'90 , Nort.h-Holland , U)90. ElsE'vif'r Science Publishers B.V.

Deutsches
Forschungszentrum
fOr KOnstilche
Inteiligenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen Kannen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-21
Jorg-Peter Mohren, Jurgen Muller
Representing Spatial Relations (part II) -The
Geometrical Approach
25 pages

RR-92-22
Jorg Wurtz : Unifying Cycles
24 pages

RR-92-23
Gert Smolka, RalfTreinen:
Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-25
Franz Sehmalhofer, Ralf Bergmann, Otto Kuhn ,
Gabriele Schmidt : Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations
12 pages

RR-92-26
Franz Sehmalhofer, Thomas Reinartz.
Bidjan Tsehaitsehian: Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems
16 pages

RR-92-27
Franz Sehmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi. Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

DFI<I
-Bi bliothek
PF 2080
D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-30
Rolf Baekofen. Gert Smolka:
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster:
Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hansehke : Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader. Philipp Hansehke:
Extensions of Concept Languages for a Mechanical
Engineering Application
15 pages

RR-92-37
Philipp Hansehke : Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hansehke. Manfred Meyer:
An Alternative to H-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke . Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck. Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages
RR-92-46
Elisabeth Andre. Wolfgang Finkler. Win/ried Gra/.
Thomas Rist. Anne Schauder. Wolfgang Wahlster :
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung nattirlicher Sprache
61 Seiten

RR-92-51
Hans-Jurgen Burckert. Werner Null:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR-92-54
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR-92-55
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-S8
Franz Baader. Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-S9
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-Jurgen Pro/itlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader. Berhard Hol/under. Bernhard Nebel.
Hans-Jiirgen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-0S
Franz Baader. Klaus Schulz: Combination Tech
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jiirgen Biirckert. Bernhard Hol/under. Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jiirgen Biirckert. Bernhard Hol/under. Armin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley. Philipp Hanschke. Knut Hinkelmann.
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke. Jorg Wurtz :
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit. Francesco M. Donini. Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel. Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski.RalfTreinen:
Equational and Membership Constraints for Infinite
Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof K16ckner,
Volker SchOlles, Markus A . Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jorg Wurtz : Object
Oriented Concurrent Constraint Programming in Oz
17 pages

DFKI Technical Memos

TM-91-12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit : FEAT -PA TR: Eine Erweiterung des
D-PA TR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann : Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta Intcrpreter
16 pages

TM-91-14
Rainer Bieisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann : Prototypical Concept Formatiol1'
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang : Entwurf und Implementierung eines
Compilers zur Transformation von
Werkstiickrepriisentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jiirgen MUller, Jorg Muller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kuhn, Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

DFKI Documents

D·92·11
Kerstin Becker: Moglichkeiten der Wissensmodel·
lierung fUr technische Diagnose-Expertensysteme
92 Seiten

D·92·12
Otto Kuhn. Franz Schmalhofer. Gabriele Schmidt :
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery (Integrierte
Wissensakquisition zur Fectigungsplanung fUr
Drehteile: eine Bildergalerie)
27 pages

D·92·13
Holger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application
Independent Software·Analysis
55 pages

D·92·14
Johannes Schwagereit: Integration von Graph·
Grammatiken und Taxonomien zur Reprasentation
von Features in CIM
98 Seiten

D·92·15
DFKI Wissenschaftlich-Technischer lahresbericht
1991
130 Seiten

D·92·16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft·
warekomponenten fUr natiirlichsprachliche Systeme
189 Seiten

D·92·17
Elisabeth Andre. Robin Cohen. Winfried Graf,
Bob Kass. Cecile Paris. Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US·$).

D·92·18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D·92·19
Stefan Dittrich. Rainer Hoch: Automatische,
Deskriptor·basierte Untersttitzung der Dokument
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

D·92·21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

D·92·22
Werner Stein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

D·92·23
Michael Her/ert: Parsen und Generieren der Prolog·
artigen Syntax von RELFUN
51 Seiten

D·92·24
Jurgen Muller. Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D·92·25
Martin Buchheit: Klassische Kommunikations· und
Koordinationsmodelle
31 Seiten

D·92·26
Enno Tolzmann:
Rea1isierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D·92·27
Martin Harm. Knut Hinkelmann . Thomas Labisch:
Integrating Top-down and Bottom·up Reasoning in
COLAB
40 pages

D·92·28
Klaus-Peter Gores. Rainer Bleisinger: Ein Modell
zor Reprasentation von Nachrichtentypen
56 Seiten

D·93·01
Philipp Hanschke. Thom Fruhwirth: Terminological
Reasoning with Constraint Handling Rules
12 pages

D·93·02
Gabriele Schmidt . Frank Peters.
Gernod LaufkOtter: User Manual ofCOKAM+
23 pages

D·93·03
Stephan Busemann. Karin Harbusch(Eds.) :
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D·93·04
DFKI Wissenschaftlich-Technischer lahresbericht
1992
194 Seiten

D·93·06
Jurgen Muller (Hrsg.):
Beitriige zom Griindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbrucken 29.-
30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

PLUS RR-93-15
Plan-based User Support Research Report

Frank Berger, Thomas Fehrle, Kristof KIOckner, Volker SchOlles, Markus A. Thies, Wolfgang Wahlster

