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Abstract

We present a new constraint system with equational and membership
constraints over infinite trees. It provides for complete and correct satisfia-
bility and entailiment tests and is therefore suitable for the use in concurrent
constraint programining systems which are based on cyclic data structures.

Our set defining devices are greatest firpoint solutions of regular systems
of equations with a deterministic form of union. As the main technical
particularity of the algorithms we present a novel memorization technique.
We believe that both satisfiability and entailment tests can be implemented
in an efficient and incremental manner.

*Supported by the Graduierten-Kolleg Informatik der Universitat des Saarlandes and by the
Hydra project at DFKI.

TSupported by the Bundesminister fiir Forschung und Technology, contract ITW 9105, and
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1 Introduction

Concurrent constraint programming (CCP) systems factorize into a constraint sys-
tem, which may be seen as a parameter to the system, and an extension facility
to compute with relations or processes. The constraint system consists of a uni-
versal data structure and a set of logical formulae, called constraints, that express
relations between the data objects.

There are several computation models for different CCP systems and paradigms,
such as AKL [HJ90], ALPS [Mah87], cc-languages [SR91], constraint logic pro-
graming (CLP) [JL87, HS88], LIFE [AKP91] and Oz [Smo93, HSW93]. They all
require the constraints to be closed under conjunction and raise the need for an
efficient and incremental constraint simplification algorithm that yields a test for
satisfiability of constraints. All of them use existential quantification of constraints
implicitly or explicitly, and most of them require an efficient and incremental en-
tailment test (i.e., a test of of the implication between two constraints). In par-
ticular this test is necessary for committed choice mechanisms depending on the

satisfaction of guards as in Oz, AKL, LIFE and ALPS.

In many programming languages, memberships come in the form of static type
assertions. In the CCP context however, it is natural to have memberships as
relations. Having definitions for the two sets Nat and NatList like

Nat = 0U succ(Nat)
NatList = nilU cons(Nat, NatList)

we could of course define according unary predicates Nat and NatList in the exten-
sion facility (for instance as a logic program). The problem is that the extension
facility is by design decision in general incomplete for disjunctive information, while
the sort definitions are inherently disjunctive. For instance the conjunction of the
atoms Nat(xz) A NatList(x) will not be reduced to L unless the language provides
some kind of backtracking, which often is not the case in CCP systems. Even
worse, in the context of the set definitions

Even = 0 U suce(Odd) Nat = 0 U succ(Nat)
Odd = suce(FEven) Inf = succ(Inf)

the computation rules of the extension facility will not detect that the denotation of
Even is a subset of the denotation of Nat, since this requires an inductive argument.
Hence, a rule like

if Nat(x) then

will not fire in a context where Fven(x) is given. The third reason why we can
not employ the extension facility for dealing with memberships is founded in the



use of infinite trees as the basic data structure. Infinite trees have been introduced
in Prolog II [CKC83] in order to model cyclic data structures. With the definition
of Nat as above, the conjunction x = succ(x) A Nat(x) will forever unfold Nat.
Again, an inductive reasoning is missing here.

Consequently, we claim that CCP systems will benefit from the incorporation of
memberships of some restricted form into the constraint part.! This allows to
delegate some computation from the extension facility to a possibly complete con-
straint solver. Hence, our constraint system comprises equational constraints and
membership constraints. The syntax in BNF style of our constraints is as follows:

v u=z€plr=yl|le= flyr,o ) | YAY | Ty | L] T.

As defining device we use regular systems of equations with deterministic union
and its greatest fixpoint solution. These equations are not part of the constraint
system. Nevertheless, it is possible to extended the system by new equations in
the course of computation.

For instance in the definition of Nat given above, & € Nat holds exactly if « is a
natural number including co. This conforms with the fact that oo has an equational
representation as the unique solution of & = suce(x).

The union is used in a deterministic manner, since the constructors in the different
possibilities of an equation are distinct. We use the name determinism for this
concept, since the components of the least fixpoint solutions of our deterministic
regular systems are exactly the sets recognized by deterministic top down tree
automata. Without an appropriate restriction of the union like determinism we
could not hope for any efficient algorithm. Furthermore, our entailment test relies
on the determinism condition.

Our algorithms for testing the satisfiability and entailment are based on a novel
technique that we call memorization. The correctness of memorization depends
mainly on the greatest fixpoint solution. We illustrate this technique by proving
the entailment:

x = succ(z) = x € Nat .

By unfolding the definition of Nat, we obtain a constraint which simplifies to
z € Nat relatively to z = succ(z).? Now, instead of reducing to the same subprob-
lem infinitely often, we memorize all constraints once unfolded, and throw them
away when they reappear. In this way x € Nat is simplified to T, and entailment
1s proven.

!This idea is due to Gert Smolka.
2Relative simplification [ST92a, AKPS92] of a constraint ¢ relatively to a constraint 1) means
that we transform ¢ into a constraint. ¢’ which is equivalent to ¢ modulo ¥ (i.¢., ¢ A1) is equivalent

to ¢’ A ).



We prove that the step of deleting once unfolded constraints is correct in the great-
est fixpoint solution, while it can be wrong in other fixpoints. More technically, we
use the fact that the greatest fixpoint solution is obtained by w iteration steps from
'top’. Note that for arbitrary logic programs this is in general not the case [Llo84].

In order to check the satisfiability of the conjunction of membership constraints, we
need to be able to compute the intersection of sets. Furthermore, the entailment
problem for two membership constraints amounts to the computation of the subset
relation for the two corresponding sets. Our constraint system provides both com-
putations. Note that we can not decide the subset relation p C ¢ with an emptiness
test of p N ¢, since the family of sets defined by deterministic equation systems is
closed under intersection but neither under union nor under complement (either
would lead to inefficiency by combinatorial explosion). Instead, we will give a sys-
tem of transformation rules on conjunctions of subset formulae p C ¢ according to
the equation system, and again apply the memorization technique.

Entailment tests for feature constraints, which refine equational constraints for
infinite trees, have been treated in [ST92a, AKPS92]. In most of those contexts
rational and infinite trees can not be distinguished by means of logical formu-

lae [BS92, Mah88|.

Membership constraints over sets of finite trees have been considered in [CD91,
Uri92]. The case of finite feature trees is discussed in [NP93]. In these works (gen-
eralized) tree automata or regular equation systems with least fixpoint solutions
are used. The proposed simplification algorithms are not efficient, since the union
in the set defining devices is not restricted such that combinatoric explosion is
possible.

As an alternative to the approach chosen here, we could have taken Rabin au-
tomata to define sets of infinite trees (¢f., [Tho90]). In a constraint system for
CCP, however, it would be irrealistic to hope that one could use this theory. The
complexity of the algorithms involved is far too high. Clearly, we don’t need the
expressiveness of the corresponding second-order logic.

The paper is organized as follows. We first introduce general notation and the
constraint formulae. In Section 3 we define deterministic equation systems and
prove the fact that the greatest fixpoint solution is calculated by w-iteration from
top. In Sections 4 and 5 we introduce the memorization technique and present the
satisfiability test, proving its correctness. In Section 6 we present the entailment
test. In the last two sections we describe the decision procedure for the test of the
subset relation and the computation of the intersection. Finally, we conclude with
a discussion of further work.
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Figure 1: The fragments of constraints without 3.

2 Equational and Membership Constraints

We assume a non empty, finite or infinite, one-sorted signature ¥ of function sym-
bols f,g,.... IT denotes the set of all finite and infinite trees over ¥. We also
assume an infinite alphabet of variables ranged over by w,y,z and a possibly in-
finite collection Q of set expressions ranged over by p,¢,r,s. We will be more
specific about the set expressions in Section 3.

Finite sequences of set expressions and variables are abbreviated as p and x. We
will also use similar notions like & = ¢ or & € p for finite sequences of formulae.
As atomic constraints we take equational constraints of the form » = y or x =
f(i7), membership constraints x € p and L. The set of constraints is the closure
of the set of atomic constraints under conjunction and existential quantification.
T 1s a constraint standing for the empty conjunction. Note that, without loss of
generality, we consider only flat terms f(7). The symbols for constraints of several
restricted forms are given in Figure 1. A membership constraint « € p can be seen
as a convenient notion for the application p(«) of a unary predicate p to the variable
.

As semantics of this first order language we consider Z7 ~structures . These are
structures with the domain Z7 that interpret the function symbols f of ¥ as the
pertaining tree constructor fZ7. The possible interpretations of the unary predicate
symbols of Q will be restricted in Section 3 by the choice of special Z7 ~structures.
It is understood that L and = get their standard meaning. As usual, we use the
notions of existential (resp. universal) closure, Jw (resp. Vaw), and the set of free
variables V(w) occurring in w.

The notion of a structure A being a model of a closed formula w (4 w) is defined
as usual. An arbitrary formula w is satisfiable in a structure A if =4 Jw, otherwise
it is unsatisfiable in A. A formula v entails a formula w in a structure A (v 4 w)
if E4 V(v — w). Two formulae v, w are equivalent in a structure A (v E, w)
if =a ‘5’(1: — w). The notions of entailment and equivalence can be extended
to classes of structures. Sometimes, we furthermore use the notion v }:f‘ w for

¢ =4 V(v — w) and v }:m w for ¢ =4 V(v & w).
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3 Set Definitions

When simplifying membership constraints such as z € p A x € ¢, we need set ex-
pressions representing intersections. Therefore, we require that the set Q of set
expressions is closed under N, which is taken to be an associative, commutative and
idempotent constructor for set expressions. For instance, ¢ N (p N ¢) is identified
with p N gq.

The possible interpretations of the unary predicates are described by a given regular
system of equations E. This is a set of equations of one of the two following forms:

g = h@U...Ufi(@)  or ¢=T. (1)

We restrict the union in the equations to be deterministic, which means that the
constructors on the right hand side of an equation have to be pairwise distinct. In
particular the empty disjunction, denoted as L, is allowed.

We say that a set expression is defined in &, if it appears on the left hand side of
an equation in £. We require that no set expression is defined twice and that each
set expression appearing on the right hand side of £ is defined. In the following
sections we will often consider a constraint together with an equation system &

and assume that all the set expressions used in the constraint are defined in .

A structure A is a model of £ if the statement
c€qH,In 3T ((c= f@G)VARETR) V...V (¢ = f(T) AT €T))

holds for all equations in & of the first form of (1), and if 2 € ¢ [, T holds in the
second case of (1).

An equation system &£ can be considered as a syntactic characterization of its 77 -
models. Therefore, we identify £ with its Z7-models in notions like v =, w and
v e w.

We restrict ourselves to equation systems & with appropriate definitions of com-
pound set expressions. It p,q and p N q are defined in £, then we require:

;1:épﬂq}=f TEpAT€Eq.

We will often make use of the following observation. If  contains the equation
r = fi(y), then we get by the determinism condition of £ and the restriction to
tree structures:

cEq L GET .

In the rest of this section we discuss computational properties of the greatest 77 -
model M and the least Z7-model m of an equation system .



The set of Z7 —structures over the defined set expressions of £ is a complete lattice
in its canonical order. We denote its greatest and least elements by At and Aj.
The equation system & defines a monotone operator, also called £, on this lattice.
If ¢* denotes the interpretation of the unary relation ¢ in the Z7 -structure A,
then the definition of the Z7 -structure £(.A) is given by:

¢4 = UL @) ig=A@) U U L@ in €
¢ = IT ifg=Tin&.

Hence, the Z7 -models A of £ are exactly the fixpoints of the operator £. By
monotonicity and Tarski’s fixed point theorem (see for instance [Gue89]) the op-
erator £ has a least and a greatest fixpoint. This proves the existence of m and
m.

The operator € is upward and downward continuous, as the reader easily veri-
fies. This means that & preserves least upper (greatest lower) bounds of every
upward (downward) directed chain A,, i.e. E(sup A,) = supE(A,) (E(inf 4,) =
inf £(A,) ). With an application of Kleene’s fixed point theorem to the complete
lattice of Z7 structures and to its dual lattice, we get that the least (resp. greatest)
fixed points of £ can be reached in w iteration steps from bottom (resp. top). This
1s well known for the least fixed point of £, since £ considered as a logic program
defines an upward continuous operator. For the greatest fixed point of £ it is sur-
prising, since it takes in general more than w steps to iterate the greatest fixed
point of a logic program from top [Llo84].

Lemma 3.1 m = U &7 (AL) and m = ﬂ E(At) .
m=0 m=0

We intend to interpret set expressions in greatest Z7 -models M. Therefore we call
a subset of Z7 definable, if it is a component of the greatest Z7-model of some
deterministic equation system.

An example of a non-definable set is {f(«a,a), f(b,0)}, since our equation systems
are deterministic.

In general, the restrictions of Z7 definable sets to finite trees are exactly those
that are recognizable by a deterministic top down tree automaton.

More precisely the restriction of the greatest solution of a deterministic equation
system to finite trees is the least solution, and the components of the least solution
of deterministic equation systems are exactly the sets recognizable by deterministic
tree automata.



4 Normal Forms of Constraints

In order to decide the satisfiability of constraints, we present a transformation of
constraints into either L or a satisfiable normal form. Since 3z ¢ is satisfiable iff ¢
is, we will restrict ourselves to constraints without existential quantification. These
are considered as multisets of atomic constraints. In other words the conjunction
is seen to be associative and commutative, but not idempotent.

Since we use membership constraints, all our normal forms are calculated with
respect to the maximal model M of an equation system &.

A variable is called constrained (in ¢) if it appears on the left hand side of an
atomic constraint in ¢ which is not equivalent to T. With C(¢) we denote the
set of all constrained variables in the multiset ¢. The problem ¢ g T can be
decided syntactically. This is trivial for infinite, and a little bit more complicated
for finite signatures. For example, let € contain the definition of Nat from the
introduction and let ¢ be the constraint = x A y € Nat. Then C(¢) = 0, if the
signature consists of {succ, 0} only, and C(¢) = {y} otherwise.

For the case of an infinite signature, x is always constrained in @ = f(y) and
constrained in « € p iff p = T is not in € (both statement can be wrong for finite
signatures). Note that @ = y constrains « if  # y, but not .

Definition 4.2 A constraint ¢ is in normal form, ¢ff ¢ = 0 Ay A pu with

1. every variables of ¢ is constrained at most once.
2. every variable constrained in 6 does not occur in n A ju.

3. p is satisfiable in M.

¢ is a normal form of ¢, if ¢ is in normal form and ¢ = .

A normal form # can be considered as an idempotent substitution with domain
C(6). The application of this substitution to a formula w is denoted by fw and
corresponds exactly to the elimination of the constrained variables of 6 in w.

The following proposition implies in particular the satisfiability of normal forms.
We will exploit this proposition again for the entailment check.

Proposition 4.3 If ¢ is in normal form, then every assignment of the non con-
strained variables of ¢ can be extended to a solution of ¢ in M:

Em Y3C(6)6 .

9



= = f(P)Ax=f(Z)Ao
decomp e IGIAT =5 Ao
N L=y 0 per il s

elim P2 ey o Sy if e #yand x € V(o)

clash 1 v = f() /\JI: FlE) M if f#y

Figure 2: Unification rules. Here 0 ::= x =y |a = f(y)|o A o'.
B k if x € ¢ is not in g/,

un fold A, T AL L T U . is i £

yEeEp A p O Al : A
RSP AN R EIpe and x = f(y) is in 1.

- € 4 . . .
memo i;ILADI;ITDL if e €qisin g
O ; if e = f(y)isiny
clash? i{%%a—i the definition of ¢ does not contain f,
3 [ 5

and ¢ =T is not in £.

Figure 3: Simplification of Memberships relative to Equational Constraints with
Memorization.

The proof reduces immediately to the case of equational constraints only, which
has been solved in [Mah88].

Normal forms of equational constraints can be obtained by the well known unifi-
cation rules in Figure 2. We obtain normal forms of arbitrary constraints in four
steps. First we calculate a normal form # A 5 of the equational part. Second we
apply 0 to the membership part and call the result g. Third we simplify p relative
to n and £ by memorization. In the last step we calculate intersections and detect
unsatisfiable membership constraints.

The memorization technique is described by schemes of rewrite rules which depend
on 7 and £. It transforms expressions of the form p O ', where O is a new symbol.
We say that pg simplifies to juy relative to n and &, if there is a g such that poOT
rewrites to ji; Opy relative to n and €. In this case we will prove py and g, to be
equivalent relative to 5 in M (correctness of memorization).

On the right hand side of O we memorize the constraints which have already been
unfolded. The rules are presented in Figure 3. They forbid multiple unfolding of
the same constraint and delete those that have been unfolded before.

The termination of memorization is obvious. The main problem is the correctness
of the memo-rule, which 1s proven in Section 5.

10
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Figure 4: Simplification of Empty Sets and Conjunctions of Membership.

A typical example is the simplification of the constraint = € Inf relative to z =
succ (z) and € containing Inf = suce (Inf):

Munfo[{l

x€Inf Ox €& Inf
TOx€Inf

memo

The last set of rules handles empty sets in membership constraints and conjunc-
tions of membership constraints for the same variable. It is given in Figure 4.
During its execution we want to maintain two invariants. First, each occurring set
expression should be defined in €. This means that we have to calculate equations
for intersections and to extend the equation system by need without changing the
interpretations of previously defined set expressions in 9. This will be done in
Section 7.

Second, a set expression p should be defined by p = L iff p™ = (). This can easily
be done by propagating L in £.

Theorem 4.4 When started with the constraint ¢, the above algorithm terminates
with L if ¢ is unsatisfiable in M, and in a normal form of ¢ otherwise.

Here is an example that illustrates our algorithm in action. £ contains the equations
for Nat, NatList, Even and Odd from the introduction. We compute a normal
form of

T = cons (y,x) Az = cons(z,x) A x € NatList Ny € Even Az € Odd .
The equational part simplifies to # A  with
o= Sz s d . = a5 consdz wn
By applying # to the membership part we get
pt = x € NatList A\ z € Even A z € Odd
The memorization algorithm simplifies p relative to  and £ to

p1 = z€Nat A z€ Even A z€ Odd .

11



This is transformed with the intersection rule to z € Nat N Even N Odd. The
intersection algorithm of Section 7 adds the following equation to &:

Nat N Even N Odd = suce(Nat N Even N Odd)

To be precise it also adds an equation for Even N Odd , Nat N Even or Nat N Odd
depending on which intersection is calculated first. We get the normal form

y=zAx=xAx=cons(z,t) A z€ Nat N Even N Odd .

This normal form is satisfiable since oo € (Nat N Even N Odd )™. Note that we
could replace z € Nat N Even N Odd by the M-equivalent constraint = = suce (z).
This will be necessary in the entailment check.

5 Correctness of Relative Simplification with
Memorization

Since the clash rule terminates the rewriting, we can restrict ourselves to the

memo and un fold rule. The relation ‘rewrites to in one memo or un fold step’ on

expressions of the form p O ' will be denoted by >, ¢ and its reflexive transitive
3 . *

closure by b7 ..

Roughly speaking, the following theorem states that the symbol O can be inter-
preted as the logical connective A with respect to all Z7 —-models of £, and also as
— with respect to the greatest Z7 -model M.

Theorem 5.5 For each computation
/ * !
po Oty Boe g O gy
the following two statements are invariants:

poNpo He mApy  and  pg Emopn = g

Only the second statement is not obvious, since the assumption of the implication
is weakened by the memorization rule.

Corollary 5.6 (Correctness) If ji, simplifies to juy; by memorization relative to
3
n and & then py Hg 1 holds.

12



Proof. By definition there is yy with o O T 7. py O py. The above theorem
implies
po AT HE e A py Hy i
0O

Theorem 5.5 can be proven with the help of Lemma 5.7, which reflects an important
property of the greatest Z7 -model Mm.

In order to be general enough we need the concept of derivable constructors. If
f € ¥ is a constructor with arity n, m a natural number and o : {1,---,n} —
{1,---,m} an arbitrary mapping, then the pair f, is called derivable constructor
with arity m. The interpretation of f, in a ¥-structure Z is defined by

f‘j’(dl, Wy fl((la(l), o5 Gl

for all elements d; of the domain of Z. Each constructor is itself a derivable con-
structor, since we may chose o to be the identity. We will freely use derivable
constructors as abbreviations in terms. For example f,(z,y) stands for f(y,y,y) if
o is the mapping o(1) = o(2) = o(3) = 2. In the sequel we will not distinguish
between constructors and derivable constructors.

Using this notion in the rest of this section we will always assume finite sequence
of objects to have the form o = (o;);.

Lemma 5.7 (Main) Let € be an equation system, p = (p;); and ¢ = (q;); finite
sequences of set expressions, T = (x;); and y = (y;); finite sequences of variables,
f = (fi)i a finite sequence of derivable constructors and y a constraint. We assume
that for all j the equations

S O RRgY U L
are contained in £ and t/'mt the statement
Fm z; = fi(%,7)

is valid. Then the following implication relative to n and the greatest model M of

E holds:
Em €7 > ZEP.

In order to illustrate the contents of the Main Lemma, let  be @y = f(x1,x2) Az =
f(z1,22) and let £ contain the equations py = f(p1,p2) and p; = f(p1,p2). The
main lemma implies T =g 21 € py A 23 € py. Note that this does not hold in any
other solution of &, i.e. for pf' = 0 and pf§ =

13



Proof of the Main Lemma. We proof that each solution of 5 A i € § over M
is a solution of € p. Suppose a : Var — IT to be a solution of n A 4 € ¢ in M.
This implies

a(z;) = fIT(a(z),a(y)) and  a(y;) € ¢}

for all j (with a(x) = (a(x;)):).
By the representation of Mt in Lemma 3.1, it suffices to show:

f"‘ A
olr;) € 1"
for all 7 and all m > 0. This can be done by induction over m. The case m = 0 is

trivial. For the induction step we have to show
f'”+l
afz;)e  pireT
A £ _[}ZT([)["'MT), q‘ﬁ“(AT)) Wg s

for all j. But o(x;) is contained in the right hand side. Indeed «o(z;) =
fJ-IT((r(;r), a(y)), by induction hypothesis

alx) € p (Ar)
and by assumption
aly) € ¢7 C g7 AT
O

Proof of Theorem 5.5. For simplicity we assume g = T, which is sufficient to
conclude Corollary 5.6.

We call the expression § € ¢ O € p appropriate with respect to 1 and € iff there is

a finite sequence of derived constructors f and a finite sequence of variables y such
that for all j the equation

By =k Lo A FR B g ). .
is in € and the following statement holds:
=y = f(2,9)

fto O T 1is appropriate even for arbitrary n and €. We will show that unfold and
memo steps relative to n and € maintain appropriateness relative to n and €.
Therefore pi; O i 1s appropriate relative to 5 and £. The Main Lemma yields

n /
SR

14



[t remains to prove that the unfold and memo rule maintain appropriateness.
First we consider the un fold rule that reduces 2’ € p’ to y' € ¢ in

JEGAT' EPDTED bye GEGAY ECDTEPALEY' .
To prove the appropriateness of the right hand side we will find constructors ¢’
and g with

p; = ...Ugi(pp.4,q)U ... and E" x; = g;(%, %0, %,Y") ,
/ L ==

B = soe W @IBFET) L oos and = @ =g(g.2 0.9
By the application condition of the unfold rule, there is a constructor f’ with
o= ..U f(¢) V... and Er a = f'(y") .

By the appropriateness of the left hand side of b, ¢ there are derived constructors
f with

pii= UG pir U and S TE S

We can now find definable constructors that are essentially like f;, but take pos-
sibly more arguments in a possibly permuted order. Formally there are definable
constructors ¢ and ¢" with

fieg,a) = gie,asg,y’)  and o f'(y') = ¢'(0,ayy0)
This implies
filpsar) = gipasad)  and  f'(q) = o' (00 ad)
and proves the appropriateness of the right hand side.
For the second case we consider an application of the memo rules erasing o € po:
1 = q AN g € po O x € ATy € Po Bae Yy € qOx € pAxg € Po -

The appropriateness of the left hand side guarantees the existence of derivable
constructors f and f, with

150530 i, LD Do s PO YR ey and 7 s 3 il 2o B 20)

for all ; > 0. Now we can find derivable constructors that take x, resp. py only
once. To be precise, we define g and ¢, with

fil®, 20,9, 20) " = " g;(%,z0,5)
for all 7 > 0. Therefore
fj(i’a Pos 4, I’U) = 9 ([_)a Po, (j) :

This shows the appropriateness of the right hand side.



6 The Entailment Check

In this section, we show how to decide entailment between existentially quantified
constraints in the greatest model M.

For the purpose of this section we assume that the signature contains
at least two elements, since otherwise the domain of the models under
consideration will be singleton, and hence every equation will hold.

Initially, we are given the question whether
XY m IX S (2)

holds, where X, X’ are finite sets of variables. We may assume without loss of
generality that ¢’ is satisfiable in 9, since otherwise (2) holds vacuously. Hence
by Theorem 4.4 we can assume ¢’ to be in normal form. For the purpose of entail-
ment checks it is convenient to exclude certain forms of degenerate membership
constraints. Hence, we furthermore require that for all membership constraints
x €p of ¢' the definition of p is disjunctive. A normal form meeting this addi-
tional condition is called a branching normal form. Note that a branching normal
form contains only membership constraints € p for which p™ is not singleton. We
can always transform a normal form into an equivalent branching normal form by
introducing new existentially quantified variables:

e A membership constraint = € p, where p™ is singleton, is equivalent to a
corresponding equation. For example, if £ contains p = f(¢) and ¢ = g(p),
then x € p is in M equivalent to Fy(x = f(y) Ay = g(a)).

e A membership constraint x € p, where the definition of p is of the form p =

f(q) and where p™ is not singleton, is replaced by Jij(x = f(y) Ay € q).

Both rules maintain normal forms (modulo existential quantification) and termi-
nate, since the second rule applies only when p™ is not a singleton. Note that by
Lemma 5.7, p™ is non-singleton iff the definition of p depends on a definition which
is disjunctive, or which is T.

Taking the definition of Inf, Even and Odd as given in the introduction, we trans-
form the existentially quantified normal form

Jy(x €Inf Ay € Odd)
into the existentially quantified branching normal form

Ay3z(x = suce(x) Ay = suce(z) A z € Even) .
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The next lemma states that membership constraints in a branching normal form
can not contribute to equalities:

Lemma 6.8 Let ' A i’ be in branching normal form. Then n' A yp' Ewm 0 iff
‘I], P:-gm 0.

Hence, we assume without loss of generality in (2) that ¢’ is in branching normal
form. Since we may in (2) assume without loss of generality that X’ is disjoint
to V(¢),we may drop the existential quantifier on the left hand side. The normal
form ¢' can be written as ' Ay’ A /. Since €' is an idempotent substitution and
since we may assume X to be disjoint to V', we arrive at the problem

' Ap' Ex 3X0'S

where 5’ A p/ is in branching normal form.

Before we state the entailment theorem we consider the special case of a right hand
side consisting of equations only. We say that some 6 is complete for some 7 if

fEx=y and x=f(z)€n and y=f(y)€n implies Oz =7.

For instance, @ = v Ay = v is complete for x = f(z,y) Ay = f(v,x) Av = f(y, ).
We define the quantor o (read: there is at most one x such that @) as an
abbreviation for:

VinVya(dle — ni] A ¢la — y2] = y1 = y2)

The generalization 3X to a finite set X of variables is straightforward. This quantor
has the important property that:

VAX6 AVAX (S A ) V(6 — o). (3)

We can now express an important property of normal forms which is in some sense
a counterpart to Proposition 4.3. This lemma has been given in [Mah88] as an
axiom of infinite trees.

Lemma 6.9 For every n we have o Y3C(n) 7 .

Lemma 6.10 (Determined Equations) Let 6 be complete for ', let 6 contain
no trivial equation x = x and let 0 A n' be satisfiable in M. Then n' FEm 0 iff
V(o) S C(n').

17



For instance,
= f(a,y) Ay = flo,0) Ao = fly,a) Ema = oAy =0,

This does not hold, if we drop the third equation form the assumption.

Proof. If V(0) € C(7'), then we can find a valuation which satisfies 5’ but not ¢
as follows: If 6 contains x = y, where both x and y are not constrained in 7', then
we may choose arbitrary different values for @« and y. If  contains @ = y, where
one variable (say ) is not constrained and the other (say y) is constrained in 7’
by, say, y = f(y), then we choose for x a value which has a root symbol different
from f. This is always possible since we assume our signature to contain at least
two elements. In both cases, we use Proposition 4.3 to get a solution of 5" which
does not satisfy 6.

Let V(0) C C(n'). By Lemma (6.9)
o Y3C(1') (4)

We may assume without loss of generality that 0 is arranged to be an idempotent
substitution. We now show that #15 is in normal form up to multiple occurrences
of atomic constraints. Assume that

= (i) A= g(2) Oy

Since A’ is satisfiable, f equals g. Since 0 is complete for 1)', we obtain § =y = =.
Since # is an idempotent substitution and since y, =z are in the codomain of 0 this
implies y = z. Hence by Proposition 4.3

o Y3C(00')(0 A 01') | YIC(0y')(0' A7) = Y3C()') (0" Ayy') (5)

The last implication is justified by V(0) C C(»’), hence V(07') C C(n'). Now, the
claim follows by (3) from (4) and (5). O

A proof of a more general lemma (in the context of feature constraints) has been

given in [ST92b].

Before we state the entailment theorem we have to introduce some more notation.

We call 0 X -directed if 6 contains no equation =y with € X and y € X.

For a constraint ¢ we define ¢* to be the subset of atomic constraints which

constrain only variables from X, and ¢™* to be the subset of atomic constraints

which constrain only variables alien to X. Since every constraint is either equivalent
: s T ey e, : X & =X

to T or constrains a variable, we have ¢ =, ¢* A ¢

18



Definition 6.11 Let y' A i’ be in branching normal form. The constraint 3X (6 A
n A i) is in normal form relative to n' A y' if

1. 0 is X-directed,
2. 0 is complete for n' An, and 0 A n' is satisfiable in M,
3. C(n') and C(p) are disjoint,

4. O A A pis in normal form.

For instance,
Ju(v=zAzx=yAy=fy)ANzEp) (6)

is in normal form relative to
= fly)ANy=f(e)ANw=h(z)ANz€Eq. (7)

This does not hold if we drop @ = y from (6), since then clause 2 of Definition 6.11
1s violated.

Theorem 6.12 (Entailment) Let y' Ay’ be in branching normal form, let X be
disjoint to V(n' A p') and let 3X(0 Ay A p) be in normal form relative to n' A .
Then n' A p' o AX(0 Ay A ) iff the three following statements hold:

1. Y(O~%)cc(y),
2. for every x €p in p=X there is an x € ¢ in p' with ¢™ C p™,
8 pXic o’

For instance (7) =m (6) holds provided that ¢™ C p™.

Proof. By clause (1) of Definition 6.11, V(8~%) is disjoint from X. Since further-
more V(p~) is disjoint from X, 0 A ' = 3X(0 A A pt) is equivalent to the
conjunction of the three statements

g A Ex 07X (8)
VT ST (9)
A Em 3XOF A AE A LK) (10)

By Lemma 6.8 and 6.10, (8) is equivalent to condition 1 of the theorem. This relies
on clause 2 of Definition 6.11.
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I o s O A 0 is substitution
e y=zANOAY and z = f(g)ANx= f(2) SNy

ol r=yNOAy b b |

r-elim F=gd il ok =] x#y,x€VOAn)

reclih O A 0 is substitution
e I and 2 = f(5) Ax = g(2) CoADY, f#g
s = NG A B ro 2

orient !; = ;Ir O A :] rg X,ye X

Figure 5: Relative Simplification of Equations.

Using clause 3 of Definition 6.11 and the fact that X is disjoint to V(3" A p'), (9)
is equivalent to condition 2 of the theorem.

Since 0 is X-directed, V(0y') is disjoint from X. Hence condition (3) of the the-
orem implies that V(5~Y) is disjoint from X, and hence (10) is equivalent to the
conjunction of

YT = (11)
N Ap o 3AXOF Ay A Y (12)

If condition 3 and 1 of the theorem hold, then by (8) we have ' A’ o ' AO™X |
n~~. By clause (4) of Definition 6.11, the formula 06X A p* A X is in normal form.
Hence, by Proposition 4.3, (12) holds.

On the other hand, assume that (10) holds and that = = f(y) € y=*. If 0y’ does
not contain an equation for «x, or contains an equation x = ¢(z) with ¢ # f, then
the same holds for 5" by condition | of the theorem and since 0 A 1)’ 1s satisfiable
in M. This contradicts our assumption that entailment holds. Hence, there 1s an
x = f(z)in #y'. Since 0 is complete for 5 Ay', it is also complete for n A fy'. Hence
0 =y = z, that is since # is an idempotent substitution, #y = 0z. Since y, z are in
the codomain of # and since # is idempotent, y = z, llence %= f(2) €0y O

Next we show how to transform a constraint 3X ¢ into normal form relative to
n' A p'. First, we transform the equational part of ¢ using the rules of Figure 5.
This rules are equivalence transformations relative to 5’ in all Z7 structures. The
rules terminate with either L or with # A 7, such that the clauses 1 and 2 of
Definition 6.11 hold. Let ; be the membership part of ¢. Now we simplify fp
relative to 7 A 5’ as explained in Section 4. Finally, we simplify constraints of
the form « € p A & € ¢ and check for membership in empty sets, as explained in
Section 4. If this does not lead to L, we arrive at a relative normal form.
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p =) U ... U fal@) U fan@ri) U ... in€
g ¢ = K@) U U Lul@) U g (@) U - i €
& U {e with f; # gk for all 3,k > n+ 1.
cispNg = filN@) V... U fuPaNT)
int 2 £ if ¢ =T and p= def, are contaix‘md in &
EU{e and e is the equation pNg = def,.

Figure 6: Computation of Intersections

As an example of equational simplification, the constraint
Jo(x=vAv= f(v))

simplifies relative to &« = f(y) Ay = f(z) Az = f(x) to

7 Equations for Intersections

We need an algorithm that extends a deterministic equation system & containing
definitions of p and ¢ by an appropriate definition for p N ¢.

In the terminology of model theory, we will extend the formula € to a formula &',
such that every 7 -model of £ extends conservatively to a Z7 -model of &', and
such that « € pNq s = € pAx € ¢ holds for all new set expressions pNg. Thereby
appropriateness of definitions of set expressions inherits from & to &'.

This extension can be achieved by iterated applications of the non-deterministic
rewrite rules in Figure 6 that are easily proven correct in the above sense. Note
that the rules maintain determinism of equation systems.

The first rule possibly creates the need for adding further equations to € in order
to have definitions for all set expressions which appear on the right hand sides in
E. This completion process can be organised in a terminating manner, by adding
p N g to £ only under the assumption that p, ¢ and all set expressions on the
right hand sides of £ are defined in £ More precisely, only binary intersections
of set expressions on the right hand side have to be added. These are at most n?
equations, where n is the number of defined set expressions in €.

For example we can extend an equations system € containing the above definitions
for Fven and Nat with an equation for Even N Nat. First the first rule adds the
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equation
Even N Nat = 0 U succ(Odd N Nat) .

A further application the same rule adds

Odd N Nat = sucec (Even N Nat ) .

8 Deciding the Subset Relation

We will decide the subset relation p* C ¢* for A = m or A = M using the
memorization technique. Note that this includes a subset check for sets recognized
by deterministic top down tree automata as well as for Z7 definable sets.

Therefore we define the following fragment of new constraints:
I' s=pCq|TIT AT,

The memorization technique is carried out by rewriting expressions of the form
L OT'. We say that Ty simplifies to I'; relative to & if there is a I'} such that
I'o O T rewrites to I'y OI'} relative to £.

Without loss of generality we make two assumptions on €. First we assume that

pAr =0 iff p= L in &, and that set expressions which are used on the right hand
side of £ do not denote the empty set in A. Second, we assume that p* = I7 iff
p =T in £ Both conditions can be assured for M as well as for m, for finite as
well as for infinite signatures.

The rules of the rewrite system are presented in Figure 7.

Theorem 8.13 (Correctness and Completeness) The rewrite system of Fig-
ure 7 terminates. If T'y simplifies to I'y relative to € then Ty =, Ty holds. A
constraint I'y # L that can not be simplified is valid.

Termination and the last statement are trivial. The clash rules are correct by the
assumptions on &£. It remains to show that the rules unfoldl and memol are
correct. This can be done in analogy to Section 5.

In the following example we apply memorization to prove that Even C Nat holds
in M as well as in m. We assume that the signature contains a constructor different
from suce and 0:
Even C Nat O T unfold!
Odd C Nat O Even_C Nat anpoldi
Even C Nat O Even C Nat A Odd C Nat ., emo1
T O Even C Nat A Odd C Nat

Do



if pC ¢ is not in I, the equations
pC orr - p=hHhMPE) V... U fulpu)
un foldl pPCqAT ! .
Bh el A ATOpCqAT ¢=fA@U...Uf@ V...
areinfand 'y = ;ICHA... AP, Ch.
i ' . ,
memol LS (F/gl-l‘q,lj L if pCqisin I,
o : e .. U FipR L .. isE,
clash3 L= (_LADF or but the definition of ¢ in £ is not of form
g = =M flPU ... o8 g =TT.
elazlia pC g AT OT” if p = Tisin &, but the definition of ¢
e LBl isnot ¢ = T.

Figure 7: Deciding the Subset. Relation with Memorization

As a second example we consider Inf C Zero with € containing Zero = 0. In the
case of m the definition of Inf is replaced by Inf = L and the subset relation
holds. In the case of M we do not replace the definition of Inf. The clash3 rule
applies, and the subset relation is refuted.

In order to prove Theorem 8.13 analogously to Section 5, we have to exchange the

constraint x € ¢ by pC ¢, the Main Lemma by Lemma 8.15 and the assumptions

about x in 7 by assumptions for the definitions of p in &.

The relation ‘rewrites to in one unfoldl or memol step’ is denoted as Bg and
its reflexive and transitive closure by % . The following theorem is symmetric to
Theorem 5.5 but holds for m and M.

Theorem 8.14 (Correctness) For every computation:
Fp @I g, [y OTY
the following two invariants are valid:

ToATy He T1 AT and I's Emm 11— [

Ounly the second statement requires a proof. Therefore we claim the following
lemma that is symmetric to the Main Lemma.
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Lemma 8.15 Let £ be an equation system, p, q, © and s finite sequences of set
expressions and (f]]‘)k finite sequences of derivable constructors. We assume for all

7 the following equations in E:

ry = Uj;‘(f,C) and p; = Uff(l_’a Q)u...
k

k

In this case the following entailment with respect to the least and the greatest model
of € hold:

Emm 5Cq— FCp.

There are models where this lemma is wrong. For instance consider the equation
system p = f(p) and » = f(r) with the model r* = {f(f(f(...)))} and p* = 0.
Then T 4 r C p does not hold.

Proof. We mainly use the representations of m and M from Lemma 3.1. For the

case of M we assume s™ C ¢™ and proof by induction ™ C p" (A7) for each m > 0.

The induction base m = 0 is trivial. The induction step is done by

1);*17;+1(AT) U,\.f;"([)“"m("“"), (Igm(AT))
ka]k(;"'—m, s™)
oo

= r

U g

for all . The second inclusion holds by induction hypothesis and assumption:

E|

1,57"(AT) )
(IF"I(AT) e ) sM

-~

3

. S — . . m L = 11
For the case of m we assume 5™ C ¢™. By induction we prove <" (A7) € p™ for each
=),

The induction step is done by

- Uk.f:/,k(ﬁ‘a(l_m)
C I)I'“

ETH(AL)

Ui A0, )

for all j. The second inclusion holds by induction hypothesis and assumption:

‘,"cm(‘AL) c F‘
Sf'"(AJ_) € :_n'\ C (I_m
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Proof of Theorem 8.14. For simplicity we assume I'y = T, which is sufficient
to conclude Theorem 8.13.

We call the expression 5 C ¢ O+ C p appropriate with respect to € iff there are finite
sequences of derivable constructors (j]k)k such that for all j the equations

ri = U f:‘(,‘,C) and i ka (P, q) U .

are in £. ['yOT is appropriate even for arbitrary £&. We will show that un fold
and memo steps relative to £ maintain appropriateness relative to €. Therefore
I'; OTY is appropriate relative to £ and Lemma 8.15 yields

'={“‘vm} Fl =+ FI] =

It remains to prove that the unfoldl and memol rule maintain appropriateness.
First we consider the un foldl rule. It reduces ' C p' to s’ C ¢’ in

SCGATCPYOFCH be SCIASCEOFCHAY CY .

We will show that there are constructors g;-“ and ¢’* with

o= Uegh(rh5,5)  and  py = Ugd G drd) U
r' = Ukg™(F ';,,,') and  p' = U™ (0,1 0, ¢) U

By the application condition of the un fold rule, there is a sequence of derivable
constructors (f’*); with

= U f*5(s) and Po= U f*(d) U

By the appropriateness of the left hand side there are sequences of derivable con-
structors (fF) with

ri = U ff(757")  and  p; = UffBap) U ... .

It is easy to find definable constructors g_;“ and ¢* with

This implies -
£ a,p) = 95(mp, 0,4
) = ¢*"(hv,a.4)
which proves the appropriateness of the right hand side. The considerations for
the memo 1 rule are similar. O



9 Conclusion and Further Work

We have presented a rule-based algorithm which allows for satisfiability and en-
tailment tests of equational and membership constraints. The development of an
abstract machine in the style of [ST92b] and the calculation of precise complexity
bounds is up to further research.

The constraint system presented here can possibly be extended in various direc-
tions. One immediate question is the decidability of the first-order theory of a
deterministic equation system with maximal fixpoint solution; i.c., the decidabili-
ty of arbitrary first-order formulae built up from equational and membership con-
straints. We conjecture a positive answer, encouraged by the decidability result
[CDY1] for the first-order theory of tree automata.

Another extension of this work could increase the expressive power of the equation
systems by weakening the restriction that they be deterministic. The relaxation of
the determinism condition will cause problems in the entailment check.

Finally, it will be interesting to apply the methods developed here to the other
formalism modeling cyclic data structures: feature trees [ST92a, BS92, AKPS92].
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