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Abstract 

We present a new cO ll st ra illt. sys t.e m wit.h equ a t.i o lla l a.lld lIIe lllhe rs llip 

const ra ill t.s over illfilli te t.rees. It provides fo r comple t.e a lld corrcct. sat.i s fi a
hilit.y and ent.ailllle ll t. tes t. s a lld is t. hen ,fo re s uit. a ble fo r t he use ill COIl CUIT(, Ilt. 

const.ra int pl'Ogra mllliu g sys tems whi ch a re based all cyclic dat. a stru ctUrf~S . 

Our se t definill g devices a re g reates t. fi .rIJoinl solulions of regul ar syst.e lll s 
of equ at. io ll s with a de tennini sti c fo rm o f ullio n . As th e Ill a in t. echni cal 

parti clliarit.y of t he a lgori t hms we present a novel Ille lllori zatio n t.echniqlle . 

We believe tha t. ha th satisfia hility a nd enta illll ent t.ests can he imple me nted 

in a n e ffi cient. and incrementa l m a nn er. 
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1 Introduction 

Concurrent constraint programming (CCP) systems factorize into a constraint sys
tem, which may be seen as a parameter to the system, and an extension facility 
to compute with relations or processes. The constraint system consists of a uni
versal data structure and a set of logical formulae, called constraints, that express 
relations between the data objects. 

There are several computation models for different CCP systems and paradigms, 
such as AKL [HJ90], ALPS [Mah87], cc-Ianguages [SR91], constraint logic pro
graming (CLP) [JL87, HS88], LIFE [AKP91J and Oz [Sm093, HSW93J. They all 
require the constraints to be closed under conjunction and raise the need for an 
efficient and incremental constraint simplification algorithm that yields a test for 
satisfiability of constraints. All of them use existential quantification of constraints 
implicitly or explicitly, and most of them require an efficient and incremental en
tailment test (i. e., a test of of the implication between two constraints). In par
ticular this test is necessary for committed choice mechanisms depending on the 
satisfaction of guards as in Oz, AKL, LIFE and ALPS. 

In many programming languages, mf'mbe1'ships come in the form of static type 
assertions. In the CCP cont.ext howf'ver, it is natural to have memberships as 

relations. Having definitions for the two sets Nat and NalLisl like 

Nat 

NatL-ist 

o U 8U.CC( Nat) 

n'il U cons( Nat, N atList) 

we could of course define according unary predicates Nal and NatList in the exten
sion facility (for instance as a logic program). The problem is that the extension 
facility is by design decision in genera.! incomplete for disjunctive information, while 
the sort definitions are inherent.ly disjunctive. For instance the conjunction of the 
atoms Nat(x) A NatL'lst(.7;) will not be reduced to ..L unless the language provides 
some kind of backtracking, which often is not the case in CCP systems . Even 
worse, in the context of the set definitions 

Even 
Odd 

o u SUCC ( Odd) 
S'IJ,CC (Even) 

Nat 
Inf 

o U succ (Nat) 
succ (Inf) 

the computation rules of the extension facility will not detect t.hat the denotation of 
Even is a subset of the denotation of Nat, since this requires an inductive argument. 
Hence, a rule like 

if Nat( :r:) then ... 

will not fire in a context where Even(.7;) is given. The third reason why we can 
not employ the extension facility for dealing with memberships is founded in the 
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use of infinite trees as the basic data st.ructure. Infinit.e trees have been introduced 
in Prolog II [CKC83j in order to model cyclic data structures. With the definition 
of Nat as above, the conjunction x == S1/.cc(x) A Nat(:c) will forever unfold Nat. 
Again, an inductive reasoning is missing here. 

Consequently, we claim that CCP systems will benefit from tllf' incorporation of 
memberships of some restricted form i11tO the constraiut part.1 This allows to 
delegate some computation from the ext.ension facility to a possibly complet.e C011-
straint solver. I-Ience, our const.ra.int system comprises equationa.l cOllsLra.illt.s aud 

membership const.raint.s. The syntax ill BNF st.yle of our const.raint.s is as follows: 

, ::= :c: E 1) I :r: == y I .r: == f(Yl, ... ,Yn) I, A " I 3;(: , I 1- IT. 
As defining device we use regular systems of equations wit.h rid.f:T"'Ininistic ullion 
and it.s grea.tf'st fixpoint solut.ion. These equations are not part. of t.he constraint 
system. Nevert.heless, it is possible t.o ext.ellded t.he syst.elll by new equations 111 

the course of com pu t.at.ioll. 

For instance in the definition of Nat giwlI above, ;[: E Nal. holds exactly if :1: is a 
natural number including 00. This conforms with the fact tllat. 00 has an equatiollal 
representation as the unique solution of :c == 81/.("c( :r:). 

The union is used in a rie.tr.T"'In/:nistic manlier, since the constructors in the difFerent. 
possibilities of an equation are distinct. We use the name determinism for this 
concept, since the components of the lcast fixpoint solutions of our deterministic 
regular systems are exactly the sets recognized by determinist.ic top dowll 1.1'('(' 

aut.omata. Without. an appropriate restriction of t.he ullion like determinism we 
could not hope for any efficient. algori th m. Flll't.hermore, our ell t.a.i Illwnt. test reI i('s 
on the det.erminism couditioll. 

Our algorit.hms for test.ing t.he sat.isfiabilit.y a.nd ellt.a.ilmellt arc based on a 1I0vel 
technique that we call memorization. The correctness of memorizatioll depellds 
mainly on the g1'("atest fixpoi11t solution. We illust.rate this techllique by proving 
the entailment: 

:c == S'llcc(x) F x E Nat. 

By unfolding the definition of Nat, we obtain a constraint which simplifies to 
x E Nat relatively to :r: == s'/J.cC(:r:).2 Now, instead of reducing to the same subprob
lem infinitely often, we memorize all constraints once unfolded, and throw them 
away when they rea.ppea.r. In this way x EN at is simplified to T, and entailment 
IS proven. 

IThis idl"a is due t.o Gert. Smolka. 
2 Relat.ive simplificat.ion [ST92a, AKPS92] of a const.raint. ¢ relat.ively t.o a const.raint ljJ means 

that. we transform ¢ into a constraint ¢' which is equivalent. to ¢ modulo ljJ (i .e., ¢/\ljJ is equivalent 
to ¢' /\ ljJ) . 
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We prove that the step of deleting once unfolded constraints is correct in the great
est fixpoint solution, while it can be wrong in other fixpoints. More technically, we 
use the fact that the greatest fixpoint solution is obtained by w iteration steps from 
'top'. Note that for arbitrary logic programs this is in general not the case [Ll084]. 

In order to check the satisfiability of the conjunction of membership constraints, we 
need to be able to compute the intersection of sets . Furthermore, the entailment 
problem for two membership constraints amounts to the computation of the subset 
relation for the two corresponding sets. Our constraint system provides both com
putations. Note that we can not decide the subset relation p ~ q with an emptiness 
test of p n qC, since the fami ly of sets defined by deterministic equation systems is 
closed under intertiection but neither under union nor under complement (either 
would lead to inefficiency by combinatorial explosion). Instead, we will give a sys
tem of transformation rules on conjunctions of subset formulae II ~ q according to 
the equation sytitem, and again apply the memorization technique. 

Entailment tests for fea ture constraints, which refine equational constraints for 
infinite trees, have been treated in [ST92a, AKPS92]. In most of those contexts 
rational and infinite t rees can not be distinguished by means of logical fOrl11U
lae [BS92, Mah88]. 

Membership constraints over sets of finite trees have been contiidered in [CD91, 
Uri92]. The case of fin ite feature trees is discussed in [NP93]. In these works (gen
eralized) tree automata or regular equation systems with least fixpoint solutions 
are used. The proposed tiimplification algorithms are not efficient, since the union 
in the set. defining devices is not. restricted such that combinatoric explosion IS 

possible. 

As an alternative to the approach chosen here, we could have taken Rabin au
tomata to define sets of infinite trees (eI, [Th090]). In a constraint system for 
CCP, however, it. would be irrealistic to hope that one could use this theory. The 
complexity of the algorithms involved is far too high. Clearly, we don't need the 
expressiveness of the corresponding second-order logic. 

The paper is organized as follows. We first introduce general notation and the 
constraint formulae. In Section 3 we define deterministic equation systems and 
prove the fact that the greatest fixpoint solution is calculated by w-iteration from 
top. In Sections 4 and 5 we introduce the memorization technique and present the 
satisfiability test, proving its correctness. In Section 6 we present the entailment 
test. In the last two sections we describe the decision procedure for the test of the 
subset relation and the computation of the intersection. Finally, we conclude with 
a discussion of further work. 
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() .. - J: == y 1 T 1 f} A f}' .. 
1] .. - x == fUn 1 T 1 "I 1\,,' </> 

.. - f} 1\ "I 1\ II. 1 .1 .. . . 

Jl .. - :cE q 1 T 1,,·1\1'.' .. 

Figure 1: The fragm ents of constraints without. 3. 

2 Equational and Membership Constraints 

We assume a non empt.y, finite or infinit.e, one-sorted signature ~ of fun ct ion sym
bols f , 9 , .... IT denotes the set of all finit.e and infinit.e trees over~ . We a lso 
assume an infinit.e alphahet of variables ranged over by :1: , y,::: and a poss ibly in
finite collect. ion Q of set. expressions ranged over by 1), (J , 'J', 8. We will be more 
specific about t.he set. expressions in Section :3. 

Finit.e sequences of set expressions and vari ables are a.bbrev iat.ed as ji and :l:. We 
will also use simi la r not.ions like:/: == :'/ or :r: E p for finite sequell ces of formul ae. 

As atomic c01l.8im,in ts we take frj'lw.l.ionfl.l (·o1l.sim,in /s of t.11(' form :r: == y or :1: == 
fUn , mf'.m.I)('T·ship c01I.stmin /.s :/: E 1) and .1. The set of c01I,sl.n,.iu /.s is t Il e clos ure 
of the set of at.omic constraints ullder COlljllllct ioli and exist.ellt.ial qllalltificat.ion. 
T is a const.raint stallding for t.he empt.y coujullction. Note t.Ilat. , wit.hout loss of 
generality, we cons ider only fiat. t.e rms fUj). The symbols for constraint.s of several 
rest.ricted forms are given ill Figure 1. A membership constraint :/: E 1) call bE' seell 
as a convenient. notion for t. he appli cation 11( :1:) of a unary predi cate 1) t.o t.he variable 
.-r. 

As semantics of this first order language we consider IT - strll.c!.u1'(:s . Tbese are 
struct ures wit.h the domain IT that interpret the function symbols I of ~ as the 
pertaining tree constructor fIT. The possible interpretations of the un a ry predicate 
symbols of Q will be restricted in Section ~ by the choice of special IT - structures. 
It is understood that .1 and == get their st.andard meaning. As usual , we use the 
notions of existential (resp. universal) closure , ~'W (resp. Vw), and the set of free 
variables V(w) occurring in w. 

The notion of a structure A being a model of a closed formula w 0= A 'W) is defined 
as usual. An arbitrary formula w is srJ.iisfiabie in a structlll'e A if ~A ~w, otherwise 
it is unsatisfiable in A . A formula v f:n/.aiis a formula w in a st ructure A (v ~ A w) 
if ~A V(v --+ w). Two formulae v, 'IV are equivalent in a st ructure A (v PIA w) 
if ~A V(v ~ w). The notions of ent.ai lment and equivalence can be extended 
to classes of structures. Sometimes, we furth ermore use the notion v ~~ w for 
</> ~A V(v --+ 'Ill) and '() PI~ 'IV for </> ~A V(v ~ 'Ill). 
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3 Set Definitions 

When simplifying membership constraints such as :r: E p /\ :r: E q, we need set ex
l)I'essions representing intersect ions . Therefore, we require that the set Q of set 
expressions is closed under n, which is taken to be an associative , commutative and 
idempotent const ructor for set expressions . For instance, q n (11 n '1) is identified 
wit.h p n q. 

The possible interpretations of the unary predicates are described by a given reg7tiar 
system of Fq1U1.tions E. This is a set of equations of one of the two following forms: 

q = h (fJi) U .. . U .f~,( f]n) or q = T. (1) 

We rest.rict the union ill t.he equat.ions to be det f'.rminis tic, which means t.hat the 
construct.ors on the right hand side of an equation have to be pairwise distinct . In 
particular the empty disjunction , denoted as .1 , is allowed . 

We say that. a set. expression is rlefinf'd in E, if it appears on the left hand side of 
an equation in E. We require that no set expression is defined twice and that each 
set exprpssion appearing on the right hand side of E is defined. In the following 
sections we will often consider a const.raint toget.her with an equation system E 
and assume that all t.he set expressio ns used in the constraint a.re de fined in E. 

A struct.me A is a model of E if thp st.atpment 

:1: E '1 piA ::J?h . .. ::JYn ((:1: ~ f(~h ) /\ 711 E (ji) V . . . V (:t: ~ f(y ,,) /\ y" E '1,, ) ) 

holds for all equations in E of the first forlll of (1) , and if :J: E q FiA T holds in the 
second case of (1). 

An equat.ion system E can be considf'l'ed as a syntactic characterizat.ion of its IT -
models. Therefore, we identify E wit.h its IT - models in notions like 'U 1=1£ wand 

v 1=£ lV. 

We rest.rict. otll'selves to equat.ion syst.ems E with (J,JlIJT·0111' i ri.lf: rlefinitions of com-
1101/.nd set f':rpT'fssions . If II , '1 and II n '1 are defined in E, then we require: 

:1: E II n q FiE :r: E ]1/\ :r: E q . 

We will oft.en make use of t. he following observation. If 1] contains the equation 
x ~ .fiUJ), then we get by the det.prminism condition of E and t.he restri ction to 
tree structures: 

In the rpst. of this section we discuss computational properti es of the greatest IT
model 911 and the least IT - model m of an equation system E. 
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The set of IT - st.ructures over the defined set expressions of [ is a complete lattice 
in it.s canonical order. We denot.e it.s great.est and least element.s by AT and Ai.' 
The equation system [ defines a monotone operator, also ca.lled [, on this lattice. 
If qA denotes t.he interpret.ation of t.he unary relation q in the IT - structure A, 
then the definition of the IT - st.ructure [(A) is given by: 

. - un f'TT (A) i=1. i 'Ii 
'- IT 

if 'I = ./"J(7fi) U ... U fl/('1,,) ill [ 
if q = T ill [; . 

Hence, t.he IT - models A of [ are exactly t.he fixpoints of the operator [. By 
monot.onicity aBd Tarski's fixed point t.heorem (see for instaIl('e [Gue89]) the op
erator [ has a least alld a greatest fixpoint.. This proves t.he existence of m alld 
9'.11. 

The operat.or [ is upward alld dowllward continuous, as the reader easily veri
fies. This means t.hat. [ preserves least upper (great.(~st. lower) hOllllds of every 
upward (downward) directed chaill A ,,, i.e. [(sup A ,,) = Slip [(A,,) ([(illf A,,) = 
inf [(An)). With all application of Kleene's fixed point th(~orelll t.o t.lw complete 
lattice of IT st.ructures and to its dual lattice, we get that t.lle least. (resp. greatest) 
fixed points of [can be reached in w iteration steps from bottom (resp. top). This 
is well known for t.he least fixed point of [, since [ considered as a logic program 
defines an upward cOlltinuous operator. For the greatest fixed point of [ it is sur
prising, sinCf~ it. takes in general more than w steps to iterate the greatest fixed 
point of a logic program from top [11084]. 

00 

Lemma 3.1 m = U ["'(Ai.) awl 9'.11 = n ["'(AT) . 
m=() m=O 

We intend to interpret set expressions in greatest IT-models 9)1. Therefore we call 
a subset of IT rh.finabic, if it is a component of the greatest IT-model of some 
deterministic equation system. 

An example of a non-definable set is {f( (/" (/,), f( li, li)}, since our equation systems 
are determinist.ic. 

In general, the restrictions of IT definable sets to finite trees are exactly those 
that are recognizable by a deterministic top clown tree automatoll. 

More precisely the restriction of the greatest solution of a deterministic equation 
system to finite trees is the least solution, and the components of the least solution 
of deterministic equation systems are exactly the sets recognizable by deterministic 
tree automata. 
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4 Normal Forms of Constraints 

In order to decide the satisfiability of constraints, we present a transformation of 
constraints into either .1 or a satisfiable normal form. Since ~x¢> is satisfiable iff ¢> 
is, we will restrict ourselves to constraints without existential quantification. These 
are considered ati multisetti of atomic constraints. In other words the conjunction 
is seen to be associative and commutative, but not idempotent. 

Since we use membership constraints, all our normal forms are calculated with 
respect to the maximal model 9)1 of an equation system E. 

A variable is called constrained (in ¢» if it appears on the left hand side of an 
atomic constraint in ¢> which is not equivalent to T. With C(¢» we denote the 
set of all constrained variables in the multiset ¢>. The problem ¢> Fi!Ul T can be 
decided syntactically. This is trivial for infinite, and a little bit more complicated 
for finite signatures. For example, let E contain the definition of Nat from the 
introduction and let ¢> be the constraint :c == :c 1\ y E Nat. Then C( ¢» = 0, if the 
tiignature consitits of {S'llCC , ()} only, and C( ¢» = {y} otherwitie. 

For the case of an infinite tiignature, :c is always constrained in ]'; == fU)) and . 
constrained in :r: E]J iff ]J = T iti not in E (both statement can be wrong for finite 
tiignatures). Note t.hat :c == y const.ra.ins ;c if x =1= y, but not y. 

D efinition 4 .2 A constraint ¢> is in normal form, iff ¢> = () 1\ ''7 1\ Jl with 

1. evf.1'y v(f.1'iables of ¢> is constm,ined at most once. 

2. ever',!) variablf: constrained in () dOf:S not occur in ''7 1\ JI,. 

3. /1, is satisfiable in 9)1. 

'l/J is a normal form of ¢>, if 'f is in normal form and ¢> FI!Ul 'l/J. 

A normal form () can be considered as an idempotent substitution with domain 
C((}). The application of this subtititution to a formu la w is denoted by (}w and 
corresponds exactly to the elimination of the constrained variables of () in w. 

The following proposition implies in particular the satisfiability of normal forms. 
We will exploit this proposi t ion again for the entailment check. 

P roposition 4 .3 If ¢> is in nonnal form, then ever,!) (f.ssignmf1l.t of the non con
strained variables of ¢> enn be extended to a solution of ¢> in 9)1: 
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decom]J 

elim 

;1: == f(?7) 1\ x == f(z) 1\ (7 
;r: == f(y) 1\ Y == z 1\ (7 

;r==yl\(7 
;c: == y 1\ (7[;[; f- :til 

:c: == fun 1\ ;[; == g(Z) 1\ (7 
J.. 

Figure 2: Unification rules. Here (T 

if x "I y and :r: E V((7) 

if f"l 9 

:r == y I:/: == fUn I (T 1\ (T'. 

if ;r: E q is not ill II.' , 

1/.nfold :1: E q 1\ II 0 II.' 

y E ]J 1\ I' 0 :r E q 1\ I'" 

:/: E q 1\ pOll' 
11, 011,' 

q = ... u f(f!) u ... is ill E, 
and ;1: == fUn is in "1· 

'/lI,e'/lW 

clash 2 :1: E q 1\ II, 0 I" 
J.. 0 II' 

if :1: E q is ill II.' 

if ;1: == f(!J) is in "1 
t.he. definition of q does not cOlltain f, 
alld q = T is not. in E. 

Figure 3: Simplification of Mf'mberships relative t.o Equat.iolln,1 (:ollstraints with 
Memorization. 

The proof reduces imme.diatdy to the. case. of equatiolla.l cOllstraint.s ollly, wlli ch 
has been solvf'd in [Mah88]. 

Normal forms of equational cOllstraints call be. obtained by the well kllowll llllifi 
cation rules in Figure 2. We obtain norlllal forms of arbitrary wllstra.illts ill four 
steps. First we calc1\late. a normal form f) 1\ "I of the eq1\atiolla.l part.. Second we 
apply () t.o the. membership part. and call the. re.sult. II .. Third w~ simplify II, rdative 
to "I and E by memorization. III the last step we calculate illte.rse.ctiolls alld de.t.e.ct. 
unsatisfiable. membership constraints. 

The memorization technique is describe.d by schemes of rewrite rules which depend 
on "I and E. It transforms expressions of the form pOI"', where 0 is a new symbol. 
We say that 11'0 sim,pl~fies to III reiati 'llf to ''7 a.nd E, if there is a p~ such that p,ooT 
rewrites to 1"1 op~ relative to "7 and E. In this case we will prove 11'0 and Jl1 to be 
equivalent relative to ''I in 9')1 (correctness of memorization). 

On the right hand side of 0 we memorize the constraints which have already been 
unfolded. The rules are presented in Figure 3. They forbid multiple unfolding of 
the same constraint and delete those that have been unfolded before. 

The termination of memorization is obvious. The main problem is the correctness 
of the memo-rule, which is proven in Section 5. 
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intersect 

empty 

x E 1) A X E q 
;rEpnq 
x EpA It 

1.. if p = 1.. is in E 

Figure 4: Simplifica.tion of Empty Sets and Conjunctions of Membership. 

A typical example is the simplification of the constraint :r E lnf relative to :r ...:... 
S'llCC (x) and E containing luf = SlJ,CC (Inil 

x E lnf 0 T f ld ----=--- un 0 

X E lnf 0 X E lnf ------".-_-;--=-"-=- 111.(:711.0 

TD :c: E luf 

The last set of rules handles empty sets in membership constraints and conjunc
tions of membership constraints for the same variable. It is given in Figure 4. 
During its execution we want to maintain two invariants. First, each occurring set 
expression should be defined in E. This means that we have to calculate equations 
for intersections and to extend the equation system by need without changing the 
interpretations of previously defined set expressions in 911. This will be done in 
Section 7. 

Second, a set expression ]J should be defined by p = 1.. iff p'JJl = 0. This can easily 
be done by propagating 1.. in E. 

Theorem 4.4 When st",'rted with the constmint <p, the above a.lgorithm tenninates 
wdh 1.. 1:1' <p is 'Ilnsatis.Fabie in 911, and in {f, normal fonn of <p otherwise. 

Here is an example that illustrates our algorithm in action. E contains the equations 
for Nat, NatList , E-,,(;n and Odd from the introduction. We compute a normal 
form of 

X == cons (y, :r) A :1: == C01/.S ( ;;, :c) A .7: E NatList AyE E1Je1/, A;; E Odd . 

The equational part simplifies to () A 17 with 

() = y == z A ;r; == :r:, ''7 = X == co ns (z, x ) . 

By applying () to the membership part we get 

It = x E NatList A z E Even A z E Odd 

The memorization algorithm simplifies II. relative to 17 and E to 

It 1 = z E Nat A z E Ev en A z E Odd 
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This is transformed with the intersection rule to ;; E Nat n Even n Odd. The 
intersection algorithm of Section 7 adds the following equation to E: 

Nat n Even n Odd = 8'1lCC( Nat n Even n Odd) . 

To be precise it also adds an equation for Even n Odd, Nat n EVfn or Nat n Odd 
depending on which intersection is calculated first.. We get the normal form 

y ~ ;; 1\ ;c; ~ :r: 1\ :r: ~ cons (z, ;r:) 1\ Z E Nat n Even n Odd. 

This normal form is satisfiahle since 00 E (Nat nEve'll. n Odd )911. Note that we 
could replace z E Nat nEve'll. n Odd hy the 9.11-equivalent constraint ;; ~ $'/1.(:('. (z). 
This will be necessary in the entai lment check. 

5 Correctness of Relative Simplification with 
Memorization 

Since the clash rule tennillates the rewrit.illg, we C'UI rest.rict 01\l'selves to t.he 
'I?U,!}W and u.nfold rule. The relatioll 'rewrites to in one '//I. e'!}/.() 01' unfold step' on 
expressions of the form II 0 II,' will be denoted by t> 'T/,[ and its reflexive tra,usitive 
c\osme by t> ~ ,[ . 

Roughly speaking, the following theorem states t.!Jat. tile symbol 0 can he iuter
preted as the logical connective 1\ with respect to all IT - models of E, aud also as 
-t with respect to the greatest IT - model 9.11. 

Theorelll 5.5 For' each c01/1.]J'uta60n 

1"0 0 II. ~ t>~,[ III 0 II,; 

the following two 8trJ.lcments (1.1'(; iU'l)(J.1·iant8: 

, ~17/ , 
1"0 1\ 110 1 f ill 1\ III and , ~7/ , 

I"u 1911 III -t III . 

Only the second statement is not obvious, since the assumption of the implication 
is weakened by the memorization rule. 

Corollary 5.6 (Correctness) flilu 8impliFe8 to 111 by memor'ization r-e/ative to 
T} and E then /'-0 FI; II} holds. 
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Proof. By definition there is Jl~ with 11'0 0 T t>* £ III 0 p~. The above theorem 
1), 

implies 

o 

Theorem 5.5 can be proven with the help of Lemma 5.7, which reflects an important 
property of the greatest IT - model 9')1-

In order to be general enough we need the concept of derivable constructors. If 
f E ~ is a constructor with arity n, m a natural number and a : {1,· ··, n} -t 

{1 , ... , m} an arbitrary mapping, then the pair f~ is called derivable constructor 
with arity m. The interpretation of f~ in a ~-structure I is defined by 

for all elements di of the domain of I. Each constructor is itself a derivable con
structor, since we may chose a to be the identity. We will freely use derivable 
constructors as abbreviations in terms. For example f~ (:c, y) stands for f(y, y, y) if 
a is the mapping a(l) = a(2) = a(:3) = 2. In the sequel we will not distinguish 
between constructors and derivable constructors. 

Using this notion in the rest. of this section we will a.lways assume finite sequence 
of objects to have the form u = (O;)i. 

Lemma 5.7 (Main) Let £ be an equation system, fi = (1)i)i and (7 = (q;)i .finite 
sequences of set e:r:pressions, ;l; = (Xi)i and fj = (Y;)i finit e sequences of variables, 
.r = (fi)i a .finit e s(:quence of der-ivable constr-uct01'S and "7 a constm,int. We assume 
that for all .J the eq'l1.(/.tions 

Vi = . . . U f j(fi, ij) U 

a1'(; contained in £ and that the statr.ment 

1-1
, • I' (- -) i!1Jl :Cj = ,j X, !} 

is valid. Th en the following implication 1'elative to ''7 and the greatest model 9J1 of 
£ holds: 

In order t.o illustrate the contents of the Main Lemma, let "7 be :r:1 == f( :r:1, :(2)/\X2 == 
f( X1,X2) and let £ contain the equa.tions 1)1 == f(]J1,]!2) and 1)2 == f(]J1 , ]J2). The 
main lemma implies T F~ .'r:l E 1)1 /\ :r:2 E J!2. Note that this does not hold in any 
other solution of £, i. e. for ]J~ = 0 a.nd ]!~l = 0. 
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Proof of the Main Lemma. We pl'Oof that each solution of 'I] 1\ :lJ E fj over M 
is a solution of :r: E jl. Suppose 0' : Va/' ~ IT to be a solution of "7 I\:lJ E fj in M. 
This implies 

IT -- -
O'( :Ci) = /i (0'( :r:),a(y)) 

for all j (with 0'( :r:) = (a( :l: i )) i ). 

and a (:'I.i ) E (/j 

By the repr~sellta.tion of 1))1 ill Lemma. ;3.1, it suffices to show : 

for all j and all IH ~ O. This can bf' done by illdlldioll OWl' '/I/.. TIle case III. = 0 is 
trivial. For tllf' induction step we llaVf' to show 

[",+l(A T ) 
E Vi 

. .. U /fT(I/"'(A T), ({"'(AT)) u .. . 

for all j. But 0'( :1:,i ) is contailled in the right hand sidf'. IJldeed 0'(:rj) 
ffT(0'( :r:),0'(Y)) , by illdlldioll bypotllf'sis 

and by assumption 

o 

Proof of Theorem 5.5. For simplicity we assume II, ~ = T , wlli cll is sufficiellt to 
conclude COl'Ollary G.G. 

We call thf' expression :/i E (} 0 :(: E ii (f1JIJl'OlJn:(tif with n :8]Jcci to '11 II.nd £ iff the re is 
a finite seqUf'I1Ce of derived collstruct.ors I and a finite seqllell ce of v(t,riables :/i such 
that for all j the equation 

is in E and t.he following statement holds : 

p" X.i == jj( i, 17) . 

"'00 T is appl'Opriate even for arbitrary TJ and E. We will show that unfold and 
mono steps relative to 'I] and £ maintain appropriateness relative to 'I] and E. 
Therefore 1"1 0 Il~ is appropriate relative to 'I] and E. The Main Lemma yields 

p~ 11.1 ~ II, ~ . 
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It remains to prove that the unfold and m e'l1lO rule ll~aill!-!,ill appropriateness. 

First we consici f' r the '/I.nfold rule that rf'duces :/:' E 1" to !I' E q' in 

?7 E ij /\ x ' E 1/ 0 ;1: E fi t>" ,f !7 E ij /\ !/' E q' 0 .1: E fi /\ :/: ' E ]/ . 
To prove the appropriateness of the right hand side we will find constructors g' 
and 9 with 

Pj U !Jj (fi, p' , (}, q') U . . . 

p' = U g'( fi , p', (} , q') U .. . 

and 

and 
pT' :r:j == !J.i(:l:, ;r;o, fj, y') , 
p1) ;(J == g'( :1:, ;(:', !7, V') . 

By the appli cation cOlldition of the unfolr! rulf' , there is a cOllstructor f' with 

, 1"( ') ]1 = . .. U. q U ... and p'" :1:' == I' (!I') . 

By t.1lt' appropriil.t.f' IWSS of t.lw It> ft. ha.nd sidf' o f t> ",[ tllt're art> df' rivf'd cOllst.ruct.on,; 

I with 

] 1 . 
.7 a lld L', " . ....:..1· .(.-. . - ,J) I .f..7 - . .7 .1. , .'/ ,.1. 

Wf' can now find df'fi lJ a hlf' cOllst.ructors t.hat. are essent.ia.lly like I i, but t.ake pos
sibly more argulllellt.s ill a. possihly pe rlllut.f'd order. Form a lly t.hf're (l.rf' ddlnable 
const.ructors [; alJd g' wit.11 

f i(:T:,:t/,:r') = !Ji(,",:t:' ,:r7,y') 

This impli f's 

!J.i(fi, q, ij, q') 

a.lld 

alld 

/.,(-,) '( - , - - ,) . Y =!J :/: , .1: , y, y . 

f' (q') '( - , - ' ) !J /1, ]1 ,(/ ,(/ 

ami proves the appropriatenf'ss of t.he right. IlalJd side. 

For t.he second case we consider an applicatioll of the m emo rules e rasillg :(;0 E ]10: 

:0 E ij /\ :"0 E ]10 0 :1: E fi /\ ;1:0 E ]10 t> '",f :0 E (} 0 .7: E Ii /\ ;1; 0 E ]10 . 

The appropriat.f'Ilf'ss of t.he left. hand side guarant.ees the ex ist.e ll ce of derivable 
COllstructors .r a lld .I;) wit.h 

]ij = . ... U I i( fi, ]10 , (I, ]10) U ... alld L '" , . ....:.. I' (:-. ,. ,- ,. ) I .l.j - . . i .1., ·1.0,!/, ·1.0 

for a ll j ~ O. Now Wf' ca.n filld derivahle constructors th at take :l:u, resp. Pu only 
Oll ce. To be prf'c isp., Wf' define TJ and !Jo wit.h 

f i(·7:, :/:0, ii, :1:0) = !J.i(i, :(;0, :0 ) 

for all j ~ O. Therefore 

f i( fi , ]IU , (I , ]IU) = !J j (ji , 110, ij) . 

This shows tlw a.ppropriat.eup.ss of t.hf' right hand side. 

o 
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6 The Entailment Check 

In this section, we show how to decide entailment between existentially quantified 
constraints in the greatest model 9Jl. 

For the purpose of this section we assume that the signature contains 
at least two elements, since otherwise the domain of the models under 
consideration will be singleton, and hence every equation will hold. 

Initially, we are given the question whether 

:JX' <p' F~ :JX <p (2) 

holds, where X, X' are finite sets of variables. We may assume without loss of 
generality that <p' is satisfiable in 9Jl, since otherwise (2) holds vacuously. Hence 
by Theorem 4.4 we can assume <p' to be in normal form. For tlw purpose of entail
ment checks it is convenient to exclude certain forms of degenerate membership 
constraints. Hence, we furthermore require that for all membership constraints 
x E l' of <p' the definition of 1) is disjunctive. A normal form meeting this addi
tiona.! condition is called a branching nOn/w.! form. Note that a branching normal 
form contains only membership constraints :c E 1) for which 1)~ is not singleton. We 
can always transform a normal form into an equivalent branching normal form by 
introducing new existentially quantified variables: 

• A membership constraint :c E lJ, whf're lJ~ is singleton, is equivalent to a 
corresponding equation. For example, if [; contains lJ = f( q) and q = g(p), 
then x E p is in 9Jl equivalent to :JY(:I: == f(y) 1\ Y == g(:r:)) . 

• A membership constraint :c E 1), where the definition of 1) is of the forlll ]J = 
f( ij) and where ]J~ is not singleton, is replaced by :Jy(.7: == f(y) 1\ fj E ij). 

Both rules maintain normal forms (modulo existential quantification) and termi
nate, since the second rule applies only when ]J~ is not a singleton. Note that by 
Lemma 5.7, ]J~ is non-singleton iff the defini tion of 1) depends on a defini tion which 
is disjunctive, or which is T. 

Taking the definition of Inf, Even and Odd as given in the introduction, we trans
form the existentially quantified normal form 

:Jy(.7: E In} 1\ y E Odd) 

into the existentially quantified branching normal form 

:Jy:Jz(:c == S'/I.cc(:c) 1\ Y == S1/.cc(z) 1\ z E Even) . 
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The next lemma states that membership constraints in a branching normal form 
can not contribute to equalities: 

Lemma 6.8 Let 'I]' A I'" bc in branching normal form. Then 'I]' A /-l' F!'Ol 0 iff 

.,,' F!'Ol (). 

Hence, we assume without loss of generality in (2) that <// is in branching normal 
form. Since we may in (2) assume without loss of generality that X' is disjoint 
to V( ¢> ),we may drop the existential quantifier on the left hand side. The normal 
form ¢>' can be written as ()' A 'I]' A It'. Since ()' is an idempotent substitution and 
since we may assume X to be disjoint to V()' , we arrive at the problem 

'I]' A II,' F!'Ol :lX ()' ¢> 

where .,,' A 1',' is in branching normal form. 

Before we state the entailment theorem we consider the special case of a right hand 
side consisting of equations only. We say that some () is complete for some 'I] if 

o F ;r: ~ y and ,7: ~ f( ;1:) E 'I] and y ~ f(fJ) E 'I] implies () F i: ~ f) . 

For instance, ;c; = '(I A Y = '/I is complete for ;c; ~ f( ;c;, y) A Y ~ f(v, ;c;) A '(I = f(y, x). 

We define the quantor :l;c;¢> (read: thf're is a.t most one .7: such that ¢» as an 
abbreviation for: 

The generali zation :lX to a finite set X of variables is straightforward. This quantor 
has the important property that: 

(3) 

We can now express an important property of normal forms which is in some sense 
a count.erpart to Proposition 4.;~. This lemma has been given in [Mah88] as an 
axiom of infinite trees . 

Lemma 6.9 For cvcry 'I] 'We luwr. F!'Ol V3C('I]) 'I] 

Lemma 6.10 (Determined Equations) Let () be completc for '1]', let () contain 
no trivia.l equation ;c; ~ ;c; a.nd lr.t () A '1]' be satisfiable in 911. Then '1]' F!'Ol 0 iff 

V(O) C; C('I]'). 
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For instance, 

;z; == f ( ;1: , !f) 1\ !J == f ( v , :r:) 1\ v == f ( y , :c:) F ~l :1: == v 1\ y == '(! • 

Thit; does not hold, if we drop t.hp third equation form the assumption. 

Proof. If V(t'J) Cf:. Ce,/), then we can find a valuation which satisfies .,,' but not f) 

as follows: If (j contains ;r: == y, where both :r: and yare not constrained ill "I', then 
we may choosp arbit.rary different va.!tIPs for :r: and y. If () cont.ains :r == ;tI, wherp 
one variable (say :r:) it; not constrained and the other (say y) is constrained in ''7' 

by, say, y = fUj), then we choose for :r; a value which has a root symbol different 
from f. This is always possihlp sincp wp assume our sigllature to conta,in at least 
two plemellts. III hoth cast's, WP uSP Proposition 4.:3 to gd, a solutioll of ',I' which 
clops not sat.isfy fJ. 

Let V( 0) <;; C(,I'). By Lemllla (G.!)) 

F~l V3C(1t') ,t' . (4) 

We may assume wit.hout. loss of genpralit.y t.lllI.t () is alTallged to h(~ <l.n idempotent 
substitution. Wp now show t.hat. (ht' is ill normal form lip to multipk occurr(~ IlCPS 

of atomic constraint.s. Assume t.illl.t 

:t: == f(:~) 1\ :1: == g( z) <;; (hI' . 

Since (jl\.,/ is sat.isfiable, f equals g. SiIlCt~ (J is complete for 'I', we obt.aill () F :11 == z. 
Since (j is an idempotent. substit.ution and since fl, z are ill thp codomaill of 0 this 
implies fj = z. Hence by Proposit.ion 4.:3 

The last implication it; justified by V( 0) <;; C(q'), hence V(fhl') <;; C(,I'). Now, t.he 
cla.im follows by 0) from (4) and (5). 0 

A proof of a morf' general lemma (in t.he context of feature constraints) has been 
given in [ST92bj. 

Before we state the entaillllPnt theorem we have to introduce some more notation. 
We call (j X -rlira:toJ if 0 contains no equat.ion ;1: == y with :r: rt X and y E X. 

For a constraint tjJ we define tjJx t.o be the subset of atomic constraints which 
constrain only variables hom X, and tjJ-x to be the subset of at.omic constraints 
which constrain only variables alien to X. Since every constraint is either equivalent 
to T or constrains a variahle, we have tjJ FI~ tjJx 1\ tjJ-x. 
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Definition 6.11 Let 'I]' /\ It' be in branching normal form. The constraint ::JX (e /\ 
''7 /\ J.l) is in normal form relative to r/ /\ 1',' if 

1, e is X -directe.d, 

2, e is complde for 'I]' /\ 'I], and 0 /\ r/ is satisFable in 9Jl , 

3, C('I]') and C(Jt) are disjoint, 

4, e /\ 'I] /\ It is in nO'f"lHal form. 

For inst.ance, 
::Jv(v == z /\ :c == y /\ Y == f(y) /\ z E]I) (6) 

is in normal form relati ve to 

:c == f(y) /\ Y == f( :c) /\ 'IV == h(z) /\ z E q. (7) 

This does not hold if we drop :c == y from (6), since then clause 2 of Definition 6.11 
is violated. 

Theorem 6.12 (Entailment) Let '17' /\ II,' be in branching nonnal form, let X be 
disjoint to V ('I]' /\ p') and let ::JX (0 /\ '17 /\ It) be in normal foml 1'eiative to ''7' /\ 1','. 
Then '1]' /\ II,' F9Jl ::JX(O /\ '17 /\ II,) ~If the th1'(;e following sta.tements hold: 

1. V(O-X) ~ c(-,,'), 

2, for' eVF.T"!J ;c E 1) in II,-x then; is an :c E q in 1',' with q'.TJl ~ 1)'.TJl, 

3. 'I]-x ~ 0'17'. 

For instance (7) F9Jl (6) holds provided that q'.TJl ~ p9Jl, 
Proof. By clause (1) of Definition 6.11, V(O-X) is disjoint from X. Since further
more V(p-X) is disjoint from X, '17' /\ I'l F'.TJl ::JX((} /\ 17 /\ p) is equivalent to the 
conjunction of the three statement::; 

.,,' /\ II,' 

.,,' /\ 1',' 

'1/ /\ It' 

(8) 
(9) 

(10) 

By Lemma 6.8 and 6.10, (8) is equivalent to condition 1 of the theorem. This relies 
on clause 2 of Definition 6,11, 
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1'-decomp 

r-dim 

r-c/ash 

o /\ 'IJ . 
y == z /\ 0 /\ "I 

:c: == y /\ 0 /\ " 
:r: == y /\ (0 /\ "1)[:1: f- yJ 

o /\ "7 
1.. 

;r == y /\ 0 /\ "I 

Y == :c: /\ () /\ '" 

o is substitution 

and .7: == fU)) /\ 1': = f ez ) ~ "7 /\ (h7' 

.7: f- y , :r: E V(O /\ ''7) 

f) is substitution 

and ,7: == fW) /\ :r = 9( =) ~ '11 /\ (hI' , f f- 9 

:r: ti X , y E X 

Figur~ 5: R~l at.ive Simplificat.ion of Equatio ns . 

Usillg claus~ :3 of Ddillit.ioll (l . ll and tb ~ fact. t.ha t. X is disj o illt. t.o V('1/ /\ 1',') , (9) 
is equiva.lf'llt. t.o condit.ioll 2 of tllf' t.Ilf'o r~m . 

Sill c~ 0 is X -dirf'ct.f'd , V(fh/) is disj oint. from X . Hf' ncf' colldit.ioll (:3) of tl lf' 1.I1f'
orem impli ~s t.h a t. V(/'-X) is disjoillt. from X , a lld he llCf' (10) is ~qui vC\.l ~ Ilt. to t llf' 
conjull ction of 

, /\ ' 'II I" 

,,,' /\ II,' 

F~l '1]-X 

F~ :JX (f)X /\ I()\ /\ I'X) 

(11 ) 

(1 2) 

If condition 3 and 1 of t.h ~ t.h ~or~m hold , t.11~ll by (8) w~ hav~ ,,,' /\ I'" F~l 'II' /\ f)-x F 
'II-x . By clalls~ (4 ) of Df' fiuit.ion (i . ll, t.ll e formula OX /\ '1,x /\ I'x is illllormal fo rm . 
H~nce, by Proposit.ioll 4. :3 , (12) holds. 

Oil the other ha ud , assume tha t. (10) Iioids and t.ha t. :1: == I(:Q) E 'I,-X. If (hI' does 
not. contain an equation for :l: , or cont.aills au eqllatioll :r: = 9( =) wit.11 9 f- f , the ll 
the same holds for 'II' by conditioll 1 of t.he theore m a lld since 0 /\ '// is sa tisfiable 
in I)JL This cont.radicts 0111' assumptioll t.ll a t. entailment holds. Helice, th~re is an 
:c: == f( z ) in (h/. Since f) is comple t.e forI, /\ 'II' , it is also comple te for '11 /\ (h/. Henc~ 

{} F !/ == z, that is since 0 is all idempote llt. substitutioll , f):I/ = Oz. Since :Q, z are in 
the codomain of f) a uel sill ce f) is idempotent , fi = z, hence :r: = f( z) E (h( 0 

Next we show how to transform a constraint :JX <p into normal forlll relative to 
'17' /\ 1',', First, we transform the ~qua.t ional part of <p using the rules of Fig1ll'e ,5. 
This rules are equivalence transfonnations relative to ,,,' in all IT structures . The 
rules t erminate with either 1.. or with f) /\ "7 , such that the clauses 1 and 2 of 
Definition 6 .11 hold . Let I' b~ the m embership part of <p . Now we simplify (}Il 

relative to 'I] /\ ,,,' as explained in Section 4. Finally, we simplify constraints of 
the form .7: E p /\ ;c E q and check for membership in empty sets, as explained in 
Section 4. If this does not lead to 1.. , we arrive at a relative normal form. 
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int 1 £ u {e} 

int 2 
£u {d 

II = h (Jlt) u ... U I n(lln ) U In+l (1In+d U .. . ill £ 
q ~ h(ji) u . .. U I n( '1,,) U 9n+dqn+l) U ... in £ 
with Ii =I 9k for all j, k :::: '/1, + 1. 
f is 11 n '1 = II (PI n (ji) U .. . U j~, (Jln n '1n) 

if q = T and P = de..t~) are contain~d in £ 
and f i:s the equat.ion ]1 n q = de j~) . 

Figme G: Comput.at.ion of IIlt.e rs~ct i olls 

As an eXCl mpl~ of ~qua.tiolla.l simplification, th~ const.rain t 

:3 '(1( :1: == '/1/\ V == f('/I)) 

si mplifi~s r~ la.t.iv~ to :r == f(y) /\ y == f( :.:) /\:.: == f( :/') to 

:3 v (11 == :.: /\ :1: == :.: /\ y == :.: /\ :.: == f ( :.: )) . 

7 Equations for Intersections 

We need an algorithm t. hat ~xt~llds a d~t~rll1inisti c ~qllatioll syst.~m £ cOlltaining 
d~finitions of ]1 and q by an appropriat~ defillition for 11 n '1 . 

III the terminology of 1l10d~1 th~ory, we will ext~J1d th~ formula £ to a formula £' , 
such that. ~v~ry I T - model of £ ext~nds conservatively to a IT - model of £', and 
such that :c: E JI n '1 H[, :r: E P /\ :r: E q holds for all ll ~W set expr~ssioJls ]I n '1. Tlwr~by 
a.ppropriat.~n~ss of ddl nitiolls of s~t ex pr~ssiolls ill lwrits from £ to £' . 

This ext~nsion Ca.1l b~ achi~v~d by it~rat.~d applications of tlw llon - det~rmiJlisti c 

rewrite ru l ~:s ill Figme G that are ~asily proven correct in the above sense. Note 
that th~ rul ~s maintain determinism of equation systems. 

The first rul~ possibly creates the n~ed for adding further equations to £ in order 
to have definit.ions for all set expressions which appear on the right hand sides in 
£. This completion process can be organised in a terminating manner , by adding 
]I n '1 to £ only und~r t!J~ assumption that ]1 , '1 alld all set expressions on the 
right hand sid~s of £ are defi ll~d in £. More precisely, only binary intersections 
of set expressions on the right hand sid~ have to be added. These are at most n 2 

equations, wh~re n is the llumber of defined set ex pressions in £. 

For example we can extend an equations system £ containing the above definitions 
for Evcn and Nat with an equation for Evcn n Nat. First the first rule adds the 
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equation 
Even n Nat = 0 U succ (Odd n Nat) . 

A further application the same rule adds 

Orld n Nat = succ (Even n Nat) . 

8 Deciding the Subset Relation 

We will decide the subset relation pA C qA for A = m or A = 9Jl using the 
memorization technique. Note that this includes a subset check for sets recognized 
by deterministic top down tree automata as well as for IT definable sets. 

Therefore we define the following fragment. of new constraints: 

r :: = p C q I T I r A r' . 
The memorization technique is carried out by rewriting expressions of the form 
r 0 r'. We say that r a simplifies to r 1 relative to E if there is a r; such that 
ra 0 T rewrites to r l Dr~ relative t.o E. 

Without loss of generality we make t.wo assumptions on E. First we assume that 
pA = 0 iff p = 1.. in E, and that. set. expressions which are used on the right hand 
side of E do not. denote t.he empty set. in A. Second, we aSSUlllf' that 1)A = IT iff 
p = T in E. Both conditions can be assured for 9Jl as well as for m, for finite as 
well as for infinite signatures. 

The rules of t.he rewrit.e system are presented in Figure 7. 

Theorem 8.13 (Correctness and Completeness) Thr 1·ewr·itf: system of Hg
ure 7 terminates. rl r 0 simplifies to r 1 r-eiativc to E then r 0 FlA r 1 holds. A 
constraint r 1 =f 1.. that can not he simpl~fifd is valid. 

Termination and the last statement are trivial. The clash rules are correct by the 
assumptions on E. It remains to show that t.he rules unfoldl and men-wl are 
correct. This can be done in analogy to Section 5. 

In the following example we apply memorization to prove that Even C Nat holds 
in 9Jl as well as in m. We assume that the signature contains a constructor different 
from suec and (): 

Ene7/, C Nat 0 T 1l1l.jolrlJ 

Odd C Nat 0 E-oen C Nat 11. n/o Id} 

Enen C Nat 0 Born C Nat A Odd C Nat 

T 0 Even C Nat A Odd C Nat 
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unfa/(ll 

rnemol 

clash 3 

clash 4 

]J e q 1\ f 0 f' 

fI e 'I 1\ f 0 f' 
f 0 f' 

II e q 1\ f 0 f' 
..Lor 

II e q 1\ f 0 f' 
..LOf 

if II e fJ is not in f', t.he equations 

P = fl(pd u ... U /,,(Pn) 
q = fdvd u ... U /,,('1n) U .. . 

are in E and f I = flI e 1[i 1\ ... 1\ fin e 'I". 

if f1 e fJ is in f'. 

if II = ... u .rUi) u ... is in E, 
but the df'finit.ion of q in E is not. of form 
q = ... U /((7) U ... or q = T. 

if ]I = T is in E, but. tllf' defillitioll of 'I 

is HOt. 'I = T. 

Figl\l'f' 7: Deciding t1w SlIhsf't. Rf'lat.ion with Mf'lIlorization 

As a sf'cond example we considf'r 1111 e Z(:1'O wit.h E cont.aillillg Z("1"O = O. In the 

case of m t.hf' defillit.ion of luI is n'placf'd by !III = ..L a.lld t.Ile subsd. rf'lation 
holds. In t.llf' casf' of 9Jt we d o 1I0t. I'f'placf' t.llf' df'filli1.ioll of Iuf. Th(' cl(/..~h;J rulf' 

applies, and t.he subset rdat.ioll is rf'fllt.f'd . 

In order to prove TIlf'orf'1ll s.n allalogously to Sectioll 5, we II;w(~ 1.0 exchallge t.he 

constraint :r E (J by lIe '1, tlw Maill Lf'lIlllla by Lemma S.lS alld tIle assumptiolls 
ahout ;1: ill "1 by assumptions for tIle df'fillit.iolls of fI ill E. 

The relation ' rf'writf's to ill olle '/Infold1 or '/1),(."11/.01 st.ep ' is df'lIot.ed as 1>£ and 
its reflexi Vf' and t.rallsi t i Vf' C1OSUl'f' by 1>;'. Thf' followi IIg t.11f'Orelll is sYlllmetric to 
Tlworem S.S but. holds for m alld 9J1. 

Theorenl 8.14 (Correctness) FO'I' f'/)(,,"Y c01I1.]Juiaiiou: 

t.he following two iU'IJ(J,',.i(J.nts arc ·/I(J.lid: 

(J.nd 

Ollly the second statemellt requires a proof. Therefore we claim the following 
lemma that is symmetric t.o the Main Lemma. 

23 



Lemma 8.15 Let E be an cquation system, jl, ij, .,: and .s .{inde seq'uences of set 

expressions and (ff'h finite scq'll.f'.nces of derivable consi1"uctors. We (J.ss'U.me for all 
j the following equations in [;,' 

U f 'k( - -) T'j = j ' 1',S and Pj = Uf;(zJ,ij) U ... 
k k 

In this case the following entailnu:nt with respect to the least and the greatest model 
of £ hold: 

F{m,!lJl} .sCq ----7 fCz!. 

There are models where this lemma is wrong. For instance consider the equation 
system]J = f(p) and ',. = fer) with tlH> model 'I,A = {fU(f( .. . )))} and ])A = 0. 
Then T FA .,. C ]J does not hold. 

Proof. We mainly u::;e the repre::;ent.at.ions of m and 9')1 from Lemma 3.1. For the 
case of 9')1 we assume 8!lJl C q'JJl and proof by induction .,.!lJl C ]lm(A T ) for each m :::: o. 
The induction ba::;e '/11, = 0 i::; t.rivial. The induction step is done by 

for all j. The second inclusion holds by induction hypothesis and assumption: 

For the case of m we a::;sume 8m C qm. By induction we prove ,,.[1Il(Al.) C I'm for each 
m:::: O. 

The induction step i::; done by 

C I'm 

for all j. The ::;econd inclusion holds by induction hypothesis and assumption: 

refU(Al.) C ])01 

,s[m(Al.) C 8
m C qm 

0 
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Proof of Theorem 8.14. For simplicity we assume f~ = T, which is sufficient 
to conclude Theorem 8.13. 

We call the expression .s C ij 0 'r C p appropriate 'With respect to E iff there are finite 
sequences of derivable constructors (Ink such that for all j the equations 

and 

are in E. fo 0 T is appropriate even for arbitrary E. We will show that unfold 
and memo st.ep:,; relative to £ maintain appropriateness relative to E. Therefore 
flO f~ is appropriate relative to E and Lemma 8.15 yields 

It remains to prove that the unfoldl and memo1 rule maintain appropriateness. 
First we con:,;ider the unfoldl rule. It reduces ,,.' C 1" to ;, C q' ill 

.s C (I A ',.' C p' 0 T; C p I> [ .s C (I A ;, C q' 0 f C jJ A ',.' C p' . 

We will show that there are constructors gj and g,k with 

'r j 

.,.1 

U k( - , - -,) k!Jj '/' , '/' ,8, 8 

U g,k ( ,,-: " .I '1 -;;') 
k " '. , '. 

a.nd 

and 

By the application conditioll of the unfold rule, there i:,; a sequence of derivable 
constructors (I,kh with 

and 

By the appropriatene:,;s of the left hand side there are sequence:,; of derivable con
structors U}h with 

and U j 'l.:( - - ') U Pj = I.: j ]1,q,]J 

It is easy to find definable constructors g,7 and g'k with 

This implies 

"

1.:( ,,. '1 'r.l) 
'.1 , .. ,' g l.:( ,,. ,,.' s ;') 

J ' , , 

f'k (;') g,kU':, " .I, oS, ;') . 

ff(p, ij,]1) = 9j(P, IJ, ij, q') 
f'1.: (q') = g'~: (p,]1' , ij, q') , 

which proves the appropriateness of the right hand side. The con:,;iderations for 
the memo 1 rule are similar. 0 
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9 Conclusion and Further Work 

We have presented a rule-based a lgorithm which allows fot' satisfiabi lity ami en
tailment tests of f'quational and membership constraints . TIlf' df'vf'lopmellt of an 

• abstract. machine in the sty le of [ST92b] and the ca.iculatioll of IHf'cisc complexity 
bounds is up t.o further resf'arcb. 

The const.raint system pre:·wntf'd herf' can possib ly be extended in various direc
tiolls. Olle immediate quest.ioll is t.hf' df'cidabi lit.y of t.he fi rst.-ordf'r theory of a 
deterministic eq1\at. ioll systf'm with maximal fixpo int solut.ion; ·i.f:., tllf' decidabili
ty of (f.rbitm.r"!J first.-order forll1 ul af' bui lt up from f'qllat.iolla.! alld membership COIl
straint.s . We cOlljf'ct.urf' a positivf' anSWf'r, f'llcouraged hy t.il(, decida.bilit.y result. 
[CD91] for t llf' fi rst.-order t lIt-'o ry of tref' allt.omata. 

Another f'xtensiOll of t.his work cO II!d illcrf'ase t.he expressiv(' pOWf'r of t.h(~ equat.ioll 
SystcIlls by weakenillg tllf' t'f'st. r ict.ioll t hed. t.lwy be df't.f'rmillist.il. T lw r(' laxiit.ion of 
tllf' df'termillislll condition wi ll causf' plOblf'llls in the f'1lt.ailm(,llt. ,heck. 

Finally, it wi II bf' ill terf'sti Ilg t.o app ly t Iw met llOds df'v('loped h('rf' 1.0 t.lw otlWI' 

formalism 1110df'lillg cycl ic dat.a struct.urf's: ff'a.tur(' t.rcf'S [STD2ii., nSD2, AKPSD2]. 
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