How to Prefer More Specific Defaults in Terminological Default Logic

Franz Baader, Bernhard Hollunder

December 1992
Deutsches Forschungszentrum für Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips, SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other related subfields of computer science. The overall goal is to construct systems with technical knowledge and common sense which - by using AI methods - implement a problem solution for a selected application area. Currently, there are the following research areas at the DFKI:

- Intelligent Engineering Systems
- Intelligent User Interfaces
- Intelligent Communication Networks
- Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist many contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts technology transfer workshops for shareholders and other interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director
How to Prefer More Specific Defaults in Terminological Default Logic

Franz Baader, Bernhard Hollunder

DFKI-RR-92-58
This work has been supported by a grant from The Federal Ministry for Research and Technology (FKZ ITW-8903 0).
How to Prefer More Specific Defaults in Terminological Default Logic

Franz Baader and Bernhard Hollunder
German Research Center for AI (DFKI)
Stuhlsatzenhausweg 3, 6600 Saarbrücken 11, Germany
E-mail: (last name)@dfki.uni-sb.de

Abstract
In a recent paper we have proposed terminological default logic as a formalism which combines both means for structured representation of classes and objects, and for default inheritance of properties. The major drawback which terminological default logic inherits from general default logic is that it does not take precedence of more specific defaults over more general ones into account. This behaviour has already been criticized in the general context of default logic, but it is all the more problematic in the terminological case where the emphasis lies on the hierarchical organization of concepts.

The present paper addresses the problem of modifying terminological default logic such that more specific defaults are preferred. It turns out that the existing approaches for expressing priorities between defaults do not seem to be appropriate for this purpose. Therefore we shall consider an alternative approach for dealing with prioritization in the framework of Reiter's default logic. The formalism is presented in the general setting of default logic where priorities are given by an arbitrary partial ordering on the defaults. We shall exhibit some interesting properties of the new formalism, compare it with existing approaches, and describe an algorithm for computing extensions.
Contents

1 Introduction ... 3

2 Default Logic .. 5
 2.1 Reiter’s default logic 5
 2.2 Terminological default logic 6

3 Previous Approaches to Prioritization 7
 3.1 Prioritization via semi-normal defaults 8
 3.2 Prioritized default theories 9
 3.3 Ordered default theories 9

4 Default Theories with Specificity 11

5 Computing S-extensions 14

6 Related Work .. 16

7 Conclusion .. 17

Appendix. Proofs of Theorems 21
 A.1 Proof of Theorem 4.2 21
 A.2 Proof of Theorem 4.4 23
 A.3 Proof of Theorem 4.6 24
 A.4 Soundness and Completeness of Algorithm 5.1 .. 28
1 Introduction

Early knowledge representation formalisms such as semantic networks and frames comprise both means for structured representation of classes and objects, and for default inheritance of properties. However, these formalisms did not have a well-defined formal semantics, and subsequent formalisms trying to overcome this problem usually concentrated on one of these two means of representation. Nonmonotonic inheritance networks are concerned with defeasible inheritance, sometimes in combination with strict inheritance, but the nodes in these networks are unstructured objects or classes.\(^1\) Terminological representation formalisms, on the other hand, can be used to define the relevant concepts of a problem domain in a structured and well-formed way. This is done by building complex concept descriptions out of atomic concepts (unary predicates) and roles (binary predicates) with the help of operations provided by the concept language of the particular formalism. In addition, objects can be described with respect to their relation to concepts and their interrelation with each other. The concept descriptions are interpreted as universal statements, which means that they do not allow for exceptions. As a consequence, the terminological system can use descriptions to automatically insert concepts at the proper place in the concept hierarchy (classification), and it can use the facts stated about objects to deduce to which concepts they must belong, but objects cannot inherit properties by default.

The problem addressed in this paper is how to bring together both means of representation originally present in semantic networks and frames, without losing the advantages of terminological formalisms, such as being equipped with a formal and well-understood semantics and providing for automatic concept classification. An integration of defaults would often greatly enhance applicability of terminological systems, or would at least make their use more convenient in most applications (see, e.g., \([16]\) which shows that embedding defaults into terminological systems is an important item on the wish list of users of such systems). For this reason, several existing terminological systems, such as BACK \([14]\), CLASSIC \([3]\), K-Rep \([11]\), LOOM \([12]\), or SB-ONE \([9]\), have been or will be extended to provide the user with some kind of default reasoning facilities. As the designers of these systems themselves point out, however, these approaches usually have an ad hoc character, and thus do not satisfy the requirement of having a formal semantics.

As a first attempt to give a formally well-founded solution to this problem,
an integration of Reiter’s default logic into a terminological formalism was proposed in [1]. One reason for selecting default logic, out of the wide range of nonmonotonic formalisms, was that Reiter’s default rule approach fits well into the philosophy of terminological systems. Most of these systems already provide their users with a form of “monotonic” forward rules, and it turned out that these rules can be viewed as specific default rules where the justifications are absent. A second pleasant feature of terminological default logic, as introduced in [1], is that it becomes decidable provided that applicability of default rules is restricted to objects explicitly present in the knowledge base. It should be noted that this constraint is also imposed on the monotonic rules in terminological systems.

The major drawback which terminological default logic inherits from general default logic is that it does not take precedence of more specific defaults over more general ones into account. For example, assume that we have a default which says that penguins cannot fly\(^2\) and another one which says that birds can fly, and that classification shows that penguins are a subconcept of birds. Intuitively, for any penguin the more specific first default should be preferred, which means that there should be only one default extension in which the penguin cannot fly. However, in default logic the first default has no priority over the second one, which means that one also gets a second extension where the penguin can fly. This behaviour has already been criticized in the general context of default logic, but it is all the more problematic in the terminological case where the emphasis lies on the hierarchical organization of concepts.

In the present paper we shall consider the problem of modifying terminological default logic such that more specific defaults are preferred. After a short recapitulation of default logic and its specialization, terminological default logic, in Section 2, we shall consider the existing approaches for expressing priorities between defaults, and shall point out why they do not seem to be appropriate for our purpose (see Section 3). For this reason we present in Section 4 an alternative approach for dealing with prioritization in the framework of Reiter’s default logic. The formalism is presented in the general setting of default logic where priorities are given by an arbitrary partial ordering on the defaults. For terminological default theories the priorities between defaults will be induced by the position of their prerequisites in the concept hierarchy. We shall exhibit some interesting properties of the new formalism, and shall compare it with existing approaches. It turns out that every extension according to our definition (S-extension) is an ex-

\(^2\)The reader who is surprised that this is only taken as a default property of penguins should have a look at the cover of [13].
tension according to Reiter’s definition (R-extension); however, R-extensions which are not compatible with the partial ordering on defaults are excluded by our formalism. Not all default theories with an R-extension have an S-extension, but every normal default theory has an S-extension. If the defaults are further restricted to prerequisite-free normal defaults then our approach coincides with the “ordered default theories” of Brewka and Junker [5, 8]. In Section 5 the problem of how to compute S-extensions will be addressed. During the preparation of this report we have learned that Brewka [4] has also proposed a generalization of his ordered default theories to the case of normal defaults with prerequisites. In Section 6 we shall briefly introduce Brewka’s approach, and point out the differences to our approach. All proofs are deferred to the appendix.

2 Default Logic

This section briefly reviews Reiter’s default logic and its specialization, terminological default logic (see [17] and [1] for details).

2.1 Reiter’s default logic

Reiter [17] deals with the problem of how to formalize nonmonotonic reasoning by introducing nonstandard, nonmonotonic inference rules, which he calls default rules. A default rule is any expression of the form

\[\frac{\alpha : \beta}{\gamma}, \]

where \(\alpha, \beta, \gamma \) are first-order formulae. Here \(\alpha \) is called the prerequisite of the rule, \(\beta \) is its justification, and \(\gamma \) its consequent.\(^3\) For a set of default rules \(\mathcal{D} \), we denote the sets of formulae occurring as prerequisites, justifications, and consequents in \(\mathcal{D} \) by \(\text{Pre}(\mathcal{D}), \text{Jus}(\mathcal{D}), \) and \(\text{Con}(\mathcal{D}) \), respectively.

A default rule is closed iff \(\alpha, \beta, \gamma \) do not contain free variables. It is semi-normal iff its justification implies the consequent, and it is normal if its justification and consequent are identical. A default theory is a pair \((\mathcal{W}, \mathcal{D})\) where \(\mathcal{W} \) is a set of closed first-order formulae (the world description) and \(\mathcal{D} \) is a set of default rules. A default theory is closed iff all its default rules are closed.

Intuitively, a closed default rule can be applied, i.e., its consequent is added to the current set of beliefs, if its prerequisite is already believed and its

\(^3\)For the sake of simplicity we consider only defaults with one justification. However, our results can easily be extended to the general case of defaults with finitely many justifications.
justification is consistent with the set of beliefs. Formally, the consequences of a closed default theory are defined with reference to the notion of an extension (called \textit{R-extension} in this paper), which is a set of deductively closed first-order formulae defined by a fixed point construction (see [17], p.89). In general, a closed default theory may have more than one R-extension, or even no extension. Depending on whether one wants to employ skeptical or credulous reasoning, a closed formula \(\delta \) is a consequence of a closed default theory iff it is in all R-extensions or if it is in at least one R-extension of the theory.

Reiter also gives an alternative characterization of an R-extension, which we shall use, in a slightly modified way, as the definition of R-extension. Here and in the following, \(Th(\Gamma) \) stands for the deductive closure of a set of formulae \(\Gamma \).

\begin{definition}
Let \(\mathcal{E} \) be a set of closed formulae, and \((\mathcal{W}, \mathcal{D})\) be a closed default theory. We define \(E_0 := \mathcal{W} \) and for all \(i \geq 0 \)
\[E_{i+1} := E_i \cup \{ \gamma \mid \alpha : \beta/\gamma \in \mathcal{D}, \alpha \in Th(E_i), \text{ and } \neg \beta \notin \mathcal{E} \}. \]
Then \(\mathcal{E} \) is an R-extension of \((\mathcal{W}, \mathcal{D})\) iff \(\mathcal{E} = \bigcup_{i \geq 0} Th(E_i) \).
\end{definition}

Note that the R-extension \(\mathcal{E} \) to be constructed by this iteration process occurs in the definition of each iteration step. Since we are only adding consequents of defaults during the iteration, any R-extension \(\mathcal{E} \) of \((\mathcal{W}, \mathcal{D})\) is of the form \(Th(\mathcal{W} \cup Con(\mathcal{D})) \) for a subset \(\mathcal{D} \) of \(\mathcal{D} \). An easy consequence of the definition is that \((\mathcal{W}, \mathcal{D})\) has an inconsistent R-extension iff \(\mathcal{W} \) is inconsistent.

To generalize the notion of an R-extension to arbitrary default theories one just assumes that a default with free variables stands for all its ground instances. In Reiter's original semantics the world description and the consequents of all defaults have to be Skolemized before building ground instances (over the enlarged signature). As shown in [1], Skolemization leads to both semantic and algorithmic problems, which is the reason why we shall dispense with it in the case of terminological default theories.

\section{Terminological default logic}

Instead of formally introducing a particular terminological language (see e.g. [1] for details), we shall just mention the features of terminological languages which will be important for the following. The terminological part of such languages allows one to build complex concept descriptions out of atomic concepts (unary predicates) and roles (binary predicates). For our purposes
it suffices to know that a concept description C can be regarded as a first-order formula $C(x)$ with one free variable x. The subsumption hierarchy between concepts corresponds to implication of formulae: C is subsumed by D iff $\forall x: C(x) \rightarrow D(x)$ is valid.

The *assertional part* of the language can be used to state that an object is an instance of a concept C, or that two individuals are connected by a role R. Logically, this means that one has constant symbols a, b as names for objects, and can build formulae $C(a)$ and $R(a, b)$ by respectively substituting a for the free variable in $C(x)$ and applying the binary predicate R to the constants a, b. A finite set of such formulae is called an *ABox*. Important inference problems for ABoxes are whether a given ABox is consistent, and whether an object a is an instance of a concept C, i.e., whether $C(a)$ is a logical consequence of the given ABox. It should be noted that the formulae $C(x)$ obtained as concept descriptions of a terminological language belong to a restricted subclass of all first-order formulae with one free variable. For this reason the subsumption, consistency and instantiation problems are usually decidable for these languages.

A *terminological default theory* is a pair $(\mathcal{A}, \mathcal{D})$ where \mathcal{A} is an ABox and \mathcal{D} is a finite set of default rules whose prerequisites, justifications, and consequences are concept descriptions. Obviously, since ABoxes can be seen as sets of closed formulae, and since concept descriptions can be seen as formulae with one free variable, terminological default theories are subsumed by Reiter's notion of an open default theory. However, as motivated in Section 3 and 4 of [1], we do not Skolemize before building ground instances. This means that an open default of a terminological default theory is interpreted as representing all closed defaults which can be obtained by instantiating the free variable by all object names occurring in the ABox. With this interpretation, it is possible to compute all R-extensions of terminological default theories (see [1], Section 5 and 6).

3 Previous Approaches to Prioritization

When conflicts occur in reasoning with defaults it is quite obvious that the more specific information should prevail over the more general one. In the context of terminological default theories this means that, for an instance of the concepts C and D, a default with prerequisite C should be preferred if C is subsumed by D. As mentioned in the introduction this requirement is not taken into account by Reiter's approach. If we assume that *penguin*, *bird*, and *flies* are appropriately defined concept descriptions, where *penguin*...
is subsumed by \textit{bird}, then the terminological default theory consisting of the world description \{\textit{penguin}(Danny)\} and the defaults

\[
\begin{align*}
\text{penguin}(x) & : \neg \text{flies}(x) \quad & \text{and} \quad \text{bird}(x) & : \text{flies}(x) \\
\neg \text{flies}(x) & & \text{flies}(x)
\end{align*}
\]

has two R-extensions. One contains \textit{flies}(Danny) and the other \textit{\neg flies}(Danny), and the semantics gives no reason for preferring the second one, in which the more specific default was applied.

To overcome this kind of problem several approaches for realizing priori­ties among defaults have been proposed in the literature. The priorities may be induced by specificity of prerequisites (as described above), but may also come from other sources (such as reliability of defaults).

\section{3.1 Prioritization via semi-normal defaults}

Reiter and Criscuolo show how some kind of prioritization between defaults can be achieved without changing the formalism by encoding the priority information into the justifications of semi-normal defaults \cite{18}. If the first (more specific) default of our example should be preferred over the second one, the negated prerequisite of the first default has to be conjoined with the justification of the second one, i.e., the second default has to be rewritten to

\[
\begin{align*}
\text{bird}(x) & : \text{flies}(x) \land \neg \text{penguin}(x) \\
\text{flies}(x)
\end{align*}
\]

Although our simple example can be handled with this approach, it is not clear how to treat more complex situations. For example, if there is no direct conflict between the consequents of two defaults, then the default of lower priority should not generally be blocked by the prerequisite of the one of higher priority. Blocking of the default of lower priority should only be activated if one is in a context where both consequents together lead to a contradiction. Reiter and Criscuolo do not describe a general method for solving these problems; they just "focus on certain fairly simple patterns of default rules." Another problem is that, even if one starts with normal defaults (as in our example), one ends up with semi-normal defaults when realizing priorities this way. But this means that one has to face the undesir­able properties of non-normal defaults, such as non-existence of extensions. As an additional problem, Brewka \cite{6} points out that "whenever additional knowledge requires blocking of a default, the default has to be rewritten."
3.2 Prioritized default theories

In order to avoid the introduction of semi-normal defaults, Brewka [6] takes the ideas underlying prioritized circumscription [10] and defines an iterated version of default logic, which he calls prioritized default logic (POL). Instead of one set of defaults he takes a finite number of sets \(V_1, \ldots, V_n \) of closed defaults, with the intended meaning that defaults in \(V_i \) have higher priority than those in \(V_j \) if \(i < j \). POL-extensions are defined by iterated application of Reiter's definition of an extension: A set of closed formulae \(\mathcal{E} \) is a POL-extension of a prioritized default theory \((\mathcal{W}, \mathcal{D}_1, \ldots, \mathcal{D}_n) \) iff for all \(i, 1 \leq i \leq n \), \(\mathcal{E}_i \) is an R-extension of \((\mathcal{E}_{i-1}, \mathcal{D}_i) \), where \(\mathcal{E}_0 = \mathcal{W} \) and \(\mathcal{E} = \mathcal{E}_n \).

As pointed out by Brewka himself, this approach makes sense only if it is restricted to prerequisite-free normal defaults. The problem caused by prerequisites is demonstrated by the following abstract example. Assume that we have two levels of priority, the first consisting of the default \(d_1 = \beta : \gamma/\gamma \), and the second of \(d_2 = \beta/\beta \). If we start with the empty world description, then the default \(d_1 \) cannot be applied when constructing the R-extension on the first level. On the second level, \(d_2 \) fires and we get \(\beta \) in the extension \(\mathcal{E} = \mathcal{E}_2 \). Now the default \(d_1 \) could fire, but it is no longer considered on the second level.

If restricted to prerequisite-free normal defaults, prioritized default logic yields a prioritized version of Poole's approach to default reasoning [5], and it seems to exhibit a quite reasonable behaviour. One reason why this is nevertheless not an appropriate formalism for treating specificity in terminological default theories is that the defaults have to be put into levels of priorities which are totally ordered. However, subsumption only gives us a partial ordering on defaults.

3.3 Ordered default theories

In [5, 8] the approach just described is generalized to the situation where priorities are given by an arbitrary partial ordering on defaults.

To be more precise, an ordered default theory is a triple \((\mathcal{W}, \mathcal{D}, <) \), where \(\mathcal{W} \) is a set of closed first-order formulae, \(\mathcal{D} \) is a set of closed prerequisite-free normal defaults, and \(< \) is a strict partial ordering on \(\mathcal{D} \) such that \(\{d' \in \mathcal{D} \mid d' < d \} \) is finite for every \(d \in \mathcal{D} \).

The principal idea is to consider total extensions of the partial ordering when computing extensions of the ordered default theory (which we shall call B-extensions in the following). Any enumeration \(d_1, d_2, \ldots \) of \(\mathcal{D} \) that is compatible with the partial ordering (i.e., \(i < k \) if \(d_i < d_k \))\(^5\) defines a B-extension.
extension as follows. One starts with \mathcal{W}, and in the i-th step of the iteration, the consequent β_i of the default $d_i = \d_i/\beta_i$ is added if β_i is consistent with the set of formulae obtained after step $i - 1$. Otherwise, the current set of formulae remains unchanged. The limit of this process is the extension.

Even though ordered default theories allow for priorities given by a partial ordering, this approach cannot directly be used to realize specificity in terminological default theories. The reason is that the restriction to prerequisite-free defaults is too severe. In fact, for terminological default theories the priorities we wanted to consider were induced by subsumption relationships between the concept descriptions in the prerequisites. But this means that for prerequisite-free terminological defaults we no longer have a need for prioritization.

The situation is, however, not as bad as it seems. As shown in [2, 7], the closed normal default $\alpha : \beta/\beta$ can be approximated by the closed prerequisite-free normal default $\alpha \rightarrow \beta/\alpha \rightarrow \beta$. Thus one could start with a normal terminological default theory, determine the priorities between defaults from their prerequisites, and then transform the defaults into the corresponding ones without prerequisites. This way one ends up with an ordered default theory which approximates the terminological default theory, and which handles priorities induced by specificity of prerequisites in the terminological default theory.

However, we claim that this approach is still not satisfactory because it gives us a lot more than we bargained for. As pointed out in [7], the approximation not only gets rid of prerequisites, but also equips the defaults with properties of classical implication, such as reasoning by cases and reasoning using contrapositives of the original defaults. For example, assume that, in addition to the concept descriptions penguin, bird, and flies, we have a description winged for objects having wings, and that the only subsumption relation is the one between penguin and bird. If we consider the terminological default theory consisting of the world description $\{\text{penguin}(\text{Danny})\}$ and the defaults

$$
\text{penguin}(x) : \neg \text{flies}(x), \quad \text{bird}(x) : \text{winged}(x), \quad \text{winged}(x) : \text{flies}(x),
$$

then the preferred extension should be the one in which Danny has wings, but does not fly. The approach we have described yields this extension; but it also yields another one in which Danny does not have wings, because as soon as the (approximation of the) first default has fired, the contrapositive of the third one can be fired, which gives us $\neg \text{winged}(\text{Danny})$. Necessary and sufficient for the existence of an enumeration compatible with \prec.

10
This shows that in this approach the defaults no longer behave like simple forward rules. But the similarity of default rules with the monotonic forward rules of terminological systems was one of our reasons for choosing default logic in the first place.

4 Default Theories with Specificity

To overcome the problems pointed out in the previous section we shall now propose a new approach for handling priorities among defaults with prerequisites. The semantics will be very close to Reiter's semantics, and the properties of our theory will also resemble those of Reiter's theory.

A default theory with specificity is a triple \((W, D, <)\) consisting of a closed default theory \((W, D)\) and a strict partial ordering \(<\) on \(D\) such that \(\{d' \in D \mid d' < d\}\) is finite for every \(d \in D\).

In the terminological case, \(W\) is an ABox, and \(D\) is obtained by instantiating the terminological default rules by all constants occurring in the ABox. For two instantiated terminological default rules \(d_1, d_2\) with prerequisites \(C_1(a_1), C_2(a_2)\) we have \(d_1 < d_2\) iff they are concerned with the same object (i.e., \(a_1 = a_2\)) and \(C_1\) is more specific than \(C_2\) (i.e., \(C_1\) is subsumed by \(C_2\) but not vice versa). The restriction on the ordering is satisfied since \(D\) is finite by definition of terminological default theories.

Our definition of an extension for a default theory with specificity is modelled on Reiter's iterative characterization of R-extensions (see Definition 2.1). The main idea for treating priorities is that the consequent of a default can only be added during an iteration step if the default is not delayed by a preferred default, i.e., there does not exist a smaller default that is currently active. For a set \(E\) of closed formulae, and a closed default \(d = \alpha : \beta / \gamma\) we say that \(d\) is active in \(E\) iff its prerequisite is a consequence of \(E\) (i.e., \(\alpha \in \text{Th}(E)\)), its justification is consistent with \(E\) (i.e., \(-\beta \notin \text{Th}(E)\)), and its consequent is not a consequence of \(E\) (i.e., \(\gamma \notin \text{Th}(E)\)).

Definition 4.1 Let \((W, D, <)\) be a default theory with specificity, and let \(E\) be a set of closed formulae. We define \(E_0 := W\), and for all \(i \geq 0\)

\[
E_{i+1} := E_i \cup \{ \gamma \mid \exists d \in D: d = \alpha : \beta / \gamma, \ \alpha \in \text{Th}(E_i), \ -\beta \notin E, \ \text{and all } d' < d \text{ are not active in } E_i \}.
\]

Then \(E\) is an S-extension of \((W, D, <)\) iff \(E = \bigcup_{i \geq 0} \text{Th}(E_i)\).

The only difference to Reiter's characterization is the additional requirement that smaller defaults must not be active in the current state of the iteration. With this definition of an extension we get the intuitively correct
result in our example with the three defaults concerning penguins, birds, and objects with wings. In fact, for any penguin the second default (asserting that birds normally have wings) can only fire after the more specific default (asserting that penguins normally cannot fly) has been applied. But this means that the third default (asserting that winged objects normally can fly) will never become applicable for a penguin (before its prerequisite becomes derivable, the negation of its justification must have been added). This means that our definition of an S-extension chooses from the two existing R-extensions the one which respects priorities.

Our first theorem states that this will always be the case, i.e., that the set of all S-extensions is always a subset of the set of all R-extensions.

Theorem 4.2 Let \(\mathcal{E} \) be an S-extension of the default theory with specificity \((\mathcal{W}, \mathcal{D}, \prec)\). Then \(\mathcal{E} \) is an R-extension of \((\mathcal{W}, \mathcal{D})\).

The proof is given in the appendix. The main idea is to take an S-extension \(\mathcal{E} \) which has been obtained from the sequence \(E_0, E_1, \ldots \), and to use it to construct a sequence \(F_0, F_1, \ldots \) as in the characterization of R-extensions. It is easy to see that \(E_i \subseteq F_i \) for all \(i \geq 0 \), but the converse is not true. In fact, the consequent \(\gamma \) of a default \(d \) may be added to \(F_i \) but not to \(E_i \) because \(d \) is delayed by a smaller default which is active. A straightforward way to prove that \(F_i \subseteq \mathcal{E} = \bigcup_{i \geq 0} Th(E_i) \) would thus be to show that the set of active defaults delaying \(d \) decreases along our \(F \)-iteration. Unfortunately, the set of defaults delaying \(d \) may also increase because prerequisites of smaller defaults which have not been derivable at step \(i \) may become derivable in a later step of the iteration. In the proof we shall circumvent this problem by considering the set of defaults that may potentially delay \(d \), i.e., defaults smaller than \(d \) that are currently active or may become active as soon as their prerequisite is derivable (see Appendix A.1 for details).

Since not all default theories have R-extensions it follows that a default theory with specificity need not have an S-extension. But even if we have R-extensions there need not exist S-extensions of a default theory with specificity. This is demonstrated by the following example.

Example 4.3 Assume that \(\mathcal{W} \) is empty, and consider the three defaults

\[
\frac{\beta}{\beta}, \quad \frac{\neg \beta}{\neg \beta} \quad \text{and} \quad \frac{\beta : \alpha}{\neg \alpha}.
\]

We assume that the first default is smaller than the second one, and that there are no other comparabilities with respect to \(\prec \). This default theory has the R-extension \(Th(\{\neg \beta\}) \), but it does not have an S-extension. In fact, an
S-extension would prefer the first default, which yields β; but then the third
default (which is a modified version of the well-known one-rule example of a
default theory having no R-extension) would become relevant.

As in the case without specificity, normal default theories with specificity
have much nicer properties than arbitrary default theories with specificity.

Theorem 4.4 Every closed normal default theory with specificity has an S-
extension.

The proof, as given in the appendix, is a relatively straightforward adap-
tion of Reiter's proof for R-extensions. To construct an R-extension \(E = \bigcup_{i \geq 0} Th(E_i) \) of a normal default theory \((W, D)\), Reiter starts with the world
description (i.e., \(E_0 := W \)), and in successive steps adds as many conse-
quents of active defaults as is possible without destroying consistency (i.e.,
\(E_{i+1} := E_i \cup Con(D) \)), where \(D \) is a maximal subset of the set of defaults
active in \(E_i \) such that \(E_i \cup Con(D) \) is consistent). To take priority informa-
tion given by a strict partial order \(<\) on \(D \) into account, this construction is
simply modified by considering only those active defaults that are minimal
with respect to \(<\) (see Appendix A.2 for details).

In Appendix A.2 we shall show that this construction always yields an
S-extension of a normal default theory with specificity. But in general not
all S-extensions can be obtained this way. The following example shows that
this is true even for normal default theories without specificity.

Example 4.5 Assume that \(W \) is empty, and \(D \) contains the defaults

\[
d_1 = \frac{\alpha}{\alpha}, \quad d_2 = \frac{\beta}{\beta} \quad \text{and} \quad d_3 = \frac{\alpha}{\beta}.
\]

We assume that the ordering on defaults is empty, which means that here
the notions R-extension and S-extension coincide. The default theory has
two R-extensions, namely \(E_1 = Th(\{\alpha, \beta\}) \) and \(E_2 = Th(\{\alpha, \neg \beta\}) \). However,
\(E_2 \) cannot be obtained by successively adding maximally consistent sets of
consequents of active defaults. In fact, \(d_1 \) and \(d_2 \) are the only defaults that are
active in \(E_0 = \emptyset \). Since \(E_0 \cup \{\alpha, \beta\} \) is consistent, there is exactly one maximal
set \(D \subseteq \{d_1, d_2\} \) such that \(E_0 \cup Con(D) \) is consistent, namely \(\{d_1, d_2\} \) itself.
Thus the only set \(E_1 \) that one can get this way is \(E_1 = \{\alpha, \beta\} \). This shows
that extension \(E_2 \) (which does not contain \(\beta \)) cannot be obtained.

For normal default theories with specificity we have "orthogonality of S-
extensions" (see [17], Theorem 3.3), but we do not have "semi-monotonicity"
(see [17], Theorem 3.2). For defaults with priorities, semi-monotonicity cannot be expected to hold since by adding a default of high priority one should of course be able to change the extensions considerably.

If we further restrict the attention to normal defaults without prerequisites then the notion of an S-extension coincides with that of a B-extension, which shows that our approach is a generalization of ordered default theories.

Theorem 4.6 Let \(\mathcal{D} \) be a set of closed prerequisite-free normal defaults. Then \(\mathcal{E} \) is an S-extension of the default theory with specificity \((\mathcal{W}, \mathcal{D}, <)\) iff \(\mathcal{E} \) is a B-extension of the ordered default theory \((\mathcal{W}, \mathcal{D}, <)\).

If \(\mathcal{D} \) was assumed to be finite the proof would be relatively easy; but in the general case of possibly infinite sets of defaults it becomes more involved (see Appendix A.3).

5 Computing S-extensions

Since all S-extensions are R-extensions, one could first generate all R-extensions of a default theory, and then for each R-extension \(\mathcal{E} \) directly use the definition of S-extensions to check whether \(\mathcal{E} \) is an S-extension. For terminological default theories this provides us with an effective procedure for computing all S-extensions. In fact, in [1] it is shown how to compute all R-extensions of a terminological default theory. Since one has only finitely many closed defaults, and since the instantiation problem for the terminological languages we use in [1] is decidable, the iteration in the definition of an S-extension is effective as well.

However, there may exist a lot more R-extensions than S-extensions, and computing R-extensions is rather expensive. For this reason, it would be preferable to have an algorithm for directly computing S-extensions. The idea behind the algorithm presented below is to make an iteration similar to the one in the definition of an S-extension, but without already having the final set \(\mathcal{E} \) for controlling which consequents of defaults are added. After the iteration becomes stable (which will always be the case for finite sets of closed defaults) one has to check an additional condition to make sure that the result really is an S-extension.

The main problem is to determine which sets of consequents are candidates for being added in each step of the iteration. Of course there can be more than one correct choice because there may exist more than one S-extension. If we look at the definition of \(\mathcal{E}_{i+1} \) in Definition 4.1 we see that the defaults whose consequents are added are defaults active in \(\mathcal{E}_i \) that are minimal w.r.t. the priority order \(<\). Which subset of their consequents is
taken depends on the set \mathcal{E} used for the iteration. Since our algorithm does not know the final \mathcal{E} it has to consider arbitrary subsets, but we shall see that there are some constraints that reduce the number of possible choices.

It should be noted that neither a greedy procedure (which takes maximal subsets that are consistent with what has already been computed) nor an overly modest procedure (which adds only one consequent in each step) would be complete. Example 4.5 demonstrates this for the greedy procedure, even in the absence of specificity information. Examples that illustrate why the overly modest procedure is not appropriate for computing S-extensions can be found in the next section.

In the following (nondeterministic) algorithm, E_i will always be a subset of $W \cup \text{Con}(\mathcal{D})$, and J_i will be a subset of $\neg\text{Jus}(\mathcal{D})$ (where, for a set \mathcal{F} of formulae, $\neg\mathcal{F} := \{ \neg\beta \mid \beta \in \mathcal{F} \}$).

Algorithm 5.1 Let $(W, \mathcal{D}, <)$ be a closed default theory with specificity. If W is inconsistent then $\text{Th}(W)$ is the only S-extension. Otherwise we define $E_0 := W$ and $J_0 := \emptyset$.

Now assume that E_i ($i \geq 0$) is already defined. Consider

$$\mathcal{D}_{i+1} := \{ d \in \mathcal{D} \mid d \text{ is active in } E_i \text{ and no } d' < d \text{ is active in } E_i \},$$

and choose a nonempty subset $\hat{\mathcal{D}}_{i+1}$ of \mathcal{D}_{i+1} that satisfies

$$\neg\beta \notin \text{Th}(E_i \cup \text{Con}(\hat{\mathcal{D}}_{i+1}) \cup J_i \cup \neg\text{Jus}(\mathcal{D}_{i+1} \setminus \hat{\mathcal{D}}_{i+1}))$$

for all $\beta \in \text{Jus}(\mathcal{D}_{i+1})$.

If there is no such set, then $E_{i+1} := E_i$, $J_{i+1} := J_i$. Otherwise each choice yields new sets $E_{i+1} := E_i \cup \text{Con}(\hat{\mathcal{D}}_{i+1})$ and $J_{i+1} := J_i \cup \neg\text{Jus}(\mathcal{D}_{i+1} \setminus \hat{\mathcal{D}}_{i+1})$.

The set $\mathcal{E} := \bigcup_{i \geq 0} \text{Th}(E_i)$ is an S-extension iff

1. for all $d = \alpha : \beta / \gamma \in \bigcup_{i \geq 1} \hat{\mathcal{D}}_i$ we have $\neg\beta \notin \mathcal{E}$, and
2. for all $\neg\beta \in \bigcup_{i \geq 1} J_i$ we have $\neg\beta \in \mathcal{E}$.

A proof of soundness and completeness of this algorithm is given in Appendix A.4. The idea behind the sets J_i is as follows. If the consequent of a minimal active default is not included in E_{i+1}, then the reason must be that its justification is not consistent with the final extension. Thus, if we exclude such a default from $\hat{\mathcal{D}}_{i+1}$, we know that the negation of its justification must belong to the extension. The condition on $\hat{\mathcal{D}}_{i+1}$ corresponds to the fact that defaults whose consequents are added to an S-extension must have justifications that are consistent with the extension. This condition can only ensure local correctness of our choices. For this reason we have to check the two conditions on \mathcal{E} to ensure global correctness.
For terminological default theories, all the steps of the algorithm are effective, provided that the consistency and instantiation problem for the underlying terminological language is decidable (an assumption which is usually satisfied). In addition, since one has only finitely many closed defaults, the iteration will become stable after finitely many steps.

6 Related Work

During the preparation of this report we have learned that Brewka [4] has proposed a generalization of his ordered default theories (as described in Section 3.3) to the case of normal defaults with prerequisites. In this section we shall briefly introduce Brewka's approach, and point out the differences to our approach.

Brewka considers default theories with specificity \((D, W, <)\) where \(D\) is a finite set of closed normal defaults. Any total extension \(\ll\) of \(<\) defines an extension \(\bigcup_{i \geq 0} \text{Th}(F_i)\) (called \(B^*\)-extension in the following) as follows. Let \(F_0 := W\), and for \(i \geq 0\)

\[
F_{i+1} := \begin{cases}
F_i & \text{if there exists no default that is active in } F_i, \\
F_i \cup \{\beta\} & \text{otherwise, where } \beta \text{ is the consequent of the } \ll\text{-minimal default that is active in } F_i.
\end{cases}
\]

From the results in [4] it follows that every \(B^*\)-extension is an \(R\)-extension. This means that, as in our approach, Brewka takes a subset of the set of all \(R\)-extensions as admissible extensions of a default theory with specificity. The following two examples show, however, that in general he takes another subset than we do. The first example demonstrates that one may get more \(S\)-extensions than \(B^*\)-extension.

Example 6.1 Assume that \(W\) is empty, and that \(D\) consists of the normal defaults

\[
d_1 = \frac{\alpha}{\alpha}, \quad d_2 = \frac{\beta : \neg \alpha}{\neg \alpha}, \quad d_3 = \frac{\beta}{\beta}, \quad \text{and } d_4 = \frac{\alpha : \neg \beta}{\neg \beta},
\]

where \(d_2 < d_1, \ d_4 < d_3\), and these are the only \(<\)-relationships between defaults in \(D\). First, we show that \(E := \text{Th}(\{\alpha, \beta\})\) is an \(S\)-extension. In fact, using \(E\) in the definition of \(S\)-extensions yields \(E_0 = \emptyset\), \(E_1 = \{\alpha, \beta\}\), and \(E_2 = E_1\). Since \(d_2\) and \(d_4\) are not active in \(E_0\) (their prerequisites are not deducible), \(d_1\) and \(d_3\) are the minimal defaults that are active in \(E_0\). In addition, we have \(\neg \alpha, \neg \beta \notin E\), which shows that \(E_1 = \{\alpha, \beta\}\). But then \(d_2\)
and d_4 are not active in E_1 (their negated justifications are deducible), which shows that $E_1 = E_2$.

With Brewka's definition of an extension, either α or β is added in the first step of the iteration, depending on whether $d_1 \ll d_3$ or $d_3 \ll d_1$. This is so because again d_2 and d_4 are not active in $F_0 = \emptyset$. We restrict our attention to the case $F_1 = \{\alpha\}$. (The case $F_1 = \{\beta\}$ is symmetric.) Now d_3 and d_4 are active in F_1, but since \ll is an extension of $<$ we know that d_4 is the minimal default that is active. For this reason, we get $F_2 = \{\alpha, \neg \beta\}$, which shows that we cannot get $\mathcal{E} = \text{Th}(\{\alpha, \beta\})$ this way.

It is easy to see that in this example the two B^*-extensions $\text{Th}(\{\alpha, \neg \beta\})$ and $\text{Th}(\{-\alpha, \beta\})$ are also S-extensions. But in general, B^*-extensions need not be S-extensions. This is demonstrated by the next example.

Example 6.2 Assume that \mathcal{W} is empty, and that \mathcal{D} consists of the normal defaults

$$d_1 = \frac{\alpha}{\alpha}, \quad d_2 = \frac{\beta}{\beta}, \quad d_3 = \frac{\beta}{\gamma}, \quad \text{and} \quad d_4 = \frac{\alpha}{\neg \gamma}.$$

The only \ll-relationship that exists is $d_3 \ll d_4$. Now $\mathcal{E} := \text{Th}(\{\alpha, \beta, \neg \gamma\})$ is a B^*-extension, but not an S-extension.

To show that \mathcal{E} is a B^*-extension, we consider the total extension $d_1 \ll d_3 \ll d_4 \ll d_2$ of \ll. With this ordering, we obviously get $F_0 = \emptyset$, and $F_1 = \{\alpha\}$. Now d_4 is active in F_1, and the only smaller default, d_3, is not active. Thus we get $F_2 = \{\alpha, \neg \gamma\}$. In the next step, the only active default is d_2, which means that $F_3 = \{\alpha, \neg \gamma, \beta\}$. In F_3, no defaults are active, and thus $F_4 = F_3$. This shows that $\mathcal{E} = \text{Th}(F_3)$ is a B^*-extension.

Let us now show that \mathcal{E} is not an S-extension. Using \mathcal{E} in the iterative definition of S-extensions, we obviously get $E_0 = \mathcal{W}$, and $E_1 = \{\alpha, \beta\}$. Now observe that $d_3 < d_4$, and d_3 is active in E_1. But this means that neither the consequent of d_3 can be added (since the negation of d_3's justification is in \mathcal{E}) nor the consequent of d_4 (since d_4 is delayed by d_3). Thus $E_1 = E_2$, which shows that $\bigcup_{i \geq 0} \text{Th}(E_i) = \text{Th}(\{\alpha, \beta\}) \neq \mathcal{E}$.

7 Conclusion

We have addressed the question of how to prefer more specific defaults over more general ones. This problem is of general interest for default reasoning, but is even more important in the terminological case where the emphasis lies on the hierarchical organization of concepts. Of the previously existing approaches for handling priorities among defaults, Brewka's ordered
default theories turned out to come nearest to what is needed for solving the specificity problem in terminological default theories. But its restriction to prerequisite-free normal defaults seems to be too severe to make it an adequate solution in the terminological case.

Therefore we have proposed a new approach, called default theories with specificity, for handling priorities among defaults with prerequisites. The properties we could prove for this formalism demonstrate that it is a quite reasonable generalization of Reiter’s default logic and of Brewka’s ordered default theories. In addition it correctly handles examples for which the other approaches give unintuitive results.

Brewka’s independently developed generalization of ordered default theories to the case of normal defaults with prerequisites turned out to be orthogonal to our approach, in the sense that there are extensions obtained with his approach that are not obtained with ours and vice versa.

We have also described a method for generating the extensions of a default theory with specificity. This method is effective provided that the base logic is decidable, and one has only finitely many closed defaults. These restrictions are satisfied in the terminological case, which means that terminological default logic with specificity is decidable.

The priority ordering we have proposed for terminological default theories takes into account only the strict subsumption links between prerequisites of terminological defaults. If one wants to consider specificity induced by defaults as well, one can for example adapt the method proposed by Brewka ([4], Definition 3) to our approach. Another interesting point for further research is to consider priorities on terminological defaults which not only take subsumption between prerequisites of defaults into account, but also the role relationships in ABoxes.

Acknowledgements We should like to thank Peter Patel-Schneider for interesting discussions on specificity of defaults, and Bernhard Nebel for helpful comments on a draft of this paper. This work has been supported by the German Ministry for Research and Technology (BMFT) under research contract ITW 8903 0.

References

Appendix. Proofs of Theorems

A.1 Proof of Theorem 4.2

Theorem 4.2 Let \mathcal{E} be an S-extension of the default theory with specificity $(W, D, <)$. Then \mathcal{E} is an R-extension of (W, D).

Assume that $\mathcal{E} = \bigcup_{i \geq 0} \text{Th}(E_i)$ is an S-extension of $(W, D, <)$, obtained by iteratively generating sets E_0, E_1, \ldots as described in Definition 4.1. Before we can prove that \mathcal{E} is also an R-extension we need a technical definition and two lemmas.

For all $d \in D$ and $i \geq 0$ we define

$$D_i^d := \{ \alpha' : \beta' / \gamma' \mid d' < d \text{ and } (\alpha' \notin \text{Th}(E_i) \text{ or } d' \text{ is active in } E_i) \}.$$

The set D_i^d contains all defaults that either delay d in step i of the iteration, or may delay d in a later step when their prerequisite becomes deducible. By our assumption on the strict partial ordering $<$, there exist only finitely many $d' < d$, which means that the sets D_i^d are always finite. The first lemma shows that D_i^d stays the same or gets smaller when the index is increased.

Lemma A.1 For all $d \in D$ and all $i \geq 0$ we have $D_i^d \supseteq D_{i+1}^d$.

Proof. Let $d' = \alpha' : \beta' / \gamma'$ be a default contained in D_{i+1}^d. First assume that $\alpha' \notin \text{Th}(E_{i+1})$. Now $E_i \subseteq E_{i+1}$ yields $\alpha' \notin \text{Th}(E_i)$, and therefore d' is contained in D_i^d.

On the other hand, assume that d' is active in E_{i+1}, i.e., $\alpha' \in \text{Th}(E_{i+1})$, $\neg \beta' / \neg \gamma' \notin \text{Th}(E_{i+1})$, and $\gamma' \notin \text{Th}(E_{i+1})$. If $\alpha' \notin \text{Th}(E_i)$ then d' is in D_i^d, and we are done. For $\alpha' \in \text{Th}(E_i)$, the default d' is active in E_i since $\neg \beta' / \neg \gamma' \notin \text{Th}(E_{i+1})$ and $\gamma' \notin \text{Th}(E_{i+1})$ together with $E_i \subseteq E_{i+1}$ imply $\neg \beta' / \neg \gamma' \notin \text{Th}(E_i)$ and $\gamma' \notin \text{Th}(E_i)$. \hfill \square

Our next lemma states that a default whose prerequisite is believed in some state of the iteration, and whose justification is consistent with \mathcal{E} will eventually fire during the iteration.

Lemma A.2 Let $d = \alpha : \beta / \gamma \in D$ and $i \geq 0$ be such that $\alpha \in \text{Th}(E_i)$ and $\neg \beta \notin \mathcal{E}$. Then there exists an index $j > i$ such that $\gamma \in \text{Th}(E_j)$.

Proof. The lemma is proved by induction on the cardinality of D_i^d. Let A_i^d be the set of all defaults smaller than d that are active in E_i, i.e.,

$$A_i^d := \{ \alpha' : d' < d \mid d' \text{ is active in } E_i \}.$$

21
Obviously, A_i^d is contained in D_i^d for all $i \geq 0$. First assume that A_i^d is empty, i.e., all defaults smaller than d are not active in E_i. This, together with our assumption that $\alpha \in \text{Th}(E_i)$ and $\neg \beta \notin \mathcal{E}$, implies $\gamma \in E_{i+1}$. Thus we can take $j = i + 1$.

Now assume that A_i^d is not empty. Let $d' = \alpha' : \beta'/\gamma'$ be a minimal default with respect to $<$ in A_i^d. We distinguish two cases.

Case 1: $\neg \beta' \notin \mathcal{E}$. Since d' is active we also know that $\alpha' \in \text{Th}(E_i)$, and minimality of d' implies that it cannot be delayed by a smaller default that is active in E_i. This shows that $\gamma' \in E_{i+1}$, and thus $d' \notin D_{i+1}^d$. Together with Lemma A.1 this yields $D_i^d \supset D_{i+1}^d$.

Case 2: $\neg \beta' \in \mathcal{E}$. Since $\mathcal{E} = \bigcup_{j \geq 0} \text{Th}(E_j)$ this means that there exists $j \geq 0$ such that $\neg \beta' \in \text{Th}(E_j)$. In addition, the fact that d' is active in E_i implies that $\neg \beta' \notin \text{Th}(E_i)$, which yields $j > i$. From $\neg \beta' \in \text{Th}(E_j)$ and $\alpha' \in \text{Th}(E_i) \subseteq \text{Th}(E_j)$ we can deduce $d' \notin D_j^d$. This yields $D_i^d \supset D_j^d$.

We have seen that in both cases there exists an index $j > i$ such that $D_i^d \supset D_j^d$. Obviously, $j > i$ implies that $\alpha \in \text{Th}(E_i) \subseteq \text{Th}(E_j)$, which shows that j also satisfies the assumption of the lemma. By induction we get an index $j' > j > i$ with $\gamma \in \text{Th}(E_{j'})$. \hfill \Box

To prove Theorem 4.2 we take the S-extension \mathcal{E} which has been obtained from the sequence E_0, E_1, \ldots, and use it to construct a sequence F_0, F_1, \ldots as described in the characterization of R-extensions, i.e., $F_0 := \mathcal{W}$, and for all $i \geq 0$

$$F_{i+1} := F_i \cup \{ \gamma \mid \alpha : \beta/\gamma \in \mathcal{D}, \alpha \in \text{Th}(F_i), \text{ and } \neg \beta \notin \mathcal{E} \}.$$

To show that \mathcal{E} is an R-extension, we have to prove that $\mathcal{E} = \bigcup_{i \geq 0} \text{Th}(F_i)$.

Lemma A.3 For all $i \geq 0$ we have $E_i \subseteq F_i$.

Proof. This can easily be proved by induction on i. \hfill \Box

In general, the other direction does not hold, i.e., F_i is not necessarily a subset of E_i. But for all $i \geq 0$ we get $F_i \subseteq \mathcal{E} = \bigcup_{j \geq 0} \text{Th}(E_j)$ as an immediate consequence of the next lemma.

Lemma A.4 For every $i \geq 0$ and every $\gamma \in F_i$ there exists an index j such $\gamma \in \text{Th}(E_j)$.

Proof. The lemma is proved by induction on i. For $i = 0$ there is nothing to show since $F_0 = \mathcal{W} = E_0$. Now assume that $i > 0$.

Let γ be an element of F_i. If $\gamma \in F_{i-1}$ we know by induction that $\gamma \in \text{Th}(E_j)$ for some j. Thus assume that $\gamma \notin F_{i-1}$. Consequently, γ is
the consequent of a default $\alpha : \beta / \gamma$ whose prerequisite α is in $Th(F_{i-1})$, and whose justification is consistent with E.

Let $\gamma_1, \ldots, \gamma_n$ be formulae in F_{i-1} such that $\alpha \in Th(\{\gamma_1, \ldots, \gamma_n\})$. By induction we know that for each of these formulae $\gamma_k \in Th(F_{i-1})$ there exists an index j_k such that $\gamma_k \in Th(E_{j_k})$. For $j = \max\{j_1, \ldots, j_n\}$ we have $\{\gamma_1, \ldots, \gamma_n\} \subseteq Th(E_j)$, which implies $\alpha \in Th(E_j)$.

Since we also know that $\neg \beta \notin E$, the assumptions of Lemma A.2 are satisfied for d and j. Thus we can conclude that there exists an index $j' > j$ such that $\gamma \in Th(E_{j'})$.

\section{A.2 Proof of Theorem 4.4}

\textbf{Theorem 4.4} Every closed normal default theory with specificity has an S-extension.

Let (W, D, \prec) be a closed normal default theory with specificity. If W is inconsistent then $Th(W)$ is an S-extension. Thus assume that W is consistent.

An S-extension of (W, D, \prec) is inductively constructed as follows. We define $E_0 := W$, and for all $i \geq 0$

$$D_{i+1} := \{d \in D \mid d \text{ is active in } E_i \text{, and no } d' < d \text{ is active in } E_i\}.$$

Let $E_{i+1} := E_i \cup Con(D_{i+1})$ where D_{i+1} is a maximal subset of D_{i+1} such that $E_i \cup Con(D_{i+1})$ is consistent.

By compactness, we know that $E := \bigcup_{i \geq 0} Th(E_i)$ is also consistent. To show that E is an S-extension, we have to prove $E = \bigcup_{i \geq 0} Th(F_i)$, where $F_0 := W$, and

$$F_{i+1} := F_i \cup \{\beta \mid \exists d \in D : d = \alpha : \beta / \beta, \ \alpha \in Th(F_i), \ \neg \beta \notin E, \ \text{and all } d' < d \text{ are not active in } F_i\}.$$

This is an immediate consequence of the following lemma. Note that we need not have $E_i = F_i$. In fact, $F_i \setminus F_{i-1}$ may contain elements γ of $Th(F_{i-1}) \setminus F_{i-1}$, whereas elements of $Th(E_{i-1}) \setminus E_{i-1}$ are not in E_i, by definition of active.

\textbf{Lemma A.5} For all $i \geq 0$ we have $Th(E_i) = Th(F_i)$.

\textit{Proof.} The lemma is proved by induction on i. For $i = 0$ there is nothing to show since $E_0 = W = F_0$. Thus assume that $i \geq 0$, and that we already know that $Th(E_i) = Th(F_i)$.

First, we show that $E_{i+1} \subseteq Th(F_{i+1})$. Let β be an element of E_{i+1}. If $\beta \in Th(E_i)$ we know by induction that $\beta \in Th(F_i) \subseteq Th(F_{i+1})$.
Now assume that $\beta \in E_{i+1} \setminus \text{Th}(E_i)$. Thus $\beta \in \text{Con}(\overline{D}_{i+1})$, and this means that there exists a default $d = \alpha : \beta/\beta$ in \mathcal{D} such that d is active in E_i and no default $d' < d$ is active in E_i.

In order to prove that $\beta \in F_{i+1}$, and thus $\beta \in \text{Th}(F_{i+1})$, we have to show that no default $d' < d$ is active in F_i, $\alpha \in \text{Th}(F_i)$, and $\neg \beta \not\in \mathcal{E}$. The first two properties follow immediately from what we know about d since $\text{Th}(F_i) = \text{Th}(E_i)$ (by induction). The third property follows from $\beta \in E_{i+1} \subseteq \mathcal{E}$, and the fact that \mathcal{E} is consistent. This concludes the proof of $E_{i+1} \subseteq \text{Th}(F_{i+1})$.

Now let us show that $F_{i+1} \subseteq \text{Th}(E_{i+1})$. Let β be an element of F_{i+1}. Again, the case $\beta \in \text{Th}(F_i)$ is trivial. Thus assume that $\beta \in F_{i+1} \setminus \text{Th}(F_i)$. This means that there exists a default $d = \alpha : \beta/\beta$ in \mathcal{D} such that no default $d' < d$ is active in F_i, $\alpha \in \text{Th}(F_i)$, and $\neg \beta \not\in \mathcal{E}$. Now $\text{Th}(F_i) = \text{Th}(E_i)$ yields $d \in \overline{D}_{i+1}$. Note that we really need to know that $\beta \not\in \text{Th}(F_i) = \text{Th}(E_i)$ to conclude that d is active in E_i.

It remains to be shown that d is in fact an element of \overline{D}_{i+1}. Assume to the contrary that $d \not\in \overline{D}_{i+1}$. By maximality of \overline{D}_{i+1} this means that $E_{i+1} \cup \{\beta\}$ is inconsistent, which in turn means that $\neg \beta \in \text{Th}(E_{i+1})$. Since $\beta \in \mathcal{E}$ and $\text{Th}(E_{i+1}) \subseteq \mathcal{E}$, this contradicts the fact that \mathcal{E} is consistent.

\[\square \]

A.3 Proof of Theorem 4.6

Theorem 4.6 Let \mathcal{D} be a set of closed prerequisite-free normal defaults. Then \mathcal{E} is an S-extension of the default theory with specificity $(\mathcal{W}, \mathcal{D}, <)$ iff \mathcal{E} is a B-extension of the ordered default theory $(\mathcal{W}, \mathcal{D}, <)$.

If \mathcal{W} is inconsistent then $\text{Th}(\mathcal{W})$ is the only S-extension and the only B-extension. In the following we assume that \mathcal{W} is consistent. Note that this means that all S-extensions and B-extensions are consistent.

To prove the theorem for consistent \mathcal{W} we first show that any B-extension of the normal, prerequisite-free theory $(\mathcal{W}, \mathcal{D}, <)$ is also an S-extension. Let

\[
 d_1 = \frac{\beta_1}{\beta_1}, \quad d_2 = \frac{\beta_2}{\beta_2}, \quad d_3 = \frac{\beta_3}{\beta_3}, \quad \ldots
\]

be an enumeration of \mathcal{D} that is compatible with $<$, and let \mathcal{E} be the B-extension defined by this enumeration. This means that $\mathcal{E} = \bigcup_{i \geq 0} \text{Th}(F_i)$ where $F_0 := \mathcal{W}$, and for $i \geq 0$

\[
 F_{i+1} := \begin{cases}
 F_i & \text{if } \neg \beta_{i+1} \in \text{Th}(F_i), \\
 F_i \cup \{\beta_{i+1}\} & \text{otherwise}.
 \end{cases}
\]
We use \mathcal{E} to define the sets E_i as described in the definition of an S-extension (see Definition 4.1). What remains to be shown is that this iteration really yields \mathcal{E}, i.e., that $\mathcal{E} = \bigcup_{i \geq 0} \text{Th}(E_i)$. This is an immediate consequence of the following two lemmas.

Lemma A.6 For all $i \geq 0$ we have $E_i \subseteq \mathcal{E}$.

Proof. The proof is by induction on i. For $i = 0$ we have $E_0 = \mathcal{W} \subseteq \mathcal{E}$. Now assume that $i \geq 0$ and consider $\beta \in E_{i+1}$. For $\beta \in E_i$ we know $\beta \in \mathcal{E}$ by induction. For $\beta \in E_{i+1} \setminus E_i$ we know (beside other things) that $\beta/\beta \in \mathcal{D}$ and $\neg \beta \notin \mathcal{E}$. Since the default β/β occurs in the enumeration $d_1, d_2, ...$ there exists $j \geq 1$ such that $\beta = \beta_j$. In addition, $\neg \beta \notin \mathcal{E}$ implies $\neg \beta \notin \text{Th}(F_{j-1})$, which yields $\beta = \beta_j \in F_j \subseteq \mathcal{E}$. \hfill \square

Lemma A.7 For all $i \geq 0$ we have $F_i \subseteq E_i$.

Proof. Again, the proof is by induction on i. For $i = 0$ we have $F_0 = \mathcal{W}_0 = E_0$. Now assume that $i \geq 0$ and consider $\beta \in F_{i+1}$. For $\beta \in F_i$, induction yields $\beta \in F_i \subseteq E_i \subseteq E_{i+1}$.

On the other hand, $\beta \in F_{i+1} \setminus F_i$ means that $\beta = \beta_{i+1}$. Since $\beta \in F_{i+1}$ we know that $\beta \in \mathcal{E}$, and thus $\neg \beta \notin \mathcal{E}$. To get $\beta \in E_{i+1}$ it remains to be shown that all $d' < d_{i+1}$ are not active in E_i. Recall that a default $d' = \beta'/\beta'$ is active in E_i iff $\beta' \notin \text{Th}(E_i)$ and $\neg \beta' \notin \text{Th}(E_i)$.

From $d' < d_{i+1}$ we can deduce that $d' = d_j$ for some $j < i + 1$. If $\beta_j \in F_j$ then $F_j \subseteq E_j$ (by induction) and $E_j \subseteq E_i$ (because $j \leq i$) yield $\beta_j \in E_i$, which implies that $d' = \beta_j/\beta_j$ is not active in E_i. Finally, assume that $\beta_j \notin F_j$. This means that $\neg \beta_j \in \text{Th}(F_{j-1})$, and thus $F_{j-1} \subseteq E_{j-1} \subseteq E_i$ (by induction and $j - 1 < i$) yields $\neg \beta_j \in \text{Th}(E_i)$. Again, this implies that $d' = \beta_j/\beta_j$ is not active in E_i. \hfill \square

This concludes the proof that any B-extension is an S-extension. For the other direction, assume that $\mathcal{E} = \bigcup_{i \geq 0} \text{Th}(E_i)$ is an S-extension of the normal, prerequisite-free theory $(\mathcal{W}, \mathcal{D}, <)$, obtained by iteratively generating the sets E_i as described in Definition 4.1. The first lemma says that \mathcal{E} satisfies a property that is obviously true for B-extensions, but which is not that trivial for S-extensions.

Lemma A.8 For $d = \beta/\beta$ we have either $\beta \in \mathcal{E}$ or $\neg \beta \in \mathcal{E}$.

Proof. The proof is by induction on $<$. Assume that $\neg \beta$ is not in \mathcal{E}. Thus the only reason for d not to fire in the ith step of the iteration can be that there exists a default $d' = \beta'/\beta' < d$ that is active in E_{i-1}. By induction,
we know that $\beta' \in \mathcal{E}$ or $\neg \beta' \in \mathcal{E}$, and hence there exists an index j such that $\beta' \in \text{Th}(E_j)$ or $\neg \beta' \in \text{Th}(E_j)$. Thus we have seen that for all $d' < d$ there exists an index j such that d' is no longer active after step j of the iteration. Since there exist only finitely many defaults smaller than d, this means that d will eventually fire, which shows that $\beta \in \mathcal{E}$.

To show that \mathcal{E} is a B-extension, we shall define a strict partial ordering \ll that extends $<$, and show that any enumeration of \mathcal{D} that is compatible with \ll yields \mathcal{E} as B-extension. The main idea behind the definition of \ll is that we must prevent the consequents β of defaults $d = : \beta \beta$ with $\beta \notin \mathcal{E}$ from being added to the B-extension. For this reason, we will make sure that there are defaults $d_1 = : \beta_1 \beta_1 \ll d$, ..., $d_n = : \beta_n \beta_n \ll d$ such that $\beta_1, \ldots, \beta_n \in \mathcal{E}$ and $\neg \beta \in \text{Th}(\mathcal{W} \cup \{\beta_1, \ldots, \beta_n\})$.

The main technical problem will be to show that \ll has the finiteness property, i.e., that for all $d \in \mathcal{D}$ the set $\{d' \in \mathcal{D} \mid d' \ll d\}$ is finite. This property is necessary because otherwise there would not exist an enumeration of \mathcal{D} that is compatible with \ll.

For $i \geq 1$, we define \mathcal{D}_i as the set of all defaults that fire at step i of the iteration, i.e.,

$$\mathcal{D}_i := \{d = : \beta \beta \mid \beta \notin \text{Th}(E_{i-1}), \neg \beta \notin \mathcal{E}, \text{ and all } d' < d \text{ are not active in } E_{i-1}\}.$$

Note that $d = : \beta \beta \in \mathcal{D}_i$ implies $\beta \in E_i$, and thus $\beta \in \mathcal{E}$. Let $\mathcal{D}_{\text{fired}} := \bigcup_{i \geq 1} \mathcal{D}_i$ and $\mathcal{D}_{\text{out}} := \{d = : \beta \beta \mid \beta \notin \mathcal{E}\}$. Obviously, $\mathcal{D}_{\text{fired}}$ and \mathcal{D}_{out} are disjoint, but note that their union can be a strict subset of \mathcal{D}.

Lemma A.9 For all $d = : \beta \beta \in \mathcal{D}_{\text{out}}$ there exist a nonnegative integer $i(d)$ and a finite set of defaults $M(d) \subseteq \mathcal{D}_{\text{fired}}$ such that one of the following two properties holds:

1. $i(d) = 0$, $M(d) = \emptyset$, and $\neg \beta \in \text{Th}(\mathcal{W})$.
2. $i(d) \geq 1$, $M(d) \subseteq \bigcup_{i \leq i(d)} \mathcal{D}_i$, $\neg \beta \notin \text{Th}(E_{i(d)-1})$, and $\neg \beta \in \text{Th}(\mathcal{W} \cup \text{Con}(M(d)))$.

Proof. Since $d \in \mathcal{D}_{\text{out}}$ we know (by Lemma A.8) that $\neg \beta \in \mathcal{E} = \bigcup_{i \geq 0} \text{Th}(E_i)$. We define $i(d)$ to be the smallest i such that $\neg \beta \in \text{Th}(E_i)$.

If $i(d) = 0$, we define $M(d) := \emptyset$. Now $\neg \beta \in \text{Th}(\mathcal{W})$ is satisfied since $E_0 = \mathcal{W}$.

Assume that $i(d) > 0$. Minimality of $i(d)$ yields $\neg \beta \notin \text{Th}(E_{i(d)-1})$. From $\neg \beta \in \text{Th}(E_{i(d)})$ we can deduce that there exist defaults $d_1, \ldots, d_n \in \bigcup_{i \leq i(d)} \mathcal{D}_i$ such that $\neg \beta \in \text{Th}(\mathcal{W} \cup \text{Con}(\{d_1, \ldots, d_n\}))$. Thus we define $M(d) := \{d_1, \ldots, d_n\}$. □
Now we are ready to define the extension of $<$ we are looking for. Let \equiv be the transitive closure of the relation $\subset \cup <$, where \subset is defined by

$$d' \subset d \iff d' \in D_{\text{fired}}, d \in D_{\text{out}}, \text{ and } d' \in M(d).$$

Obviously, \equiv is an extension of \subset, i.e., $d \subset d'$ implies $d \equiv d'$. It remains to be shown that \equiv is appropriate for our purposes.

Lemma A.10 The relation \equiv satisfies the following properties:

1. \equiv is Noetherian, i.e., there does not exist an infinitely descending chain $d_1 \equiv d_2 \equiv \ldots$.
2. \equiv is a partial ordering.
3. \equiv satisfies the finiteness property, i.e., for all $d \in D$ the set $\{d' \in D \mid d' \equiv d\}$ is finite.

Proof. (1) First note that $<$ and \equiv are strict partial orderings satisfying the finiteness property. For $<$, this is just the condition that a partial ordering has to satisfy to be admissible in a theory (W, D, \subset). For \equiv, transitivity and irreflexivity follow from disjointness of D_{fired} and D_{out}. In fact, $D_{\text{fired}} \cap D_{\text{out}} = \emptyset$ implies that neither the situation $d \subset d'$ nor the situation $d \subset d' \equiv d''$ can occur. The finiteness property for \subset is now an immediate consequence of the fact that $M(d)$ is finite for all $d \in D_{\text{out}}$.

Since $<$ and \equiv are irreflexive and satisfy the finiteness property, they are Noetherian as well. For this reason, an infinitely descending chain for \equiv must be (without loss of generality) of the form

$$d_1 \equiv d'_1 \equiv d_2 \equiv d'_2 \equiv \ldots d_j \equiv d'_j \equiv d_{j+1} \equiv \ldots .$$

For $j \geq 1$ we have $d_j \in D_{\text{out}}$ and $d'_j \in D_{\text{fired}}$. To prove that such a chain cannot be infinite, we show that $i(d_j)$ is larger than $i(d_{j+1})$.

Let $i_0 = i(d_j)$. Since $d_j \equiv d'_j$, we know that $d'_j \in M(d_j)$, and thus $d'_j \in \bigcup_{i \leq i_0} D_i$. Let $i_1 \leq i_0$ be such that $d'_j \in D_{i_1}$. Because $d_{j+1} \subset d'_j$, we thus know that d_{j+1} cannot be active in E_{i_1-1}. But this means that the justification of d_{j+1}, say β_{j+1}, is already inconsistent with E_{i_1-1}, i.e., $\neg \beta_{j+1} \in \text{Th}(E_{i_1-1})$. This shows that $i(d_{j+1})$ is smaller than i_1, and thus smaller than $i_0 = i(d_j)$.

(2) The relation \equiv is transitive by definition. Irreflexivity follows from the fact that \equiv is Noetherian.

(3) The finiteness property of \equiv is shown by Noetherian induction on \equiv. For $d \in D$ we consider the sets $\{d' \in D \mid d' \subset d\}$ and $\{d'' \in D \mid d'' \subset d\}$. Both sets are finite since $<$ and \equiv satisfy the finiteness property. The \equiv-successors
of \(d\) are the elements of these sets, together with their \(\ll\)-successors. By induction, we know that the elements of these sets have only finitely many \(\ll\)-successors, which completes the proof of the lemma.

Now let \(d_1 = : \beta_1/\beta_1, d_2 = : \beta_2/\beta_2, \ldots\) be an enumeration of \(\mathcal{D}\) that is compatible with \(\ll\). The finiteness property for \(\ll\) guarantees that such an enumeration exists. Let \(\mathcal{F} = \bigcup_{i \geq 0} \text{Th}(F_i)\) be the \(\mathcal{B}\)-extension of \((\mathcal{W}, \mathcal{D}, \ll)\) defined by this enumeration. Since \(\ll\) extends \(<\), \(\mathcal{F}\) is an extension of \((\mathcal{W}, \mathcal{D}, <)\) as well. It remains to be shown that \(\mathcal{F} = \mathcal{E}\).

Lemma A.11 For all \(i \geq 0\) we have \(F_i \subseteq \mathcal{E}\).

Proof. The proof is by induction on \(i\). For \(i = 0\), \(F_0 = \mathcal{W} \subseteq \mathcal{E}\). Now let \(i > 0\). If \(F_i = F_{i-1}\), we have \(F_i = F_{i-1} \subseteq \mathcal{E}\) by induction.

Now assume that \(F_i = F_{i-1} \cup \{\beta_i\}\), but \(\beta_i \notin \mathcal{E}\). Thus \(d_i \in \mathcal{D}_{\text{out}}\), and there exists a finite set of defaults \(M(d_i)\) such that \(\neg \beta_i \in \text{Th}(\mathcal{W} \cup \text{Con}(M(d_i)))\). For \(d = : \beta/\beta \in M(d_i)\) we have \(d \ll d_i\) and \(\beta \notin \mathcal{E}\). Since the enumeration \(d_1, d_2, \ldots\) is compatible with \(\ll\), this means that \(\beta \in F_{i-1}\) or \(\neg \beta \in F_{i-1}\). The second case cannot occur since this would mean that \(\neg \beta \in \mathcal{E}\), by induction.

To sum up, we have seen that the consequents of all defaults in \(M(d)\) are in \(F_{i-1}\). But this shows that \(\neg \beta_i \in \text{Th}(F_{i-1})\), which contradicts our assumption that \(F_i = F_{i-1} \cup \{\beta_i\}\).

The next lemma completes the proof of Theorem 4.6.

Lemma A.12 \(\mathcal{E} = \mathcal{F}\).

Proof. Because of the previous lemma, we know that \(\mathcal{F} \subseteq \mathcal{E}\). If \(\mathcal{F} \neq \mathcal{E}\) then there exists a default \(d = : \beta/\beta \in \mathcal{D}\) such that \(\beta \in \mathcal{E} \setminus \mathcal{F}\). But \(\beta \notin \mathcal{F}\) implies \(\neg \beta \in \mathcal{F}\), which together with \(\mathcal{F} \subseteq \mathcal{E}\) contradicts the fact that \(\mathcal{E}\) is consistent.

A.4 Soundness and Completeness of Algorithm 5.1

Algorithm 5.1 Let \((\mathcal{W}, \mathcal{D}, <)\) be a closed default theory with specificity. If \(\mathcal{W}\) is inconsistent then \(\text{Th}(\mathcal{W})\) is the only \(S\)-extension. Otherwise we define \(E_0 := \mathcal{W}\) and \(J_0 := \emptyset\).

Now assume that \(E_i\) (\(i \geq 0\)) is already defined. Consider

\[\mathcal{D}_{i+1} := \{d \in \mathcal{D} \mid d \text{ is active in } E_i \text{ and no } d' < d \text{ is active in } E_i\},\]

and choose a nonempty subset \(\hat{\mathcal{D}}_{i+1}\) of \(\mathcal{D}_{i+1}\) that satisfies

\[\neg \beta \notin \text{Th}(E_i \cup \text{Con}(\hat{\mathcal{D}}_{i+1})) \cup J_i \cup \neg \text{Jus}(\hat{\mathcal{D}}_{i+1} \setminus \hat{\mathcal{D}}_{i+1})\]
for all $\beta \in \text{Jus}(\hat{D}_{i+1})$.

If there is no such set, then $E_{i+1} := E_i, J_{i+1} := J_i$. Otherwise each choice yields new sets $E_{i+1} := E_i \cup \text{Con}(\hat{D}_{i+1})$ and $J_{i+1} := J_i \cup \neg \text{Jus}(\hat{D}_{i+1} \setminus \hat{D}_{i+1})$.

The set $E := \bigcup_{i \geq 0} \text{Th}(E_i)$ is an S-extension iff

1. for all $d = \alpha : \beta/\gamma \in \bigcup_{i \geq 1} \hat{D}_i$ we have $\neg \beta \notin E$, and

2. for all $\neg \beta \in \bigcup_{i \geq 1} J_i$ we have $\neg \beta \in E$.

If W is inconsistent, $\text{Th}(W)$ is the only S-extension, and this is what the algorithm yields in this case. Thus we may assume without loss of generality that W is consistent.

To prove soundness, assume that $E = \bigcup_{i \geq 0} \text{Th}(E_i)$ where the E_i are obtained as described in the algorithm, and that E is accepted as admissible output because it satisfies the two conditions that are checked at the end of the algorithm.

To show that E is an S-extension, we use it to generate sets F_i as described in the definition of S-extensions. This means that we define $F_0 := W$, and for all $i \geq 0$

$$F_{i+1} := F_i \cup \{ \gamma \mid \exists d \in D: d = \alpha : \beta/\gamma, \alpha \in \text{Th}(F_i), \neg \beta \notin E, \text{ and all } d' < d \text{ are not active in } F_i \}.$$

Now E is an S-extension if $E = \bigcup_{i \geq 0} \text{Th}(F_i)$. This is shown by proving, for all $i \geq 0$, that $\text{Th}(F_i) = \text{Th}(E_i)$. We proceed by induction on i. For $i = 0$, we have $F_0 = W = E_0$. Now assume that $\text{Th}(F_i) = \text{Th}(E_i)$ is already known.

Lemma A.13 $E_{i+1} \subseteq \text{Th}(F_{i+1})$.

Proof. Let γ be an element of E_{i+1}. If $\gamma \in \text{Th}(E_i)$, we have $\gamma \in \text{Th}(F_i) \subseteq \text{Th}(F_{i+1})$ by induction. Thus assume that $\gamma \in E_{i+1} \setminus \text{Th}(E_i)$. This means that there exists a default $d = \alpha : \beta/\gamma \in \hat{D}_{i+1}$ that is the reason for γ being in E_{i+1}.

By definition of \hat{D}_{i+1} we know that $\alpha \in \text{Th}(E_i) = \text{Th}(F_i)$, and that no default $d' < d$ is active in E_i. Since $\text{Th}(F_i) = \text{Th}(E_i)$ this means that $d' < d$ is not active in F_i as well. To get $\gamma \in F_{i+1}$, and thus $\gamma \in \text{Th}(F_{i+1})$, it thus remains to be shown that $\neg \beta \notin E$. But this is the case since $d \in \bigcup_{j \geq 1} \hat{D}_j$, and E satisfies the first condition checked at the end of the algorithm. \(\square\)

Lemma A.14 $F_{i+1} \subseteq \text{Th}(E_{i+1})$.

29
Proof. Assume that $\gamma \in F_{i+1}$. By induction, the case where $\gamma \in Th(F_i)$ is again trivial. For $\gamma \in F_{i+1} \setminus Th(F_i)$ we know that there exists a default $d = \alpha : \beta / \gamma$ such that $\alpha \in Th(F_i) = Th(E_i)$, $\neg \beta \notin E$, and all $d' < d$ are not active in F_i. Obviously, $\neg \beta \notin E$ implies $\neg \beta \notin Th(E_i)$, and thus $Th(F_i) = Th(E_i)$ yields $d \in D_{i+1}$.

To get $\gamma \in E_{i+1}$ it remains to be shown that $d \in D_{i+1}$. Assume that $d \in D_{i+1} \setminus D_{i+1}$. Then $\neg \beta \in J_{i+1}$, and thus the second condition checked at the end of the algorithm yields $\neg \beta \in E$. But we already know that $\neg \beta \notin E$.

This completes the proof of soundness. To show completeness, assume that $E = \bigcup_{i \geq 0} Th(F_i)$ is an S-extension obtained from the sequence F_0, F_1, \ldots as described in the definition of S-extensions. We use E and the F_i to choose the right sets D_i in the algorithm.

Assume that D_i and the corresponding sets E_i, J_i are already defined, and that these sets satisfy $Th(E_i) = Th(F_i)$ and $J_i \subseteq E$. Note that for $i = 0$ this is trivially satisfied since $E_0 = W$ and $J_0 = \emptyset$. We define

$$D_{i+1} := \{d = \alpha : \beta / \gamma \mid d \in D_{i+1} \text{ and } \neg \beta \notin E\},$$

where $D_{i+1} = \{d \mid d \text{ is active in } E_i \text{ and no } d' < d \text{ is active in } E_i\}$. Obviously, D_{i+1} is a subset of D_{i+1}.

If D_{i+1} is empty, then it is easy to see (using the induction hypothesis $Th(E_i) = Th(F_i)$) that $Th(F_i) = Th(F_{i+1})$, and thus $E = Th(F_i)$. To get $E_{i+1} = E_i$, and thus $Th(E_{i+1}) = Th(E_i) = Th(F_i) = Th(F_{i+1})$, we have to show that there cannot be a nonempty subset D_{i+1} of D_{i+1} satisfying

$$\neg \beta \notin Th(E_i \cup Con(D_{i+1}) \cup J_i \cup \neg Jus(D_{i+1} \setminus D_{i+1}))$$

for all $\beta \in Jus(D_{i+1})$. But if the justification β of a default $d \in D_{i+1}$ satisfies this condition, $Th(E_i) = Th(F_i) = E$ shows that $\neg \beta \notin E$. This contradicts our assumption that D_{i+1} is empty.

Now assume that D_{i+1} is not empty. We have to show that all $\beta \in Jus(D_{i+1})$ satisfy the condition

$$\neg \beta \notin Th(E_i \cup Con(D_{i+1}) \cup J_i \cup \neg Jus(D_{i+1} \setminus D_{i+1})).$$

This is an immediate consequence of the next lemma since $\beta \in Jus(D_{i+1})$ satisfies $\neg \beta \notin E$ (by definition of D_{i+1}).

Lemma A.15 $Th(E_i \cup Con(D_{i+1}) \cup J_i \cup \neg Jus(D_{i+1} \setminus D_{i+1})) \subseteq E$.

Proof. Since the S-extension E is deductively closed, it is sufficient to prove $E_i \cup Con(D_{i+1}) \cup J_i \cup \neg Jus(D_{i+1} \setminus D_{i+1}) \subseteq E$.

30
By induction, we know $J_i \subseteq \mathcal{E}$ and $\text{Th}(E_i) = \text{Th}(F_i) \subseteq \mathcal{E}$. For $\gamma \in \text{Con}(\mathcal{D}_{i+1})$ we have $\gamma \in F_{i+1} \subseteq \mathcal{E}$ by definition of \mathcal{D}_{i+1}. Finally, assume that $d = \alpha: \beta/\gamma \in \mathcal{D}_{i+1} \setminus \mathcal{D}_{i+1}$, i.e., $\neg \beta \in \neg \text{\text{Jus}}(\mathcal{D}_{i+1} \setminus \mathcal{D}_{i+1})$. We have $\neg \beta \in \mathcal{E}$ because otherwise d would be in \mathcal{D}_{i+1}.

Thus we have seen that \mathcal{D}_{i+1} is an admissible subset of \mathcal{D}_{i+1}. The lemma shows that $J_{i+1} := J_i \cup \neg \text{\text{Jus}}(\mathcal{D}_{i+1} \setminus \mathcal{D}_{i+1})$ (as defined in the algorithm) is a subset of \mathcal{E}. In addition, by definition of \mathcal{D}_{i+1}, $E_{i+1} := E_i \cup \text{Con}(\mathcal{D}_{i+1})$ satisfies $\text{Th}(E_{i+1}) = \text{Th}(F_{i+1})$. In fact, the only difference possible between $F_{i+1} \setminus F_i$ and $E_{i+1} \setminus E_i$ is that $F_{i+1} \setminus F_i$ may contain some additional elements, which are, however, elements of $\text{Th}(F_i) = \text{Th}(E_i)$.

To sum up, we have shown by induction that in each step of the algorithm one can choose an admissible set $\mathcal{D}_i \subseteq \mathcal{D}_i$ such that the set $\text{Th}(E_i)$ obtained by this choice coincides with $\text{Th}(F_i)$. Thus we have $\mathcal{E} = \bigcup_{i \geq 0} \text{Th}(E_i)$. It remains to be shown that the two conditions at the end of the algorithm are satisfied.

For $d = \alpha: \beta/\gamma \in \bigcup_{i \geq 1} \mathcal{D}_i$ we have $\neg \beta \notin \mathcal{E}$ by definition of the sets \mathcal{D}_i. Finally, Lemma A.15 implies $\bigcup_{i \geq 1} J_i \subseteq \mathcal{E}$.
DFKI Publikationen

DFKI Research Reports

RR-92-04
John Nerbonne: Feature-Based Lexicons: An Example and a Comparison to DATR
15 pages

RR-92-05
Ansgar Bernardi, Christoph Klauck, Ralf Legleiter, Michael Schulte, Rainer Stark: Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz: Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive Reasoning - An Overview -
46 pages

RR-92-09
Winfried Graf, Markus A. Thies: Perspektiven zur Kombination von automatischem Animationsdesign und planbasierter Hilfe
15 Seiten

RR-92-10
M. Bauer: An Interval-based Temporal Logic in a Multivalued Setting
17 pages

RR-92-11
Susane Biundo, Dietmar Dengler, Jana Koehler: Deductive Planning and Plan Reuse in a Command Language Environment
13 pages

DFKI Publications

The following DFKI publications or the list of all published papers so far can be ordered from the above address. The reports are distributed free of charge except if otherwise indicated.

RR-92-13
Markus A. Thies, Frank Berger: Planbasierte graphische Hilfe in objektorientierten Benutzungsoberflächen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User Interfaces:
1. InCome: A System to Navigate through Interactions and Plans
 Thomas Fehrle, Markus A. Thies
2. Plan-Based Graphical Help in Object-Oriented User Interfaces
 Markus A. Thies, Frank Berger
22 pages

RR-92-15
Winfried Graf: Constraint-Based Graphical Layout of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn, Daniel Kudenko, Berhard Nebel, Hans-Jürgen Profitlich: An Empirical Analysis of Terminological Representation Systems
38 pages

RR-92-17
Hassan Ait-Kaci, Andreas Podelski, Gert Smolka: A Feature-based Constraint System for Logic Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages
RR-92-19
Ralf Legleitner, Ansgar Bernardi, Christoph Klauck: PIM: Planning In Manufacturing using Skeletal Plans and Features
17 pages

RR-92-20
John Nerbonne: Representing Grammar, Meaning and Knowledge
18 pages

RR-92-21
Jörg-Peter Mohren, Jürgen Müller
Representing Spatial Relations (Part II) - The Geometrical Approach
25 pages

RR-92-22
Jörg Wärtz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka, Ralf Treinen: Records for Logic Programming
38 pages

RR-92-24
Gabrielle Schmidt: Knowledge Acquisition from Text in a Complex Domain
20 pages

RR-92-25
Franz Schmalhofer, Ralf Bergmann, Otto Kühn, Gabrielle Schmidt: Using integrated knowledge acquisition to prepare sophisticated expert plans for their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer, Thomas Reinartz, Bidjan Tschaitschian: Intelligent documentation as a catalyst for developing cooperative knowledge-based systems
16 pages

RR-92-27
Franz Schmalhofer, Jörg Thoben: The model-based construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi, Christoph Klauck: Skeletal Plans Reuse: A Restricted Conceptual Graph Classification Approach
13 pages

RR-92-30
Rolf Backofen, Gert Smolka
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster
Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer: Using Hierarchical Constraint Satisfaction for Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader, Philipp Hanschke: Extensions of Concept Languages for a Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in Concept Languages
26 pages

RR-92-38
Philipp Hanschke, Manfred Meyer: An Alternative to Θ-Subsumption Based on Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke, Knut Hinkelmann: Combining Terminological and Rule-based Reasoning for Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards Group Scheduling
32 pages

RR-92-42
John Nerbonne: A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck, Jakob Mauss: A Heuristic driven Parser for Attributed Node Labeled Graph Grammars and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist, Elisabeth André: Incorporating Graphics Design and Realization into the Multimodal Presentation System WIP
15 pages
RR-92-45
Elisabeth André, Thomas Rist: The Design of Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth André, Wolfgang Finkler, Winfried Graf, Thomas Rist, Anne Schauder, Wolfgang Wahlster: WIP: The Automatic Synthesis of Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler: Plan Modifications versus Plan Generation: A Complexity-Theoretic Perspective
15 pages

RR-92-50
Stephan Busemann: Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bückert, Werner Nutt: On Abduction and Answer Generation through Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar Dengler, Jana Koehler, Gabriele Paul: PHI - A Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-54
Harold Boley: A Direkt Semantic Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel Kader Diagne, Stephan Oepen: Natural Language Semantics and Compiler Technology
17 pages

RR-92-58
Franz Baader, Bernhard Hollunder: How to Prefer More Specific Defaults in Terminological Default Logic
31 pages

RR-92-02
Wolfgang Wahlster, Elisabeth André, Wolfgang Finkler, Hans-Jürgen Profilich, Thomas Rist: Plan-based Integration of Natural Language and Graphics Generation
50 pages

DFKI Technical Memos

TM-91-12
Klaus Becker, Christoph Klauck, Johannes Schwagereit: FEAT-PATR: Eine Erweiterung des D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation: Developing a Compiler from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel: ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Bussmann: Prototypical Concept Formation: An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung eines Compilers zur Transformation von Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh: A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel, Ralf Scheidhauer: On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg Thoben: The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical skeletal plan refinement: Task- and inference structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining Grammars with Unification
27 pages
<table>
<thead>
<tr>
<th>DFKI Documents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D-92-06</td>
<td>Hans Werner Höper: Systematik zur</td>
</tr>
<tr>
<td></td>
<td>Beschreibung von Werkstücken in der Terminologie der Featuresprache</td>
</tr>
<tr>
<td>D-92-07</td>
<td>Susanne Biundo, Franz Schmalhofer (Eds.):</td>
</tr>
<tr>
<td></td>
<td>Proceedings of the DFKI Workshop on Planning</td>
</tr>
<tr>
<td>D-92-08</td>
<td>Jochen Heinsohn, Bernhard Hollunder (Eds.):</td>
</tr>
<tr>
<td></td>
<td>DFKI Workshop on Taxonomic Reasoning</td>
</tr>
<tr>
<td>D-92-09</td>
<td>Gernod P. Laufkötter: Implementierungsmöglichkeiten der integrativen Wissensakquisitions-methode des ARC-TEC-Projektes</td>
</tr>
<tr>
<td>D-92-10</td>
<td>Jakob Mauss: Ein heuristisch gesteuerter Chart-Parser für attributierte Graph-Grammatiken</td>
</tr>
<tr>
<td>D-92-11</td>
<td>Kerstin Becker: Möglichkeiten der Wissensmodellierung für technische Diagnose-Expertensysteme</td>
</tr>
<tr>
<td>D-92-12</td>
<td>Otto Kühn, Franz Schmalhofer, Gabriele Schmidt:</td>
</tr>
<tr>
<td></td>
<td>Integrated Knowledge Acquisition for Lathe Production Planning: a Picture Gallery</td>
</tr>
<tr>
<td>D-92-13</td>
<td>Holger Peine: An Investigation of the Applicability of Terminological Reasoning to Application-Independent Software-Analysis</td>
</tr>
<tr>
<td>D-92-14</td>
<td>Johannes Schwagerfeit: Integration von Graph-Grammatiken und Taxonomien zur Repräsentation von Features in CIM</td>
</tr>
<tr>
<td>D-92-15</td>
<td>DFKI Wissenschaftlich-Technischer Jahresbericht 1991</td>
</tr>
<tr>
<td>D-92-16</td>
<td>Judith Engelkamp (Hrsg.): Verzeichnis von Softwarekomponenten für natürlichsprachliche Systeme</td>
</tr>
<tr>
<td>D-92-18</td>
<td>Note: This document is available only for a nominal charge of 25 DM (or 15 US-$.).</td>
</tr>
<tr>
<td>D-92-19</td>
<td>Stefan Dittrich, Rainer Hoch: Automatische, Deskriptor-basierte Unterstützung der Dokumentanalyse zur Fokussierung und Klassifizierung von Geschäftsbriefen</td>
</tr>
<tr>
<td>D-92-21</td>
<td>Anne Schauder: Incremental Syntactic Generation of Natural Language with Tree Adjoining Grammars</td>
</tr>
<tr>
<td>D-92-23</td>
<td>Michael Herfert: Parsen und Generieren der Prolog-artigen Syntax von RELFUN</td>
</tr>
<tr>
<td>D-92-24</td>
<td>Jürgen Müller, Donald Steiner (Hrsg.): Kooperierende Agenten</td>
</tr>
<tr>
<td>D-92-25</td>
<td>Martin Buchheit: Klassische Kommunikations- und Koordinationsmodelle</td>
</tr>
<tr>
<td>D-92-26</td>
<td>Enno Tolzmann:</td>
</tr>
<tr>
<td></td>
<td>Realisierung eines Werkzeugauswahlmoduls mit Hilfe des Constraint-Systems CONTAX</td>
</tr>
<tr>
<td>D-92-27</td>
<td>Martin Harm, Knut Hinkelmann, Thomas Labisch:</td>
</tr>
<tr>
<td></td>
<td>Integrating Top-down and Bottom-up Reasoning in COLAB</td>
</tr>
<tr>
<td>D-92-28</td>
<td>Klaus-Peter Gores, Rainer Bleisinger: Ein Modell zur Repräsentation von Nachrichtentypen</td>
</tr>
</tbody>
</table>
How to Prefer More Specific Defaults in Terminological Default Logic

Franz Baader, Bernhard Hollunder