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Abstract 

In a recent paper we have proposed teJ'luinological default logic as a 
formalism which combines both means for structured representation 
of classes and objects, aud for default inheritance of properties, The 
major drawback which terminological default logic inherits from gen ­
eral default logic is t hat it does not take precedence of more specific 
defaults over more general ones into account. This behaviour has al­

ready been criticized in the general context of default logic, but it is all 
the more problematic in the terminological case where the emphasis 
lies on the hierarchical organization of concepts. 

The present paper addresses the problem of modifying terminologi­
cal default logic such that more specifi c defaults are prefelTed. It turns 
out that the existillg approaches for expressing priorities between de­
faults do not seem to he a ppropri ate for this p\ll'pose, Therefore we 
shall consider an alternative approach for dealing with prioritization 
in the framework of Reiter's default logic. The formalism is presented 
in the general setting of default logic where priorities are given by 
an arbitrary partial ordering on the defaults. We sha11 exhibit some 
interesting properties of the new formalism, compare it with existing 
approaches, and describe an algorithm for computing extensions. 
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1 Introduction 

Early knowledge represent ation formalisms such as semantic networks and 
frames comprise both means for structured representation of classes and ob­
jects, and for default inheritance of properties. However, these formalisms did 
not have a well-defined formal semantics, and subsequent formalisms trying 
to overcome this problem usually concentrated on one of these two means 
of representation. Nonmonotonic inheritance networks are concerned with 
defeasible inheritance, sometimes in combination with strict inheritance, but 
the nodes in these networks are unst.ructured objects or classes. 1 Termino­
logical representation formalisms, on the other hand, can be used to define 
the relevant concepts of a problem domain in a structured and well-formed 
way. This is done by bui lding complex concept descriptions out of atomic 
concepts (unary predicates) and roles (binary predicates) with the help of 
operations provided by the concept language of the particular formalism. In 
addition, objects can be described with respect to their relation to concepts 
and their interrelation with each other. The concept descriptions are in­
terpreted as universal statements, which means that they do not allow for 
exceptions. As a consequence, the t.erminologica.l system can use descriptions 
to automatically insert. concepts at the proper place in t.he concept hierarchy 
(classification) , and it can us(' t.he facts stat.ed about objects to deduce to 
which concepts they must belong, but objects cannot illherit properties by 
default. 

The problem addressed in this paper is how to bring together both means 
of representation originally present in semantic networks and frames, without 
losing the advantages of terminological formalisms, such as being equipped 
with a formal and well-understood semantics and providing for automatic 
concept classification. An integration of defaults would ofteIl greatly enhance 
applicability of terminological systems, or would at least make their use more 
convenient in most applications (see, e.g., [16] which shows that embedding 
defaults into terminological systems is an important item on the wish list 
of users of such systems). For this reason, several existing terminological 
systems, such as BACK [14], CLASSIC [3], K-R.ep [11], LOOM [12], or SB-ONE 
[9], have been or will be extended to provide the user with some kind of 
default reasoning facilities . As the designers of these systems themselves 
point out, however, these approaches usually have an ad hoc character, and 
thus do not satisfy the requirement of having a formal semantics. 

As a first attempt to give a formally well-founded solution to this problem, 

IThere are some attempts to generalize this approach to structured classes, but they 
work in a very restricted set.t.ing , and it is not clear how t.o obt.ain more general results in 
this direction (see, e.g. , [15]). 
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an integration of Reiter's default logic into a terminological formalism was 
proposed in [1]. One reason for selecting default logic, out of the wide range 
of nonmonotonic formalisms, was that Reiter's default rule approach fits 
well into the philosophy of terminological systems. Most of these systems 
already provide their users with a form of "monotonic" forward rules, and 
it turned out that these rules can be viewed as specific default rules where 
the justifications are absent. A second pleasant feature of terminological 
default logic, as introduced in [1], is that it becomes decidable provided that 
applicability of default rules is restricted to objects explicitly present in the 
knowledge base. It should be noted that this constraint is also imposed on 
the monotonic rules in terminological systems . 

The major drawback which terminological default logic inherits from gen­
eral default logic is that it does not take precedence of more specific defaults 
over more general ones into account. For example, assume that we have a de­
fault which says that penguins cannot fly,2 and another one which says that 
birds can fly, and that classification shows that penguins are a subconcept 
of birds. Intuitively, for any penguin the more specific first default should 
be preferred, which means that there should be only one default extension 
in which the penguin cannot fly. However, in default logic the first default 
has no priority over the second one, which means that one also gets a sec­
ond extension where the penguin can fly. This behaviour has already been 
criticized in the general context of default logic, but it is all the more prob­
lematic in the terminological case where the emphasis lies on the hierarchical 
organization of concepts. 

In the present paper we shall consider the problem of modifying termi­
nological default logic such that more specific defaults are preferred. After 
a short recapitulation of default logic and its specialization, terminological 
default logic, in Section 2, we shall consider the existing approaches for ex­
pressing priorities between defaults, and shall point out why they do not 
seem to be appropriate for our purpose (see Section 3). For this reason we 
present in Section 4 an alternative approach for dealing with prioritization 
in the framework of Reiter's default logic. The formalism is presented in 
the general setting of default logic where priorities are given by an arbitrary 

- partial ordering on the defaults. For terminological default theories the pri­
orities between defaults will be induced by the position of their prerequisites 
in the concept hierarchy. We shall exhibit some interesting properties of 
the new formalism, and shall compare it with existing approaches. It turns 
out that every extension according to our definition (S-extension) is an ex-

2The reader who is surprised that this is only taken as a default property of penguins 
should have a look at the cover of [13]-
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tension according to Reiter's definition (R-extension); however, R-extensions 
which are not compatible with the partial ordering on defaults are excluded 
by our formalism. Not all default theories with an R-extension have an S­
extension, but every normal default theory has an S-extension. If the defaults 
are further restricted to prerequisite-free normal defaults then our approach 
coincides with the "ordered default theories" of Brewka and Junker [5, 8]. 
In Section 5 the problem of how to compute S-extensions will be addressed. 
During the preparation of this report we have learned that Brewka [4] has 
also proposed a generalization of his ordered default theories to the case of 
normal defaults with prerequisites. In Section 6 we shall briefly introduce 
Brewka's approach, and point out the differences to our approach. All proofs 
are deferred to the appendix. 

2 Default Logic 

This section briefly reviews Reiter's default logic and its specialization, ter­
minological default logic (see [17] and [1] for details). 

2.1 Reiter's default logic 

Reiter [17] deals with the problem of how to formalize nonmonotonic rea­
soning by introducing nonstandard, nonmonotonic inference rules, which he 
calls default rules. A default rule is any expression of the form 

a:{3 , 
where a, {3, , are first-order formulae. Here a is called the prerequisite of the 
rule, (3 is its justification, and, its consequent. 3 For a set of default rules V, 
we denote the sets of formulae occurring as prerequisites, justifications, and 
consequents in V by Pre(V), Jus(V), and Con(V), respectively. 

A default rule is closed iff a, {3, , do not contain free variables. It is 
semi-normal iff its justification implies the consequent, and it is normal if its 
justification and consequent are identical. A default theory is a pair (W, V) 
where W is a set of closed first-order formulae (the world description) and 
V is a set of default rules. A default theory is closed iff all its default rules 
are closed. 

Intuitively, a closed default rule can be applied, i.e., its consequent is 
added to the current set of beliefs, if its prerequisite is already believed and its 

3For the sake of simplicity we consider only defaults with one justification. How­
ever, our results can easily be extended to the general case of defaults with finitely many 
justifications. 
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justification is consistent with the set of beliefs. Formally, the consequences of 
a closed default theory are defined with reference to the notion of an extension 
(called R -extension in this paper), which is a set of deductively closed first­
order formulae defined by a fixed point construction (see [17], p.89) . In 
general, a closed default theory may have more than one R-extension, or 
even no extension . Depending on whether one wants to employ skeptical or 
credulous reasoning, a closed formula 8 is a consequence of a closed default 

theory iff it is in all R-extensions or if it is in at least one R-extension of the 
theory. 

Reiter also gives an alternative characterization of an R-extension, which 
we shall use, in a slightly modified way, as the definition of R-extension. 
Here and in the following, Th(r) stands for the deductive closure of a set of 
formulae r. 

D efinition 2.1 Let £ be a set of closed formulae } and (W, V) be a closed 

default theory. We define Eo := Wand for all i 2: 0 

Then £ is an R-extension of (W, V) iff £ = Ui~O Th(Ei). 

Note that the R-extension £ to be constructed by this iteration process 
occurs in the definition of each iteration step. Since we are only adding 
consequents of defaults during the iteration, any R-extension £ of (W, V) 
is of the form Th(W U ConeD)) for a subset 15 of V. An easy consequence 
of the definition is that (W, V) has an inconsistent R-extension iff W is 
inconsistent. 

To generalize the notion of an R-extension to arbitrary default theories 
one just assumes that a default with free variables stands for all its ground 
instances. In Reiter's original semantics the world description and the conse­
quents of all defaults have to be Skolemized before building ground instances 
(over the enlarged signature). As shown in [1], Skolemization leads to both 
semantic and algorithmic problems, which is the reason why we shall dispense 
with it in the case of terminological default theories. 

2.2 Terminological de fault logic 

Instead of formally introducing a particular terminological language (see e.g. 
[1] for details), we shall just mention the features of terminological languages 
which will be important for the following. The terminological part of such 
languages allows one to build complex concept descriptions out of atomic 
concepts (unary predicates) and roles (binary predicates). For our purposes 
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it suffices to know that a concept description C can be regarded as a first­
order formula C(x) with one free variable x. The subsumption hierarchy 
between concepts corresponds to implication of formulae: C is subsumed by 
D iff 'Ix: C(x) -t D(x) is valid. 

The assertional part of the language can be used to state that an object 
is an instance of a concept C, or that two individuals are connected by a 
role R. Logically, this means that one has coristant symbols a, b as names for 
objects, and can build formulae C(a) and R(a, b) by respectively substituting 
a for the free variable in C( x) and applying the binary predicate R to the 
constants a, b. A finite set of such formulae is called an ABox. Important 
inference problems for ABoxes are whether a given ABox is consistent, and 
whether an object a is an instance of a concept C, i.e., whether C(a) is a 
logical consequence of the given ABox. It should be noted that the formulae 
C( x) obtained as concept descriptions of a terminological language belong to 
a restricted subclass of all first-order formulae with one free variable. For this 
reason the subsumption, consistency and instantiation problems are usually 
decidable for these languages. 

A terminological default theory is a pair (A, D) where A is an ABox and 
D is a finite set of default rules whose prerequisites, justifications, and conse­
quents are concept descriptions. Obviously, since ABoxes can be seen as sets 
of closed formulae, and since concept descriptions can be seen as formulae 
with one free variable,4 terminological default theories are subsumed by Re­
iter's notion of an open default theory. However, as motivated in Section 3 
and 4 of [1] , we do not Skolemize before building ground instances. This 
means that an open default of a terminological default theory is interpreted 
as representing all closed defaults which can be obtained by instantiating the 
free variable by all object names occurring in the ABox. With this inter­
pretation, it is possible to compute all R-extensions of terminological default 
theories (see [1], Section 5 and 6). 

3 Previous Approaches to Prioritization 

When conflicts occur in reasoning with defaults it is quite obvious that the 
more specific information should prevail over the more general one. In the 
context of terminological default theories this means that, for an instance 
of the concepts C and D, a default with prerequisite C should be preferred 
if C is subsumed by D. As mentioned in the introduction this requirement 
is not taken into account by Reiter's approach. If we assume that penguin, 
bird, and flies are appropriately defined concept descriptions, where penguin 

4The formulae occurring in one rule are assumed to have identical free variables . 
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is subsumed by bird, then the terminological default theory consisting of the 
world description {penguin( Danny)} and the defaults 

penguin( x) : -,flies( x) 
-,flies( x) 

and 
bird( x) : flies ( x) 

flies (x ) 

has two R-extensions. One contains flies ( Danny) and the other -,flies( Danny), 
and the semantics gives no reason for preferring the second one, in which the 
more specific default was applied. 

To overcome this kind of problem several approaches for realizing priori­

ties among defaults have been proposed in the literature. The priorities may 
be induced by specificity of prerequisites (as described above), but may also 
corne from other sources (such as reliability of defaults) . 

3.1 Prioritization via semi-normal defaults 

Reiter and Criscuolo show how some kind of prioritization between defaults 
can be achieved without changing the formalism by encoding the priority 
information into the justifications of semi-normal defaults [18]. If the first 
(more specific) default of our example should be preferred over the second 
one, the negated prerequisite of the first default has to be conjoined with the 
justification of the second one, i.e., the second default has to be rewritten to 

bird( x) : flies ( x) 1\ -,penguin( x ) 
flies ( x) 

Although our simple example can be handled with this approach, it is 
not clear how to treat more complex situations. For example, if there is no 
direct conflict between the consequents of two defaults, then the default of 
lower priority should not generally be blocked by the prerequisite of the one 
of higher priority. Blocking of the default of lower priority should only be 
activated if one is in a context where both consequents together lead to a 
contradiction. Reiter and Criscuolo do not describe a general method for 
solving these problems; they just "fo cus on certain fairly simple patterns 
of default rules." Another problem is that, even if one starts with normal 
defaults (as in our example), one ends up with semi-normal defaults when 
realizing priorities this way. But this means that one has to face the undesir­
able properties of non-normal defaults, such as non-existence of extensions. 
As an additional problem, Brewka [6] points out that "whenever additional 
knowledge requires blocking of a default, the default has to be rewritten." 
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3.2 Prioritized default theories 

In order to avoid the introduction of semi-normal defaults, Brewka [6] takes 
the ideas underlying prioritized circumscription [10] and defines an iterated 
version of default logic, which he calls prioritized default logic (POL). Instead 
of one set of defaults he takes a finite number of sets VI, . . . ,Vn of closed 
defaults, with the intended meaning that defaults in Vi have higher priority 
than those in Vj if i < j. POL-extensions are defined by iterated application 
of Reiter's definition of an extension: A set of closed formulae [ is a POL­
extension of a prioritized default theory (W, VI, . .. , V n ) iff for all i, 1 :::; i :::; 
n, [i is an R-extension of ([i-I, V;), where [0 = Wand [ = En. 

As pointed out by Brewka himself, this approach makes sense only if it 
is restricted to prerequisite-free normal defaults. The problem caused by 
prerequisites is demonstrated by the following abstract example. Assume 
that we have two levels of priority, the first consisting of the default d1 = 

/3: ,/" and the second of d2 = : /3//3 . If we start with the empty world 
description, then the default d1 cannot be applied when constructing the 
R-extension on the first level. On the second level, d2 fires and we get /3 
in the extension [ = [2. Now the default d1 could fire, but it is no longer 
considered on the second level. 

If restricted to prerequisite-free normal defaults, prioritized default logic 
yields a prioritized version of Poole's approach to default reasoning [5], and 
it seems to exhibit a quite reasonable behaviour. One reason why this is 
nevertheless not an appropriate formalism for treating specificity in termi­
nological default theories is that the defaults have to be put into levels of 
priorities which are totally ordered. However, subsumption only gives us a 
partial ordering on defaults. 

3.3 Ordered default theories 

In [5, 8] the approach just described is generalized to the situation where 
priorities are given by an arbitrary partial ordering on defaults. 

To be more precise, an ordered default theory is a triple (W, V, <), where 
W is a set of closed first-order formulae, V is a set of closed prerequisite-free 
normal defaults, and < is a strict partial ordering on V such that {d' E V I 
d' < d} is finite for every d E V. 

The principal idea is to consider total extensions of the partial ordering 
when computing extensions of the ordered default theory (which we shall 
call B-extensions in the following). Any enumeration d1 , d2 , ... of V that 
is compatible with the partial ordering (i.e., i < k if di < dk)5 defines a B-

5Note that the finiteness condition "{ d' E V I d' < d} is finite for every d E V" IS 
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extension as follows . One starts with W, and in the i-th step of the iteration, 
the consequent f3i of the default di = : f3d f3i is added if f3i is consistent with 
the set of formulae obtained after step i-I. Otherwise, the current set of 
formulae remains unchanged. The limit of this process is the extension. 

Even though ordered default theories allow for priorities given by a partial 
ordering, this approach cannot directly be used to realize specificity in termi­
nological default theories . The reason is that the restriction to prerequisite­
free defaults is too severe. In fact, for terminological default theories the 
priorities we wanted to consider were induced by subsumption relationships 
between the concept descriptions in the prerequisites. But this means that 
for prerequisite-free terminological defaults we no longer have a need for pri­
oritization. 

The situation is, however, not as bad as it seems. As shown in [2, 7], the 
closed normal default a : 13/13 can be approximated by the closed prerequisi te­
free normal default : a --+ f3/a --+ 13. Thus one could start with a normal 
terminological default theory, determine the priorities between defaults from 
their prerequisites, and then transform the defaults into the corresponding 
ones without prerequisites. This way one ends up with an ordered default the­
ory which approximates the terminological default theory, and which handles 
priorities induced by specificity of prerequisites in the terminological default 
theory. 

However, we claim that this approach is still not satisfactory because it 
gives us a lot more than we bargained for. As pointed out in [7], the approx- . 
imation not only gets rid of prerequisites, but also equips the defaults with 
properties of classical implication , such as reasoning by cases and reasoning 
using contrapositives of the original defaults. For example, assume that, in 
addition to the concept descriptions penguin, bird, and flies , we have a de­
scription winged for objects having wings, and that the only subsumption 
relation is the one between penguin and bird. If we consider the termino­
logical default theory consisting of the world description {penguin(Danny)} 

and the defaults 

penguin( x) : -,flies( x) 

-,flies( x) 

bird(x) : winged(x) 

winged(x) 

winged( x) : flies ( x) 

flies ( x) 

then the preferred extension should be the one in which Danny has wings, 
but does not fly. The approach we have described yields this extension; but 
it also yields another one in which Danny does not have wings, because as 
soon as the (approximation of the) first default has fired, the contrapositive 
of the third one can be fired, which gives us -,winged(Danny). 

necessary and sufficient for the existence of an enumeration compatible with <. 
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This shows that in this approach the defaults no longer behave like simple 
forward rules. But the similarity of default rules with the monotonic forward 
rules of terminological systems was one of our reasons for choosing default 
logic in the first place. 

4 Default Theories with Specificity 

To overcome the problems pointed out in the previous section we shall now 
propose a new approach for handling priorities among defaults with pre­
requisites. The semantics will be very close to Reiter's semantics, and the 
properties of our theory will also resemble those of Reiter's theory. 

A default theory with specificity is a triple (W, V, <) consisting of a closed 
default theory (W, V) and a strict partial ordering < on V such that {d' E 

V I d' < d} is finite for every d E V. 
In the terminological case, W is an ABox, and V is obtained by in­

stantiating the terminological default rules by all constants occurring in the 
ABox. For two instantiated terminological default rules d l , d2 with prereq­
uisites CI(ad, C 2(a2) we have d l < d2 iff they are concerned with the same 
object (i.e., al = a2) and CI is more specific than C2 (i.e., CI is subsumed 
by C2 but not vice versa). The restriction on the ordering is satisfied since 
V is finite by definition of terminological default theories. 

Our definition of an extension for a default theory with specificity is 
modelled on Reiter 's iterative characterization of R-extensions (see Defini­
tion 2.1). The main idea for treating priorities is that the consequent of 
a default can only be added during an iteration step if the default is not 
delayed by a preferred default, i.e., there does not exist a smaller default 
that is currently active. For a set E of closed formulae, and a closed default 
d = a : (3 i'r we say that d is active in E iff its prerequisite is a consequence of 
E (i.e., a E Th(E)) , its justification is consistent with E (i.e., -.(3 tt Th(E)), 

and its consequent is not a consequence of E (i.e., , tt Th(E)). 

Definition 4.1 Let (W, V, <) be a default theory with specificity) and let £ 
be a set of closed formulae. We define Eo := W) and for all i ~ 0 

E;+l := E; U {,I :ld E v: d = a : (3/" a E Th(E;), -.(3 tt £) 
and all d' < d are not active in E; }. 

Then £ is an S-extension of (W, V, <) iff £ = U;~o Th(E;). 

The only difference to Reiter's characterization is the additional require­
ment that smaller defaults must not be active in the current state of the 
iteration. With this definition of an extension we get the intuitively correct 
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result in our example with the three defaults concerning penguins, birds, 
and objects with wings. In fact, for any penguin the second default (as­
serting that birds normally have wings) can only fire after the more specific 
default (asserting that penguins normally cannot fly) has been applied. But 
this means that the third default (asserting that winged objects normally 
can fly) will never become applicable for a penguin (before its prerequisite 
becomes derivable, the negation of its justification must have been added) . 
This means that our definition of an S-extension chooses from the two exist­
ing R-extensions the one which respects priorities. 

Our first theorem states that this will always be the case, i.e., that the 
set of all S-extensions is always a subset of the set of all R-extensions. 

Theorem 4.2 Let £ be an S-extension of the default theory with specificity 

(W, D, <). Then £ is an R-extension of (W, D). 

The proof is given in the appendix. The main idea is to take an S­
extension [, which has been obtained from the sequence Eo, E I , . .. , and to use 
it to construct a sequence Fo, FI , ... as in the characterization of R-extensions. 
It is easy to see that Ei ~ Fi for all i 2 0, but the converse is not true. In 
fact, the consequent I of a default d may be added to Fi but not to Ei because 
d is delayed by a smaller default which is active. A straightforward way to 
prove that Fi ~ £ = Ui~O Th(E;) would thus be to show that the set of active 
defaults delaying d decreases along our F-iteration. Unfortunately, the set of 
defaults delaying d may also increase because prerequisites of smaller defaults 
which have not been derivable at step i may become derivable in a later step 
of the iteration. In the proof we shall circumvent this problem by considering 
the set of defaults that may potentially delay d, i.e., defaults smaller than d 
that are currently active or may become active as soon as their prerequisite 
is derivable (see Appendix A.I for details). 

Since not all default theories have R-extensions it follows that a default 
theory with specificity need not have an S-extension. But even if we have 
R-extensions there need not exist S-extensions of a default theory with speci­
ficity. This is demonstrated by the following example. 

Example 4.3 Assume that W is empty, and consider the three defaults 

:{3 
{3 , 

: -,{3 
-,{3 

and 
{3:a 

We assume that the first default is smaller than the second one, and that 
there are no other comparabilities with respect to <. This default theory has 
the R-extension Th( {-,{3}), but it does not have an S-extension. In fact, an 
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S-extension would prefer the first default, which yields (3; but then the third 
default (which is a modified version of the well-known one-rule example of a 
default theory having no R-extension) would become relevant. 

As in the case without specificity, normal default theories with specificity 
have much nicer properties than arbitrary default theories with specificity. 

Theorem 4.4 Every closed normal default theory with specificity has an S­

extension. 

The proof, as given in the appendix, is a relatively straightforward adap­
tion of Reiter's proof for R-extensions. To construct an R-extension £ = 
U;~o Th(Ei) of a normal default theory (W, V), Reiter starts with the world 
description (i.e., Eo := W), and in successive steps adds as many conse­
quents of active defaults as is possible without destroying consistency (i.e., 
Ei+1 := Ei U Con(V), where V is a maximal subset of the set of defaults 
active in Ei such that Ei U Con(V) is consistent). To take priority informa­
tion given by a strict partial order < on V into account, this construction is 
simply modified by considering only those active defaults that are minimal 
with respect to < (see Appendix A.2 for details). 

In Appendix A.2 we sha.ll show tha.t this construction always yields an 
S-extension of a normal default theory with specificity. But in general not 
all S-extensions can be obtained this way. The following example shows that 
this is true even for normal default theories without specificity. 

Example 4.5 Assume that W is empty, and V contains the defaults 

d - : ° 1- --, 

° 
d - : (3 
2---

(3 
and 

We assume that the ordering on defaults is empty, which means that here 
the notions R-extension and S-extension coincide. The default theory has 
two R-extensions, namely £1 = Th( {o, (3}) and £2 = Th( {o, ....,(3}). However, 
£2 cannot be obtained by successively adding maximally consistent sets of 
consequents of active defaults. In fact, d1 and d2 are the only defaults that are 
active in Eo = 0. Since E oU {o, (3} is consistent, there is exactly one maximal 
set V ~ {dI, d2 } such that Eo U Con(V) is consistent, namely {dI, d2 } itself. 
Thus the only set E1 that one can get this way is E1 = {o, (3}. This shows 
that extension £2 (which does not contain (3) cannot be obtained. 

For normal default theories with specificity we have "orthogonality of S­
extensions" (see [17], Theorem 3.3), but we do not have "semi-monotonicity" 
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(see [17], Theorem 3.2). For defaults with priorities, semi-monotonicity can­
not be expected to hold since by adding a default of high priority one should 
of course be able to change the extensions considerably. 

If we further restrict the attention to normal defaults without prerequisites 
then the notion of an S-extension coincides with that of a B-extension, which 
shows that our approach is a generalization of ordered default theories. 

Theorem 4.6 Let D be a set of closed prerequisite-free normal defaults. 
Then £ is an S-extension of the default theory with specificity (W, D, <) 
iff £ is a B-extension of the ordered default theory (W, D, <). 

If D was assumed to be finite the proof would be relatively easy; but in 
the general case of possibly infinite sets of defaults it becomes more involved 
(see Appendix A.3). 

5 Computing S-extensions 

Since all S-extensions are R-extensions, one could first generate all R-ex­
tensions of a default theory, and then for each R-extension £ directly use 
the definition of S-extensions to check whether £ is an S-extension. For 
terminological default theories this provides us with an effective procedure for 
computing all S-extensions. In fact, in [1] it is shown how to compute all R­
extensions of a terminological default theory. Since one has only finitely many 
closed defaults, and since the instantiation problem for the terminological 
languages we use in [1] is decidable, the iteration in the definition of an 
S-extension is effective as well. 

However , there may exist a lot more R-extensions than S-extensions , and 
computing R-extensions is rather expensive. For this reason, it would be 
preferable to have an algorithm for directly computing S-extensions. The 
idea behind the algorithm presented below is to make an iteration similar 
to the one in the definition of an S-extension, but without already having 
the final set £ for controlling which consequents of defaults are added. After 
the iteration becomes stable (which will always be the case for finite sets of 
closed defaults) one has to check an additional condition to make sure that 
the result really is an S-extension. 

The main problem is to determine which sets of consequents are can­
didates for being added in each step of the iteration. Of course there can 
be more than one correct choice because there may exist more than one S­
extension. If we look at the definition of E i+1 in Definition 4.1 we see that 
the defaults whose consequents are added are defaults active in Ei that are 
minimal w.r.t. the priority order <. Which subset of their consequents is 
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taken depends on the set [; used for the iteration. Since our algorithm does 
not know the final [; it has to consider arbitrary subsets, but we shall see 
that there are some constraints that reduce the number of possible choices . 

It should be noted that neither a greedy procedure (which takes maximal 
subsets that are consistent with what has already been computed) nor an 
overly modest procedure (which adds only one consequent in each step) would 
be complete. Example 4. 5 demonstrates this for the greedy procedure, even 
in the absence of specificity information. Examples that illustrate why the 
overly modest procedure is not appropriate for computing S-extensions can 
be found in the next section. 

In the following (nondeterministic) algorithm, E j will always be a subset 
of W U Con(1J) , and Ji will be a subset of -.Jus(1J) (where, for a set F of 
formulae, -.F := {-.,8 I ,8 E F}). 

Algorithm 5.1 Let (W, 1J, <) be a closed defa.ult theory with specificity. If 
W is inconsistent then Th(W) is the only S-extension. Otherwise we define 
Eo := Wand Jo := 0. 

Now assume that Ei (i 2: 0) is alrea.dy defined. Consider 

1Ji+1 := {d E 1J I d is active in Ei and no d' < d is active in Ed, 

and choose a nonempty S1lbset £>i+1 of 1Ji+1 that satisfies 

-.,8 ¢ Th( Ei U Con (£>i+1 ) U Ji U -.JUS(1Ji+1 \ £>i+1)) 

for all ,8 E JUS(Vi+1). 
If there is no such set, then Ei+1 := Ei, Ji+1 := Ji . Otherwise each choice 

yields new sets Ei+1 := Ei U Con (Vi+1 ) and Ji+1 := J j U -.JUS(1Ji+1 \ Vi+!). 
The set [; := Ui~O Th(Ei) is an S-extension iff 

1. for all d = a : ,8/, E Ui~l Vi we have -.,8 ¢ [;, and 

2. for all -.,8 E Ui>l Ji we have -.,8 E [;. 

A proof of soundness and completeness of this algorithm is given in Ap­
pendix A.4. The idea behind the sets Jj is as follows. If the consequent of a 
minimal active default is not included in Ei+1 , then the reason must be that 
its justification is not consistent with the final extension. Thus, if we exclude 
such a default from Vi+1 , we know that the negation of its justification must 
belong to the extension. The condition on Vi+1 corresponds to the fact that 
defaults whose consequents are added to an S-extension must have justifica­
tions that are consistent with the extension. This condition can only ensure 
local correctness of our choices. For this reason we have to check the two 
conditions on [; to ensure global correctness. 
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For terminological default theories, all the steps of the algorithm are ef­
fective, provided that the consistency and instantiation problem for the un­
derlying terminological language is decidable (an assumption which is usually 
satisfied). In addition, since one has only finitely many closed defaults, the 
iteration will become stable after finitely many steps. 

6 Related Work 

During the preparation of this report we have learned that Brewka [4] has 
proposed a generalization of his ordered default theories (as described in 
Section 3.3) to the case of normal defaults with prerequisites. In this section 
we shall briefly introduce Brewka's approach, and point out the differences 
to our approach. 

Brewka considers default theories with specificity (1), W, <) where 1) is 
a finite set of closed normal defaults. Any total extension ~ of < defines an 
extension Ui20 Th( Fi ) (called B* -extension in the following) as follows. Let 
Fo := W, and for i 2: 0 

if there exists no default that is active in Fi , 

otherwise, where f3 is the consequent of the 
~-minimal default that is active in Fi . 

From the results in [4] It follows that every B* -extension is an R-extension. 
This means that, as in our approach, Brewka takes a subset of the set of all 
R-extensions as admissible extensions of a default theory with specificity. 
The following two examples show, however, that in general he takes another 
subset than we do. The first example demonstrates that one may get more 
S-extensions than B* -extension . 

Example 6.1 Assume that W is empty, and that 1) consists of the normal 
defaults 

where d2 < d1 , d4 < d3 , and these are the only <-relationships between 
defaults in 1). First, we show that £ := Th( {Q, f3}) is an S-extension. In 
fact, using £ in the definition of S-extensions yields Eo = 0, El = {Q, f3}, 
and E2 = E1 · Since d2 and d4 are not active in Eo (their prerequisites are 
not deducible), d1 and d3 are the minimal defaults that are active in Eo. In 
addition, we have oQ, -,f3 rt. £ , which shows that El = {Q, f3}. But then d2 
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and d4 are not active in E1 (their negated justifications are deducible), which 
shows that E1 = E2 . 

With Brewka's definition of an extension, either a or 13 is added in the 
first step of the iteration, depending on whether d1 ~ d3 or d3 ~ d1 . This is 
so because again d2 and d4 are not active in Fo = 0. We restrict our attention 
to the case F1 = {a}. (The case F1 = {f3} is symmetric.) Now d3 and d4 
are active in F1 , but since ~ is an extension of < we know that d4 is the 
minimal default that is active. For this reason, we get F2 = {a, .f3}, which 
shows that we cannot get E = Th( {a, f3}) this way. 

It is easy to see that in this example the two B* -extensions Th( {a, .f3} ) 
and Th( {'a, f3}) are also S-extensions. But in general, B* -extensions need 
not be S-extensions. This is demonstrated by the next example. 

Example 6.2 Assume that W is empty, and that 1) consists of the normal 
defaults 

The only <-relationship t hat exists is d3 < d4 . Now E := Th( {a, f3,',}) is 
a B* -extension, but not an S-extension . 

To show that E is a B* -extension, we consider the total extension d1 ~ 

d3 ~ d4 ~ d2 of <. With this ordering, we obviously get Fo = 0, and 
F1 = {a}. Now d4 is acti ve in F1, and the only smaller default, d3 , is not 
active. Thus we get F2 = {a,.,}. In the next step, the only active default 
is d2 , which means that F3 = {a,." f3}. In F3, no defaults are active, and 
thus F4 = F3 . This shows that E = Th(F3 ) is a B*-extension. 

Let us now show that E is not an S-extension. Using E in the iterative 
definition of S-extensions, we obviously get Eo = W, and E1 = {a,f3}. Now 
observe that d3 < d4 , and d3 is active in E 1 . But this means that neither the 
consequent of d3 can be added (since the negation of d3 's justification is in 
E) nor the consequent of d4 (since d4 is delayed by d3 ). Thus E1 = E2 , which 
shows that Ui~O Th(Ei) = Th({a,f3}) -:I E. 

7 Conclusion 

We have addressed the question of how to prefer more specific defaults over 
more general ones. This problem is of general interest for default reason­
ing, but is even more important in the terminological case where the em­
phasis lies on the hierarchical organization of concepts. Of the previously 
existing approaches for handling priorities among defaults, Brewka's ordered 
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default theories turned out to come nearest to what is needed for solving 
the specificity problem in terminological default theories. But its restriction 
to prerequisite-free normal defaults seems to be too severe to make it an 
adequate solution in the terminological case. 

Therefore we have proposed a new approach, called default theories with 
specificity, for handling priorities among defaults with prerequisites. The 
properties we could prove for this formalism demonstrate that it is a quite 
reasonable generalization of Reiter's default logic and of Brewka's ordered 
default theories. In addition it correctly handles examples for which the 
other approaches give unintuitive results. 

Brewka's independently developed generalization of ordered default the­
ories to the case of normal defaults with prerequisites turned out to be or­
thogonal to our approach, in the sense that there are extensions obtained 
with his approach that are not obtained with ours and vice versa. 

We have also described a method for generating the extensions of a default 
theory with specificity. This method is effective provided that the base logic 
is decidable, and one has only finitely many closed defaults. These restric­
tions are satisfied in the terminological case, which means that terminological 
default logic with specificity is decidable. 

The priority ordering we have proposed for terminological default theories 
takes into account only the strict subsumption links between prerequisites 
of terminological defaults. If one wants to consider specificity induced by 
defaults as well, one can for example adapt the method proposed by Brewka 
([4], Definition 3) to our approach. Another interesting point for further 
research is to consider priorities on terminological defaults which not only 
take subsumption between prerequisites of defaults into account, but also the 
role relationships in ABoxes. 
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Appendix. Proofs of Theorems 

A .I Proof of Theore m 4 .2 

Theorem 4.2 Let £ be an S-f.:rlension of the default the01'!] with specificity 

(W, V, <). Then £ is an R-e:rtension of (W, V). 

Assume t.hat £ = Ui~O Th(Ei) is an S-extension of (W, V, <), obtained by 
iteratively generating set.s Eo, E), . .. as described in Definition 4.1. Before 
we can prove that £ is also an R-ext.ension we need a technical definition and 
two lemmas. 

For all d E D and i ~ 0 we define 

, . /1' 
Df := {d' = Tid' < d alld (a' rt Th(E,) or d' is active ill Ei)}. 

The set D/ cOIlt.aills all defaul1.s t.Jla1. f'i1.hcr delay dill s1.ep i. of the itf'ratioll, 
or may df'iay (/ ill a ia.t.t-'l' st.pp wli( n t.ilPil' prrl'Pquisit.p Iwcolllf's deducibif'. 
By our assumptioll 0 11 t.he st.rict part.ial ordering <, there ex ist. only finitely 
many (/' < d, whi ch mealls t. liat. t.he set.s D;l are always finit.e. The first lemma 
shows that Dt stays t.he same or get.s smaller wIl<'li t.11<' illdex is ill creased. 

Lemma A.I F01' all d E D awl all 'i. ~ 0 '/11(' !w,'IJe Di' 2 Df+ I' 

Proof. Let d' = a' : /J'/,' be a default conta.ined in Dt+I ' First. assume 
that a' 1:. Tll(Ei+d· Now Ei ~ Ei+1 yields ('(' 1:. Th(Ei ), and thereforf' d' is 
contained in Dr. 

On the other hand, assume tliat d' is active in E i+ l , i. e., ('(' E Th(Ei+1 ), 

-. (3 ' rt Th(Ei+d, and " rt Th(Ei+d· If ('(' rt Th(Ei) then d' is ill Dr, and we 
are done. For a' E Th(E;) , the default d' is active in Ei since -.(3' rt Th(Ei+l ) 

and " tJ. Th(Ei+d together with Ei ~ E,+I imply -.(i' tJ. Th(E;) and " rt 
Th(E;) . 0 

Our next lemma sta.t.es that. a default whose prerequisite is believed in 
some state of the iteratioIl , alld whose justification is cOllsistent with £ will 
eventually fire during tlie it.erat.ioll . 

Lemma A.2 Let d = ('( : /i/, E V and i ~ 0 be such that 0' E Th(Ei) and 

-.(3 rt £ , Th en ther-e c r:isl.s an lndf':r: j > i s'uch that, E Th( Ei)' 

Proof. The lemma is proved by induction on the cardinality of Df. Let 
Af be the set of all defau lts smaller than rl that are active in E j , i.e. , 

At := {d' < did' is active in Ei}. 
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Obviously, At is contained in Dt for all i 2: O. First assume that At is empty, 
i.e., all defaults smaller than d are not active in E j • This, together with our 
assumption that a E Th(Ej ) and .(3 rf. E, implies, E E j +l . Thus we can 
take j = i + 1. 

Now assume that At is not empty. Let d' = a' : (3'/,' be a minimal 
default with respect to < in At. We distinguish two cases. 

Case 1: .(3' rf. E. Since d' is active we also know that a' E Th(Ej ), and 
minimality of d' implies that it cannot be delayed by a smaller default that 
is active in Ei . This shows that " E Ei+1 , and thus d' rf. Df+l. Together 
with Lemma A.l this yields Df :::> Df+l. 

Case 2: .(3' E E. Since E = Uj>o Th(EJ this means that there exists 
j 2: 0 such that .(3' E Th(Ej ). In addition, the fact that d' is active in Ei 
implies that .(3' rf. Th(Ej ), which yields j > i. From .(3' E Th(Ej ) and 
a' E Th(Ej ) ~ Th(Ej ) we can deduce d' rf. DJ. This yields Dt :::> DJ. 

We have seen that in both cases there exists an index j > i such that 
Dt :::> DJ. Obviously, j > i implies that a E Th(E;) ~ Th(Ej ), which shows 
that j also satisfies the assumption of the lemma. By induction we get an 
index j' > j > i with, E Th(Ejl). 0 

To prove Theorem 4.2 we take the S-extension E which has been obtained 
from the sequence Eo, El, ... , and use it to construct a sequence Fo, Fl , ... as 
described in the characterization of R-extensions, i.e., Fo := W, and for all 
i 2: 0 

To show that E is an R-extension , we have to prove that E = Uj~O Th(Fj ). 

Lemma A.3 For all i 2: 0 we have Ei ~ Fi . 

Proof. This can easily be proved by induction on i. o 

In general, the other direction does not hold, i.e., Fj is not necessarily a 
subset of E j • But for all i 2: 0 we get F j ~ E = Uj~O Th(Ej ) as an immediate 
consequence of the next lemma. 

Lemma A.4 For every i 2: 0 and every, E F j there exists an index j such 
, E Th(Ej ). 

Proof. The lemma is proved by induction on i. For i = 0 there is nothing 
to show since Fo = W = Eo. Now assume that i > o. 

Let, be an element of Fi . If, E Fi - l we know by induction that 
, E Th( E j ) for some j. Thus assume that , rf. Fi - l . Consequently" is 
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the consequent of a default a : (3/, whose prerequisite a is in Th(Fi _ 1), and 
whose justification is consistent with [. 

Let II, ... "n be formulae in Fi - 1 such that a E Th( {,I, ... "n})' By 
induction we know that for each of these formulae Ik E Th(Fi-d there exists 
an index jk such that Ik E Th(Ejk)' For j = max{jl,"" jn} we have 
{,I,'" "n} ~ Th(Ej ), which implies a E Th(E)). 

Since we also know that --,(3 tf. [, the assumptions of Lemma A.2 are 
satisfied for d and j. Thus we can conclude that there exists an index j' > j 
such that I E Th( Ejl ). 0 

A.2 Proof of Theorem 4.4 

Theorem 4.4 Every closed normal default theory with specificity has an 
S-extension. 

Let (W, V, <) be a closed normal default theory with specificity. If W is 
inconsistent then Th(W) is an S-extension. Thus assume that W is consis­
tent. 

An S-extension of (W, V, <) is inductively constructed as follows. We 
define Eo := W, and for all i ~ 0 

V i+I := {d E V I d is active in Ei , and no d' < d is active in Ed. 

Let Ei+I := Ei U Con (i\+1 ) where Vi+I is a maximal subset of Di+I such 
that Ei U Con(Vi+d is consistent. 

By compactness, we know that [ := Ui 2: 0 Th(Ei) is also consistent . To 
show that [ is an S-extension, we have to prove [ = Ui2: 0 Th(Fi), where 
Fo:= W, and 

Fi+I := Fi U {(31 3d E V: d = a: (3/(3, a E Th(Fi), --,(3 rt £, 
and all el' < d are not active in Fi }. 

This is an immediate consequence of the following lemma. Note that we need 
not have Ei = Fi. In fact, Fi \Fi- 1 may contain elements I of Th(Fi- 1 ) \ Fi-I, 
whereas elements of Th(Ei-d \ Ei- I are not in Ei, by definition of active. 

Lemma A.5 For all i ~ 0 we have Th(Ei) = Th(Fi)' 

Proof. The lemma is proved by induction on i. For i = 0 there is nothing 
to show since Eo = W = Fo. Thus assume that i ~ 0, and that we already 
know that Th(Ei) = Th(F;). 

First, we show that Ei+1 ~ Th(Fi+1 ). Let (3 be an element of Ei+1 • If 
(3 E Th(Ei) we know by induction that (3 E Th(Fi) ~ Th(Fi+1 ). 
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Now assume that fJ E E;+l \ Th(Ei). Thus (3 E Con(Vi+1) , and this 
means that there exists a default d = 0: : (3/(3 in 1) such that d is active in 
Ei and no default d' < d is active in Ei . 

In order to prove that (3 E Fi+1, and thus (3 E Th(Fi+1), we have to 
show that no default d' < d is active in Fi , 0: E Th(Fi ), and -.(3 ~ £ . 
The first two properties follow immediately from what we know about d 
since Th(Fi) = Th(E;) (by induction). The third property follows from 
(3 E Ei+1 ~ £, and the fact that £ is consistent. This concludes the proof of 

Ei+1 ~ Th(Fi+d · 
Now let us show that Fi+1 ~ Th(Ei+d. Let (3 be an element of Fi+1. 

Again, the case (3 E Th(F;) is trivial. Thus assume that (3 E Fi+1 \ Th(Fi). 
This means that there exists a default d = 0: : (3/(3 in 1) such that no default 
d' < d is active in Fi , 0: E Th(Fi ), and -.(3 ~ £. Now Th(Fi) = Th(Ei) yields 
d E 1)i+1. Note that we really need to know that (3 ~ Th(Fi) = Th(Ei) to 
conclude that d is active in Ei . 

It remains to be shown that d is in fact an element of Vi+1 . Assume to the 
contrary that d ~ Vi+1. By maximality of Vi+1 this means that Ei+1 U {(3} 
is inconsistent, which in turn means that -,(3 E Th(Ei+d· Since (3 E £ and 
Th(Ei+d ~ £, this contradicts the fact that £ is consistent. 0 

A.3 Proof of Theorem 4.6 

Theorem 4.6 Let 1) be a set of closed prerequisite-free normal defaults . 

Then £ is an S-extension of the default theory with specificity (W, 1), <) iff 
£ is a B-extension of the ordered default theory (W, 1), <). 

If W is inconsistent then Th(W) is the only S-extension and the only 
B-extension. In the following we assume that W is consistent. Note that 
this means that all S-extensions and B-extensions are consistent. 

To prove the theorem for consistent W we first show that any B-extension 
of the normal, prerequisite-free theory (W, 1), <) is also an S-extension. Let 

be an enumeration of 1) that is compatible with <, and let £ be the B­
extension defined by this enumeration. This means that £ = Ui?O Th(Fi) 
where Fo := W, and for i 2 0 
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We use E to define the sets Ei as described in the definition of an S-extension 
(see Definition 4.1). What remains to be shown is that this iteration really 
yields E, i.e., that E = Ui~O Th(Ei). This is an immediate consequence of 
the following two lemmas. 

Lemma A .6 For all i 2:: 0 we have Ei ~ E. 

Proof. The proof is by induction on i. For i = 0 we have Eo = W ~ E. 
Now assume that i 2:: 0 and consider (3 E Ei+1 • For (3 E Ei we know 
(3 E E by induction. For (3 E Ei+1 \ Ei we know (beside other things) that 

: (3/(3 E 'D and ,(3 rf. E. Since the default : (3/(3 occurs in the enumeration 
d1 , d2 , ... there exists j 2:: 1 such that (3 = (3j. In addition, ,(3 rf. E implies 
,(3 rf. Th(Fj _ 1 ), which yields (3 = (3j E Fj ~ E. 0 

Lemma A.7 For all i 2:: 0 we have Fi ~ Ei. 

Proof. Again, the proof is by induction on i . For i = 0 we have Fo = 

W = Eo. Now assume that 't 2:: 0 and consider (3 E Fi+1 . For (3 E Fi , 

induction yields (3 E Fi ~ Ei ~ Ei+1 · 

On the other hand , (3 E Fi+1 \ Fi means that (3 = (3i+1 . Since (3 E Fi+1 we 
know tha t (3 E E , a nd thus -.(3 ¢ E. To ge t (3 E E i+1 it remains to b e shown 

that all d' < di+1 are not active in Ei . Recall that a default d' = : (3'/(3' is 
active in Ei iff (3' rf. Th(E;) and ,(3' rf. Th(E;). 

From d' < di+1 we can deduce that d' = dj for some j < i + 1. If (3j E F j 

then Fj ~ Ej (by induction) and Ej ~ Ei (because j S; i) yield (3j E E i , 

which implies that d' = : (3j/ (3j is not active in E i . Finally, assume that 
(3j rf. Fj . This means that ,(3j E Th(Fj_1 ), and thus Fj- 1 ~ Ej- 1 ~ Ei 
(by induction and j - 1 < i) yields ,(3j E Th(Ei)' Again, this implies that 
d' = : (3j/ (3j is not active in Ei . 0 

This concludes the proof that any B-extension is an S-extension. For the 
other direction, assume that E = Ui~O Th(Ei) is an S-extension of the normal, 
prerequisite-free theory (W , 'D, <), obtained by iteratively generating the sets 
Ei as described in Definit ion 4.1. The first lemma says that E satisfies a 
property that is obviously true for B-extensions , but which is not that trivial 
for S-extensions. 

Lemma A.8 For d = : (3/(3 we have either (3 E E or ,(3 E E. 

Proof. The proof is by induction on <. Assume that ,(3 is not in E. Thus 
the only reason for d not to fire in the ith step of the iteration can be that 
there exists a default d' = : (3'/(3' < d that is active in E i - 1 . By induction, 

25 



we know that j3' E E or -,j3' E E, and hence there exists an index j such that 
j3' E Th(Ej ) or -,j3' E Th(Ej ). Thus we have seen that for all d' < d there 
exists an index j such that d' is no longer active after step j of the iteration. 
Since there exist only finitely many defaults smaller than d, this means that 
d will eventually fire, which shows that j3 E E. 0 

To show that E is a B-extension, we shall define a strict partial ordering 
~ that extends <, and show that any enumeration of V that is compatible 
with ~ yields E as B-extension. The main idea behind the definition of ~ is 
that we must prevent the consequents f3 of defaults d = : f3 / f3 with f3 ¢ £ 
from being added to the B-extension. For this reason, we will make sure that 
there are defaults d1 = : j3t/ j31 ~ d, ... , dn = : j3n/ j3n ~ d such that 
j31, . .. ,j3n E E and -,j3 E Th(W U {j31, . .. ,j3n}). 

The main technical problem will be to show that ~ has the finiteness 
property, i.e., that for all d E V the set {d' E V 1 d' ~ d} is finite. This 
property is necessary because otherwise there would not exist an enumeration 
of V that is compatible with ~. 

For i 2:: 1, we define Vi as the set of all defaults that fire at step i of the 
iteration, i.e., 

Vi := {d = : j3/j31 j3 rf. Th(Ei-d, -,j3 rf. E, 
and all d' < d are not active in Ei-d. 

Note that d = : j3/(3 E Vi implies (3 E E i , and thus (3 E E. Let Vfired := . 

Ui~l Vi and V out := {d = : (3/(3 1 (3 rf. E}. Obviously, Vfired and Vout are 
disjoint, but note that their union can be a strict subset of V. 

Lemma A.9 For all d = : j3 / j3 E Vout there exist a nonnegative integer 
i(d) and a finite set of defaults M(d) S;;; Vfired such that one of the following 
two properties holds: 

1. i(d) = 0, M(d) = 0, and -,(3 E Th(W). 

2. i(d) 2:: 1, M(d) S;;; U i:Si(d) Vi , -,(3 rf. Th(Ei(d)-d, and -,j3 E Th(W U 

Con(M( d))). 

Proof. Since dEVout we know (by Lemma A.8) that -,(3 E E = 

Ui~O Th( Ei). We define i (d) to be the smallest i such that -,j3 E Th( Ei). 
If i(d) = 0, we define M(d) := 0. Now -,(3 E Th(W) is satisfied since 
Eo=W. 

Assume that i( d) > 0. Minimality of i( d) yields -,(3 rf. Th(Ei(d)-l). 
From -,(3 E Th(Ei(d)) we can deduce that there exist defaults d1 , ... , dn E 

Ui:Si(d) Vi such that -,(3 E Th(WU Con ( {d1 , ... ,dn }). Thus we define M( d) := 

{ d1 , ... , dn } . 0 
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Now we are ready to define the extension of < we are looking for. Let ~ 
be the transitive closure of the relation < U -<, where -< is defined by 

d' -< d iff d' E Vfired, dE Vaub and d' E M(d). 

Obviously, ~ is an extension of <, i.e., d < d' implies d ~ d'. It remains to 
be shown that ~ is appropriate for our purposes. 

Lemma A.I0 The relation ~ satisfies the following properties: 

1. ~ is Noetherian) i.e.) there does not exist an infinitely descending chain 
d1 ~ d2 ~ ...• 

2. ~ is a partial ordering. 

3. ~ satisfies the finiteness property) i. e. ) for all d E V the set {d' E V I 
d' ~ d} is finite. 

Proof. (1) First note that < and -< are strict partial orderings satisfying 
the finiteness property. For <, this is just the condition that a partial ordering 
has to satisfy to be admissible in a theory (W, V , <). For -<, transitivity and 
irrefiexivity follow from disjointness of Vfired and V aut . In fact, Vfired n 
V out = 0 implies that neither the situation d -< d nor the situation d -< d' -< 
d" can occur. The finiteness property for -< is now an immediate consequence 
of the fact that M (d) is fin i te for all d E V au t. 

Since < and -< are irrefiexive and satisfy the finiteness property, they are 
Noetherian as well. For this reason, an infinitely descending chain for ~ 
must be (without loss of generality) of the form 

For j 2 1 we have d j E Vaut and dj E Vfired. To prove that such a chain 
cannot be infinite, we show that i(dj ) is larger than i(dj+d. 

Let io = i(dj ). Since dj >- dj, we know that dj E M(dj ), and thus 
dj E Ui:Sio Vi. Let i1 ::; io be such that dj EVil. Because dj+1 < dj, 
we thus know that dj +1 cannot be act ive in Eil -1. But this means that 
the justification of dj+1, say (3j+1, is already inconsistent with Eil - 1, i.e., 
-,(3j+1 E Th(Ei1 - 1). This shows that i(dj+1) is smaller than iI, and thus 
smaller than io = i (d j ). 

(2) The relation ~ is transitive by definition. Irrefiexivity follows from 
the fact that ~ is Noetherian. 

(3) The finiteness property of ~ is shown by Noetherian induction on ~. 
For d E V we consider the sets {d' E V I d' < d} and {d" E V I d" -< d}. Both 
sets are finite since < and -< satisfy the finiteness property. The ~-successors 
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of d are the elements of these sets, together with their ~ -successors. By 
induction, we know that the elements of these sets have only finitely many 
~ -successors, which completes the proof of the lemma. D 

N ow let d1 = : (31/(31, d2 = : (32/(32, . .. be an enumeration of V 
that is compatible with ~. The finiteness property for ~ guarantees that 
such an enumeration exists. Let F = Ui>O Th(Fi) be the B-extension of 
(W, V,~) defined by this enumeration. Si~ce ~ extends <, F is an exten­
sion of (W, V, <) as well. It remains to be shown that F = E. 

Lemma A.11 For all i 2 0 we have Fi ~ E. 

Proof The proof is by induction on i. For i = 0, Fo = W ~ E. Now let 
i > O. If Fi = Fi- 1 , we have Fi = Fi- 1 ~ E by induction. 

Now assume that Fi = Fi- 1 U {(3;}, but (3i tt E. Thus di E Vout, and there 
exists a finite set of defaults M(di ) such that -.(3i E Th(W U Con(M(d;))). 
For d = : (3/(3 E M(d i ) we have d ~ di and (3 E E. Since the enumeration 
db d2 , ... is compatible with ~ this means that (3 E Fi - 1 or -.(3 E Fi - 1 . The 
second case cannot occur since this would mean that -.(3 E E, by induction. 

To sum up, we have seen that the consequents of all defaults in M( d) 
are in Fi- 1 . But this shows that -.(3i E Th(Fi _ 1 ), which contradicts our 
assumption that Fi = Fi - 1 U {(3;}. D 

The next lemma completes the proof of Theorem 4.6. 

Lemma A.12 E = F. 

Proof Because of the previous lemma, we know that F ~ E. If F =1= E 
then there exists a default d = : (3/(3 E V such that (3 E E \ F. But (3 tt F 
implies -.(3 E F, which together with F ~ E contradicts the fact that E is 
consistent. D 

A.4 Soundness and Completeness of Algorithm 5.1 

Algorithm 5.1 Let (W, V, <) be a closed default theory with specificity. If 
W is inconsistent then Th(W) is the only S-extension. Otherwise we define 
Eo := Wand Jo := 0. 

Now assume that Ei (i 2 0) is already defined. Consider 

V i+1 := {d E V I d is active in Ei and no d' < d is active in E i }, 

and choose a nonempty subset V i +1 of V i+1 that satisfies 

28 



for all (3 E JUS(i\+l). 
If there is no such set, then Ei+1 := Ei, Ji+1 := Ji . Otherwise each choice 

yields new sets Ei+1 := Ei U Con(Vi+1) and Ji+1 := Ji U --.JuS(1)i+1 \ Vi+l). 
The set E := Ui~O Th(E;) is an S-extension iff 

1. for all d = Q : (3/, E Ui~l Vi we have --.(3 f/. E, and 

2. for all --.(3 E Ui>l Ji we have --.(3 E E. 

If W is inconsistent, Th(W) is the only S-extension, and this is what the 
algorithm yields in this case. Thus we may assume without loss of generality 
that W is consistent. 

To prove soundness, assume that E = Ui~O Th(Ei) where the Ei are ob­
tained as described in the algorithm, and that E is accepted as admissible 
output because it satisfies the two conditions that are checked at the end of 
the algorithm. 

To show that E is an S-extension, we use it to generate sets Fi as described 
in the definition of S-extensions. This means that we define Fo := W, and 

for all i ~ ° 
Fi+1 := Fi U h I 3d E 1): d = Q : (3/" Q E Th(Fi), --.(3 f/. E, 

and all d' < d are not active in Fi }. 

Now E is an S-extension if E = Ui~O Th(Fi). This is shown by proving, for all 
i ~ 0, that Th(F;) = Th(E;). We proceed by induction on i. For i = 0, we 
have Fo = W = Eo . Now assume that Th(F;) = Th(Ei) is already known. 

Proof. Let, be an element of Ei+1. If, E Th(Ei), we have, E Th(Fi) ~ 
Th(Fi+d by induction. Thus assume that, E Ei+1 \ Th(Ei). This means 
that there exists a default d = Q : (3/, E Vi+1 that is the reason for, being 
in E i+1 . 

By definition of 1)i+1 we know that Q E Th(Ei) = Th(Fi), and that no 
default d' < d is active in Ei. Since Tll(Fi) = Th(Ei) this means that d' < d 
is not active in Fi as well. To get, E Fi+1, and thus, E Th(Fi+l) , it thus 
remains to be shown that --.(3 f/. E. But this is the case since d E Uj~l Vj , 

and E satisfies the first condition checked at the end of the algorithm. D 
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Proof. Assume that I E Fi+1. By induction, the case where, E Th(Fj ) 

is again trivial. For I E Fi+1 \ Th(Fi) we know that there exists a default 
d = Q: /3h such that Q E Th(Fd = Th(Ed, -./3 (j. E, and all d' < d 

. are not active in Fi. Obviously, -./3 (j. E implies -./3 (j. Th(EiL and thus 
Th(Fd = Th(Ei) yields d E V i+1. 

To get, E Ei+1 it remains to be shown that d E Vi+1 . Assume that 
d E V i+1 \ V i+1. Then -./3 E Ji+1, and thus the second condition checked at 
the end of the algorithm yields -./3 E E. But we already know that -./3 (j. E. 
o 

This completes the proof of soundness. To show completeness, assume 
that E = Ui~O Th(F;) is an S-extension obtained from the sequence Fo, Fl, . .. 
as described in the definition of S-extensions. We use E and the Fi to choose 
the right sets Vi ~n the algorithm. 

Assume that Vi and the corresponding sets Ei , Ji are already defined, and 
that these sets satisfy Th( Ei) = Th( F;) and Ji ~ E. Note that for i = 0 this 
is trivially satisfied since Eo = Wand Jo = 0. We define 

Vj +1 := {d = Q: /3/, IdE V i+1 and -./3 (j. E} , 

~here Vi+1 = {d I d is active in Ei and no d' < d is active in Ed . Obviously, 
V i+1 is a subset of V i +1 . 

If Vi+1 is empty, then it is easy to see (using the induction hypothesis 
Th(Ei) = Th(Fi)) that Th(F;) = Th(Fi+1), and thus E = Th(FJ To get 
Ei+1 = Ei , and thus Th(Ei+d = Th(E;) = Th(Fi) = Th(Fi+d, we have to 
show that there cannot be a nonempty subset V:+1 of V i+1 satisfying 

for all /3 E JUS(V:+1)· But if the justification /3 of a default d E Vi+1 satisfies 
this condition, Th(EiL = Th(Fi) = E shows that -./3 (j. E. This contradicts 
our assumption that Vif1 is empty. 

Now assume that V i+1 is not empty. We have to show that all f3 E 

Jus(Vi+d satisfy the condition 

This is an immediate consequence of the next lemma since /3 E JUS(Vi+1) 
satisfies -./3 (j. E (by definition of Vi +1 ). 

Lemma A.15 Th(Ei U Con(Vi+1) U Ji U -.JuS(Vi+l \ Vi +1)) ~ E. 

Proof. Since the S-extension E is deductively closed, it is sufficient to 
prove Ei U Con(Vi+d U Ji U -.JuS(Vi+1 \ V i+1) ~ E. 
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By induction, we know Ji ~ £ and Th(E;) = Th(Fi) ~ E. For, E 

Con(Vi+1 ) we have, E Fi+1 ~ £ by definition of V i+1 . Finally, assume that 
d = 0' : {J/, E V i+1 \ V i+1 , i.e., -.{J E -.JuS(Vi+1 \ Vi+d· We have -.{J E E 
because otherwise d would be in Vi +1 . 0 

Thus we have seen that Vi+1 is an admissible subset of V i+1 . The lemma 
shows that Ji+1 := Ji U -.JuS(Vi+1 \ Vi+d (as defined in the algorithm) is 
a subset of E. In addition, by definition of V i+1 , Ei+1 := Ei U Con(Vi+1 ) 

satisfies Th(Ei+1 ) = Th(Fi+1 ). In fact, the only difference possible between 
Fi+1 \ Fi and Ei+1 \ Ei is that Fi+1 \ Fi may contain some additional elements, 
which are, however, elements of Th(Fi) = Th(E;). 

To sum up, we have shown by induction that in each step of the algorithm 
one can choose an admissible set. Vi ~ Vi such that the set Th(Ei) obtained 

by this choice coincides wit.h Th(FJ Thus we have E = Ui~O Th(Ei). It 
remains to be shown that the two conditions at the end of the algorithm are 
satisfied. 

For d = 0' : {J/, E Ui>l Vi we have -.{J t/. E by definition of the sets Vi. 
Finally, Lemma A.15 implies Ui>l Ji ~ E. 
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