
Deutsches
Forschungszentrum
fUr Kunstliche
Intelligenz GmbH

Research
Report

RR-92-55

Natural Language Semantics and
Compiler Technology

John Nerbonne, Joachim Laubsch,
Abdel Kader Diagne, Stephan Oepen

December 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuh1satzenhausweg 3
D-6600 Saarbrucken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz , Fraunhofer Gesellschaft , GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community . There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Natural Language Semantics and Compiler Technology

John Nerbonne, Joachim Laubsch, Abdel Kader Diagne, Stephan Oepen

DFKI-RR-92-55

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9002 0).

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Natural Language Semantics and Compiler Technology*

John Nerbonnet, Joachim Laubscht, Abdel Kader Diagnet, Stephan Oepent

t Deutsches Forschungszentrum fur
Kunstliche Intelligenz
Stuhlsatzenhausweg 3

D-6600 Saarbrucken 11, Germany
{nerbonne,diagne,oe }@dfki.uni-sb.de

Abstract

tHewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94303-0971, USA

laubsch@hplabs.hp.com

This paper recommends an approach to the implementation of semantic representation languages
(SRLs) which exploits a parallelism between SRLs and programming languages (PLs). The design
requirements of SRLs for natural language are similar to those of PLs in their goals . First, in both
cases we seek modules in which both the surface representation (print form) and the underlying
data structures are important . This requirement highlights the need for general tools allowing the
printing and reading of expressions (data structures). Second, these modules need to cooperate
with foreign modules, so that the importance of interface technology (compilation) is paramount;
and third, both compilers and semantic modules need "inferential" facilities for transforming
(simplifying) complex expressions in order to ease subsequent processing.

But the most important parallel is the need in both fields for tools which are useful in combi­
nation with a variety of concrete languages-general purpose parsers, printers, simplifiers (trans­
formation facilities) and compilers. This arises in PL technology from (among other things) the
need for experimentation in language design, which is again parallel to the case of SRLs.

Using a compiler-based approach, we have implemented Nee, a public domain software pack­
age for computational natural language semantics. Several interfaces exist both for grammar
modules and for applications, using a variety of interface technologies, including especially com­
pilation. We review here a variety of Nee applications, focusing on COSMA, an NL interface to a
distributed appointment manager.

Keywords: Computational Linguistics, Semantics, Compiler, Interfaces

"Thanks to Derek Proudian for initial stimulus in the direction of compiler technology and to Masayo !ida, Walter
Kasper, Karsten Konrad and Ingo Neis for important experimentation. This work was supported by research
grants lTW 9002 0 and lTV 9102 from the German Bundesministerium fiir Forschung und Technologie to the
DFKl DISCO and ASL projects.

1

Natural Language Semantics and Compiler Technology

Contents

1 Introduction: Design Goals 2

2 Analogy to Programming Languages 3

3 N££ 5
3.1 Data Structures and Basic Tools 5
3.2 Interfaces and Compilations 6
3.3 Inference Rules 7
3.4 Compiling into N£e 9
3.5 Nee-Planner Interface in COSMA 9

3.5.1 Initial Sentence Semantics (NCC Representation of Parsing Result) 10
3.5.2 Equivalence Transformations and Simplification 10
3.5.3 Translation into Target Language 12

4 Conclusions and Prospectus 13
4.1 Additional Benefits-Comparing SRLs Theoretically 13
4.2 Future Directions 14

References 16

1 Introduction: Design Goals

The focus of this paper is the design and IMPLEMENTATION of semantic representation languages
(SRLs) . Given the need of such modules to represent natural language meanings, we assume
that they should apply linguistic semantics, the specialized study of natural language meaning.
But because of the focus on design and implementation, we examine quite generally the uses to
which such modules may be put, abstracting away from details which distinguish such superficially
distinct approaches as generalized quantifier theory (GQT, Barwise and Cooper 1981), discourse
representation theory (DRT, Kamp 1981), situation theory (Barwise and Perry 1983), or dynamic
logic (Groenendijk and Stokhof 1991).

The appropriate design for any module can only be determined by close analysis of the uses
to which it is to be put. It is therefore appropriate to begin our consideration of the design for an
NL semantics module with a summary of its foreseen applications. We see the areas of application
for semantics modules as divided into three main types. First, and most importantly, there are
NL understanding and generation applications-where meaning representation and manipulation
is central (Allen 1987). These include NL interfaces, such as database query, software systems
interfaces, speech understanding, and device interfaces; information retrieval; message understand­
ing (e.g., of bug reports); and automatic indexing. Second, there is an reciprocal application to
Iinguistics--that of implementing semantic theories in order to enhance one's understanding of
them (cf. e.g., Scha 1981). Third and finally, there are applications in which semantics is used
primarily for the sake of adding additional constraints to a classification task such as speech recog­
nition or grammar checking (Young et al. 1989). (We have included this category for completeness,
but will not try to develop it further since it is still unclear what sorts of semantics information are
most successful in constraining recognition, so that it is difficult to extract useful design criteria
here.)

The first and numerically most important group of applications, that of understanding and
generation, give rise to fairly clear requirements. Independent semantics modules are used with
these applications for the following reasons:

2

meaning representation The SRL must recognize all (or as many as possible) of the semantic
distinctions relevant to the natural language used in an application domain . This is the area
in which linguistic semantics is essential. Because linguistic semantics is an lively research
field, SRL are likely to change frequently, which underscores the need for general specification
tools .

extend domain-independent NLP A semantics module decreases the "tailoring" required to
fit an NLP system to an application domain, and increases the portability of the NLP system
(Martin et al. 1983) .

ease grammar-application mapping The use of an SRL simplifies and standardizes the map­
ping m: grammar {:} domain; in particular it limits the application mapping to m: SRL {:}
domain, and the SRL is much less variable than NL syntax. This involves two interfaces:
grammar {:} SRL {:} domain.

support inference (not in applications) In general applications have no inferential capabil­
ity, but databases and some other software systems are exceptions. Even these, however,
normally do not support, e.g., plural distributivity inferences (Scha and Stallard 1988) , or
sensitivity to presupposition vs. assertion (Weischedel 1979), which are implicitly assumed
by human language users. It is the need to provide for inference which provides the most
convincing argument for using logics as SRLs; these characterize the allowable inferences .
(But the use of logic jibes nicely with the application of linguistic semantics, which is also
logic-based .

support meaning-related processing In addition to inference, semantic modules generally
provide the data structures on which resolution and disambiguation are based. But this
may involve communication, and therefore interfaces with various modules:

• context or discourse memory module (anaphoric resolution, re fe re nce resolution);

• domain model (predicate disambiguation); and
• dialogue management (speech act recognition).

We note the importance of interfaces in this catalogue and the special need for inference.
Applications involving the implementation of linguistic semantics theories share with applications
in NLU and generation the need to provide GENERAL TOOLS for work with SRLs- language
definition tools, readers (parsers), printers (unparsers) , and inference specification tools .

We arrive at the following summary of design goals for work on semantics modules:

• semantic representation

• inference
• support meaning-related processing-disambiguation, resolution , speech act management

• modularity- independence from syntax and application

• modifiability- for experimentation
• interface tools- for mapping into and out of module
• tools for independent use (reader, printer, tracer)

The first three points confirm the good sense of current practice in the field-that of viewing the
main task of the semantic module as the implementation of a linguistic semantic theory (with
selected AI enhancements for resolution and disambiguation). But we suggest that insufficient at­
tention is paid to the latter four points, and that we may profit from a comparison to programming
language technology and compiler construction.

2 Analogy to Programming Languages
It is axiomatic that modern PLs should meet the last four goals listed in the design goals for
SRLs. Standard introductions (Aho et al. 1986) detail how a programming language syntax is
specified in definitions independent of specific machines and environments (modularity) which
are, moreover, easily modifiable given tools for parsing (parser-generators) and printing. The
parsers automatically created from language specifications take well-formed strings as input and
produce abstract syntax trees (like linguistic parse trees) as output . Modern tools also provide

3

Goals PL SRL

modularity independent definition (BNF)

tools parser, printer parser (%), printer

modifiability parser-generator

mappings in, out compiler

inference program transformation resolution, backward-chaining .. .

Figure 1: Design goals common to PLs and SRLs plotted against "st.andard" solutions in the
two areas. The analogy suggests filling the gaps for standard solutions for SRLs by using PL
solutions: language specification tools for definition together with parser-generators to provide
the SRL reader, and compiler technology for interfaces to semantics modules. Finally, program
transformation techniques suggest a simple implementation for at least some inference rules.

printers (unparsers) which reverse the process: given an abstract syntax tree, they produce a print
form (Friedman et a\. 1992, 85ft)

Just as a modular SRL must interface to more than one application, a programming language
needs to be able to run on different machines. In the latter case, this is accomplished by compi ling :
the abstract syntax trees produced by the PL 's parser are transformed int.o (the abstract syntax
trees representing) expressions of another lower-level language (often a machine-specific assembler
language) . While it is obvious how this scheme enables generality vis-a-vis translation targets, it
may not be as immediately apparent that the level of abstract syntax likewise facilitates generality
toward translations sources: in the case of a PL such as C, we not only compile FROM C into
various assembler languages on the basis of transformations of abstract syntax, but we likewise
compile other (normally more specialized languages) INTO C. The SRL correspondence is the use
of compiler technology to translate into SRLs, viz ., in syntax/semantics interfaces (in NL U) or
application/semantics interfaces (in generation) . We provide details of practical experiments on
both interfaces below.

Some of the transformations performed by compilers are not simple translations into target
languages, but rather transformations to alternative structures in the source language (cf. Aho et
a\. 1986, 592ff), or immediate evaluation of parse structures (cf. "translation during parsing" Aho
et a\. 1986, 293-301). The use of these techniques suggests an implementation for some inference
facilities for SRLs- those arising from equivalence rules.

A more ambitious, but still relevant example of facilitating modularity and generality in ev­
eryday compiler technology is the register transfer language (RTL) incorporated in the GNU C
and C++ compilers. RTL is an abstraction both from the concrete syntax of several high-level PLs
(in addition to the existing C and C++ compilers, Ada, Fortran, Pascal and Modula-2 compilers
are under development) and from several concrete assembly languages. The high-level languages
are all compiled into RTL and make use of the same highly optimizing compiler engine . At the
same time GNU compilers have been ported to a large variety of computer architectures relatively
easi ly because it is only the final compiler pass that translates into assembly language on the basis
of machine description files which declaratively specify the mapping from RTL to the concrete
architecture.

Richard M. Stallman describes RTL in the following way in the current gcc manual (Stallman
1992) :

Most of the work of the compiler is done on an intermediate representation called
register transfer language. In this language, the instructions to be output are described,
pretty much one by one, in an algebraic form that describes what the instruction does.

4

RTL is inspired by Lisp lists. It has both an internal form , made up of structures
that point at other structures, and a textual form that is used in the machine descrip­
tion and in printed debugging dumps. The textual form uses nested parentheses to
indicate the pointers in the internal form .

[Chapter 12: RTL Representation. p. 145]

The SRL analogue is of course deployment in a multi-application scenario, where a single NL
system is used to interface to several application systems. l A technical prerequisite for any such
use of NLP technology is the ability to translate to multiple application languages, enhanced by
the translation flexibility compilation offers.

Our core thesis: PL technology may profitably be applied to the design of SRL software.
Figure 1 summarizes the points at which immediate borrowings from PL technology seem apt
means to SRL goals.

We turn now to a brief description of Nee, an SRL implemented using PL technology. We then
illustrate how SRLs profit from this approach using a concrete and fully implemented example.

3 N.c.c
Nee is an SRL which borrows heavily from linguistic semantics in order to provide representational
adequacy, using, e.g., on the one hand work from generalized quantifier theory and on the other
from the logic of plurals. Laubsch and Nerbonne 1991 and Nerbonne 1992 present an overview of
Nee and the background linguistic and model-theoretic ideas, which will not be repeated here.
For the sake of understanding examples below, we note that atomic formulas in Nee are composed
of a predicate together with a set of role-argument pairs, e.g.

'Anterist ships to Hamburg' ship(source :a goal:h)

The Nee formula may also be read: 'a' plays the role of agent and 'It' that of goal with respect
to some shipping situation. An advantage of identifying arguments via roles rather than positions
(as is customary in predicate logic) is that one can sensibly use the same predicate, e.g., ' ship ',
with various numbers of arguments; thus even though something must also playa ' theme ' role in
this situation (what is shipped), it need not be expressed in the role-coded set of arguments . Note
that this means that unbound variables may be dropped from atomic formulas where they occur
only once: there is an implicit existential force attached to unexpressed arguments . Cf. Nerbonne
1992 for formal development .

3.1 Data Structures and Basic Tools

Following the PL lead, we begin with a formal syntactic specification of Nee in a form usable
by a parser-generator. 2 For this purpose we use Zebu (Laubsch 1992b), a public-domain tool in
Common Lisp .3

Zebu grammar specifications are illustrated with an excerpt from the Nee grammar in Figure 2.
A grammar is primarily a set of RULES, each of which specifies a SYNTAX for a grammatical category
and an ACTION to be taken by the parser when the category is found. These specifications are easily
modified in case extensions, variations or even substantial modifications of the language become
interesting. In addition to syntax rules, Zebu grammars may also contain lexical restrictions
(Laubsch 1992b,15) needed for generating a lexical analyzer (which, however, is not used in Nee) .

From the Nee grammar, Zebu generates an LALR(I) parser (Aho et al. 1986,§ 4), which is
the Nee reader. The reader immediately supports experiments with the semantics module by
easing the creation of semantic data structures. The Zebu grammar compilation process detects
any inconsistencies or ambiguities in the grammar definition.

Zebu goes beyond the capabilities of parser-generators such as UNIX yacc in further option­
ally generating (automatically) the definition of a DOMAIN, a hierarchy of data structures (LISP

J See Bobrow et al. 1990 for an exa.mple of this sort. of system.
2We are concentrating here on the more recent NCC implementation; an earlier implementation in REFINE (Laubsch

and Nerbonne 1991) is no longer the focus of our efforts, even though we continue to maintain it for its usefulness
in rapid prototyping. REFINE is a trademark of Reasoning Systems, Palo Alto.

3 Zebu was origina.lly developed in Scheme by William Wells.

5

(detrule Atomic-Wtt
:= (liLL-Predicate "(" Role-Argument-Pairs ")")
:build (make-Atomic-Wtt :-predicate liLL-Predicate

:-Role-Argument-Pairs Role-Argument-Pairs»

(detrule Role-Argument-Pairs
:= ()
:build zb:EHPTY-SEQ
:= (Role-Argument-Pair Role-Argument-Pairs)
:build (CONS Role-Argument-Pair Role-Argument-Pairs»

(defrule Role-Argument-Pair
:= (Role-Complex ":" NLL-Term)
:build (make-Role-Argument-Pair :-Role Role-Complex

:-Argument ILL-Term»

Figure 2: An excerpt of the Nee definition in Zebu. Each LISP-like rule contains a BNF-like
syntax part, introduced by ": =", and an action, introduced by ": build" . Whenever the Zebu
parser finds an instance of the syntax, it takes the action specified in the rule . In these cases this
is always the action of constructing an abstract syntax tree for the expression. A complete BNF
for Nee may be found in Laubsch and Nerbonne, 1991.

structures) for abstract syntax. If this option is chosen, then Zebu defines a structure type for
each expression type; the structure for a given expression (e.g., Atomic-Wff- cf. Figure 2) has
as many fields as the expression has subexpressions (e.g., Predicate and Role-Argument-Pairs) .
On the basis of the domain Zebu then also generates an "un parser" , in this case t.he Nee printer
(which in turn may be called by the LISP printer).

At this point we have implemented a representational system with thorough dual-access: we
may process it through manipulations of eit.her surface or abstract syntax. For example, Nee
structures are created either from strings or from constructor functions (and occasionally in a
mixture of approaches); similarly, one could specify lexical inference rules or substitution rules
either as string operations or as operations on LISP structures (or both). Import.ant processing
submodules have been implemented using both surface and abstract levels. We examine these
now.

3.2 Interfaces and Compilations

As we noted in Section 1, an important task of SRLs is the communication with a variety of
modules in NLP systems, including at least syntax, context (resolution), dialogue management,
and application system . How can the PL approach to SRL design support the construction of
interfaces?

The dual access provided by the PL approach already allows an interesting degree of freedom .
For example, the opportunity to create Nee via constructor functions allows the implementa­
tion of a syntax-semantics interface of the sort suggested by Johnson and Kay 1990-in which
the syntax/semantics interface is const.ituted by a set of generic constructor functions attached
to syntactic rules (and therefore nonterminal nodes) . Nee has be~n employed this way in a
syntax/semantics interface in an extensive NLP system (Nerbonne and Proudian 1987) . This is
appropriate when relatively complex structures are created in a series of simple increments. Al­
ternatively, one may invoke the Nee reader to create Nee, and an interface from the COSMA

appointment manager (cf. below) to Nee (for generation) invokes the reader extensively. This
made the single-step creation of complex structures much simpler.

But given the relatively easy access to abstract syntax trees provided by the Zebu reader ,
the construction of interfaces through genuine compilation (translation of expressions based on
abstract syntax) is also feasible . Nee's basic scheme of compilation is TREE REWRITING (Aho
et al. 1986,572ff). A n abstract syntax tree is traversed (different traversal disciplines may be

6

specified), and at each node , each of a sequence of REWRITE RULES IS applied. A rewrite rule
abstractly takes the form :4

meta-syntactic-pattern ~ replacement-node

A rewrite rule checks whether a meta-syntactic-pattern is satisfied at the current node, and re­
turns the replacement node together with a boolean flag indicating whether the rule has fired:
(replacement-node,6?:bool) . In case we are translating from one abstract syntax to another, then
the meta-syntactic-pattern describes a node in the source language, while the replacement node
belongs to the translation target language. The traversal routine replaces the current node with
the replacement-node in case the rule has fired .

The top-down tree-rewriting algorithm PREORDER-TRANSFORM inputs a tree t and a sequence
(rl .. . r n) of rewrite rules . It then traverses the tree in preorder (Aho et al. 1983,78-9), and at
each node, attempts to rewrite using each of the rules rj . If any rule in the sequence fires, then the
entire sequence is tried again , unti l no rules fire. Then the traversal continues , until the leaf nodes
of the tree. The algorithm is attractive because it reduces the tree-transformation problem to the
specification of transformations on local subtrees . We specify the algorithm here in pseudo-code:

procedure preorder-transform (t :tree , (rl . .. rn} :rules) ;
begin

t1? +- 1;
do while t1? = 1

t1? +-0;
for each rj from i = 1 to i = n do

ifrj(t) = (t',l) then
b e gin

end;

t +- t' ;
t1? +- 1;

for each child c of t do
preorder-transform(c, (rl . .. rn})

end preorder-transform

An analogous POSTORDER-TRANSFORM invokes sequences of rewrite rules in a bottom-up traversal
of the abstract syntax tree.

In addition to optimized control routines for tree-transformation NCC provides a library of
access and manipulation functions (for substitution, construction , simplification) to support the
transformation process. Laubsch 1992a reports on the required transformations for NCC compilers
to SQL and to the New Wave task language, and we present below several transformations needed
in COSMA , a distributed system for appointment management .

Cf. Figure 3 for a further example of a compilat.ion from NCC, this time to a feature description
language.

Compilation is normally an effective translation technique because it abstracts away from irrel­
evant details of the concrete syntaxes of target and source languages. It is especially appropriate:
(i) when communication between modules is limited (e.g., when modules run on separate machines
or in separate processes, so that communication is limited to strings); (ii) when the nature of tar­
get data structures is unknown or unspecified; or (iii) when there is minor variability in targets
(e.g., different versions of the same programming language or query language) .

3 .3 Inference Rules

In Subsection 3.2 above , we examined the use of rewrite rules of the form :

meta-syntaciic-pattern ~ replacement-node

.In the REFINE implementation of Nee, rules are also concretely of this form (d. Rea 1990,§§ 3 .7.5- 3 .7.7). In
current work we are trying to incorporate abstract specifications of Nee rewrite rules in the Zebu-based version .
In the current implementation, rewrite rules are LISP functions.

7

[pred ship,
source a,
theme #1]

[(pred ship)
(source a)
(theme %1)]

FSL Parser

feature-term

~
avp

/'-...
pred ship src a

avp
/'-...
th %1

Transformations

filter non-}/££

mulitply disjunctions out

map structural divergence
manage coreference

ship(src:a th:?x)

t
}/££ Unparser

t
atomic-wff

~
ship role-arg-pail'8

~
rap rap

/'-... /'-...
src a th ?x

Figure 3: Compiler-based approach to the problem of semantics modularity. In order to employ
}/££ not only in the ASL speech understanding project (cf. Gorz 1992) but also in the COSMA

dialogue application (cf. below), involving both different parsers and different feature description
languages (ASL and UDiNe), FS2NLL , a compiler from feature structure (fs) languages to }/££
was developed. The two fs languages were parsed into the same abstract syntax, which was
filtered and transformed into }/££ abstract syntax, which is "unparsed" in a final step. A furt.h er
borrowing from compiler technology, a symbol table, was needed to manage coreferences in the fs
language ('%1,#1') . Diagne and Nerbonne 1992 report on the ASL interface . A final advantage
of the compiler-based approach is the fact that several components of the translation are useful
for reverse translation. N LL2FS was implemented to provide semantic feedback to parsing and
search in the ASL speech understanding system and for generation in the COSMA dialogue system.
NLL2FS has just completed implementation .

where the meta-syntactic-pattern describes a node in the source language, while the replacement
node belongs to the translation target language. This is appropriate for compi ling one langu age
into another, but it is not forced by the technology. In particular, we may formulate rewrite rules
where both the metasyntactic pattern and replacement node refer to }/££ structures, and this is
exactly what we have done in formulating some inference rules for }/££.

For example n-ary conjunctions are normalized according to the following patterns.

flatten
identity element

constant
single element

AND{p AND{q r}} -+ {p q r}
AND{p true} -+ AND{p}
AND{p false} -+ false
AND{p} -+ p

Of course, as we indicated in Section 3.2 above, these are not specified declaratively in the Zebu
implementation, but instead implemented as LISP functions. A declarative (and easier to use)
specification is the subject of ongoing work. Laubsch December 1989 presents many more infer­
ences rules as these were used in a database interface from }/££. There is no further inference
mechanism in }/££, so that the inference system is weak . Eisinger et al. 1992 sketches more
powerfu l rewrite systems which proceed from the same basis. This may be a direction for future
work .

We turn now to illustrations of compiling techniques applied to concrete interface and inference
problems.

8

3.4 Compiling into Nee
The further examples of compilation below all involve compiling FROM Nee into another language;
but it is natural to apply the same techniques when translating INTO Nee, and similar advantages
accrue to these applications as well. This section reports briefly on a syntax/semantics interface
based on the compiler approach.

As noted above Nee supports a variety of creation methods: besides invoking constructor
functions, one may also invoke a reader, and there is a specialized compiler for interfacing to
feature-based grammars.

Compilation is particularly cost-effective when one wishes to construct interfaces to several
modules with similar representations. In this case relatively minor modifications in grammar
specifications may be all that is required to obtain further interfaces . Cf. Figure 3 for an example
in which two feature description languages were compiled into Nee. These were used with different
front ends (different grammars, lexicons, parsers) in different systems with no application-specific
modification.

We turn to a recent application of these compiling techniques in COSMA, both of the inferential
and of the translating types .

3.5 Nee-Planner Interface in COSMA

In building the COSMA (Cooperative Schedule Management Agent) system we connected a com­
putational linguistics core engine for natural language understanding and generation-the DISCO

system developed at DFKI-to an appointment planner that was provided by another in-house
project. The product of our collaboration is a distributed system in which each participant in the
appointment planning process mayor may not use (an instance of) COSMA; the practical raison
d 'et re of NL here is that it enables COSMA users to automate their appointment management even
when users are involved whose appointment management is not done automatically- for these
users an NL channel is maintained. For further details see Neumann et al. 1993.

When interfacing the DISCO meaning processing modules (mainly the Nee semantics mod­
ule with basic resolution and speech act recognition built on top of it) to the planner internal
representation language (henceforth IR), the compiler approach described above has been proven
to be not only powerful enough to support rather complex semantics processing and translation
into and out of the interface language, but at the same time flexible enough to allow for rapid
prototyping in a development environment in which the target language has undergone syntactic
change several times.

The Nee transformations implemented so far in the COSMA prototype can be classified ac­
cording to theory vs . domain dependence and target language (Nee vs. IR) as follows:

• core Nee inference: purely logical (theory-independent) equivalence transformation, e.g.
flattening of nested conjunctions (example below)

• simplification: equivalence transformation dependent on extralogical axioms and generat­
ing a 'canonical' form, e.g., grouping of multiple restrictions on the same variable (example
below)

• disambiguation: resolution of ambiguity, e.g. quantifier scoping

• domain-specific inference: transformation based on domain knowledge, e.g. anchoring of
underspecified time expressions, non-conventional speech act processing

• translation: mapping into different abstract syntax - mediation between different expres­
sive power on either side , e.g. translation to SQL or the COSMA planner internal representa­
tion (example below)

Based on a concrete example from the appointment domain, viz. the sentence
(1) Ich mochte mit Ihnen einen Termin ftir den 23. Oktober um 13:30 h im DFKJ vereinbaren.

(I want to arrange a meeting with you for October 23 at 1:30 PM in the DFKI.)

the following sections will present in some detail the major transformation steps that are taken

9

request(theme : ~vereinbar(agent:(?a I and{has-card-leq(theme: 7a goal: 1)
speak(source:?a)})

goal :(?p I and{has-card-gt(theme:?p goal:1)
speak(goal :?p)})

instance:?e
theme:(?x I

and {and {and{ and {has-card-Ieq(theme: 7x goal: 1)
term in(instance: 7x)}

temp-um(theme:?x
goal :(?t2 I time(instance:?t2

hour: 13
min :30)))}

tem p-fuer(theme:?x
goal :(?tl I time(instance: 7tl

mon:(7m I
oktober(instance: 7m))

day:23)))}
space-in(theme: ?x

goal :(7y I identity(source:7y theme :' OFKI')))})))

Figure 4: Result of parsing the sentence ' Ich mochte mit limen einen Termin fi.ir den 23. Oktobcr
um 13:30 h im DFKI vereinbaren.' after simple translation into Nee. The nes ting and order of
conjuncts in the restriction of the variable ?x is semantically arbitrary, reflecting a (convenient)
grammatical treatment in which adjunct semantics are introduced conjunctively into conditions
on semantic arguments.

in mapping the initial sentence semantics into an appropriate IR expression.5 Because the disam­
biguation and domain-specific inference components are still under development in DISCO (rudi­
mentary parts have been implemented using the Nee compiler approach), we will focus on the
other three areas, core inference, simplification, and translation .

3.5.1 Initial Sentence Semantics (Nee Representation of Parsing ResuIt)

The initial semantics as input to the semantics module in feature structures is heavily determined
by purely syntactic conditions, i.e. the structure derived from the underlying grammar. Because
sentence 3.5 is very rich in prepositional phrases (free adjuncts in the I1PSG-style DISCO gram­
mar), the attachment problem becomes obvious in the grouping of restrictions to the restricted
parameter 7x, the theme of the predicate vereinbarO (cf. Figure 4). Basically the expression given
in Figure 4 is an atomic formula representing a requestO (a primitive from the DISCO syntactic
speech act recognition module which is integrated into the feature structure formalism) whose
theme is vereinbarO (arrange). The agent role 7a of the vereinbarO event 7e is filled by a restricted
parameter that is constrained to be singular and the source of the speakO predicate, i.e. the
speaker (1) - likewise the goal of vereinbarO is rest ricted to the plural hearers (the goal role of
the speakO predicate, i.e. you). The main part of the formula restricts the theme role of what is
to be arranged: the variable 7x is constrained to be a single appointment (terminO) and to stand
in various temporal and spatial relations to expressions originating from the prepositional phrases
for October 23, at 1:30 PM and in the DFKJ. The grouping of conjuncts in the restricting formula
is determined by the nesting of adjuncts in the syntactical structure of the sentence.

3.5.2 Equivalence Transformations and Simplification

This section illustrates the application of inference rules which are purely logical in nature (i.e .,
independent of the underlying semantic theory and the actual application domain) to the parse
semantics shown in Figure 4. We have already seen one example of an applicable logical equivalence

5We have also implemented the reverse translation, from the planner IR into ./IfCC, but it the result has yet to be
integrated into the verbalization part of generation, so that it is untested.

10

transformation, viz., the 'flattening' of nested conjunctions (see § 3.3 above). Other relevant
rewrite rules are the following:

• elimination of non-constraining (unbound) variables:

p(... role; :?y ...) -+ p(. . .) (p is an N££ predicate; 7y does not ocur in ' .. . ')

• identity substitution:

(?x I identity(argl :?x arg2 :c» -+ c (c is an N££ constant)

Applied to the N££ expression in Figure 4 the variable?e (the arrange event) will be removed
from the formula because it is a single unbound occurrence (cf. remarks on anadic predicates
above). One might ask why the variable was ever introduced, if it is only to be eliminated. But
the introduction of an event variable ?e is well motivated in the grammatical system: it serves
as a peg on which to hang the restrictions imposed, e.g., by free temporal adjuncts. Likewise for
grammatical reasons the goal role of the spatial restriction to the appointment variable 7x is itself
a restricted parameter requiring 7y to stand in the identityO relation to the N££ constant 'OFKI'.
The variable ?y might have been used to allow further restriction (e.g., from appositive adjuncts)
during the process of compositional semantic construction. The identity substitution rewrite rule
as stated above will fire for the current example and substitute the constant 'OFKI' for occurrences
of the variable ?y.

While the core logical rewrite rules come built-in with the N££ semantics module (viewed
as a base representational formalism), the second class of transformations listed above, viz., the
simplification to a 'canonical' form, depends on the concrete linguistic theory of semantics assumed .
With respect to example 3.5 we will exclusively look at the representation of temporal constraints
in the DISCO framework.

The basic format of temporal expressions in the DISCO grammar is given by the atomic predicate
timeO with roles instance, year, month , day etc. down to second-additional roles for units of time
could be easily added. The relation is intended to hold whenever the time playing the instance role
falls within the time specifications provided by the various other role-argument pairs. However, as
Figure 4 shows, the actual distribution of temporal data from the example sentence is determined
by the number of prepositional phrases and the syntactical nesting of adjuncts. Moreover , the
two chunks of temporal restrictions on the appointment stand in the scope of two distinct N££
predicates (viz . temp-fuerO and temp-umO)6 as they are lexically introduced by the corresponding
German prepositions.

Two very similar examples from the DISCO grammar yield structurally quite different results
(where the italicized German phrases in the formulas abbreviate further argument specifications­
for fuller specifications, cf. Figure 4) :

• 'am Freitag urn 13:30 h' (on Friday at 1:30 PM)

temp-am(theme:?e
goal :(?tt I and{time(instance:?tt 'Freitag')

temp-um(theme:?tl goal :(?t2 I time(instance:7t2 ' 13 :30 h'»)

• 'am Nachmittag des 23.10 .' (on the afternoon of October 23 [genitive case])

tem p-am(theme: 7e
goal:(?tl I and{time(instance: 7tt 'Nachmittag')

poss(possessed: 7tl possessor:(7t2 I time(instance: 7t2 '23.10.'»)

In the first case the second prepositional phrase is (syntactically) subordinate to the noun 'Freitag'
which itself is the complement to the first preposition 'am' . The N££ expression derived clearly
reflects this surface structure and , hence, gives rise to the interpretation that Friday is (temporally)
restricted to 1:30 PM. Almost analogously the second example exhibits the semantic treatment of
genitive attributes in the DISCO grammar thus making October 23 be the possessor of afternoon.

6The temp- prefix results from sortal disambiguation based on the type of complements (both temporal in this
case) as it is integrated into the feature structure (meta-) representation of Nee expressions and evaluated at parse
time. Cf. Kasper 1992.

11

request(them e:Avereinbar(theme:(?x I and {has-card-Ieq(them e:?x goal: 1)
term in(instance: ?x)
temp-in(theme:?x

goal:(?t I time(instance:?t
mon:(?m loktober(instance:?m))
day:23
hour:13
min:30)))

space-inC them e:?x
goal:'DFKI')})))

Figure 5: Nee representation of example sentence after equivalence transformation and simplifi­
cation (speaker and hearer have been omitted for the sake of perspicuity).

All three example configurations explicitly show the need for simplification int.o a canonical
representation that supports uniform further processing and, finally, the translation into an appro­
priate application directive. The DISCO general time semantics legitimates the grouping of multiple
(and possibly nested) temporal restrictions on the same variable into the scope of a single timeO
predicate by 'unification' of all existing information . For all the given examples Nee transforma­
tions have been implemented that fire on appropriate meta-syntactic configurations (see above)
and rewrite to a unified structure . Because the hand-coding of complex rewrite rules is vulnerable
to errors, we see clearly here how a declarative rule compiler would facilitate simplification (cf.
§ 3.3,§ 4).

Figure 5 shows the Nee representation of the example after core equivalence transformation
and simplification : nested binary conjunctions have been flattened, all t.emporal restrictions on t.he
appointment variable have been unified and the general temp-inO relation has been substituted
for lexically determined predicates.

3.5.3 Translation into Target Language

The internal representation of the appointment planner as the interface language to the semantics
module in the COSMA system (besides the interface to feature structure descriptions) is far more
restricted in expressive power than Nee. The IR language is synt.acti cally close to Common­
Lisp (all data structures are represented as nested association lists) - it ba.c;;ically, provides a
fixed set of negotiation primitives (arrangeO , acceptO, modifyO et al.) that take one or more
appointment descriptions as arguments. Temporal expressions (from natural language input)
constrain appointment descriptions according to the slots time or duration.

Despite the obvious simplicity of the target language in the COSMA prototype we have chosen
to follow the general Nee compiler approach in mapping into IR. Just as inside the Nee module
expressions of the target language are represented as (hierarchically organized) Common-Lisp
structures thus allowing us to view the process of translation as a series of tree transformations
again and to make use of the optimized Nee tree traversal drivers (see above). The Common-Lisp
surface syntax of IR expressions is generated from a (still hand-coded) pretty printer (unparser)
that makes IR abstract syntax trees print as Lisp association lists .

Applying the compiler approach to the Nee to IR interface, we construe the translation module
as a set of rewrite rules that are applied in post-oder (bottom-up) tree traversal 7 just like the other
transformations and simplifications we have seen so far . Though the example sentence has been
chosen because it maps nicely into an appropriate lR expression (see Figure 6) by strictly local
rewrite rules the tree transformation mechanism has turned out to be suitable in handling more

7Bottorn-up processing is the control regime of choice because several high-level rewrite rules depend on the
argument type of embedded structures. Generally a mixed control strategy is achieved by splitting transformations
into (not necessarily disjoint) sets and applying these in order.

12

«arrange . «type. :appointment)
(time. «month. :october)

(day-of-month . 23)
(hour . 13)
(minute . 30)))

(place . "DFKI"))))

• termin(instance:?x) ---- (type. :appointment)

• (?t I time(instance:?t
mon:(?m I oktober(instance:?m»
day:23
hour:13
min:30»

---- (time. «month. :october) (day-of-month . 23)
(hour . 13) (minute . 30)))

• 'DFKI' ---- (place . "DFKI")
• (?x I and {term in(...) tem p-in(...) space-in(.. .)})

---- appointment structure
• request(theme:Avereinbar(... »

-+ (arrange . (... »

Figure 6: Representation of the example semantics in the COSMA internal representation language
(left side) . The structure as shown in Figure 4 (after some very basic domain-specific inference
that is not discussed here) has been transformed according to the rewrite rules given on the right.

complex transformation rules and mediation of differences in expressive power as well.s For details
on rewrite rules in the given example see Figure 6.

4 Conclusions and Prospectus

The purpose of this paper has been to argue for an approach to the software design of semantic
representation languages (SRLs) modeled after standard design in programming language (PL)
and compiler technology. The approach proceeds from an analysis of the goals of SRLs, noting
especially the following :

• there is a need for experimentation in SRLs design because of many unsolved problems

• there is a need for general tools such as readers and printers

• SRLs must participate in a variety of interfaces

• SRLs must support inference

These design goals are largely satisfied by implementing SRLs using standard PL technology.
A BNF-like specification provides a modifiable basis from which experimentation may proceed .
The use of this in a (un)parser-generator provides a useful reader (and printer) . Given parser
and unparser, interfaces may be constructed in a variety of ways, including especially compilation :
the transformation of abstract syntax trees (parser output and unparser input) . Finally, some
inference is implementable using the same transformations employed for interfaces .

We have illustrated the approach and its benefits by reporting on extensive experimentation
with Nee , a public-domain SRL implemented in Zebu using compiler technology. Neehas been
interfaced to (several versions of) three different grammar systems, four different application sys­
tems, and a variety of other modules. The interfaces are exactly defined and easily implemented
and modified; several are done in compiler-style (through tree transformations on abstract syntax
trees), and these are quite flexible, allowing sensitive manipulations of representations. Finally, a
variety of semantic inference rules have been implemented and used .

4.1 Additional Benefits- Comparing SRLs Theoretically

Several further benefits have accrued to this approach. Reverse translations, which are needed
between components in dialogue systems, and which are useful in architectures emphasizing com­
ponent feedback (Gorz 1992), share a good deal of code with translations , facilitating their imple­
mentation.

8E.g. when translating a meeting event into an appointment structure (in sentences like I want to meet you on
October 23 at 1 :30 PM in the DFI(J.) all slots except the type of the appointment object are determined from
restrictions on the event variable. Rewrite rules of this type therefore have an extended domain of locality.

13

The ability to define interfaces on the basis of strings allows not only the tighter definition of
interfaces noted above, but also flexibility in architectures-e.g ., no assumptions need to be made
about whether SRL modules run in the same address space or even on the same machine as the
modules they communicate with. (It even proven useful in communicating with modules in the
same LISP image because it eliminated the need for coordination in packaging.)

Perhaps the most interesting benefit has come in the ability to implement and therefore com­
pare alternative SRLs relatively easily. To take one example, we added an expression type RE­

STRICTED PARAMETER to the language in an effort to explore situation semantics (Gawron and
Peters 1990,20). In a further extension, in order to represent the two-part structure of DRT (Kamp
1981), a slot was added to all formula structures for untrapped parameters (those whose scope
extended beyond operators in the formula). This allowed representations such as the following:

A consultant was not hired by a manager.

7y ; -hire(agt:(?xlmanager(inst:7x))
thm :(?ylconsultant(inst: 7y)))

Thus the formula here indicates that '?y' scopes past all operators in the formula, in particular
past the negation operat.or ,-, (which otherwise nonselectively binds everything within its scope in
DRT). Although none of this goes beyond well-known implementation st.rat.egies for DRT (Johnson
and Klein 1986), the compiler approach allows us to write conversion routines to the language of
generalized quantifiers (from GQT, cf. Barwise and Cooper 1981) form, which were implemented
to convert, e.g. to the following form:

(exists 7y consultant(inst : 7y)
-(exists 7x manager(inst:7x)

hire(agt:?x thm :?y)))

This facilitates practical experimentation with the different theories of semantics- LGQ and DRT,
surely a useful effect in computational semantics.

4.2 Future Directions

The focus of our current work is allowing a declarative (and easier) specification for transformation
rules, as discussed in Section 3.3 above. We are employing a variant of a typed feature description
language for this purpose. 9 The advantage of the specification language over direct coding is that
it relieves a user from the burden of producing the LISP functions which simplify in the desired
way, and it allows us, the designers, much finer control the sorts of simplifications we support.
For example, we can perform type-checking to ensure that type-inconsistent specifications are
disallowed, and we can examine the properties of sets of rules to check for likely problems in
termination, etc.

The following is a specification of the "single element specification rule" (cf. § 3.3) for con­
junctions (and disjunctions):

n-ary-connective-wff: [connective
sub-wfts

--> P

'and I'or
{nll-wff : p }]

The left-hand side of this rule specifies a type of logical expression, namely a formula with an
n-ary connective, which is furthermore constrained so that its connective must be I and or ' or,
and whose subformula set consists of the single formula p. Given a formula of this type, the rule
licenses a simplification to p . Thus this is a rendering of the simplification specified in § 3.3, which
we repeat here for convenience:

single element AND{p} -> P

The left side of the specification is interpreted as a pattern which an input expression is matched
against- e.g.AND{walk(agt :s)}--and a pair < match? : baal, bindings> is returned, where

9This idea of using a typed feature description Ian gauge for the transformation specification language is due to
Karsten Konrad.

14

SLaNT
Expressions

-Rule Base 1-

~
SLaNT

Compiler

I
Generated User-Coded

Rule Base Rule Base r--

-Rule Base II (LISP Fns)-

Input Expression
-String Representation-

Parser
(input language)

~
Input

-abstract syntax tree-
(input language)

A
!

Transformation Module
-tree transformation-

~
Output

-abstract syntax tree-
(output language)

'A
Unparser

-output language-

Output Expression
-String Representation-

Figure 7: Architecture of the transformation module. User-specified transformations are compiled
into LISP functions, which-together with hand-coded transformations-provide a rule base. The
transform component inputs a logical expression and (a selection from) the rule group and processes
in preorder or postorder fashion (cf. § 3.2 above, Inferences and Compilations).

bindings simply keeps track of metavariables (e.g., p) , and what they were matched with- here,
(p. walk(agt :s)). In cases such as these where there is a positive match, the bindings are used in
the construction of a replacement node-in this case just the value of the metavariable p itself­
walk(agt:s). In the current architecture, the entire specification is compiled to a LISP function,
which may then be combined with hand-coded specifications in designing a transformation module.
This allows for flexibility in case the specification language is too weak, and it is clear that
the specification language would benefit from further flexibility, e.g., the possibility of specifying
that OPERATIONS-e.g., substitutions-be perform on logical expressions. Figure 7 sketches the
planned architecture.

We are also investigating more dedicated support for other "back-end" modules and communi­
cations, especially deindexation in the context or discourse memory module, predicate disambigua­
tion in the application interface, support for (or an interface to) a dialogue management module
(speech act recognition), and a lexical semantics interface. We also continue to investigate stronger

15

inferential systems, such as general rewrite systems (Eisinger et al. 1992) . Finally, the NLL2FS
interface, while technically correct, provides no guarantee that the feature structures generated
have anything to do with any particular grammar, which is proving difficult for generation . This
too may be a promising area of deployment for NeCs compiler approach .

16

References
Aho, A., J. Hopcroft, and J. Ullman. 1983. Data Structures and Algorithms. Addison Wesley.

Aho, A., R. Sethi, and J. Ullman. 1986. Compilers: Principles, Techniques and Tools. Addison Wesley.

Allen, J. 1987. Natural Language Understanding. Menlo Park: Benjamin/Cummings.

Barwise, J., and R. Cooper. 1981. Generalized Quantifiers and Natural Language. Linguistics and
Philosophy 4(2}:159-219.

Barwise, J., and J. Perry. 1983. Situations and Attitudes. Cambridge: MIT Press.

Bobrow, R. J., P. Resnick, and R . M. Weischedel. 1990. Multiple Underlying Systems: Translating User
Requests into Programs to Produce Answers. In Proceedings of the 28th Annual Meeting of the ACL,
227-234. Association for Computational Linguistics.

Eisinger, N., A. Nonnengart, and A. Pracklein. 1992. Termersetzungssysteme. In Deduktionssysteme, ed.
K.H.BIiisius and H.-J.Biirckert, chapter 3.4, 126- 149. Miinchen : Oldenbourg. 2nd, Revised Edition.

Friedman, D., M. Wand, and C. Haynes. 1992. Essentials oj Programming Languages. New York: McGraw­
Hill.

Gawron, J . M., and S. Peters. 1990. Anaphora and Quantification in Situation Semantics. Stanford
University: CSLI Lecture Notes.

Gorz, G. 1992. Kognitiv orientierte Architekturen fiir die Sprachverarbeitung . Technical Report ASL-TR-
39-92, Fachbereich Informatik, Universitat Erlangen-Niirnberg.

Groenendijk, J., and M. Stokhof. 1991. Dynamic Predicate Logic. Linguistics and Philosophy14(1) :39- 100.

Johnson, M., and M. Kay. 1990. Semantic Abstraction and Anaphora. In Proceedings of COLING-90, ed.
H. Karlgren, 17-27. Helsinki. COLING.

Johnson, M., and E. Klein . 1986. Discourse, Anaphora and Parsing. Report CSLI-86-63, CSLI, Stanford,
Oct.

Kamp, H. 1981. A Theory of Truth and Semantic Representation. In Formal Methods in the Study of
Language, ed. J.Groenendijk, T. Janssen, and M. Stokhof. Amsterdam: Mathematical Centre.

Kasper, W . 1992. Integration of Syntax and Semantics in Feature Structures. DFKI-Workshop
Naturlichsprachliche Systeme, Saarbriicken, 23 . Okt. Vortrag.

Laubsch, J. 1992a. The Semantics Application Interface. In Applied Natuml Language Processing, ed.
H. Haugeneder. ??address: ??publisher.

Laubsch, J. 1992b. Zebu: A Tool for Specifying Reversible LALR(I) Parsers. Technical report , Hewlett­
Packard Laboratories, Palo Alto, CA, July.

Laubsch, J. December 1989. Logical Form Simplification . STL report, Hewlett-Packard .

Laubsch, J., and J . Nerbonne. 1991. An Overview of N CC. Technical report, Hewlett-Packard Laborato­
ries, Palo Alto, July.

Martin, P., D. Appelt, and F . Pereira. 1983. Transportability and Generality in a Natural-Language
Interface System. In Proceedings of the Eighth International Joint Conference on A rtificial Int elligence,
573-581. Los Altos. IJCAI, Morgan Kaufmann.

Nerbonne, J. 1992. NCC Models. Research report, DFKI, Saarbriicken.
Nerbonne , J ., and D. Proudian. 1987. The HP-NL System. Technical report, Hewlett-Packard Labs.
Neumann, G., S. Oepen, and S. P. Spackman. 1993. Design and Implementation of the COSMA System.

Technical report, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Saarbriicken, Germany.

Reasoning Systems Inc., Palo Alto. 1990. REFINE User's Guide, May.

Scha, R. 1981. Distributive, Collective and Cumulative Quantification. In Truth, Interpretation and
Information, ed. J. Groenendijk, T. Janssen, and M. Stokhof, 131- 158. Dordrecht: Foris.

Scha, R., and D. Stallard. 1988. Multi-Level Plurals and Distributivity. In Proceedings of the 26th Annual
Meeting of the Association for Computational Linguistics, 17- 24 . ACL.

Stallman, R. M. 1992. Using and Porting GNU CC. Fret; Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA, preliminary 2nd edition, May. Remember: GNU's not Unix!

Weischedel, R. 1979. A New Semantic Computation while Parsing: Presupposition and Entailment. In
Syntax and Semantics II: Presupposition, ed . C . Oh and D. Dineen, 155- 182. New York: Academic
Press.

Young, S. , A. Hauptmann , W . Ward, E. Smith, and P. Werner. 1989. High Level Knowledge Sources in
Usable Speech Recognition Systems. Communications of the ACM 32(2):183- 194 .

17

Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publilcationen konnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-02
Andreas Dengel. Rainer Bleisinger. Rainer Hoch.
Frank Hones. Frank Fein. Michael Malburg :
00DA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-pius-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR-92-05
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transfonnational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Winfried Graf, Markus A. Thies: Perspektiven
zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
15 Seiten

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of aU
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except
if otherwise indicated.

RR-92-10
M. Bauer: An Interval-based Temporal Logic in a
Multivalued Setting
17 pages

RR-92-11
Susane Biwtdo. Dietmar Dengler. Jana Koehler:
Deductive Planning and Plan Reuse in a
Command Language Environment
13 pages

RR-92-13
Markus A. Thies. Frank Berger:
Planbasierte graphische Hilfe in
objektorientierten Benutzungsoberfll1chen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehr/e. Markus A. Thies

2 Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies. Frank Berger

22 pages

RR-92-15
Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn. Daniel Kudenko. Berhard Nebel.
Hans-Jiirgen Profitlich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR-92-17
Hassan Aft-Kaci. Andreas Pode/ski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleitner. Ansgar Bernardi. Christoph
Klauck: PIM: Planning In Manufacturing using
Skeletal Plans and Features
17 pages

RR-92-20
John Nerbonne: Representing Grammar. Meaning
and Know ledge
18 pages

RR-92-21
J6rg-Peter Mohren. Jurgen Muller
Representing Spatial Relations (Part II) -The
Geometrical Approach
25 pages

RR-92-22
Jorg Wurtz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka. Ralf Treinen:
Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-2S
Franz Schmalhofer. Ralf Bergmann. OUo Kuhn.
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans
for their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer. Thomas Reinartz.
Bidjan Tschaitschian: Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems
16 pages

RR-92-27
Franz Schmalhofer. J6rg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu. Ansgar Bernardi. Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

RR-92-JO
Rolf Backofen. Gert Smolka
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster
Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-3S
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader. Philipp Hanschke:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke. Manfred Meyer:
An Alternative to 0-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke. Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck. Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre. Wolfgang Finkler. Winfried
Graf. Thomas Rist. Anne Schauder. Wolfgang
Wahlster: WIP: The Automatic Synthesis of
Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. lana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-51
Hans-largen Barckert. Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer. Susanne Biundo. Dietmar
Dengler. Jana Koehler. Gabriele Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-54
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

RR-92-55
lohn Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

DFKI Technical Memos

TM-91-12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially
Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger. Rainer Hoch . Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werkstiickreprl1sentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
lurgen Maller. lorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer. Christoph Globig. lorg Thoben :
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kahn. Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

DFKI Documents

D-92-06
Hans Werner Hoper: Systematik zur
Beschreibung von Werkstticken in der
Terminologie der Featuresprache
392 Seiten

D-92-07
Susanne Biundo. Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn. Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reason ing
Proceedings
56 pages

D-92-09
Gernod P. Lau/kOtter: Implementierungsm(jglich­
keiten der integrativen Wissensakquisitions­
methode des ARC-TEC-Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser ftiC attributierte Graph-Grammatiken
87 Seiten

D-92-11
Kerstin Becker: M(jglichkeiten der Wissensmodel­
lierung filr technische Diagnose-Expertensysteme
92 Seiten

D-92-12
Otto Kuhn. Franz Schmalhofer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensakquisition zur
Fertigungsplanung ftiC Drehteile: eine
B i1dergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the
Applicability of Terminological Reasoning to
Application-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur
Reprilsentation von Features in CIM
98 Seiten

D-92-15
DFKI Wissenschaftlich-Technischer
lahresbericht 1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft­
warekomponenten ftir nattiClichsprachliche
Systeme
189 Seiten

D-92-17
Elisabeth Andre. Robin Cohen. Winfried Graf. Bob
Kass. Cecile Paris. Wolfgang Wahlster (Eds.) :
UM92: Third International Workshop on User
Modeling. Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich. Rainer Hoch: Automatische.
Deskriptor-basierte Untersttitzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschilftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars
57 pages

D-92-23
Michael HerJert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jurgen Muller. Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations­
und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONT AX
28 Seiten

D-92-27
Martin Harm. Knut Hinkelmann. Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning
inCOLAB
40 pages

D-92-28
Klaus-Peter Gores. Rainer Bieisinger: Ein Modell
zur Reprilsentation von Nachrichtentypen
56 Seiten

Natural Language Semantics and Compiler Technology RR-92-55
John Nerbonne, Joachim Laubsch, Abdel Kader Dlagne, Stephan Oepen Research Report

