A New Logical Framework for Deductive Planning

Werner Stephan, Susanne Biundo

December 1992
Deutsches Forschungszentrum
für
Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other related subfields of computer science. The overall goal is to construct *systems with technical knowledge and common sense* which - by using AI methods - implement a problem solution for a selected application area. Currently, there are the following research areas at the DFKI:

- Intelligent Engineering Systems
- Intelligent User Interfaces
- Computer Linguistics
- Programming Systems
- Deduction and Multiagent Systems
- Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts technology transfer workshops for shareholders and other interested groups in order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of the building-up phase.

Friedrich J. Wendl
Director
A New Logical Framework for Deductive Planning

Werner Stephan, Susanne Biundo

DFKI-RR-92-53
This paper will also appear in the Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93).

This work was partly supported by the German Ministry for Research and Technology (BMFT) under grant ITW 9000 8.
A New Logical Framework for Deductive Planning

Werner Stephan and Susanne Biundo

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhansweg 3
D-66123 Saarbrücken
Germany

e-mail: <last name>@dfki.uni-sb.de

Abstract

In this paper we present a logical framework for defining consistent axiomatizations of planning domains. A language to define basic actions and structured plans is embedded in a logic. This allows general properties of a whole planning scenario to be proved as well as plans to be formed deductively. In particular, frame assertions and domain constraints as invariants of the basic actions can be formulated and proved. Even for complex plans most frame assertions are obtained by purely syntactic analysis. In such cases the formal proof can be generated in a uniform way. The formalism we introduce is especially useful when treating recursive plans.

A tactical theorem prover, the Karlsruhe Interactive Verifier KIV is used to implement this logical framework.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2 State Spaces</td>
<td>3</td>
</tr>
<tr>
<td>3 The Logic</td>
<td>6</td>
</tr>
<tr>
<td>4 Actions and Plans</td>
<td>8</td>
</tr>
<tr>
<td>5 The Frame Problem</td>
<td>11</td>
</tr>
<tr>
<td>6 Implementation</td>
<td>12</td>
</tr>
<tr>
<td>7 Related Work</td>
<td>12</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>13</td>
</tr>
</tbody>
</table>
1 Introduction

In this paper we present a logical framework for defining consistent axiomatizations of planning domains. An effective mechanism for defining the basic operations in a constructive way is embedded in a logic that allows properties of state spaces given by these actions to be proved. This not only includes the deductive generation of plans; reasoning about the complete scenario is also supported by this approach.

Our work follows the "Plans are Programs" paradigm. This approach is not new; in deductive planning, in particular, it has already been discussed by several authors (cf. [Green, 1969; Rosenschein, 1981; Kautz, 1982; Bibel, 1986; Manna and Waldinger, 1987; Biundo et al., 1992]). However, their contributions concentrated mainly on aspects of common control structures like sequential composition, conditional branching, and sometimes recursion. Less attention has been paid to the question of data structures. Our approach is based on the idea of treating relations used in the axiomatizations of planning scenarios in the same way data with an algebraic structure are treated in ordinary programming languages. In planning, situations are usually described by a set of relations between certain objects (blocks, rooms, robots etc.). These relations are flexible in the sense that they may change from one situation to another. The fact that these changes are local to a small section of the entire situation is not reflected in the basic semantic concepts underlying most formalisms for deductive planning. So, for example, the blocks world operation \texttt{unstack}(a, b), [Genesereth and Nilsson, 1987], changes only the on-relation between \(a\) and \(b\), the clear-property of \(b\) and the table-property of \(a\). If the pile of blocks is just a part of some room, which in turn is just one constituent of a larger scene, the \texttt{unstack}-operation exhibits very local behavior.

A straightforward concept is to consider these relations as objects, like elements of (abstract) data types in ordinary programming languages. In the theory of abstract data types most often one only considers algebraic structures where all elements are (freely) generated by so-called constructors. In our case, restricting ourselves to finite relations, an appropriate set of "constructors" and "selectors" can easily be devised as well. Starting with the empty relation all finite n-ary relations can be generated by successive applications of an \texttt{add}-operation that adds an n-tuple to a given relation. As is the case with freely generated data types, we have to supply a corresponding \texttt{delete}-operation in order to compute with this data type. It seems reasonable to take these two operations as the basis of a planning language designed to compute changes of relational structures. In our approach relations between unstructured objects correspond to data objects and are therefore considered to be finite. This seems to be a realistic assumption in most applications. In the context of recursive plans the finiteness of relations and its reflection by axioms becomes essential for termination proofs.

This approach, whereby one considers a fixed state space generated by \texttt{add}- and \texttt{delete}-operations, underlies STRIPS-like [Fikes and Nilsson, 1971] planners. These systems also demand a complete description of the operations used in the planning process. In particular, they allow an efficient treatment of the frame problem [McCarthy and Hayes, 1969] since it is explicitly denoted which parts of a situation are changed. Our approach lends formal semantics to the basic concepts underlying the STRIPS approach.
and, while retaining its effectiveness, removes most of its limitations by providing a more general mechanism for defining operations and by embedding this mechanism in a logical framework. This not only extends the STRIPS approach and makes it suitable for deductive planning but also allows whole planning environments to be set up in a provably consistent way.

Based on elementary add- and delete-operations with fixed semantics, we will begin with the definition of basic actions, and then use efficient control structures to build up more complex plans. Apart from the usual ones, these control structures include a new nondeterministic choose construct, necessary to select objects in a nondeterministic way. Domain constraints are formulated as invariants of the basic actions and can be proved from their basic definitions, thus guaranteeing consistency of the whole planning environment. Due to the fixed semantics of the elementary operations, as well as the control structures, “side effects” can be excluded in many cases, by a purely syntactical inspection of plans, thereby providing an efficient treatment of the frame problem.

We will restrict ourselves to a formalization within a variant of Dynamic Logic (DL), although many of the basic ideas could be used in the context of other programming logics as well (e.g., [Salwicki, 1977; Harel, 1979; Manna and Pnueli, 1991; Kröger, 1987]). Not only does DL seem to be expressive enough for most applications in planning; this choice also allows an easy implementation of our formalism in an existing deductive system, the Karlsruhe Interactive Verifier (KIV) [Heisel et al., 1990]. This system can be used as a logic-based shell for setting up planning environments. This includes the definition of the basic actions, the proof of invariants and additional lemmata, and on top of that the implementation of various planning strategies.

The paper is organized in the following way: section 2 introduces the semantic background of our theory. In section 3, we define the logic, including syntax and semantics of the planning language. Section 4 shows how state invariants can be derived from the basic operator definitions; it also shows how the abstract operator descriptions, already seen in other planning formalisms, can be obtained, and serve as the basis for deductive planning. Section 5 is devoted to the frame problem. In section 6 we discuss some aspects of the implementation within the KIV system. Section 7 refers to related work and finally, we conclude with some remarks in section 8.

2 State Spaces

Our logical language will be parameterized by an alphabet of “user-defined” symbols. Since many different sorts of objects occur in most applications, our syntax is based on a finite set of sort symbols \mathbb{Z}. There will be a family of finite, disjoint sets, $\mathcal{C} = \{C_z \mid z \in \mathbb{Z}\}$, the system of constants, and a family of denumerable, disjoint sets $\mathcal{X} = \{X_z \mid z \in \mathbb{Z}\}$, the system of variables. Both families are assumed to be disjoint. Atomic formulae are built up by the equality symbol “\equiv” and “user-defined” relation symbols (e.g., on, clear, table etc.). These are given by a \mathbb{Z}^*-indexed family $\mathcal{R} = \{R_{\bar{z}} \mid \bar{z} \in \mathbb{Z}^*\}$ of disjoint sets, $R_{\bar{z}}$ being the set of relation symbols of type \bar{z}. We assume that almost all sets $R_{\bar{z}}$ are empty and that all of them are finite, i.e., $R := \bigcup\{R_{\bar{z}} \mid \bar{z} \in \mathbb{Z}^*\}$ is a finite set.

For a given triple $(\mathbb{Z}, \mathcal{R}, \mathcal{C})$ a model (defining the state space) is denoted by a structure
\[\mathcal{K} = (D, S, I), \] where \(D = (D_z \mid z \in Z) \) is a system of carrier sets, \(S \) is a set of states (or situations) and \(I \) is a state-dependent interpretation that assigns an element of the appropriate carrier to each pair \((s, c)\) and a relation of appropriate type to each pair \((s, r)\). That is, for \(r \in R_z \) and \(\bar{z} = (z_1, \ldots, z_n) \), we have \(I(s, r) \subseteq D_{z_1} \times \ldots \times D_{z_n} \).

In order to evaluate terms and formulae containing variables, we introduce valuations \(\beta : X \rightarrow D \) that preserve sorts. Terms are either variables or constants. They are evaluated by \([c]_{s, \beta} = I(s, c) \) and \([x]_{s, \beta} = \beta(x) \), respectively. Satisfiability for first-order formulas in structures \(\mathcal{K} \) is defined by

\[
\begin{align*}
\mathcal{K} \models_{s, \beta} r(\tau_1, \ldots, \tau_n) & \iff ([\tau_1]_{s, \beta}, \ldots, [\tau_n]_{s, \beta}) \in I(s, r), \\
\mathcal{K} \models_{s, \beta} \tau_1 \equiv \tau_2 & \iff [\tau_1]_{s, \beta} = [\tau_2]_{s, \beta}, \text{ and} \\
\mathcal{K} \models_{s, \beta} \forall x \varphi & \iff \text{for all } d \in D_z \mathcal{K} \models_{s, \beta^d} \varphi,
\end{align*}
\]

where \(x \in X_z \) and \(\beta^d \) is like \(\beta \) except that \(\beta^d(x) = d \).

As mentioned in the introduction, we are interested in particular finitely generated state spaces given by so-called natural models \(\mathcal{K}_0 = (D_0, S_0, I_0) \). \(D_0 \) is a family of at most countable sets. We define \(S_0 \) to be the set of all mappings that map the relation symbols from \(R \) to finite relations on \(D_0 := \bigcup \{ D_z : z \in Z \} \) of appropriate type and set \(I_0(s, r) = s(r) \). In natural models, constants are interpreted in a state independent way, that is for some \(d \) we have \(I_0(s, c) = d \) for all \(s \in S_0 \). Note that in natural models \(\mathcal{K}_0 \) we may drop the first index when evaluating terms.

The reason for introducing states was, of course, that we want to study operators that take us from one world to another. In particular, we are interested in a small set of operators that can be used as atomic constructs in our planning language, just as assignment statements are used in conventional programming languages. Looking at the state space given by a natural model \(\mathcal{K}_0 \) it is more or less obvious how these elementary operations should look. They can be defined for arbitrary structures \(\mathcal{K} \) if treated as relations on \(S \).

For each \(r \in R_z \) and \(\bar{z} = (z_1, \ldots, z_n) \) let \(d - r \) and \(a - r \)

\[
\ldots - r : D_{z_1} \times \ldots \times D_{z_n} \rightarrow S \times S
\]

be defined as

\[
\begin{align*}
s d - r(d_1, \ldots, d_n) s' & \iff I(s', r) = I(s, r) - \{(d_1, \ldots, d_n)\} \quad \text{and} \quad I(s', r') = I(s, r') \quad \text{for } r' \neq r \\
\end{align*}
\]

and

\[
\begin{align*}
s a - r(d_1, \ldots, d_n) s'' & \iff I(s'', r) = I(s, r) \cup \{(d_1, \ldots, d_n)\} \quad \text{and} \quad I(s'', r') = I(s, r') \quad \text{for } r' \neq r.
\end{align*}
\]
Theorem 1
1) In natural models \mathcal{K}_0 the relations $a - r(\ldots)$ and $d - r(\ldots)$ are total functions.

2) In natural models \mathcal{K}_0 for any two states s and s' there exists a finite sequence of elementary add-and delete-operations op_1, \ldots, op_n, such that $s \circ op_1 \circ \ldots \circ op_n = s'$, where 'o' denotes the composition of relations.

3) If for elementary operations op_1, op_2

\[
\{op_1, op_2\} \neq \{d - r(d_1, \ldots, d_n), a - r(d_1, \ldots, d_n)\},
\]

then

\[
op_1 \circ op_2 = op_2 \circ op_1,
\]

\[
d - r(d_1, \ldots, d_n) \circ a - r(d_1, \ldots, d_n) = a - r(d_1, \ldots, d_n),
\]

\[
a - r(d_1, \ldots, d_n) \circ d - r(d_1, \ldots, d_n) = d - r(d_1, \ldots, d_n).
\]

In general structures \mathcal{K}, if $\lambda x.\mathcal{I}(s, x) = \lambda x.\mathcal{I}(s', x)$ implies $s = s'$, the relations $a - r(\ldots)$ and $d - r(\ldots)$ are partial functions. A more serious restriction is imposed by requiring the add- and delete-operations to be total functions. This means that no interesting domain constraints will hold for the whole state space. But what can we do then if we are interested only in states where, for example, we have $on(y, x) \land on(z, x) \rightarrow y \equiv z$? The answer is simply to check whether the set of states with the above property is closed under the basic actions we want to use in our plans. That is, we treat domain constraints as invariants of the basic actions. Since the concept of invariant is broader than the concept of domain constraint—domain constraints must, of course, be invariants of the basic actions—our approach does not impose any restriction on the formulation of planning problems. It offers, as we shall discuss in section 4, the advantage of proving formulae to be invariant, thereby ensuring the soundness of the whole axiom system.

It can be proved (in a way which would have to be made precise) that all structures \mathcal{K} where the constants are rigid symbols and $\mathcal{I}(s, r)$ is always a finite relation are "contained" in a natural model \mathcal{K}_0. Hence, the only crucial question is whether we can define (or "program") sufficiently many actions in a sufficiently abstract way. The property stated in part two of the theorem guarantees that the basis of our planning language is powerful enough: All states can be reached from each other by applying finite sequences of basic add- and delete-operations. Of course, this does not mean that all actions can be "programmed" in a satisfactory way. Indeed it turns out that the control structures have to be carefully designed. In particular, we need a nondeterministic choose construct in connection with recursive actions. The choose construct will be introduced in section 3.
3 The Logic

We start with the definition of the syntax of our planning language. Actions \(\pi \) and action abstractions \(\gamma \) are defined relative to a vocabulary given by \((Z, C, R, \mathcal{X})\). In addition, we use a system \(\mathcal{A} = (A_z | z \in Z^*) \) of names for abstractions.

\[
\pi ::= \text{skip} | \text{abort} | \text{delete-r}(\tau_1, \ldots, \tau_n) | \text{add-r}(\tau_1, \ldots, \tau_n) | (\pi_1; \pi_2) | (\pi_1 \text{ or } \pi_2) | \text{if } \varphi \text{ then } \pi_1 \text{ else } \pi_2 \text{ fi} | \text{choose } x \text{ begin } \pi \text{ end} | \gamma(\tau_1, \ldots, \tau_n)
\]

where \(\varphi \) is a first-order formula and \(r \) is a relation symbol from \(R \). We impose the usual type constraints. The occurrence of \(x \) following \(\text{choose} \) is a binding occurrence, the scope of which consists of the plan enclosed by "\text{begin}" and "\text{end}".

Let \(\mathcal{K} = (D, S, I) \) be a structure for \((Z, C, R)\). The semantics of plans \(\pi \) is given by a valuation \([\ldots]\), where \([\pi]\) is a subset of \(S \times S \).

\[
\begin{align*}
[\text{skip}]_{\beta} &= \{ (s, s') | s = s' \} \\
[\text{abort}]_{\beta} &= \{ \} \\
[\ldots \tau(\tau_1, \ldots, \tau_n)]_{\beta} &= \{ (s, s') | s \cdots \tau(\tau_1, \ldots, \tau_n)s' \} \\
[\pi_1; \pi_2]_{\beta} &= \{ \pi_1_{\beta} \circ \{ \pi_2 \} \} \\
[\text{if } \varphi \text{ then } \pi_1 \text{ else } \pi_2 \text{ fi}]_{\beta} &= \left(\left(\varphi \right)_{\beta} \circ \{ \pi_1 \} \right) \mathbin{\cup} \left((\neg \varphi)_{\beta} \circ \{ \pi_2 \} \right) \mathbin{\cup}
\end{align*}
\]

where \(s (\varphi)_{\beta} s' \) iff \(s = s' \) and \(\mathcal{K} \models_s \varphi \)

\[
\begin{align*}
[\text{rec}_n a(x_1, \ldots, x_n), \pi(\tau_1, \ldots, \tau_n)]_{\beta} &= \{ \pi(a \leftarrow \text{rec}_n a(x_1, \ldots, x_n), \pi) \}_{\beta}^{d_1, \ldots, d_n} \\
&\text{where } d_i = [\tau_i]_{\beta} \text{ for } 1 \leq i \leq n \text{ and } \pi^* \text{ results from } \pi \text{ by suitably renaming the bound variables, so as to avoid clashes.}
\end{align*}
\]

We have defined the semantics for arbitrary structures \(\mathcal{K} \). However, the reader should bear in mind that we are interested only in natural models \(\mathcal{K}_0 \), where the \text{add-} and \text{delete-}operations are total functions on the set of states.

\text{rec} a(x_1, \ldots, x_n), \pi \text{ is a recursive action } x_1, \ldots, x_n \text{ being the formal parameters and } \pi \text{ being the body of that action. To simplify our exposition we restrict ourselves to simple recursive actions, an extension to mutually recursive ones being straightforward. The semantics (and proof theory) of recursive abstractions relies on finite approximations. As can be seen from the semantic definitions above } \text{rec}_n a(x_1, \ldots, x_n), \pi \text{ denotes the } n \text{'th approximation of the meaning of } \text{rec} a(x_1, \ldots, x_n), \pi. \text{ Uninterpreted reasoning is achieved by using induction on the indices of approximations in order to prove statements about recursive actions.}

The language is referentially transparent with respect to variables. Side effects occur only on the level of relations (states). This is reflected in the axiomatization which, in this aspect, is simpler than that of ordinary DL and close to that given in [Kautz, 1982].
The *choose* construct guesses a new element by changing the valuation (environment) that is used to evaluate the subsequent action. However, this change of environments as in the case of parameter passing follows a strict stack discipline, that is, the effect of choosing a new element can not work outside the plan enclosed by “begin” and “end”. The *choose* construct is necessary to “move” in structures.

To be able to reason about these changes, we follow the approach taken in Dynamic Logic, in that we extend the predicate logic used so far by formulae \([r] \varphi \) and \([? - r(\xi_1, \ldots, \xi_n)] \varphi \), where \(r \) is a relation symbol and the \(\xi_i \) are either terms or “placeholders” \(\Theta \).

The formal semantics of this new type of formulas is given by

\[K \models \varphi \text{ iff } K \models [\pi] \varphi \text{ for all } s \text{ such that } s \models [\pi] \varphi \]
\[K \models \varphi \text{ iff } K \models [? - r(\xi_1, \ldots, \xi_n)] \varphi \text{ for all } s' \text{ such that } I(r, s') \text{ differ in } (d_1, \ldots, d_n) \]

Intuitively, \([\pi] \varphi \) has to be read: “\(\pi \) terminates, \(\varphi \) holds afterwards.” The dual operator \(<\pi> \), defined by \(<\pi> \varphi := \neg [\pi] \neg \varphi \) has to be read: “\(\pi \) terminates with \(\varphi \).”

The (modal) operator \([? - r(\xi_1, \ldots, \xi_n)] \varphi \) refers to all states that differ from the given one in at most the value of \(r \), where some argument positions are fixed. For example, \([? - on(r, \Theta)] \varphi \) means that \(\varphi \) holds in all states that differ from the given one in at most the on-relation whereas \([? - on(\tau_1, \tau_n)] \varphi \) means that \(\varphi \) holds in all states that differ from the given one in at most the on-relation between the objects denoted by \(\tau_1 \) and \(\tau_n \). In ordinary DL, this is achieved by quantifying on program variables. A kind of “quantification” like the one above increases the expressive power of the formalism in general and is *necessary* for inductive proofs.

The axiomatization follows the paradigm of so-called uninterpreted reasoning, where we do not rely on the expressive power of the underlying data structure. The semantics and proof theory of recursive actions (plans) is outside the scope of this paper, however, a general introduction to uninterpreted reasoning, as it is implemented in the KIV system, can be found in [Heisel et al., 1989]. An axiomatization of a very powerful procedure concept for imperative programming languages is given in [Stephan, 1989]. Here we present only some axioms for the non-standard constructs.

As is the case with assignments in ordinary programming languages, the effects of the *add*- and *delete*-operations on first-order formulae can be described in an exhaustive way.

Theorem 2 Let \(\varphi \) be a formula such that all bound variables are distinct from the variables occurring in \(\tau_1, \ldots, \tau_n \). Then the weakest precondition (in the sense of [Dijkstra, 1976]) of \(\varphi \) with respect to delete-\(r(\tau_1, \ldots, \tau_n) \) and add-\(r(\tau_1, \ldots, \tau_n) \) are the formulae \(\dot{\varphi} \) and \(\dot{\varphi} \), respectively, where \(\dot{\varphi} \) results from \(\varphi \) by replacing all atomic subformulae

\(r(\sigma_1, \ldots, \sigma_n) \) by \((r(\sigma_1, \ldots, \sigma_n) \land (\tau_1 \neq \sigma_1 \lor \ldots \lor \tau_n \neq \sigma_n)) \)

and \(\dot{\varphi} \) results from \(\varphi \) by replacing all atomic subformulae
Analogous to the well known assignment axioms we have

\[\text{[delete}_{-r}(\tau_1, \ldots, \tau_n)]\varphi \leftrightarrow \hat{\varphi} \quad \text{and} \quad \text{[add}_{-r}(\tau_1, \ldots, \tau_n)]\varphi \leftrightarrow \hat{\varphi}. \]

In addition to that, uninterpreted reasoning requires axioms like:

\[
\forall (x_i \not\equiv y_i \mid 1 \leq i \leq n) \rightarrow \\
\left([\text{delete}_{-r}(\bar{x})][\text{add}_{+r}(\bar{y})] \varphi \leftrightarrow [\text{add}_{-r}(\bar{y})][\text{delete}_{-r}(\bar{x})] \varphi \right), \\
[\text{delete}_{-r}(\bar{x})][\text{add}_{-r}'(\bar{y})] \varphi \leftrightarrow [\text{add}_{-r}'(\bar{y})][\text{delete}_{-r}(\bar{x})] \varphi , \\
[\text{delete}_{-r}(\bar{x})][\text{add}_{-r}(\bar{x})] \varphi \leftrightarrow [\text{add}_{-r}(\bar{x})] \varphi , \\
[\text{add}_{-r}(\bar{x})][\text{delete}_{-r}(\bar{x})] \varphi \leftrightarrow [\text{delete}_{-r}(\bar{x})] \varphi ,
\]

For the choose construct we have

\[[\text{choose } x \text{ begin } \pi \text{ end}]\varphi \leftrightarrow \forall y. [\pi^y_x] \varphi , \]

where \(y \) is a fresh variable. The axioms for the simple structured commands are as usual. Examples for general (modal) axioms are

\[[\pi](\varphi \rightarrow \psi) \rightarrow ([\pi]\varphi \rightarrow [\pi]\psi) , \]
\[\forall x [\pi]\varphi \rightarrow [\pi] \forall x \varphi , \]

where \(x \) must not occur free in \(\pi \), and

\[\forall x. \varphi \rightarrow \varphi_x^\tau , \]

where \(\tau \) is free for \(x \) in \(\varphi \), and \(\varphi_x^\tau \) denotes the substitution of \(\tau \) for all free occurrences of \(x \) in \(\varphi \).

4 Actions and Plans

We are now going to outline how planning domains can consistently be defined in our theory. In section 6 we will discuss briefly the technical aspects of a logic based shell for planning and the implementation of planning strategies within such a system. Our treatment of the frame problem will be discussed separately. The main concern of this section is to demonstrate how basic actions can be defined in an abstract way and that domain constraints can be treated adequately.

There is no technical distinction between basic actions and derived plans composed out of them. The latter can be used without restriction as basic operations for higher levels of the planning process. However, we have to start out with some set of basic actions that are hand-coded. The first step involves fixing the set of relation symbols we want to use. At the end of this section we will discuss how defined notions, like above in the blocks world scenario can be added to the theory.

The unstack operation, for example, can be defined as a simple abstraction \(\gamma_{\text{un}} \).
\textbf{rec} unstack(x, y). \textbf{if} on(x, y) \land \text{clear}(x) \\
\textbf{then} add - table(x); \\
\quad \text{add} - \text{clear}(y); \\
\quad \text{delete} - on(x, y) \\
\textbf{else} abort fi.

In most applications, the state space is restricted by so-called \textit{domain constraints}. In the blocks world, for example, we have $\forall x \left(\text{clear}(x) \leftrightarrow \neg \exists y \text{ on}(y, x) \right)$.

In our setting, domain constraints are treated as \textit{invariants}. For φ being the equivalence above, we can \textit{prove} the assertion $\varphi \rightarrow [\gamma_{un}(x, y)]\varphi$. If a similar assertion holds for all basic actions, we can use the domain constraint φ in all states reached by arbitrary plans made up of these basic actions, provided φ has been included in the description of the initial state. This fact can be proved formally in our setting.

The great advantage is that adding domain constraints in such a way guarantees \textit{consistency} with the definition of the basic actions and, with that, consistency of the whole planning environment. Having deduced a set of domain constraints, we may also simplify the \textit{description} of the basic actions to be used in the planning process. From the definition given above, a sufficient (abstract) description of the \textit{unstack} operation (in the style of [Kautz, 1982]) would be:

$$\text{on}(x, y) \land \text{clear}(x) \rightarrow <\gamma_{un}(x, y) > \text{table}(x) \land \text{clear}(y).$$

As another example, suppose we have a world where blocks have colours and let \textit{red}, \textit{black}, and \textit{white} be the only colours that occur. An operator \textit{paintblack} [Bibel \textit{et al.}, 1989] that changes the colour of any block to black is defined by the abstraction γ_{pb}

\textbf{rec} paintb(x). \textbf{add} - black(x); \\
\textbf{delete} - white(x); \\
\textbf{delete} - red(x).

If we can prove that the formula $\forall x \left(\text{red}(x) \lor \text{black}(x) \lor \text{white}(x) \right)$, stating that every block has exactly one of the three colours, is an invariant of all basic actions, then $<\gamma_{pb}(x) > \text{black}(x)$ sufficiently describes our action.

Note that it is not necessary to specify adding or deleting negative facts in our approach. So, even without the domain constraint above, $\neg \text{white}(x)$ as well as $\neg \text{red}(x)$ can be proved to hold after the execution of γ_{pb}.

Definitions of basic actions can be more complex than those presented above. Using the \textit{choose} construct we are able to define, for example, the nondeterministic \textit{dump} operator [Kautz, 1982], that transfers \textit{all} blocks from a certain box into another by
\textbf{rec} dump(x, y). if $\exists z \text{ in}(z, x)$
then choose z
\begin{enumerate}
\item begin if $\text{in}(z, x)$
\item then add $-$ in(z, y);
\item delete $-$ in(z, x);
\item dump(x, y)
\item else abort fi
end
\item else skip fi
\end{enumerate}

and prove theorems about it.

The language introduced above can also be used to treat “recursively defined notions”, like the \textit{above} relation in the blocks world scenario. This kind of relations often causes problems in planning environments, see for example [Kautz, 1982]. Let γ_{ab} be the recursive abstraction

\textbf{rec} above(x, y). if $\neg \text{on}(x, y)$
then choose z
\begin{enumerate}
\item begin if $\text{on}(z, y)$
\item then above(x, z)
\item else abort fi
end
\item else skip fi
\end{enumerate}

Using this piece of program the relation \textit{above} can be defined by

$$\text{above}(x, y) :\iff <\gamma_{ab}(x, y) > \text{true}$$

We are then able to prove lemmata like

$$\left(\Sigma \land \text{above}(x, y) \land x \neq u\right) \rightarrow [\gamma_{ab}(u, v)]\text{above}(x, y),$$

$$\text{on}(x, y) \rightarrow \text{above}(x, y),$$

and

$$\left(\text{on}(y, z) \land \text{above}(x, y)\right) \rightarrow \text{above}(x, z),$$

where Σ is the set of domain constraints.
5 The Frame Problem

Considering the unstack-operation and analyzing its definition reveals the fact that the
only relations affected by unstack are table, clear, and on. This, in particular, means
that unstack has no side effects on, for example, the colours of blocks. Thus,

\[\text{white}(x) \rightarrow [\gamma_{\text{un}}(a, b)]\text{white}(x) \]

appears to be a valid (frame) assertion. This observation leads us to an efficient
treatment of the frame problem, which has the following proper foundation.

In our approach, the basic actions of a planning domain are defined as abstractions,
the bodies of which in simple cases merely contain the elementary add- and delete-
operations. From these definitions of basic actions, frame assertions can be inferred
using uninterpreted reasoning. Clearly, we have to use the basic axioms for the add-
and delete-operations, respectively, in these deductions. In general, frame assertions
are of the form

\[r(\tau_1, \ldots, \tau_n) \rightarrow [\pi](\epsilon \rightarrow r(\tau_1, \ldots, \tau_n)), \]

where the condition \(\epsilon \) consists of inequalities. In fact, another frame assertion for the
unstack-operation would be:

\[\text{on}(x, y) \rightarrow [\gamma_{\text{un}}(a, b)]((x \neq a \lor y \neq b) \rightarrow \text{on}(x, y)) \].

Of course, the frame assertions can be proved for complete plans as well.

One main advantage of our approach, however, is that a comprehensive subset of
valid frame assertions can be obtained in a nondeductive way by an algorithm that
analyzes the syntactical structure of plans. Assertions generated by this algorithm can
be proved in a uniform way, that is, we can provide a proof procedure (tactic in KIV)
that automatically generates a proof for each such assertion. We shall now outline the
basic ideas underlying this algorithm.

In order to formulate the general method for computing sound frame assertions (for
general plans), we have to analyze the semantics of our planning language. It turns out
that for each plan \(\pi \) and each relation symbol \(r \), the formal execution tree of \(\pi \) contains
only a finite number of different applications of the elementary operations \(-r(\ldots) \),
if we do not take into account those arguments that are program variables bound by
a choose construct. In such a generalized ‘call’ \(-r(\tilde{\tau}_1, \ldots, \tilde{\tau}_n) \), we write \(\tilde{\tau}_i = \circ \), if
\(\tilde{\tau}_i \) is such an argument. Let \(R_d(\pi, r) \) and \(R_u(\pi, r) \) denote the set of all applications of
elementary add- and delete-operations that are reachable by \(\pi \), respectively. Using
this notation we get the following result.

Theorem 3 For each \(\pi \) and each relation symbol \(r \) the following implications are provable in our axiomatization:

\[
\begin{align*}
\text{r}(\sigma_1, \ldots, \sigma_n) & \rightarrow [\pi]\left(\Lambda (\text{cond}(\text{op}) \mid \text{op} \in R_d(\pi, r)) \rightarrow r(\sigma_1, \ldots, \sigma_n) \right), \\
\neg r(\sigma_1, \ldots, \sigma_n) & \rightarrow [\pi]\left(\Lambda (\text{cond}(\text{op}) \mid \text{op} \in R_u(\pi, r)) \rightarrow \neg r(\sigma_1, \ldots, \sigma_n) \right),
\end{align*}
\]

where \(\text{cond}(\text{op}) = \vee (\tilde{\tau}_i \neq \sigma_i \mid \tilde{\tau}_i \neq \circ \) and \(1 \leq i \leq n \).
Clearly, the extensive use of the \textit{choose} construct reduces the number of computed frame axioms. All cases not covered by these computed frame axioms have to be proved in a non-uniform way.

6 Implementation

Although this paper is mainly devoted to the presentation of our theory, we will shortly describe how a logic-based planning environment can be implemented within an (existing) tactical theorem proving system. The paradigm of tactical theorem proving seems to be especially well suited to the kind of environment we have in mind (see also [Guiniciglia \textit{et al.}, 1992]). Based on a general logical framework, derived rules and tactics can be defined and are then used to implement efficient planning strategies or other reasoning methods on plans.

Like many other systems in the area of tactical theorem proving the KIV system is based on a \textit{sequent calculus}. Program (plan) synthesis, [Heis\textit{el et al.}, 1991], is supported by so-called meta variables. Given planning problems by sets of formulae Γ and Δ, we start with the goal $\Sigma, \Gamma \Rightarrow \langle ?a \rangle \land \Delta$, and instantiate the metavariable $?a$ during a goal-directed (backward-chaining) proof. Σ is the set of domain constraints. Strategies like \textit{progression} and \textit{regression} (cf. [Kautz, 1982]) can easily be implemented on the basis of a set of suitable derived rules and tactics. For example, our treatment of domain constraints can be implemented by a derived scheme like $\Sigma \Rightarrow [\pi] \land \Sigma$. These strategies can use the “computed” frame assertions to determine the invariant part of a pre- or postcondition.

In this way, we obtain considerable efficient implementations that can be easily changed, extended, and combined and that are guaranteed to be sound with respect to the basic formalism.

7 Related Work

Rosenschein and Kautz were the first using Dynamic Logic in planning [Rosenschein, 1981; Kautz, 1982]. They define basic actions as atomic constituents of their planning language that are axiomatized freely by describing their preconditions and effects, respectively. Our approach goes beyond this by providing a STRIPS-like way of defining basic actions and setting up consistent planning scenarios on top of that. The logical formalism is extended to reason about these basic actions as well as about composite plans built out of them. In both cases this includes recursive definitions.

With the work of Pednault [Pednault, 1986; Pednault, 1989] the approach we presented in this paper shares the idea of describing basic actions in a STRIPS-like manner, that is, by giving add and delete lists for relations. Moreover, both approaches embed these descriptions into a logical formalism that can be used to reason about plans. We begin with the observation that the appropriate semantical background for integrating this STRIPS approach into deductive planning are models based on finitely generated relations. While ADL uses a fixed form of conditional add and delete lists our approach allows to program basic operations in a carefully chosen programming language that
covers ADL schemata in a straightforward way. In our approach it is easy to add nondeterminism and also in the deterministic case we can do without auxiliary relations which seem to be necessary in ADL to describe more complicated actions. In our setting we start out with the definition of basic actions. The defining programs always have a precise meaning in the underlying semantical structures. From these definitions which in addition are independent of each other we then prove domain constraints, derived descriptions, and frame assertions. These issues are not addressed in the ADL work. In addition, we have outlined a method to generate certain frame assertions even for composite plans by a purely textual analysis. Although many ideas presented above are independent of the logical basis we want to stress that the ability to reason about the structure of (possibly) recursive definitions (programs) is essential in this context.

As already mentioned above, our formalism is based on the STRIPS ideas that have been given formal semantics by Lifschitz [Lifschitz, 1986]. We feel that our formalism in some sense "proceduralizes" Lifschitz's approach and extends it in some way; e.g. as far as the treatment of negative effects etc. is concerned. However, investigating this relationship in more detail goes beyond the scope of this paper. Separate work will be devoted to that issue.

8 Conclusion

Combining characteristic features of conventional planning with techniques borrowed from programming logics, we have introduced a new theory of action based on a special variant of Dynamic Logic. Plans may be constructed using rich control structures including recursion, nondeterministic branching, and a special choose construct. In our approach, we start out by the definition of basic actions and are then able to prove properties about the state space generated by these actions. This includes frame assertions and domain constraints. In this way, we prevent our planning environment from running into inconsistencies. These are possible in other systems where frame assertions and domain constraints are considered to be axioms. An efficient treatment of the frame problem is provided by a method to generate most frame assertions non-deductively (with the possibility of a uniform formal proof within the system). Our theory of action clearly is not restricted to blocks-world-type planning domains. One could equally well define a theory for an intelligent help system context where the planning domain is a command language environment. There the ability of reasoning about recursive plans is essential. Implementing our logical framework in the KIV system provides the basis not only for a deductive planning system, but also for a complete deductive planning environment, i.e., a system that also assists a user in developing a consistent axiomatization of his planning domain. Furthermore, this notion of environment can be extended by implementing tactics for temporal projection, plan validation and other reasoning methods. Further work is devoted to the automated generation of recursive plans and an extension of the logical framework to parallelism.
References

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikationen können von der oben angegebenen Adresse bezogen werden.
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-22
Jörg Würz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka, Ralf Treinen: Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from Text in a Complex Domain
20 pages

RR-92-25
Franz Schmalhofer, Ralf Bergmann, Otto Kühn, Gabriele Schmidt: Using integrated knowledge acquisition to prepare sophisticated expert plans for their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer, Thomas Reinartz, Bidjan Tsehaitsehian: Intelligent documentation as a catalyst for developing cooperative knowledge-based systems
16 pages

RR-92-27
Franz Schmalhofer, Jörg Thoben: The model-based construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi, Christoph Klauck: Skeletal Plans Reuse: A Restricted Conceptual Graph Classification Approach
13 pages

RR-92-30
Rolf Backofen, Gert Smolka: A Complete and Recursive Feature Theory
32 pages

DFKI Publications

The following DFKI publications or the list of all published papers so far can be ordered from the above address.
The reports are distributed free of charge except if otherwise indicated.

RR-92-31
Wolfgang Wahlster: Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer: Using Hierarchical Constraint Satisfaction for Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader, Philipp Hanschke: Extensions of Concept Languages for a Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in Concept Languages
26 pages

RR-92-38
Philipp Hanschke, Manfred Meyer: An Alternative to H-Subsumption Based on Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke, Knut Hinkelmann: Combining Terminological and Rule-based Reasoning for Abstraction Processes
17 pages
RR-92-41
Andreas Lux: A Multi-Agent Approach towards Group Scheduling
32 pages

RR-92-42
John Nerbonne: A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck, Jakob Mauss: A Heuristic driven Parser for Attributed Node Labeled Graph Grammars and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist, Elisabeth Andre: Incorporating Graphics Design and Realization into the Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth Andre, Thomas Rist: The Design of Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre, Wolfgang Finkler, Winfried Graf, Thomas Rist, Anne Schauder, Wolfgang Wahlster: WIP: The Automatic Synthesis of Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler: Plan Modifications versus Plan Generation: A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck, Ralf Legleitner, Ansgar Bernardi: Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busse: Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt: On Abduction and Answer Generation through Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar Dengler, Jana Koehler, Gabriele Paul: PHI - A Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan, Susanne Biundo: A New Logical Framework for Deductive Planning
15 pages

RR-92-54
Harald Boley: A Direkt Semantic Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel Kader Diagne, Stephan Oepen: Natural Language Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader, Berhard Hollunder: How to Prefer More Specific Defaults in Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On Principles and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics and Circumscription
19 pages

RR-93-02
Wolfgang Wahlster, Elisabeth André, Wolfgang Finkler, Hans-Jürgen Profitlich, Thomas Rist: Plan-based Integration of Natural Language and Graphics Generation
50 pages

RR-93-03
28 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit: GGD: Graph Grammar Developer for features in CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination Techniques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jürgen Bürckert, Bernhard Hollunder, Armin Laux: On Skolemization in Constrained Logics
40 pages
RR·93·07
Hans-Jürgen Bürckert, Bernhard Hollunder, Armin Laux: Concept Logics with Function Symbols
36 pages

RR·93·08
Harold Boley, Philipp Hanschke, Knut Hinkelmann, Manfred Meyer: COLAB: A Hybrid Knowledge Representation and Compilation Laboratory
64 pages

RR·93·09
Philipp Hanschke, Jörg Würz: Satisfiability of the Smallest Binary Program
8 Seiten

RR·93·10
Martin Buchheit, Francesco M. Donini, Andrea Schaerf: Decidable Reasoning in Terminological Knowledge Representation Systems
35 pages

RR·93·11
Bernhard Nebel, Hans-Jürgen Bürckert: Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen’s Interval Algebra
28 pages

RR·93·12
Pierre Sablayrolles: A Two-Level Semantics for French Expressions of Motion
51 pages

RR·93·13
Franz Baader, Karl Schlechta: A Semantics for Open Normal Defaults via a Modified Preferential Approach
25 pages

RR·93·14
Joachim Niehren, Andreas Podelski, Ralf Treinen: Equational and Membership Constraints for Infinite Trees
33 pages

RR·93·15
Frank Berger, Thomas Fehrle, Kristof Klöckner, Volker Schölles, Markus A. Thies, Wolfgang Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR·93·16
Gert Smolka, Martin Henz, Jörg Würz: Object-Oriented Concurrent Constraint Programming in Oz
17 pages

RR·93·20
Franz Baader, Bernhard Hollunder: Embedding Defaults into Terminological Knowledge Representation Formalisms
34 pages

DFKI Technical Memos

TM·91·12
Klaus Becker, Christoph Klauck, Johannes Schwageriet: FEAT-PATR: Eine Erweiterung des D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM·91·13
Knut Hinkelmann: Forward Logic Evaluation: Developing a Compiler from a Partially Evaluated Meta Interpreter
16 pages

TM·91·14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel: ODA-based modeling for document analysis
14 pages

TM·91·15
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM·92·01
Lijuan Zhang: Entwurf und Implementierung eines Compilers zur Transformation von Werkstückrepräsentationen
34 Seiten

TM·92·02
Achim Schupeta: Organizing Communication and Introspection in a Multi-Agent Blocksworld
32 pages

TM·92·03
Mona Singh: A Cognitiv Analysis of Event Structure
21 pages

TM·92·04
Jürgen Müller, Jörg Müller, Markus Pischel, Ralf Scheidhauer: On the Representation of Temporal Knowledge
61 pages

TM·92·05
Franz Schmalhofer, Christoph Globig, Jörg Thoben: The refitting of plans by a human expert
10 pages

TM·92·06
Otto Kühn, Franz Schmalhofer: Hierarchical skeletal plan refinement: Task- and inference structures
14 pages

TM·92·08
Anne Kilger: Realization of Tree Adjoining Grammars with Unification
27 pages

TM·93·01
Otto Kühn, Andreas Birk: Reconstructive Integrated Explanation of Lathe Production Plans
20 pages
DFKI Documents

D-92-12
Otto Kuhn, Franz Schmalhofer, Gabriele Schmidt: Integrated Knowledge Acquisition for Lathe Production Planning: a Picture Gallery (Integrierte Wissensakquisition zur Fertigungsplanung für Drehteile: eine Bildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the Applicability of Terminological Reasoning to Application-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph-Grammatiken und Taxonomien zur Repräsentation von Features in CIM
98 Seiten

D-92-15
DFKI Wissenschaftlich-Technischer Jahresbericht
1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Softwarekomponenten für natürlichsprachliche Systeme
189 Seiten

D-92-17
254 pages
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich, Rainer Hoch: Automatische, Deskriptor-basierte Unterstützung der Dokumentanalyse zur Fokussierung und Klassifizierung von Geschäftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generation of Natural Language with Tree Adjoining Grammars
57 pages

D-92-22
Werner Stein: Indexing Principles for Relational Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der Prologartigen Syntax von RELFUN
51 Seiten

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.): Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations- und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann: Realisierung eines Werkzeugauswahlmoduls mit Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas Labisch: Integrating Top-down and Bottom-up Reasoning in COLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell zur Repräsentation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke, Thom Frühwirth: Terminological Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters, Gernod Laufkötter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch (Eds.): DFKI Workshop on Natural Language Systems: Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-06
Jürgen Müller (Hrsg.): Beiträge zum Gründungsworkshop der Fachgruppe Verteilte Künstliche Intelligenz Saarbrücken 29.-30. April 1993
235 Seiten
Note: This document is available only for a nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger: Ein erwartungsgesteuerter Koordinator zur partiellen Textanalyse
53 Seiten