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Abstract 

In t.his pap~l' w~ P l'~SPllt. a lop;ira.J fra.IIlPwork for d~filling collsist.ellt axiomat.i­
zat.ions of plallllillg doma.ills. A lallglla.ge to defiIle hasic actiollS alld stl'lIctmed 
plans is emhedded ill n. logic. Tlti~ allows g(~Ileral propert.ies of a whole planning 
scenario to be proved as well as pla,lls to he formed deductively. In particular, 
frame assert.ions and domain cOllst.raillts as illvariants of the basic actions can 
be formulated and proved. Evell for complex plans most frame assertions are 
obtained by pmely syntactic alla.Jysis. III such cases the formal proof can be 
generated in a ulliforlll way. The formalislll we introduce is especially useful 
when t.reat.ing recursive plans. 

A tactical t.ltp(lrelll prowl', t.he J(1/.1·hwll!u' /1!tr;mr:tivc Ve7'ijic l' KIV is used 
to implemPIlt. t.his logical framework. 
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1 Introduction 

In this paper we present a logical framework for defining consistent axiomatizations 
of planning domains. An effective mechanism for defining the basic operations in a 
constructive way is embedded in a logic that allows properties of state spaces given by 
these actions to be proved. This not only includes the deductive generati~n of plans; 
reasoning about the complete scenario is also supported by this approach. 
Our work follows the "Plans are Programs" paradigm. This approach is not new; 
in deductive planning, in particular, it has already been discussed by several authors 
(d. [Green, 1969; Rosenschein, 1981; Kautz, 1982; Bibel, 1986; Manna and Waldin­
ger, 1987; Biundo et ai., 1992]). However, their contributions concentrated mainly on 
aspects of common control structures like sequential composition, conditional branch­
ing, and sometimes recursion. Less attention has been paid to the question of data 
structures. Our approach is based on the idea of treating relations used in the ax­
iomatizations of planning scenarios in the same way data with an algebraic structure 
are treated in ordinary programming languages. In planning, situations are usually 
described by a set of rela.tions between certain objects (blocks, rooms, robots etc.). 
These relations are flexible in the sense tha.t they may change from one situation to 
another. The fact that t.hese changes are local to a small section of the entire situation 
is not reflected in t.he basic semant.ic concepts underlying most formalisms for deductive 
planning. So, for example, the blocks world operation un.stack(a, b), [Genesereth and 
Nilsson, 1987], changes only t.he on.-relation iJetween a and b, the clear-property of b 
and the table-property of a. If the pile of bloch is just a part of some room, which in 
turn is just one constituent of a larger scene, the 'I.m.siad:-operation exhibits very local 
behavior. 
A straightforward concept is to consider these relations as objects, like elements of 
(abstract) data types in ordinary programming languages. In the theory of abstract 
data types most often one only considers algebraic structures where all elements are 
(freely) generat.ed by so-called constructors. In our case, restricting ourselves to finite 
relations, an appropriat.e set of "constructors" and "selectors" can easily be devised as 
well. Starting with the empty relation all finite n-ary relations can be generated by 
successive applications of an wld- operation that adds an n-t.uple to a given relation. As 
is the case with freely generated data types, we have to supply a corresponding delete­
operation in order to compute with this data type. It seems reasonable to take these two 
operations as the basis of a planning language designed to compute changes of relational 
structures. In our approach relations between unstructured objects correspond to data 
objects and are therefore considered to be finite. This seems to be a realistic assumption 
in most applications. In the context. of rccursive plans the finiteness of relations and 
its reflection by axioms becomes essential for tcrmination proofs. 
This approach, whereby one considers a fixed state space generated by adrl- and delete­
operations, underlies STRIPS-like [Fikes and Nilsson, 1971] planners. These systems 
also demand a complet.e description of the operations used in the planning process. 
In particular, they allow an efficient treatment of the frame problem [McCarthy and 
Hayes, 1969] since it is explicitly denoted which parts of a situation are changed. Our 
approach lends formal semantics to the basic concepts underlying the STRIPS approach 
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and, while retaining its effectivenes~, relIlove~ most of its limitations by providing a 
more general mechanism for defining operations and by embedding this mechanism in a 
logical framework. This not only extend~ the STRIPS approach and makes it suitable 
for deductive planning but also allows wIlDIe planning environments to be set up in a 
provably consistellt way. 
Based on elementary add- and delete-operations with fixed semantics, we will begin 
with the definition of basic actions, and then u~e efficient control structures to build up 
more complex plans. Apart from the usual ones, these control structures include a new 
nondeterministic choose construct, neces~ary to select objects in a nondeterministic 
way. Domain constraints are formulated as invariants of the basic actions and can be 
proved from their basic definitions, tllU~ guaranteeing consistency of the whole planning 
environment. Due to the fixed semantic~ of the elementary operations, as well as the 
control structures, "side effects" can be excluded in many cases, by a purely syntactical 

inspection of plans, thereby providing an efficient treat.ment of the frame problem. 
We will restrict ourselves to a formalization within a variant of Dynamic Logic (DL), 
although many of the basic ideas could be used in the context of other programming log­
ics as well (e.g., [Sa.lwicki, 1977; Harel, 1979; Manna and Pnueli, 1991; Kroger, 1987]). 
Not only does DL seem t.o be expre~sive enough for most applications in planning; this 
choice also allow~ an easy implementation of our formalism in an existing deductive 
system, the Karlsruhe Interactive Verifier (KIV) [Heisel et rd., 1990]. This system can 
be used as a logic-bas('.ri shell for setting up planning environments. This includes the 
definition of the basic actions , the proof of inva.riant::; and additional lemmmata, and 

on top of that the implemelltation of various planning strategies. 
The paper is organized in the following way: section 2 introduces the semantic back­
ground of our theory. In section 3, we define the logic, including syntax and semantics 
of the planning language. Section 4 show~ how state invariants can be derived from 
the basic operator definitions; it also ~hows how the abstract operator descriptions, 
already seen in other planning formali~ms, can be obtained, and serve as the basis for 
deductive planning. Section 5 i~ devoted to the frame problem. In section 6 we discuss 
some aspects of the implementation within the KIV system. Section 7 refers to related 
work and finally, we conclude with some remarks in section 8. 

2 State Spaces 

Our logical language will be parameterized by an alphabet of "user-defined" symbols. 
Since many different sort.s of objects occur in most applications, our syntax is based 
on a finite set of sod symbols Z. There will be a family of finite, disjoint sets, 
C = (Cz I z E Z), the sy~tem of constants, and a family of denumerable, disjoint 
sets X = (Xz I z E Z), the system of variables. Both families are assumed to be 
disjoint. Atomic formulae are built up by the eCluality symbol "=" and "user-defined" 
relation symbols (e.g., on , clea',., tahie etc.). These are given by a Z*-indexed family 
R = (Rz I z E Z*) of disjoint sets, R z being the set of relation symbols of type z. 
We assume that almost all sets R z are empty and that all of them are finite, i.e., 
R := U{ Rz I z E Z*} is a finite set. 

For a given triple (Z, R,C) a model (defining the state space) is denoted by a structure 
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K = (1),5, I), where 1) = (D z I z E Z) is a system of carTier sets, S is a set of states 

(or situations) and I is a state-dependent interpretation that assigns an element of the 
appropriate carrier to each pair (8, c) and a relation of appropriate type to each pair 
(s,r). That is, for r E Rz and z = (Zl, ... ,zn), we have I(.s,r) ~ DZI x . .. x Dzn' 
In order to evaluate terms and formulae containing variables, we introduce valuations 

(3 : X ---t D that preserve sorts. Terms are either variables or constants. They are 
evaluated by [c]s,,6 = I(s,c) and [:r:]s ,{j = (3( :r.), respectively. Satisfiability for first­
order formulas in structures K is defined by 

K Fs,13 r(T}, ... , Tn) iff ([T1]s ,{j, ... , [Tr.]s,{1) E I(s, T') , 
K Fs,.a Tl == T2 iff [Tds ,(i = [T2]s,{1, and 

K Fs,13 VX'P iff for all d E D" K Fs ,{j~ 'P , 

where :c: E Xz and fJ~~ is like (1 excf'pt. that. /1;,'( :r) = d. 

As mentioned in tlw introductioll, v:e are interested III particular finit.t>Jy generat.ed 
state spaces given by so-called 1/,at'llm.l models Ku = (Du, Su, Iu). Du is a family of at 
most countable sets. We define Su to be the set of all mappings that map t.he relation 
symbols from R to finite relations on Du := U{ Du z I z E Z} of appropriate type and 
set Io(s, r) = s(.,.). In natural models, const.ants are int.t>rpreted in a stat.t> independent. 
way, that is for some d we have Io(.s, c) = d for all 8 E Su. Note that in natural models 
Ko we may drop the first index when evaluating terms. 
The reason for int.roducing st.ates was, of course, t.hat. we want to st.udy operators 
that take us from ont> world t.o another. In particular, we are int.erest.ed in a small 
set of operators that can be used as atomic constructs in our planning language, just 
as assignment st.atenwuts are used in conventional programming languages. Looking 
at the state space given by a natural model K.u it is more or less obvious how these 
elementary operations should look. They can be defint>d for arbitrary st.ructures A.: if 
treat.ed as relations on 5. 

For each r E Rz and = = (Zl,"" zn) let d - 'r and (J. - 'r 

... - 'r : DZJ x ... x Dz .. ---t S X .S 

be defined as 
s d -r( d1 , ... , dn ) s' iff' 

I(s', 'r)=I(8,1')-{(d1 , ••• ,dn )} aud I{-,,',r')=I(s, '''') for 1.'#.,. 
and 

I(s",r)=I(8,r')U{(d}, . .. ,dn )} and I(s",r.')=I(s,.,.') for r'#.,.. 
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Theorem 1 
1) In natural models Ko the relations (/, - r( . .. ) and d - 1'( . .. ) are total functions. 

2) In natural models Ko for any two states sand s' there exists a finite sequence 

of elementary add -and delete-operations OJ!l, . .. ,OPU) such that s OPI 0 ... OOPn s', 
where '0' denotes the composition of relations. 

3) If for elementary operations OPI, OP2 

d - 'r(dl , ... , dn) 0 (/, - r·(dl , ... , dn) 

a - 1'(<11 " ", flu) 0 d - ·r(dJ , ••• , dn) 

a - 1'(d1 , ... ,dn ) 

d - 1'(<11,'" , dn) 

o 

In general structures K, if ).x.I(.s, :c) = ).;c.I(.s', x) implies s = s', the relations a-1'( ... ) 
and <1 - 1'( . .. ) are partial functions. A more serious restriction is imposed by requiring 
the add- and delete-operations to be total functions. This means that no interesting 
domain constraints will hold for the whole state space. But what can we do then if 
we are interested only in st.ates where, for example, we have on(y, x) 1\ on(z , x) --+ y == 
z? The answer is simply to check whether the set of states with the above property 
is closed under the basic actions we want to use in our plans. That is, we treat 
domain constraints as invariants of the basic actions. Since the concept of invariant is 
broader than the concept of domain constraint-domain constraints must, of course, 
be invariants of the basic actions-our approach does not impose any restriction on 
the formulation of planning problems. It offers, as we shall discuss in section 4, the 
advantage of proving formulae to be invariant, thereby ensuring the soundness of the 
whole axiom system. 
It can be proved (in a way which would have to be made precise) that all structures 
K where the constants are rigid symbols and I(s ,1') is always a finite relation are 
"contained" in a natural model Ku. Hence, the only crucial question is whether we 
can define (or "program") sufficiently many actions in a sufficiently abstract way. The 
property stated in part two of the theorem guarantees that the basis of our planning 
language is powerful enough: All states can be reached from each other by applying 
finite sequences of basic (/.<1d- and delete-operations. Of course, this does not mean 
that all actions can be "programmed" in a satisfactory way. Indeed it turns out that 
the control structures have to be carefully designed. In particular, we need a nondeter­
ministic choose construct in connection with recursive actions. The choose construct 
will be introduced in section 3. 
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3 The Logic 

We start with the definition of the syntax of our planning language. Actions 7r and 
action abstractions, are defined relative to a vocabulary given by (Z, C, R, X). In 
addi tion, we use a system A = (Ai I z E Z*) of names for abstractions. 

skip I abort I delete-r( T} , ... , T,,) I add-r( T}, ... , Tn) I (7r}; 7r2) I (7r} or 7r2) I 
if 'P then 7r} else 7r2 fi I choose :1; begin 7r end 1,( T}, ... , Tn) 

(J, I rec a(x}, ... ,Xn).7r I rec" a( :1:1, ... ,Xn).7r, 

where r.p is a first-order formula and r is a re lation symbol from R. We impose the 

usual type constraints. The occurrence of :c following choose is a binding occurrence, 
the scope of which consists of the plan enclosed by "begin" and "end". 
Let K = (TJ, S,I) be a structure for (Z,C, R). The semantics of plans 7r is given by a 
valuation [ .. ']{J, where [ 7r l1 ~ S X S. 

[skip]{J = {(s,s') Is = s'} 
[abort]{J = {} 

[ .. -r(Tl, ... ,Tn)],B = {(s,s') Is .. -r([Tl]s,{1, ... ,[Tn]s,,1) s'} 
[( 7rl; 7r2)]{J) = [7rl] r1 0 [7r2] fi 
[if'P then 7r} else 7r2 fil1) = ((r.p?) {J 0 [7r}] (1) U ((-,r.p?) (1) 0 [7r2] {J ), 

where s ('P?) r1 s' iff s = ,~' and K Fs ,{J 'P 
[( 7rl or 7r2)]{J) = [7rll1 U [7r2li 
[choose x begin 7r endli = U {[7r]M IdE Dz}, where :1: E Xz 
[rec a(x}, ... , :I;,,).7r (T}, ... ,T,,)l1 = 

U {[recn a( :r:l, ... , :c,,).7r (T}, ... ,Tn)]{J In 2: O} 
[recn+l a( .Tt, ... , :1:,, ). 7r (Tl, .. , , T,,)] p' = [7r*( a f- recn a( .Tt, ... , Xn)' 7r) ]{J;t : ;~ , 

where di = [Ti] {J for 1 :S 't :S nand 7r- results from 7r by suitably 
renaming the bound variables, so as to avoid clashes. 

[reco a(xl"'" .T 7I ).7r (Tl, ... , T7I )] {J = {} 

[a( Tl , ... , Tr.)] ri = {} . 

We have defined the semantics for arbitrary structures K. However, the reader should 
bear in mind that we are interested only in natural modds Ko, where the add- and 
delete-operations are total functions on the set of states. 
rec a(xl,"" x,,).7r is a recursive action :I;}, ... , :C n being the formal parameters and 7r 
being the body of that action. To simplify our exposition we restrict ourselves to simple 
recursive actions, an ext.ension to mutually recursive ones being straightforward. The 
semantics (and proof theory) of recursive abstractions relies on finite approximations. 

As can be seen from the semantic definitions above rec", a(:I: }, ... , x 7l ).7r denotes the 
n'th approximation of the meaning of rec a( :c l, ... , xn ).7r. Uninterpreted reasoning 
is achieved by using induction on the indices of approximations in order to prove 
statements about recursive actions. 
The language is rcfcT'(:ntially tnw,8]JaT'wt with respect to variables. Side effects occur 
only on the level of rdations (stat.es). This is reflected in the axiomatization which, 
in this aspect, is simpler than that of ordillary DL and close to that given in [Kautz, 
1982]. 
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The choose construct guesses a new element by changing the valuation (environment) 
that is used to evaluate the subsequent action. However, t.his change of environments 
as in the case of parameter passing follows a strict stack discipline, that is, the effect 
of choosing a new element can not work outside the plan enclosed by "begin" and 
"end". The choose construct is necessary to "move" in structures. 
To be able to reason about these changes, we follow the approach taken in Dynamic 
Logic, in that we extend the predicate logic used so far by formulae [7r]<p and [? -
r(~}, . . . '~n)]<P' where r is a relation symbol and the ~i are either terms or "placeholders" 
e. 
The formal semantics of t his new type of formulas is given by 

K Fs,,a [7r]<p iff K FSI,,a <p for all s' such that 5 [7r] ,0 5' 
K Fs,/1 [? - r(e},···, ~n)]<P iff K Fsl ,{j <p 

for all.s' such that 
I(',., s') and I(r', s) differ in (d}, ... ,dn ) , 

only if for all 1 ~ i ~ n di = [ei],a or ~i = e , 
aud I(',.', s') = I(-,.', .5) for all r-' =I r . 

Intuitively, [7r]<P has to be read: "fl7r tenniuates, <p holds afterwards." The dual op­
erator <7r>, defined by <7r><p:+--+ o[ 7r ]o<p has to be read: "7r terminates with <p." 

The (modal) operator [? - 'r(~}, ... ,en)] refers to all states that differ from the given 
one in at most the value of r, where some argument positions are fixed. For example, 
[? - on( e, e] <p means that <p holds in all states that differ from the given one in at 
most the on-relation whereas [? - 0'11.( T}, Tn)]<P means that <p holds in all states that 
differ from the given one in a.t most the on-relation between the objects denoted by Tl 

and Tn. In ordinary DL, t his is achieved by quantifying on program variables. A kind 
of "quantification" like the one above increases the expressive power of the formalism 
in general and is 1/,eCeSSflr'y for inductive proofs. 
The axiomatization follows the paradigm of so-called uninterpr-eted reasoning, where we 
do not rely on the expressive power of the underlying data structure. The semantics and 
proof theory of recursive actions (pla.ns) is outside the scope of this paper, however, 
a general introduction to uuinterpreted rea.soning, as it is implemented in the KIV 
system, can be found ill [Heisel et a/., H)89]. An axiomatization of a very powerful 
procedure concept for imperative programming languages is given in [Stephan, 1989]. 
Here we present only some a.xioms for the non-standard constructs. 
As is the case with assignments in ordinary programming languages, the effects of the 
add- and delete-operations on first-order formulae can be described in an exhaustive 
way. 

Theorem 2 Let <p be a form:ula such that all bound variables are distinct from the vari­
ables occurring in T}, ... , Tn. Then the weakest precondition (in the sense of [Dijkstra, 
1976]) of <p with r'espect to delete-r( T}, ... ,Tn) and add-r( T}, ... ,Tn) are the formulae 

cp and <p, respectively, where cp results from <p by replacing all atomic subformulae 

and <p results from <p by r'eplacing all (domic subfor'mulae 
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Analogous to the well known assignment axioms we have 

[delete-r(Tl ,"" Tn)]c.p +-t r:p and 

[add-r(Tl " '" Tn) ]c.p +-t cp . 

In addition to that, uninterprf'ted reasoning requires axioms like: 

V(Xi¢ Vi 11 ~ i ~ n) -+ 

([delete-r(x)][add-r(y)] c.p +-t [add-r(y)][delete-r(:r)] c.p) , 

[delete-r(x)][add-r'(y)] c.p +-t [add-r'(:Q)][delete-r(x)] c.p , 
[delete-r(.T. )][add-r(:T:)] c.p +-t [add-rUt·) ] c.p , 
[add-r( x )][delete-r( :c)] c.p +-t [delete-r( :I') ] c.p, 

For the choose construct Wf' heW!" 

[choose :1' begin 7r end]c.p +-t Vy.[7r.;']c.p , 

o 

where y is a fresh variable. The a.xioms for the simplf' structured commands are as 
usual. Examples for gf'nera.\ (modal) a.xioms are 

[7r]( c.p -+ 'f) -+ ([ 7r] c.p -+ [11'] 4') , 
V:I:[7r]c.p -+ [7r]V:rc.p , 

where x must not occur free in 11', and 

where T is free for ;r: in c.p, and c.p~ df'notes the Hubstitution of T for all free occurrences 
of x in c.p. 

4 Actions and Plans 

We are now going to outline how planning domains can consistently be defined in our 
theory. In section G Wf' will discuss briefly the technical aspect:; of a logic based shell 
for planning and the implementioll of plallllillg strat.egies wit.hin such a system. Our 
treatment of the frame problem will be discussed sf'perately. The main concern of this 
section is to demonstrate how ba:;ic actions call be defined in an abstract way and that 
domain constraints can be treated adequately. 
There is no technical distinction between ba:;ic actions and derived plans composed 
out of them. The latter can be used without restriction as basic operations for higher 
levels of the planning process. However, we have to start out with some set of basic 
actions that are hand-coded. The first :;tep involves fixing t.he set of relation symbols 
we want to use. At the end of thi:; :;ection we will discuss how defined notions, like 
above in the blocks world scenario can be added to the theory. 
The unstack operat.ion, for example, can be defined as a simple abstraction ,,,n' 
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rec un.stack(:e,y). if un( :r:,y) A dt:(J,'r(:r:) 
then add - tab!e(:r:); 

add - de(J,'r(y); 
delete - unCe, y) 

else abort fi. 

In mo~t applications, the sta.te ~pace is restricted by so-called domain constr·aints. In 
the blocks world, for example, we have 'i:r (clt·(f'/"(x) ~ -'~y on(y,x)). 
In our ~etting, domain constraint~ are treated as iU'IIar·iants. For <p being the equivalence 
above, we can prove the assertion <p --t [,,,.,,( :r:,y)]<p. If a similar assertion holds for all 
basic actions, we can use the domain cOllstraint <p in all st.ates reached by arbitrary 
plans made up of these basic actions, provided <p has been included in the description 
of the initial state. This fact can be proved formally in our setting. 
The great advantage is that adding domain cOllstraints in sllch a way guarantees con­
sistency with the ddinit.ion of the basic actions and, with t.hat., consistency of the whole 
planning environment.. Havillg deduced a set of domain constraints, we may also sim­
plify the descr'ipiiou of the basic actiolls to be u~ed in the planning process. From the 
definition given ahove, a sufficiellt. (abstract) description of t.he unstack operation (in 
the style of [Kautz, 1!)S2j) would be: 

on(:r:,y) A cle(J,'/"( :r:) --t <'1t'll( :r:,y) > tablt-{;r:) A clea.r(y). 

As another example, suppose we have a world where blocks have colours and let r'ed, 
black, and white bf' the only colours that OCC1I1'. An operat.or [}(f.intbiack [Bibel et ai., 
198D] that changes tlte col01l1' of allY block to black is df'fined by the ab~traction ,pb 

rec J)(],intb( :r:). add - bla('k( :r:); 
delete - wh:if:e(:c); 
delete - '/"ed( :r:) . 

If we can prove that the formula 
'ix (red(x)Vbiack( :r:)Vwhite(:r:)), stating that every block has exactly one of the three 

colours, is an invariant of all basic actions, then <,pb(X) > black(x) sufficiently de­
scribes our action. 
Note that it is not necessary to specify adding or deleting rugative facts in our approach. 
So, even without the domain constraint above, -,white(:r:) as well as -",.ed(x) can be 
proved to hold after the execution of 'l'b. 

Definitions of ba::;ic actions can be more complex than those presented above. Using 
the choose construct we are able to define, for example, the nondeterministic dump 
operator [Kautz, 1982], that transfer::; all blocks from a certain box into another by 

9 



rec dump(.1:, y) . if ::I z in(z, :c) 
then choose z 

begin if 'in(z, :c:) 
then add - in(z, y); 

delete - in( z, .1:); 
(/-til}! JI (:r, y) 

else abort fi 
end 

else skip fi 

and prove theorems about it. 

The language introduced above can also be llsf'd to treat "recursively defined notions", 
like the aliove relation ill tllf' blocks world sCf'lla rio . This killd of relat ions often causes 
problems in planning f'nVil'OIlJlWnts , sef' for f'xamp lf' [Ka1ltz , 1982]. Lf't ,ab be the 
recursi ve abstract.ion 

rec aliove(x, y). if -,on( :l',y) 
then choose :: 

begin if Ul/.(::: , y) 
then aliuue( :/:, z) 
else abort fi 

end 
else skip fi . 

Using this piece of program t.he rf'la.tioll ahuut' can be df'fillf'c\ by 

We are t.hen ablf' to prove 1f' ll1ll1 ata like 

( /\ L; 1\ (l hove ( :1' , :r;) 1\ ;r ¥= '1/) ----t h 11/1 ( II , 'U ) ] a ho u e ( :1' , y) , 
on( :c:, y) ----t abov t.' (:r, :r;), ami 

( on (y , z) 1\ (J.lIO'U f ( .r. , y )) ----t (J.lI(J'l} t ' ( :t:, z ) , 

where L; is tbe Sf't. of domain cons t. ra ints. 
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5 The Frame Problem 

Considering the unstack-operation and a1/,alyzing its definition reveals the fact that the 
only relations affected by unstack are table, dea'r, and on. This, in particular, means 
that unstack has no side effects on, for example, the colours of blocks. Thus, 

white(x) -+ ['"n(a, b)]white(x) 

appears to be a valid (frame) assertion. This observation leads us to an efficient 
treatment of the frame problem, which has the following proper foundation. 
In our approach, the basic actions of a planning domain are defined as abstractions, 
the bodies of which in simple cases merely contain the elementary add- and delete­

operations. From these definitions of basic actions, frame assertions can be inferred 
using uninterpreted reasoning. Clearly, we have to use tllP basic axioms for the add­
and delete-operations, respectively, in these deductions. In general, frame assertions 
are of the form 

'r ( 71 , . . . , T/I) -+ [7r] (t -+ 'r ( 71 , . . . , 7,,)) , 

where the condition E consists of inequalities . In fact , another frame assert ion for the 
tlnstack-operation would be: 

on(;r:,y) -+ [,,,n(a,h)](( :r: ¢ a Vy ¢ b) -+ on(x,y)) 

Of course, the frame assertions can be proved for complete plans as well. 
One main advantage of our a.pproa.ch, however, is that a comprehensive subset of 
valid frame assertions can be obtained in a nondeductive way by an algorithm that 
analyzes the syntactical structure of plans. Assertions generated by this algorithm can 
be proved in a uniform way, that is, we can provide a proof procedure (tactic in KIV) 
that automatically generates a proof for each such assertion. We shall now outline the 
basic ideas underlying this algorithm. 
In order to formulate the general method for computing sound frame assertions (for 
general plans), we have to analyze the semantics of our planning language. It turns out 
that for each plan 7r and each relation symbol 'r, the formal execution tree of 7r contains 
only a finite number of different applications of the elementary operations .. - r( . .. ), 
if we do not take into account those arguments that are program variables bound by 
a choose construct. In such a generalized 'call' .. - 'r( 7\, ... , T,,), we write Ti = 8 , if 
Ti is such an argument. Let Rd(7r, ''') and Ru (7r, ''') denote the set of all applications 
of elementary add- and delete-operations that are reachable by 7r, respectively. Using 
this notation we get the following result. 

Theorem 3 For' each 7r and each r'cZation symbol 'r the following implications are prov­
able in our' axiomatization : 

r(O"l"",O"n) -+ [7r](A( cond(op) I opE Rd(7r,r)) -+ 'r(O"l, ... , O"n)), 

-,r(O"l , ... ,O"n) -+ [7r](A( cond(op) lop E R a (7r,r')) -+ -,r'(0"1 "",0"1I) ) , 

where cond(op) = V(fi ¢ O"i I Ti i= 8 and 1 :::; i :::; n) . 
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Clearly, the extensive use of t.he choosf: const.ruct reduces the number of computed 
frame axioms. All cases not. covf'n~d uy tlif'se computed frame axioms have to be 

proved in a non-uniform way. 

6 Implementation 

Although this paper is mainly devoted to the presentation of our theory, we will shortly 
describe how a logic-based planning environment can be implemented within an (ex­
isting) tactical theorem proving syst.em. Tile paradigm of t.actical theorem proving 
seems to be especially well suited to tile kiud of euvironment we have in mind (see also 

[Guinchiglia et ai., 1992]). Based on a genera.! logi cal framework, derived rules and 
tactics can be defined and are thell used to implemellt. efficient planning strategies or 
other reasoning met.hods on plans. 
Like many other systems in tl1P area of tactical theorem proving the KJV system is 
based on a sequent r·rtir-'II.lus. Program (plan) synthesis, [I-Ieisf'1 r:t ai., 1991], is supported 
by so-called meta variaules. Given plalluing problems by sets of formulae r and ~, 
we sta.rt wit.h the goal ~,r =} <?a > /\ ~ ,and illst.ant.iate the metavariable ?a 
during a goal-directed (hackward-c1IC1.iuillg) proof. ~ is til(" set of domain cOllstraillts. 
Strategies like p1·0!ln·ssio1/. alld 1·(·!/,u·.<;sirJ1/. (d. [Kautz, 1~J8~]) can easily be implemented 
on the basis of a set of suitahle d(~rivf'd rules alld tal.tics. For example, our treatment 
of domain constraints can Iw implenwlIted by a derivf'd scllenw like ~ =} [71"J/\~. 

These strategies can use tlw "colllput(~d" fr<LllW assertions to detennine the invariant 
part of a pre- or postcondition. 
In this way, we obtain considerable efficient implementations tllat can be easily changed, 
extended, and combined and t.hat. are guarant(~ed to be sound with respect to the basic 
formalism. 

7 Related Work 

Rosenschein and Kautz were tlw fin.;t. usillg Dynamic Logic in planning [Rosenschein, 

1981; Kautz, 1~)82J. They define basic actiolls as atomic const.ituents of their planning 
language that are axioma.t.ized fn~ely by describing their prf'conditions and effects, re­
spectively. Our approach goes I)f'yond this by providing a STRIPS-like way of defining 
basic actions and setting up cOllsistP.llt plalllling scenarios Oil top of that. The logical 
formalism is extended to reason abollt t.hese basic actions as well as about composite 
plans built out of them. III both cas(~s tl lis includes recmsive definitions. 
With the work of Pednault [Pedll(tlllt., UJ8(,; Pednalllt, 1~J8~JJ the approach we presented 
in this paper shares the idf'a of df'scril)iug basic actions ill C\. STRIPS-like manner, that 
is, by giving add and delete lists for n~ la.tiolls. Moreover, both approaches embed 
these descriptiolls illto a logical formalism t.hat call be used to reason about plans. We 
begin with t.he ohsf'rva.tion that tile appropriat.e semantical background for integrating 
this STRIPS approadl int.o deductive planlling are models hased on finitely generated 
relations. While ADL uses a fixed form of conditional add and delete lists our approach 
allows to program basic operations in a carefully chosen programming language that 
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covers ADL schemata in a straightforward way. In our approach it is easy to add non­
determinism and also in the deterministic case we can do without auxiliary relations 
which seem to be necessary in ADL to describe more complicated actions. In our 
setting we start out with the definition of basic actions. The defining programs always 
have a precise meaning in the underlying semantical structures. From these definitions 
which in addition are independent of each other we then prove domain constraints, 
derived descriptions, and frame assertions. These issues are not addressed in the ADL 
work. In addition, we have outlined a method to generate certain frame assertions 
even for composite plans by a purely textual analysis. Although many ideas presented 
above are independent of the logical basis we want to stress that the ability to reason 
about the structure of (possibly) recursive definitions (programs) is essential in this 
context. 
As already mentioned above, our formalism is based on the STRIPS ideas that have 
been given formal semantics by Lifschitz [Lifschitz, 1986]. We feel that our formalism 
in some sense "proceduralizes" Lifschitz's approach and extends it in some way; e.g. as 
far as the treatment of negative effects etc. is concerned. However, investigating this 
relationship in more detail goes beyond the scope of this papf'L Separate work will be 
devoted to that issue. 

8 Conclusion 

Combining charClderistic features of conventional planning with techniques borrowed 
from programming logics, we have introduced a new theory of action based on a special 
variant of Dynamic Logic. Plans may be constructed using rich control structures 
including recursion, nondeterministic branching, and a special choose construct . In 
our approach, we start out by the definition of basic actions and are then able to 
prove properties about. the state space generated by these actions. This includes frame 
assertions and domain constraints. In this way, we prevent our planning environment 
from running into inconsistencies. These are possible in other systems where frame 
assertions and domain constraints are considered to be axioms. An efficient treatment 
of the frame problem is provided by a method to generate most frame assertions non­
deductively (with the possibility of a uuiform formal proof within the system). Our 
theory of action clearly is not restricted to blocks-world-type planning domains. One 
could equally well define a theory for an intelligent help system context where the 
planning domain is a command language environment. There the ability of reasoning 
about recursive plans is essential. Implementing our logical framework in the KIV 
system provides the basis not only for a deductive planning system, but also for a 
complete deductive planning environment, i.e., a syst.em that also assists a user in 
developing a consistent axiomatization of his planning domain. Furthermore, this 
notion of environment can be extended by implementing tactics for temporal projection, 

plan validation and other reasoning methods. Further work is devoted to the automated 
generation of recursive plans and an extension of the logical framework to parallelism. 
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