
Deutsches
Forschungszentrum
fUr KOnstl iche
Intelligenz GmbH

A New Logical Framework
for

Deductive Planning

Werner Stephan, Susanne Biundo

December 1992

Research
Report

RR-92-53

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens­
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J . Wendl
Director

A New Logical Framework for Deductive Planning

Werner Stephan, Susanne Biundo

DFKI-RR-92-53

This paper will also appear in the Proceedings of the 13th Interna­
tional Joint Conference on Artificial Intelligence (IJCAI-93).

This work was partly supported by the German Ministry for
Research and Technology (BMFT) under grant ITW 9000 8.

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

A New Logical Framework
for

Deductive Planning

Werner Stephan and Susanne Biundo

Gennan R.esearch Center for Artificial Intelligence (DFKI)
Stuhlsatzenhansweg 3
D-GG 123 Sac-u·l)riicken

Gennany
e-lnail: <last nc-ulle>(~dfl:i.uni-sh.de

Abstract

In t.his pap~l' w~ P l'~SPllt. a lop;ira.J fra.IIlPwork for d~filling collsist.ellt axiomat.i­
zat.ions of plallllillg doma.ills. A lallglla.ge to defiIle hasic actiollS alld stl'lIctmed
plans is emhedded ill n. logic. Tlti~ allows g(~Ileral propert.ies of a whole planning
scenario to be proved as well as pla,lls to he formed deductively. In particular,
frame assert.ions and domain cOllst.raillts as illvariants of the basic actions can
be formulated and proved. Evell for complex plans most frame assertions are
obtained by pmely syntactic alla.Jysis. III such cases the formal proof can be
generated in a ulliforlll way. The formalislll we introduce is especially useful
when t.reat.ing recursive plans.

A tactical t.ltp(lrelll prowl', t.he J(1/.1·hwll!u' /1!tr;mr:tivc Ve7'ijic l' KIV is used
to implemPIlt. t.his logical framework.

Contents

1 Introduction 2

2 State Spaces 3

3 The Logic 6

4 Actions and Plans 8

5 The Frame Problem 11

6 Implementation 12

7 Related Work 12

8 Conclusion 13

1

1 Introduction

In this paper we present a logical framework for defining consistent axiomatizations
of planning domains. An effective mechanism for defining the basic operations in a
constructive way is embedded in a logic that allows properties of state spaces given by
these actions to be proved. This not only includes the deductive generati~n of plans;
reasoning about the complete scenario is also supported by this approach.
Our work follows the "Plans are Programs" paradigm. This approach is not new;
in deductive planning, in particular, it has already been discussed by several authors
(d. [Green, 1969; Rosenschein, 1981; Kautz, 1982; Bibel, 1986; Manna and Waldin­
ger, 1987; Biundo et ai., 1992]). However, their contributions concentrated mainly on
aspects of common control structures like sequential composition, conditional branch­
ing, and sometimes recursion. Less attention has been paid to the question of data
structures. Our approach is based on the idea of treating relations used in the ax­
iomatizations of planning scenarios in the same way data with an algebraic structure
are treated in ordinary programming languages. In planning, situations are usually
described by a set of rela.tions between certain objects (blocks, rooms, robots etc.).
These relations are flexible in the sense tha.t they may change from one situation to
another. The fact that t.hese changes are local to a small section of the entire situation
is not reflected in t.he basic semant.ic concepts underlying most formalisms for deductive
planning. So, for example, the blocks world operation un.stack(a, b), [Genesereth and
Nilsson, 1987], changes only t.he on.-relation iJetween a and b, the clear-property of b
and the table-property of a. If the pile of bloch is just a part of some room, which in
turn is just one constituent of a larger scene, the 'I.m.siad:-operation exhibits very local
behavior.
A straightforward concept is to consider these relations as objects, like elements of
(abstract) data types in ordinary programming languages. In the theory of abstract
data types most often one only considers algebraic structures where all elements are
(freely) generat.ed by so-called constructors. In our case, restricting ourselves to finite
relations, an appropriat.e set of "constructors" and "selectors" can easily be devised as
well. Starting with the empty relation all finite n-ary relations can be generated by
successive applications of an wld- operation that adds an n-t.uple to a given relation. As
is the case with freely generated data types, we have to supply a corresponding delete­
operation in order to compute with this data type. It seems reasonable to take these two
operations as the basis of a planning language designed to compute changes of relational
structures. In our approach relations between unstructured objects correspond to data
objects and are therefore considered to be finite. This seems to be a realistic assumption
in most applications. In the context. of rccursive plans the finiteness of relations and
its reflection by axioms becomes essential for tcrmination proofs.
This approach, whereby one considers a fixed state space generated by adrl- and delete­
operations, underlies STRIPS-like [Fikes and Nilsson, 1971] planners. These systems
also demand a complet.e description of the operations used in the planning process.
In particular, they allow an efficient treatment of the frame problem [McCarthy and
Hayes, 1969] since it is explicitly denoted which parts of a situation are changed. Our
approach lends formal semantics to the basic concepts underlying the STRIPS approach

2

and, while retaining its effectivenes~, relIlove~ most of its limitations by providing a
more general mechanism for defining operations and by embedding this mechanism in a
logical framework. This not only extend~ the STRIPS approach and makes it suitable
for deductive planning but also allows wIlDIe planning environments to be set up in a
provably consistellt way.
Based on elementary add- and delete-operations with fixed semantics, we will begin
with the definition of basic actions, and then u~e efficient control structures to build up
more complex plans. Apart from the usual ones, these control structures include a new
nondeterministic choose construct, neces~ary to select objects in a nondeterministic
way. Domain constraints are formulated as invariants of the basic actions and can be
proved from their basic definitions, tllU~ guaranteeing consistency of the whole planning
environment. Due to the fixed semantic~ of the elementary operations, as well as the
control structures, "side effects" can be excluded in many cases, by a purely syntactical

inspection of plans, thereby providing an efficient treat.ment of the frame problem.
We will restrict ourselves to a formalization within a variant of Dynamic Logic (DL),
although many of the basic ideas could be used in the context of other programming log­
ics as well (e.g., [Sa.lwicki, 1977; Harel, 1979; Manna and Pnueli, 1991; Kroger, 1987]).
Not only does DL seem t.o be expre~sive enough for most applications in planning; this
choice also allow~ an easy implementation of our formalism in an existing deductive
system, the Karlsruhe Interactive Verifier (KIV) [Heisel et rd., 1990]. This system can
be used as a logic-bas('.ri shell for setting up planning environments. This includes the
definition of the basic actions , the proof of inva.riant::; and additional lemmmata, and

on top of that the implemelltation of various planning strategies.
The paper is organized in the following way: section 2 introduces the semantic back­
ground of our theory. In section 3, we define the logic, including syntax and semantics
of the planning language. Section 4 show~ how state invariants can be derived from
the basic operator definitions; it also ~hows how the abstract operator descriptions,
already seen in other planning formali~ms, can be obtained, and serve as the basis for
deductive planning. Section 5 i~ devoted to the frame problem. In section 6 we discuss
some aspects of the implementation within the KIV system. Section 7 refers to related
work and finally, we conclude with some remarks in section 8.

2 State Spaces

Our logical language will be parameterized by an alphabet of "user-defined" symbols.
Since many different sort.s of objects occur in most applications, our syntax is based
on a finite set of sod symbols Z. There will be a family of finite, disjoint sets,
C = (Cz I z E Z), the sy~tem of constants, and a family of denumerable, disjoint
sets X = (Xz I z E Z), the system of variables. Both families are assumed to be
disjoint. Atomic formulae are built up by the eCluality symbol "=" and "user-defined"
relation symbols (e.g., on , clea',., tahie etc.). These are given by a Z*-indexed family
R = (Rz I z E Z*) of disjoint sets, R z being the set of relation symbols of type z.
We assume that almost all sets R z are empty and that all of them are finite, i.e.,
R := U{ Rz I z E Z*} is a finite set.

For a given triple (Z, R,C) a model (defining the state space) is denoted by a structure

3

K = (1),5, I), where 1) = (D z I z E Z) is a system of carTier sets, S is a set of states

(or situations) and I is a state-dependent interpretation that assigns an element of the
appropriate carrier to each pair (8, c) and a relation of appropriate type to each pair
(s,r). That is, for r E Rz and z = (Zl, ... ,zn), we have I(.s,r) ~ DZI x . .. x Dzn'
In order to evaluate terms and formulae containing variables, we introduce valuations

(3 : X ---t D that preserve sorts. Terms are either variables or constants. They are
evaluated by [c]s,,6 = I(s,c) and [:r:]s ,{j = (3(:r.), respectively. Satisfiability for first­
order formulas in structures K is defined by

K Fs,13 r(T}, ... , Tn) iff ([T1]s ,{j, ... , [Tr.]s,{1) E I(s, T') ,
K Fs,.a Tl == T2 iff [Tds ,(i = [T2]s,{1, and

K Fs,13 VX'P iff for all d E D" K Fs ,{j~ 'P ,

where :c: E Xz and fJ~~ is like (1 excf'pt. that. /1;,'(:r) = d.

As mentioned in tlw introductioll, v:e are interested III particular finit.t>Jy generat.ed
state spaces given by so-called 1/,at'llm.l models Ku = (Du, Su, Iu). Du is a family of at
most countable sets. We define Su to be the set of all mappings that map t.he relation
symbols from R to finite relations on Du := U{ Du z I z E Z} of appropriate type and
set Io(s, r) = s(.,.). In natural models, const.ants are int.t>rpreted in a stat.t> independent.
way, that is for some d we have Io(.s, c) = d for all 8 E Su. Note that in natural models
Ko we may drop the first index when evaluating terms.
The reason for int.roducing st.ates was, of course, t.hat. we want to st.udy operators
that take us from ont> world t.o another. In particular, we are int.erest.ed in a small
set of operators that can be used as atomic constructs in our planning language, just
as assignment st.atenwuts are used in conventional programming languages. Looking
at the state space given by a natural model K.u it is more or less obvious how these
elementary operations should look. They can be defint>d for arbitrary st.ructures A.: if
treat.ed as relations on 5.

For each r E Rz and = = (Zl,"" zn) let d - 'r and (J. - 'r

... - 'r : DZJ x ... x Dz .. ---t S X .S

be defined as
s d -r(d1 , ... , dn) s' iff'

I(s', 'r)=I(8,1')-{(d1 , ••• ,dn)} aud I{-,,',r')=I(s, '''') for 1.'#.,.
and

I(s",r)=I(8,r')U{(d}, . .. ,dn)} and I(s",r.')=I(s,.,.') for r'#.,..

4

Theorem 1
1) In natural models Ko the relations (/, - r(. ..) and d - 1'(. ..) are total functions.

2) In natural models Ko for any two states sand s' there exists a finite sequence

of elementary add -and delete-operations OJ!l, . .. ,OPU) such that s OPI 0 ... OOPn s',
where '0' denotes the composition of relations.

3) If for elementary operations OPI, OP2

d - 'r(dl , ... , dn) 0 (/, - r·(dl , ... , dn)

a - 1'(<11 " ", flu) 0 d - ·r(dJ , ••• , dn)

a - 1'(d1 , ... ,dn)

d - 1'(<11,'" , dn)

o

In general structures K, if).x.I(.s, :c) =).;c.I(.s', x) implies s = s', the relations a-1'(...)
and <1 - 1'(. ..) are partial functions. A more serious restriction is imposed by requiring
the add- and delete-operations to be total functions. This means that no interesting
domain constraints will hold for the whole state space. But what can we do then if
we are interested only in st.ates where, for example, we have on(y, x) 1\ on(z , x) --+ y ==
z? The answer is simply to check whether the set of states with the above property
is closed under the basic actions we want to use in our plans. That is, we treat
domain constraints as invariants of the basic actions. Since the concept of invariant is
broader than the concept of domain constraint-domain constraints must, of course,
be invariants of the basic actions-our approach does not impose any restriction on
the formulation of planning problems. It offers, as we shall discuss in section 4, the
advantage of proving formulae to be invariant, thereby ensuring the soundness of the
whole axiom system.
It can be proved (in a way which would have to be made precise) that all structures
K where the constants are rigid symbols and I(s ,1') is always a finite relation are
"contained" in a natural model Ku. Hence, the only crucial question is whether we
can define (or "program") sufficiently many actions in a sufficiently abstract way. The
property stated in part two of the theorem guarantees that the basis of our planning
language is powerful enough: All states can be reached from each other by applying
finite sequences of basic (/.<1d- and delete-operations. Of course, this does not mean
that all actions can be "programmed" in a satisfactory way. Indeed it turns out that
the control structures have to be carefully designed. In particular, we need a nondeter­
ministic choose construct in connection with recursive actions. The choose construct
will be introduced in section 3.

5

3 The Logic

We start with the definition of the syntax of our planning language. Actions 7r and
action abstractions, are defined relative to a vocabulary given by (Z, C, R, X). In
addi tion, we use a system A = (Ai I z E Z*) of names for abstractions.

skip I abort I delete-r(T} , ... , T,,) I add-r(T}, ... , Tn) I (7r}; 7r2) I (7r} or 7r2) I
if 'P then 7r} else 7r2 fi I choose :1; begin 7r end 1,(T}, ... , Tn)

(J, I rec a(x}, ... ,Xn).7r I rec" a(:1:1, ... ,Xn).7r,

where r.p is a first-order formula and r is a re lation symbol from R. We impose the

usual type constraints. The occurrence of :c following choose is a binding occurrence,
the scope of which consists of the plan enclosed by "begin" and "end".
Let K = (TJ, S,I) be a structure for (Z,C, R). The semantics of plans 7r is given by a
valuation [.. ']{J, where [7r l1 ~ S X S.

[skip]{J = {(s,s') Is = s'}
[abort]{J = {}

[.. -r(Tl, ... ,Tn)],B = {(s,s') Is .. -r([Tl]s,{1, ... ,[Tn]s,,1) s'}
[(7rl; 7r2)]{J) = [7rl] r1 0 [7r2] fi
[if'P then 7r} else 7r2 fil1) = ((r.p?) {J 0 [7r}] (1) U ((-,r.p?) (1) 0 [7r2] {J),

where s ('P?) r1 s' iff s = ,~' and K Fs ,{J 'P
[(7rl or 7r2)]{J) = [7rll1 U [7r2li
[choose x begin 7r endli = U {[7r]M IdE Dz}, where :1: E Xz
[rec a(x}, ... , :I;,,).7r (T}, ... ,T,,)l1 =

U {[recn a(:r:l, ... , :c,,).7r (T}, ... ,Tn)]{J In 2: O}
[recn+l a(.Tt, ... , :1:,,). 7r (Tl, .. , , T,,)] p' = [7r*(a f- recn a(.Tt, ... , Xn)' 7r)]{J;t : ;~ ,

where di = [Ti] {J for 1 :S 't :S nand 7r- results from 7r by suitably
renaming the bound variables, so as to avoid clashes.

[reco a(xl"'" .T 7I).7r (Tl, ... , T7I)] {J = {}

[a(Tl , ... , Tr.)] ri = {} .

We have defined the semantics for arbitrary structures K. However, the reader should
bear in mind that we are interested only in natural modds Ko, where the add- and
delete-operations are total functions on the set of states.
rec a(xl,"" x,,).7r is a recursive action :I;}, ... , :C n being the formal parameters and 7r
being the body of that action. To simplify our exposition we restrict ourselves to simple
recursive actions, an ext.ension to mutually recursive ones being straightforward. The
semantics (and proof theory) of recursive abstractions relies on finite approximations.

As can be seen from the semantic definitions above rec", a(:I: }, ... , x 7l).7r denotes the
n'th approximation of the meaning of rec a(:c l, ... , xn).7r. Uninterpreted reasoning
is achieved by using induction on the indices of approximations in order to prove
statements about recursive actions.
The language is rcfcT'(:ntially tnw,8]JaT'wt with respect to variables. Side effects occur
only on the level of rdations (stat.es). This is reflected in the axiomatization which,
in this aspect, is simpler than that of ordillary DL and close to that given in [Kautz,
1982].

6

The choose construct guesses a new element by changing the valuation (environment)
that is used to evaluate the subsequent action. However, t.his change of environments
as in the case of parameter passing follows a strict stack discipline, that is, the effect
of choosing a new element can not work outside the plan enclosed by "begin" and
"end". The choose construct is necessary to "move" in structures.
To be able to reason about these changes, we follow the approach taken in Dynamic
Logic, in that we extend the predicate logic used so far by formulae [7r]<p and [? -
r(~}, . . . '~n)]<P' where r is a relation symbol and the ~i are either terms or "placeholders"
e.
The formal semantics of t his new type of formulas is given by

K Fs,,a [7r]<p iff K FSI,,a <p for all s' such that 5 [7r] ,0 5'
K Fs,/1 [? - r(e},···, ~n)]<P iff K Fsl ,{j <p

for all.s' such that
I(',., s') and I(r', s) differ in (d}, ... ,dn) ,

only if for all 1 ~ i ~ n di = [ei],a or ~i = e ,
aud I(',.', s') = I(-,.', .5) for all r-' =I r .

Intuitively, [7r]<P has to be read: "fl7r tenniuates, <p holds afterwards." The dual op­
erator <7r>, defined by <7r><p:+--+ o[7r]o<p has to be read: "7r terminates with <p."

The (modal) operator [? - 'r(~}, ... ,en)] refers to all states that differ from the given
one in at most the value of r, where some argument positions are fixed. For example,
[? - on(e, e] <p means that <p holds in all states that differ from the given one in at
most the on-relation whereas [? - 0'11.(T}, Tn)]<P means that <p holds in all states that
differ from the given one in a.t most the on-relation between the objects denoted by Tl

and Tn. In ordinary DL, t his is achieved by quantifying on program variables. A kind
of "quantification" like the one above increases the expressive power of the formalism
in general and is 1/,eCeSSflr'y for inductive proofs.
The axiomatization follows the paradigm of so-called uninterpr-eted reasoning, where we
do not rely on the expressive power of the underlying data structure. The semantics and
proof theory of recursive actions (pla.ns) is outside the scope of this paper, however,
a general introduction to uuinterpreted rea.soning, as it is implemented in the KIV
system, can be found ill [Heisel et a/., H)89]. An axiomatization of a very powerful
procedure concept for imperative programming languages is given in [Stephan, 1989].
Here we present only some a.xioms for the non-standard constructs.
As is the case with assignments in ordinary programming languages, the effects of the
add- and delete-operations on first-order formulae can be described in an exhaustive
way.

Theorem 2 Let <p be a form:ula such that all bound variables are distinct from the vari­
ables occurring in T}, ... , Tn. Then the weakest precondition (in the sense of [Dijkstra,
1976]) of <p with r'espect to delete-r(T}, ... ,Tn) and add-r(T}, ... ,Tn) are the formulae

cp and <p, respectively, where cp results from <p by replacing all atomic subformulae

and <p results from <p by r'eplacing all (domic subfor'mulae

7

Analogous to the well known assignment axioms we have

[delete-r(Tl ,"" Tn)]c.p +-t r:p and

[add-r(Tl " '" Tn)]c.p +-t cp .

In addition to that, uninterprf'ted reasoning requires axioms like:

V(Xi¢ Vi 11 ~ i ~ n) -+

([delete-r(x)][add-r(y)] c.p +-t [add-r(y)][delete-r(:r)] c.p) ,

[delete-r(x)][add-r'(y)] c.p +-t [add-r'(:Q)][delete-r(x)] c.p ,
[delete-r(.T.)][add-r(:T:)] c.p +-t [add-rUt·)] c.p ,
[add-r(x)][delete-r(:c)] c.p +-t [delete-r(:I')] c.p,

For the choose construct Wf' heW!"

[choose :1' begin 7r end]c.p +-t Vy.[7r.;']c.p ,

o

where y is a fresh variable. The a.xioms for the simplf' structured commands are as
usual. Examples for gf'nera.\ (modal) a.xioms are

[7r](c.p -+ 'f) -+ ([7r] c.p -+ [11'] 4') ,
V:I:[7r]c.p -+ [7r]V:rc.p ,

where x must not occur free in 11', and

where T is free for ;r: in c.p, and c.p~ df'notes the Hubstitution of T for all free occurrences
of x in c.p.

4 Actions and Plans

We are now going to outline how planning domains can consistently be defined in our
theory. In section G Wf' will discuss briefly the technical aspect:; of a logic based shell
for planning and the implementioll of plallllillg strat.egies wit.hin such a system. Our
treatment of the frame problem will be discussed sf'perately. The main concern of this
section is to demonstrate how ba:;ic actions call be defined in an abstract way and that
domain constraints can be treated adequately.
There is no technical distinction between ba:;ic actions and derived plans composed
out of them. The latter can be used without restriction as basic operations for higher
levels of the planning process. However, we have to start out with some set of basic
actions that are hand-coded. The first :;tep involves fixing t.he set of relation symbols
we want to use. At the end of thi:; :;ection we will discuss how defined notions, like
above in the blocks world scenario can be added to the theory.
The unstack operat.ion, for example, can be defined as a simple abstraction ,,,n'

8

rec un.stack(:e,y). if un(:r:,y) A dt:(J,'r(:r:)
then add - tab!e(:r:);

add - de(J,'r(y);
delete - unCe, y)

else abort fi.

In mo~t applications, the sta.te ~pace is restricted by so-called domain constr·aints. In
the blocks world, for example, we have 'i:r (clt·(f'/"(x) ~ -'~y on(y,x)).
In our ~etting, domain constraint~ are treated as iU'IIar·iants. For <p being the equivalence
above, we can prove the assertion <p --t [,,,.,,(:r:,y)]<p. If a similar assertion holds for all
basic actions, we can use the domain cOllstraint <p in all st.ates reached by arbitrary
plans made up of these basic actions, provided <p has been included in the description
of the initial state. This fact can be proved formally in our setting.
The great advantage is that adding domain cOllstraints in sllch a way guarantees con­
sistency with the ddinit.ion of the basic actions and, with t.hat., consistency of the whole
planning environment.. Havillg deduced a set of domain constraints, we may also sim­
plify the descr'ipiiou of the basic actiolls to be u~ed in the planning process. From the
definition given ahove, a sufficiellt. (abstract) description of t.he unstack operation (in
the style of [Kautz, 1!)S2j) would be:

on(:r:,y) A cle(J,'/"(:r:) --t <'1t'll(:r:,y) > tablt-{;r:) A clea.r(y).

As another example, suppose we have a world where blocks have colours and let r'ed,
black, and white bf' the only colours that OCC1I1'. An operat.or [}(f.intbiack [Bibel et ai.,
198D] that changes tlte col01l1' of allY block to black is df'fined by the ab~traction ,pb

rec J)(],intb(:r:). add - bla('k(:r:);
delete - wh:if:e(:c);
delete - '/"ed(:r:) .

If we can prove that the formula
'ix (red(x)Vbiack(:r:)Vwhite(:r:)), stating that every block has exactly one of the three

colours, is an invariant of all basic actions, then <,pb(X) > black(x) sufficiently de­
scribes our action.
Note that it is not necessary to specify adding or deleting rugative facts in our approach.
So, even without the domain constraint above, -,white(:r:) as well as -",.ed(x) can be
proved to hold after the execution of 'l'b.

Definitions of ba::;ic actions can be more complex than those presented above. Using
the choose construct we are able to define, for example, the nondeterministic dump
operator [Kautz, 1982], that transfer::; all blocks from a certain box into another by

9

rec dump(.1:, y) . if ::I z in(z, :c)
then choose z

begin if 'in(z, :c:)
then add - in(z, y);

delete - in(z, .1:);
(/-til}! JI (:r, y)

else abort fi
end

else skip fi

and prove theorems about it.

The language introduced above can also be llsf'd to treat "recursively defined notions",
like the aliove relation ill tllf' blocks world sCf'lla rio . This killd of relat ions often causes
problems in planning f'nVil'OIlJlWnts , sef' for f'xamp lf' [Ka1ltz , 1982]. Lf't ,ab be the
recursi ve abstract.ion

rec aliove(x, y). if -,on(:l',y)
then choose ::

begin if Ul/.(::: , y)
then aliuue(:/:, z)
else abort fi

end
else skip fi .

Using this piece of program t.he rf'la.tioll ahuut' can be df'fillf'c\ by

We are t.hen ablf' to prove 1f' ll1ll1 ata like

(/\ L; 1\ (l hove (:1' , :r;) 1\ ;r ¥= '1/) ----t h 11/1 (II , 'U)] a ho u e (:1' , y) ,
on(:c:, y) ----t abov t.' (:r, :r;), ami

(on (y , z) 1\ (J.lIO'U f (.r. , y)) ----t (J.lI(J'l} t ' (:t:, z) ,

where L; is tbe Sf't. of domain cons t. ra ints.

10

5 The Frame Problem

Considering the unstack-operation and a1/,alyzing its definition reveals the fact that the
only relations affected by unstack are table, dea'r, and on. This, in particular, means
that unstack has no side effects on, for example, the colours of blocks. Thus,

white(x) -+ ['"n(a, b)]white(x)

appears to be a valid (frame) assertion. This observation leads us to an efficient
treatment of the frame problem, which has the following proper foundation.
In our approach, the basic actions of a planning domain are defined as abstractions,
the bodies of which in simple cases merely contain the elementary add- and delete­

operations. From these definitions of basic actions, frame assertions can be inferred
using uninterpreted reasoning. Clearly, we have to use tllP basic axioms for the add­
and delete-operations, respectively, in these deductions. In general, frame assertions
are of the form

'r (71 , . . . , T/I) -+ [7r] (t -+ 'r (71 , . . . , 7,,)) ,

where the condition E consists of inequalities . In fact , another frame assert ion for the
tlnstack-operation would be:

on(;r:,y) -+ [,,,n(a,h)]((:r: ¢ a Vy ¢ b) -+ on(x,y))

Of course, the frame assertions can be proved for complete plans as well.
One main advantage of our a.pproa.ch, however, is that a comprehensive subset of
valid frame assertions can be obtained in a nondeductive way by an algorithm that
analyzes the syntactical structure of plans. Assertions generated by this algorithm can
be proved in a uniform way, that is, we can provide a proof procedure (tactic in KIV)
that automatically generates a proof for each such assertion. We shall now outline the
basic ideas underlying this algorithm.
In order to formulate the general method for computing sound frame assertions (for
general plans), we have to analyze the semantics of our planning language. It turns out
that for each plan 7r and each relation symbol 'r, the formal execution tree of 7r contains
only a finite number of different applications of the elementary operations .. - r(. ..),
if we do not take into account those arguments that are program variables bound by
a choose construct. In such a generalized 'call' .. - 'r(7\, ... , T,,), we write Ti = 8 , if
Ti is such an argument. Let Rd(7r, ''') and Ru (7r, ''') denote the set of all applications
of elementary add- and delete-operations that are reachable by 7r, respectively. Using
this notation we get the following result.

Theorem 3 For' each 7r and each r'cZation symbol 'r the following implications are prov­
able in our' axiomatization :

r(O"l"",O"n) -+ [7r](A(cond(op) I opE Rd(7r,r)) -+ 'r(O"l, ... , O"n)),

-,r(O"l , ... ,O"n) -+ [7r](A(cond(op) lop E R a (7r,r')) -+ -,r'(0"1 "",0"1I)) ,

where cond(op) = V(fi ¢ O"i I Ti i= 8 and 1 :::; i :::; n) .

11

o

Clearly, the extensive use of t.he choosf: const.ruct reduces the number of computed
frame axioms. All cases not. covf'n~d uy tlif'se computed frame axioms have to be

proved in a non-uniform way.

6 Implementation

Although this paper is mainly devoted to the presentation of our theory, we will shortly
describe how a logic-based planning environment can be implemented within an (ex­
isting) tactical theorem proving syst.em. Tile paradigm of t.actical theorem proving
seems to be especially well suited to tile kiud of euvironment we have in mind (see also

[Guinchiglia et ai., 1992]). Based on a genera.! logi cal framework, derived rules and
tactics can be defined and are thell used to implemellt. efficient planning strategies or
other reasoning met.hods on plans.
Like many other systems in tl1P area of tactical theorem proving the KJV system is
based on a sequent r·rtir-'II.lus. Program (plan) synthesis, [I-Ieisf'1 r:t ai., 1991], is supported
by so-called meta variaules. Given plalluing problems by sets of formulae r and ~,
we sta.rt wit.h the goal ~,r =} <?a > /\ ~ ,and illst.ant.iate the metavariable ?a
during a goal-directed (hackward-c1IC1.iuillg) proof. ~ is til(" set of domain cOllstraillts.
Strategies like p1·0!ln·ssio1/. alld 1·(·!/,u·.<;sirJ1/. (d. [Kautz, 1~J8~]) can easily be implemented
on the basis of a set of suitahle d(~rivf'd rules alld tal.tics. For example, our treatment
of domain constraints can Iw implenwlIted by a derivf'd scllenw like ~ =} [71"J/\~.

These strategies can use tlw "colllput(~d" fr<LllW assertions to detennine the invariant
part of a pre- or postcondition.
In this way, we obtain considerable efficient implementations tllat can be easily changed,
extended, and combined and t.hat. are guarant(~ed to be sound with respect to the basic
formalism.

7 Related Work

Rosenschein and Kautz were tlw fin.;t. usillg Dynamic Logic in planning [Rosenschein,

1981; Kautz, 1~)82J. They define basic actiolls as atomic const.ituents of their planning
language that are axioma.t.ized fn~ely by describing their prf'conditions and effects, re­
spectively. Our approach goes I)f'yond this by providing a STRIPS-like way of defining
basic actions and setting up cOllsistP.llt plalllling scenarios Oil top of that. The logical
formalism is extended to reason abollt t.hese basic actions as well as about composite
plans built out of them. III both cas(~s tl lis includes recmsive definitions.
With the work of Pednault [Pedll(tlllt., UJ8(,; Pednalllt, 1~J8~JJ the approach we presented
in this paper shares the idf'a of df'scril)iug basic actions ill C\. STRIPS-like manner, that
is, by giving add and delete lists for n~ la.tiolls. Moreover, both approaches embed
these descriptiolls illto a logical formalism t.hat call be used to reason about plans. We
begin with t.he ohsf'rva.tion that tile appropriat.e semantical background for integrating
this STRIPS approadl int.o deductive planlling are models hased on finitely generated
relations. While ADL uses a fixed form of conditional add and delete lists our approach
allows to program basic operations in a carefully chosen programming language that

12

covers ADL schemata in a straightforward way. In our approach it is easy to add non­
determinism and also in the deterministic case we can do without auxiliary relations
which seem to be necessary in ADL to describe more complicated actions. In our
setting we start out with the definition of basic actions. The defining programs always
have a precise meaning in the underlying semantical structures. From these definitions
which in addition are independent of each other we then prove domain constraints,
derived descriptions, and frame assertions. These issues are not addressed in the ADL
work. In addition, we have outlined a method to generate certain frame assertions
even for composite plans by a purely textual analysis. Although many ideas presented
above are independent of the logical basis we want to stress that the ability to reason
about the structure of (possibly) recursive definitions (programs) is essential in this
context.
As already mentioned above, our formalism is based on the STRIPS ideas that have
been given formal semantics by Lifschitz [Lifschitz, 1986]. We feel that our formalism
in some sense "proceduralizes" Lifschitz's approach and extends it in some way; e.g. as
far as the treatment of negative effects etc. is concerned. However, investigating this
relationship in more detail goes beyond the scope of this papf'L Separate work will be
devoted to that issue.

8 Conclusion

Combining charClderistic features of conventional planning with techniques borrowed
from programming logics, we have introduced a new theory of action based on a special
variant of Dynamic Logic. Plans may be constructed using rich control structures
including recursion, nondeterministic branching, and a special choose construct . In
our approach, we start out by the definition of basic actions and are then able to
prove properties about. the state space generated by these actions. This includes frame
assertions and domain constraints. In this way, we prevent our planning environment
from running into inconsistencies. These are possible in other systems where frame
assertions and domain constraints are considered to be axioms. An efficient treatment
of the frame problem is provided by a method to generate most frame assertions non­
deductively (with the possibility of a uuiform formal proof within the system). Our
theory of action clearly is not restricted to blocks-world-type planning domains. One
could equally well define a theory for an intelligent help system context where the
planning domain is a command language environment. There the ability of reasoning
about recursive plans is essential. Implementing our logical framework in the KIV
system provides the basis not only for a deductive planning system, but also for a
complete deductive planning environment, i.e., a syst.em that also assists a user in
developing a consistent axiomatization of his planning domain. Furthermore, this
notion of environment can be extended by implementing tactics for temporal projection,

plan validation and other reasoning methods. Further work is devoted to the automated
generation of recursive plans and an extension of the logical framework to parallelism.

13

References

[Bibel d al., 198~)] W. BibpI, 1. Farilia~ dPl CPlTO, B. Fronhofpr, allel A. Herzig. Plan
Generation by Linear Proofs: On SPlllallt.ics. In GWAI89: German Workshop on
Artificial Intelligence, pages 50-62. Springf'r LNCS 216, 1989.

[Bibel, 1986] W. Bibel. A Deductive Solution for Plan generation. New Generation
Computing, 4:115-132, 1986.

[Biundo et al., 1992] S. Biundo, D. Dpngler, and J. Kohler. Deductive Planning and
Plan Reuse in a Command Lang1\age Environment. . In Procc(:(ii1l.g.<; of the 1 Dth Eu­
ropean Conference on Ar·tificial IntclligfuCf, pagps 628- 632, 1992.

[Dijkstra, 1976] E.W. Dijkst.ra .. A Di.<;cil'lin(' of Pmg1'(J,mming. Prpntice Hall, London,
1976.

[Fikes and Nilsson, 1971] R.E. Fikf's ami N.J . Nilssoll. STRIPS: A New Approach to
the Application of TIlf'orem Proving to Problf'lll Solving. Artificial Intelligence,
2:189- 208, 1971.

[Genesereth and Nilsson, 1987] M.R. GplIPseret.h and N.J. Nils~on. Logical Founda­
tions of Artificial Int.clligfnCf. Morgan Kaufmann Puhlishprs, Los Altos, California,
1987.

[Green, 1969] C. Gl'f~en. Application of Theorem Proving to Problem Solving. In
Proceedings of the l.<;t Intcrnational Joint ('oll.j'er·encf' on A T'lificial Intelligence, pages
219- 239, 1969.

[Guinchiglia et al., 19!)2] F. Guinchiglia, P. Traverso, A. Cimatti, and 1. Spalazzi. Tac­
tics: Extending t.he Notion of Piau. In Pmc. of tlu: ECAI-92 Wor'kshop on Beyond
Sequential Planning, 1992.

[Harel, 1979] D. Harel. Fi1',<d Onh:1' DYTw,1/1,ic Logic. Springer LNCS 68, New York,
1979.

[Heisel et al., 19S!)] M. Heisd, W. Rf'if, and W. Stephan. A Dynamic Logic for Pro­
gram Verification. In A. MeYf'r and M. Taitslin, edit.ors, PmCf:eding8 of Logic at
Botik, pages 134- 145. Sprillger LeNS 3(;;~, U)89.

[Heisel et al., 1990] M. Hei~el, W. Rpif, aud W. St.ephan. Tactical Theorem Proving
in Program Verificat.ion. In Pr·oceedi1l.gs of the 10fh Int eT'TwtioTw,1 Confer'ence on
Automatcd Deduction, pages 117- 1:31. Springer LCNS 449, 1990.

[Heisel et al., 1991] M. Heisel, W. Reif, and W. Stephan. Formal Software Develop­
ment in the KIV System. In Auto"'l,(J,ting So/i'llJure Design, R. McCartney and M.R.
Lowry {eds.}. AAAI Press, 1991.

[Kautz, 1982] H.A. Kautz. Planning within First-Order Dynamic Logic. In Proceed­
ings of the CSCSI/SCEIO, page~ 19- 26, H)82.

14

[Kroger, 1987] F. Kroger. Ternpont.l Logic for Pr·ogr·ams. Springer, Berlin, Heidelberg,
New York, 1987.

[Lifschitz, 1986] V. Lifsch itz . On the Semantics of STRIPS. In M.P. Georgeff and A.L.
Lansky, editor::>, Reasoning about Actions and Plans, pages 1- 8. Morgan Kaufmann
Publishers, Los Altos, 198G.

[Manna and Pnueli, 1991] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer, New York, 1991.

[Manna and Waldinger, 1987] Z.Manna and R. Waldinger. How to Clear a Block:
Plan Formation in Situational Logic. Journal of Automated Reasoning, 3:343-377,
1987.

[McCarthy and Hayes, HH)!)] .T. McCarthy and P. Hayes. Some Philosophical Problems
from the Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, editors,
M(~chine Intelligence Vol. 4, pages 463- 502. Edinburgh University Press, Edinburgh,
1969.

[Pednault, 1986] E. Pednault.. Formulating Multiagent, Dynamic-World Problems in
the Classical Planning Framework. In M.P. Georgeff and A.L. Lansky, editors,
Reasoning about Actions and Plans, pages 47- 82. Morgan Kaufmann Publishers,
Los Altos, 198G.

[Pednault, 1989] E. Pednault,. ADL: Exploring the Middle Ground Between STRIPS
and the Situation Calculus. In Proceedings of the 1st International Conference

on Principles of Knowledge Representation and Reasoning, pages 324- 332. Morgan
Kaufmann Publishers, H)89.

[Rosenschein, 1981] S. Rosenschein. Plan Synthesis: A Logic Perspective. In Pro­
ceedings of the 7th Inte rnational Joint Confer'ence on Artificial Intelligence, pages
331- 337, 1981.

[Salwicki, 1977] A. Salwicki. Algorithmic Logic. A Tool for Investigations of Programs.
In Butts and Hint.ikka, editors, Logic, Foundations of Mathema.tics, and Computabil­
ity Theory, pages 281-295. D. Reidel Publishing Company, Dordrecht, Holland, 1977.

[Stephan, 1989] W. Stephan. Axiomatisierung rekursiver Prozeduren in der Dynamis­
chen Logik. Habilitationsschrift, Universita.t Karlsruhe, Karlsruhe, 1989.

15

Deutsches
Forschungszentrum
fOr KOnstliche
Intelilgenz GmbH

DFKI Publikationen

Die folgenden DFKl VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen k c5nnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-22
Jorg Wurtz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka , RalfTreinen:
Records for Logic Programming
38 pages

RR-92-24
Gabriele Sehmidl : Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-25
Franz Sehmalhofer, Ralf Bergmann , Otto Kuhn,
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations
12 pages

RR-92-26
Franz Sehmalhofer, Thomas Reinartz,
Bidjan Tsehaitsehian: Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems
16 pages

RR-92-27
Franz Sehmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi , Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages
RR-92-30
Rolf Baekofen, Gert Smolka:
A Complete and Recursive Feature Theory
32 pages

DFKI
-Bi bliothek­
PF 2080
D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-31
Wolfgang Wahlster :
Automatic Design of MuiLimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hansehke: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader, Philipp Hanschke:
Extensions of Concept Languages for a Mechanical
Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke. Manfred Meyer:
An Alternative to H-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hansehke. Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Kla.uck. Jakob Mauss: A Heuristic driven
Parser for Attributed Node Labeled Graph Grammars
and its Application to Feature Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages
RR-92-46
Elisabeth Andre. Wolfgang Finkler. Win/ried Gra/.
Thomas Rist. Anne Schauder. Wolfgang Wahlster :
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR-92-51
Hans-Jurgen Burckert. Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan. Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR-92-55
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader. Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults. Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-Jii.rgen Profitlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader. Berhard Hol/under. Bernhard Nebel.
Hans-Jii.rgen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-05
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jii.rgen Bii.rckert. Bernhard Hol/under. Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR·93·07
Hans·Jiirgen Biirckert, Bernhard Hollunder, Armin
Laux: Concept Logics with Function Symbols
36 pages

RR·93·08
Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR·93·09
Philipp Hanschke, Jorg Wurtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR·93·10
Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR·93·11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR·93·12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR·93·13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR·93·14
Joachim Niehren, Andreas Podelski,Raif Treinen:
Equational and Membership Constraints for Infinite
Trees
33 pages

RR·93·15
Frank Berger, Thomas Fehrle, Kristof KI6ckner,
Volker Schemes, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR·93·16
Gert Smolka, Martin Hem, Jorg Wurtz : Object­
Oriented Concurrent Constraint Programming in Oz
17 pages

RR·93·20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

DFKI Technical Memos

TM·91·12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PA TR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM·91·13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially Evaluated
Meta Interpreter
16 pages

TM·91·14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM·91·15
Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM·92·01
Lijuan Zhang: Entwurf und Implementierung eines
Compilers zur Transformation von
Werkstiickreprasentationen
34 Seiten

TM·92·02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM·92·03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM·92·04
Jiirgen MUller, Jorg Muller, Markus Pischel,
Raif Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM·92·05
Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM·92·06
Otto Kuhn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM·92·08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM·93·01
Otto Kuhn, Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

DFKI Documents

D-92-12
Otto Kuhn. Franz Schmalhofer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery (Integrierte
Wissensakquisition zur Fertigungsplanung fUr
Drehteile: eine Bildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the Applicability
of Tenninological Reasoning to Application­
Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur Reprllsentation
von Features in CIM
98 Seiten

D-92-1S
DFKI Wissenschaftlich-Technischer lahresbericht
1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft­
warekomponenten fUr natiirlichsprachliche Systeme
189 Seiten

D-92-17
Elisabeth Andre. Robin Cohen. Winfried Gmt.
Bob Kass. Cecile Paris. Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich. Rainer Hoch : Automatische,
Deskriptor-basierte Unterstiitzung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generdtion of
Natural Language with Tree Adjoining Grammars
57 pages

D-92-22
Werner Stein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der Prolog­
artigen Syntax von RELFUN
51 Seiten

D-92-24
Jurgen MUlier. Donald Steiner (Hrsg .):
Kooperierende Agenten
78 Seiten

D-92-2S
Martin Buchheit: Klassische Kommunikations- und
Koordinationsmodelle
31 Seilen

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONT AX
28 Seilen

D-92-27
Martin Harm. Knut Hinkelmann. Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

D-92-28
Klaus-Peter Gores. Rainer B1eisinger: Ein Modell
zur Reprasentation von Nachrichtentypen
56 Seiten

0-93-01
Philipp lIanschke. Thom Fruhwirth: Terminological
Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt. Frank Peters.
Gernod LaufkOtter: User Manual of COKAM+
23 pages

0-93·03
Stephan Busemann. Karin lIarbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

0-93-04
DFKI Wisscnschaftlich-Tcchnischer lahresbcricht
1992
194 Seiten

D·93·06
lurgen Muller (IIrsg.):
Beitr'Jge zum Grundungsworkshop der Fachgruppc
Verteilte Kunstliche Intelligenz Saarbrucken 29.-
30. April 1993
235 Seilen
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-93-07
Klaus-Peter Gores. Rainer B1eisinger:
Ein erwartungsgestcuertcr KoordinalOr zur partiellen
Textanalyse
53 Seilen

A New Logical Framework for Deductive Planning

Werner Stephan, Susanne Blundo
RR-92-53

Research Report

