
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

PHI

Research
Report

RR-92-52

A Logic-Based Tool for
Intelligent Help Systems

Mathias Bauer, Susanne Biundo, Dietmar Dengler,
Jana Koehler, Gabriele Paul

December 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz , Fraunhofer Gesellschaft , GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies , or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

PHI - A Logic-Based Tool for
Intelligent Help Systems

Mathias Bauer, Susanne Biundo, Dietmar Dengler, Jana Koehler, Gabriele Paul

DFKI-RR-92-52

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW 90008).

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial p~rpose. Permission to copy in
whole or in part w~hout payment of fee is granted for nonprofit educational and research purposes provided that
all such whole or partial copies include the following: a notice that such copying is by permission of Deutsches
Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence w~h payment of fee to
Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

- PHI-
A Logic-Based Tool

for Intelligent Help Systems

M. Bauer S. Biundo D. Dengler J. Koehler G. Paul

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3

W -6600 Saarbrucken 11
Germany

e-mail: {last-name}@dfki.uni-sb.de

Abstract

We introduce a system which improves the performance of intelligent help systems
by supplying them wit h plan generation and plan recognition components. Both
components work in close mutual cooperation. We demonstrate two modes of cross­
talk between them, one where plan recognition is done on the basis of abstract plans
provided by the planner and the other where optimal plans are generated based on
recognition results. The examples which are presented are taken from an operating
system domain, namely from the UNIX mail domain.

Our system is completely logic-based. Relying on a common logical framework­
the interval-based modal temporal logic LLP which we have developed- both com­
ponents are implemented as special purpose inference procedures. Plan generation
from first and second principles is provided and carried out deductively, whereas
plan recognition follows a new abductive approach for modal logics. The plan rec­
ognizer is additionally supplied with a probabilistic reasoner as a means to adjust
the help provided for user-specific characteristics.

Contents

1 Introduction 1

2 The Formal Framework 2

3 Plan Generation 4
3.1 Planning from First Principles 4
3.2 Planning from Second Principles. 5
3.3 Generating Optimal Plans 7

4 Plan Recognition 7
4.1 The Abductive Recognizer 7
4.2 Probabilistic Selection 9

5 Implementation 11

6 Conclusion 11

1 Introduction

Intelligent help systems aim at providing advanced active help to the users of complex
software s),stems (d. [Bre90, TB92, NWW93]). The performance of these help systems can
be considerably improved if they are supplied with plan recognition and plan generation
capabiliti,es. Observing a user and recognizing his goals enables the system to help by
taking into account the current state of the system as well as the user's level of education
and current behavior. Moreover , if a planning capability is available support can be
given by proposing appropriate (sub-)plans or even by executing them automatically. In
particular, this improves the assistance provided if the planning component can rely upon
any observations and plan recognition results; that is exactly what PHI aims to achieve.

A

P
P

L

C Observations,

A
System State

T

I
0
N

Advice
S
y

S
T
E
M

,

Plan Generation
First Principles Second Principles

I GENERATOR I-I REUSER I
I

Generation/
Optimization
Tactics

Modification
Tactics

Figure 1: PHI: System Architecture

PHI (d. figure 1), the system being presented in this paper, is a tool for intelligent help
systems. It provides both a plan recognizer and a planning component and one of its main
characteristics consists in the close mutual cooperation between the two components.
There are several cross-talk modes. The first one is devoted to realizing plan recognition
on the basis of abstract plans produced by the planner. Abstract plans are those which
represent a variety of "concrete" observable action sequences by admitting several degrees
of freedom like variables (abstracting from the objects involved), abstract commands (ab­
stracting from the names of actioris which have the same effects), or temporal abstraction
(abstracting from the point in time at which an action occurs). The generation of plans
is based on standard assumptions concerning goals that typically occur or are specific to
a certain user. Abstract plans are generated from these formal plan specifications. In
doing so, the planner not only performs planning from first principles but is able to reuse

already existing plans which are stored in a library (planning from second principles).
The plans provided serve as plan hypotheses in the recognition process, Taking abstract
plans instead of concrete ones keeps the hypothesis space of manageable size. The plan
hypotheses are passed to the recognition component where they are provided with nu­
merical values which reflect the probabilities of their being confirmed by the subsequent
observations. These a priori probabilities mirror a specific user's behavior, and are taken

1

from the user model. Having observed the user's actions step by step the plan recognizer
consequently tries to confirm the plan hypotheses by proving that the action sequence
observed up to now is an admissible "instance". Hypotheses which are not confirmed
are rejected and with that the probability distribution of the hypothesis space changes
dynamically.
In the first cross-talk mode the plan recognizer is able to determine the most likely plan
a user follows by carrying out appropriate "instantiations" on valid plan hypotheses. In
addition, services like semantic plan completion can be offered at any time during the
observation process.
The second cross-talk mode is devoted to providing the user with optimal plans whenever
suboptimal behavior has been recognized or aid has explicitly been sought.

The system is completely logic-based. It requires a proper axiomatization of the basic
commands of the application system and certain domain constraints. The logic LLP which
we have developed for that purpose combines features of both traditional programming
and temporal logics. In addition it carefully meets any requirements which arise from
this help system context, since the basic actions which occur in plans are the elementary
statements of the application system language. The plan generation and recognition
components are special purpose inference procedures. Plan generation is done deductively

using a sequent calculus for LLP, whereas plan recognition is realized as an abductive

process.
The application domain, from which we present examples in this paper, is a subset of the
operating system UNIX, namely its mail system, where commands like type, delete, or save

manipulate objects like messages or mailboxes.

The paper is organized as follows: After a short introduction to the formal framework in
section 2 we describe the plan generation and recognition components in sections 3 and 4,
respectively. We demonstrate by means of an example how the system works in the first
cross-talk mode. In section 5 we briefly describe the implementation of our system and
finally we conclude with some remarks in section 6.

2 The Formal Framework

Plan generation Clnd plan recognition are carried out on a common logical basis. The
logical language for planning (LLP) [BD93], which we have developed for this purpose,
combines features of Choppy Logic [RP86] with the Temporal Logic for Programs [Kro87].
This entails the consideration of plans as programs as has also been proposed by other
authors (cf. [Gre69], [Bib86], [MW87], [FK91]). This view fits well into our help system
context as the plans we have to generate and recognize consist of the application system's
elementary statements and may even contain control st'ructures like conditionals or loops.
LLP is an interval-based modal temporal logic. It provides the modal operators O(next),
<> (sometimes), 0 (always), and the binary modal operator; (chop), which expresses the
sequential composition of formulas. Besides these operators control structures are also
available, as in programming logics. Basic actions, which in our example domain are the
elementary mail commands, are axiomatized like assignment statements in programming
logics. The state changes which they perform are reflected in changing the values of

2

certain variables . The type command, for example, reads:

Vx [[open-flag(mb) = T /\ d-flag(x, mb) = F /\ EX(type(x, mb))] ---t

Or_flag(x,mb) = T]

It states that if a certain message x in a current mailbox mb has not yet been deleted and
we exec,ute the type command then the message is read in the next state.
Plans are represented by a certain class of LLP formulas. Besides basic actions (expressed
by the execute predicate EX) they contain the chop operator, control structures, and also
temporal abstractions.
Plan specifications are LLP formulas of the form as follows:

[preconditions /\ Plan] ---t goals,

i. e., if the preconditions hold in a situation where we carry out Plan, then the goals will
be reached. For example the following formula

open-f lag(M box) = T /\ Pia n ---t

O[display = aliheaders(Mbox) /\ 0 [r_flag(x, Mbox) = T]]
(1)

specifies the plan "Display the content of mailbox Mbox on the screen and then read
message x". Plan is a metavariable for a plan formula.
Plan generation (d. section 3) is carried out by constructively proving the specification
formula. While proving the specification formula the plan metavariable Plan is replaced
by a plan (formula) which satisfies the specification. Proving (1), for example, results in
the following plan:

EX(header(Mbox)) ;
if d-flag(x, Mbox) = T then EX(undelete(x, Mbox));
EX(type(x, Mbox))

(2)

As the UNIX mail language does not of course provide any control structures, this plan
has to be considered as abstract, apart from the fact that the variable x occurs in it.
In section 4 we describe the methods which, for example, in a certain situation serve to
recognize the observed action sequence

EX(header(Mbox)); EX(type(2, Mbox)) (3)

as an admissible "instance" of (2).
In section 3 we will see how the conditional plan above is generated from first principles.
We can then demonstrate planning from second principles by reusing and modifying this
plan so that it meets a new specification:

We obtain

open_flag(Mbox) = T /\ d-flag(x, Mbox) = F /\ Plan ---t

O[display = aliheaders(Mbox)/\
o [r-flag(x , Mbox) = T /\ O[d_flag(x, Mbox) = T]]]

(4)

EX(header(Mbox)); EX(type(x, Mbox)) ; EX(delete(x, Mbox)) (5)

as a result. In a plan recognition example (d. section .4,) this plan can then serve as one
of the plan hypotheses.

3

3 Plan Generation

The planning system (d. [BDK92]) works by using techniques of planning from both first
and second principles. Planning from first principles begins with a plan specification. The
plan is generated on the basis of the domain knowledge provided. Planning from second
principles adds the ability to incorporate previously generated plans and the problem
solving Knowledge obtained thereby.
In the first cross-talk mode, abstract plans are generated in order to provide the plan
recognizer with plan hypotheses. To generate these hypotheses, the planner works from
second principles by reusing formerly generated plans. In the second cross-talk mode,
optimal or user-satisfactory plans are generated from first principles.

3.1 Planning from First Principles

By using a sequent calculus for LLP (d. [BD93]) the plan generator tries to find a con­
structive proof for the plan specification formula so that an instantiation for the plan
metavariable can be obtained. We thus have a plan the execution of which is sufficient
to reach the goals specified, i.e., a plan which meets the specification. Following the
paradigm of tactical theorem proving (d. [Con86], [HRS90], [Pau90]) the proof is guided
by special planning tactics written in a metalogical tactic language.
As for plan specification (1), the proof is carried out by dividing the specification formula
into subformulas, i.e., those representing single subgoals which the plan has to reach. We
can simultaneously introduce a structure into the plan metavariable Plan, which states
that Plan should consist of at least two subplans: Plan = PI ;P2 •

Let us now consider the generation of a plan for P2 • The corresponding subgoal reads:

open-flag(Mbox) = T /\ P2 - Or-flag(x, Mbox) = T

Usually subgoals of this type are proven by using nonlogical axioms which describe basic
actions. Thus, the plan metavariable is instantiated by a basic plan formula. The instance
of the type axiom below is selected because it can reach the desired goal of setting the
r _flag to T.

open-flag(Mbox) = T /\ d-flag(x, Mbox) = F /\ EX(type(x, Mbox))

- Or_flag(x,Mbox) = T

The preconditions of this action however must hold in order to make the axiom applicable.
One of these preconditions is missing from the subgoal above. One strategy used in order
to establish such a precondition is to derive it from the facts which hold after PI has been
executed. In our case this strategy fails. Following a deductive version of the means-ends

analysis (d. [FN71], [Nil80]) we therefore introduce an additional subplan which produces
the missing precondition. Thus, P2 becomes the composition of a one-armed conditional
and a subplan P 4, respectively:

P2 == [if d_flag(x, Mbox) = T then P3] iP4

The new subgoal obtained is:

open-flag(Mbox) = T /\ if d-flag(x, Mbox) = T then P3

- O[open-flag(Mbox) = T /\ d-flag(x, Mbox) = F]

4

To properly instantiate P3 an inst ance of the undelete action axiom can be used; this tells
us that the execution of undelete(x, Mbox) makes Lflag(x, Mbox) = F true in the next
state, should it not have held before. In a similar way P 4 can now be instantiated by
using the type action axiom.
The overall plan which results after the proof tree has been completed and all plan
metavariables have been instantiated, is the plan given by formula (2) above. It clearly
meets the specification in (1) .
In addition to subgoals whose proof leads to instantiations of the plan metavariables, as
in the above examples, so-called plan assertions must also be proven. These represent
certain properties which are required by the plan to be generated. A typical example in
our case is the fact that the formula open-Jlag(Mbox) = T- which acts as a precondition
to the whole plan-does survive the execution of subplan Pl.
In our system, planning from firs t principles is, like several other approaches to deductive
planning (cf. [Gre69]' [Bib86], [MW87], [FK91]) closely related to work done on deductive
program synthesis where programs are generated by proofs (cf. [MW80], [Fra88], [HRS91],
[Biu92]).

3.2 Planning from Second Principles

By supplying a reuse component to the deductive plan generator we pursue two main
goals: Firstly, the efficiency of planning is to be improved by avoiding the repetition
of the same planning effort. Secondly, flexibility is added to planning by incorporating
knowledge concerning previously used problem solving strategies.
The reuser first takes the current specification and searches in a plan library for a plan

which can be reused as its solution. The plan library is organized in the form of a
hierarchical network of plan entries. Each plan entry contains (a) the specification of the
planning problem, (b) the plan which was generated as a solution, and (c) an annotation
which stores information which was extracted from the generation process, e.g., how the
actions occurring in the plan are related to certain specification subgoals etc. This plan
library is created and updated dynamically when plans are generated.
The current specification guides the search process in the plan library as it is the only
source of information available when the reuse process must begin. Current preconditions
and goals are identified and a plan entry is searched for in which similar preconditions
and goals occur. If a plan entry does not meet the search criteria, planning from first
principles must begin.
If the search in the plan library terminates successfully with a plan entry, the reuser
must verify if the plan stored in this entry can provide a solution to the current planning
problem. The verification is carried out by a formal proof in which the prover verifies
that at least the preconditions the plan requires hold in the current situation and that at
most the goals achieved by the plan are required as current goals.
If the proof succeeds, the plan provides a provably sound solution to the current planning
problem; if it fails, the plan has to be modified.
The modification tactics analyze the failed proof and modify the plan using information
stored in the annotation.
Let us assume, for example, that specification 4

5

open-flag(Mbox) = T /\ d-flag(x, Mbox) = F /\ Plan -t

O[display = allheaders(Mbox)/\
o [r -flag(x, Mbox) = T /\ O[d_flag(x, Mbox) = T]]]

is given to the planner in the first cross-talk mode. Planning from second principle starts
and tri~s to reuse plan (2).
Comparing it with specification (1) it is obvious that more preconditions are given, but
even more goals are required in (4). In this case, the prover reports a failure because more
goals are required in specification (4) than are achieved by the plan. The modification
tactic identifies the missing subgoal d-flag(x, Mbox) = T for which a subplan has to be
generated from first principles. Furthermore, it has to inspect the temporal structure of
the plan to be reused in order to determine the point in time at which this subplan has
to be inserted. For this purpose, explicit representations of the temporal models of both
specifications are constructed and compared during the proof.
Besides the modifications that are necessary in obtaining a solution to the current spec­
ification, the tactic extracts information from the proof for a subsequent optimization of
the plan. An optimization in the context of plan reuse means, e.g., to remove superfluous
actions from the reused plan. A plan is a solution if it achieves at least all the goals that
are required in the current specification, i.e., if the plan achieves some additional subgoals
it is still considered to be a solution. In some applications however, plans have to be
minimal in the sense of achieving exactly the goals required. The plan reuse component
is able to perform the necessary optimizations in these cases.
In the example, the reuser detects that the case analysis in the reused plan is superfluous
because the condition on which it depends is explicitly given in the specification. There­
fore, the conditional can be deleted from the plan. The result of the modification process
is a plan skeleton for a sequential plan

EX(header(Mbox));EX(type(x, Mbox));Planl (6)

containing the reusable subplan identified during the proof and a meta variable Planl as
a "placeholder" for the completing subplan which has to be generated in order to reach
the additional goal.
The generator uses the plan skeleton as a partial instantiation of the plan metavariable
Plan in specification (4). This simplifies the constructive proof of the specification: The
partial proof tree for which an instantiation of the metavariable is already known can be
easily expanded without further search effort. To replace the metavariable Planl occurring
in the skeleton, the generator has to plan from first principles leading to the instantia­
tion EX(delete(x, Mbox)). The interleaving of proof tree reconstruction and generation
ensures that the modified plan provides a provably sound solution to the current plan
specification that can be sent to the plan recognizer as a plan hypothesis.
The approach we follow investigates plan reuse in the general context of deductive planning
and has been described in more detail in [BDK92, Koe92]. Other current approaches
investigate plan reuse and modification in the framework of classical STRIPS-like planners,
e.g., the hierarchical planner and modification system PRIAR [KH92], wich is based on
NONLIN [Tat77], or in the framework of case-based reasoning, e.g., the systems SPA [HW92]
or CHEF [Ham90].
A complexity-theoretic analysis studying plan modification vs . plan generation can be
found in [NK92].

6

3.3 Generating Optimal Plans

The second cross-talk mode is concerned with the generation of optimal and user-satis­
factory plans. The generator receives a plan specification which either belongs to a plan
recognized as suboptimal by the plan recognition component or is derived from a request
for passive help.
Planning in this mode is based on a dynamically changing adjustment of the generation
process triggered by plan quality criteria derived from the user model. The generator
considers, e.g., the user's preferences, his knowledge about the domain, and his typical
behavior in order to generate satisfactory plans for him. It produces a user-adapted con­
crete plan that meets the specification and is as short as possible according to the number
of basic actions used. Since planning is done deductively the adjustment essentially places
a restriction on the sets of nonlogical axioms and rules.
If, on the basis of the current plan quality criteria, no plan can be found, then the criteria
must be minimally changed in order to generate a plan. The necessary deviations are
recorded and can be used by a tutorial system to teach the user accordingly. In the case
of a recognized suboptimal plan, the generated optimal plan is, e.g., the basis for an active
user support of the help system. Generation of optimal plans is only carried out from
first principles because the reuse of concrete plans requires consideration of dynamically
changing plan quality criteria which can contradict the aim of making planning more
efficient.

4 Plan Recognition

The recognition of plans in this logic-based context is realized by a generalized abductive
process with a probabilistic valuation of hypotheses (cf. figure 1). Starting from plan
hypotheses synthesized by the plan generation component and observations of user actions,
an attempt is made to identify an hypothesis describing the user's pursued plan. The use
of probabilistic reasoning allows us to determine one "best" hypothesis if, e.g., semantic
plan completion is to be offered.

4.1 The Abductive Recognizer

Plan recognition, which is the identification of a user's behavior given an observed goal
or action, can be viewed as an inherently abductive problem, if a plan hypothesis P is
interpreted as an assumption explaining the observed action a, i.e., TU {P} F a, where T
describes the domain knowledge (e.g., [AP90], [Sha89], [HK90], [Wcer92]). P is required
to be a ground instance of an element of a set of predefined candidate explanations called
abducibles. 1

However, this "classical" abduction principle is insufficient for temporal hypotheses incor­
porating an implicit representation of time, because the correctness criterion is no longer
satisfied: For example, we cannot deduce from the hypothesis 0. EX (a)-a is expected
to be executed at some t ime-that a is executed now, i.e., the fact EX(a). Nevertheless
this is an intuitively valid hypothesis since anticipating an action at some time might

1 For an introduction to abduction see, for example, [Pei58] or [Fan70]. An overview can be found in
[KKT92] and [Mer92].

7

indeed be an explanation for its present occurrence. To overcome this deficiency the ab­
ductive process is divided into two phases: 1. A guessing phase where modal hypotheses
are adopted-these abducibles are the abstract plans provided by the plan generation
component-and 2. a validation phase where the hypotheses are verified with respect to
the sequence of observed actions. This is the task of plan recognition.
In addition, the ground instance requirement has to be adapted to our modal logic con­
text. It is generalized in such a way that hypotheses are made more precise not only
by instantiating variables but in a temporal sense as well. We concretize the hypotheses
according to the observations made in each recognition step.
This process of concretizing will be explained using a short example with two observa­
tion steps. It is assumed we are given the following plan hypothesis synthesized by the
generation component as described in section 3.

PI = EX(header(Mbox)); EX(type(x, Mbox)); EX(delete(x, Mbox))

Together with this plan formula the plan recognizer is given a set of preconditions which
stem from plan specification (4): {open_flag(Mbox) = T I\d_flag(x,Mbox) = F}. These
preconditions ensure the applicability of the generated plan and thus have to hold for a
valid concrete plan instance. If they cannot be proven in the given recognition scenario
the corresponding plan has to be rejected. For the sake of simplicity we will omit them
here.
Suppose we have the additional hypotheses

P2 = OEX(header(Priv)); EX(type(x, Priv)); EX(delete(x, Priv))
P3 = OEX(header(Priv)); EX(next(x, Priv)); EX(delete(x, Priv))

i.e., contrary to the first hypothesis the header command is not expected to be the first
action but may also occur at some later stage. In addition, a mailbox named Priv is
supposed to be the current one here. For both hypotheses we also ignore the preconditions.
Observing the user execute the action EX(Jolder(Priv, Mbox)), i.e., he moves from the
mailbox Mbox to the mailbox Priv, leads to the following concretized hypotheses:

PI 1 = false

P21 = EX(Jolder(Priv,Mbox)) 1\ OOEX(header(Priv));
EX(type(x, Priv)); EX(delete(x, Priv))

P31 = EX(Jolder(Priv,Mbox)) 1\ OO(EX(header(Priv));
EX(next(x, Priv)); EX(delete(x, Priv))

Concerning PI we definitely anticipated EX(header(Mbox)). This cannot be concretized
with the first observation and thus the hypothesis has to be rejected. In P2 and P3 the
initially expected user action is not specified, we only know that the given action sequence
is executed at some time. So, after observing an action not matching the first expectation,
we know that this sequence cannot start before the next observation, i.e., we get as parts
of the new hypotheses P21 and P31

00 EX(header(Priv)),

the action header is anticipated at some future time and not before the next state.
If the second observation is EX(header(Priv))' the concretization of both P2 and P3
is a disjunction of two hypotheses. Either we recognize the header command in the
"sometimes" sequence, or we make a decision to expect it later. Thus, we have

8

P2i = EX(folder(Priv, Mbox)) /\ OEX(header(Priv)); EX(type(x, Priv));
EX(delete(x, Priv))

P2~ = EX(folder(Priv, Mbox)) /\ OEX(header(Priv))/\
OOOEX(header(Priv)); EX(type(x, Priv)); EX(delete(x, Priv))

As the hypotheses for P3 are similar we will omit them here.
A hypothesis is said to be recognized if the sequence of observations implies its concretiza­
tion. Considering the example, this is the case for P2 if, e.g., the next observations are
EX(type(2, Priv)) and EX(delete(2, Priv)).
Besides the theoretical foundations, a method was developed for computing concretized
explanations. An algorithm solving this problem must be able to identify at each state of
time the part of the considered hypotheses being affected at that moment. To do this in an
efficient way and without using explicit reasoning over modal operators in each iteration
step, we use a transformation of LLP formulas into graphs that contain solely first-order
formulas. 2 This transformation is carried out once before starting recognition. The plan
recognition process is realized by moving through the graph according to the observations
made. A theorem prover is used to deduce relations between abstract commands in the
hypothesis and observed actions. Preconditions are tested by inquiring the application
about the current state of the system.
Several properties of this generalized abduction principle, e.g., the connection to "classi­
cal" abduction and the relationship between the original and concretized hypotheses have
been proven. In addition, a proper semantics has been given. For details see [Pau92] .
The method described above allows us to recognize temporal abstractions as well as
abstract plans containing LLP control structures such as conditionals and loops. We
are able to retransform the graph in each iteration step, thus obtaining a history of the
actions observed and a description of the expected continuation of the plan. By that we
are able to offer semantic plan completion at any time as long as valid hypotheses are
available . Probabilistic selection (d. section 4.2) is the method used in determining the
"best" hypothesis for that purpose.

4.2 Probabilistic Selection

The plan recognizer described so far manipulates sets of plan hypotheses each of which
is considered equally plausible. If, however, a decision for one alternative is required
(e.g., to offer semantic plan completion to the user at an early stage), we must be able to
determine the "best" choice among them. To do so, we can exploit knowledge about user
preferences stored in a kind of user model and encoded in a probabilistic mechanism.
Probabilistic reasoners (e.g., [KSH91]) use a knowledge base as a back-up, which contains
the set of all possible hypotheses together with numerical values assigned to them some­
how representing their specific probability. These numbers usually stem from long-term
observat ions of the domain and from statistics. The situation in the first cross-talk mode,
however, is somewhat different because the search space of the plan recognizer-the set of
all plan hypotheses-is generated dynamically. So, we cannot exp:ect to have any statisti­
cal information at hand that directly applies to it. Yet, we can evaluate the user behavior
observed according to criteria like typical action sequences, frequently pursued goals, etc.

2Graph- or so-called tableau-based methods are used for a variety of temporal logics . See, for example,
[Pra79]' [BAHP82], and [WoI85].

9

If we know, for example, that the user tends to delete a message immediately after reading
it, and that he usually prefers the type command to next, we might come up with a set
C of LLP formulas similar to abstract plans and formulas encoding desired system states
(d. section 2) describing the user's default behavior. Each formula is assigned a numerical
value representing the statistical information about it. In the example above, C might
include the following entries

CI : (3x, mb.O(EX(type(x, mb)); EX(delete(x, mb))), 0.4)

C2 : (3x, mb.O(EX(next(x, mb)); EX(delete(x, mb))), 0.2)

C3 : (3x, mb.O(EX(read..mail(x, mb)); EX(delete(x, mb))), 0.1)

The entry C3 here means that for a small part of all observed cases, we know only that
the user executed a type or a next command to read his messages, expressed by using
the abstract command read_mail. The formula in C3 is more general than those of C1

and C2 • Such relations induce a hierarchical structure on C that is exploited during the
numerical computations.
The numerical values distributed among the members of C sum up to 1 and form a mass
distribution from Dempster-Shafer theory (DST) (d. [Sha76], [SP90]). While interpreting
the value 1 as perfect certainty, smaller numbers represent the degree of partial confidence
we might have in the validity of the various propositions.
From a mass distribution m, we can derive the so-called belief and plausibility functions
Belm and Plm , respectively. These two values make up a probability interval stating
that the "true" probability of some proposition A lies somewhere between Belm(A) and
Plm(A), but cannot be determined on the basis of the knowledge at hand. Thus, we are
able to express partial ignorance. 3

Classifying the plan hypotheses obtained from the plan generator according to the formu­
las Ci in C, a set of valuated hypotheses sets PHc; is obtained each of which inherits the
numerical value originally attributed to its classification criterion in C. In our example, PI
and P2 become members of the class PHc!, P3 becomes an element of PHc2 . In addition,
they are all placed in class PHc3 . Thus the original hierarchy of classification criteria
according to generality mentioned above mirrors itself in the subset/superset relation of
the associated hypotheses sets that make up the plan hierarchy PH.
After this preprocessing, the probabilistic selection module in every recognition step ob­
tains the most recent observation together with information about those hypotheses which
are no longer valid. On the basis of this knowledge, we can compute an updated mass
distribution on PH reflecting the impact of the new observation on the a-priori valuation
of the hypotheses. Dempster's rule is the basis for this computation which is explained
in more detail in [Bau92].
Let us assume we are given the information that PI is no longer valid. Then, the ob­
servation EX(header(Priv)), for example, may lead to a new mass distribution where
PHc ! = {P2 } and PHc2 = {P3 } are attributed the values 0.5 all(~ 0.35, respectively, and
PHc3 = {P2 , P3 } is valuated with 0.15. If we recall from DST that the belief in a set A
of hypotheses is computed by summing up the respective mass values attributed to all of
its subsets and the plausibility is the result of adding the mass values of all sets having
a non-empty intersection with A, we can interpret these numbers as follows: Currently,

3For an examination of the relations between mass distributions, probabilities, and DST see [KSH91j.

10

hypothesis P2 appears to be the most likely because its probability lies somewhere in the
interval [0.5, 1 J. If semantic plan completion is required, P2 is the current offer of the
system to the user. If we are forced to additionally provide a hypothesis definitely con­
taining the plan pursued by the user, we can choose the disjunction of P2 and P3 because
the set PHc3 which contains these only is the smallest set with attributed belief 1, i.e.,
it represents the most specific hypothesis we certainly believe in. This property uniquely
determines the disjunction of P2 and P3 because all other plan hypotheses that might be
contained in PH are attributed mass a and thus are considered impossible according to
the evidences obtained so far.

5 Implementation

A prototype of the PHI system has been implemented in SICSTUS PROLOG on a SUN

SPARC computer. It emerged that the deductive planning methods in their running time
behavior correspond to conventional knowledge based planning. This is reached by using
proof strategies that are especially tailored to the planning tasks to be performed. These
strategies skilfully restrict the search space and keep the backtracking rate low.
The performance of the plan recognizer is improved by using an equivalence-preserving
graph-based representation of plan formulas and efficient algorithms working on them.
Therefore, our logic-based approach seems to be well suited even for real help systems.

6 Conclusion

A new approach in implementing intelligent help systems has been introduced. It is
based on a logic developed especially for the command language environments in which
help systems are embedded. Plan recognition and plan generation components are special
purpose inference processes. They work in close mutual cooperation (cross-talks). One
cross-talk mode is devoted to plan recognition on the basis of abstract plans provided by
the planner; another mode works on generating optimal plans on the basis of recognition
results.
Planning from first as well as from second principles is done deductively combining ideas
borrowed from the logic-based treatment of programs with those of tactical theorem prov­
ing. The resulting plans are provably sound w.r.t. their specifications. Plan recognition
is based on a new abductive principle for modal logics. The recognizer is additionally
supplied with a probabilistic reasoner, a means to improve the help provided by taking
into account user-specific characteristics as well as general heuristics.
Realizing plan generation and recognition in such a strictly logic-based way nevertheless
does not cause any considerable inefficiencies , even for "real" mail plans that are much
more complex than the examples shown in this paper. This suggests evaluating the PHI
approach even for richer application domains.

11

References

[AP90] D.E. Appelt and M. Pollack. Weighted abduction for plan ascription. Techni­
cal report, Artificial Intelligence Center and Center for the Study of Language
and Information, SRI International, Menlo Park, California, 1990.

[BAHP82] M. Ben-Ari, J.Y. Halpern, and A. Pnueli. Deterministic propositional dynamic
logic: finite models, complexity, and completeness. Comput. System Sci.,

25:402- 417, 1982.

[Bau92] M. Bauer. Plan recognition under uncertainty. DFKI Research Report, Ger­
man Research Center for Artificial Intelligence, 1992. to appear.

[BD93] S. Biundo and D. Dengler. The logical language for planning LLP. DFKI
Research Report, German Research Center for Artificial Intelligence, 1993. to
appear.

[BDK92] S. Biundo, D. Dengler, and J. Koehler. Deductive planning and plan reuse
in a command language environment. In Proceedings of the 10th European
Conference on Artificial Intelligence, pages 628- 632, 1992.

[Bib86] W. Bibel. A deductive solution for plan generation. New Generation Com­
puting, 4:115- 132, 1986.

[Biu92] S. Biundo. Automatische Synthese rekursiver Programme als Beweisverfahren.

Springer IFB 302, Berlin, Heidelberg, New York, 1992.

[Bre90] J. Breuker. EUROHELP Developing Intelligent Help Systems. EC, Kopen­
hagen, 1990.

[Con86] R.L. Constable. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.

[Fan70] K.T. Fann. Peirce's Theory of Abduction. Martinus Nijhoff, The Hague, 1970.

[FK91] M. Franova and Y. Kodratoff. Solving "How to Clear a Block" with construc­
tive matching methodology. In Proceedings of the 12th International Joint

Conference on Artificial Intelligence, pages 232-237, 1991.

[FN71] R.E. Fikes and N.J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189- 208, 1971.

[Fra88] M. Franova. Fundamentals of a New Methodology for Program Synthesis from
Formal Specifications: CM-Construction of Atomic Formulae. Ph.D. Thesis,
Universite de Paris-Sud, Orsay, 1988.

[Gre69] C. Green. Application of theorem proving to problem solving. In Proceedings

of the 2th International Joint Conference on Artificial Intelligence, pages 219-
239, 1969.

[Ham90] K. J. Hammond. Explaining and repairing plans that fail. Artificial Intelli­
gence, 45:173 - 228, 1990.

12

[HK90] N. Helft and K. Konolige. Plan recognition as abduction and relevance. Draft
version, Artificial Intelligence Center, SRI International, Menlo Park, Califor­
nia, 1990.

[HRS90] M. Heisel, W. Reif, and W. Stephan. Tactical theorem proving in program
verification. In Proceedings of the 10th Conference on Automated Deduction,
pages 117- 13l. Springer LNCS 449, 1990.

[HRS91] M. Heisel, W. Reif, and W. Stephan. Formal software development in the
kiv system. In Automating Software Design, R. McCarney and M.R. Lowry
(eds.). AAAI Press, 1991.

[HW92] S. Hanks and D. S. Weld. Systematic adaptation for case-based planning.
In Proceedings of the 1st International Conference on Artificial Intelligence
Planning Systems, pages 96- 105, Washington, D.C., 1992. Morgan Kaufmann,
Menlo Park.

[KH92] S. Kambhampati and J. A. Hendler. A validation-structure-based theory of
plan modification and reuse. Artificial Intelligence, 55:193 - 258, 1992.

[KKT92] A.C. Kakas, R.A. Kowalski, and F. Toni . Abductive logic programming. Draft
version, Department of Computer Science, University of Cyprus, Nicosia, and
Imperial College of Science, Technology and Medicine, London, 1992.

[Koe92]

[Kro87]

J. Koehler. Towards a logical treatment of plan reuse. In Proceedings of
the 1st International Conference on Artificial Intelligence Planning Systems,
pages 285- 286 , Washington, D.C., 1992. Morgan Kaufmann, Menlo Park.

F. Kroger. Temporal Logic of Programs. Springer, Heidelberg, 1987.

[KSH91] R. Kruse, E. Schwecke, and J. Heinsohn. Uncertainty and Vagueness tn

Knowledge Based Systems. Springer, 1991.

[Mer92] G. Merziger. Approaches to abductive reasoning - an overview. Artificial
Intelligence R eview, 1992. to appear.

[MW80] Z. Manna and R. Waldinger. A deductive approach to program synthesis.
ACM Transa ctions on Programming Languages and Systems, 2:90- 121, 1980.

[MW87] Z. Manna and R. Waldinger. How to clear a block: Plan formation in situa­
tional logic. Journal of Automated Reasoning, 3:343- 377, 1987.

[NiI80] N. J. Nilsson. Principles of Artificial Intelligence. Springer, New York, 1980.

[NK92] B. Nebel and J . Koehler. Plan modification versus plan generation: A
complexity-theoretic perspective. DFKI Research Report RR-92-48, German
Research Center for Artificial Intelligence, 1992.

[NWW93] P. Norwig, W . Wahlster, and R. Wilensky. Intelligent Help Systems for UNIX
- Case Studies in Artificial Intelligence. Springer, Heidelberg, 1993. to appear.

[Pau90] L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifredi, editor,
Logic and Computer Science. Academic Press, 1990.

13

[Pau92} G. Paul. A generalized abductive principle for a modal temporal logic. DFKI
Research Report, German Research Center for Artificial Intelligence, 1992. to
appear.

[Pei58} C.S. Peirce. Collected Papers of Charles Sanders Peirce (eds. C. Hartshorne
et al.). Harvard University Press, 1931-1958.

[Pra79] V. Pratt. Models of program logics. In Proceedings of the 20th Annual IEEE
Symposium on Foundations of Computer Science, pages 115- 122, 1979.

[RP86} R. Rosner and A. Pnueli. A choppy logic. In Symposium on Logic in Computer
Science, Cambridge, Massachusetts, 1986.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, 1976.

[Sha89} M. Shanahan. Prediction is deduction but explanation is abduction. In Pro­
ceedings of the 11th International Joint Conference on A rtificial Int elligence,
pages 1055- 1060, 1989.

[SP90} G. Shafer and J. Pearl, editors. R eadings in Uncertain Reasoning. Morgan
Kaufmann Publishers, Los Altos, California, 1990.

[Tat77} A. Tate. Generating project networks. In Proceedings of the 5th Int ernational
Joint Conference on Artificial Intelligence, pages 888- 893, Cambridge, MA,
1977. Morgan Kaufmann, Menlo Park.

[TB92} M.A. Thies and F. Berger. Plan-based graphical help in object-oriented user
interfaces. In Proceedings of the International Workshop on 'Advanced Visual
Interfaces ', Rome, Italy, May 1992.

[Wrer92} A. Wrern. Reactive abduction. In Proceedings of the 10th European Confer­

ence on Artificial Intelligence, pages 159- 163, 1992.

[WoI85} P. Wolper. The tableau method for temporal logic: an overVIew. Logique at
Anal., 28:119-136, 1985.

14

Deutsches
Forschungszentrum
fOr KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Verl>ffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-01
Werner NUll : Unification in Monoidal Theories is
Solving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel. Rainer Bleisinger. Rainer Hoch.
Frank Hones. Frank Fein. Michael Malburg:
nODA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR-92-OS
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautern
FRO

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except
if otherwise indicated.

RR-92-09
Win fried Graf. Markus A. Thies:
Perspektiven zur Kombination von
automatischem Animationsdesign und
planbasierter Hilfe
15 Seilen

RR-92-10
M. Bauer: An Interval-based Temporal Logic in a
Multivalued Setting
17 pages

RR-92-11
Susane Biundo. Dietmar Dengler. Jana Koehler:
Deductive Planning and Plan Reuse in a
Command Language Environment
13 pages

RR-92-13
Markus A. Thies. Frank Berger:
Planbasierte graphische Hilfe in
objektorientierten BenutzungsoberfH1chen
13 Seilen

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle. Markus A. Thies

2 Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies. Frank Berger

22 pages

RR-92-1S
Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn. Daniel Kudenlw. Berhard
Nebel. Hans-Ji1.rgen Profitlich: An Empirical
Analysis of Terminological Representation
Systems
38 pages

RR-92-17
Hassan Ait-Kaci. Andreas Podelski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleitner. Ansgar Bernardi.
Christoph Klauck: PIM: Planning In
Manufacturing using Skeletal Plans and Features
17 pages

RR-92-20
John Nerbonne : Representing Grammar. Meaning
and Know ledge
18 pages

RR-92-21
Jarg-Peter Mohren. Jurgen Muller
Representing Spatial Relations (Part II) -The
Geometrical Approach
25 pages

RR-92-22
Jarg Wurtz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka. RalfTreinen:
Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-25
Franz Schmalhofer. Ralf BergmLJnn. Ouo Kuhn.
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans
for their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer. ThomLJS Reinartz.
Bidjan Tschaitschian : Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems
16 pages

RR-92-27
Franz Schmalhofer. larg Thoben: The model­
based construction of a case-oriented expert
system
18 pages

RR-92-29
Zhaohur Wu. Ansgar Bernardi. Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

RR-92-30
Rolf Backofen. Gert Smolka
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster
Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader:
Unification Theory
22 pages

RR-92-34
Philipp Hanschke:
Terminological Reasoning and Partial Inductive
Definitions
23 pages

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader. Philipp Hanschke:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke. Manfred Meyer:
An Alternative to 0-Subsumption Based on
Terminological Reasoning
9 pages

RR-92-40
Philipp Hanschke. Knut HinkelmLJnn: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph Klauck, Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Rist, Elisabeth Andre: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-4S
Elisabeth Andre, Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre, Wolfgang Finkler, Winfried
Graf, Thomas Rist, Anne Schauder, Wolfgang
Wahlster: WIP: The Automatic Synthesis of
MuItimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-S1
Hans-Jurgen Burckert, Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-S2
Mathias Bauer, Susanne Biundo, Dietmar
Dengler, Jana Koehler, Gabriele Paul:
PHI - A Logic-Based Tool for Intelligent Help
Systems
14 pages

RR-92-S4
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

DFKI Technical Memos

TM-91-13
Knut Hinkelmann:
Forward Logic Evaluation: Developing a
Compiler from a Partially Evaluated Meta
Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-1S
Stefan Bussmann: Prototypical Concept
Formation An Alternative Approach to Knowledge
Representation
28 pages

TM-92-01
Lijuan Zhang:
Entwurf und Implementierung eines Compilers
zur Transformation von
Werkstilckreprasentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jurgen Muller, J6rg Muller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer, Christoph Globig, Jorg
Thoben
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27pages

DFKI Documents

D-92-06
Hans Werner Hoper: SystemaLik zur
Beschreib4ng von Werkstiicken in der
Terminologie der Featuresprache
392 Seiten

D-92-07
Susanne Biundo, Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn, Bernhard Hollunder (Eds.) :
DFKI Workshop on Taxonomic Reasoning
Proceedings
56 pages

D-92-09
Gernod P. Laufkotter: Implementierungsmoglich­
keiten der integrativen
Wissensakquisitionsmethode des ARC-TEC­
Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser fUr attributierte Graph-Grammatiken
87 Seiten

D-92-11
Kerstin Becker: Moglichkeiten der
Wissensmodel-lierung fiir technische Diagnose­
Expertensysteme
92 Seiten

D-92-12
Otto Kuhn, Franz Schmalhofer, Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensakquisition zur
Fertigungsplanung fUr Drehteile: eine
B ildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the
Applicability of Terminological Reasoning to
Application-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph­
GrammaLiken und Taxonomien zur
Reprasentation von Features in CIM
98 Seiten

D-92-1S
DFKI Wissenschaftlich-Technischer
J ahresbericht 1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft­
warekomponenten ftir natUrlichsprachliche
Systeme
189 Seiten

D-92-17
Elisabeth Andre, Robin Cohen, Winfried Graf, Bob
Kass, Cecile Paris, Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling. Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich, Rainer Hoch: Automatische.
Deskriptor-basierte Unterstiitzung dec Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschaftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars
57 pages

D-92-23
Michael Herfert : Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jiirgen Miiller, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-2S
Martin Buchheit: Klassische Kommunikations­
und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONT AX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning
inCOLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Reprasentation von Nachrichtentypen
56 Seiten

PHI - A Logic-Based Tool for
Intelligent Help Systems

Mathias Bauer, Susanne Blundo, Dletmar Denger, Jana Koehler, Gabriele Paul

RR-92-52
Research Report

