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Abstract 

The ability of a planne r to modify a plan is cons id ered as a va.luable 

tool for improving efficiency of planning by avoidilll!; the repetitioll 
of the same planlling effort.. From a computational co illplexity point. 
of view, however, it is by no means obvious that modifying a piau is 
computationally as easy as planning from scratch if the modification 
has to follow the principle of "conservatism," i.e., to reuse as much of 
the old plan as possible. Indeed, considering propositional STRIPS 
planning, it turns out t hat conservative plan modification is as hard as 
planning and can somet imes be harder than plan generation. Further­
more, this holds even if we consider modification problems where the 
old and the new goal specification are similar. We put these results 
into perspective and discuss the relationship to exist ing plan modifica­
tion systems . Altho\lgh sometimes claimed otherwise, these systems 
do not address the modification problem, but use a !lon-conservative 
form of plan modificat ion as a heuristic technique. 

"This work wac; supported by the German Ministry for Research and Technology 
(BMFT) under contracts ITW 8901 8 and ITW 9000 8 as part of the WIP project and 
the PHI project. 
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1 Introduction 

Plan generation in complex domains is normally a resource and time con­
suming process. One way to improve the efficiency of planning systems is 
to avoid the repetition of planning effort whenever possible. For instance, 
in situations when the goal specification is changed during plan execution or 
when execution time failures happen, it seems more reasonable to modify the 
existing plan than to plan from scratch again. In the extreme, one might go 
as far as basing the entire planning process on plan modification, a method 
that could be called planning from second principles. 

Instead of generating a plan from scratch, that method tries to exploit 
knowledge stored in previously generated plans. The current problem in­
stance is used to find a plan in a plan library that-perhaps after some 
modifications-can be used to solve the problem instance at hand. Current 
approaches try to integrate methods from analogical or case-based reason­

ing to achieve a higher efficiency [Hammond, 1990; Veloso, 1992], integrate 
domain-dependent heuristi cs [Howe, 1992] or investigate reuse in the general 
context of deductive planning [Koehler, 1992; Biundo et ai., 1992]. 

Some experiments give evidence that planning based on second principles 
rnight indeed be more efficient than planning from scratch [Kambhampati 

and Hendler, 1992; Veloso, 1992; Hanks and Weld, 1992]. However, it is by 
no means clear in how far these results generalize. In fact, it is not obvious 
that modifying an existing plan is computationally as easy as generating 

one from scratch, in particular, if we adopt the principle of conservatism 

[I<:ambhampati and Hendler, 1992], that is to try to recycle "as much of the 
old solution as possible" [Veloso, 1992, p. 133] or to "produce a plan ... by 
minimally modifying [the original plan]" [Kambhampati and Hendler, 1992, 
p. 196]. 

Considering, for instance, the revision of logical theories, most revision 
schemata turn out to be computationally harder than deduction [Nebel, 1991; 
Eiter and Gottlob , 1992].1 A similar result holds for abduction [Selman and 

Levesque, 1990], which may be viewed as "modifying the assumptions in a 
proof." Hence, it seems worthwhile to have a closer look at the computational 
nature of the process of modifying a plan in order to find out why and 
under which circumstances plan modification and reuse promises to be more 
efficient than planning from scratch. 

The computational complexity of different forms of planning has been 
recent ly analyzed by a number of authors [Chapman, 1987; Backstrom and 

Klein, 1991; Bylander, 1991; Chenoweth, 1991; Gupta and Nau, 1991; By-

1 More precisely, revision is in most cases IIi-complete. Assuming , as is cllstomary, 
that the polynomial hierarchy does not collapse (see, e .g ., [Garey and Johnson , 1979 ; 
Johnson, 1990]) , this implies that revising a propositional theory is harder than doing 
deduction, which is II~- or co-NP-complete. 
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lander, 1992a; Erol et al., 1992]. However, the computational complexity of 
plan modification has not been investigated yet . We will analyze this prob­
lem in the formal framework of propositional STRIPS planning as defined by 
Bylander [1991; 1992a]. As Bylander [1991] notes, this model of planning is 
"impoverished compared to working planners" and is only intended to be a 
"tool for theoretical analysis." However, since we are mainly interested in 
comparing plan generation with plan modification from a complexity-theoretic 

peTspective, this framework is appropriate for our purposes. 
As it turns out, modifying a plan is not easier than planning from scratch. 

On the positive side, we show that modification does not add any complexity 
to planning if we consider the geneT'al case. However, there exist special cases 
when modifying a plan conser'vativeiy, i.e., by 'Using as mach of th e old plan as 

possible, can be harder than creating one from scratch, as we will show. This 
means that plan modification is not 'Uniformly as easy as plan generation. 

Further, we show that these results also hold if we assume that the old and 
the new planning situation are similar. 

Putting these results into perspective and relating them to practical ap­
proaches reveals that these approaches do not address the plan modification 
problem at all, although some authors claim otherwise. 

The paper is organized as follows. In Section 2, we define the notion of 
propositional STRIPS planning following Bylander [1991] and recapitulate 
the main results. Based on that, we introduce a formal model of plan modi­
fi cation in Section 3. In Section 4 we analyze the computational complexity 
of difFerent modification problems relative to their corresponding planning 
problems. The problem of plan modification restricted to the case where the 
old planning situation is similar the new one is analyzed in Section 5. Finally, 
in Section 6 we discuss the relationships between our results and practical 
experi ences in plan modification and reuse. 

2 Proposit ional STRIPS Planning 

Like Bylander [1991], we define an instance of propositional planning as a 
tuple II = (P,O,I,Q), where: 

• P is a finite set of ground atomic formulae , the conditions, 

. ° is a finite set of operators, where each operator 0 E ° has the form 
0+,0- =} 0+,0_, where 

0+ ~ P are the positive preconditions, 

0- ~ P are the negative preconditions , 

0+ ~ P are the positive postconditions (add list), and 

0_ ~ P are the negative post conditions (delete list). 
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• I ~ P is the initial state, and 

• 9 = (9+,9-) is the goal specification with 9+ ~ P the positive goals 
and 9- ~ P the negative goals. 

P is the set of relevant conditions. A sta.te is a subset 5 ~ P with the 
intended meaning that pEP is true in state 5 if p E 5, false otherwise. 0 
is the set of operators that can change states. I is the initial state, and 9 
is the goal state specification, with the intended meaning that all conditions 
p E 9+ must be true and all conditions p E 9- must be false. A plan 6 is a 
finite sequence (01, ... ,On) of plan steps OJ E O. An operator may occur more 
than once in a plan. A plan 6 solves an instance II of the planning problem 
iff' the result of the application of 6 to I leads to a state 5 that satisfies the 
goal specification 9, where the result. of applying 6 = (UI, ... , Un) to a staLe 
5 is defined by the following function: 

Res'nit: (2 P U 1.) x 0* -t 

Result(S, 0) 

Result(5, (0)) 

2P U 1. 

5 

{
(5Uo+)-0_ ifu+ ~SI\0-nS=0 
1. otherwise 

Result(Result(S, (01)), (02, ... ,On)) 

111 other words, if t he precondition of an operator is satisfied by a state, 
the positive postconditions are added and the negative postcollditiolls arc 
deleted. Otherwise, the state becomes unde.fi:ned, denoted by 1.. 2 

As usual, we consider decision problems in order to analyze the compu­
tational complexity of planning. 3 PLANSAT is defined to be the decision 

]JT'oblem of determining whether an instance II = (P, 0, I, 9) of proposi­
tional STRIPS planning has a solution, i.e., whether there exists a plan 6 
such that R esult(I, 6) satisfies the goal specification. PLANMIN [Bylander, 
1992b] is defined to be the problem of determining whether there exists a 
solution of length n or less , i.e., it is the decision problem corresponding to 
the sea1'ch problem of generating plans with minimal length . 

Based on this framework , Bylander [1991 ; 1992a; 1992b] analyzed the 
computational complexity of the general propositional planning problem and 
a number of generalizations and restricted problems. In its most general form, 
both PLANSAT and PLANMIN are PSPACE-complete. Severe restrictions 
on the form of the operators are necessary to guarantee polynomial time or 
even N P-completeness . 

2This is a slight deviation from Bylander's [1991] definition that does not affect the 
complexity of planning. This deviation is necessary, however , to allow for a meaningful 
definition of the plan modificat ion problem. 

:3We assume that the reader is familiar wit.h the basic notions of complexity theory as 
present.ed, for instance, in [G arey and Johnson, 1979] . 
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3 Plan Modification in a Propositional 
Framework 

Kambhampati and Hendler [1992J define the plan modification problem as 

follows (adapted to our framework of propositional STRIPS plaJlning): 

Given an instance of the planning problem Il' = (P,O,I',g') 
and a plan ~ that solves the instance Il = (P,O,I,9), produce 
a plan 1::::.' that solves TI' by minimally modifying 1::::.. 

We will call this problem MODGEN. 
By "minimal modification of a plan" Kambhampati and Hendler [1992J 

mean to "salvage as much of the old plan as possible." Other authors are less 

explicit about what they mean by modifying a plan, but the idea to use as 
mucb of the old plan as possible for solving the new problem instance seems 
to be customary in order to minimize the additional planJling errort. [Ve loso, 

1992, p. 133J. 
Another conceivable interpretation of "miJlimal JI1odificat.ioJl," Ilctme ly, or 

additionally adding as few plan steps as possible, is usually not considered. 
The reason for not imposing this constraint is obvious. This requirement. 
would make modification as hare! as finding an optimal plan, i.e., as hare! 
as PLANMIN, because in this case PLANMIN reduces to modification for 

the limiting case of an empty modification candidate. Since most plan-reuse 
systems are only aimed at satisficing instead of optimal solutiolls, such a 
requirement would in fact run counter to the idea of reducing planning effort. 

Turning the above specified search problem into a decision problem leads 

to what. we will call the MODSAT problem: 

An instance of the MODSAT problem IS given by IT' 

(P,O,I',9'), a plan ~ that solves IT = (P,O,I,Q), and an inte­

ger k ~ I~I. The question is whether there exists a plan ~' that 

solves IT' and contains a subplan of ~ of at least length k? 

In order to fully specify MODSAT, we have to define the meaning of 
the phrase "~' contains a subplan of ~ of length k." For this purpose, we 
define the notion of a plan skeleton, a sequence of operators and "wildcards," 
denoted by "*." The length of a plan skeleton is the number of operators, i.e., 

we ignore the wildcards. A plan skeleton can be derived from a plan according 

to a modification strategy M by deleting and rearranging plan steps and 

adding wildcards. A plan skeleton can be extended to a plan by replacing each 
wildcard by a possibly empty sequence of operators. Now we say that plan 

~' contains a subplan of ~ of length k according to a modification strategy 
M iff a skeleton r of length k can be derived from ~ according to M and 

r can be extended to ~'. In general, we will consider only polynomial-time 
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modification strategies, i.e., strategies such that verifying that the skeleton 
r can be derived from the plan 6. is a polynomial-time problem. In the 
following, we will consider three different plan modification strategies that 
satisfy this constraint. 

The first alternative we consider is to allow for deletions in the original 
plan and additions before and after the original plan. Supposing the plan 

the following plan skeleton could be derived from 6., for instance: 

r = (*,Ol, ... ,Oi,Oj, ... ,on,*), 

where r has length i + n - j + 1. The corresponding modification problem 
will be called MOD DEL. 

The second alternative is to allow for deletion of plan steps in the old plan 
and additions before, after, and in the middle of the old plan. Assuming the 
same plan 6. as above, the following skeleton plan of length i + n - j + 1 
could be derived: 

r = (*,Ol, . . . ,O;,*,Oj, .. . ,on,*) . 

The corresponding modification problem is called MODDELINS. 
The final alternative is to count the number of plan steps in the plan 

skeleton r that also appear in the old plan 6. without considering the order. 
In other words, we view 6. and r as multi sets and take the cardinality of the 
intersection as the number of old plan steps that appear in the new plan. 
The corresponding modification problem is called MODMIX. Although this 
model of modification may seem to give away too much of the structure of the 
old plan, "changing step order" is considered to be a reasonable modification 
operation (see, e.g., [Hanks and Weld, 1992, p.96l). 

Finally, it should be noted that although the framework we have defined 
above deals only with linear plans, it can be easily modified to apply to 
nonlinear planning, as well. In particular, all hardness results will apply 
directly to nonlinear planning since linear plans are simply a special case of 
nonlinear ones. 

4 The Com plex ity of Plan Modification 

One almost immediate consequence of the definitions above is that plan mod­
ification cannot be easier than plan generation . This even holds for all re­
strictions of the PLANSAT problem. If PLANSAT p is a restricted planning 
problem, then MODSAT p shall denote the corresponding modification prob­
lem with the same restrictions. 

5 



Proposition 1 PLANSAT" tn/,nsfonns polynomially to MODSAT" fOT' all 
restrictions p. 

Proof. The restriction of MODSAT p to empty old plans and k 0 IS 

identical to PLANSAT p' -

However, plan modification is also not harder than plan generation in the 
general case. 

Proposition 2 MODSAT is PSPACE-complete. 

Proof. Because of Proposition 1 and the fact that PLANSAT is PSPACE­
complete [Bylander, 1991, Theorem 1], MODSAT is PSPACE-hard. 

MODSAT is in NPSPACE because (1) guessing a skeleton r of length I.: 
and verifying that it can be derived from the old plan 6. and (2) guessing 
step by step (with a maximum of 211'1 steps) a new plan 6.' and verifying that. 
it solves the instance IT' and extends r can be obviously done in polynomial 
space. Since N PSPACE = PSPACE , it follows that MODSAT E PSPACE. -

This proposition could be takell as evidence that plan modification is not. 
harder than plan generation. However, it should be noted that the proposi­
tion is only about the general problem. So, it. may be the case that there exist 
special cases such that plan modification is harder than generation. Such a 
case will not be found among the PSPACE- and NP-complete planning prob­
lems, however. 

Theorem 3 IjPLANSAT p is a restricted planning pT'Oblem that is PSPACE ­
complete or NP- complete, then MODSATp is PSPACE- complete or NP-com­
plete pT'Oblem, respectiveiy.4 

Proof. PSPACE-hardness and NP-hardness, respectively, are obvious be­
cause of Proposition 1. Membership follows in case of PSPACE by Proposi­
tion 2. In case of NP , we initially guess (1) n (0 :::; n :::; 16.1 + 2) possibly 
empty plans 6.i such that l6.il :::; 16.1, (2) 2n states 51 , .. . , 52n , and (3) n 
polynomially bounded proofs that there exists plans from each state 5 2i to 
state 5 2i+1 for 1 :::; i :::; n - 1. Since PLANSAT p is in N P, such proofs exist 
(in most cases, these proofs will be plans). Then we verify in polynomial 
time (1) that 51 = I and 5211 satisfies the goal specification g, (2) that 
Resu!t(52i _ l ,6.;) = 5 2i , (3) that the plan existence proofs are correct, and 
(4) that (6. 1,*,6.2,*, ... ,6.n - l ,*,6.n ) is a skeleton of length k that can be 
derived from 6.. This is obviously a nondeterministic algorithm that runs in 

polynomial time. -

4Note that the proof also applies to E~-complete planning problems . There are no such 
planning problems known yet, however, 
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The converse of the above theorem does not hold, however. There exist 
cases when plan generation is a polynomial time problem while plan modifi­
cation is NP-complete. 

Theorem 4 There exists a polynomial-time PLANSAT p problem such that 
the corresponding MODDELp and MODDELINS p problems are NP-complete. 

Proof. The planning problem PLANSATi defined by restricting opera­
tors to have only positive preconditions and only one postcondition can be 
solved in polynomial time [Bylander, 1991, Theorem 7]. Let PLANSATi,post 
be the planning problem defined by restricting operators to have (1) only 
one postcondition p, (2) the negated condition p as a precondition, and 
(3) any number of addit ional positive preconditions. From the specifica­
tion of the algorithm Bylander [1991] gives for PLANSATi, it is evident that 
PLANSATi,post can also be solved in polynomial time. We will show that the 

corresponding modification problems MODDELi,post and MODDELINSi'"jiliSt 
are NP-complete. 

For the hardness part we use a reduction from SAT, the problem of sat­
isfying a boolean formula in conjunctive normal form. Let V = {VI,"" vm } 

be the set of boolean variables and let C = {Cl' ... , cn } be the set of clauses. 
Now we construct a MODDELi ,post problem that can be satisfied iff there 
exists a satisfying truth assignment for the SAT problem. 

The set of conditions P contains the following ground atoms: 

Ti, 1 :S i :S 'ffi, Vi = true has been selected 
Fi, 1 :S i :S 'ffi, Vi = false has been selected 
Si, 1 :S i :S 'ffi, the truth value for Vi has been selected 
E i , o :S i :S 'ffi, enable evaluation 
Cj, 1 :S n :S n, Cj evaluates to true. 

Further, we assume the following set of operators 0: 

0+ , 0 ::::} 0+, 0_ 

ti {Ti}, 0 ::::} 0, {T;} 

Ji {F;}, 0 ::::} 0, _ {F;} 
sti {Ti' Eo, . . . ,Em}, {S;} ::::} {Si}, 0 
SJi {Fi' Eo, ... , Em}, {Sd ::::} {Si}, 0 
e · , 0, {Ed ::::} {Ei }, 0 
pos · . 

' ,J {Ti' Eo,· · ·, Em}, {Cj } ::::} {Cj}, 0 if 'Vi E Cj 

negi,j {Fi, Eo, .. . , Em}, { Cj} ::::} {Cj}, 0 if Vi E Cj. 

Assume the following initial and goal state: 

I {Tl' ... , T m, FI , ... , F m } 

Q+ {Eo, ... , Em} 

Q- {TI , ... , Tm , FI , ... , Fm}. 
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The instance II = (P,0,I,9) is, for example, solved by the following pIau 
6: 

Now consider the instance II' = (P, 0, I', 9') such that 

I' I 

9~ {Eo, ... , Em, 51,"" 5m , GI , .. . , en} 

9'- 0. 

We claim that tlte SAT formula is satisfiable if, and only if, the plan 6 
call be modified by deleting at most 'In operators and adding some operat.ors 
before and after the original plan 6 in order to achieve a new plan 6' that 
solves II'. 

First, the operators stj and SJi can only be added after the original plan 
because there are m + 1 operators ej at the end of 6 that produce the 
preconditions for the above operators. Second , in order to achieve the part. 
of the goal specification that requires 5 j to hold for each i means that from 
each pair {ij, Jd one operator in 6 must be deleted. 

Now assume that the SAT formula is satisfiable. III this case, we call 
delete m of the t j and Jj operators such that the T/s and f i's correspond t.o 
a satisfying truth assignment. Then it is trivial to cOllstruct a sequence of 
l'OSj./s and negj,/s that can be added in the end in order to achieve the goal 
specification requiring Gj , for all 1 ~ j ~ n, to hold. Conversely, if such a 
sequence can be found, then the values of Tj and F j give a satisfying truth 
assignment for the SAT formula. 

Since stj, sf;, POSj,j' and neYj ,j cannot be added before any of the ej oper­

ators, the reduction applies to MODDELINSi,post , as well. 

Membership in NP follows since PLANSATi,post is in NP . Using the same 

algoritbm as described in the proof of Theorem 3 leads to a nondeterministi c 
polynomial-time algorithm for MODDELi,post and MODDELINSi ,IJOst . • 

We were not able to identify a polynomial planning problem such that 
the cOlTesponding MODMIX problem becomes NP-complete. The reason for 
that is that all known polynomial-time planning problems have a particular 
simple structure. They allow for plans that have the property that if the 
plan can be extended by adding a set of operators individually, then the plan 
can be extended by the entire set. Hence, an algorithm for MODMIX would 
first generate a plan to solve the planning problem instance and then try to 
extend this plan by as many operators from the old plan as possible. 
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5 Modifying Plans When the Situations are 
Similar 

The results above could be considered as being not relevant for plan modifica­
tion in real applications because we made no assumption about the similarity 
between old and new planning situation. The efficiency gains expected from 
plan reuse, on the other hand, are based on the assumption that the new 
situation is sufficiently close to the old one-which supposedly permits an 
easy adaptation of the old plan to the new situation. Beside the fact that 
this looks like a good heuristic guidance, there is the question whether small 
difFerences between the old and the new situation lead to a provable efficiency 
gain in terms of computational complexity. So it might be perhaps the case 
that modification is easier t han planning if the goal specifications differ only 
on a constant or logarithmic number of atoms. Although this seems to be 
possible, there is the conflicting intuition that small changes in the planning 
situations could lead to drastic (and hard to compute) changes in the plans. 

As it turns out, restricting the number of differing atoms does not lead 
to a different picture than the one presented in the previous section. First 
of all , Theorem 4 still holds for the restricted versions of the modification 
problems MODDEL and MODDELINS, where we require the old and new 
initial states to be identical and the old and new goal specification to dif­
fer only on one atom. We call these restricted versions of the modification 
problem MODDELlG and MODDELINSIG, respectively. 

Theorem 5 There exists a polynomial-time PLANSAT p problem such that 

the corresponding MODDELIG p and MODDELINSIG p problems are NP ­
complete. 

P roof. The transformation used in the proof of Theorem 4 is modified as 
follows. A new atom B is added, which is assumed to be false in the initial 
state I and not mentioned in the old goal specification 9. The new goal 
specification 9' is: 

Finally, the following operator is added: 

The MODDELp and MODDELINSp problems generated by this modified 
transformation obviously satisfy the constraint that the goal specifications 
differ only on one atom. Further, the modified transformation has obviously 
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the same property as the original one, i.e., the generated MODSAT problems 
can be used to solve the satisfiability problem. 

Membership in N P is again obvious. -

Although this theorem confirms the intuition that small changes in the 
goal specification can lead to drastic changes in the plan, it does not rule 
out the possibility that there are some hard planning problems such that 
the corresponding modification problems are easy if the goal specification is 
only changed marginally. In order to rule out this possibility, we would need 
something similar to Proposition 1. Since there appears to be no general 
way to reduce PLANSATp problems to MODSAT1G p problems, we will set­
tle for something slightly less general. We will show that generating a plan 
by modifying a plan for a similar goal specification is at least as hard as the 
corresponding PLANSAT problem. Hence, instead of the decision problem 
MODSAT1G, we consider the search problem MODGEN1G. Further, in or­
der to allow for a "fair" comparison between PLANSAT and MODGEN1G, 
we measure the resource restrictions of MODGEN1G in terms of the size 
of the planning problem instance- and ignore the size of the old problem. 5 

Under these assumptions, the restricted problem MODGEN1G p is always as 
hard as the corresponding PLANSAT p problem. 

Theorem 6 IfPLANSAT p is a restricted planning problem that is PSPACE­
hard OT' NP-hard, then the cOT"T'esponding MODGEN1G p problem is PSPACE­
ha:rd or N P -hard} respectively. 6 

Proof. Using an algorithm for MODGEN1G p , we can generate a plan by 
modifying it iteratively, starting with the empty plan and empty goal spec­
ification and continuing by adding step by step one goal atom. Since the 
size of the goal specification is linearly bounded by the problem instance, we 
would need only linearly many calls. Supposing that the theorem does not 
hold would imply that generating a plan under restrictions p is easier than 
PLANSAT p, which is impossible by definition. -

It should be noted that we did not rely on any particular property of the 
MODGEN1G p algorithm. In particular, we did not make the assumption 
that the algorithm has to recycle a maximal reusable plan skeleton. Further­
more, the above theorems apply, of course, also to the modification problems 
that are restricted to have an one-atom-difference between the initial states. 

5This is necessary to rule out such pathological situations as the one where modifying 
an exponentially long plan appears to be polynomial while generating it is exponential. 

6Note that the proof applies to all complexity classes closed under polynomial 'lUring 
reduct.ions. Hence , it also applies to the planning problems identified by Erol et al [1992]­
a fact pointed out to us by Tom Bylander. 
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6 Discussion 

Of course, there arises the question of how the above results relate to practical 
plan modification systems . Kambhampati and Hendler [1992] investigate 
plan reuse and modification in the framework of the hierarchical planner and 
modification system PRIAR, which is based on NONLIN [Tate, 1977]. They 
use a large number of blocks-world examples in order to evaluate the relative 
efficiency gains provided by plan modification compared with planning from 
scratch. In the experiment, the reuse candidate was provided to the planner 
and thus, no effort for the search in a plan library was spent. The average 
savings of runtime when plans were reused is given by the authors as 79%. 

Hanks and Weld [1992] performed experiments on reusing blocks world 
plans with their system SPA. This plan generation and modification system 
is based on a lifted version of McAllester's and Rosenblitt's [1991] systematic 
nonlinear planning algorithm. In case of the SPA system, the savings turned 
out to be less drastic than in the PRIAR system. In fact, in the SPA system 
plan modification can be more expensive than plan generatioll in terrns of 
runtime if the reuse candidate is not close enough [Hauks and Weld, 199~ , 
p. 103], a situation that did not happen with simi lar input data in tIle PRIA n 
system . 

\t\1hile the relative savings appear to be different for the two approaches, 
in both cases there is a positive effect which increases when the difference 
between the new and the old situations decreases. Although this seems to run 
counter to our complexity results (in particular Theorem 6), these empirical 
findings do not contradict our results because the experiments were clearly 
not designed to explore worst-case situations, which complexity allalysis is 
about. An interesting avenue of research would be to characterize the forITI 
of planning problems that can exploit plan-reuse techniques to improve the 
efficiency of the planning process. 

What seems to less easily explainable is, however, the discrepancy be­
tween the hope that reusing maximal subplans increases the efficiency of 

plan reuse and our findings. Our results imply that conservative plan modi­
fication introduces some combinatorics into the planning and reuse process. 
In particular, as a Corollary of Proposition 2 it follows that is not possible 
to determine efficiently (i.e., in polynomial time) a maximal reusable plan 
skeleton before plan generat ion starts to extend the skeleton. 

Corollary 7 It is PSPACE-hard to compute a maximal plan skeleton f01· 
MODSAT instances. 

In other words, plan generation and plan modification cannot be sepa­
rated. For this reason, the planning process becomes actually more involved 
when recycling as much of the old plan as possible. Instead of searching for 
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an arbitrary solution, a plan that contains a maximal subplan of the old plan 
has to be sought. 

Kambhampati and Hendler [1992] mention conservatism, i.e., to "salvage 
as much of the old plan as possible," as an "important desideratum" for 
a plan modification capability, in order to "ensure efficiency." At a first 
glance, this seems to be indeed reasonable since it promises to minimize the 
additional planning effort. As we have seen, however, finding the maximal 
reusable plan skeleton is already as difficult as planning and is sometimes 
even more difficult than the corresponding planning problem (Theorem 4) . 

. Hence, "conservat ism" seems to run counter to increasing planning efficiency. 
Having a closer look at the PRIA R framework reveals that plan skeletons 

are derived in polynomial time [I<ambhampati and Hendler, 199:2, p. un] by a 
process called "annotation verification." Hence, by Corollary 7, th is process 
cannot by any means derive maximal applicable plan skeletous. Further, the 
authors do not give any arguments that they approximate such skeletons . In 
fact, the skeletons derived by PRIAR are not even guaranteed to be applicable. 
SO, PRTAR. does not seem to address the problem of "minimally modifyillg 
plans," contrary to what the authors claim. 

In fact, maximal reuse of an old plan only seems to make sense in a 
replanning context if costs are charged for not executing already planned steps. 

So, it seems to be the case that the two motivations for plan lTlodificatioll , 
namely, replanning and reuse may not be as simi lar as one might think. While 
in plan reuse the efficiency of the planning process is the most importallt. 
factor, in replanning the minimal disturbance of the old piau may be more 
important, leading to a more involved planning process. 7 

Plan modification in the PRIAR framework- and in other plan-reuse 
systems- seems not to be a computational p1'Obiem that has to be addressed, 
but rather a solution, a heuristic technique. The "plan skeleton" that is 
reused · is not the maximal applicable one, but the one that the particular' 

IJlanning algorithm perhaps can exploit in generating a solution. In other 
words, tlJe old plan is used as an "entry point" in to the search spd.ce of 
possible plans, as made expli cit by Hanks and Weld [1992]. 

7 Conclusion 

Improving the efficiency of planning systems by adding capabi lities to modify 
existing plans has received some research interest recently. In analyzing 
the computational complexity of this problem, we showed that it is as hard 

7Kambhampati makes the same distinction in a later paper [Kambhampati, 1992] . 
Based on arguments concerning the search process of a plan ner , he also argues that. 
gUIJ.r-anteeing that every step that could be reused is reused could be computationally 
expensive- a conjecture confirmed by Theorem 4. 

12 



as planning and sometimes modification is even harder than planning from 
scratch. We showed also that these results hold under the restriction that the 
modification process has to account for only one changed atom in the goal 
specification . In particular, we showed that deriving the maximal reusable 
subplan is not easier than planning. Hence, we cannot hope for minimizing 
planning effort by first identifying the maximal applicable subplan which is 
then (minimally) extended by plan generation. 

Relating these results to existing plan reuse and modification systems, it 
turns out that these do not address the modification problem at all, although 
some authors claim otherwise. In fact, in plan-reuse systems, plan modifi­
cation is not attacked as a problem but considered as a heuristic technique. 
This means that instead of "using as much of the old plan as possible" these 
systems recycle "as much of the old plan as the particu lar planning algorithm 
will perhaps be able to use in solving the new problem instance." In fact , 
adoptillg the principle of conservatism in plan modification only seems to 
make sense in a replanning context where one wants to minimize the pertur­
bation of the original plan. 
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