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A Multi-Agent Approach
towards Modeling
Urban Traffic Scenarios

F. Bomarius

DFIKI Kaiserslautern

September 1992

Abstract

This paper investigates the use of the multi-agent paradigm in modeling urban traffic
scenarios. It demonstrates that vehicles, pedestrians, traffic-lights, car-parks and even streets
can be considered agents in a heterogeneous multi-agent system. Different types of agents in
such scenarios will be identified, characterized and constructed by virtue of a general agent
model.

The various kinds of relationships and inleractions, generally called, cooperations between
these agents will be modeled; some examples skelich the major 1ssues developed in this paper.
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Chapter 1

Investigating Urban Traffic

To participate in traffic, in particular in urban areas with a high volume of traffic, is a highly interactive
task. Various types of road users have to continuously adjust their actions in order to avoid crashes
and to get on to their destinations. From the point of view of the individual, he or she merely watches
the environment and reacts appropriately in order to achieve his or her goals (to get on to some place,
survive, etc.). These local goals are the driving forces that let the individual move and behave in certain
ways.

In most situations this strategy is successful since human beings, like many other beings, have
developed appropriate behaviors throughout their evolution that allows the individual to proceed in the
face of arising conflicts. Some inherited and some learned behaviors plus some additional rules (e.g.
traffic regulations) suffice. So, in most cases, traffic flows and the participants achieve their goals.

However, sometimes too many individuals with too many conflicting goals meet. This usually results
in a traffic-jam or, in severe cases, a crash. The latter will not be investigated here; the former seems
worthwhile thinking about, since it has to do with unintentional misbehavior (misguidedness) due to
a lack of environmental information. In other words: nobody would voluntarily join a traffic-jam if he
or she knew in advance that it will occur. Thus, anticipation is an important factor for the reactive
behavior of road users. At present, the scope of anticipation is limited to the range of the human senses,
in particular seeing and hearing.

Participating in traffic is, to a great extent, a matter of communication. Humans have communication
channels that, in the past, perfectly served needs with regard to bandwidth, sensitivity, speed and range.
They turn out to be insufficient in the face of high volumes of traffic including fast moving vehicles and
great numbers of individuals. In such complex situations humans can not anticipate, from their local
point of view, the overall behavior of the majority which is necessary in order to react in a timely
fashion. Radio traffic services try to extend the ‘senses’ of the individual by providing information
about situations that lie beyond the individual’s range. Unfortunately, these services tend to be slow
and misguiding. They often provide information when it is too late to react appropriately. In some
cases the situation gets even worse due to outdated information or over-reactions of the receivers.

Information provided by those services is coarse grained and unspecific from the point of view of
the individual road user. In order to find an optimal or at least a good route, with respect to time and
distance, each road user requires different sorts of information. At present several sources of information
are available:

1. The well known radio traffic services provide a general overview of the current traffic situation,
similar to a snapshot. This overview is of limited use for the individual in forecasting future traffic
situations since it does not take into consideration the destinations and planned routes of the road
users currently on their way.

2. Since each road user has common sense knowledge, he or she can anticipate situations that are
likely to happen on a regular basis. For example, every morning and afternoon rush-hour traffic
must be expected. At the beginning and end of vacations or on holidays like Christimas, certain
typical traffic situations can be foreseen.



3. In much the same way, ezperiences about peculiarities of regularly used routes like road-works,
traffic-lights that are not adjusted to the varying traffic volumes, notoriously overcrowded car
parks and the like have influence on decisions of the individual.

4. Observations of the environment, e.g. the weather or an accident up ahead, may be of immediate
impact on decision making.

Based on this information, each road user plans a route, selects a means of transport and calculates
the estimated time needed. While en route deviations from this plan are usually not possible. In
particular, the road user nowadays would not get enough information to redo planning and come up
with an alternative, more viable, plan.

This is where computer and communication technologies come in. If each road user could be embedded
into a network of telecommunication links that spread all over the country and connect every relevant
passive or active entity involved in the traffic scenario then significant improvements are conceivable. In
the following chapter such a network will be outlined and some expected advantages will be pointed out.
The main goal of this paper is to demonstrate the applicability of the major concepts of the so called
multi-agent paradigm for the application domain ‘urban traffic scenario’ (UTS). Due to the complexity of
the problem domain it is not possible to give a comprehensive treatise. Hence, many interesting aspects
can not be mentioned here which should also be investigated, such as vehicles moving on autopilot
or systems for automatic collision prevention. This paper will, therefore, focus on a choice of aspects
abandoning (but not ignoring) the others.

Two major areas of research have impact on the UTS domain, namely electrical engineering (telecom-
munications in particular) and computer science:

Electrical Engineering Most of the technologies that have to be taken in consideration here have
already reached high standards and are, for a large part, ready to use:

e Remote Sensing
e Signal Processing
e High Bandwidth Radio Communication

e Networking

In the following it is assumed that these technologies are freely available as ready-to-use components
which interface easily to computers. All data sampled or transmitted by these components originate
from or are handed to these computers. Low level issues like message formats, means of transmission
(radio, infra-red light, etc.) and interfacing to computers (including conversion of signals to symbols)
will not be mentioned here.

Ubiquitous computing power is assumed [1], so every entity involved in the traffic scenario is equipped
with a local (or has direct access to a remote) computer which is in direct contact with the entities’
computers in the environment.

Computer Science adds to the above listed issues the concepts, methods and technologies to exploit
and hopefully control what is technically feasible. In particular, the following areas of research are
relevant here:

e Distributed Artificial Intelligence (DAI)
e Computer Networks

e Distributed Processing

The above mentioned ubiquitous computing requires powerful models of interaction between the vast
amount of entities involved in traffic scenarios. Research in DAL, distributed processing, and computer
networking has recently begun to reveal the prerequisite technologies to tackle the problems at hand.



The details of computer networking and distributed processing are not investigated here. EKmphasis will
be put on the DAI concepts.

It is the goal of this paper to apply DAI concepts to the UTS. The discussion will be accompanied by
some examples that demonstrate the appropriateness of the major concepts of the multi-agent paradigm
in the traffic control scenario.

Note that since this paper is a first approach to apply multi-agent system technology to a real
world scenario of very high complexity, simplifications will be introduced in order to keep the examples
comprehensible. Nevertheless, the author believes that all concepts presented here easily scale up to
and perform well in real world conditions.



Chapter 2

Using Agents to Model Traffic
Scenarios

Distributed computing scenarios have been under investigation for a long time. But, due 1o the lack of
technical feasibility of distributed systems that are comprised of a considerable number of computing
nodes, research was focused on problems that were tractable on a theoretical basis. A significant
property of the results of this work is that, in most cases, the resulting multi-processor systems rely
on regular interconnection patterns and are comprised of identical (special purpose) computing nodes.
These homogeneous systems could be realized with reasonable efforts and were successful in very specific
application domains.

Recently, heterogeneous computer networks which are comprised of different kinds of general purpose
computing nodes that are interconnected in non-regular and/or regular fashions have been investigated.
The results of DAI (in particular distributed problem solving) and, to some extent, work in the field
of HCCW (human computer cooperative work) (8] [7] promoted the development of concepts for these
heterogeneous computer networks. The term mulli-agent system was coined to denote conceptual work
in this field [2].

Whereas the above mentioned ’classical’ distributed computing is of minor use use in heterogeneous
domains such as traffic control, multi-agent system technology provides a much more appropriate ap-
proach.

In the following sections a brief introduction to multi-agent systems, MAS for short, is given. Next
the MAS approach to the traffic scenario will be developed.

2.1 The Notion of Agents

At present, the MAS-researchers have not yet settled on concise and unopposed definitions. So the
term agent is used in an intuitive fashion [2]. It refers to the computational representation (simulation)
of some entity in the real world. The agent, like the respective real world entity, exhibits observable
behavior. Note that this entity does not have to have substance, it may be an abstract concept such as
a bank account.

Agents may be compared to objects known from the domain of object-oriented programming. In
fact agents can be implemented as objects. But agents are considered to be a higher level concept in
that they abstract from the implementation details entailed by the term ‘object’. Agents are much more
sophisticated, they are autonomous and often thought of as ‘intelligent’, they are comprised of logical
components whose implementations may be neglected.

Agents stand for a wide variety of real world entities. In the traffic scenario agents may be intelligent
robot-vehicles as well as rather simple traffic-lights or parking lots. Even humans may be considered
agents.! So the model of agents has to fit a broad spectrum of relevant entities in the world of discourse.

"Note that the author does not think of humans themselves as agents in the MAS sense. Humans are considered
equipped with a machine agent, which acts on their behalf and interfaces its user to the MAS. This special type of agent
is called user agent (see also Section 2.4).
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2.2 A General Agent Model

Every entity in the world interacts with its environment. Interaction may be on its own behalf (active
entities) or due to external stimuli (re-active or passive entities). Interaction may be through different
kinds of media. In the world of computer-based agents message-transmission between agents is the usual
(and sufficient) way to model interaction. (Others are conceivable as well, but will not be investigated
here.)

Closely related to interaction is the observable behavior of an entity. This is the way 1t (re-) acts in
given situations. Given that an agent interacts only by means of messages, its behavior is a mapping
from received messages to emitted messages. It is assumed that (most of) this behavior is explicitly
represented in the computer-based agent.

Since, in the real world, nothing gets altered by pure message passing, some functionality must be
introduced into the model that either imposes changes to the physical world (by means of actuators) or
computes new information that may be communicated. This agent-specific functionality is the means
by which the world state is altered.

According to these observations every agent can be divided into three main components, namely
communicator, head and body which implement message-transmission, the observable behavior and the
functionality respectively. Figure 2.1 sketches the agent structure on this abstract level. In this model
all interactions are modeled by means of message passing.

Communicator The communicator is in charge of establishing and maintaining the physical commu-
nication channels to other agents in the environment. It continuously ‘listens’ for incoming messages,
delivers them to the head, and emits messages originating from the head.

For the whole agent to communicate efficiently, its communicator has to provide a sufficiently abstract
communication interface to the agent’s head. That is, it has to hide all technical details of communication
and provide reliable transmission channels to other agents in the environment.

Head The head, relieved from primitive communication tasks by virtue of the communicator, has to
plan, negotiate and interact on a high level of abstraction. It may be conceived as a knowledge-based
component, being aware of goals, intentions, functionalities and resources of its associated body and of
other agents as well. It strives to achieve local and/or common goals, while acting simultaneously in
different interactions. This, all together, comprises the observable behavior of an agent.

Knowledge based decision making components are considered necessary only for sophisticated agents.
Simpler agents, like e.g. a traffic-light, might do without knowledge based components. They will



not participate in complex negotiations with other agents, but will rather react on a small number of
messages they understand. Their behavior is representable by means of hard-coded procedures; planning
and knowledge-based decision making seem dispensable.

Body The agent’s body constitutes those parts of its overall functionality it performs in order to
(intentionally) alter the world state. While communicators and even heads may be quite similar for
different types of agents, their bodies will differ significantly.

In the traffic scenario, for example, only vehicles have functionalities that enable motion, while
traffic-lights, streets or parking lots do not. Bodies of vehicles and traffic-lights both emit optical
signals. Humans and vehicles may also employ acoustic signals and gestures.

[t is noteworthy that the model presented is by no means domain specific. In particular, the agent
structure allows to describe agents of almost any domain in a general fashion.

2.3 The Society of Cooperating Agents

Multi-agent systems are often paraphrased by the metaphor ‘society of cooperating agents’. 'This
metaphor stresses the most prominent aspects of multi-agent systems:

Heterogeneity: A MAS is a heterogeneous collection of agents. Each agent has specific properties
(behavior, capabilities, authorities) that distinguishes it from other agents. Similar agents may be
considered as being of a common type. For example all traffic lights in UTS are of the same type.

Cooperation: Agents interact. Some interactions will be cooperations between agents working on a
common task or goal. Agents cooperate in order to achieve goals they could not achieve on their
own. For instance in the UTS all traffic-lights of a crossroads may cooperate (by adjusting the
timing of the light sequence) in order to maximize throughput and minimize the likelihood of
traffic-jams.

Grouping: Cooperating agents may join together and form groups. The grouped agents collaborate in
order to achieve common goals. They may be represented by a special agent called the group agent
which is the representative of the group in interactions with other agents or groups. An individual
agent may be member of different groups simultancously. Furthermore, groups may form higher
order groups. For example, in the UTS, parking lots may join into a car-park and all car-parks of
a city may jointly interact in order to balance parking space occupation.

2.4 User Agents

Humans are integrated into this ‘machine society’ by means of user agents. 'These agents can be
considered prosthesises that widen the range of human senses by providing information they could not
gather otherwise. Information is guaranteed to be up-to-date and is filtered according to the current
needs. So a user will not be overwhelmed with outdated or irrelevant data, but will receive information
that concerns the goal at hand, i.e. reaching the current destination.

Furthermore, the user agent will, depending on its level of sophistication, act intelligently on behalf
of its human user. Thus, a user agent can be regarded as an "intelligent assistant’ or “junior partner’ of
the human user [3].

In the UTS domain a user agent might be built into cars, or might be publicly available at bus
stops and underground stations to provide users with the required information. In the future it is
conceivable that everybody carries a personal user agent, that continuously connects to other agents in
the environment [1]. '

In the next chapter we revisit the above mentioned aspects in the context of some exemplary traffic
situations.



Chapter 3

Examples

3.1 Multi-Agent Scenario: Crossroads

Figure 3.1 shows a typical traffic situation at an intersection. Although it captures only a small part
of the overall traffic scenario it allows to demonstrate the applicability of most of the MAS concepts in
the UTS.

Grey arrows indicate goals of the agents while black arrows visualize communication links.

There are two eastward bound cars: car-1 and car-2. As indicated by the gray arrows car-2
intends to cross NS-Street, while car-1 intends to turn right into NS-Street. Both cars are agents
that communicate with the next traffic-light agent ahead, i.e. t1-1. So t1-1 gets informed about the
intentions of car-1 and car-2. car-3 which intends to turn left into EWN-Street in order to occupy the
free parking lot communicates with t1-2.

Traffic at the crossroads is controlled by the cooperation of the four traffic-lights. All four traffic-
light agents negotiate about the length of the phases of the next light-sequence in order to minimize
waiting-time for the cars.

Since there are currently no cars approaching t1-3 and t1-4, these lights will not impose further
constraints on the determination of the next light sequence. So t1-1 and t1-2 will decide if they give
preference to car-3 or to car-1 and car-2.

car-3is in contact with the car-park because its driver wants to park the car. car-park is an agent
which communicates with approaching cars on behalf of the set of parking lot agents. It represents
all parking lot agents that comprise the car-park.

This type of agent is called a group agent. Group agents are responsible for the cooperation among
group members and for the cooperation of the group with the world. A group agent hides the details
of the group organization and provides a (sophisticated) service to clients of the group. Depending on
the organizational principles of the group, the group agent may have the authority to give orders to the
group members or it may interact with them on a peer-to-peer basis. The group agent may be a special
agent designed to organize group behavior or it may be one out of the group that has been selected as
group representative.

The four traffic-lights form a group as well but, as opposed to the car-park group, they do not have
a representative agent. Each member of the group communicates with the world on its own behalf and
on behalf of the group. Here, group behavior is determined by peer-to-peer negotiations, i.e. the group
members have equal rights and responsibilities.

The scenario of Figure 3.1 exemplifies how client agents (cars) contact agents with higher authority
(traffic-lights) in order to receive orders (light signals from the traffic-lights). It gives two examples of
how agents may organize into groups. The traffic-lights make up a group of equal members where each
member communicates with clients, whereas the car-park represents and governs a group of parking lot
agents. For the parking lots, communication is restricted to the car-park group.

Thus, this scenario is an illustration of the main aspects of multi-agent systems which were listed in
Section 2.3. It shows a heterogeneous set of agents that cooperate, some of them joining into groups.
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Figure 3.1: Crossroads Scenario

Figure 3.2 is a variation on the previous example. An additional car agent, ambulance, has been
added to the scene. It intends to cross EW-Street and wants to take precedence over all other cars
currently approaching the intersection. The ambulance introduces an exception to the standard opera-
tions of the traffic-lights: through communication with the traffic-lights the ambulance gives the order
to immediately block all directions.

This exemplifies the way how certain agents may override standard operations, at least in a limited
region, due to their higher authority.

3.2 Multi-Agent Scenario: Car Approaching a City

The example depicted in Figure 3.3 gives an overview of what happens when a mobile agent approaches
a city. A prerequisite to this example is a standard mechanism for enabling the mobile agent to contact
the traffic control agents.

As Figure 3.3 suggests, a hierarchical organization of the traffic control agents is assumed which
results in the grouping of subordinate agents under their superiors.! Not only the immobile agents are
part of that hierarchy but also pedestrians and all kinds of vehicles. As opposed to the immobile agents
they are only temporarily assigned a place in the hierarchy. As they move, their placement in the agent
hierarchy changes, e.g. they leave town, become immobile while parking, or pass from one district to
another.

While approaching the outskirts of the city, the car in Figure 3.3 has to register with the traffic
flow control agent. This agent samples data about all mobile agents entering or leaving the urban
region. Each of them has to declare its destination(s), preferred route(s), speed, estimated time of

!The hierarchy shown in Figure 3.3 is for illustration purposes only and is not considered to be a realistic model. In
particular a MAS-hierarchy for a realistic town is much too complex to be depicted clearly within the limited space of this
paper.

9



ambulance

[

car-park / (car-3)

Figure 3.2: Crossroads with approaching Ambulance

departure etc. The traffic flow control agents calculate a route for the approaching agent based
on their current knowledge about the (estimated) traffic volume and parking space occupation.

Based on the calculated route, the approaching agent is brought in contact with the subordinate
agents responsible for the districts the agent will pass through.

Assuming that each agent gives honest information about its intentions, the consequences for traffic
flow control may be far reaching.? Based on this information, traffic volumes can be forecast and traffic
flow can be controlled so that it comes close to an optimum with respect to global throughput and
traffic-jam avoidance. In particular, exceptional events, e.g. road works, can be taken into consideration
when calculating routes for mobile agents.

Furthermore, foreign road users, not familiar with their route, may be continuously guided by the
traffic flow control system bringing them directly to their destinations.

Even accidents will not unconditionally lead to traffic-jams. The continuous supervision of mobile
agents in the proximity of the accident allows calculating individual detours for these agents mitigating
the effects on traffic flow.

The benefits of a MAS organization of the UTS for traffic flow control seem to be enormous but a
complete treatise goes far beyond the scope of this paper. In the next section the individual entities of
the UTS are investigated in detail with respect to the MAS aspects.

3.3 Agents in the Urban Traffic Scenario

In the examples given above, some of the entities in the UTS have been described as agents. This section
summarizes the results and investigates each type of agent individually.

2The author assumes benevolent agents. For some domains this might be an unrealistic assumption, but it is an
appropriate or even necessary assumption in scenarios where reliable forecasts are to be made.

10
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Vehicles Vehicles, i.e. any mobile agent except pedestrians, are agents that incorporate the necessary
computational power and telecommunication facilities to establish and sustain contact with a consider-
able number of agents in their environment. The speed with which vehicles move requires not only that
they be able to handle a great number of communications in parallel, but also to frequently make new
‘acquaintances’ and terminate communications rapidly.

Since vehicles rely on guiding information from their environment, i.e. mostly from the immobile
agents, they are to some extent subordinate to these. It is a matter of future research how to properly
adjust the authority levels in order to not over-constrain the vehicles.

Pedestrians For pedestrians to become part of the MAS-world in the same way as described for
vehicles some technological progress is required. Each person would have to carry a sort of pocket
computer (whose computational power is beyond what is commercially available at present) that makes
its owner an agent in the MAS (cf. Section 2.4). Aside from the political and social discussions about
supervision of individuals that such a device would trigger, it may be claimed that, at least for the
purpose of guiding people to a destination, it is a valuable concept. Many more advantageous properties
of this device are conceivable, e.g. benefits for handicapped persons.

Since such a device would turn out to be a universal communication facility, it allows its owner not
only to interact with the immediate environment, performed mostly automatically by the device, but
also provides access to information systems at any time at any place. For instance schedules of public
transport systems may be accessed and reservations could be made instantaneously with the help of this
device.

Note that equipping persons with a portable ‘user agent device’ is optional in the traffic control
scenario.

Traffic-Lights The roles of traffic-light agents have already been described in the above examples. The
task of a singleton traffic-light is rather simple. It has to recognize (i.e. count) approaching vehicles (and
pedestrians). Based on their estimated arrival times the timing of the light sequence at the crossroads
can be adjusted appropriately. Since, in most cases, a traffic-light belongs to a group it can not alter
the light sequence timing on its own but has to negotiate with its partners. Each traffic-light agent
knows about the traffic volume approaching from the direction it is controlling. The integration of the
knowledge of all members of the group allows to calculate the timing of light sequences that is optimal
with respect to overall throughput.

Unfortunately, the local optimizations at each crossroad will not lead to globally optimal results.
Therefore, the dependencies that exist between sequences of crossroads (lined up along streets) have to
be taken into consideration.



Streets Introducing streets as agents is promising because it helps solving the problems of flow control.
Since mathematical models of flow are based on a notion of a sort of *pipe’ that has measurable properties
like maximum throughput, optimal flow speed etc. it seems natural to introduce street-agents that model
these very properties.

In the context of multi agent systems, streets are the means by which to group crossroads, i.e. the
groups of traffic-light agents, into higher level groups thus weaving a web of cooperating traffic agents.

Furthermore, street-agents introduce approaching vehicles to the immobile agents lined up along
the street. Thereby mobile agents will always get acquainted with the relevant agents along their way
without the need to ‘search’ for them. Streets can give feedback to the mobile agent to help determine
its current locus, speed and heading.

Parking Lots Besides the traffic-light group the first example (cf. Figure 3.1) introduced yet another
kind of agent group: the car-park. Whereas the former was a cooperation among peers, which merely
adheres to negotiation processes, the latter was based on a hierarchical (authoritarian) organization of
agents that is based on orders.?

The pros and cons of authority levels are one aspect of that example that will not be stressed
here since it depends on the application at hand. A more general aspect is the way how hicrarchical
grouping allows for hiding the details of group organization. A client to the group need not even know
that he is actually interacting with a group. Furthermore, authoritarian group organization reduces
communication overhead between group members and promises timely and consistent behavior of the
group. In particular predetermined group configurations that are not likely to be reconfigured and that
operate mostly on standard situations (c.g. the traffic-lights) are candidates for authoritarian group
organization.

3Note that the choice of describing traffic-lights as peers and parking-lots as subordinates of a car-park agent is only
for illustrating some of the different options in the organization of agents. There is no reason not to introduce a crossroad-
agent that gives orders to its subordinate traffic-lights or to organize a car-park based on peer-to-peer cooperation of
parking lots.
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Chapter 4

Research Projects in the Field of
Traffic Control

In the past a variety of traffic control systems have been developed and installed that strive to improve
traffic situations with respect to one or more of the following general issues:

Security - E.g. notification of road users of weather and street conditions ahead, improvement of
vehicle technology.

Flow - E.g. anticipation of jams, coping with increase in traffic volume in general.

Ecological damage - E.g. improvement of efficiency of drive-train technology, homogeneous traffic
flow, avoidance of unnecessary (de-) tours, promotion of the use of public transportation systems.

Any traffic control system is concerned with a collection of these issues, but their developers weight
them differently:

The major goal of the older systems is to cope with almost unlimited increase in traffic volume and
to enforce security for these volumes of private traffic by means of road construction.

Emphasis has shifted in the recent years. Security issues have become increasingly important in the
public opinion, even though acceptance of the necessary steps, such as speed limits, is still not very high.
The ecological consequences of private mass transportation have become publicly noticed recently, but
yet only a minority is willing to take the appropriate steps.

This ongoing shift has consequences for the development of future traffic systems. Since security and
ecological issues are considered more important now, completely different systems will emerge; some of
their typical characteristics are [6]:

e A general shift from private to public transportation means will occur. Beginning with the (short
distance) urban traffic systems acceptance of public transportation means will increase also for
long distances.

e As opposed to the older systems that cope with road users as an anonymous mass, future systems
will be much more concerned with the individual needs of customers. Therefore, the integration
of private and public transportation means has to be enforced (e.g. park-and-ride systems) along
with a general shift towards public systems. These will have to offer services customized to the
individual needs of each user.

e Future traffic systems will be information processing and transmission systems. As was pointed out
in the previous chapters, intelligent networking and cooperative interaction among the components
of the traffic systems will be crucial for the performance of these systems.

As was pointed out in the previous chapters, the MAS approach to traffic control exhibits these very
characteristics.

Traffic control systems are embedded in a network of interests. Future developments will have to account
for them in order to be publicly accepted:
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Social interests - Concerning business as well as spare time activities.
Economical interests - Such as unrestricted pursuance of one’s profession.
Ecological interests - Avoidance of exhausts and noise, saving resources.
Aesthetical interests - Preserving the quality of residential areas, parks etc.

The hypothesis is that all these interests can be reconciled in the future by employing cooperatively
working, interactive systems. Here, MAS technology provides a promising prospective.

Since a comprehensive treatise goes beyond the scope of this paper, only two of the contemporary
(German and European) research projects are sketched here. Namely the projects PROMETHEUS and
LISB will be described, representing vehicular traffic control projects in general.

4.1 PROMETHEUS

The project PROMETHEUS (PROgraMme for an European Trallic with Highest Efficiency and
Unprecedenced Safety) [4] [5] is a joint research effort of the Western-European automobile industries
and research institutes. It is one of the largest EUREKA projects.

The main objectives are improving safety and reducing ecological effects of the transport systems.
PROMETHEUS relies mostly on improvement of vehicle technology. Development of intelligent vehicles
is pursued, but minor emphasis is put on improvement of the infrastructure. The overall project goals
are a sequence of steps:

l. cars that give information,
cars that emit warnings,
cars that give instructions,

cars that correct the driver’s actions,

o S e D

cars that steer themselves.

PROMETHEUS is a compound of seven research areas that are assigned to the partners. Industrial
research encompasses the following three areas:

PRO-ROAD Development of communication systems linking infrastructure and on-board computers
that allow for decentralized traffic control.

PRO-NET Development of a communication system linking vehicles in order to increase the driver’s
perception range and to guarantee safe and harmonized traffic flow.

PRO-CAR Development of an intelligent on-board system that informs and actively supports the
driver.

Basic research, done at universities, encompasses the following four arecas:

PRO-GEN Conceiving traffic scenarios that allow analysis and evaluation of the systems developed.

PRO-COM Development of standards and protocols that enable communication among on-board
computers of vehicles and between vehicles and the infrastructure.

PRO-CHIP Implementation of the required computer hardware.

PRO-ART Development of procedures and algorithms that allow utilization of artificial intelligence
in future traffic systems.

The common property of all research done in project PROMETHEUS aims at improving private
transportation means. Integration of public and private means is of minor concern. In particular
PROMETHEUS does not pursue reduction of private traffic volumes.
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4.2 LISB

LISB (Leit und InformationsSystem Berlin) [5] is a field study carried out in Berlin. The prototypical
system is a navigational aid that pursues traffic control tasks by individually guiding anonymous road
users. A similar system, called AUTOGUIDE, will be installed in London.

LISB is comprised of stationary sender/receiver units that are distributed all over the town. Vehicles
continuously transmit sensory data such as the time required to move along a road to the system. LISB
samples the data and updates its centralized database. Every 5 to 10 minutes the latest information
about the current traffic situation is broadcast.

Vehicles continuously listen to these broadcasts. Their on-board navigation computer filters and
processes the informations with respect to the vehicle’s destination. It derives guiding hints and presents
them to the driver by means of a display and natural language utterances.

Based on the centralized processing of up-to-date traffic volume data individual guidance can be
provided with respect to the current traffic situations. Note that all road-users stay anonymous. LISB
is based on a central database which is continuously updated by the incoming vehicle data and which
continuously generates the latest traffic guidance information. Furthermore, this database allows to deal
with:

o traffic management according to given policies,

o traffic light control,

e radio traffic services,

e park-and-ride systems, parking space occupancy control,
e route and travel planning,

e commercial fleet management,

e supervision of dangerous goods transportation,

e and traffic planning.

Project LISB also encompasses investigations concerning the acceptance of such a system by the
users. It has revealed that on routes which the road user does not know in advance, acceptance of the
guiding informations is very high, on known routes it is high. On 53 percent of the routes taken by
private persons guiding hints were always obeyed. On 41 percent of routes taken by business vehicles
guiding hints were always obeyed.
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Chapter 5

Conclusion

The examples in the first three chapters have revealed that the MAS paradigm, when employed in
the urban traffic scenario, leads to an highly integrated system that allows to account for virtually all
relevant aspects of traffic control.

Furthermore, as Chapter 4 has pointed out, the adoption of the MAS paradigm does not entail neglect
of other approaches to traffic control problems; it rather allows to integrate them. The rationalizations
presented in the first three chapters have been presented without referring to the state of the art in
traffic control research projects. After looking at the projects presented in Chapter 4, it turned out
that the "MAS view’ on traffic control is an obviously natural one that is not only compatible but even
complementary to these projects.

Therefore, we may conclude that the MAS approach to the UTS is a promising way to organize
a broad variety of already existing and of upcoming technologies according to one common paradigm.
MAS research is able to make viable contributions in the domains of communication, cooperation,
distributed information processing and control.
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Appendix A

Towards an Implementation

This appendix outlines how the agents of the urban traffic scenario can be simplified considerably and
can be modeled by means of the concepts of multi-agent systems technology. In contrast to the informal
examples in the main part of this report, a more technical description of a basic set of agents is presented
here.

In order to keep the example simple, only a restricted set of basic types of agents will be introduced.
Compared to real world traffic scenarios the simulation will be be considerably less complex. So, instead
of striving for a comprehensive simulation of reality, emphasis will be put on the applicability of the
major multi-agent system aspects to the UTS domain. Correspondingly, the following model is based
on the rationalizations of the author, and not on exhaustive nature investigation.

Three types of non-mobile agents are used to model a city map, i.e. the non-mobile parts of the
scenario: STREETS!, CROSSROADS (four streets joining) and T-JUNCTIONS (three streets joining). Note
that, as opposed to its usual meaning, the term street denotes nothing more than a plain connection
between adjacent crossroads and/or t-junctions. CROSSROADS and T-JUNCTIONS model the connection
of STREETS with respect to ‘flow’ of mobile agents through them and at the same time include the
functionality of the traffic-lights, i.e. of flow control.

Mobile agents are represented by the general agent type veEnicrLe. (Since this paper describes a first
approach to a MAS implementation of the U'TS, pedestrians are not yet modeled.) These agents are the
only auto motive parts in the UTS model. Their purpose is to move along STREETS, pass CROSSROADS
and T-JUNCTIONS and thereby bring to life the simulation.”

A.1 Street Agents

A STREET agent models the space between consecutive CROSSROADS or T-JUNCTIONS. To keep the
examples simple, only streets with a single lane for each direction are considered. Definition | illustrates
the major properties of a STREET agent.

A STREET is of a given length (streetlength). The mean length of a VEHICLE, including a minimal
distance to the next VEHICLE, is called carlength. Based on these values the maximum capacity of one
lane of the STREET can be computed as shown in Definition 1. Note that, in reality, the capacity depends
on the speeds at which the vehicles are moving since the distances between (human controlled) vehicles
must increase with speed. So the capacity of a street is at its maximum when all vehicles stand still
and decreases as vehicles increase their speed. To keep the example simple, the capacity is treated as a
constant value.

!Note the typeface of the word STREET. Whenever a particular type of agent of the model is referred, small capital
letters are used. To denote the general meaning of the word normal typeface is used.

?In the future this model will be extended in order to include group agents, e.g. heterogencous groups comprised
of STREETS plus CROSSROADS and T-JUNCTIONS and homogeneous groups comprised of PARKING-LOTS which in turn form
CAR-PARKS. Furthermore, a sort of register agent is necessary in order to model the process of mobile agents entering or
leaving the scene.



Definitions:

let carlength be the mean length of a VEHICLE;
Bowe let streetlength be the length of the STREET;

the STREET has a maximum capacity for each lane:

capacity := |streetlength = carlength|

flow_a the flow in a lane can not exceed the capacity:

ﬁz:ﬂv-z } < capacily

Definition 1: Properties of a STREET

Therefore, a STREET can be represented simply as a pair of queues.® Each queue is capable of holding
a certain number of VEHICLES. The maximum queue length is capacity. The functionality of each queue
is to accept as many VEHICLES as possible from its input-side. On the output-side the draining of
VEHICLES is controlled by the next traffic-light. As long as this traffic-light (or whatever else) interrupts
the draining away, the queue will not be able to accept more VEHICLES than up to its capacity limit.*

A.2 Crossroads and T-Junction Agents

Streets have been modeled in the previous section as bidirectional buffers. They exhibit a rather primitive
behavior. Crossroads and t-junctions in conjunction with their associated traffic-lights provide a richer
functionality. In particular, these strive to intelligently control the traffic flow. As opposed to the
STREETS, traffic-lights and CROSSROADS or T-JUNCTIONS are active agents in the model. To keep the
model simple, CROSSROADS or T-JUNCTIONS and their sets of associated traffic-lights are modeled as a
single agent.

A.2.1 Crossroads Agent

Definition 2 sketches the main properties of a CROSSROADS agent concerning the aspects of traffic flow.
Conforming with the simple model of streets given above, intersecting streets do not fork off right-turn
and/or left-turn lanes. This restriction allows to do without traffic-lights that show arrows for the
different directions of traffic flow and simplifies light sequence control considerably.

Even in this simplified crossroads model, light sequences of the individual traffic-lights are strongly
interdependent. Opposite directions always switch in synchrony. That is, flow_a_in and flow_b_in are
controlled by exactly the same sequence. The same holds for flow_c_in and flow.d_in. Furthermore
these two sequences are complementary to each other: while the a and b lights show green the ¢ and d
lights must show red and vice verse.

The main functionality of the CROSSROADS is implemented by its associated set of traffic-lights.
Their task is to control the flow of traffic so that all directions are served equally. Based on the simple
model sketched above, Algorithm 1 describes the behavior of a set of traffic-lights at a CROSSROADS.

The constant value default, which is arbitrarily set to 15 seconds in Algorithm 1, determines the
standard length of red and green phases. As long as no significant differences in traffic flow volumes
are detected, the traffic-lights adhere to this default value. The constant threshold determines how
significant the differences in traffic flow volumes must be in order to deviate from default timing.

The algorithm is comprised of an infinite loop. Each iteration starts with gathering up-to-date
information about the current traffic volumes. That is, the actual values of flow_a_in ...flow.d_in
have to be determined.’ Based on these values the difference in flow volumes (diff) is calculated. As

3Note that in order to keep the example simple, streets have only one lane for each direction; no left-turn or right-turn
lanes and no one-way streets are considered.

4The simplicity of this model is intentional. It is obvious that a model of a real traffic scenario will be far more complex
with respect to the mathematical model describing flows and capacities. In particular, the complex interdependencies
between consecutive streets and crossroads (the net-effects) would be of great significance in a more realistic model.

“Flows are non-negative integer values.



flow_d_in flow_d_out

Definitions:

the sum of all input flows and output flows must be
flow_a_out flow_b_in equal to zero:
B B

d
-— - - -— - - Z(flouu/_m — floww_out) = 0;

flow_a_in flow_b_out v=a
B —_

CROSSROADS have no capacity.

—_— e = e — — -

flow_c_out flow_c_in

Definition 2: Properties of a CROSSROADS

long as diff does not exceed threshold, the traffic-lights adhere to the default timing. Otherwise,
the timing is adjusted by prolonging the green phase for the high volumes direction(s). Prolongation is
limited to at most three times the default.”

A.2.2 T-Junction Agent

An important variant of a CROSSROADS is the t-shaped junction of only three roads. Definition 3 sketches
the major properties of a T-JUNCTION agent. All remarks concerning a CROSSROADS are valid for the
T-JUNCTION agent as well.

In the T-JuNcTION model, light sequences of the individual traflic-lights are strongly interdependent.
Opposite directions always switch in synchrony. That is, flow_a_in and flow_b_in are controlled by
exactly the same sequence. This sequence and the sequence controlling flow_c_in are complementary to
each other: while the a and b lights show green the ¢ lights must show red and vice verse. Algorithm 2 is
similar to the previous algorithm. It illustrates the adjustment of light sequences at the T-JuNcTION due
to the traffic volumes. Note that the directions a and b are given preference over ¢ assuming that usually
the main traffic volumes are flow_a_in and/or flow_b_in. Therefore, if traffic volume flow_c_in raiscs
above the given threshold its green phase may be prolongated up to five times its default as opposed
to at most three times for the directions a and b.

In a MAS implementation of the traffic scenario each individual junction or crossroad will be tuned
by adjusting the default timing of light sequences individually to the typical traffic volumes. Tuning
may be done a priori by the implementor or through a continuous learning process.

A.2.3 Computing Flow Volumes

During the green phases a certain number of VEHICLES pass the traffic-light. This is limited by the length
of the green phase and may be further reduced if the draining away of VEHICLES is obstructed. The
actual number of VEHICLES that passed a traffic-light during the last green phase has to be determined
in order to compute the (next set of) up-to-date values for flow_a_in ...flow.d_in. In the algorithms

6 All values are chosen arbitrarily. In an implementation of the UTS simulation they have to be adjusted appropriately
for each individual agent.
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/* Let a_b_green be the length of the green phase for flow_a_in */

/* and flow_b_in. Let c_d_green be the length of the green */
/* phase for flow_c_in and flow_d_in. a_b_red and c_d_red are */
/* the respective red phases. */

threshold := 10 /* Minimal flow difference that leads to */
/* changes of the default length of phases.*/
default := 15 /* Default length of a red or green phase. */
ASSERT (c_d_red == a_b_green) /* Red and green phases must */
ASSERT (a_b_red == c_d_green) /* be kept complementary. */
LOOP
/* Determine current flows. */
diff := (flow_a_in + flow_b_in) - (flow_c_in + flow_d_in)
IF (diff > threshold) THEN
a_b_green += MAX (diff, 3*default)
c_d_green := default
ELSEIF (diff < (-threshold)) THEN
c_d_green += MAX (ABS(diff), 3*default)
a_b_green := default
ELSE
a_b_green := c_d_green := default
ENDIF
ENDLOOP

Algorithm 1: Adjustment of Light Sequences at a CROSSROADS

flow_a_out flow_b_in
———— .
Definitions:
R S —— = E— E——— .
the sum of all input flows and output flows must be
flow_a_in flow_b_out equal to zero:
_— —_

I Z(flnw_u_zn — floww_out) = 0;

I v=a

flow_c_out flow_c_in

a T-JUNCTION has no capacily.

Definition 3: Properties of a T-JUNCTION

given above this computation is indicated by the comment ‘determine current flows’. How this can be
done is investigated in the following.

Let flow_a_in be the number of VEHICLES that comprise the current traffic volume at a CROSSROADS
(cf. Definition 2). These VEHICLES, when on a green light, will distribute to the output flows flow_b_out
...flow_d_out as long as no obstruction arises. Since accidents are ignored here, this requires only that
the output lanes must be at less than capacity. Therefore, before a mobile agent enters the crossroads
it has to check that the lane it is heading for has enough free space left. Not only does this conform to
the traffic regulations, it is also a requirement arising from the definition of the model which states that
CROSSROADS and T-JUNCTIONS have no capacity.

To determine the latest flow values requires counting the VEHICLES that left the CROSSROADS or
T-JUNCTION through the out flows during the last green phase.
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/* Let a_b_green be the length of the green phase for flow_a_in  */
/* and flow_b_in. Let c_green be the length of the green phase */
/* for flow_c_in. a_b_red and c_red are the respective red phases.*/
threshold := 15 /* Minimal flow difference that leads to */

/* changes of the default length of phases. */
15  /* Default length of green phase for a and b. */

default_a_b :

default_c := 10  /* Default length of green phase for c. */
ASSERT (a_b_green == c_red) /* Red and green phases must be kept */
ASSERT (a_b_red == c_green) /* complementary. */
LOOP

/* Determine current flows. */
diff := ((flow_a_in + flow_b_in) / 2) - flow_c_in
IF (diff > threshold) THEN
a_b_green += MAX (diff, 3*default_a_b)
c_green := default_c
ELSEIF (diff < (-threshold)) THEN
c_green += MAX (ABS(diff), 5*default_c)
a_b_green := default_a_b

ELSE
a_b_green := default_a_b
c_green := default_c
ENDIF
ENDLOOP

Algorithm 2: Adjustment of Light Sequences at a T-JUNCTION

For a complete light sequence at a CROSSROADS the computations are as follows:”

flow_a_in’ := flow_a_in — (flow_b_out, + flow_c_out, + flow_d_oul,)
Sflow_b_in' := flow_b_in — (flow_a_ouly + flow_c_outy + flow_d_ouly)
Sflow_c_in’ := flow_c_in — (flow_a_oul. + [low_b_oul,. + [low_d_oul,)
flow_dn' .= flow_d_in — (flow_a_ouly + flow_b_ouly + [low_c_ouly)

And the overall out flow i (1 € {a...d}) during a complete light sequence is the sum of all partial
flows originating from all directions but 2:

flow_i_out’ := Z‘:za yzi Jlow_iout,

For a complete light sequence at a T-JUNCTION computations are similar:
flow_a_in' := flow_a_in — (flow_b_out, + flow_c_oul,)
flow_b_in’ := flow_b_in — (flow_a_outy, + flow_c_ouly)
flow_c_in’ := flow_c_in — (flow_a_out. + flow_b_oul.)

The overall out flow i (i € {a...c}) during a complete light sequence is the sum of all partial flows
originating from all directions but i:

flow_i_out’ := 3" flow_i_out,

v=a,v#i

These formulae have to be integrated into the respective algorithms (see above) in order to complete
the algorithmic description of the behavior of CROSSROADS and T-JUNCTION agents.

"The indices of the out flows indicate the source. For example flow_a_outy, is the number of VEHICLES that leave the
CROSSROADS via lane a coming from b.
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A.3 Vehicle Agents

The main action of mobile agents in the UTS is to move around in the scenario. Moving along a street
is almost completely modeled by the STREET lanes which organize VEHICLES in queues. The much more
interesting event, from the viewpoint of simulating an UTS, is a VEHICLE passing a traffic-light. In the
following, the model of mobile agents will focus on this issue.

side Definitions:
T N T turn_left the actual length of a VEHICLE is an integral multiple of the
basic unit carlength:
vehicle —— straight_ahead size = n * carlength
the direction of the VEHICLE’s next move is:

turn_right
direction € {turn_le ft,turn_right, straight_ahead}

Definition 4: Properties of a VEHICLE

Definition 4 depicts the major properties of a VEHICLE agent. For queuing up VEHICLES along a lane
the length of each VEHICLE is important. ‘l'o facilitate modeling it will be assumed that all VEHICLES
are either of equal length (cf. Definition 1: carlength) or an integral multiple thereof. A VEHICLE must
communicate its size to its host STREET in order to enable the STREET to compute the current load.

/* Let SELF be the identification of the mobile agent, */
/* SIZE its length, S, S1, S2 identifications of streets */
/* and T the identification of a traffic light. */

/* entering a street S: */
WHILE NOT capacity_available (S, SIZE) DO
/* do nothing, wait until street is free */
ENDWHILE
register (S, SELF, SIZE)

/* leaving a street S: */
unregister (S, SELF, SIZE)

/* SELF is the next vehicle on S1 to pass T wanting to */
/* enter street S2. S2 is determined by calling step() */
/* which tells the destination street of the next step */
/* in the plan. So S2 is the street forking off at T  */
/* which is reachable from S1 when making the ‘next()’ */
/* step of the plan. */
S2 := step(T, S1, next())
WHILE green_phase(T, S1) DO
IF capacity_available (S2, SIZE) THEN
unregister (S1, SELF, SIZE)
register (S2, SELF, SIZE)
tell (T, 81, §3)

EXIT_WHILE
ELSE
/* do not move, i.e. block the lane */
ENDIF
ENDWHILE

Algorithm 3: Actions of a VEHICLE Agent

Another important property is the direction the VEHICLE wants to take at the next CROSSROADS or
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T-JUNCTION. We assume that mobile agents have their given plans determining their route. The plans
may be generated in advance or may evolve dynamically. Guided by its plan, the VEHICLE finds its way
through a town. An enumeration function next (c.f. Algorithm 3) maps the plan into its single steps.
Upon each call it returns the direction of the next step in turn. So, for the mobile agent to find its
way, it-has to call next at each CROSSROADS or T-JUNCTION and, when given way, turn to the direction
determined by next.

Algorithm 3 lists three main functions of a mobile agent. The first one is called whenever the agent
wants to enter a street. It then tries to register with the STREET agent S by telling its identification
SELF and its SIZE. If the STREET agent is used up to its capacity (filled with VEHICLES) the VEHICLE is
caused to wait until enough space becomes available.

The complementary function is to leave a STREET which means the leaving VEHICLE un-registers
with the STREET agent and frees the space it had occupied.

The most complex action sequence models the passing of a traffic-light which is a combination of
leaving one STREET (S1) and entering another (S2). This action sequence is initially triggered when
the VEHICLE becomes the next one to pass the traffic-light T (i.e. is the first one in the S1 queue) and
stays active during the green phase for S1. To determine which of the two or three STREETS reachable
from S1 will be entered next, the VEHICLE’s plan has to be interrogated. Applying the function next
to the route plan tells which direction to take. So, being in street S1 at traffic-light T and knowing the
direction of the next step suffices to determine which STREET to enter next. Let this STREET be S2.
As described above, this succeeds only if enough space is available at S2. Then the VEHICLE leaves S1,
enters S2 and notifies the traffic-light which way it took. Otherwise the VEHICLE blocks its lane until
S2 has enough free capacity. Recall that CROSSROADS or T-JUNCTIONS have no capacity.

Explicitly notifying the traffic-light is required, since this enables it to count in and out flows and
compute the current flows at the beginning of the next light sequence (cf. Section A.2.3).

A.4 Conclusion

Thus we have seen how the processes of the various agents involved in the UTS may be modelled
independently of each other, yet interact cooperatively to guarantee an efficient and smooth flow of
traffic.

The first prototypical urban traffic scenarios have already been implemented and not only show
feasibility of our approaches but promises to completely fulfill our expectations [9].
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