
Universität des Saarlandes
Naturwissenschaftlich-Technische Fakultät I

Fachrichtung Informatik

A Change-Oriented Architecture
for Mathematical Authoring Assistance

Marc Wagner

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken, 2010

Dekan: Prof. Dr. Holger Hermanns
Vorsitzender: Prof. Dr. Gert Smolka
Gutachter:

Beisitzer:

Prof. Dr.-Ing. Jörg H. Siekmann
Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm
Prof. Dr. Fairouz Kamareddine
Priv.-Doz. Dr. Helmut Horacek

Kolloquium: 15.11.2010

Geleitwort V

Geleitwort

The monograph is the dissertation of Marc Wagner. Motivated by the problem to support
the writing of mathematical documents by mathematical assistance systems, it focuses on
the architecture of distributed systems in general with the application to bridge the gap
between the mathematical language used in documents and the formal logic representa-
tions of mathematical assistance systems.

In distributed software systems the representations of the internal states of each subsys-
tem are diverse and need to be synchronized. State of the art is that each subsystem syn-
chronizes with the connected subsystems by pushing the updates of its internal state or
pulling the partners’ internal state. This design of interfaces has the drawback that each
subsystem needs to know the signature of interface functions of other subsystems and
how to map its own data representation to the remote data representation and back. Con-
sequently, any change in either the interface functions or the data representations requires
adaptations in all connected subsystems. The solution proposed by Marc Wagner is the
document-centric change-oriented architecture (COA) design pattern for distributed
software systems, where the internal state of each software module is viewed as a docu-
ment and the communication between software modules is exclusively based on exchang-
ing updates on the documents. Mediators responsible to bidirectionally transform the dif-
ferent document types form the glue layer between two software modules. The mediators
are based on an invertible grammar formalism to describe the document transformations
and provide efficient support to map changes in one document format to another.

The design pattern is applied to interface a text-editor used to author mathematical docu-
ments with a proof assistance system. The major problem in interfacing these systems is
to mediate between the texts in the editor written in natural language mixed with mathe-
matical notations for concepts, formulas and proofs, and the logic based representation in
the proof assistance system. Following a controlled natural language approach for writing
the mathematical documents, Marc Wagner demonstrates how the invertible grammar
formalism in the mediators of the change-oriented architecture can be used to propagate
changes made by the author from the text-editor to the mathematical assistance system
and back, for instance, to generate proof descriptions in natural language. Furthermore, he
demonstrates how the problem to dynamically extend grammars to accommodate new
concepts and notations defined in the documents can be solved using the change-oriented
architecture design pattern.

VI Geleitwort

Agility of software development processes is a major issue in order to efficiently cope
with the evolution of software to adapt it to new requirements. Keeping as much as pos-
sible the impacts of changes of individual modules local to these modules is essential for
an agile software development process. The change-oriented architecture proposed in this
thesis and its separation of logic and data at the interfaces between distributed software
components provides an interesting design pattern for distributed software systems that
addresses issues from software evolution already in the software architecture.

Dr. Serge Autexier, DFKI GmbH (Deutsches Forschungszentrum für Künstliche Intelli-
genz), Sichere Kognitive Systeme, Bremen, Januar 2011

Kurzzusammenfassung VII

Kurzzusammenfassung

Das computergestützte Verfassen mathematischer Dokumente mit einem wissenschaftli-
chen Text-Editor erfordert neue Techniken des mathematischen Wissensmanagements
und der Wissenstransformation, um die Arbeitsweise eines Assistenzsystems, wie die des
ΩMEGA Systems, zu organisieren. Die Herausforderung besteht darin, dass im gesamten
System verteilt verschiedene Arten von vorgegebenem und abgeleitetem Wissen existie-
ren, die in unterschiedlichen Formen und Abhängigkeiten auftreten. Wenn Änderungen in
diesen Wissenseinheiten auftreten, müssen diese effektiv propagiert werden.

In dieser Arbeit wird eine Änderungs-Orientierte Architektur für das computergestütz-
te Verfassen mathematischer Dokumente vorgestellt. Dabei werden Dokumente als
Schnittstelle verwendet und die Komponenten der Architektur interagieren, indem sie
aktiv die Schnittstellendokumente ändern und auf Änderungen reagieren. Um diese Art
der Interaktion zu optimieren, werden in dieser Arbeit zwei wesentliche Methoden vorge-
stellt. Zum einen wird eine effiziente Methode zur Berechnung von gewichteten semanti-
schen Änderungen zwischen zwei Versionen eines Dokumentes entwickelt. Zum anderen
wird ein umkehrbarer Grammatikformalismus vorgestellt, der zur automatisierten bidirek-
tionalen Transformation von Schnittstellendokumenten dient.

Die vorgestellte Architektur ist eine vollwertige Grundlage zum computergestützten
Verfassen mathematischer Dokumente mit semantischen Annotationen und einer kontrol-
lierten mathematischen Sprache.

Abstract IX

Abstract

The computer-assisted authoring of mathematical documents using a scientific text-editor
requires new mathematical knowledge management and transformation techniques to
organize the overall workflow of an assistance system like the ΩMEGA system. The chal-
lenge is that, throughout the system, various kinds of given and derived knowledge units
occur in different formats and with different dependencies. If changes occur in these piec-
es of knowledge, they need to be effectively propagated.

We present a Change-Oriented Architecture for mathematical authoring assistance.
Thereby, documents are used as interfaces and the components of the architecture interact
by actively changing the interface documents and by reacting on changes. In order to op-
timize this style of interaction, we present two essential methods in this thesis. First, we
develop an efficient method for the computation of weighted semantic changes between
two versions of a document. Second, we present an invertible grammar formalism for the
automated bidirectional transformation between interface documents.

The presented architecture provides an adequate basis for the computer-assisted au-
thoring of mathematical documents with semantic annotations and a controlled mathemat-
ical language.

Zusammenfassung XI

Zusammenfassung

Das computergestützte Verfassen mathematischer Dokumente mit einem wissenschaftli-
chen Text-Editor erfordert neue Techniken des mathematischen Wissensmanagements
und der Wissenstransformation, um die Arbeitsweise eines mathematischen Assistenzsys-
tems, wie die des ΩMEGA Systems, zu organisieren. Die Herausforderung besteht darin,
dass im gesamten System verteilt verschiedene Arten von vorgegebenem und abgeleite-
tem Wissen existieren, die in unterschiedlichen Formaten und Abhängigkeiten auftreten.
Diese Wissenseinheiten und deren Abhängigkeiten müssen gepflegt werden und, wenn
Änderungen in einer Komponente auftreten, müssen diese effektiv propagiert werden.

In dieser Arbeit wird eine Änderungs-Orientierte Architektur für das computer-
gestützte Verfassen mathematischer Dokumente vorgestellt. Dabei werden Dokumente
als Schnittstelle verwendet und die Komponenten der Architektur interagieren, indem sie
aktiv die Schnittstellendokumente ändern und auf Änderungen reagieren. Um diese Art
der Interaktion zu optimieren, werden in dieser Arbeit zwei wesentliche Methoden vorge-
stellt.

Zum einen wird eine effiziente Methode zur Berechnung von gewichteten semanti-
schen Änderungen zwischen zwei Versionen eines Dokumentes entwickelt. Eine Ähnlich-
keitsspezifikation wird eingeführt, die es erlaubt zu definieren, wann zwei Teile eines Do-
kumentes als ähnlich oder gleich zu betrachten sind. Da die Elemente eines Schnittstel-
lendokumentes Objekte in der entsprechenden Komponente repräsentieren, wird es der
Komponente ermöglicht, die geschätzten Auswirkungen für die Änderung oder Löschung
dieser Objekte in einer Änderungsspezifikation zu gewichten. Das Problem der gewichte-
ten Baum-zu-Baum Korrektur wird hierbei auf ein Suchproblem reduziert.

Zum anderen wird ein umkehrbarer Grammatikformalismus vorgestellt, der zur auto-
matisierten bidirektionalen Transformation von Schnittstellendokumenten verschiedener
Komponenten dient. Zu den Regeln der Grammatik können Unifikationsbedingungen
formuliert werden, die durch den konstruierten Syntaxbaum erfüllt werden müssen. Um
nicht-transformierte Teile eines Dokumentes bei der Rücktransformation generieren zu
können, wird der Ablauf der Transformation gespeichert. Die Verarbeitungsreihenfolge
einer Grammatikregel kann deklarativ angegeben werden, womit vorhandenes Wissen
über den Informationsfluss in einem Dokument in die Grammatikregeln eingebettet wer-
den kann.

XII Zusammenfassung

Die vorgestellte Architektur ist eine vollwertige Grundlage für das computergestützte
Verfassen mathematischer Dokumente mit semantischen Annotationen und einer kontrol-
lierten mathematischen Sprache. Zur Entwicklung eines Prototyps wurde das ΩMEGA Sys-
tem mit den Text-Editoren TEXMACS und MS WORD integriert.

Anhand eines Vorlesungs-Szenarios beschreiben wir die Einsatzmöglichkeiten und
Vorteile der Änderungs-Orientierten Architektur. Zu diesem Zweck haben wir in einer
explorativen Studie mit einem Erstsemesterkurs der Fachrichtung Mathematik an der
Universität des Saarlandes die Voraussetzungen für mathematische Autorenunterstützung
analysiert. Das Änderungsverhalten und ausgewählte linguistische Aspekte wurden für
unser Szenario ausgewertet.

Um die Einführung von neuen Konzepten in Vorlesungsskripten zu unterstützen, wird
eine neue Methode entwickelt, die zu den in einem Dokument eingeführten Notationen
dynamisch entsprechende umkehrbare Grammatikregeln erzeugt. Dies ermöglicht selbst-
erweiterbare Dokumente und die Verwendung der vom Autor angegebenen Notation für
die inkrementelle Analyse und Erweiterung des Dokumentes.

Zur interaktiven Bearbeitung von Übungsaufgaben werden inkrementelle Verfahren
zur Erzeugung von Beweisverpflichtungen aus Beweisskizzen entwickelt, die in einer
kontrollierten mathematischen Sprache oder in natürlicher Sprache mit semantischen An-
notationen verfasst sind. Die Unterstützung des mathematischen Assistenzsystems ΩMEGA
kann über eine Interaktionssprache direkt innerhalb des Dokumentes angefordert werden.
Feedback wie beispielsweise der Verifikationsstatus von Beweisschritten wird transparent
in das Dokument integriert.

Die Änderungs-Orientierte Architektur trägt der nicht-monotonen Entwicklung ma-
thematischen Wissens Rechnung, indem sie eine einheitliche adaptive Schnittstelle zwi-
schen den Komponenten des ΩMEGA Systems und zur Einbindung externer Systeme zur
Verfügung stellt.

Extended Abstract XIII

Extended Abstract

The computer-assisted authoring of mathematical documents using a scientific text-editor
requires new mathematical knowledge management and transformation techniques to
organize the overall workflow of a mathematical assistance system like the ΩMEGA sys-
tem. The challenge is that, throughout the system, various kinds of given and derived
knowledge occur in different formats and with different dependencies. These pieces of
knowledge and their dependencies need to be maintained and, if changes occur in any
component, they need to be effectively propagated.

We present a Change-Oriented Architecture for the mathematical authoring assistance
with the ΩMEGA system. Thereby, documents are used as interfaces and the components
of the architecture interact by actively changing the interface documents and by reacting
on changes. In order to optimize this style of interaction, we present two essential meth-
ods in this thesis.

First, we develop an efficient method for the computation of weighted semantic
changes between two versions of a document. We introduce a similarity specification that
allows for defining when two parts of a document are to be considered similar or equal.
Since elements of the interface document represent objects in the interfaced component,
we allow for specifying the estimated weights for changing or deleting these objects in an
edit specification. We reduce the weighted tree-to-tree correction problem to a search
problem.

Second, we present an invertible grammar formalism for the automated bidirectional
transformation between interface documents of different components. Unification con-
straints can be attached to the grammar rules that have to be satisfied by the constructed
parse tree. In order to be able to generate non-translated parts of the document in the in-
verse translation, we store the trace of the transformation. The recursive processing order
for a grammar rule can be declaratively specified, thus the knowledge about the infor-
mation flow in the document can be embedded into the grammar rules.

The presented architecture provides an adequate basis for the computer-assisted au-
thoring of mathematical documents with semantic annotations and a controlled mathemat-
ical language. For this purpose, we have developed a prototype system for mathematical
authoring assistance by integrating the ΩMEGA system with the text-editors TEXMACS and
MS WORD.

XIV Extended Abstract

Using a course scenario we describe the capabilities and benefits of a Change-Oriented
Architecture. Therefore, we have analyzed the requirements for mathematical authoring
assistance in an exploratory study with a first year mathematics course at Saarland Uni-
versity. The authoring behavior and selected linguistic aspects were evaluated for our
scenario.

In order to support the introduction of new concepts in lecture notes, we develop a new
method which dynamically synthesizes invertible grammar rules for the notation intro-
duced in a document. This allows for self-extensible documents and for the exploitation
of the notation defined by an author for the incremental document analysis and genera-
tion.

For the interactive authoring of exercise solutions we develop incremental methods to
generate proof obligations from the proof sketches written in a controlled mathematical
language or in full natural language with semantic annotations. Thereby, the support of
the mathematical assistance system ΩMEGA can be request inside of the document using
an appropriate interaction language. Feedback, like for example the verification state of
proof steps, is transparently integrated with the document.

The Change-Oriented Architecture accommodates the non-monotonic evolution of
mathematical knowledge by establishing a uniform and adaptive interface between the
components of the ΩMEGA system as well as external systems.

Acknowledgments XV

Acknowledgments

Als erstes möchte ich mich bei meinem Betreuer Serge Autexier bedanken, der mich über
so viele Jahre hinweg unterstützt hat. Seine gleichermaßen begeisternde wie kritische Art
hat mir immer geholfen, meine Arbeit weiter zu verbessern. Meinem Doktorvater Jörg
Siekmann danke ich für die beständige Förderung, das große Vertrauen und die Möglich-
keit zur Promotion in seiner Arbeitsgruppe. Die Zusammenarbeit mit einer so großen
Gruppe von exzellenten Wissenschaftlern war eine Bereicherung für meine Arbeit.

Ich möchte Fairouz Kamareddine und Reinhard Wilhelm für die Begutachtung meiner
Arbeit danken. Darüber hinaus waren die interessanten Diskussionen und Ratschläge sehr
wertvoll für die Entwicklung meiner Dissertation.

Mein besonderer Dank gilt Stephan Busemann, der mein Verständnis der Computer-
linguistik geschärft hat und mir immer mit Rat und Tat zur Seite stand. Ebenso danke ich
Claus-Peter Wirth für viele inspirierende Diskussionen, und für seine guten Ratschläge
gerade auch in schwierigen Phasen der Arbeit. Selbstverständlich möchte ich mich bei
meinem langjährigen Büropartner Marvin Schiller für die hervorragende Arbeitsat-
mosphäre und die Unterstützung und Motivation bedanken.

Meinen Studenten Oliver Bender und Thorsten Hey danke ich für ihre ausgezeichnete
Mitarbeit. Mit ihren erfolgreichen Abschlussarbeiten unterstützen sie die Ergebnisse mei-
ner Arbeit.

Während meiner Dissertation konnte ich mit vielen hervorragenden Kollegen interes-
sante Projekte bearbeiten. Für die produktive Zusammenarbeit möchte ich allen meinen
Co-Autoren herzlich danken: David Aspinall, Christoph Benzmüller, Dominik Dietrich,
Armin Fiedler, Henri Lesourd, Christoph Lüth, Christine Müller, Normen Müller,
Thomas Neumann, Ewaryst Schulz.

Für viele konstruktive Diskussionen, wertvolles Feedback und schöne Kaffeepausen
bedanke ich mich bei allen meinen Kollegen der ΩMEGA Gruppe (Jörg Siekmann), der
SKS Gruppe des DFKI Bremen (Bernd Krieg-Brückner) und der ACTIVEMATH Gruppe
des DFKI Saarbrücken (Erica Melis). Insbesondere möchte ich hier Andreas Franke,
Frank Theiss, Helmut Horacek, Martin Pollet, Jürgen Zimmer, Quoc Bao Vo, Chad
Brown, Gueorguie Dobrev, Christoph Lüth, Till Mossakowski, Dieter Hutter, Lutz
Schröder, Christian Maeder, Mattias Werner, George Goguadze, Eric Andres, Michael
Dietrich, Ahmad Salim Doost, Paul Libbrecht, Bruce McLaren, Oliver Scheuer, Dimitra
Tsovaltzi, Stefan Winterstein, Sergey Sosnovsky und Martin Homik danken.

XVI Acknowledgments

In meiner Arbeit konnte ich von kurzen Forschungsaufenthalten an der Heriot-Watt Uni-
versity, der University of Edinburgh und der International University Bremen profitieren.
Ich möchte mich für diese Möglichkeiten bei Fairouz Kamareddine, Alan Bundy und Mi-
chael Kohlhase bedanken. Für den familiären Empfang und die schöne Zeit danke ich
Manuel Maarek, Krzystof Retel, Robert Lamar, Joe Wells, David Aspinall, Lucas Dixon,
Roy McCasland, Fiona McNeill, Moa Johansson, Alan Smaill, Graham Steel, Normen
Müller, Christine Müller, Christoph Lange, Achim Mahnke, Fulya Horozal und Florian
Rabe.

Für die Möglichkeit zur Durchführung einer explorativen Studie mit einem Erstsemes-
terkurs Mathematik möchte ich mich bei Volker John und Michael Roland von der Fach-
richtung Mathematik der Universität des Saarlandes bedanken.

Der grundlegende Aufbau dieser Dissertation beruht auf interessanten Gesprächen mit
Geoff Sutcliffe, in denen ich seinen professionellen Pragmatismus zu schätzen gelernt
habe. Vielen Dank für die wertvollen Tipps und Ratschläge.

Ein besonderer Dank gilt der Studienstiftung des deutschen Volkes, die meine Arbeit
ideell und finanziell gefördert hat. Die Teilnahme an Akademien und der Gedankenaus-
tausch mit Kollegen auf Doktorandenforen waren wertvolle Erfahrungen. Insbesondere
möchte ich Matthias Frenz, Hans-Ottmar Weyand und Uwe Hartmann für interessante
Gespräche und das entgegengebrachte Vertrauen danken. Ebenso danke ich der Graduier-
tenschule der Saarbrücker Informatik, insbesondere Michelle Carnell, für die anschlie-
ßende Abschlussförderung meiner Arbeit.

Diese Arbeit wäre nicht möglich gewesen ohne die kontinuierliche Motivation und
Unterstützung durch meine liebe Frau Esther, meine Eltern und meine Schwester. Herzli-
chen Dank an meine Familie.

Contents XVII

Contents

I Introduction ..1

1 Motivation ..3
1.1 Mathematical Authoring ..4
1.2 Overview of this Thesis ...6

2 State of the Art ...7
2.1 Historical Overview ...7
2.2 Semantic Annotation Languages ...10
2.3 Controlled Mathematical Language ..11
2.4 Discussion ..12

II Change-Oriented Architecture ..13

3 Foundations ..17
3.1 Notions and Notation ...18
3.2 Document Model ...24
3.3 Change Model ...27
3.4 Architecture Model ..40
3.5 Discussion ..49

4 Semantic Changes ..51
4.1 Semantic Equality ..52
4.2 Semantic Similarity ...58
4.3 Edit Costs ...60
4.4 Edit Granularity ...62
4.5 Use Case ..66
4.6 Discussion ..71

5 Computing Changes ..73
5.1 Critical Tree Pairs ..74
5.2 Change Script Generation ..84
5.3 Change Graph Search ..91
5.4 Use Case ..100
5.5 Complexity Comparison ..108
5.6 Discussion ..110

6 Invertible Grammar Formalism ..111
6.1 Grammar ..112
6.2 Incremental Interpreter ..136
6.3 Inversion ..151
6.4 Use Case ..158
6.5 Discussion ..172

XVIII Contents

III Mathematical Authoring Assistance.. 175

7 Application Scenario ... 179
7.1 Introduction to ΩMEGA .. 180
7.2 Course Scenario ... 192
7.3 Exploratory Study .. 193
7.4 Authoring Behavior ... 195
7.5 Linguistic Aspects ... 196
7.6 Discussion.. 201

8 Authoring Lecture Notes .. 203
8.1 Transformation Pipeline .. 204
8.2 Semantic Annotation Language .. 206
8.3 Synthesizing Invertible Grammar Rules ... 210
8.4 Sugaring and Souring .. 215
8.5 Management of Change ... 219
8.6 Ambiguity Resolution ... 223
8.7 Discussion.. 225

9 Authoring Exercise Solutions ... 227
9.1 Controlled Mathematical Language .. 228
9.2 Incremental Proof Verification .. 233
9.3 Feedback Integration ... 237
9.4 Interactive Authoring... 239
9.5 Discussion.. 242

IV Conclusion .. 245

10 Contributions ... 247

11 Future Work .. 251

References .. 257

Index ... 285

I
Introduction

Motivation 3

1 Motivation

The computer-assisted authoring of mathematical documents using a scientific text-editor
requires new mathematical knowledge management and transformation techniques to
organize the overall workflow of a mathematical assistance system like the ΩMEGA sys-
tem. The challenge is that, throughout the system, various kinds of given and derived
knowledge occur in different formats and with different dependencies. These pieces of
knowledge and their dependencies need to be maintained and, if changes occur in any
component, they need to be effectively propagated. The motivation of this thesis is to
solve the following two mediation problems.

First, the mediation problem in-the-small considers the mediation between the mathe-
matical documents which are written in a text-editor using a controlled mathematical lan-
guage or full natural language with semantic annotations, and their formalization for the
proof assistance system ΩMEGA. Efficient propagation of changes in mathematical
knowledge is essential. By transforming the whole document, we would overwrite the
whole content of the document in the text-editor. Consequently, we would lose large parts
of the natural language text written by the user. In the other direction, we would lose the
verification previously performed by the proof assistance system. In order to support the
self-extensible nature of mathematical documents, the mediation has to exploit the nota-
tion defined by an author for the incremental document analysis and generation.

Second, the mediation problem in-the-large considers the mediation of knowledge be-
tween the different components of the ΩMEGA system. Large mathematical assistance sys-
tems are usually developed by several people in parallel, each of them working on differ-
ent aspects and adding new functionalities. The challenge is to keep the system maintain-
able and at the same time ready for fast and simple inclusions of new functionalities pro-
vided by third-party systems. Furthermore, the evolutionary development of a knowledge-
based system usually results in frequent changes of the component interfaces, for example
the addition of new methods that allow for more fine-grained modifications of
knowledge. There is a need for a uniform component interface that reduces the amount of
change management needed when the components evolve in parallel.

The goal of this thesis is the development of a Change-Oriented Architecture for
Mathematical Authoring Assistance with the ΩMEGA system, providing an automated uni-
form solution for these two mediation problems.

4 Mathematical Authoring

1.1 Mathematical Authoring

The general motivation for this thesis is the current discrepancy between a mathematical
document prepared for publishing and its formalization for the verification by a proof
assistance system. On the one hand the author is writing her document in a standard text-
editor using a domain-specific subset of natural language interleaved with formulas in a
well-defined notation, on the other hand proof assistance systems require a formalization
written in a formal (logic based) specification language.

There is a huge gap between these different levels of formality. Table 1 shows an exam-
ple from a project on formalizing the Fundamental Theorem of Algebra [Geuvers et al,
2000]. On the left, the published document is shown, and on the right, its formalization
for the proof assistance system COQ [Coquand & Huet, 1988].

...
Proposition 7.1 (Kneser Lemma). For every

𝑛 ∈ ℕ, 𝑛 ≥ 2 there exists a 𝑞 ∈ ℝ, 0 < 𝑞 < 1

such that for every polynomial over ℂ with lead-

ing coefficient 1

𝑓(𝑥) = 𝑥𝑛 + 𝑏𝑛;1𝑥
𝑛;1 +⋯+ 𝑏1𝑥 + 𝑏0

one has

∀𝑐 > |𝑏0|. ∃𝑧 ∈ ℂ. (|𝑧| < 𝑐
1
𝑛 ∧ |𝑓(𝑧)| < 𝑞𝑐)

...

Lemma Kneser :

(n:nat)(lt (0) n) ->

 (EX q | (Zero [:<] q) /\

 (q [:<] One) /\

 (p:(cpoly CC))(Monic n p) ->

 (c:IR)((AbsCC (p!Zero)) [:<] c) ->

 (EX z |

 ((AbsCC z)[^]n [:<] c) /\

 ((AbsCC (p!z)) [:<] q[*]c))).

Table 1. The Kneser Lemma and its formalization for COQ

(reproduced from [Geuvers et al, 2000])

If we take a closer look at this example, we notice that the difference goes beyond a sim-
ple syntax translation. Indeed, the formalization of the polynomial 𝑓(𝑥) as a variable p of
type (cpoly CC) hides the structure of the polynomial which is shown in the published
document. The reason is that it is not clear how to directly represent the part “…” of the
polynomial in the formal specification language of a proof assistance system. Therefore,
such parts often have a different formalization.

Proof Assistance
System

Scientific
Text-Editor

Formalization

Verbalization

Motivation 5

It is not the goal of this thesis to bridge this gap completely but to develop the required
methods to automatically mediate as much as possible between the authoring for the for-
malization of a mathematical document and the authoring for publishing. This requires
the integration of a proof assistance system with a scientific text-editor. Since proof assis-
tance systems operate in general either in batch processing style or by command line in-
teraction, we need to develop a new interface paradigm for proof assistance systems that
reacts on arbitrary changes in a document. Furthermore, this style of interaction needs to
be adapted to the entire architecture of the proof assistance system in order to support a
flexible, independent and evolutionary development of system components. Thus, we first
need an efficient method to compute the changes between documents.

Semantic Change Computation. The document in the text-editor, its formalized coun-
terpart, interface documents of the components of the proof assistance systems, all these
documents represent various kinds of (semi-)structured knowledge. To compute the
changes of two documents we need to know how the similarity and semantic equality of
elements can be determined. For example, there are elements for which the order of their
children is not relevant. Furthermore, elements in a document represent objects in the
components of the proof assistance system. For example, changing an axiom may result
in the obligation to verify the proofs of lots of theorems again. We need a method to take
these hidden edit weights into account when computing the optimal semantic change be-
tween documents. Finally, since it is not reasonable to develop methods for reacting on
arbitrary small knowledge changes, the change computation needs to be limited to specif-
ic document levels.

Invertible Grammar Formalism. Different kinds of knowledge are represented by the
components in their interface documents in different formats, in particular the document
in the text-editor and its formalized counterpart for the proof assistance system. Thus, we
need a robust method to translate between these two different knowledge formats in both
directions. Hence in general, we have to develop a new formalism for transformation
grammars with a special focus on its automatic inversion. Thereby, the similarity of doc-
uments should be natively taken into account to reduce the amount of grammar rules, for
example by covering all ordering variants with one single grammar rule pattern. Further-
more, knowledge is sometimes split or reordered in an interface document. We need
means to embed the knowledge about information flow into the grammar rules to effec-
tively prune alternatives as early as possible during document translation.

6 Overview of this Thesis

Having developed these key components of a mediation module, we need to develop a
new Change-Oriented Architecture for the proof assistance system ΩMEGA.

Mathematical Authoring Assistance. We will illustrate the usage of the Change-
Oriented Architecture with a course scenario. Therefore, we will develop methods to as-
sist the authoring of lecture notes, exercises and their solutions. For example, we need an
incremental bidirectional transformation pipeline between the document in the text-editor,
written in a controlled mathematical language combined with semantically annotated full
natural language, and the formalization for the proof assistance system ΩMEGA with its
proof obligations.

1.2 Overview of this Thesis

The thesis is organized into four parts: the first and introductory part ends with Chapter 2
by recapitulating the state of the art. The main contributions of the thesis are presented in
the Parts II and III.

Part II presents the formal theory for the Change-Oriented Architecture. In Chapter 3
we introduce the document model, the change model and the general principles of this
architecture. Chapter 4 introduces specifications for the similarity and semantic equality
of documents and the edit costs and granularity of changes. In Chapter 5 we develop a
solution to the weighted semantic tree-to-tree correction problem by reducing it to a
search problem. Chapter 6 presents an invertible grammar formalism for the automated
bidirectional transformation of documents.

Part III presents the application of the Change-Oriented Architecture to Mathematical
Authoring Assistance in a course scenario with the ΩMEGA system. In Chapter 7 we report
about the results of an exploratory study to analyze the requirements of mathematical
authoring assistance. Chapter 8 presents a method for exploiting the notation defined by
the author in lecture notes in order to automate the formalization and rendering of formu-
las. The process of creating proof obligations from exercise solutions written in controlled
mathematical language is described in Chapter 9, together with the document-centric in-
tegration of ΩMEGA with the text-editors TEXMACS and MS WORD.

In Part IV we summarize the results of this work in Chapter 10 and we present an out-
look for future research in Chapter 11.

State of the Art 7

2 State of the Art

The first computer generated proof of a mathematical theorem was generated in 1954 by a
program of Martin Davis, which implemented a subset of first order predicate calculus,
called Presburger Arithmetic. The Dartmouth Conference in 1956, widely considered as
the birth place of artificial intelligence, saw the first automated theorem proving systems
and these spawned the general vision that one day, all formal documents and routine
mathematical theorems could in fact be shown or at least checked automatically by a ma-
chine. After the early enthusiasm had declined, the actual difficulties involved in automat-
ing everyday problems have been more and more realized. In the following, we will pre-
sent the most prominent approaches in the history of formalized mathematics, starting
with the formalization of foundations, the resolution principle and the first proof check-
ers, going to proof assistance systems and libraries of formalized mathematics, ending
with the integration of proof assistance systems with text-editors to form mathematical
assistance systems.

2.1 Historical Overview

The dream to mechanize formal reasoning dates back at least to Gottfried Wilhelm Leib-
niz in the 18th century. He formulated the touching vision that two philosophers engaged
in a dispute could simply code their arguments into an appropriate formalism and then
calculate (Calculemus!) who is right. With Frege’s Begriffsschrift this dream came closer
to reality and modern mathematical logic was born by the end of the 19th century. Other
important milestones in the formalization of mathematics were Hilbert’s programme and
his “Grundlagen der Mathematik” ([Hilbert & Bernays, 1934], [Hilbert & Bernays,
1939], [Gabbay et al, 2010]), and Russell and Whiteheads formalization in “Principia
Mathematica” [Whitehead & Russell, 1910-1913] and more recently the 20th century
Bourbakism.

Since the early systems in 1956 there have been substantial improvements in the area
of automated deduction with respect to system performance and usability, most of them
using the resolution principle [Robinson, 1965]. The early enthusiasm of the sixties also
led to the pioneering development of a proof checker, the AUTOMATH system [de Bruijn,
1970] by N. G. de Bruijn. The system checks the logical correctness of mathematical
documents that are written in a formal language called mathematical vernacular [de
Bruijn, 1994].

8 Historical Overview

Since the beginning of the Seventies the MIZAR project [Rudnicki & Trybulec, 1999] ad-
dresses the demand for a more readable input language. The project supports mathemati-
cians in publishing their work and has grown to one of the largest libraries of formalized
mathematics. At the heart of the system there is a formal language whose logical structure
is based on Jaskowski-style natural deduction [Jaskowski, 1934] (in contrast to Gentzen-
style natural deduction [Gentzen, 1934]). This formal language allows to verify the logi-
cal consistency of the content of an article as well as to verify cross references to other
articles written in the same language. The relationship of the MIZAR language to the AU-

TOMATH language is comparable to the relationship of a high-level programming language
to an assembly language.

Besides AUTOMATH and MIZAR, further formal languages have been developed in par-
allel for the proof assistants COQ [Coquand & Huet, 1988], ISABELLE [Wenzel et al,
2008], MATITA [Asperti et al, 2006], ΩMEGA [Autexier et al, 2009], and some others in-
cluding the Logical Frameworks [Pfenning, 1999]. These support the declaration of the
notation for symbols as prefix, infix, postfix and mixfix, and further definitions of com-
plex notation by rewriting mechanisms that are called abstraction and rendering parsers
[Padovani & Zacchiroli, 2006]. Almost all proof assistance systems reject ambiguities
that cannot be resolved by explicit precedence or associativity declarations, except the
MATITA system which uses sophisticated disambiguation heuristics [Sacerdoti Coen &
Zacchiroli, 2008] in combination with user interaction.

All mentioned projects target a representation of mathematical content that supports
both machine processing as well as human authoring. The major problem of these ap-
proaches is that they do not sufficiently succeed in combining the widely diverging repre-
sentational requirements. As a consequence, the proof assistance systems were extended
by techniques that generate from a proof in machine-oriented representation an output
proof which gets close to natural language for enhanced readability. The first reconstruc-
tive approach was presumably presented by Xiarong Huang [Huang, 1994]. The system
PCOQ [Amerkad et al, 2001] for example uses a schematic approach to represent its out-
put in quasi-natural language. The systems NUPRL [Holland-Minkley et al, 1999], CLAM
[Alexoudi et al, 2004] and P.REX [Fiedler, 2001] go further and use natural language pro-
cessing techniques to generate true natural language output. Despite the almost textbook
quality of the output, the legibility of the input remained archaic.

A new representative of distributed systems for the publication of machine checked
mathematics is LOGIWEB [Grue, 2007]. It allows the authoring of articles in a customiza-
ble language with the usual LATEX workflow.

State of the Art 9

Besides the separation of informal and formal documents, one can also go for the mixed
approach of the THEOREMA system [Buchberger et al, 1997] that allows separated infor-
mal and formal parts intertwined in the user created document. The informal parts can be
authored without any restrictions, but these parts cannot be used within the formal parts,
whereas the formal parts have to be written in the input language of the computer algebra
system MATHEMATICA. The THEOREMA system has been developed as an extension of
MATHEMATICA, thus it inherits all document structuring possibilities. Automatically gen-
erated proofs are translated into a graphically enriched quasi-natural language by a sche-
ma based approach that uses arbitrary new logicographic symbols [Nakagawa &
Buchberger, 2001] for mathematical functions and predicates. However, the consistency
between informal and formal parts has to be maintained manually by the author.

Many proof assistance systems use the generic PROOFGENERAL [Aspinall, 2000] sys-
tem as a user interface. PROOFGENERAL allows the user to edit the central document in the
native proof assistant format in an ASCII editing environment like EMACS. From there the
document can be evaluated by various tools, such as a proof assistance system which
checks whether the document contains valid proofs. A custom interaction protocol called
PGIP [Aspinall et al, 2005] is used that provides a state model for the proof assistant and
locks the fragment of the document that is being processed by the proof assistant. There
are also alternative protocols proposed like IAPP [Gast, 2008] that transfer the ownership
of proof commands between the interface and the proof assistant. Furthermore, the proto-
col of TMEGG [Mamane & Geuvers, 2006] allows for reordering the commands sent to
the prover. All these variants have in common that they operate line based with a single
focus point of interaction and that the communication protocol use the locking technique,
where a lock prevents parts of a document from being modified.

Since the input language of all presented systems is still far away from what is actually
written in textbooks, the problem is addressed recently by approaches that reverse the
usual development perspective: Starting from the traditional authoring application of the
end-user and her plain document, the research problem is how to generate the input repre-
sentation for the formal system. The two driving forces of this new perspective are se-
mantic annotation languages and controlled mathematical languages.

10 Semantic Annotation Languages

2.2 Semantic Annotation Languages

A formal language for mathematics called Weak Type Theory (WTT) is introduced in
[Kamareddine & Nederpelt, 2004] as an intermediary between the natural language of the
mathematician and the formal language of the logician. Grown out of de Bruijn’s Mathe-
matical Vernacular, WTT extends it by assigning a unique atomic weak type to each text
element and by introducing a meta-theory for describing aspects of WTT documents.
Based on WTT the MATHLANG language [Kamareddine et al, 2004] has been developed
which is a semantic annotation language that can be used to mark different aspects of a
mathematical document from the overall theory structure down to single variables in for-
mulas. After the process of manually annotating the document the benefits are for exam-
ple integrity checks of rhetorical aspects.

Another work is the natural language analysis of mathematical proofs by Claus Zinn
[Zinn, 2004]. The focus of his work is the generation and automatic verification of a for-
mal proof representation from the typical informal representation (in natural language) of
a standard mathematical textbook. In his approach, the user also has to annotate the doc-
ument by hand before the automatic analysis starts, in order to make the logical structure
explicit. His system was applied to a corpus of proofs from a mathematical textbook for
first-year students.

The long-term goal of the ΩMEGA project [Siekmann & Autexier, 2007] is the devel-
opment of a large, integrated assistance system supporting different mathematical tasks
and a wide range of typical research, publication and knowledge management activities.
The most important achievements in this project have been: (1) the development of the
concepts of knowledge-based proof planning [Melis & Siekmann, 1999] and proof plan-
ning with multiple strategies [Melis & Meier, 2000], (2) a mathematical software bus
MATHWEB [Franke & Kohlhase, 1999] for distributed automated theorem proving, later
extended to semantic reasoning web services [Zimmer & Autexier, 2006], (3) a three di-
mensional data structure for proof plans ([Cheikhrouhou & Sorge, 2000], [Autexier et al,
2005]), and a system for the management of changes in structured theories [Hutter,
2000], (4) the natural language explanation of proofs [Fiedler, 2001] and the proof of the
irrationality of √2 [Siekmann et al, 2002], (5) the CORE calculus [Autexier, 2005] with
deep inference and an assertion-level proof representation with under-specification
[Autexier et al, 2004], (6) the integration with the scientific text-editor TEXMACS [van der
Hoeven, 2001], called PLATΩ [Wagner et al, 2006], using a semantic annotation lan-
guage based on a subset of concepts found in OMDOC [Kohlhase, 2000] and OPENMATH
[Davenport, 2000], combined with a new annotation language for proof steps.

State of the Art 11

2.3 Controlled Mathematical Language

Traditionally, controlled natural languages fall into two major categories: those that im-
prove readability for human readers, and those that enable reliable automatic semantic
analysis of the language. The first type of languages, for example Caterpillar Technical
English CTE [Kamprath et al, 1998] or IBM’s EasyEnglish [Bernth, 1997], is used in
industry to increase the quality of technical documentations. The second type of language
has a formal logic base with a formal syntax and semantics and can be mapped onto an
existing formal language. Examples are Attempto Controlled English ACE [Fuchs et al,
2008] or Boeing’s Computer Processable Language CPL [Clark et al, 2005]. In the math-
ematical domain, the following two controlled mathematical languages for the authoring
of documents are in use.

The System for Automated Deduction SAD [Lyaletski et al, 2006] has been developed
for the automated processing of mathematical texts in a batch-style workflow comparable
to MIZAR. The SAD system uses an extremely tight connection between linguistic pro-
cessing and logical inference which is unique in the field. Although the examples of
mathematical proof come close to textbook quality, the language is not used by the com-
munity mainly because it is not reusable due to its tight connection with the SAD system.

The most recent approach is the NAPROCHE project, which is an acronym for NATU-

RAL LANGUAGE PROOF CHECKING, a joint initiative of computational linguists and math-
ematicians [Koepke & Schröder, 2003]. This approach analyzes the interplay between the
natural mathematical language as it is used in mathematical textbooks, and formal math-
ematics from the mathematician’s point of view. At the heart of this approach is the
NAPROCHE language, a controlled natural language designed by mathematicians for
mathematicians. The linguistic aspect of the NAPROCHE system is based on an exten-
sion of the Discourse Representation Theory [Kamp & Reyle, 1993].

All systems that support a subset of natural language have completely different input
and output representations. A solution proposed for unifying the requirements of parsing
and rendering are invertible grammar formalisms with various linguistic features. A
prominent representative is the grammatical framework GF [Ranta, 2004], a λ-calculus
based formalism to define grammars consisting of an abstract and a concrete syntax.
However, our experience with the development of the ΩMEGA system is that an all-
encompassing representation of all kinds of knowledge, which would be needed for the
abstract syntax of GF, is a rather complex solution that hampers the natural evolution of
the system.

12 Discussion

2.4 Discussion

The two modern driving forces for improving the authoring of formalizable mathematics
are semantic annotation languages and controlled mathematical languages. The ad-
vantage of semantic annotations is the great flexibility of using full natural language to
write the document, the drawback is the tedious process of adding the annotations to the
document. The advantage of a controlled mathematical language is that there is no author-
ing overhead like providing annotations, the drawback is that this language is restricted.
Since there is no clear winner, we develop in this thesis a framework that supports both
approaches in parallel and in combination. From a practical point of view, the combina-
tion of semantic annotations with a controlled mathematical language increases the ro-
bustness of the system.

The workflow of existing systems can be roughly classified into batch processing sys-
tems and interactive command-line systems. The result of integrating these systems with
a scientific WYSIWYG text-editor is either a push-button verification service or an inter-
active script-style dialogue. In the latter case, the result of a command sent to the proof
assistance system is displayed in the text-editor. The approach we present in this thesis
goes far beyond that. We consider the document in the text-editor as both the input and
output document of the proof assistance system. To the best of our knowledge, no other
document-centric approach has been presented that is fully based on changes of the doc-
ument in the text-editor.

With respect to the architecture of a knowledge-based system, one usually chooses a
Blackboard architecture if the kinds of knowledge that need to be dealt with are unknown
or if the best processing order of the knowledge sources or the tasks of the knowledge
sources are unknown. When there is a stable solution, the Blackboard architecture is re-
placed by a concrete pipeline or broker architecture, and the interfaces of the components
have to be carved in stone. With the Change-Oriented Architecture we propose an inter-
mediate step in this evolution of the architecture. When the processing order and the tasks
of the specialist knowledge sources are roughly known, they can be connected by media-
tion modules. Instead of defining concrete interface methods to manipulate knowledge at
a specific level, a mediation module translates between the interface documents of two
components. The components interact by changing their interface document and reacting
on changes applied by other components. Thereby, the changes are computed by the me-
diation module according to the specification given by a component. This allows for the
independent improvement of the components until their interface methods are stable.

II
Change-Oriented

Architecture

In this part, we describe the concepts and methods of the Change-Oriented Architecture.
The principle idea of this architecture is to use documents as interfaces of the components
and to communicate their changes instead of calling specific interface methods. In this
setting, the two fundamental problems that we have to solve are the following.

1) How can we compute the optimal changes between two documents?
2) How can we automate the bidirectional translation between two documents?

Before we start to address these problems, we have to introduce the basic notions and
notations. Therefore, we introduce in Chapter 3 the document model and the supported
change operations. We will analyze the problem of change management for Service-
Oriented Architectures and Blackboard Architectures. As a solution to this problem we
will introduce the Change-Oriented Architecture as an extension to the Service-Oriented
Architecture. We give an overview of the architecture model and discuss the application
of different design patterns.

In order to address the first problem of computing optimal changes, we need to define
the notion of optimality for changes. The different aspects that have to be taken into ac-
count are discussed in Chapter 4. On the one hand, the content that is represented by the
document has a specific semantics. Important questions to ask are: How do we identify
corresponding elements in a document? Is the order of particular elements relevant or
not? On the other hand, the changes are computed to be handled by a specific component.
What are the implicit costs of changing particular elements? What is the granularity of
changes the component is able to deal with? In Chapter 4, we introduce specifications to
declaratively answer these questions and thus define a component- and document-specific
notion of optimal changes.

The problem of computing the optimal changes between two documents is then re-
duced in Chapter 5 to a shortest-path-to-goal problem. We present an algorithm that is
based on Dijkstra’s shortest path algorithm but dynamically expands the search graph as
the algorithm traverses the graph. The correctness of this algorithm is proved, and the
complexity is analyzed and compared to the state-of-the-art algorithm.

Finally, we address in Chapter 6 the problem of automating the bidirectional transla-
tion between two documents. We present a pattern-based formalism for transformation
grammars whose rules are designed to be automatically invertible. The formalism sup-
ports rule attributes as known from attribute grammars, with additional integration of uni-
fication and type checking. Furthermore, we develop a technique for the incremental pro-
cessing of a document. This is important because we want to keep as much of the docu-
ment unchanged as possible.

Foundations 17

3 Foundations

The paradigm of the Change-Oriented Architecture is to use documents as interfaces of
the components and to communicate their changes. In the following we are going to set
the stage for this architecture by first introducing the notions and notations for sets, rela-
tions, functions, labeled trees and other basic concepts. For example, a tree where every
node and edge has a label and the layers of the tree and every subtree are totally ordered
will be called a labeled tree.

The most important concept, to be defined first, is the document model. If we look at
the content exchange formats used by web services or the document formats used by
modern text-editors, we see a representation that is essentially an instance of labeled
trees. In this context, XML [W3C, 2008] is notably the most widely used representation
format. Therefore, we will illustrate our document model by describing the instantiation
of labeled trees for the XML format.

After that, we will define the operations that can be used to change a document. The
model for the edit operations is a fundamental design decision. First, we will define the
set of edit operations that are supported: insert, delete, replace and append. This decision
requires justification. Why not support the relabel operation? We would benefit from
shorter change descriptions, but since subtrees in an interface document generally corre-
spond to complex objects in a component, this operation is not valid. Why not support the
move operation? Detecting a move operation is not always a decidable problem. In case
of a false positive, this change may propagate through the system and result in a non-
intended state. Second, the semantics of the edit operations have to be defined. This deci-
sion considers mainly the delete operation. Do we delete the whole selected subtree or do
we replace the subtree by its children? In conformance with the vast majority of systems
for change computation we decide to delete whole subtrees.

Finally, we will give an overview of the architecture model of the Change-Oriented
Architecture and discuss the application of different design patterns to the mediation
module which forms the interface between two components. In particular, we will com-
pare this architecture model to the Blackboard architecture and the Service-Oriented Ar-
chitecture. Since a component may act as a façade to a collection of components, we will
discuss how changes to the interface document of this façade component can be treated as
a transaction. All mediation modules are transaction safe, thus they guarantee that every
submitted set of changes for the interface document is treated atomically, consistently,
isolated and durable. The information flow will be illustrated on a concrete example.

18 Notions and Notation

3.1 Notions and Notation

We introduce the basic notions and notations for sets, relations, functions, orders, se-
quences, graphs, trees, labeled trees and related concepts in the following.

Definition 3.1.1 (Sets): A set is a collection of objects, called elements, in which no order
exists and where every element occurs only once. The empty set, that is, the set which
contains no elements, is denoted by ∅. A set 𝐵 is called a subset of a set 𝐴, and converse-
ly 𝐴 is called a superset of 𝐵, written 𝐵 ⊆ 𝐴, if every element of 𝐵 is also an element of
𝐴. We say that 𝐵 is a proper subset of 𝐴, denoted by 𝐵 ⊊ 𝐴, if 𝐵 ⊆ 𝐴 and 𝐵 ≠ 𝐴.

The intersection of the sets 𝐴 and 𝐵, denoted by 𝐴 ∩ 𝐵, is the set of elements which
belong to both 𝐴 and 𝐵. For the sets 𝐴1, … , 𝐴𝑛 we denote their intersection as ⋂ 𝐴𝑖

𝑛
𝑖<1 . If

the intersection of two sets 𝐴 and 𝐵 is the empty set, the sets are called disjoint. The sets
𝐴1, … , 𝐴𝑛 are called pairwise disjoint if ∀𝑖, 𝑘. ((𝑖 ≠ 𝑘) ⇒ (𝐴𝑖 ∩ 𝐴𝑘 = ∅)).

The union of the sets 𝐴 and 𝐵, denoted by 𝐴 ∪ 𝐵, is the set that contains the elements
of both sets 𝐴 and 𝐵. The union of the sets 𝐴1, … , 𝐴𝑛 is the set denoted by ⋃ 𝐴𝑖

𝑛
𝑖<1 . The

union of two disjoint sets 𝐴 and 𝐵 is denoted by 𝐴 ⊎ 𝐵.
The difference 𝐴\𝐵 of the sets 𝐴 and 𝐵 is the set of those elements of A which do not

belong to 𝐵. For a finite set 𝐴 we denote its cardinality by |𝐴|, that is the (cardinal) num-
ber of elements in the set 𝐴. We denote a finite set containing the elements 𝑥1, … , 𝑥𝑛 by
*𝑥1, … , 𝑥𝑛+. The notation *𝑥 ∈ 𝐴|𝑃(𝑥)+ describes the set of all elements of the set 𝐴 for
which the property 𝑃 holds.

The powerset of a set 𝐴 is the set of all subsets of 𝐴 defined by 𝒫(𝐴) ≔ *𝐵|𝐵 ⊆ 𝐴+.
The cartesian product of two sets 𝐴 and 𝐵 is the set of all ordered pairs of one element of
𝐴 and one element of 𝐵, defined by 𝐴 × 𝐵 ≔ *(𝑥, 𝑦)|𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵+.

Definition 3.1.2 (Relations and Functions): Let 𝐴 and 𝐵 be two sets. A relation 𝑅 be-
tween 𝐴 and 𝐵 is a set of ordered pairs (𝑎, 𝑏) such that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. For (𝑎, 𝑏) ∈ 𝑅
we also write 𝑎𝑅𝑏. A (total) function 𝑓 from 𝐴 to 𝐵 is a relation between 𝐴 and 𝐵 such
that for each 𝑎 ∈ 𝐴 there is one and only one associated 𝑏 ∈ 𝐵. For the key-value-pair
(𝑎, 𝑏) ∈ 𝑓 we use the notation 𝑓(𝑎) = 𝑏.

The set A is called the domain of 𝑓, denoted by 𝑑𝑜𝑚(𝑓), and the set 𝐵 is called the
codomain, denoted by 𝑐𝑜𝑑𝑜𝑚(𝑓). The set *𝑏 ∈ 𝐵|∃(𝑎, 𝑏) ∈ 𝑓+ is called the range of 𝑓,
denoted by 𝑟𝑎𝑛(𝑓). Furthermore, the function 𝑓 is called injective if it holds that

∀𝑎, 𝑏 ∈ 𝐴. .(𝑓(𝑎) = 𝑓(𝑏)) ⇒ (𝑎 = 𝑏)/. It is called surjective if ∀𝑏 ∈ 𝐵. ∃𝑎 ∈ 𝐴. 𝑓(𝑎) =

𝑏. The function f is bijective if it is both injective and surjective. If there is a bijective
function from 𝐴 to 𝐵, then it holds that |𝐴| = |𝐵|.

Foundations 19

The set of all bijective functions from 𝐴 to 𝐵 is denoted by 𝔉𝐴⟷𝐵𝜏 . The notation 𝔉𝐴⟷𝐵𝜏
shows an additional context parameter 𝜏 = (⊥, ∅). We use the first parameter ⊥ to indi-
cate the unordered case, in contrast to the ordered case of bijective functions between
sequences. The reason for the second parameter ∅ is that we also consider the case of sets
𝐴 and 𝐵 with different cardinalities |𝐴| ≤ |𝐵|. A multi-function 𝑓 from 𝐴 to 𝐵 with
𝐶 ⊆ 𝐴 is a relation between 𝐴 and 𝐵 such that for each 𝑎 ∈ 𝐴\𝐶 there is one and only one
associated 𝑏 ∈ 𝐵, and for each 𝑎 ∈ 𝐶 there is at least one associated 𝑏 ∈ 𝐵. The set of all
bijective multi-functions from 𝐴 to 𝐵 with 𝐶 ⊆ 𝐴 is denoted by the context 𝜏′ = (⊥, 𝐶).
Note that we omit the context parameter whenever the intended meaning can be inferred.

A (partial) mapping from 𝐴 to 𝐵 is a bijective function from 𝐴′ ⊆ 𝐴 to 𝐵′ ⊆ 𝐵 with
|𝐴′| = |𝐵′|. Thus, the semantics of mappings are those of partial bijective functions be-
tween 𝐴 and 𝐵. The set of all mappings from 𝐴 to 𝐵 is denoted by 𝔐𝐴⟷𝐵

𝜏 with
𝜏 = (⊥, ∅). The parameter ⊥ indicates again the unordered case, and the parameter ∅ that
we have sets with equal cardinalities. A multi-mapping from 𝐴 to 𝐵 with 𝐶 ⊆ 𝐴 is a bijec-
tive multi-function from 𝐴′ ⊆ 𝐴 to 𝐵′ ⊆ 𝐵 with |𝐴′| ≤ |𝐵′|. The set of all bijective multi-
mappings from 𝐴 to 𝐵 with 𝐶 ⊆ 𝐴 is denoted by the context 𝜏′ = (⊥, 𝐶). The parameter
⊥ in the context 𝜏′ = (⊥, 𝐶) indicates that the elements of 𝐴 and 𝐵 are not ordered. Fur-
thermore, in the case that the set 𝐴 contains less elements than the set 𝐵, the parameter 𝐶
specifies the subset of elements of 𝐴 that have at least one assigned element of 𝐵. Note
that in the special case of 𝐶 = ∅ both sets 𝐴 and 𝐵 must have equal cardinalities.

 The inverse function 𝑓;1 from 𝐵 to 𝐴 of a bijective function 𝑓 from 𝐴 to 𝐵 is defined
by 𝑓;1 ≔ *(𝑦, 𝑥)|(𝑥, 𝑦) ∈ 𝑓+. The composition 𝑓 ∘ 𝑔 of a function 𝑓 from 𝐴 to 𝐵 and a
function 𝑔 from 𝐵 to 𝐷 is a function 𝑕 from 𝐴 to 𝐷 defined by 𝑕 ≔ *(𝑥, 𝑧)|(𝑥, 𝑦) ∈ 𝑓 ∧

(𝑦, 𝑧) ∈ 𝑔+.

Definition 3.1.3 (Orders): A binary relation 𝑅 on a set 𝐴 is a set of ordered pairs of ele-
ments from 𝐴. A binary relation ≤ on a set 𝐴 is called a partial order on 𝐴 if it is reflex-
ive (∀𝑎 ∈ 𝐴. (𝑎 ≤ 𝑎)), anti-symmetric .∀𝑎, 𝑏 ∈ 𝐴. ((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑎) ⇒ (𝑎 = 𝑏))/ and
transitive .∀𝑎, 𝑏, 𝑐 ∈ 𝐴. ((𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐) ⇒ (𝑎 ≤ 𝑐))/.

A binary relation 𝑅 on a set 𝐴 is a total order on 𝐴 if it holds that
∀𝑎, 𝑏 ∈ 𝐴. (𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎 ∨ 𝑎 = 𝑏). A set 𝐴 is totally ordered by a binary relation 𝑅 if
𝑅 ∩ (𝐴 × 𝐴) is a total order on the set 𝐴. A binary relation 𝑅 on a set 𝐴 is called an
equivalence relation on 𝐴 if it is reflexive (∀𝑎 ∈ 𝐴. (𝑎𝑅𝑎)), transitive .∀𝑎, 𝑏, 𝑐 ∈
𝐴. ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) ⇒ (𝑎𝑅𝑐))/ and symmetric (∀𝑎, 𝑏 ∈ 𝐴. (𝑎𝑅𝑏 ⇒ 𝑏𝑅𝑎)).

20 Notions and Notation

Definition 3.1.4 (Sequences): A sequence with elements of a set 𝑆 is a total function
from *1, … , 𝑛+ to 𝑆 for some 𝑛 ∈ ℕ, 𝑛 ≥ 0. Hence the order of a sequence matters and the
same element can appear several times at different positions in a sequence. A finite se-
quence containing the key-value-pairs (1, 𝑠1), … , (𝑛, 𝑠𝑛) is denoted by ,𝑠1, … , 𝑠𝑛-. We say
that 𝑠𝑖 precedes 𝑠𝑚 respectively 𝑠𝑚 follows after 𝑠𝑖 in a sequence 𝑆 = ,𝑠1, … , 𝑠𝑛-, if
𝑖 < 𝑚. Furthermore, we write (𝑖, 𝑠) ∈ 𝑆 or 𝑆,𝑖- = 𝑠 to denote that 𝑠 is the 𝑖-th element in
the sequence 𝑆. We omit the position if it can be derived from the context. For a finite
sequence 𝐴 we denote its cardinality by |𝐴|, that is its (cardinal) number of elements.

A sequence 𝑆′ with |𝑆′| = 𝑛′ is called a subsequence of 𝑆 with |𝑆| = 𝑛, denoted by
𝑆′ ⊑ 𝑆, if there is a total function 𝑓: *1, … , 𝑛′+ → *1, … , 𝑛+ from the positions in 𝑆′ to the
positions in 𝑆 such that ∀𝑖 ∈ *1,… , 𝑛′+. ((𝑖, 𝑠) ∈ 𝑆′ ⇒ (𝑓(𝑖), 𝑠) ∈ 𝑆) and ∀𝑖, 𝑗 ∈

*1,… , 𝑛′+. (𝑖 < 𝑗 ⇒ 𝑓(𝑖) < 𝑓(𝑗)). A subsequence 𝑆′ of 𝑆 is called a contiguous subse-
quence of S, denoted by 𝑆′ ⋐ 𝑆, if ∀𝑖 ∈ *1,… , 𝑛′ − 1+. 𝑓(𝑖 + 1) = 𝑓(𝑖) + 1 holds.

The notation ,𝑥 ∈ 𝑆|𝑃(𝑥)- describes a subsequence of 𝑆 whose elements have the
property 𝑃. The concatenation of two sequences 𝑆 = ,𝑠1, … , 𝑠𝑘- and 𝑆′ = ,𝑠𝑘:1, … , 𝑠𝑛- is
defined as 𝑆 ∷ 𝑆′ ≔ ,𝑠1, … , 𝑠𝑛-. The empty sequence, that is the sequence which contains
no elements, is denoted by , -. An element 𝑠 can be added in front of or at the end of a
sequence 𝑆 using the operator ⋆. We have: ,𝑠1, … , 𝑠𝑘- = 𝑠1 ⋆ ,𝑠2, … , 𝑠𝑘- = ,𝑠1, … , 𝑠𝑘;1- ⋆
𝑠𝑘. The powerset of a sequence 𝐴 is the set of all subsequences of 𝐴 defined by 𝒫(𝐴) ≔
*𝐵|𝐵 ⊑ 𝐴+.

Let 𝐴 and 𝐵 be two sequences. The set of all bijective functions from 𝐴 to 𝐵, that pre-
serve the order of 𝐴 and 𝐵, is denoted by 𝔉𝐴⟷𝐵𝜏 with 𝜏 = (⊤, ∅), hence it holds that
∀𝑓 ∈ 𝔉𝐴⟷𝐵

𝜏 . ∀((𝑖, 𝑎), (𝑗, 𝑏)) ∈ 𝑓. 𝑖 = 𝑗. Clearly, this set always contains exactly one
function. The first context parameter ⊤ indicates that the elements of 𝐴 and 𝐵 are ordered.
Similarly to the unordered case with sets, we define the set of all bijective multi-functions
from 𝐴 to 𝐵 with 𝐶 ⊆ 𝐴, that preserve the order of 𝐴 and 𝐵, and we denote this set by the
context 𝜏′ = (⊤, 𝐶). Note that the special case 𝐶 = ∅ implies again |𝐴| = |𝐵|.

A (partial) mapping from 𝐴 to 𝐵 is a bijective function from 𝐴′ ⊑ 𝐴 to 𝐵′ ⊑ 𝐵. Thus,
the semantics of mappings are those of partial bijective functions between 𝐴 and 𝐵. The
set of all mappings from 𝐴 to 𝐵 is denoted by 𝔐𝐴⟷𝐵

𝜏 with 𝜏 = (⊤, ∅) and preserves the
order of 𝐴 and 𝐵, hence ∀𝑚 ∈ 𝔐𝐴⟷𝐵

𝜏 . 𝑚 ∈ 𝔉𝑑𝑜𝑚(𝑓)⟷𝑟𝑎𝑛(𝑓)
𝜏 . The parameter ⊤ of

𝜏 = (⊤, ∅) indicates that the elements of 𝐴 and 𝐵 are ordered. A multi-mapping from 𝐴 to
𝐵 with 𝐶 ⊆ 𝐴 is a bijective multi-function from 𝐴′ ⊑ 𝐴 to 𝐵′ ⊑ 𝐵 with 𝐶 ⊑ 𝐴. The set of

all multi-mappings from 𝐴 to 𝐵 is 𝔐𝐴⟷𝐵
𝜏′ with 𝜏′ = (⊤, 𝐶) and preserves the order of 𝐴

and 𝐵. Furthermore, in the case that the set 𝐴 contains less elements than the set 𝐵, the
parameter 𝐶 specifies the elements of 𝐴 that have at least one assigned element of 𝐵.

Foundations 21

Definition 3.1.5 (Graphs): A directed graph is a pair 𝐺 = (𝑉, 𝐴), where 𝑉 is a finite set
of nodes and 𝐴 is a finite set of ordered pairs of elements from 𝑉. The elements of 𝑉 are
called the nodes or vertices of 𝐺, the elements of 𝐴 are its edges or arcs. We assume that
𝐴 contains no edges of the form (𝑣, 𝑣) where 𝑣 ∈ 𝑉. The (cardinal) number of nodes in 𝐺
is the size of 𝐺 and denoted by |𝐺|. An edge 𝑒 = (𝑢, 𝑣) is said to connect the nodes 𝑢 and
𝑣. We also say that 𝑒 is incoming for 𝑣 and outgoing for 𝑢.

A (directed) walk in 𝐺 is a sequence ,𝑣1, … , 𝑣𝑘- of nodes of 𝐺 such that 𝐺 contains
edges (𝑣𝑖, 𝑣𝑖:1) for all 𝑖 = 1,… , 𝑘 − 1. The length of the walk ,𝑣1, … , 𝑣𝑘- is 𝑘. A walk is
called a (directed) path if all 𝑣1, … , 𝑣𝑘 are pairwise distinct. It is called a (directed) circuit
if 𝑣1 = 𝑣𝑘. A node 𝑣 is called reachable from a node 𝑢 if there is a path from 𝑢 to 𝑣. The
set of nodes reachable from a node 𝑣 is denoted by 𝑟𝑒𝑎𝑐𝑕(𝑣).

An (undirected) graph is a pair 𝑈 = (𝑉, 𝐸), where 𝑉 is a finite set and 𝐸 is a finite set
of sets each containing two elements from 𝑉. The terminology is defined similarly to the
directed graph. Additionally, two nodes 𝑢 and 𝑣 are called adjacent if 𝐸 contains an edge
*𝑢, 𝑣+. Two edges 𝑒1 and 𝑒2 are called incident if they have a common node. A graph
𝑈 = (𝑉, 𝐸) is called connected if for all nodes 𝑢, 𝑣 ∈ 𝑉 there is a path connecting 𝑢 and
𝑣. For each directed graph 𝐺 = (𝑉, 𝐴) there is an underlying undirected graph 𝑈 =
(𝑉, 𝐸) which is obtained by ignoring the order of the edges in 𝐴, given by 𝐸 ≔
{*𝑣, 𝑤+|(𝑣, 𝑤) ∈ 𝐴}.

Definition 3.1.6 (Trees): A directed graph is called a (directed rooted) tree if the follow-
ing conditions hold:

1) it is connected and contains no circuits,
2) it has exactly one root, which is a node without incoming edges,
3) every non-root node is reachable from the root.

The properties 2 and 3 imply a natural orientation of the edges, directed from the root
towards the leaves, which are nodes without outgoing edges. If 𝑟 is the root of a tree 𝑇,
denoted by 𝑟 = 𝑟𝑜𝑜𝑡(𝑇), we say that 𝑇 is a tree rooted at 𝑟. Let 𝑇 = (𝑉, 𝐴) be a tree
rooted at 𝑟. All nodes 𝑣 ∈ 𝑉 with 𝑣 ≠ 𝑟 have exactly one incoming edge. If (𝑢, 𝑣) ∈ 𝐴,
then 𝑢 is called a parent of 𝑣 and 𝑣 is a child of 𝑢. Thus, each node 𝑣 ∈ 𝑉 with 𝑣 ≠
𝑟𝑜𝑜𝑡(𝑇) has exactly one parent.

For a node 𝑣 we denote its parent by 𝑝𝑎𝑟𝑒𝑛𝑡(𝑣) and the set of its children by
𝑐𝑕𝑖𝑙𝑑𝑟𝑒𝑛(𝑣). Nodes without children are the leaves of a tree. A node 𝑢 is called an an-
cestor of a node 𝑣, if there is a directed path from 𝑢 to 𝑣 and 𝑢 ≠ 𝑣. In this case, 𝑣 is
called a descendant of 𝑢. Two nodes 𝑢 and 𝑣 are called siblings if they have the same
parent. The depth of the node 𝑣 in a tree is the length of the path from the root of the tree
to the node 𝑣. The depth of the tree is the maximum of the depth of all nodes in the tree.

22 Notions and Notation

A tree 𝑇2 is a direct subtree of a tree 𝑇1 if 𝑟𝑜𝑜𝑡(𝑇2) is a child of 𝑟𝑜𝑜𝑡(𝑇1). The set of all
direct subtrees of a tree 𝑇 is denoted by 𝒞(𝑇). A tree 𝑇2 is a subtree of a tree 𝑇1 if there is
a directed path from 𝑟𝑜𝑜𝑡(𝑇1) to 𝑟𝑜𝑜𝑡(𝑇2) in 𝑇1. The set of all subtrees of a tree 𝑇 includ-
ing the tree 𝑇 itself is denoted by 𝒮(𝑇). A tree 𝑇2 is the parent tree of a tree 𝑇1 if 𝑇1 ∈
𝒞(𝑇2). A tree 𝑇2 is an ancestor tree of a tree 𝑇1 if 𝑇1 ∈ 𝒮(𝑇2) and 𝑇1 ≠ 𝑇2. The set of all
ancestor trees of a tree 𝑇1 in a tree 𝑇 is denoted by 𝒜𝑇(𝑇1).

Definition 3.1.7 (Labeled Trees): Let 𝑇 = (𝑉, 𝐴) be a tree. We define the node labeling
function 𝐿𝑉 to be a total function from the finite set of nodes 𝑉 to the finite universal set
of node labels ℒ𝑉. Additionally, we define the edge labeling function 𝐿𝐴 to be a total
function from the finite set of edges 𝐴 to the finite universal set of edge labels ℒ𝐴. The
finite set of labels ℒ is a superset of both sets ℒ𝑉 and ℒ𝐴 with ℒ𝑉 ∩ ℒ𝐴 = ∅. Thus, a label
is assigned to every node and every edge in the tree 𝑇. The label of the root node of a tree
𝑇 is called the tree label of 𝑇 and it is denoted by 𝐿(𝑇).

The direct subtree layer 𝒞𝑙(𝑇) of a labeled tree 𝑇 and any label 𝑙 ∈ ℒ𝐴 is the subset of
all direct subtrees 𝒞(𝑇) that contains all direct subtrees whose root node is connected to
the root node of 𝑇 by an edge with the label 𝑙. Thus, the set 𝒞(𝑇) of a given tree 𝑇 is par-
titioned by the label of the connecting edges. Let the binary relation 𝑅 on 𝑉 be a partial
order on 𝑉 that totally orders the root nodes of the labeled trees in 𝒞𝑙(𝑡) for all 𝑡 ∈ 𝒮(𝑇)
and all 𝑙 ∈ ℒ𝐴. Then the (direct subtree) layer of a labeled tree 𝑡 and a label 𝑙 can be writ-
ten as a finite sequence 𝒞𝑙(𝑡) = ,𝑇1, … , 𝑇𝑘- ordered by 𝑅 where 𝑇1 is the left-most child
and 𝑇𝑘 the right-most child of the tree 𝑡 in this layer. We say that the layer 𝒞𝑙(𝑡) is la-
beled by 𝑙. A layer 𝒞𝑙(𝑡) can be restricted by a set of node labels 𝐾 ⊆ ℒ𝑉 as defined by
𝒞𝑙(𝑡)|𝐾 ≔ ,𝑡′ ∈ 𝒞𝑙(𝑡)|𝐿(𝑡′) ∈ 𝐾-. Let 𝑌 = ,𝑇1, … , 𝑇𝑚- be a (partial) layer of a tree, the
size of 𝑌 is defined by |𝑌| ≔ |𝑇1| + ⋯+ |𝑇𝑚|. Furthermore, we extend the definition of
the set of all subtrees to (partial) layers of a tree by 𝒮(𝑌) ≔ 𝒮(𝑇1) ∪ …∪ 𝒮(𝑇𝑚).

A tree where every node and edge has a label and the layers of the tree and every sub-
tree are totally ordered is called a labeled tree 𝐷 = (𝑉, 𝐴, 𝐿𝑉, 𝐿𝐴, 𝑅). Two labeled trees 𝐷1
and 𝐷2 are called equally labeled, denoted by 𝐷1 ≈ 𝐷2, if and only if 𝐿(𝐷1) = 𝐿(𝐷2). Let
𝐷 be a labeled tree, we define the sibling functions 𝑆𝐿 and 𝑆𝑅 as total functions from the
set of trees 𝒮(𝐷) to the powerset of the set of trees 𝒮(𝐷) as follows: Let 𝒞𝑙(𝑡) =
,𝐷1, … , 𝐷𝑘- be the layer of a labeled tree 𝑡 ∈ 𝒮(𝐷) and a label 𝑙 ∈ ℒ𝐴. We define
𝑆𝐿(𝐷𝑖) ≔ ,𝐷1, … , 𝐷𝑖;1- to return the left sibling labeled trees of 𝐷𝑖 in 𝐷, and 𝑆𝑅(𝐷𝑖) ≔
,𝐷𝑖:1, … , 𝐷𝑘- to return its right sibling labeled trees in 𝐷, for 𝑖 = 1,… , 𝑘. The node 𝐷𝑖;1
is called the direct left sibling labeled tree of 𝐷𝑖, while 𝐷𝑖:1 is the direct right sibling
labeled tree for 𝐷𝑖, with 𝑖 = 2, … , 𝑘 − 1. The set of all labeled trees is denoted by 𝔇.

Foundations 23

Example. Figure 1 shows an example of a labeled tree. The nodes are represented by
circles containing the node label. The node with the label “A” is the root of this example
tree. Nodes are connected by labeled edges. The box label 𝐷𝑖 above a node denotes the
subtree rooted at that node.

By using this example tree we will discuss the introduced notions. The direct subtree lay-
er 𝒞"𝑘"(𝐷1) of the tree 𝐷1 and the layer "𝑘" is given by 𝒞"𝑘"(𝐷1) = ,𝐷2, 𝐷3, 𝐷4-. Further
examples of direct subtree layers are 𝒞"𝑚"(𝐷1) = ,𝐷5, 𝐷6-, 𝒞"𝑝"(𝐷1) = , - and 𝒞"𝑝"(𝐷4) =
,𝐷7, 𝐷8-. With 𝐾 = *"C"+ we can restrict the layer 𝒞"𝑘"(𝐷1) to 𝒞"𝑘"(𝐷1)|𝐾 = ,𝐷3-.

The subtrees 𝐷2 and 𝐷4 are equally labeled, thus we have 𝐿(𝐷2) = 𝐿(𝐷4) and
𝐷2 ≈ 𝐷4. The set of all subtrees of 𝐷1 is 𝒮(𝐷1) = *𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7, 𝐷8+. Further
examples of sets of subtrees are 𝒮(𝐷4) = *𝐷4, 𝐷7, 𝐷8+, 𝒮(,𝐷4, 𝐷6-) = *𝐷4, 𝐷6, 𝐷7, 𝐷8+ and
𝒮(,𝐷2, 𝐷3, 𝐷4-) = *𝐷2, 𝐷3, 𝐷4, 𝐷7, 𝐷8+. The size of the labeled tree 𝐷1 is |𝐷1| = 8. The
size of the partial layer 𝑌 ≔ ,𝐷3, 𝐷4, 𝐷5- is |𝑌| = 5. Other examples are |𝐷4| = 3 and
|𝐷2| = |𝐷3| = |𝐷7| = 1.

Finally, the left sibling labeled trees of 𝐷4 are 𝑆𝐿(𝐷4) = ,𝐷2, 𝐷3- and the direct left
sibling of 𝐷4 is 𝐷3. Furthermore, the right sibling labeled trees of 𝐷4 are 𝑆𝑅(𝐷4) = , -
because there are not right siblings of 𝐷4 in the layer 𝑘.

A

B

E

D C C B

E

𝐷1

𝐷2 𝐷3 𝐷4 𝐷5 𝐷6

𝐷7 𝐷8

k k k m m

p p

Figure 1. Example of a labeled tree

24 Document Model

3.2 Document Model

Having introduced the basic notions and notation, we define now our document model
based on the notion of labeled trees. To illustrate the model we instantiate it for the doc-
ument format XML [W3C, 2008], a format that is widely used for the representation of
arbitrary data structures, for instance in web services. Furthermore, XML-based formats
have become the industry standard for most modern text-editors, including MS WORD
(OPEN XML [ISO/IEC, 2008]) and OPENOFFICE (OPENDOCUMENT [ISO/IEC, 2006]).

Definition 3.2.1 (Document): A document is a labeled tree 𝐷 with a set of edge labels ℒ𝐴
and a set of node labels ℒ𝑉 which consists of the following pairwise disjoint sets:

 the set of element node labels ℒ𝑉𝐸 ,
 the set of attribute node labels ℒ𝑉𝐴,
 the set of text node labels ℒ𝑉𝑇, and
 the set of comment node labels ℒ𝑉𝐶 .

It holds that ℒ𝑉 = ℒ𝑉𝐸 ⊎ ℒ𝑉𝐴 ⊎ ℒ𝑉𝑇 ⊎ ℒ𝑉𝐶 . The root of the labeled tree is the root node of
the document.

Definition 3.2.2 (Document Subtrees): An element 𝐷𝐸 in a document 𝐷 is a subtree of 𝐷
that has a label 𝐿(𝐷𝐸) ∈ ℒ𝑉𝐸. Its children can be attributes that are connected by edges
with the attribute label 𝑎 ∈ ℒ𝐴. Furthermore, its children can also be elements, texts or
comments that are connected by edges with the content label 𝑐 ∈ ℒ𝐴. Thus, the element
𝐷𝐸 may have at most two layers, one for the attributes and one for the content children.
We use the following serialization schema: \𝐿(𝐷𝐸)* 𝒞𝑎(𝐷𝐸) + , 𝒞𝑐(𝐷𝐸) -. An illustrating
example will be given on the next page.

An attribute 𝐷𝐴 in a document 𝐷 is a subtree of 𝐷 that has a label 𝐿(𝐷𝐴) ∈ ℒ𝑉𝐴. Its
child is always a text 𝐷𝑇 that is connected by an edge with the value label 𝑣 ∈ ℒ𝐴. Thus,
the attribute 𝐷𝐴 always has exactly one layer, and it is serialized as 𝐿(𝐷𝐴) = "𝐿(𝐷𝑇)".

A text 𝐷𝑇 in a document 𝐷 is a subtree of 𝐷 that has a label 𝐿(𝐷𝑇) ∈ ℒ𝑉𝑇. A text has
no children and we serialize it by its label as "𝐿(𝐷𝑇)".

A comment 𝐷𝐶 in a document 𝐷 is a subtree of 𝐷 that has a label 𝐿(𝐷𝐶) ∈ ℒ𝑉𝐶. The
comment has no children and we serialize it by its label as #𝐿(𝐷𝐶)#.

Throughout this thesis we always assume well-formed documents, that is, we presuppose
that all documents conform to our document model. This model is not intended to repre-
sent information like the document type definition or processing instructions which are
parts of the XML format.

Foundations 25

<w:body xmlns:w="http://schemas.openxmlformats.org/word...">

 <w:p>

 <w:r>

 <w:format><w:color val="00FF00"/></w:format>

 <w:t>First paragraph of a text document ...</w:t>

 <!-- TODO -->

 </w:r>

 </w:p>

</w:body>

In order to deal with namespaces occurring in an XML document, we set up a global
namespace store and define the node labels for elements ℒ𝑉𝐸 and for attributes ℒ𝑉𝐴 to be
pairs (𝑙𝑛𝑠, 𝑙𝑛𝑎𝑚𝑒) serialised as 𝑙𝑛𝑠 ":" 𝑙𝑛𝑎𝑚𝑒 , where

 𝑙𝑛𝑠 refers to a namespace instance in the global namespace store, and
 𝑙𝑛𝑎𝑚𝑒 is the name of the element or attribute.

The example document in Table 2 shows the body of a simple MS WORD document in
OPENXML format that is represented in our document model as shown in Figure 2 and
that is serialized as shown in Table 3, where w refers to the namespace
"http://schemas.openxmlformats.org/word..." in the global namespace store.

\w:body{}[

 \w:p{}[

 \w:r{}[

 \w:format{}[\w:color{ val="00FF00" }[]],

 \w:t{}["First paragraph of a text document ..."],

 #TODO#]]]

We have shown how to represent an XML document in our document model as an in-
stance of labeled trees. Thereby, the name and namespace of an XML element or attribute
are encoded in the label of that subtree. The partition between attributes and content is
realized using the layers of labeled trees, that is the children are connected by an edge
with either an attribute or a content label.

The advantage of using labeled trees instead of the XML document model is that we
are not restricted to two layers. Additionally, the values of attributes are not restricted to
text values. Indeed, we can use arbitrary many layers containing arbitrary labeled
(sub)trees. This allows us for example for easily representing the document format of the
text-editor TEXMACS, which uses natively the tree-like SCHEME s-expression format.

Table 2. Example Document in OPENXML Format

Table 3. Example Document in Labeled Tree Format

26 Document Model

w:body

w:p

w:r

w:format

𝐷1

𝐷2

𝐷3

𝐷4

c

c

Figure 2. Example Document as a labeled tree

w:t

𝐷5

TODO

𝐷6

First paragraph of
a text document …

𝐷8

w:color

val

𝐷7

𝐷9

00FF0
0

𝐷10

c

c

c c

c

a

v

Foundations 27

3.3 Change Model

The problem of finding a transformation between two given trees, in our case labeled
trees, is known as the tree-to-tree correction problem [Selkow, 1977], which we formu-
late in our setting as follows: Given two labeled trees, find a valid edit script for trans-
forming the first tree into the second one with minimal edit costs.

The problem statement requires the formal definitions of the notions of edit script and
edit costs. The usual approach is to define edit operations such that any given tree can be
transformed into another one by applying a sequence of those operations, called edit
script. The edit costs are then usually defined as a static function on such a sequence. This
state-of-the-art method has the drawbacks that neither the semantics of the trees are taken
into account for defining the edit costs, nor the needs of the consumer of the edit script. In
the following, we will focus on the definition of the edit operations, the notion of edit
costs and their optimality will be discussed in Chapter 4.

The problem of comparing trees has to be addressed in several research areas such as
computational biology [Lin et al, 2001], structured databases [Claypool & Rundensteiner,
2004], compiler optimization [Wilhelm, 1981] and others. The comparative studies of
change models and algorithms in [Bille, 2005] and [Cobéna et al, 2002] show that the
existing change models differ in the set of supported edit operations and their semantics.
The edit operations identified by these surveys are relabel, insert, delete, replace, append
and move. The semantics of these operations can be distinguished whether they are de-
fined on nodes of a tree or on whole subtrees. Based on these edit operations, the follow-
ing three classes of tree-to-tree correction problems were defined:

Tree edit distance. This is the problem of computing the optimal edit script between two
trees, which is defined as a sequential edit script with minimal costs.

Tree alignment distance. An alignment between two trees is obtained by first inserting
nodes with empty labels into both trees such that the trees become isomorphic when ig-
noring the labels. The tree alignment is then an overlay of both trees.

Tree Inclusion. As the name of the problem indicates, the tree inclusion problem deter-
mines whether a tree can be obtained from another tree only by deleting nodes.

In addition to these problem classes, one differentiates between comparing ordered and
unordered labeled trees. Therefore, we will introduce in Chapter 4 a specification to de-
fine the semantics of the tree comparison between specific interface documents.

28 Change Model

We base our document change model on the edit operations insert, delete, replace and
append. This decision clearly needs to be justified. Why do we not support the relabel
operation? Let us discuss this important question with the example shown in Table 4.

 \theory{}[

 \theorem{}[

 \name{}["XY"],

 \conj{}["#1"]]]

 \theory{}[

 \axiom{}[

 \name{}["XY"],

 \conj{}["#1"]]]

The document 𝐷1 can be modified to become equal to the document 𝐷2 by relabeling the
root node of the theorem subtree into an axiom. Clearly, this is the most concise change
description one can image. But in our context, this document represents the state of
knowledge of an interfaced service component. For example let adding and deleting theo-
rems as well as adding and deleting axioms be the only interface methods provided by the
service component. Thus, relabeling a theorem into an axiom cannot be mapped directly
to a valid interface method. We would have to delete the theorem and insert the axiom.

In this example, we relabeled a “theorem” into the ontologically similar concept “axi-
om”. This ontological relationship is definitely not the general case for the relabel opera-
tion. Thus, if we would support the relabel operation, the interfaced service components
would have to provide interface methods for converting between arbitrary objects. Since
this is not a reasonable requirement, we do not support the relabel operation.

Why do we not support the move operation? Detecting a move operation is not always
a decidable problem. Consider for example the sequences 𝐴𝐵𝐶 and 𝐵𝐴𝐶𝐵. Is the first 𝐵
the moved one or the second one? In case of a false positive, this change may propagate
throughout the components of the system and result in a non-intended state. There are
algorithms [Chawathe et al, 1996] that use the move operation to compute more compact
edit scripts, but they only compute approximate solutions. Additionally, the move opera-
tion is not restricted to the same tree layer but may move a subtree to an arbitrary posi-
tion, which increases the complexity of detecting a move operation. For all these reasons,
we decided not to use the move operation for our system interaction purposes.

Regarding the semantics of the edit operations, there exist two prominent models:
Kuo-Chung Tai’s model [Tai, 1979] and Selkow’s model [Selkow, 1977]. In Tai’s model,
deleting a node means making its children become children of the node’s parent. Most
tools use Selkow’s model where the entire subtree rooted at the node is deleted. In con-
formance with the semantics used by the XUpdate specification [XML:DB, 2000], a spec-
ification for XML edit scripts, we decided to follow the semantics of Selkow’s model.

Table 4. Comparing two documents 𝐷1 (on the left) and 𝐷2 (on the right)

Foundations 29

Definition 3.3.1 (Valid Edit Operations): We define the following valid edit operations
for a labeled tree 𝐷 and any subtree 𝐷𝑥 of 𝐷, referenced by 𝐷𝑥⃗⃗ ⃗⃗ , to modify 𝐷 according to
the following semantics:

 a delete operation 𝛿𝐸(𝐷𝑥⃗⃗ ⃗⃗) with 𝐷𝑥 ≠ 𝐷 which removes 𝐷𝑥.

 a replace operation 𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷1) which replaces 𝐷𝑥 by 𝐷1.

 an insert operation 𝛿𝐼(𝐷𝑥⃗⃗ ⃗⃗ , ,𝐷1, … , 𝐷𝑛-) with 𝐷𝑥⃗⃗ ⃗⃗ ≠ 𝐷⃗⃗ and 𝑛 ≥ 1 which adds the la-
beled trees 𝐷1, … , 𝐷𝑛 to 𝐷 as follows: The ordered sequence of labeled trees
,𝐷1, … , 𝐷𝑛- are inserted as direct left siblings of 𝐷𝑥 such that 𝑆𝐿(𝐷𝑥) ≔ 𝑆𝐿(𝐷𝑥) ∷

,𝐷1, … , 𝐷𝑛-.

 an append operation 𝛿𝐴(𝐷𝑥⃗⃗ ⃗⃗ , 𝑙, ,𝐷1, … , 𝐷𝑛-) with 𝑛 ≥ 1 which adds the labeled
trees 𝐷1, … , 𝐷𝑛 to 𝐷 as follows: The ordered sequence of labeled trees ,𝐷1, … , 𝐷𝑛-
are appended to the layer 𝒞𝑙(𝐷𝑥). If 𝐷𝑦 is the last node in 𝒞𝑙(𝐷𝑥), then we have

𝑆𝑅(𝐷𝑦) ≔ ,𝐷1, … , 𝐷𝑛-.

We say that these edit operations target the tree 𝐷𝑥, written as 𝑡𝑎𝑟𝑔𝑒𝑡(𝛿) = 𝐷𝑥⃗⃗ ⃗⃗ where 𝛿
is an edit operation. Furthermore, we say that 𝛿𝐸, 𝛿𝑅 and 𝛿𝐴 modify the target tree 𝐷𝑥 and
𝛿𝐼 modifies the parent of the target tree. This set of edit operations allows to manipulate
an arbitrary subtree 𝐷𝑘 of 𝐷 and its children to any other subtree 𝐷𝑘′ . Thus, a labeled tree
𝐷 can be modified by the edit operations at an arbitrary level of granularity.

For the serialization of an edit operation we mainly need a unique representation for
the subtree reference 𝐷𝑥⃗⃗ ⃗⃗ . This is usually realized by a path schema which uniquely identi-
fies a subtree. In conformance with existing standards we use the XPATH specification
[W3C, 1999] to represent a reference to a subtree in an XML instance of labeled trees.
Thereby, the subtrees in an attribute layer are distinguished from the subtrees in a content
layer by a prefixed "@". For example, the path /w:body[1]/w:p[1]/w:r[1] refers
to the w:r subtree in our example shown in Table 3. An XPATH expression may in gen-
eral evaluate to arbitrary many subtrees, however, in our context we allow only XPATH
expressions that evaluate to exactly one subtree.

Let 𝑝 be a valid path referring to a subtree 𝐷𝑥 in the labeled tree 𝐷, and let 𝐷1, … , 𝐷𝑛
be serialized labeled trees, then we serialize the edit operations as labeled trees:

 a delete operation: \delete{ target=𝑝 }[]
 a replace operation: \replace{ target=𝑝 }[𝐷1]
 an insert operation: \insert{ target=𝑝 }[𝐷1, … , 𝐷𝑛]
 an append operation: \append{ target=𝑝, layer=𝑙 }[𝐷1, … , 𝐷𝑛]

30 Change Model

In the following we will illustrate the introduced edit operations. The triangles represent
labeled (sub)trees and the big dots represent nodes in the tree. The edges are ordered from
left to right. The application of an edit operation 𝛿 on a tree 𝐷 is denoted by ⟦𝛿⟧𝐷.

The delete operation 𝛿𝐸(𝐷𝑥⃗⃗ ⃗⃗) removes the whole subtree 𝐷𝑥 from the labeled tree 𝐷.
Thereby the former direct right sibling of 𝐷𝑥 (if one exists) becomes the direct right sib-
ling of the former direct left sibling of 𝐷𝑥 (if one exists).

The replace operation 𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑤) replaces the whole subtree 𝐷𝑥 by the labeled tree 𝐷𝑤.
Thereby the former direct right sibling of 𝐷𝑥 (if one exists) becomes the direct right sib-
ling of the root of 𝐷𝑤. The former direct left sibling of 𝐷𝑥 (if one exists) becomes the
direct left sibling of the root of 𝐷𝑤.

 𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑤) 𝐷

⇛

… …

𝐷𝑥

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝐷

𝑙 𝑙 𝑙 𝑙 𝑙

𝐷0

…

…
……

…

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝐷𝑤

𝐷

𝐷0

𝑙 𝑙 𝑙 𝑙 𝑙

 𝛿𝐸(𝐷𝑥⃗⃗ ⃗⃗) 𝐷

⇛

… …

𝐷𝑥

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝐷

𝑙 𝑙 𝑙 𝑙 𝑙

𝐷0

…

…
……

…

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝐷

𝐷0

𝑙 𝑙 𝑙 𝑙

DELETE

REPLACE

Foundations 31

Note that all nodes and edges in the subtree 𝐷𝑖 no longer exist after applying a delete or
replace operation on the target 𝐷𝑖.

The insert operation 𝛿𝐼(𝐷𝑥⃗⃗ ⃗⃗ , ,𝐷1′ , … , 𝐷𝑚′ -) adds the trees 𝐷1′ , … , 𝐷𝑚′ to the tree 𝐷 such
that they become left siblings of 𝐷𝑥. Thereby the former direct left sibling of 𝐷𝑥 (if it ex-
ists) becomes the direct left sibling of the inserted tree 𝐷1′ .

The append operation 𝛿𝐴(𝐷0⃗⃗ ⃗⃗ , 𝑙, ,𝐷1′ , … , 𝐷𝑚′ -) adds the trees 𝐷1′ , … , 𝐷𝑚′ to the tree 𝐷 such
that they become the right siblings of the last child of 𝐷0 in the layer labeled by 𝑙. If 𝐷0
does not have any child in this layer, the trees 𝐷1′ , … , 𝐷𝑚′ become the new children of 𝐷0
in this layer.

 𝛿𝐼(𝐷𝑥⃗⃗ ⃗⃗ , ,𝐷1
′ , … , 𝐷𝑚

′ -) 𝐷

⇛

⇛

…
…

…

𝐷𝑥

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝑙 𝑙 𝑙 𝑙 𝑙

𝐷

𝐷0

…

…
…

…
…

…

𝐷𝑥

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝐷1
′ 𝐷𝑚

′

𝑙 𝑙 𝑙 𝑙

𝑙 𝑙 𝑙

𝐷

𝐷0

⇛

 𝛿𝐴(𝐷0⃗⃗ ⃗⃗ , 𝑙, ,𝐷1
′ , … , 𝐷𝑚

′ -) 𝐷

…
……

…
…

…

𝐷𝑥

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝐷1
′ 𝐷𝑚

′

𝑙 𝑙 𝑙 𝑙

𝑙 𝑙 𝑙

𝐷

𝐷0

…
……

…

𝐷𝑥

𝐷𝑥:1 𝐷𝑛 𝐷𝑥;1 𝐷1

𝑙 𝑙 𝑙 𝑙 𝑙

𝐷

𝐷0

INSERT

APPEND

32 Change Model

\w:body{}[

 \w:p{}[

 \w:r{}[

 \w:t{ color="red" }[

 "Hello world!"]]]]

\w:body{}[

 \w:p{}[

 \w:r{}[

 \w:t{ color="red" }[

 "Hello "]],

 \w:r{}[

 \w:t{ color="blue" }[

 "world!"]]]]

Let us consider the example in Table 5 to get familiar with the change model. Intuitively,
one would summarize the changes from document 𝐴 to document 𝐴′ as follows: The text
"Hello world!" has been replaced by "Hello ", and a new element \w:r{}[...] has
been appended after the last child of the tree \w:p{}[...], namely the element tree
\w:r{}[...]. The changes can be represented by the following valid edit operations:

\append{ target=/w:body[1]/w:p[1], layer=“content” }

 [\w:r{}[\w:t{ color=“blue” }[“world! ”]]]

\replace{ target=/w:body[1]/w:p[1]/w:r[1]/w:t[1]/text[1] }

[“Hello ”]

Note that this is not the only valid set of edit operations that patches the document 𝐴 to
the document 𝐴′. There are several parameters that may influence the computation of the
set of edit operations, the so-called edit script:

 First, the differencing mechanism has to identify corresponding subtrees. When
should two subtrees be considered similar? Let us define for our example that two
elements \w:t{...}[...] are similar if all attributes and the whole content are
similar. Then we would have removed that subtree and inserted a new one instead
of replacing it because we only want to modify the content of similar trees deeply.

Table 5. Comparing two informal documents A (on the left) and A‘ (on the right)

𝑤: 𝑟

𝑤: 𝑏𝑜𝑑𝑦

𝑐

𝑤: 𝑝

……

𝑤: 𝑟 𝑤: 𝑟

𝑤: 𝑏𝑜𝑑𝑦

𝑤: 𝑝

𝑐 𝑐

Foundations 33

 Second, some subtrees in the document might be related to external resources. De-
leting these subtrees should be considered more expensive than deleting other sub-
trees, because of the additional costs for the internal management of change.

 Third, we might only be interested in change descriptions up to a specific depth,
for example because we post-process the change set. The computation of too fine-
grained modifications would be a waste of resources. In our example, we could
have for example replaced the element \w:p{...}[...] by its new version.

We will discuss these semantic aspects of changes in more detail in Chapter 4.

Having defined the basic edit operations, we need means to apply these operations to a
document and to group edit operations for representing the changes between documents.

Definition 3.3.2 (Application of an Edit Operation): Let 𝛿 be a valid edit operation for
a labeled tree 𝐷. The application of this edit operation is defined by ⟦𝛿⟧𝐷 ≔ 𝐷′ where 𝐷′
denotes the tree resulting from applying the edit operation according to Definition 3.3.1.
We also say that the labeled tree 𝐷 is patched by the edit operation 𝛿. For an invalid edit
operation 𝛿𝑥 we define its application by ⟦𝛿𝑥⟧𝐷 ≔ 𝐷. Thus the tree is not modified in this
case.

The edit operations are the atomic change operations for labeled trees. They are the build-
ing blocks to transform one labeled tree into another. In order to describe a complete
transformation, we introduce the notion of an edit script as a sequence of valid edit opera-
tions.

Definition 3.3.3 (Edit Script): An edit script Δ for a labeled tree 𝐷 is a sequence of edit
operations that are all valid for 𝐷. Additionally, we define the notation for the following
subsequences of Δ that filter the edit script by a particular type of edit operation:

1) Filter by type of edit operations
a) Delete operations Δ𝐸 ≔ ,𝛿𝐸 ∈ Δ-
b) Insert operations Δ𝐼 ≔ ,𝛿𝐼 ∈ Δ-
c) Replace operations Δ𝑅 ≔ ,𝛿𝑅 ∈ Δ-
d) Append operations Δ𝐴 ≔ ,𝛿𝐴 ∈ Δ-

2) Filter by target subtree 𝐷𝑘 ∈ 𝒮(𝐷)
a) Operations that target a tree 𝐷′ ∈ 𝒮(𝐷𝑘) except the tree 𝐷𝑘 itself

Δ(𝐷𝑘⃗⃗ ⃗⃗ ⃗) ≔ ,𝛿 ∈ Δ|𝑡𝑎𝑟𝑔𝑒𝑡(𝛿) ∈ 𝒮(𝐷𝑘⃗⃗ ⃗⃗) ∧ 𝑡𝑎𝑟𝑔𝑒𝑡(𝛿) ≠ 𝐷𝑘⃗⃗ ⃗⃗ -

34 Change Model

b) Operations that target the tree 𝐷𝑘 (without its subtrees)
Δ|𝐷𝑘⃗⃗ ⃗⃗ ≔ ,𝛿 ∈ Δ|𝑡𝑎𝑟𝑔𝑒𝑡(𝛿) = 𝐷𝑘⃗⃗ ⃗⃗ -

c) Append operations that target the layer 𝑙 ∈ ℒ𝐴 of the tree 𝐷𝑘
Δ|(𝐷𝑘⃗⃗ ⃗⃗ , 𝑙) ≔ ,𝛿 ∈ Δ|𝛿 = 𝛿𝐴(𝐷𝑘⃗⃗ ⃗⃗ , 𝑙, …)-

Edit operations may insert new trees into a labeled tree or delete existing ones. We can
identify these trees by the following notational convention.

Notation 3.3.4 (Trees Inserted by an Edit Operation): Let δ be a valid edit operation
for the labeled tree 𝐷, and let 𝐷𝑖 be labeled trees for all 𝑖 ∈ *1, … , 𝑛+, and let 𝐷𝑘 ∈ 𝒮(𝐷).
The set of trees inserted by the edit operation 𝛿, denoted by Ψ:𝛿 , is the following set de-
pending on the type of the edit operation 𝛿.

Ψ:
𝛿 ≔

{

 ∅ 𝑖𝑓 𝛿 = 𝛿𝐸(𝐷𝑘⃗⃗ ⃗⃗)

*𝐷1+ 𝑖𝑓 𝛿 = 𝛿𝑅(𝐷𝑘⃗⃗ ⃗⃗ , 𝐷1)

 *𝐷1, … , 𝐷𝑛+ 𝑖𝑓 𝛿 = 𝛿𝐼(𝐷𝑘⃗⃗ ⃗⃗ , ,𝐷1, … , 𝐷𝑛-)

 *𝐷1, … , 𝐷𝑛+ 𝑖𝑓 𝛿 = 𝛿𝐴(𝐷𝑘⃗⃗ ⃗⃗ , 𝑙, ,𝐷1, … , 𝐷𝑛-)

Notation 3.3.5 (Trees Deleted by an Edit Operation): Let δ be a valid edit operation for
the labeled tree 𝐷, and let 𝐷𝑖 be labeled trees for all 𝑖 ∈ *1,… , 𝑛+, and let 𝐷𝑘 ∈ 𝒮(𝐷). The
set of trees deleted by the edit operation 𝛿, denoted by Ψ;𝛿 , is the following set depend-
ing on the type of edit operation 𝛿.

Ψ;
𝛿 ≔

{

*𝐷𝑘+ 𝑖𝑓 𝛿 = 𝛿𝐸(𝐷𝑘⃗⃗ ⃗⃗)

 *𝐷𝑘+ 𝑖𝑓 𝛿 = 𝛿𝑅(𝐷𝑘⃗⃗ ⃗⃗ , 𝐷1)

 ∅ 𝑖𝑓 𝛿 = 𝛿𝐼(𝐷𝑘⃗⃗ ⃗⃗ , ,𝐷1, … , 𝐷𝑛-)

 ∅ 𝑖𝑓 𝛿 = 𝛿𝐴(𝐷𝑘⃗⃗ ⃗⃗ , 𝑙, ,𝐷1, … , 𝐷𝑛-)

We have defined an edit script to contain edit operations that are all valid for the same
labeled tree 𝐷. Thus, the operations of an edit script have to be applied simultaneously.
This raises the problem how to prevent conflicts between multiple operations. Two or
more valid edit operations, for example a delete and a replace operation both targeting the
same subtree, may conflict with each other, and thus invalidate an edit script.

In order to prevent these conflicts, we define the following properties that guarantee the
validity of an edit script and additionally imply a normal form for edit scripts.

Foundations 35

Definition 3.3.6 (Valid Edit Script): An edit script Δ for a labeled tree 𝐷 is called a valid
edit script if the following properties hold for any 𝐷𝑘 ∈ 𝒮(𝐷) and any 𝑙 ∈ ℒ𝐴:

1) Operational Consistency of Edit Operations:

a) |(ΔE|𝐷𝑘⃗⃗ ⃗⃗)| ≤ 1

b) |(ΔI|𝐷𝑘⃗⃗ ⃗⃗)| ≤ 1

c) |(ΔR|𝐷𝑘⃗⃗ ⃗⃗)| ≤ 1

d) |.ΔA|(𝐷𝑘⃗⃗ ⃗⃗ , 𝑙)/| ≤ 1

2) Structural Consistency of Edit Operations:

 .(ΔE|𝐷𝑘⃗⃗ ⃗⃗) ∪ (ΔR|𝐷𝑘⃗⃗ ⃗⃗) ≠ ∅/ ⇒ ((ΔA|𝐷𝑘⃗⃗ ⃗⃗) = .Δ
(𝐷𝑘⃗⃗ ⃗⃗ ⃗)/ = ∅)

3) Logical Consistency of Edit Operations:

 |(ΔE|𝐷𝑘⃗⃗ ⃗⃗)| + |(ΔR|𝐷𝑘⃗⃗ ⃗⃗)| ≤ 1
4) Partial Order of Edit Operations:

 Δ = Δ𝐼 ∷ Δ𝐴 ∷ Δ𝑅 ∷ Δ𝐸

The set of all valid edit scripts for a labeled tree 𝐷 is denoted by 𝐷Δ.

The Properties 1a-1c guarantee that there is at most one delete, insert and replace opera-
tion per subtree. For the operations delete and replace this restriction is intuitively clear,
for the insert operation it means that all trees, that have to be inserted before a subtree,
have to be inserted using a single operation instead of several ones. Property 1d guaran-
tees that the same restriction holds for the append operation and specific tree layers.

Property 2 ensures that there is no modification in a subtree allowed if the subtree it-
self is deleted or replaced. Property 3 guarantees that a subtree is not both deleted and
replaced. Finally, Property 4 imposes a partial order based on the types of the edit opera-
tions. Replace and delete operations are the last edit operations in an edit script because
their application might remove subtrees targeted by other operations.

In the following we will discuss whether the union or difference of valid edit scripts pro-
duces in turn a valid edit script. Furthermore, we will prove that an edit script, which sat-
isfies the above properties, can be applied sequentially although the semantics of the edit
script requires a parallel application of the contained edit operations. Additionally we will
analyze the confluence of valid edit scripts. In particular we will show that the application
of a valid edit script or one of its order-variants, which preserves the partial order proper-
ty, results in equal labeled trees.

36 Change Model

The trees inserted or deleted by a valid edit script are clearly the trees inserted respective-
ly deleted by the contained valid edit operations.

Definition 3.3.7 (Trees Inserted by an Edit Script): Let Δ be a valid edit script for the
labeled tree 𝐷. The set of trees inserted by the edit script Δ are defined as follows:

Ψ:
Δ ≔ {

 Ψ:
𝛿 ∪ Ψ:

Δ′ 𝑖𝑓 Δ = 𝛿 ∗ Δ′

 ∅ 𝑖𝑓 Δ = , -

Definition 3.3.8 (Trees Deleted by an Edit Script): Let Δ be a valid edit script for the
labeled tree 𝐷. The set of trees deleted by the edit script Δ are defined as follows:

Ψ;
Δ ≔ {

 Ψ;
𝛿 ∪ Ψ;

Δ′ 𝑖𝑓 Δ = 𝛿 ∗ Δ′

 ∅ 𝑖𝑓 Δ = , -

We overloaded the symbols Ψ: and Ψ; because the intended meaning can always be in-
ferred from the arguments.

So far, we have defined the notions of valid edit operations and valid edit scripts. In order
to manipulate and manage valid edit scripts, the question comes up whether and how the
union and difference of two valid edit scripts are defined.

Definition 3.3.9 (Union of Valid Edit Scripts): Let Δ1 and Δ2 be valid edit scripts for a
labeled tree 𝐷. The union of both edit scripts is defined by:

Δ1⊞Δ2 ≔ Δ1,𝐼 ∷ Δ2,𝐼 ∷ Δ1,𝐴 ∷ Δ2,𝐴 ∷ Δ1,𝑅 ∷ Δ2,𝑅 ∷ Δ1,𝐸 ∷ Δ2,𝐸

By construction it satisfies the Property 4 of valid edit scripts. If and only if the Proper-
ties 1, 2 and 3 are additionally satisfied by Δ1⊞Δ2, it is a valid edit script for 𝐷.

Hence, the union of valid edit scripts is in general not a valid edit script, but for valid edit
scripts targeting different tree layers we can prove that their union is a valid edit script.

Lemma 3.3.10 (Union of Valid Edit Scripts for Tree Layers): Let 𝐷 be a labeled tree,
𝑙 ∈ ℒ𝐴 be an edge label, and let Δ𝑙 be a valid edit script for 𝐷 such that all 𝛿 ∈ Δ𝑙 target a
tree in the direct subtree layer 𝒞𝑙(𝐷) or one of its subtrees. Then Δ ≔⊞𝑙∈ℒ𝐴 Δ𝑙 is a valid
edit script for 𝐷.

Foundations 37

Proof: We have to show that Δ satisfies the properties of valid edit scripts. Property 1
requires that there is at most one edit operation for a specific subtree and tree layer. The
target subtrees of all edit operations in pairwise different Δ𝑙 are not overlapping because
they target trees in different layers of the tree 𝐷 or subtrees of them. Therefore, the Prop-
erty 1 is satisfied. Property 2 requires that there is no modification in a subtree allowed if
the subtree itself is deleted or replaced. Following the previous argumentation, there can-
not occur such an inconsistent situation. Therefore, the Property 2 is satisfied. Property 3
requires that a subtree is not both deleted and replaced. Analogously, this holds because
the target subtrees of edit operations in pairwise different Δ𝑙 are not overlapping. Finally,
the partial order of edit operations required by Property 4 is satisfied by the construction
of the union of valid edit scripts. We conclude that Δ is a valid edit script for 𝐷.

∎

In contrast to that, the difference of valid edit scripts is always a valid edit script.

Definition 3.3.11 (Difference of Valid Edit Scripts): Let Δ1 and Δ2 be valid edit scripts
for a labeled tree 𝐷. The difference of both edit scripts is defined as:

Δ1⊟Δ2 ≔ (Δ1,𝐼\Δ2,𝐼) ∷ (Δ1,𝐼\Δ2,𝐼) ∷ (Δ1,𝐼\Δ2,𝐼) ∷ (Δ1,𝐼\Δ2,𝐼)

By definition it satisfies the Property 4 of valid edit scripts. Since the Properties 1, 2 and
3 are preserved by the subsequence Δ1⊟Δ2 of Δ1, it is a valid edit script for 𝐷.

Ideally, we would like to apply the edit operations of a valid edit script sequentially in-
stead of simultaneously. We will show now, that the properties of valid edit script indeed
guarantee a conflict-free sequential application of their contained edit operations.

Lemma 3.3.12 (Sequentiality of Valid Edit Scripts): Let Δ = 𝛿 ⋆ Δ′ be a non-empty
valid edit script for a labeled tree 𝐷. Then Δ′ is a valid edit script for the tree ⟦𝛿⟧𝐷 which
is the tree 𝐷 patched by the valid edit operation 𝛿.

Proof: First, we have to show that Δ′ is an edit script for ⟦𝛿⟧𝐷. The type of edit opera-
tions 𝛿𝑅 and 𝛿𝐸 are the only ones that remove subtrees from the labeled tree 𝐷 and thus
potentially invalidate edit operations in Δ′ by removing their target subtree. Thus we have
to consider the two cases (1) 𝛿 = 𝛿𝑅 and (2) 𝛿 = 𝛿𝐸 where 𝛿 targets a subtree 𝐷𝑘 ∈ 𝒮(𝐷).
Because of Property 4, the sequence Δ′ contains in both cases only 𝛿𝑅 or 𝛿𝐸 operations.
Thus, we have to show that none of these operations target a subtree 𝐷′ ∈ 𝒮(𝐷𝑘).

38 Change Model

Property 3 prevents a 𝛿𝑅 operation and a 𝛿𝐸 operation from targeting the same subtree.
The Properties 1a-1d prevent two 𝛿𝑅 operations (𝛿𝐸 respectively) from targeting the same
subtree. Thus there is no edit operation in Δ′ that targets 𝐷𝑘. Finally, Property 2 prevents
all edit operations in Δ′ from targeting a tree in 𝒮(𝐷𝑘)*𝐷𝑘+. Hence, the application of the
edit operation 𝛿 to the tree 𝐷 does not invalidate any edit operation in the sequence Δ′.
Therefore, Δ′ is an edit script for ⟦𝛿⟧𝐷. Since the Properties 1, 2 and 3 are clearly pre-
served by all subsequences of Δ, and since removing the first edit operation preserves the
order required by Property 4, the edit script Δ′ is valid for ⟦𝛿⟧𝐷.

∎

This lemma allows us to define the application of a valid edit script to a labeled tree as a
sequential operation.

Definition 3.3.13 (Application of a Valid Edit Script): Let 𝐷1 and 𝐷2 be labeled trees,
and let Δ be a valid edit script for 𝐷1. The judgment of deriving the labeled tree 𝐷2 from
𝐷1 by applying the edit script Δ is denoted by (𝐷1, Δ) ↪PATCH D2. We also say that the
labeled tree 𝐷1 is patched by the edit script Δ to the labeled tree 𝐷2. The operational se-
mantics of ↪𝑃𝐴𝑇𝐶𝐻 is defined by the inference rules in Table 6.

(⟦𝛿⟧𝐷1, Δ) ↪ 𝐷2
(𝐷1, 𝛿 ⋆ Δ) ↪ 𝐷2

(𝐷1, , -) ↪ 𝐷1

The properties of a valid edit script do not impose a unique normal form, because we only
require a partial ordering of the edit operations. Therefore we want to show that the appli-
cation of all ordering variants of a valid edit script result in the same modified tree. The
variants of a valid edit script contain the same edit operations but in a different order.
Nevertheless, a variant has to respect the properties of valid edit scripts, in particular the
partial order required by Property 4. Thus, the reordering possibilities are reduced to the
subsequences containing edit operations of the same type.

Definition 3.3.14 (Variants of a Valid Edit Script): Let Δ1 and Δ2 be valid edit scripts
for a labeled tree 𝐷. The edit script Δ2 is called a variant of the edit script Δ1 if |Δ1| =
|Δ2| = 𝑛 and if there is a total function 𝑓: *1, … , 𝑛+ → *1,… , 𝑛+ such that ∀𝑖 ∈
*1,… , 𝑛+. ((𝑖, 𝛿) ∈ Δ1 ⇒ (𝑓(𝑖), 𝛿) ∈ Δ2). The notion of variants is clearly reflexive,
symmetric and transitive, thus satisfying the properties of an equivalence relation.

Table 6. Algorithm PATCH

Foundations 39

We show now that a labeled tree patched by different variants of a valid edit script results
in the same labeled tree.

Lemma 3.3.15 (Confluence of Variants of a Valid Edit Script): Let Δ1 be a valid edit
script for a labeled tree 𝐷 and Δ2 be a variant of Δ1. Then we have (𝐷, Δ1) ↪PATCH 𝐷1
and (𝐷, Δ2) ↪PATCH 𝐷2, and it holds that 𝐷1 = 𝐷2.

Proof: The edit operations in the variant Δ2 of Δ1 are ordered differently but with respect
to the partial order property of valid edit scripts. Thus, only the subsequences containing
edit operations of the same type can be ordered differently. In order to prove that the ap-
plication of Δ2 results in an equal labeled tree as the application of Δ1, we will show that
all edit operations of the same type in a valid edit script are non-interfering.

The replace and delete operations modify the tree only at the position of their target
subtrees. By the Properties 1a, 1c and 3, it follows that the target subtrees of all edit op-
erations of these types contained in Δ2 are pairwise different target subtrees. Thus, chang-
ing the order of these edit operations has no effect on the resulting labeled tree. The insert
and append operations add new subtrees to the tree. In a fixed but arbitrary layer of a sub-
tree of 𝐷, the insert operation inserts new subtrees before the position of the target subtree
and the append operation after the position of the last child. Hence, insert and append
operations are non-interfering in the same tree layer. Property 1b guarantees furthermore
that the target subtrees of all insert operations are different. Analogously this holds for all
append operations by Property 1d. Thus, changing the order of these edit operations has
also no effect on the resulting labeled tree. Hence we have 𝐷1 = 𝐷2.

∎

This lemma shows indirectly that the variants of a valid edit script are actually an equiva-
lence class for a valid edit script. They are equivalent in the sense that the result of their
application is an equal labeled tree. Thus, whenever we construct valid edit scripts in the
following, we do not need to take care about the order of adding valid edit operations to a
valid edit script. When we write 𝛿 ⋆ Δ, the edit operation 𝛿 is added to the sequence Δ
such that the resulting sequence satisfies the partial order required by Property 4.

The question arises whether two valid edit scripts for a labeled tree that patch that tree
to an equal tree are always variants of each other? The answer is no. Think about a la-
beled tree 𝐷 with two children 𝐷1 and 𝐷2 on the same layer. We want to swap the chil-
dren. Our options are: (1) insert 𝐷2 before 𝐷1 and delete the last 𝐷2, (2) append 𝐷1 to the
same layer of 𝐷 and delete the first 𝐷1, (3) replace 𝐷 completely by the desired new tree.
These edit scripts are all valid for 𝐷 but they are no variants of each other.

40 Architecture Model

3.4 Architecture Model

Having defined the document model and the change model, we now give an overview of
the Change-Oriented Architecture (COA), its principles and its design patterns. We begin
with a description of the Service-Oriented Architecture (SOA) and illustrate the problem
of change management.

SOA is a recent technique to integrate distributed applications on the web. SOA does
not define an API, but an interface model to the services in terms of protocols and func-
tionality. A concrete service interface is typically described using the Web Services De-
scription Language (WSDL). This description defines the signature of the service in
terms of its methods, argument and result types. Due to the processing overhead of the
SOAP protocol, high-performance applications often use the REST protocol instead.

A simple example of a Service-Oriented Architecture is shown in Figure 3. Note that the
first service uses the methods of the second service defined in its interface contract, and
that the second service uses the contracted methods of the third service. Now, the notion
of change in the context of change management describes the change of the interface con-
tract of a service resulting from a natural evolution of that service.

For example, let the third service be in charge of storing and retrieving mathematical
theorems by a uniform theorem identification number (TIN). The interface contract of
this service allows for adding, deleting and retrieving theorems by a TIN. When theorems
need to be changed, for example because of a correction or generalization, the interface
requires deleting the old theorem and adding the new one. The deletion may trigger unin-
tended side-effects and thus result in unnecessary processing.

• Service
Interface
Contract No. 1
(WSDL)

Service No. 1

• Service
Interface
Contract No. 2
(WSDL)

Service No. 2
• Service

Interface
Contract No. 3
(WSDL)

Service No. 3

Figure 3. Example of a Service-Oriented Architecture

Foundations 41

A natural evolution of the third service would be the addition of interface methods that
support the update of premises and conclusions of a theorem. This would result in a new
service interface contract for the third service that is in this case fortunately backward
compatible. The problem of change management is that the system does not automatical-
ly profit from the improvement of the third service. Indeed, we have to adapt the imple-
mentation of the second service to take advantage of the new methods offered by the third
service. This may in turn require modifications of the interface of the second service,
hence resulting in a chain of changes to service implementations and interface contracts.

Originally designed as a way to handle complex, ill-defined problems, where the solu-
tion is the sum of its parts, we will discuss whether a Blackboard Architecture could solve
our problem of change management. This architecture consists (i) of the Blackboard, a
common place to store the existing knowledge in the system, (ii) of several knowledge
sources, workers that update the blackboard with a partial solution when its internal con-
straints match the blackboard state, and (iii) of a controlling shell which controls the flow
of problem-solving activity and organizes the knowledge sources.

Figure 4 shows our scenario in a Blackboard model, where the SOA services form the
knowledge sources. The explicit service composition of the SOA model is embedded in
the controlling shell of the Blackboard model, resulting in general in a processing over-
head for the service organization in large systems.

Blackboard

Service
No. 2

Service
No. 3

Service
No. 1

Controlling Shell

Figure 4. Example of a Blackboard Architecture

42 Architecture Model

Now with respect to the problem of change management we notice that we can easily
exchange the knowledge source of the third service by a more evolved variant of that ser-
vice. The main reason is that the services do not depend anymore on specific interfaces of
other services. Indeed, they only rely on a uniform knowledge representation on the
blackboard. In this architecture, the services react to changes of the knowledge on the
blackboard instead of interface method calls.

When we try to apply the Blackboard model as a global solution to SOA we face the
following problems:

1) Designing a uniform knowledge representation, which is supported by all ser-

vices, is a difficult task and may lead to unexpected correlations.
2) Service composition is encapsulated and embedded in the controlling shell of

the Blackboard. This design results in a single point of failure.
3) A monolithic design may result in frequent changes of the uniform knowledge

representation or the controlling shell, which in turn requires frequent adapta-
tion of the services.

Because of these problems with using a global Blackboard, we propose to use a separate
Blackboard between every pair of connected services. For this purpose, we introduce the
notion of a Change-Oriented Architecture (COA) as an extension of the Service-Oriented
Architecture (SOA). Instead of composing services by binding one service to the interface
contract of another service, the COA uses a mediation module to loosely couple two
components. Figure 5 shows our scenario in a Change-Oriented Architecture.

 Figure 5. Example of a Change-Oriented Architecture

Service
No. 1

Service
No. 2

Service
No. 3

Mediation
Module

Mediation
Module

Foundations 43

Before we will introduce the mediation module as a special form of a Blackboard, we will
discuss how the connection between two services can be established via a Blackboard:

1) Define a uniform knowledge representation (document) for both services.
2) Map knowledge changes (document changes) to existing interface methods.

In comparison to the global Blackboard approach, the COA approach solves the second
problem because existing service compositions are no longer hidden but replaced by a
mediation module. Thus we do not introduce a single point of failure like a single Black-
board. Furthermore, the COA solves the third problem because it replaces the tight con-
nection between two components by a mediation module. A service component no longer
directly depends on specific interface methods of a connected component. If the granular-
ity of the interface of a component changes in a COA, a connected component does not
need to be adapted in order to profit from the improved interface. This is automatically
achieved by computing component-specific change descriptions.

Although this is already an acceptable solution, it does not solve the first problem be-
cause it requires a uniform knowledge representation. Indeed, when connecting service
components one usually faces in practice the problem that they employ different represen-
tations and that they only need to exchange a subset of their information. Forcing a uni-
form knowledge representation may propagate through all service components and finally
lead to a complex bloated pseudo-standard which continuously increases the effort need-
ed to connect new service components, to say the least.

In order to solve this problem in a COA, we do not require a uniform knowledge rep-
resentation for all services, indeed this representation can be defined differently for each
service, even differently for each pair of connected services. For the purpose of translat-
ing between different representations back and forth, we will introduce a formalism for
automatically invertible grammars in Chapter 6. Thus, if the representation of a service
component changes, we only have to adapt the bidirectional transformation grammar in
the mediation module. A new service component is integrated by defining an invertible
transformation between its own knowledge representation and the representation of the
connected existing service component. Altogether, the connection between two compo-
nents can be established by a mediation module as follows:

1) Specify a knowledge representation (document) for each service.
2) Define a bidirectional transformation between both knowledge representations.
3) Map knowledge changes (document changes) to existing interface methods.

44 Architecture Model

By allowing multiple interface documents, a classic SOA request can be modeled as a
supplementary interface document and a response as a change to this interface document.
Thus, a service component may offer both interface models in parallel, and a classic SOA
can be iteratively transformed to a COA while remaining backward compatible.

A mediation module uses essentially the Blackboard design pattern extended by methods
for the computation of semantic document changes and the bidirectional transformation
of documents. The main differences to the classic Blackboard design pattern are:

 An interface document exists in two representations, one for each connected

service component. We call these representations the types of a document. The
mediation module has both document types in parallel under revision control.
Therefore, the location of a document, its URI in the mediation module’s
Blackboard, needs first to be setup by a bidirectional transformation grammar,
which is then used to transform one type of a document into the other. The re-
vision control is additionally helpful for integration testing but if space is criti-
cal, one can employ a method that “forgets” old inactive versions.

 When a new version of a document is sent to the mediation module, either as a
valid edit script or as a whole document, then the integrity of the document is
checked, the document is transformed into the other type, and again the integri-
ty is checked. Only if all these steps succeed, the new version is accepted by
the Blackboard and committed to the revision control.

 In contrast to revision control systems like CVS, Subversion or Git, the media-
tion module returns upon an update request the optimal changes instead of the
complete modified document. To compute the optimal changes we take struc-
tural properties like the order relevance of subtrees into account, as well as in-
formation provided by a service component about weights for removing or add-
ing subtrees and the granularity of changes supported by that component.

 The task of the controlling shell is to govern the described behavior of the me-
diation module and to guarantee a read-write lock for the Blackboard such that
all write operations are handled as transactions: atomic, consistent, isolated and
durable.

The interface methods of a mediation module are shown in Table 7. In a corresponding
strongly typed WSDL description for a general interface to a mediation module, we use
the base type string for documents and change descriptions. We will illustrate the inter-
face methods and the behavior of the mediation module in the following use case.

Foundations 45

Method Arguments Results
Setup [uri, grammar, specs] = [types]

Init [uri, type, doc] = [version]

Info [uri] = [kind, version]

List [uri] = [uris]

Checkout [uri, type, version] = [doc]

Commit [uri, type, version, doc] = [version]

Patch [uri, type, version, diff] = [version]

Update [uri, type, version, spec] = [diff, version]

Subscribe [uri, type, call-back] = [success]

Remove [uri] = [success]

State [uri] = [grammar, specs]

Change [uri, grammar, specs, type] = [success]

Table 7. Interface Protocol of the Mediation Module

Use Case. First of all, the location for a new interface document is setup in the mediation
module using the Setup method by providing the invertible grammar for the bidirec-
tional transformation between the two document types, and the change specification for
each document type, which guides the change computation and defines integrity con-
straints. The method returns the two document types that just have been setup.

Then, the first service component initializes the document by calling the Init method
with the location, the type and the content of the document. The mediation module checks
the integrity of the document and transforms the document to the second type using the
invertible grammar. The integrity is checked and the method returns the initial version.

The second service component can browse through the repository using the List
method and it can obtain information about a location using the Info method, which
returns the kind (document/folder) and the current version number. The second service
component retrieves the document by calling the Checkout method with the location,
the desired type, and the desired initial version number. The method returns the initial
document content in the document type of the second service component.

Since this service component wants to be informed about changes instead of regularly
checking for updates, the component calls the Subscribe method with the location, the
type and a call-back. The mediation module registers the call-back. Whenever a document
of the given type at the given location or its sub-locations is modified, removed or initial-
ized, this component is notified by the mediation module using the call-back.

Now, the first service component commits a modified version of the document by call-
ing the Commit method with the location, the type and the modified content of the doc-
ument. The mediation module checks the integrity of the document and transforms the
document to the second type using the bidirectional transformation grammar. The method
returns the new version of the document.

46 Architecture Model

Since the document of the second type changed, the mediation module notifies the second
service component using the call-back. This component retrieves the changes of the doc-
ument by calling the Update method with the location, the desired type, its current local
version of the document and a specification which includes information to guide the
change computation. This specification adds additional weights to parts of the document
indicating internal dependencies. Furthermore, the specification defines the granularity of
changes that this service component is able to process. The mediation module returns a
valid edit script that is optimal with respect to the given specification, as well as the cur-
rent version of the document. The second service component then merges the returned
edit script with its local changes and processes the remaining edit script, for example by
calling its corresponding SOA interface methods.

Now we assume the second service component performs some background processing
and computes the result as an edit script to be applied to the interface document. The
component calls the Patch method with the location, the type, the current version and
the valid edit script. The mediation module checks the validity of the edit script, applies
the script and checks the integrity of the document. Finally, the new document is trans-
formed to the first document type using the bidirectional transformation grammar and
checked for integrity. The method returns the new version of the document.

By calling Update, the first service component is in turn able to retrieve the changes
as a valid edit script which is optimal with respect to the specification provided by this
component. And the cycle continues. As the system evolves, there may be the need to
adapt the grammar and change specification. For this purpose, the method State allows
to retrieve the current settings and Change allows to define a new invertible grammar,
new change specifications and the type of the source interface document from which the
corresponding target interface document is then retranslated automatically.

The mediation module relies on the following concepts, methods and techniques:
1) A notion of optimality for edit scripts that respects the semantics of the docu-

ment structure as well as the change weights and granularity provided by the
consumer of the edit script, a service component. (see Chapter 4)

2) An efficient method to compute an optimal edit script with respect to the given
change specification. (see Chapter 5)

3) A formalism for bidirectional transformation grammars which are automatical-
ly invertible and support incremental processing. (see Chapter 6)

The mediation module is realized using standard software design patterns and can in turn
be used to implement design patterns. In the following, we will give an overview of rele-
vant structural, behavioral and concurrency patterns. The italic definitions of these de-
sign patterns are reproduced from [Gamma et al, 1994].

Foundations 47

Adapter Pattern. An adapter converts the interface of a service component into an inter-
face that clients expect. In the mediation module, we use the bidirectional transformation
grammar as an adapter between the different document types required by the components.
Thus, the mediation module automatically translates between both document types.

Bridge Pattern. A bridge decouples an abstraction from its implementation so that the
two can vary independently. In the mediation module, the optimal edit scripts obtained by
an Update method are the abstract interface of a component. The edit operations are
then converted by the component to calls of specific implemented methods. Since the
granularity of the edit operations can be specified by the component, an independent im-
provement of the implementation is always possible.

Decorator Pattern. A decorator attaches additional responsibilities to an object dynami-
cally although keeping the same interface. So far we only defined the document model of
the mediation module, but we have not restricted the kind of knowledge that can be repre-
sented in an interface document. This allows for example to represent method execution
requests as annotations to parts of the document, or to represent results or feedback in the
interface document.

Façade Pattern. A façade provides a uniform interface to a set of interfaces in a subsys-
tem. This pattern can be realized with the COA as shown for example in Figure 6.

Chain of Responsibility Pattern. A chain of responsibility avoids coupling the sender of
a request to its receiver by giving more than one component a chance to handle the re-
quest. This pattern can be realized with the COA as shown for example in Figure 7.

Client

Service
No. 1

Service
No. 2

Mediation
Module

Mediation
Module

Mediation
Module

Broker

Figure 6. Façade Pattern with Mediation Modules

Fa
ça

de

48 Architecture Model

Command Pattern. A command encapsulates a request as an object. A method execu-
tion request can also be a first-class citizen of the interface document, for example by
designing a controlled language for writing such requests.

Mediator Pattern. A mediator is a component that encapsulates how a set of components
interact by promoting loose coupling and keeping components from referring to each
other explicitly. As the name already indicates, the mediation module acts in fact as a
mediator between the components of a COA.

Memento Pattern. A memento captures and externalizes the internal state of a compo-
nent such that the component can be restored to this state later. In the mediation module,
the interface document types can be used as a memento for the corresponding component.
Whether the state of a component can completely be restored or not depends on how
much information about the internal state is actually being represented in the interface
document.

Observer Pattern. An observer defines a one-to-many dependency between objects so
that when one object changes its state, all dependent objects are notified automatically.
In the mediation module, a component is allowed to subscribe to locations in the shared
repository. This component is then automatically notified when a document is added, re-
moved or modified at a subscribed location or sub-location.

Read-Write Lock Pattern. A read-write-lock allows concurrent read access to an object
but requires exclusive access for write operations. The mediation module itself has a
read-write lock such that all write operations are handled as transactions: atomic, con-
sistent, isolated and durable.

Client Service
No. 2

Mediation
Module

Mediation
Module

Service
No. 1

Figure 7. Chain of Responsibility Pattern with Mediation Modules

Foundations 49

3.5 Discussion

So far, we presented the foundations and the principle concepts of the Change-Oriented
Architecture (COA). The motivation for this architecture is the problem of change man-
agement within a Service-Oriented Architecture (SOA). Since services are composed by
calling interface methods of another service, the composition needs to be adapted when
the interface contract of a service is significantly changed or extended. Otherwise, the
system is either broken or does not profit from new improved interface methods of the
services in use. The problem of change management occurs very often in a fast-pace
software development environment, where a prototype needs to be rapidly developed, or
where frequent changes in the interface of the services are expected. In these situations,
we propose to use a COA approach until the interfaces are mature.

To establish a connection between two services in a COA, we use a mediation module.
This module manages the interface documents in a revision control style. Instead of call-
ing interface methods of another service, a service changes an interface document in the
mediation module. This new interface document is then transformed to the document type
of the other connected service. Then, this service retrieves an optimal change description
and reacts appropriately, for example by adding a result to the interface document.

The Change-Oriented Architecture is an agile extension of SOA because it sets the fo-
cus on the exchanged knowledge instead of concrete interface methods. The COA expects
changes in services to happen and therefore it allows a service to change the granularity
of its interface without the need to adapt all depending services. With a COA, the overall
system may profit immediately from new features of its service components at no cost.
Furthermore, the interface documents in the mediation modules provide a possibility to
monitor the information flow and current state of the system, which may both help in the
detection of flaws in the system design and runtime behavior. Additionally, the mediation
module can be used as an adapter to translate between services that use different represen-
tations for their exchanged knowledge.

Besides all the benefits of a Change-Oriented Architecture, we have also to discuss the
disadvantages of this architecture and whether this architecture introduces new threats
and pitfalls for the software development process.

Trade-Off. Since the COA replaces direct method calls by interface documents in a me-
diation module whose changes trigger method execution, we essentially add the step of
change computation. This is the trade-off of COA: We sacrifice some performance to
achieve a loose coupling of service components. Note that a mixed approach of classical
SOA method calls and COA mediation modules is possible in the same system.

50 Discussion

Conflict Resolution. Everybody who used a revision control system knows that sooner or
later conflicts occur between the local state of a document and its state in the repository.
Does the COA introduce new possibilities for conflicts? The behavioral difference be-
tween COA and SOA is that a service component does not directly call the methods of
another service component which in turn could throw an exception in case of a conflict.
Indeed, the COA requires the first service component to place a request for action in the
interface document. When the second service component retrieves the request, it detects
the conflict and may in turn place an error message as feedback in the interface document.
Thus, the difference between COA and SOA with respect to conflicts is that the detection
of conflicts is deferred.

Transformation Integrity. The mediation module translates between interface docu-
ments of different types using a bidirectional transformation grammar. Thereby, the edit
script for an interface document is only accepted if (1) the integrity of the patched inter-
face document can be checked, for example by a schema validation (DTD, XSD, Re-
laxNG), if (2) this new interface document can be transformed to the other type, and if (3)
the integrity of the transformed document can be checked. Assuming that a service com-
ponent is able to guarantee property (1), we cannot guarantee the properties (2) and (3) in
general because the transformation grammar may use value-passing rules. On the one
hand, we should verify that the grammar generates defaults that satisfy the integrity con-
straints. On the other hand, the service components should be implemented in such a way
that they recover gracefully from a failed patch attempt.

Lock Prevention. Since the COA introduces mediation modules which implement a
read-write lock, there is a risk to run in a deadlock situation if some components intermix
their write access to connecting mediation modules. This risk can be eliminated if the
components clearly separate their connection to mediation modules. The advantage of the
interface document in a mediation module is that the information flow and state of the
system is made explicit. By analyzing the changes in the mediation modules we may suc-
cessfully detect livelock situations. A livelock is similar to a deadlock, except that the
states of the interface document in a livelock continually change in a cyclic manner.

The mediation module provides means to compute optimal edit scripts as a change de-
scription between two interface documents as well as an automatic translation between
different types of interface documents. In the following chapters, we will introduce the
required concepts and techniques: a specification for the optimality of edit scripts, an effi-
cient method for computing optimal edit scripts, and an invertible grammar formalism.

Semantic Changes 51

4 Semantic Changes

In this chapter, we will focus on the aspects that have to be taken into account by a me-
diation module for computing an optimal edit script between two versions of an interface
document. These aspects include the semantics of an interface document, but also the
requirements for the service component that processes the computed changes. This ser-
vice component may for example weigh some parts of the document differently than oth-
ers. We will introduce specifications to declaratively define these aspects and thus allow
for a component- and document-specific notion of optimal change descriptions.

The first step towards a change description between two interface documents is the
identification of corresponding subtrees in the documents. Since the interface document is
a partial serialization of the state or knowledge of a service component, it is reasonable to
assume that subtrees can be identified by specific keys like a uniform identifier or charac-
teristic attributes. Furthermore, the order of some subtrees may not be relevant in all cas-
es. We will introduce a specification for defining this semantic similarity of documents.
In general, more than one subtree can be semantically similar to a given subtree.

The second step is the definition of an acceptable solution, a change description which
patches the first document to a state that is semantically equal to the second document.
When should two documents be considered semantically equal? Where the semantic simi-
larity requires just the similarity of specific key subtrees, the semantic equality requires
the equality of all subtrees. Of course, there may exist more than one valid edit script to
achieve the semantic equality of two documents.

Although these solutions are all valid, we need to take into account the needs of the
consumer, the service component which is reacting on the changes of the interface docu-
ment. The insertion, deletion or modification of subtrees in the interface document may
have effects on depending parts of the internal knowledge of that service component. It is
important that these effects are taken into account by providing a specification for the edit
weights of subtrees in the interface document. Thus, an optimal solution is a valid edit
script with minimal edit costs.

Finally, we want to support the evolution of the interface of a service component.
Therefore, the component needs means to specify the granularity of change descriptions
that it currently supports. This granularity limits the depth of the edit operations, thus it
has the nice side-effect that the solution space for the computation of changes is reduced.
Furthermore, the service component does not have to recalculate the edit script before
processing. With a specification for the edit granularity, we are able to reduce the search
space for computing an optimal solution at an adequate level of granularity.

52 Semantic Equality

4.1 Semantic Equality

To compute the change description between two interface documents, we have to identify
corresponding subtrees in these documents. The following similarity specification repre-
sents the configuration for the semantic equality and semantic similarity of two labeled
trees. It consists of two components: the similarity order and the similarity keys. The idea
of taking the order of elements into account originates from [Radzevich, 2006] where six
semantic equivalence classes for XML documents have been introduced. In the following,
we present a generalization of this work to labeled trees.

The similarity order defines for all layers of a labeled tree whether their order is rele-
vant for the semantic similarity of that labeled tree. For example, the order of axioms in a
mathematical theory is not relevant for a service component that verifies proofs. Since we
define the similarity order over the label of a subtree, it follows that equally labeled sub-
trees have an equal similarity order.

Definition 4.1.1 (Similarity Order): Let 𝐷 be a labeled tree with the label 𝑙𝑑 = 𝐿(𝐷), let
𝑙 ∈ ℒ𝐴 be an edge label and let 𝒞𝑙(𝐷) be a layer of 𝐷. The similarity order Σ𝑂(𝑙𝑑, 𝑙) ∈
*⊤, ⊥+ is a Boolean value which indicates whether the order of the subtrees in the layer
𝒞𝑙(𝐷) is relevant (⊤) for the semantic similarity of the labeled tree 𝐷 (when comparing it
to other labeled trees) or not relevant (⊥).

The similarity keys define for all labeled trees and all layers which subtrees have to be
compared to identify semantically similar labeled trees. For example, similarity keys are
usually unique ids, names or specific attributes. Since we define the similarity keys over
the label of a subtree, it follows that equally labeled subtrees have an equal set of similari-
ty keys.

Definition 4.1.2 (Similarity Keys): Let 𝐷 be a labeled tree with the label 𝑙𝑑 = 𝐿(𝐷), let
𝑙 ∈ ℒ𝐴 be an edge label and let 𝒞𝑙(𝐷) be a layer of 𝐷. The similarity keys Σ𝐾(𝑙𝑑, 𝑙) ∈
𝒫(ℒ𝑉) are a set of node labels indicating which subtrees in the layer 𝒞𝑙(𝐷) are relevant
for the similarity of the labeled tree 𝐷 (when comparing it to other labeled trees). There-
by, all subtrees having a label of the set of similarity keys are relevant.

We define an instance of the similarity specification as follows.

Definition 4.1.3 (Similarity Specification): A similarity specification ΣS = (Σ𝑂 , Σ𝐾) is a
pair of one similarity order Σ𝑂 and similarity keys Σ𝐾.

Semantic Changes 53

Having introduced the similarity specification, we now define different notions of simi-
larity mappings between labeled trees before we finally define the notion of semantic
equality for labeled trees. Identifying similar subtrees means establishing a mapping be-
tween sequences of labeled trees that satisfies a mapping condition.

Notation 4.1.4 (Mapping Condition): Let 𝑉1, 𝑉2 be sequences of labeled trees, let 𝑓 be a
(bijective) multi-mapping from 𝑉1 to 𝑉2, and let 𝑃 be a predicate over pairs of labeled
trees. We define the mapping condition as the following shortcut predicate 𝜙(𝑓, 𝑃) which
indicates whether all elements of the multi-mapping 𝑓 satisfy the condition 𝑃.

𝜙(𝑓, 𝑃) ∶⇔ ∀(𝑥, 𝑦) ∈ 𝑓. 𝑃(𝑥, 𝑦)

Thereby, the function 𝑓 is a bijective multi-mapping between corresponding labeled trees
in the sequences 𝑉1 and 𝑉2, where the correspondence is defined by the predicate 𝑃.

The set of mappings between sequences of labeled trees, that satisfy the mapping con-
dition, is called matching mappings.

Definition 4.1.5 (Matching Mappings): Let 𝑉1, 𝑉2 be sequences of labeled trees and let
𝑃 be a predicate over pairs of labeled trees. We define the set Ω of matching mappings
between sequences of labeled trees as follows:

Ω𝑉1↔𝑉2
P ∶= {𝑓 ∈ 𝔉𝑉1⟷𝑉2

 |𝜙(𝑓, 𝑃)}

The matching mappings are defined with respect to a context 𝜏 = (𝜑, 𝐶) where 𝜑 is a
Boolean value indicating the relevance of the order and where the sequence 𝐶 ⊆ 𝑉1 con-
tains the elements of 𝑉1 which can be mapped to multiple elements of 𝑉2. We omit the
context 𝜏 in the notation when it can be inferred.

The set Ω contains all bijective multi-functions 𝑓 ∈ 𝔉𝑉1⟷𝑉2 which respect the order
(𝜑 = ⊤) or not (𝜑 =⊥) between corresponding labeled trees in 𝑉1 and 𝑉2, where the cor-
respondence is defined by the predicate 𝑃. The sequence 𝐶 contains all elements of 𝑉1
which may have multiple mapping partners. The multi-functions will be relevant when
we introduce document variables for the grammar formalism. For now, we define 𝐶 ≔ ∅
as the default unless explicitly specified. Then, the set Ω𝑉1↔𝑉2

P contains only bijective

functions without multiple mappings. For example, let 𝑉1 = ,𝐴, 𝐵, 𝐶- and 𝑉2 = ,𝐴, 𝐶, 𝐵-
be sequences of labeled trees without children with 𝐿(𝐴) = "𝐴", 𝐿(𝐵) = "𝐵" and
𝐿(𝐶) = "𝐶". In the ordered case 𝜏 = (⊤, ∅), the set Ω𝑉1↔𝑉2

≈ = ∅ is empty because of

≦(𝐵 ≈ 𝐶). In the unordered case 𝜏′ = (⊥, ∅), the set Ω𝑉1↔𝑉2
≈ = *𝑓1+ contains 𝑓1 ≔

54 Semantic Equality

{((1, 𝐴), (1, 𝐴)), ((2, 𝐵), (3, 𝐵)), ((3, 𝐶), (2, 𝐶))}. Let 𝑉3 = 𝑉4 = ,𝐸- be a sequence of a
tree without children with 𝐿(𝐸) = "𝐸". Then we have Ω𝑉3↔𝑉4

≈ = *𝑓2+ with 𝑓2 ≔

{((1, 𝐸), (1, 𝐸))} in both the ordered and the unordered case.

Now we need to lift the notion of mappings from sequences to the level of whole trees.
The set of tree matching mappings contains the combinations of all matching mappings
between the children in the layers of two labeled trees.

Definition 4.1.6 (Tree Matching Mappings): Let 𝐷1, 𝐷2 be equally labeled trees with
𝐿(𝐷1) = 𝐿(𝐷2) = 𝑙0 and let 𝑃 be a predicate over pairs of labeled trees. Furthermore, let
𝑉𝑙,1 ≔ 𝒞𝑙(𝐷1) and 𝑉𝑙,2 ≔ 𝒞𝑙(𝐷2) be the children in the layer 𝑙 of the trees 𝐷1 and 𝐷2. We
define the set 𝒯 of tree matching mappings as follows:

𝒯(𝐷1,𝐷2)
𝑃 ∶= {⋃ 𝑓𝑙

𝑙∈ℒ𝐴

|𝑓𝑙 ∈ Ω𝑉𝑙,1↔𝑉𝑙,2
𝑃 }

The tree matching mappings are defined with respect to a context 𝜅 = (ΣS, Λ) where
ΣS = (ΣO, ΣK) is a similarity specification, and Λ is a function from labeled trees to Bool-
ean values. Then the context 𝜏𝑙 = (𝜑𝑙, 𝐶𝑙) for Ω is computed for every layer 𝑙 by 𝜑𝑙 ≔
Σ𝑂(𝑙0, 𝑙) and 𝐶𝑙 ≔ {𝑥 ∈ 𝑉𝑙,1|Λ(x)}. Hence, the function Λ indicates which subtrees of 𝐷1
may match multiple subtrees of 𝐷2. We define Λ⊥ to assign ⊥ to every labeled tree such
that 𝐶𝑙 ≔ ∅ for every layer 𝑙. By default we assume a context 𝜅 = (ΣS, Λ⊥). We omit the
context in the notation when it can be inferred. The tree matching mappings are all bijec-
tive multi-functions between corresponding children of the labeled trees 𝐷1 and 𝐷2, re-
specting the subtree partitioning by the layers of the tree and their order.

X

C E B A

𝐷1

𝐷11 𝐷12 𝐷13 𝐷14

a a a c

Figure 8. Example for tree matching mappings

B E C A

𝐷21 𝐷22 𝐷23 𝐷24

X

𝐷2

a a a c

Semantic Changes 55

Continuing our example from Definition 4.1.5, we define the labeled trees 𝐷1 and 𝐷2
shown in Figure 8 with 𝒞𝑎(𝐷1) ≔ 𝑉1, 𝒞𝑎(𝐷2) ≔ 𝑉2, 𝒞𝑐(𝐷1) ≔ 𝑉3 and 𝒞𝑐(𝐷2) ≔ 𝑉4. The
tree matching mappings 𝒯(𝐷1,𝐷2)

≈ are empty if Σ𝑆 defines 𝜑𝑎 = ⊤, because of Ω𝑉1↔𝑉2
≈ = ∅.

If Σ𝑆 defines 𝜑𝑎 =⊥, we have 𝒯(𝐷1,𝐷2)
≈ = *𝑓1 ∪ 𝑓2+ independent of the similarity order 𝜑𝑐.

This allows us to define that two labeled trees are semantically equal if they are equal-
ly labeled and if there exists a tree matching mapping w.r.t. the similarity specification.

Definition 4.1.7 (Semantic Equality): Let ΣS = (ΣO, ΣK) be a similarity specification
and 𝐷1, 𝐷2 be labeled trees. The semantic equality of the labeled trees 𝐷1 and 𝐷2 with
respect to Σ𝑆, denoted by 𝐷1 =ΣS 𝐷2, is a predicate over pairs of labeled trees defined as

follows in the context of 𝜅 = (ΣS, Λ⊥):

𝐷1 =ΣS 𝐷2 ∶⇔ .(𝐷1 ≈ 𝐷2) ∧ |𝒯(𝐷1,𝐷2)
<ΣS | > 0/

Intuitively, two labeled trees are semantically equal if they have the same label and their
layers are pairwise semantically equal. Two equally labeled layers are semantically equal
if there exists a mapping between the children matching the semantic equality conditions.

The evaluation of this recursive definition terminates for concrete labeled trees be-
cause they have a finite amount of nodes and a finite amount of subtrees. The leaves of
the evaluation tree are comparisons between subtrees which do not have any children in a
specific layer. The tree key matching mappings contains in this case the empty mapping.

For the design of the algorithm for change computation between labeled trees, it is im-
portant to show that the semantic equality of labeled trees is an equivalence relation.

Lemma 4.1.8 (Semantic Equality is an Equivalence Relation): Let ΣS = (ΣO, ΣK) be a
similarity specification. The semantic equality of labeled trees =ΣS is an equivalence rela-
tion on the set of labeled trees 𝒟 in the context of 𝜅 = (ΣS, Λ⊥).

Proof: We have to show the reflexivity, symmetry and transitivity of =ΣS .

(1) Reflexivity : ∀𝐷 ∈ 𝒟. (𝐷 =ΣS 𝐷)

We have to show that 𝐷 ≈ 𝐷 and |𝒯(𝐷,𝐷)
<ΣS | > 0 hold. Clearly, it holds that 𝐷 ≈ 𝐷 be-

cause 𝐿(𝐷) = 𝐿(𝐷). For all 𝑙 ∈ ℒ𝐴 let 𝜑𝑙 ≔ 𝛴𝑂(𝐿(𝐷), 𝑙) be the relevance of the or-
der of the layer 𝑙 in 𝐷. Let 𝑉𝑙 = 𝒞𝑙(𝐷) be the direct subtree layer 𝑙 of 𝐷, the state-

ment |𝒯(𝐷,𝐷)
<ΣS | > 0 holds if ∀𝑙 ∈ ℒ𝐴. ∃𝑓𝑙 ∈ Ω𝑉𝑙↔𝑉𝑙

<ΣS with the layer specific context

𝜏 = (𝜑𝑙, ∅). By induction over the structure of the tree we will show that ∀𝑙 ∈
ℒ𝐴. ∃𝑓 ∈ 𝔉𝑉𝑙⟷𝑉𝑙 . 𝜙(𝑓, =𝛴𝑆).

56 Semantic Equality

(Base Case) Let 𝐷 be a labeled tree with no children in all layers, hence it holds that
∀𝑙 ∈ ℒ𝐴. |𝑉𝑙| = 0. Then the set 𝔉𝑉𝑙⟷𝑉𝑙 contains only the empty mapping 𝑓0 which

satisfies the mapping condition 𝜙(𝑓0, =𝛴𝑆). Thus, it holds that 𝐷 =ΣS 𝐷.
(Step Case) Let 𝐷 be a labeled tree with at least one child, thus ∃𝑙 ∈ ℒ𝐴. |𝑉𝑙| > 0.
Then the set 𝔉𝑉𝑙⟷𝑉𝑙 contains either the empty mapping 𝑓0 if the layer has no chil-

dren or at least the identity mapping 𝑓𝑖𝑑 defined by ∀𝑥 ∈ 𝑉𝑙. 𝑓𝑖𝑑(𝑥) = 𝑥 if the layer
has some children. Thereby the identity mapping satisfies the mapping condition
𝜙(𝑓𝑖𝑑, =𝛴𝑆), that is ∀(𝑥, 𝑦) ∈ 𝑓𝑖𝑑 . 𝑥 =𝛴𝑆 𝑦, because of the induction hypothesis.

Thus, it holds that 𝐷 =ΣS 𝐷.

(2) Symmetry : ∀𝐷1, 𝐷2 ∈ 𝒟. .(𝐷1 =ΣS 𝐷2) ⇒ (𝐷2 =ΣS 𝐷1)/

We have to show that 𝐷2 ≈ 𝐷1 and |𝒯(𝐷2,𝐷1)
<ΣS | > 0 follows from 𝐷1 =ΣS 𝐷2. We have

𝐷1 ≈ 𝐷2, hence it holds that 𝐿(𝐷1) = 𝐿(𝐷2) = 𝑙0 and 𝐷2 ≈ 𝐷1. For all 𝑙 ∈ ℒ𝐴 let
𝜑𝑙 ≔ 𝛴𝑂(𝑙0, 𝑙) be the relevance of the order of the layer 𝑙 in 𝐷1 and 𝐷2. Let
𝑉𝑙,1 = 𝒞𝑙(𝐷1) and 𝑉𝑙,2 = 𝒞𝑙(𝐷2) be the direct subtree layers 𝑙 in 𝐷1 and 𝐷2. We

have to show that |𝒯(𝐷1,𝐷2)
<ΣS | > 0 implies |𝒯(𝐷2,𝐷1)

<ΣS | > 0, thus that for all 𝑙 ∈ ℒ𝐴 it fol-

lows that ∃𝑓𝑙 ∈ Ω𝑉𝑙,1↔𝑉𝑙,2
<ΣS implies ∃𝑓𝑙 ∈ Ω𝑉𝑙,2↔𝑉𝑙,1

<ΣS with the layer specific context

𝜏 = (𝜑𝑙, ∅). By induction over the structure of the tree we will show that ∃𝑓1 ∈
𝔉𝑉𝑙,1⟷𝑉𝑙,2 . 𝜙(𝑓1, =𝛴𝑆) implies ∃𝑓2 ∈ 𝔉𝑉𝑙,2⟷𝑉𝑙,1 . 𝜙(𝑓2, =𝛴𝑆) for all 𝑙 ∈ ℒ𝐴.

(Base Case) Let 𝐷1 and 𝐷2 be labeled trees without children, thus ∀𝑙 ∈ ℒ𝐴. |𝑉𝑙,1| =

|𝑉𝑙,2| = 0. Then the set 𝔉𝑉𝑙,1⟷𝑉𝑙,2 contains only the empty mapping 𝑓0 which satis-

fies the mapping condition 𝜙(𝑓0, =𝛴𝑆) and which is also a member of 𝔉𝑉𝑙,2⟷𝑉𝑙,1 .

Thus, it holds that 𝐷2 =ΣS 𝐷1.
(Step Case) Let 𝐷1 or 𝐷2 be labeled trees with at least one child, thus ∃𝑙 ∈
ℒ𝐴. |𝑉𝑙,1| = |𝑉𝑙,2| > 0. In the case that the direct tree layer contains no children, the
reasoning is analogously to the base case. In the case that the direct tree layer has at
least one child, the set 𝔉𝑉𝑙,1⟷𝑉𝑙,2 contains by the assumption at least one (bijective)

function 𝑓1 that satisfies the mapping condition 𝜙(𝑓1, =𝛴𝑆), that is ∀(𝑥, 𝑦) ∈

𝑓1. 𝑥 =𝛴𝑆 𝑦. The inverse function 𝑓1;1 is a member of 𝔉𝑉𝑙,2⟷𝑉𝑙,1 and by the induc-

tion hypothesis it satisfies the mapping condition 𝜙(𝑓1;1, =𝛴𝑆), that is ∀(𝑦, 𝑥) ∈

𝑓1
;1. 𝑦 =𝛴𝑆 𝑥. Thus, it holds that 𝐷2 =ΣS 𝐷1.

Semantic Changes 57

(3) Transitivity: ∀𝐷1, 𝐷2, 𝐷3 ∈ 𝒟. (.(𝐷1 =ΣS 𝐷2) ∧ (𝐷2 =𝛴𝑆 𝐷3)/ ⇒ (𝐷1 =𝛴𝑆 𝐷3))

We have to show that 𝐷1 ≈ 𝐷3 and |𝒯(𝐷1,𝐷3)
<ΣS | > 0 follows from 𝐷1 =ΣS 𝐷2 and

𝐷2 =ΣS 𝐷3. It holds that 𝐷1 ≈ 𝐷2 and 𝐷2 ≈ 𝐷3, hence we have 𝐿(𝐷1) = 𝐿(𝐷2) =

𝐿(𝐷3) = 𝑙0 and 𝐷1 ≈ 𝐷3. For all 𝑙 ∈ ℒ𝐴 let 𝜑𝑙 ≔ 𝛴𝑂(𝑙0, 𝑙) be the relevance of the
order of the layer 𝑙 in 𝐷1, 𝐷2 and 𝐷3. Let 𝑉𝑙,𝑖 = 𝒞𝑙(𝐷𝑖) be the direct subtree layer 𝑙

for the tree 𝐷𝑖 with 𝑖 ∈ *1,2,3+. We have to show that |𝒯(𝐷1,𝐷2)
<ΣS | > 0 and |𝒯(𝐷2,𝐷3)

<ΣS | >

0 imply |𝒯(𝐷1,𝐷3)
<ΣS | > 0, thus that for all 𝑙 ∈ ℒ𝐴 it follows that ∃𝑓𝑙 ∈ Ω𝑉𝑙,1↔𝑉𝑙,2

<ΣS and

∃𝑓𝑙 ∈ Ω𝑉𝑙,2↔𝑉𝑙,3
<ΣS imply ∃𝑓𝑙 ∈ Ω𝑉𝑙,1↔𝑉𝑙,3

<ΣS . By induction over the structure of the tree

we will show that the properties ∃𝑓1 ∈ 𝔉𝑉𝑙,1⟷𝑉𝑙,2 . 𝜙(𝑓1, =ΣS) and ∃𝑓2 ∈

𝔉𝑉𝑙,2⟷𝑉𝑙,3 . 𝜙(𝑓2, =ΣS) imply ∃𝑓3 ∈ 𝔉𝑉𝑙,1⟷𝑉𝑙,3 . 𝜙(𝑓3, =ΣS) for all 𝑙 ∈ ℒ𝐴.

(Base Case) Let 𝐷1, 𝐷2 and 𝐷3 be labeled trees without children, thus ∀𝑙 ∈
ℒ𝐴. |𝑉𝑙,1| = |𝑉𝑙,2| = |𝑉𝑙,3| = 0. Then the sets 𝔉𝑉𝑙,1⟷𝑉𝑙,2 and 𝔉𝑉𝑙,2⟷𝑉𝑙,3 contain only

the empty mapping 𝑓0 which satisfies the mapping condition 𝜙(𝑓0, =𝛴𝑆). This map-

ping is also a member of 𝔉𝑉𝑙,1⟷𝑉𝑙,3 satisfying the mapping condition. Thus, it holds

that 𝐷1 =ΣS 𝐷3.
(Step Case) Let 𝐷1, 𝐷2 or 𝐷3 be labeled trees with at least one child, thus ∃𝑙 ∈
ℒ𝐴. |𝑉𝑙,1| = |𝑉𝑙,2| = |𝑉𝑙,3| > 0 . In the case that the direct tree layer contains no
children, the reasoning is analogously to the base case. In the case that the direct
tree layer has at least one child, the set 𝔉𝑉𝑙,1⟷𝑉𝑙,2 contains by the assumption at least

one (bijective) function 𝑓1 that satisfies the mapping condition 𝜙(𝑓1, =𝛴𝑆), that is

∀(𝑥, 𝑦) ∈ 𝑓1. 𝑥 =𝛴𝑆 𝑦. Furthermore, the set 𝔉𝑉𝑙,2⟷𝑉𝑙,3 contains also by the assump-

tion at least one (bijective) function 𝑓2 that satisfies the mapping condition
𝜙(𝑓2, =𝛴𝑆), that is ∀(𝑥, 𝑦) ∈ 𝑓2. 𝑥 =𝛴𝑆 𝑦. The composition 𝑓3 ≔ 𝑓1 ∘ 𝑓2 is a mem-

ber of 𝔉𝑉𝑙,1⟷𝑉𝑙,3 and by the induction hypothesis it satisfies the mapping condition

𝜙(𝑓3, =𝛴𝑆), that is ∀(𝑥, 𝑦) ∈ 𝑓3. 𝑥 =𝛴𝑆 𝑦. Thus, it holds that 𝐷1 =ΣS 𝐷3.

∎

The similarity order and the similarity key of subtrees in an interface document can be
declaratively configured by a similarity specification. This is a static document-specific
specification which is usually defined once when setting up the interface document.

58 Semantic Similarity

4.2 Semantic Similarity

Having defined the semantic equality for labeled trees, we now define semantic similarity
of labeled trees. The step from semantic equality to similarity requires only the compari-
son of the key subtrees in the layers of a labeled tree. Therefore, we restrict the full tree
matching mappings to tree key matching mappings as follows.

Definition 4.2.1 (Tree Key Matching Mappings): Let 𝐷1, 𝐷2 be equally labeled trees
with 𝐿(𝐷1) = 𝐿(𝐷2) = 𝑙0 and let 𝑃 be a predicate over pairs of labeled trees. Further-
more, let 𝑉𝑙,1 ≔ 𝒞𝑙(𝐷1) and 𝑉𝑙,2 ≔ 𝒞𝑙(𝐷2) be the children in the layer 𝑙 of the trees 𝐷1
and 𝐷2, and let 𝐹 ≔ 𝛴𝐾(𝑙0, 𝑙) be the similarity keys of that layer. Then 𝐾𝑙,1 ≔ 𝑉𝑙,1 |𝐹𝑙 and
𝐾𝑙,2 ≔ 𝑉𝑙,2 |𝐹𝑙 are the key children in the layer 𝑙 of the trees 𝐷1 and 𝐷2. We define the set
𝒦 of tree key matching mappings as follows:

𝒦(𝐷1,𝐷2)
𝑃 ∶= {⋃ 𝑓𝑙

𝑙∈ℒ𝐴

|𝑓𝑙 ∈ Ω𝐾𝑙,1 ↔ 𝐾𝑙,2
𝑃 }

The tree key matching mappings are defined with respect to a context 𝜅 = (ΣS, Λ) where
ΣS = (ΣO, ΣK) is a similarity specification, and Λ is a function from labeled trees to Bool-
ean values. Then the context 𝜏𝑙 = (𝜑𝑙, 𝐶𝑙) for Ω is computed for every layer 𝑙 by 𝜑𝑙 ≔
Σ𝑂(𝑙0, 𝑙) and 𝐶𝑙 ≔ {𝑥 ∈ 𝑉𝑙,1|Λ(x)}. By default, we define Λ as Λ⊥ such that 𝐶𝑙 ≔ ∅. We
omit the context when it can be inferred. The tree key matching mappings are all bijective
multi-functions between corresponding subtrees labeled with a similarity key in the chil-
dren of the labeled trees 𝐷1 and 𝐷2, respecting the subtree partitioning by the layers of the
tree and their order. Continuing our example from Definition 4.1.6, let 𝐿(𝐷1) = 𝐿(𝐷2) =
𝑙0, we define the similarity keys as Σ𝐾(𝑙0, 𝑎) = *"𝐵"+ and Σ𝐾(𝑙0, 𝑐) = ∅. Then the tree
key matching mappings 𝒦(𝐷1,𝐷2)

≈ = *𝑓3 ∪ ∅+ contain exactly one mapping with 𝑓3 ≔

{((2, 𝐵), (3, 𝐵))}, in this case independent of the specific similarity order.
This allows us now to define that two labeled trees are semantically similar if they are

equally labeled and if there exists a tree key matching mapping.

Definition 4.2.2 (Semantic Similarity): Let ΣS = (ΣO, ΣK) be a similarity specification
and let 𝐷1, 𝐷2 be labeled trees. The semantic similarity of the labeled trees 𝐷1 and 𝐷2 with
respect to ΣS, denoted by 𝐷1 ≅ΣS 𝐷2, is a predicate over pairs of labeled trees and defined

as follows in the context of 𝜅 = (ΣS, Λ⊥):

𝐷1 ≅ΣS 𝐷2 ∶⇔ .(𝐷1 ≈ 𝐷2) ∧ |𝒦(𝐷1,𝐷2)
<ΣS | > 0/

Semantic Changes 59

Intuitively, two labeled trees are semantically similar if they have the same label and their
layers are pairwise semantically similar. Two equally labeled layers are semantically sim-
ilar if there exists a mapping between the similarity keys in these layers that matches the
conditions of semantic equality.

In contrast to semantic equality, the semantic similarity requires only a mapping of the
key children, not a complete mapping of all children. Analogously to semantic equality,
we can state that the semantic similarity of labeled trees is an equivalence relation.

Lemma 4.2.3 (Semantic Similarity is an Equivalence Relation): Let ΣS = (ΣO, ΣK) be
a similarity specification. The semantic similarity of labeled trees ≅ΣS is an equivalence

relation on the set of labeled trees 𝒟.

Proof: Analogously to Lemma 4.1.8.

∎

It is obvious that semantic equality of two labeled trees implies their semantic similarity.

Lemma 4.2.4 (Semantic Equality implies Semantic Similarity): Let 𝐷1 and 𝐷2 be la-
beled trees and let ΣS = (ΣO, ΣK) be a similarity specification. The semantic equality
𝐷1 =ΣS 𝐷2 of these labeled trees implies their semantic similarity 𝐷1 ≅ΣS 𝐷2.

Proof: From 𝐷1 =ΣS 𝐷2 it follows that 𝐷1 ≈ 𝐷2 and 𝐿(𝐷1) = 𝐿(𝐷2) = 𝑙0. Let 𝑉𝑙,1 and
𝑉𝑙,2 be the children in the layer 𝑙 of the trees 𝐷1 and 𝐷2, and let 𝐾𝑙,1 and 𝐾𝑙,2 be the key
children. There exists a matching mapping 𝑓𝑙 ∈ Ω𝑉𝑙,1↔𝑉𝑙,2

<ΣS for all 𝑙 ∈ ℒ𝐴. Therefore, it

holds (recursively) that 𝑓𝑙|𝐾𝑙,1 ∈ Ω𝐾𝑙,1↔𝐾𝑙,2
≅ΣS and thus we have 𝐷1 ≅ΣS 𝐷2.

∎

Having defined the semantic similarity and equality, we are now able to introduce the
notion of change scripts, which are valid edit scripts which patch a labeled tree into an-
other labeled tree which is semantically equal to the given one.

Definition 4.2.5 (Change Script): Let 𝐷1, 𝐷1′ and 𝐷2 be labeled trees and let Σ𝑆 be a
similarity specification. The valid edit script Δ is a change script for 𝐷1 and 𝐷2 with re-
spect to ΣS if (𝐷1, Δ) ↪PATCH D1′ and 𝐷1′ =ΣS 𝐷2. The set of all change scripts for 𝐷1 and

𝐷2 with respect to Σ𝑆 is denoted by ℂΣ𝑆(𝐷1, 𝐷2).

60 Edit Costs

4.3 Edit Costs

In contrast to a classical revision control system, where an optimal change script is a
change script that changes as few nodes as possible in the tree, we are facing different
needs for interface documents in the context of the Change-Oriented Architecture.
Changing some elements in the interface document can result in large dependent modifi-
cations inside the interfaced system. By introducing the notion of an edit weight for la-
beled trees, the interfaced service component will be able to specify the collateral costs of
adding, deleting or modifying subtrees. These costs are then considered for computing a
minimum-cost change script. Let us first introduce the notion of weights.

Definition 4.3.1 (Weights): The well-ordered set of weights is the non-empty totally or-
dered set 𝒲 with the well-founded binary relation ≥ and the element 0 being the least
element of 𝒲. Furthermore, let 𝑆(𝑥) be the successor of 𝑥 for all 𝑥 ∈ 𝒲, then we define
the addition + on 𝒲 as follows for all 𝑥, 𝑦 ∈ 𝒲.

1) 𝑥 + 0 = 𝑥
2) 𝑥 + 𝑆(𝑦) = 𝑆(𝑥 + 𝑦)

In the following, we use the natural numbers defined by the standard Peano axioms as the
set of weights. Furthermore, we distinguish between delete and insert weights to distin-
guish the weights of existing labeled trees from the weights of new labeled trees.

The service component can provide for any existing labeled tree a weight that indicates
the collateral costs of deleting that labeled tree, for example a weight corresponding to the
amount of dependent objects. This defines the delete weight of existing labeled trees.

Definition 4.3.2 (Edit Weight): Let 𝐷 be an interface document. The edit weight
Σ𝑊 = (W;,W:) is a pair of a delete weight and an insert weight. The delete weight is a
total function W; from the set of all subtrees 𝒮(𝐷) to the weights 𝒲. Let 𝐷𝑥 be a subtree
of 𝐷. The weight W;(𝐷𝑥) indicates the collateral costs of deleting the subtree 𝐷𝑥. The
insert weight is a total function W: from the set of all labeled trees 𝔇 to the weights 𝒲.
Let 𝐷𝑥 be a labeled tree, the weight W:(𝐷𝑥) indicates the collateral costs of inserting the
labeled tree 𝐷𝑥.

In contrast to all introduced specifications so far, the edit weight is not defined over the
label of a subtree but directly over a specific subtree.

Semantic Changes 61

The service component has complete freedom in defining the delete and insert weight,
collectively called edit weight, for an interface document. However, the edit weight has to
satisfy the following consistency axiom.

Axiom 4.3.3 (Edit Weight Consistency): Let ΣS be a similarity specification and let 𝐷1,
𝐷2 be two labeled trees with 𝐷1 =ΣS 𝐷2. Let 𝑉1 ≔ 𝒞(𝐷1) be the children of the tree 𝐷1.

For an edit weight Σ𝑊 = (W;,W:) the following properties always hold:

1) W;(𝐷1) ≥ ∑ W;(𝐷𝑥)𝐷𝑥∈𝑉1

2) W:(𝐷1) ≥ ∑ W:(𝐷𝑥)𝐷𝑥∈𝑉1

3) W:(𝐷1) = W:(𝐷2)

The first two properties guarantee that the delete/insert weight of a labeled tree is always
at least as great as the sum of the delete/insert weights of all children of that labeled tree.
The last property ensures that semantically equal subtrees have the same insert weight.

This allows us to define the edit costs of an edit operation as the sum of the edit weights
of the deleted (Ψ;𝛿) and inserted (Ψ:𝛿) labeled trees and the edit costs of an edit script as
the sum of the edit costs of the contained edit operations.

Definition 4.3.4 (Edit Costs of an Edit Operation): Let Σ𝑊 = (W;,W:) be an edit
weight and δ be a valid edit operation for the labeled tree 𝐷. The edit costs of the edit
operation 𝛿, denoted by 𝜉(𝛿) , are defined as follows:

𝜉(𝛿) ≔ ∑ W;(Dk)

𝐷𝑘∈Ψ−
𝛿

 + ∑ W:(Dk)

𝐷𝑘∈Ψ+
𝛿

Definition 4.3.5 (Edit Costs of an Edit Script): Let Σ𝑊 be an edit weight and Δ be a
valid edit script for the labeled tree 𝐷. The edit costs of the edit script Δ, denoted by
𝜉(Δ) , are defined as follows:

𝜉(Δ) ≔ {
 𝜉(𝛿) + 𝜉(Δ′) 𝑖𝑓 Δ = 𝛿 ∗ Δ′

 0 𝑖𝑓 Δ = , -

62 Edit Granularity

4.4 Edit Granularity

The interface implementation of a service component is able to handle edit scripts up to a
specific level of granularity. In practice, too granular changes, that are too deep changes
in the labeled tree, have to be lifted to changes for parent elements such that the adequate
interface methods can be called. In order to natively support the computation of edit
scripts with an adequate granularity by the mediation module, we introduce the notion of
an edit limitation for labeled trees. Thus, the service component is able to provide the
mediation module a precise specification of its own level of change granularity.

Definition 4.4.1 (Edit Limitation): Let 𝐷 be an interface document. The edit limitation is
a total predicate Σ𝐿 from the set of all subtrees 𝒮(𝐷) to Boolean values. Let 𝐷𝑥 be a sub-
tree of 𝐷. The edit limitation Σ𝐿(𝐷𝑥) ∈ *⊤, ⊥+ indicates whether the labeled tree should be
replaced (⊤) if at least one change in a subtree is detected or whether the labeled tree
should be compared deeply (⊥).

Thus the edit limitation allows the service component to restrict precisely the granularity
of edit scripts. Note that the edit limitation of a subtree is irrelevant if one of its ancestors
is defined to be edit limited. In case of a detected change, the highest edit limited ancestor
has to be replaced anyway according to the definition of edit limitation.

As an illustrating example consider an interface document which contains mathemati-
cal theories with definitions, axioms, theorems and proofs. An interfaced proof assistant
system may have a mechanism for management of change that reacts on changes at the
granularity level of whole definitions, whole axioms, whole theorems and single proof
steps. Computing for example a detailed change script for a deep modification of an axi-
om is a waste of time and resources because the management of change mechanism treats
this change script anyway as a full replacement of the axiom. We enable change scripts to
accommodate to these granularity requirements by using an edit limitation on all defini-
tions, axioms and theorems in the interface document. Thus, a change script would then
for example completely replace an axiom if at least one change is detected in this axiom.

The following edit specification represents the service-specific configuration for
change computation of an interface document that can be sent to the mediation module in
order to obtain an optimal change script at an adequate level of change granularity. The
edit specification consists of two components which guide the service-specific computa-
tion of edit scripts for an interface document: the edit weight and the edit limitation.

Semantic Changes 63

Definition 4.4.2 (Edit Specification): An edit specification ΣE = (Σ𝑊, Σ𝐿) is a pair of
one edit weight Σ𝑊 and one edit limitation Σ𝐿.

The notion of change script needs now to be adapted to the edit weight and the edit limi-
tation. Furthermore, the current definition of change script allows for changing a subtree
of a labeled tree into one that is no longer semantically similar. At first sight, this might
not be an issue, but let us analyze the drawbacks for the example shown in Table 8.

 \theory{}[

 \theorem{}[

 \name{}["XY"],

 \conj{}["#2"]],

 \theorem{}[

 \name{}["YZ"],

 \conj{}["#3"]]]

 \theory{}[

 \theorem{}[

 \name{}["YZ"],

 \conj{}["#2"],

 \theorem{}[

 \name{}["XY"],

 \conj{}["#3"]]]

With the names of theorems being their similarity keys, a potential change script may be
the following valid edit script, which simply replaces the similarity key elements to estab-
lish the semantic equality.

[\replace{ target=/theory[1]/theorem[1]/name[1]/text[1] }

 [”YZ”],

 \replace{ target=/theory[1]/theorem[2]/name[1]/text[1] }

 [”XY”]]

We clearly do not want such a change script because the exchange of identities instead of
content is usually not an operation supported by an interfaced service component.

Additionally, the search space for the new subtrees is currently infinite. We want to re-
strict this space to the set of all subtrees of the target document. By Axiom 4.3.3 we know
that inserting a subtree or a semantically equal one produces equal edit costs. Since the
inserted subtree needs to be semantically equal to a subtree of the target document, we do
not loose potential solutions with lower edit costs by adding this restriction.

In the following, we introduce the notion of a limited change script that extends the
notion of change script by accounting for all these service-specific aspects. Thereby we
employ previously introduced notations like for example 𝒜𝐷(𝐷𝑥) for the set of ancestor
trees of a tree 𝐷𝑥 in a tree 𝐷, 𝒮(𝐷1) for the set of all subtrees of the tree 𝐷1 including the
tree 𝐷1 itself, 𝐷⃗⃗ for a reference to the subtree 𝐷, precisely a reference to the root node of
the subtree 𝐷, and Ψ:Δ for the set of subtrees inserted by the valid edit script Δ.

Table 8. Comparing two formal documents 𝐷1 (on the left) and 𝐷2 (on the right)

64 Edit Granularity

Definition 4.4.3 (Limited Change Script): Let 𝐷1 and 𝐷2 be labeled trees and let Σ𝑆 be a
similarity specification and ΣE = (ΣW, ΣL) be an edit specification. Let Δ be a change
script for 𝐷1 and 𝐷2 with respect to Σ𝑆. Hence, there exists a labeled tree 𝐷1′ with
(𝐷1, Δ) ↪PATCH D1

′ and 𝐷1′ =ΣS 𝐷2. We call Δ a limited change script for 𝐷1 and 𝐷2 with

respect to ΣS and ΣE if the following properties hold additionally:

1) Limited Edit Operations:

 ∀𝛿 ∈ Δ. ∀𝐷 ∈ 𝒜𝐷1(𝑡𝑎𝑟𝑔𝑒𝑡(𝛿)). Σ𝐿(𝐷) =⊥

2) Semantic Similarity Consistency:
 ∀𝐷 ∈ 𝒮(𝐷1). ∀𝐷

′ ∈ 𝒮(𝐷1
′). (.𝐷⃗⃗ = 𝐷′⃗⃗ ⃗/ ⇒ (𝐷 ≅ΣS 𝐷′))

3) Closed Edit Operations:
 ∀𝐷 ∈ Ψ:

Δ. 𝐷 ∈ 𝒮(𝐷2)

The set of all limited change scripts for 𝐷1 and 𝐷2 with respect to Σ𝑆 and ΣE is denoted by
𝕃Σ𝑆
ΣE(𝐷1, 𝐷2).

Property 1 guarantees that there is no edit operation targeting a labeled tree whose ante-
cedents contain a labeled tree that is limited by Σ𝐿. Indeed, this antecedent should have
been replaced according to the semantics of Σ𝐿. Property 2 ensures that all preserved sub-
trees are still semantically similar. Property 3 requires that any inserted subtree 𝐷 must be
a subtree of 𝐷2. This property reduces the search space for limited change scripts by an
order of magnitude.

Finally, we define the notion of an optimal change script as a limited change script with
minimal edit costs.

Definition 4.4.4 (Optimal Change Script): Let 𝐷1 and 𝐷2 be labeled trees and let Σ𝑆 be a
similarity specification and ΣE = (ΣW, ΣL) be an edit specification. Let Δ be a limited
change script for 𝐷1 and 𝐷2 with respect to Σ𝑆 and Σ𝐸. We call Δ an optimal change script
for 𝐷1 and 𝐷2 with respect to ΣS and ΣE if 𝜉(Δ′) ≥ 𝜉(Δ) holds for all limited change
scripts Δ′ for 𝐷1 and 𝐷2 with respect to ΣE and Σ𝑆. The set of all optimal change scripts
for 𝐷1 and 𝐷2 with respect to Σ𝑆 and ΣE is denoted by 𝕆Σ𝑆

ΣE(𝐷1, 𝐷2).

This raises the question whether an optimal change script always exists that describes the
changes between two labeled trees.

Semantic Changes 65

Lemma 4.4.5 (Existence of Optimal Change Script): Let 𝐷1 and 𝐷2 be labeled trees
and let Σ𝑆 be a similarity specification and ΣE = (ΣW, ΣL) be an edit specification. There
exists an optimal change script Δ for 𝐷1 and 𝐷2 with respect to ΣS and ΣE.

Proof: The edit script Δ0 = ,𝛿𝑅(𝐷1⃗⃗⃗⃗ , 𝐷2)- is always a change script for 𝐷1 and 𝐷2 with
respect to ΣS because Δ0 patches 𝐷1 into 𝐷2, which is clearly semantically equal to 𝐷2
with respect to Σ𝑆. Hence, there exists a labeled tree 𝐷1′ with (𝐷1, Δ0) ↪PATCH D1′ and
𝐷1
′ =ΣS 𝐷2. Furthermore, Δ0 is a limited change script with respect to ΣS and ΣE because

Property 1 holds since the root node does not have parents, Property 2 holds because

∀𝐷 ∈ 𝒮(𝐷1). ∀𝐷
′ ∈ 𝒮(𝐷1

′). 𝐷⃗⃗ ≠ 𝐷′⃗⃗ ⃗, and Property 3 because Ψ:
Δ0 = *𝐷2+. Thus, 𝑐0 =

𝜉(Δ0) is an upper bound of the edit costs of all optimal change scripts for 𝐷1 and 𝐷2 with
respect to ΣS and ΣE.

If Δ0 is an optimal change script, we are done, otherwise there exists a limited change
script Δ′ for 𝐷1 and 𝐷2 with respect to ΣS and ΣE with edit costs 𝑐′ = 𝜉(Δ′) and 𝑐0 > 𝑐′.
The strict total ordering > inferred from the well-founded total ordering ≥ on weights is
well-founded, too. Thus, any chain of limited change scripts, that is descending with re-
spect to their edit costs and >, is finite. In fact, the edit cost 0 of the empty edit script is
the least possible weight and a lower bound of the edit costs. Hence, the descending chain
that starts with Δ0 contains finitely many elements. Thus, there exists an optimal change
script Δ for 𝐷1 and 𝐷2 with respect to ΣS and ΣE, which is either Δ0 or the last element in
the descending chain.

∎

Let us briefly summarize the results of this chapter: We introduced a similarity specifica-
tion which can be used to configure the similarity order and similarity key of subtrees in
an interface document. This specification needs to be set up only once for the interface
document in a mediation module and can be considered static.

Furthermore, we introduced the edit specification which can be used to configure the
edit weight and edit limitation of subtrees in an interface document. This specification is
used by a service component to retrieve an optimal change script of an interface docu-
ment from a mediation module. The edit specification changes dynamically with every
request.

In this chapter, we introduced the constrained weighted tree alignment problem which
is the problem of computing an optimal change script between two labeled trees with re-
spect to a similarity specification and an edit specification.

66 Use Case

4.5 Use Case

Before we illustrate the different possibilities of the similarity specification and edit spec-
ification we need to define the concrete serialized representation of these specifications.
We begin with the similarity specification. By default, we define that all layers in all trees
are ordered and that they do not have any key elements. Thus, we have Σ𝑂(𝑙1, 𝑙2) = ⊤ and
Σ𝐾(𝑙1, 𝑙2) = ∅ for all 𝑙1 ∈ ℒ𝑉 and 𝑙2 ∈ ℒ𝐴. This default definition can now be overridden
for combinations of tree labels and layer labels as follows:

\similarity{}[

 \order{ name=“foo1”, layer=“bar”}[],

 \order{ name=“foo2”, layer=“bar”}[],

 \keys{ name=“foo1”, layer=“bar”}[“id”, “type”],

 \keys{ name=“foo2”, layer=“bar”}[“id”]]

This similarity specification corresponds to Σ𝑂("𝑓𝑜𝑜1", "𝑏𝑎𝑟") = Σ𝑂("𝑓𝑜𝑜2", "𝑏𝑎𝑟") =⊥
overriding the default similarity order, and to Σ𝐾("𝑓𝑜𝑜1", "𝑏𝑎𝑟") = * "𝑖𝑑", "𝑡𝑦𝑝𝑒" +,
Σ𝐾("𝑓𝑜𝑜2", "𝑏𝑎𝑟") = * "𝑖𝑑" + overriding the default empty similarity keys.

Practical Definition of Edit Weights. Regarding the edit specification, the difficulty
with the edit weight is that it has to satisfy the consistency criterions of Axiom 4.3.3.
Therefore, instead of asking the service component to give the full insert weight 𝑊: and
delete weight 𝑊; for all trees, we expect that the component just provides the additional
insert payload Υ: and delete payload Υ; for specific trees. Let 𝐷 be the interface docu-
ment and 𝐷𝑥 ∈ 𝒮(𝐷) be a subtree of 𝐷, then we define the edit weight by 𝑊:(𝐷𝑥) ≔
|𝐷𝑥| + ∑ Υ:(𝐷𝑘)𝐷𝑘∈𝒮(𝐷𝑥) and 𝑊;(𝐷𝑥) ≔ |𝐷𝑥| + ∑ Υ;(𝐷𝑘)𝐷𝑘∈𝒮(𝐷𝑥) . Thereby, the initial
payloads are by default the neutral weight 0 for all subtrees. This clearly satisfies the
structural criterions 1) and 2) of Axiom 4.3.3. Furthermore, we can guarantee criterion 3),
equal insert weight for semantically equal trees, by defining the insert payload over the
label of trees.

Practical Definition of Edit Limitations. Besides that, the service component needs also
a reasonable way to define the edit limitations for the subtrees in an interface document.
By default we define that there is no limitation for all subtrees 𝐷𝑥 ∈ 𝒮(𝐷). Then we allow
the service component to define global limitations and local limitations. In case of a
global limitation, the label of a tree 𝑙 ∈ ℒ𝑉 is given and the edit limitation Σ𝐿(𝐷𝑥) = ⊤
limits all subtrees 𝐷𝑥 with the label 𝐿(𝐷𝑥) = 𝑙. In case of a local limitation, the subtree
𝐷𝑘 is specified and thus limited by Σ𝐿(𝐷𝑘) = ⊤.

Semantic Changes 67

The edit payloads and the default edit limitation can be overridden as follows, using in
this example natural numbers as weights:

\edit{}[

 \weight{}[

 \insert{ name=“foo1”, weight=“10” }[],

 \delete{ path=/foo2[1] weight=“50” }[]],

 \limit{}[

 \global{ name=“foo1” }[],

 \local{ path=/foo2[1] }[]]]

This edit specification corresponds to Υ:(𝐷1) = 10 for all 𝐷1 with 𝐿(𝐷1) = "𝑓𝑜𝑜1" and
Υ;(𝐷2) = 10 for 𝐷2 referenced by the path /foo2[1]. Additionally, we override the
default edit limitation globally by Σ𝐿(𝐷3) = ⊤ for all 𝐷3 with 𝐿(𝐷3) = "𝑓𝑜𝑜1", and local-
ly by Σ𝐿(𝐷4) = ⊤ for 𝐷4 referenced by the path /foo2[1].

Let us now illustrate the specifications by considering a concrete example with the two
documents 𝐷1 and 𝐷2 as shown in Table 9. These documents contain two mathematical
theories which both consist of one axiom and two theorems. In order to concentrate on the
important parts of this example, we replaced complex mathematical conjectures by the
schema "#i".

𝑫𝒕𝒉𝒆𝒐𝒓𝒚 \theory{}[

𝑫𝒂𝒙𝒊𝒐𝒎 \axiom{}[

 \name{}["AB"]],

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟏 \theorem{}[

 \name{}["XY"],

 \conj{}["#3"]],

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟐 \theorem{}[

 \name{}["YZ"],

 \conj{}["#2"]]]

𝑫𝒕𝒉𝒆𝒐𝒓𝒚
′ \theory{}[

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟏
′ \theorem{}[

 \name{}["YZ"],

 \conj{}["#3"]],

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟐
′ \theorem{}[

 \name{}["XY"],

 \conj{}["#1"]],

𝑫𝒂𝒙𝒊𝒐𝒎
′ \axiom{}[

 \name{}["AB"]]]

Table 9. Comparing two mathematical documents 𝐷1 (on the left) and 𝐷2 (on the right)

There are almost always several valid change scripts that transform a document into an-
other one. Note that our motivation for computing the change script between two docu-
ments is not to obtain the most concise representation of the modifications. In addition to
conciseness, we are considering the similarity of subtrees, the collateral costs of changing
subtrees and the desired granularity of the service component that is going to react on the
change script. Let us explore these aspects in the following and observe how a different
specification influences the resulting change script.

68 Use Case

To begin, we compute the first optimal change script for 𝐷1 and 𝐷2 using the default simi-
larity specification ΣS, which postulates that every layer in the tree is ordered and that
every layer does not have any similarity keys. Furthermore, the service component uses
the default edit specification ΣE. Thereby, the edit weight Σ𝑊 = (W;,W:) assigns the
delete and insert weight according to ∀𝐷 ∈ 𝒮(𝐷1).W;(𝐷) = W:(𝐷) = |𝐷|. Thus the edit
weight reflects the size of the labeled tree, which is the standard edit weight used by the
majority of algorithms. Additionally, the service component defines no edit limitations,
hence we have ∀𝐷 ∈ 𝒮(𝐷1).≦Σ𝐿(𝐷). Altogether, we use the following specifications.

\similarity{}[]

\edit{}[]

An optimal change script for 𝐷1 and 𝐷2 with respect to ΣS and ΣE is the following one:

[\append{ target=/theory[1], layer=“content” }

 [\axiom{}[

 \name{}[“AB”]]],

 \replace{ target=/theory[1]/theorem[1]/name[1]/text[1] }

 [“YZ”],

 \replace{ target=/theory[1]/theorem[2]/name[1]/text[1] }

 [“XY”],

 \replace{ target=/theory[1]/theorem[2]/conj[1]/text[1] }

 [“#1”],

 \delete{ target=/theory[1]/axiom[1] }[]]

This change script is problematic since the name of a theorem, the unique identifier, gets
replaced. It is more desirable to change only the corresponding labeled subtrees, and to
completely remove non-matched subtrees. In particular, the change script has to preserve
the similarity relation of nodes. Therefore, let us change the similarity keys as follows
Σ𝐾("𝑡𝑕𝑒𝑜𝑟𝑒𝑚", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") = Σ𝐾("𝑎𝑥𝑖𝑜𝑚", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") = * "𝑛𝑎𝑚𝑒" +. By using the
label "𝑡𝑕𝑒𝑜𝑟𝑒𝑚" to assign the similarity key value, we assign this similarity key value to
any equally labeled subtree, that is the equivalence class of subtrees having the label
"𝑡𝑕𝑒𝑜𝑟𝑒𝑚". In this example, the new similarity key states that theorems and axioms are
identified by a child element having the label "𝑛𝑎𝑚𝑒". Only identified elements are
changed more deeply, not identified elements are always deleted. Altogether, we use the
following specifications now.

\similarity{}[

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[]

Semantic Changes 69

The effect on the resulting optimal change script is the following:

[\append{ target=/theory[1], layer=“content” }

 [\theorem{}[

 \name{}[“XY”],

 \conj{}[“#1”]],

 \axiom{}[

 \name{}[“AB”]]],

 \replace{ target=/theory[1]/theorem[2]/conj[1]/text[1] }

 [“#3”],

 \delete{ target=/theory[1]/axiom[1] }[],

 \delete{ target=/theory[1]/theorem[1] }[]]

The name of the theorem is no longer modified. Indeed, the last theorem is preserved with
its name and only its conjecture content is replaced. This change script is already a bit
more adequate than the previous one. Let us continue changing the similarity specifica-
tion. Assume the order of the axioms and theorems inside of a theory is not relevant for
the interfaced service component. We can change the similarity order of theories by
Σ𝑂("𝑡𝑕𝑒𝑜𝑟𝑦", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") =⊥. Thus we use the following specifications.

\similarity{}[

 \order{ name=“theory”, layer=“content”}[],

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[]

Then, we obtain the following optimal change script:

[\replace{ target=/theory[1]/theorem[1]/conj[1]/text[1] }

 [“#1”],

 \replace{ target=/theory[1]/theorem[2]/conj[1]/text[1] }

 [“#3”]]

Surprisingly this change script is even more concise than all previous change scripts by
taking the semantic similarity into account. Now, let us in addition to the previous case
assume that the granularity of the component interface is only implemented up to the lev-
el of theorems. Hence, the fine-grained information of this change script is too detailed
for the service component. By changing the edit limitation for theorems globally to
Σ𝐿(𝐷𝑥) = ⊤ for all subtrees 𝐷𝑥 in 𝐷1 with 𝐿(𝐷𝑥) = "𝑡𝑕𝑒𝑜𝑟𝑒𝑚", we are able to restrict the
granularity of the optimal change script. We use now the following specifications.

70 Use Case

\similarity{}[

 \order{ name=“theory”, layer=“content”}[],

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[

 \limit{}[

 \global{ name=“theorem” }[]]]

This results in the following change script which replaces both theorems by their modi-
fied versions.

[\replace{ target=/theory[1]/theorem[1] }

 [\theorem{}[\name{}[“XY”], \conj{}[“#1”]]],

 \replace{ target=/theory[1]/theorem[2] }

 [\theorem{}[\name{}[“YZ”], \conj{}[“#3”]]]]

We continue changing the specification by restoring the similarity order to its default with
∀𝑙 ∈ ℒ𝐴. ∀𝐷 ∈ 𝒮(𝐷1). Σ𝑂(𝐿(𝐷), 𝑙) because we assume now that the order is again rele-
vant for the service component. By using natural numbers as weights, let us assume fur-
ther that the collateral costs of changing the axiom are a value of 10 higher than usual
because for example 10 proofs depend on the axiom. Therefore, we define the delete pay-
load of the axiom subtree 𝐷𝑎𝑥𝑖𝑜𝑚 to be Υ;(𝐷𝑎𝑥𝑖𝑜𝑚) = 10. Hence, we use the following
specifications.

\similarity{}[

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[

 \weight{}[

 \delete{ path=/theory[1]/axiom[1] weight=“10” }[]],

 \limit{}[

 \global{ name=“theorem” }[]]]

It is now cheaper to remove and insert the theorems than changing the axiom, which re-
sults for example in the following optimal change script.

[\insert{ target=/theory[1]/axiom[1] }

 [\theorem{}[\name{}[“YZ”], \conj{}[“#3”]],

 \theorem{}[\name{}[“XY”], \conj{}[“#1”]]],

 \delete{ target=/theory[1]/theorem[1] }[],

 \delete{ target=/theory[1]/theorem[2] }[]]

Semantic Changes 71

4.6 Discussion

In the context of the tree-to-tree correction problem one usually differentiates between the
following three problems: (1) tree edit distance, (2) tree alignment distance, and (3) tree
inclusion. We will give a short overview of these problems and the state-of-the-art algo-
rithms for solving these problems. Then, we will discuss their relationship to our problem
which results from the paradigm of using documents as interfaces to service components.
Thereby, we focus in our problem setting on the computation of an optimal edit script
with respect to the semantics of the interface document, the edit weights of the subtrees of
this document and the granularity requirements of the interfaced service component.

Tree edit distance. This is the problem of computing the optimal edit script between two
trees, which is defined as a sequential edit script with minimal costs. Thereby, the costs of
the edit script are called the tree edit distance [Tai, 1979]. The costs of a sequential edit
script are calculated by using a given cost function defined on each edit operation and
satisfying the properties of a distance metric. Algorithms for the tree edit distance prob-
lem of ordered trees are given in [Zhang & Shasha, 1989], [Klein, 1998], [Chen, 2001]
and [Rönnau et al, 2009]. It has been shown in [Zhang et al, 1992] that algorithms with
polynomial time complexity exist only for special cases of this problem. Finally, there are
also solutions to a constrained variant of the tree edit distance problem ([Zhang, 1995],
[Richter, 1996]), that use a notion of similarity to keep as much of the structure of the
trees as possible.

Tree alignment distance. An alignment between two trees is obtained by first inserting
nodes with empty labels into both trees such that the trees become isomorphic when ig-
noring the labels. The tree alignment [Jiang et al, 1994] is then an overlay of both trees,
where each node is labeled by a pair of labels. The cost of an alignment is the sum of
costs of all pairs with different labels. The costs are computed by a given cost function
defining a distance metric for tree labels. Algorithms for the tree alignment distance prob-
lem of ordered trees are given in [Jiang et al, 1994] and [Jansson & Lingas, 2001]. The
first algorithm can be easily modified to handle the problem for unordered trees as well.

Tree Inclusion. As the name of the problem already indicates, the tree inclusion problem
[Knuth, 1969] determines whether a tree can be obtained from another tree by only delet-
ing nodes. Algorithms for the tree inclusion problem of ordered trees are given in
[Kilpelainen & Mannila, 1995], [Richter, 1997] and [Chen, 1998]. The first algorithm can
be easily modified to handle the problem for unordered trees as well.

72 Discussion

First of all, we need to classify our problem into one of these three classes. Thereby, we
can clearly exclude the tree inclusion problem. From a high-level point of view the differ-
ence between the tree edit and the tree alignment distance problem is that for the tree edit
a sequential edit script is computed whereas for the tree alignment a parallel edit script is
computed. According to our change model and the Definition 3.3.8 of a valid edit script
we apply edit operations simultaneously on a tree. Thus, we want to compute a parallel
edit script and we are looking for a solution to a tree alignment problem.

With the similarity specification we introduced possibilities to define the similarity or-
der of the trees, hence we indicate for every subtree whether we need to solve the ordered
or unordered tree alignment problem. Additionally, the similarity specification allows to
define the similarity keys of the trees. Together with the notion of change script in Defini-
tion 4.2.5 this defines a constrained version of the tree alignment distance problem.

Why not use or extend the existing algorithms? We would like to, but our change
model and edit specification are not compatible with the requirements of these algo-
rithms. Let us discuss the issues in more details:

Change model. The existing algorithms use a change model that includes the relabel
operation, an edit operation that substitutes the label of a subtree by another label. Unfor-
tunately, this operation is not available in our mediation context, because the subtrees in
an interface document correspond to knowledge entities in a component. A subtree has to
be deleted before a new subtree with different label is inserted at its position. Not having
the relabel operation has the side-effect that we cannot compute a tree alignment by simp-
ly ignoring the labels. This problem now heavily depends on possible subtree alignments.

Edit specification. The existing algorithms require the cost function to be a distance met-
ric. In our mediation context, we cannot ensure this requirement, because there is no rela-
tionship between the insert weight and the delete weight of a subtree. In practice, the de-
lete weight is often greater than the insert weight for the same subtree, which is not com-
patible with the symmetry of costs required by a distance metric. Furthermore, the limita-
tion of granularity is not natively supported, hence we would waste resources.

The only algorithm to the best of our knowledge that solves a subcase of our problem is
given in [Radzevich, 2006], an adaptation of [Jiang et al, 1994] for partial semantic simi-
larity. However, this algorithm is not an efficient solution for our constrained tree align-
ment problem because it requires all possible combinations of subtree alignments to be
solved. Furthermore, it only employs a pre-defined cost function, the standard distance
metric, and it does not deal with the limitation of edit granularity.

Computing Changes 73

5 Computing Changes

In this chapter we will develop a new algorithm for solving the constrained weighted tree
alignment problem, which has been introduced in the previous chapter. The issue of ap-
plying the state-of-the-art algorithm in [Radzevich, 2006] to our problem is essentially the
recursive nature of that algorithm. In order to compute the optimal changes between two
trees, that algorithm requires the optimal changes between all possible combinations of
children to be computed. Regardless of the input trees, that algorithm always performs the
maximal number of tree comparisons. Since we expect in the Change-Oriented Architec-
ture frequent small changes in a relatively large interface document, this is a severe per-
formance drawback.

The main idea of our algorithm is to reduce the constrained weighted tree alignment
problem to a search problem. We accomplish this goal by introducing the notion of a
change script modulo, which is a partially computed change script where some pairs of
subtrees are considered semantically equal by postulation. This set of critical tree pairs is
the set of remaining tasks. By adding the change scripts for each of these pairs of subtrees
we can complete a change script modulo to a full change script. The search for an optimal
change script between two trees starts with an empty change script modulo the pair of
both initial trees. Then, the search for an optimal change script proceeds as follows. In
every search step, we select one of the least cost change script modulo and select one of
the task subtree pairs. For this pair of subtrees we compute all combinations of change
scripts modulo pairs of semantically similar children. The original change script modulo
is then extended, hence the search graph is dynamically expanded by the resulting set of
change scripts modulo. The search for an optimal change script terminates when a least
cost change script modulo an empty set is selected for expansion.

This chapter starts with an introduction of partial matching mappings between labeled
trees and the notion of change script modulo critical tree pairs. We prove that change
scripts modulo can be extended to full change scripts. Then we describe the generation of
change scripts modulo from the partial matching mappings of a tree layer. We prove that
these change scripts modulo correctly expand critical tree pairs. To find the optimal solu-
tion in the space of change scripts modulo, we use Dijkstra’s algorithm [Dijkstra, 1959]
for the single-source shortest-path-to-goal problem. We adapt this algorithm to the dy-
namic expansion of the search graph of change scripts modulo. We prove the termination,
soundness and completeness of our algorithm. Finally, we illustrate the algorithm with a
use case before we compare the average runtime complexity of our algorithm with the
state-of-the-art algorithm given in [Radzevich, 2006].

74 Critical Tree Pairs

5.1 Critical Tree Pairs

In contrast to the state-of-the-art algorithm we do not compute the change script by com-
paring both trees bottom-up. Instead we explore the change script search space by com-
paring both trees top-down. Thereby the strategy is to extend partial matching mappings
to full matching mappings by computing a change script modulo. We will first introduce
the new concepts of matching mappings.

Definition 5.1.1 (Partial Matching Mappings): Let 𝑉1, 𝑉2 be sequences of labeled trees,
let 𝑃 be a predicate over pairs of labeled trees. We define the set ω of partial matching
mappings between sequences of labeled trees as follows:

ω𝑉1↔𝑉2
P ∶= {𝑓 ∈ 𝔐𝑉1⟷𝑉2

 |𝜙(𝑓, 𝑃)}

The partial matching mappings are defined with respect to a context 𝜏 = (𝜑, 𝐶) where 𝜑
is a Boolean value indicating the relevance of the order and where the sequence 𝐶 ⊆ 𝑉1
contains the elements of 𝑉1 which can be mapped to multiple elements of 𝑉2. We define
𝐶 ≔ ∅ as the default unless explicitly specified. We omit the context 𝜏 in the notation
when it can be inferred. The set ω contains all bijective multi-mappings which respect the
order (𝜑 = ⊤) or not (𝜑 =⊥) between corresponding labeled trees in 𝑉1 and 𝑉2, where
the correspondence is defined by the predicate 𝑃.

In contrast to the Definition 4.1.5 of matching mappings Ω, we do not require a corre-
sponding mapping partner tree for each labeled tree in 𝑉1. This definition of partial
matching mappings implies that subsets of partial matching mappings are on their own
valid partial matching mappings.

For example, let 𝑉1 = ,𝐴, 𝐵, 𝐶- and 𝑉2 = ,𝐶, 𝐴- be sequences of labeled trees without
children with 𝐿(𝐴) = "𝐴", 𝐿(𝐵) = "𝐵" and 𝐿(𝐶) = "𝐶". In the ordered case 𝜏 = (⊤, ∅),
the set ω𝑉1↔𝑉2

≈ = *∅, 𝑓1, 𝑓2+ contains 𝑓1 ≔ {((1, 𝐴), (2, 𝐴))} and 𝑓2 ≔ {((3, 𝐶), (1, 𝐶))}.

In the unordered case 𝜏′ = (⊥, ∅), the set ω𝑉1↔𝑉2
≈ = *∅, 𝑓1, 𝑓2, 𝑓3+ contains additionally

𝑓3 ≔ {((1, 𝐴), (2, 𝐴)), ((3, 𝐶), (1, 𝐶))}. Let 𝑉3 = 𝑉4 = ,𝐸- be a sequence of a labeled tree
without children with 𝐿(𝐸) = "𝐸". Then we have the set ω𝑉3↔𝑉4

≈ = *∅, 𝑓4+ with 𝑓4 ≔

{((1, 𝐸), (1, 𝐸))} in both the ordered and the unordered case.

Computing Changes 75

In the context of the tree alignment problem, we are only interested in the partial match-
ing mappings with maximal coverage.

Definition 5.1.2 (Maximal Partial Matching Mappings): Let 𝑉1, 𝑉2 be sequences of
labeled trees, let 𝑃 be a predicate over pairs of labeled trees. We define the set ϖ of max-
imal partial matching mappings between sequences of labeled trees as follows:

ϖ𝑉1↔𝑉2
P ∶= {𝑓 ∈ ω𝑉1↔𝑉2

P |≦∃g ∈ ω𝑉1↔𝑉2
P . 𝑓 ⊊ 𝑔}

The maximal partial matching mappings are defined with respect to a context 𝜏 = (𝜑, 𝐶)
with 𝐶 ≔ ∅ by default. We omit the context when it can be inferred. The set ϖ contains
all maximal bijective multi-mappings which respect the order (𝜑 = ⊤) or not (𝜑 =⊥)
between corresponding labeled trees in 𝑉1 and 𝑉2, where the correspondence is defined by
the predicate 𝑃. It follows that ϖ𝑉1↔𝑉2

P ⊆ ω𝑉1↔𝑉2
P .

Continuing our example from Definition 5.1.1, the set ϖ𝑉1↔𝑉2
≈ = *𝑓1, 𝑓2+ contains

𝑓1 ≔ {((1, 𝐴), (2, 𝐴))} and 𝑓2 ≔ {((3, 𝐶), (1, 𝐶))} in the ordered case 𝜏 = (⊤, ∅). In the
unordered case 𝜏′ = (⊥, ∅), the set ϖ𝑉1↔𝑉2

≈ = *𝑓3+ contains the only maximal matching

mapping 𝑓3 ≔ {((1, 𝐴), (2, 𝐴)), ((3, 𝐶), (1, 𝐶))}. Furthermore, the set ϖ𝑉3↔𝑉4
≈ = *𝑓4+ con-

tains 𝑓4 ≔ {((1, 𝐸), (1, 𝐸))} in both the ordered and the unordered case.

Analogously to the Definition 4.1.6 of tree matching mappings, we can combine maximal
partial matching mappings to maximal partial tree matching mappings.

Definition 5.1.3 (Maximal Partial Tree Matching Mappings): Let 𝐷1, 𝐷2 be labeled
trees, let 𝑃 be a predicate over pairs of labeled trees. Furthermore, let 𝑉𝑙,1 ≔ 𝒞𝑙(𝐷1) and
𝑉𝑙,2 ≔ 𝒞𝑙(𝐷2) be the children in the layer 𝑙 of the trees 𝐷1 and 𝐷2. We define the set ℳ
of maximal partial tree matching mappings as follows:

ℳ(𝐷1,𝐷2)
𝑃 ∶= {⋃ 𝑓𝑙

𝑙∈ℒ𝐴

|𝑓𝑙 ∈ ϖ𝑉𝑙,1↔𝑉𝑙,2
𝑃 }

The maximal partial tree matching mappings are defined with respect to a context
𝜅 = (ΣS, Λ) where ΣS = (ΣO, ΣK) is a similarity specification, and Λ is a function from
labeled trees to Boolean values. Then the context 𝜏𝑙 = (𝜑𝑙, 𝐶𝑙) for ϖ is computed for eve-
ry layer 𝑙 with 𝜑𝑙 ≔ Σ𝑂(𝑙0, 𝑙) and 𝐶𝑙 ≔ {𝑥 ∈ 𝑉𝑙,1|Λ(x)}.

76 Critical Tree Pairs

Hence, the function Λ indicates which subtrees of 𝐷1 may match multiple subtrees of 𝐷2.
We define Λ⊥ to assign ⊥ to every labeled tree such that 𝐶𝑙 ≔ ∅ for every layer 𝑙. By de-
fault we assume a context 𝜅 = (ΣS, Λ⊥) with an arbitrary similarity specification ΣS. We
omit the context in the notation when it can be inferred. The maximal partial tree match-
ing mappings are all combinations of all maximal partial matching mappings between
corresponding subtrees of 𝐷1 and 𝐷2.

Continuing our example from Definition 5.1.1, we define two labeled trees 𝐷1 and 𝐷2
with 𝒞𝑎(𝐷1) ≔ 𝑉1, 𝒞𝑎(𝐷2) ≔ 𝑉2, 𝒞𝑐(𝐷1) ≔ 𝑉3 and 𝒞𝑐(𝐷2) ≔ 𝑉4. The maximal partial
tree matching mappings is the set ℳ(𝐷1,𝐷2)

≈ = *𝑓1 ∪ 𝑓4, 𝑓2 ∪ 𝑓4+ if Σ𝑆 defines 𝜑𝑎 = ⊤. If Σ𝑆

defines 𝜑𝑎 =⊥, then we have ℳ(𝐷1,𝐷2)
≈ = *𝑓3 ∪ 𝑓4+ independent of the similarity order 𝜑𝑐.

In the context of semantic change computation by search we want to delete non-matched
subtrees, adapt the matched ones and insert missing subtrees. Therefore, we are only in-
terested in extensible tree matching mappings that are extensions of a tree key matching
mapping, an element of the set 𝒦(𝐷1,𝐷2)

𝑃 as introduced in Definition 4.2.1. The reason is

that all adapted subtrees have to be semantically similar to the original subtree, which is
the similarity consistency required by limited change scripts.

Definition 5.1.4 (Extensible Tree Matching Mappings): Let 𝐷1, 𝐷2 be labeled trees, let
𝑃 be a predicate over pairs of labeled trees. We define the set 𝒠 of extensible tree match-
ing mappings as follows:

𝒠(𝐷1,𝐷2)
𝑃 ∶= {𝑓 ∈ ℳ(𝐷1,𝐷2)

𝑃 |∃𝑔 ∈ 𝒦(𝐷1,𝐷2)
𝑃 . 𝑔 ⊆ 𝑓 }

The extensible tree matching mappings are defined with respect to a context 𝜅 = (ΣS, Λ)
and contain all maximal partial tree matching mappings that are extensions of a tree key
matching mapping. Thus, the similarity key children of every labeled tree preserve their
semantic similarity. By default we assume Λ ≔ Λ⊥. We omit the context in the notation
when it can be inferred.

Continuing our example, we define the similarity key of the layer 𝑎 to be the element
with the label "𝐵". Then the set of extensible tree matching mappings 𝒠(𝐷1,𝐷2)

≈ is empty

because none of the maximal partial tree matching mappings 𝑓 ∈ ℳ(𝐷1,𝐷2)
≈ extends a tree

key matching mapping 𝑔 ∈ 𝒦(𝐷1,𝐷2)
≈ . If we define the similarity key of the layer 𝑎 to be

the element with the label "𝐴" then the set 𝒠(𝐷1,𝐷2)
≈ = *𝑓1 ∪ 𝑓4+ contains an extensible tree

matching mapping if Σ𝑆 defines 𝜑𝑎 = ⊤. If Σ𝑆 defines 𝜑𝑎 =⊥, then we have 𝒠(𝐷1,𝐷2)
≈ =

*𝑓3 ∪ 𝑓4+ independent of the similarity order 𝜑𝑐.

Computing Changes 77

An extensible tree matching mapping is a set containing pairs of direct subtrees of two
labeled trees 𝐷1 and 𝐷2. We introduce the pairs of all tree layer subtrees as the set of tree
pairs of two labeled trees 𝐷1 and 𝐷2.

Definition 5.1.5 (Tree Pairs): Let 𝐷1 and 𝐷2 be labeled trees. A tree pair of 𝐷1 and 𝐷2 is
an element of the following set:

𝑇𝑃(𝐷1, 𝐷2) ≔ *(𝐷1, 𝐷2)+ ∪ *𝑇𝑃(𝑡1, 𝑡2)|(𝑡1, 𝑡2) ∈ 𝑇𝐿𝑃(𝐷1, 𝐷2)+

Tree pairs are a subset of all pairs of subtrees of 𝐷1 and 𝐷2. Let 𝐷1 and 𝐷2 be labeled
trees. A tree layer pair of 𝐷1 and 𝐷2 is an element of the following set:

𝑇𝐿𝑃(𝐷1, 𝐷2) ≔ ⋃ 𝒞𝑙(𝐷1) × 𝒞𝑙(𝐷2)

𝑙∈ℒ𝐴

Let Σ𝑆 be a similarity specification. We emphasize that an extensible tree matching map-
ping 𝑓 ∈ 𝒠(𝐷1,𝐷2)

≅ΣS contains only tree layer pairs, thus it holds that 𝑓 ⊆ 𝑇𝐿𝑃(𝐷1, 𝐷2). Since

the aim of the search for an optimal change script will be to reduce the remaining critical
tree pairs of a change script modulo, we need a measure for the size of tree pairs.

Definition 5.1.6 (Size of Tree Pairs): Let 𝐷1 and 𝐷2 be labeled trees, and let (𝑡1, 𝑡2) ∈
𝑇𝑃(𝐷1, 𝐷2) be a tree pair. The size of a tree pair (𝑡1, 𝑡2), denoted by WTP((𝑡1, 𝑡2)), is
defined as WTP((𝑡1, 𝑡2)) ≔ |𝑡1| + |𝑡2|.

A step in the search process will select a critical tree pair and compute the extensible tree
matching mappings for this pair of subtrees, together with change scripts that adapt the
non-matched subtrees. In order to prove later that this process is terminating, we need to
show that the size of a tree pair is greater than the size of the tree layer pairs given by an
extensible tree matching mapping.

Lemma 5.1.7 (Size Relation between Tree Pairs and Tree Layer Pairs): Let 𝐷1 and 𝐷2
be labeled trees, and let Σ𝑆 be a similarity specification. For all 𝑓 ∈ 𝒠

(𝐷1,𝐷2)

≅ΣS it holds that

WTP((𝐷1, 𝐷2)) > ∑ WTP((𝑡1, 𝑡2))

(𝑡1,𝑡2)∈𝑓

78 Critical Tree Pairs

Proof: Because of 𝑓 ∈ 𝒠
(𝐷1,𝐷2)

≅ΣS it holds that 𝑑𝑜𝑚(𝑓) ⊆ 𝒞(𝐷1) and 𝑟𝑎𝑛(𝑓) ⊆ 𝒞(𝐷2),

where 𝒞(𝐷𝑖) denotes the set of all children of 𝐷𝑖. Since 𝑓 is a bijective mapping (without
multiple matching), every child of 𝐷1 and 𝐷2 occurs at most once in an element of 𝑓.
Therefore it follows that

WTP((𝐷1, 𝐷2)) = |𝐷1| + |𝐷2| > ∑ |𝑡1|

𝑡1∈𝒞(𝐷1)

 + ∑ |𝑡2|

𝑡2∈𝒞(𝐷2)

 ≥ ∑ WTP((𝑡1, 𝑡2))
(𝑡1,𝑡2)∈𝑓

∎

Before we define change scripts modulo, we need to adapt the notions of semantic simi-
larity and semantic equality to allow for postulating this property for selected tree pairs.

Definition 5.1.8 (Semantic Equality Modulo): Let ΣS be a similarity specification and
𝐷1, 𝐷2 be labeled trees and 𝑡1 ∈ 𝒮(𝐷1), 𝑡2 ∈ 𝒮(𝐷2). Let Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) be a subset of
tree pairs of 𝐷1 and 𝐷2. The semantic equality of the trees 𝑡1 and 𝑡2 modulo Θ with re-
spect to Σ𝑆, denoted by 𝑡1 =ΣS

Θ 𝑡2, is a predicate over pairs of labeled trees and defined as

follows in the context of 𝜅 = (ΣS, Λ⊥):

𝑡1 =ΣS
Θ 𝑡2 ∶⇔ (((𝑡1, 𝑡2) ∈ Θ) ∨ (𝑡1 ≈ 𝑡2 ∧ |𝒯𝑡1↔𝑡2

<ΣS
Θ

| > 0))

Note that the set 𝒯 contains the tree matching mappings as introduced in Definition 4.1.6.
The semantic equality modulo is in principle semantic equality with an additional set of
tree pairs of which we postulate their semantic equality. An analogous relation holds for
the semantic similarity modulo.

Definition 5.1.9 (Semantic Similarity Modulo): Let ΣS be a similarity specification and
𝐷1, 𝐷2 be labeled trees and 𝑡1 ∈ 𝒮(𝐷1), 𝑡2 ∈ 𝒮(𝐷2). Let Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) be a subset of
tree pairs of 𝐷1 and 𝐷2. The semantic similarity of the trees 𝑡1 and 𝑡2 modulo Θ with re-
spect to Σ𝑆, denoted by 𝑡1 ≅ΣS

Θ 𝑡2, is a predicate over pairs of labeled trees and defined as

follows in the context of 𝜅 = (ΣS, Λ⊥):

𝑡1 ≅ΣS
Θ 𝑡2 ∶⇔ (((𝑡1, 𝑡2) ∈ Θ) ∨ (𝑡1 ≈ 𝑡2 ∧ |𝒦𝑡1↔𝑡2

<ΣS
Θ

| > 0))

Note that the set 𝒦 contains the tree key matching mappings which have been introduced
in Definition 4.2.1.

Computing Changes 79

Analogously to Lemma 4.1.8 it can be shown that these new notions of semantic similari-
ty modulo and semantic equality modulo are equivalence relations. This leads to the defi-
nition of the new notion of change script modulo which is a change script for two labeled
trees under the assumption that a given set of tree pairs is already semantically equal.

Definition 5.1.10 (Change Script Modulo): Let 𝐷1, 𝐷1′ and 𝐷2 be labeled trees and let Σ𝑆
be a similarity specification. Let Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) be a subset of tree pairs of 𝐷1 and 𝐷2
with the property ∀(𝑡1, 𝑡2) ∈ Θ. 𝑇𝑃(𝑡1, 𝑡2) ∩ Θ = *(𝑡1, 𝑡2)+. We call Θ a set of critical
tree pairs. Let Δ be an edit script that does not modify any tree contained in the set of
critical tree pairs Θ. The pair (Δ, Θ) is a change script for 𝐷1 and 𝐷2 modulo 𝛩 with re-
spect to ΣS if (𝐷1, Δ) ↪PATCH D1′ and 𝐷1′ =ΣS

Θ 𝐷2. The set of all change scripts for 𝐷1 and

𝐷2 modulo Θ with respect to Σ𝑆 is denoted by ℂΣ𝑆(𝐷1, 𝐷2, Θ).

In the context of semantic change computation by search we are going to successively
improve change scripts modulo by reducing the set of critical tree pairs. Therefore, it is
important to show that a change script modulo can be expanded by adding a change script
modulo for one of its critical tree pairs.

Lemma 5.1.11 (Expandability of Change Scripts Modulo): Let 𝐷1 and 𝐷2 be labeled
trees and let Σ𝑆 be a similarity specification and ΣE = (ΣW, ΣL) be an edit specification.

Let Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) and (Δ, Θ) ∈ ℂΣ𝑆(𝐷1, 𝐷2, Θ) hold. For all (𝑡1, 𝑡2) ∈ Θ and Δ′ ∈

ℂ𝛴𝑆(𝑡1, 𝑡2, Θ′) with Θ′ = ∅ or Θ′ ∈ 𝒠
(𝑡1,𝑡2)

≅ΣS , it holds that (Δ⊞ Δ′, Θ′′) ∈ ℂΣ𝑆(𝐷1, 𝐷2, Θ′′)

with Θ′′ ≔ (Θ*(t1, 𝑡2)+) ∪ Θ′ and 𝜉(Δ⊞ Δ′) ≥ 𝜉(Δ).

Proof: We have (Δ, Θ) ∈ ℂΣ𝑆(𝐷1, 𝐷2, Θ) and thus (𝐷1, Δ) ↪PATCH D1′ with 𝐷1′ =ΣS

Θ 𝐷2.

Because of (𝑡1, 𝑡2) ∈ Θ, it holds that 𝑡1 =ΣS
Θ 𝑡2. Furthermore, let Δ′ ∈ ℂ𝛴𝑆(𝑡1, 𝑡2, Θ′) with

Θ′ = ∅ or Θ′ ∈ 𝒠
(𝑡1,𝑡2)

≅ΣS . Then it holds that (𝑡1, Δ′) ↪PATCH t1′ with 𝑡1′ =ΣS
Θ′ 𝑡2. With

Θ′′ ≔ (Θ*(t1, 𝑡2)+) ∪ Θ′ it follows that 𝑡1′ =ΣS
Θ′′ 𝑡2 because Θ′ ⊆ Θ′′. Since Δ does not

modify any tree in 𝒮(𝑡1) by the Definition 5.1.10 of change script modulo, and since Δ′
only modifies trees in 𝒮(𝑡1), the union Δ⊞ Δ′ is a valid edit script. Additionally, it holds

that (𝐷1, Δ ⊞ Δ′) ↪PATCH D1′′ and 𝐷1′′ =ΣS
Θ′′ 𝐷2. Thus we have (Δ⊞ Δ′, Θ′′) ∈

ℂΣ𝑆(𝐷1, 𝐷2, Θ
′′). Furthermore, it holds that 𝜉(Δ⊞ Δ′) = 𝜉(Δ) + 𝜉(Δ′) ≥ 𝜉(Δ) since

𝜉(Δ′) ≥ 0 for all Δ′.

∎

80 Critical Tree Pairs

The expansion of change scripts modulo uses the property that an extensible tree match-
ing mapping contains tree pairs. This expansion principle is the key to understand the idea
of the search for an optimal change script, which is, successively completing a minimal
change script modulo towards a change script by reducing its set of critical tree pairs.

Since for example a replace operation can be represented by a delete and insert operation
with equal costs, we need means to talk about similar change scripts in general.

Definition 5.1.12 (Similar Change Script Modulo): Let 𝐷1 and 𝐷2 be labeled trees and
let Σ𝑆 be a similarity specification and ΣE be an edit specification. Let Δ1, Δ2 ∈
ℂΣ𝑆(𝐷1, 𝐷2, Θ) with Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2). The change script Δ1 is similar to the change script

Δ2, denoted by Δ1 ≅ΣE Δ2, if both change scripts delete the same subtrees, that is,

Ψ;
Δ1 = Ψ;

Δ2, and if they insert semantically equal trees, that is, |Ω
Ψ+
Δ1⟷Ψ+

Δ2

<ΣS | > 0 holds in

the context 𝜏 = (⊥, ∅).

Note that similar change scripts do not need to behave in the same way. The similarity of
change scripts is defined over the trees which they delete (Ψ;) and insert (Ψ:). Similar
change scripts delete the same subtrees in a labeled tree and insert semantically equal
trees. Thus we can show that their edit costs are equal.

Lemma 5.1.13 (Edit Cost Equality of Similar Change Scripts Modulo): Let ΣS be a
similarity specification, ΣE = (ΣW, ΣL) be an edit specification with Σ𝑊 = (W;,W:).
Furthermore, let 𝐷1, 𝐷2 be labeled trees. Let (Δ1, Θ),(Δ2, Θ) ∈ ℂΣ𝑆(𝐷1, 𝐷2, Θ) with

Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) and Δ1 ≅Σ𝐸 Δ2. Then it holds that the costs of both similar change scripts
are equal, that is, 𝜉(Δ1) = 𝜉(Δ2).

Proof: By Axiom 4.3.3 it follows that ∀𝑓 ∈ Ω

Ψ+
Δ1⟷Ψ+

Δ2

<ΣS . ∀𝐷 ∈ Ψ:
Δ1 .W:(𝐷) = W:(𝑓(𝐷)).

Thus we have:

𝜉(Δ1) = ∑ W;(Di)

𝐷𝑖∈Ψ−
Δ1

+ ∑ W:(Dk)

𝐷𝑘∈Ψ+
Δ1

 = ∑ W;(Di)

𝐷𝑖∈Ψ−
Δ2

+ ∑ W:(D𝑘)

𝐷𝑘∈Ψ+
Δ2

 = 𝜉(Δ2)

Hence the edit costs of similar change scripts are equal.
∎

Computing Changes 81

The notion of limited change scripts, as introduced in Definition 4.4.3, has to be adapted
as well to account for critical tree pairs. In particular, Property 1 will be extended to pre-
vent critical tree pairs of subtrees limited by Σ𝐿. This extension induces a normal form for
critical tree pairs in a way that a limited tree is either itself part of a critical tree pair or
not, but none of its descendant trees is allowed to be part of any critical tree pair. Fur-
thermore, the semantic similarity consistency defined by Property 2 has to be adapted
modulo critical tree pairs.

Definition 5.1.14 (Limited Change Script Modulo): Let 𝐷1, 𝐷1′ and 𝐷2 be labeled trees
and let Σ𝑆 be a similarity specification and ΣE = (ΣW, ΣL) be an edit specification. Let
Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) be a set of critical tree pairs of 𝐷1 and 𝐷2, and let Δ be an edit script. The
pair (Δ, Θ) is a limited change script for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS and ΣE if
(Δ, Θ) ∈ ℂΣ𝑆(𝐷1, 𝐷2, Θ) holds, thus (𝐷1, Δ) ↪PATCH 𝐷1′ and 𝐷1′ =ΣS

Θ 𝐷2, and if the follow-

ing properties hold.

1) Limited Edit Operations and Critical Tree Pairs
a) ∀𝛿 ∈ Δ. ∀𝐷 ∈ 𝒜𝐷1(𝑡𝑎𝑟𝑔𝑒𝑡(𝛿)). Σ𝐿(𝐷) =⊥

b) ∀(𝑡1, 𝑡2) ∈ Θ. ∀𝐷 ∈ 𝒜𝐷1(𝑡1). Σ𝐿(𝐷) =⊥
2) Semantic Similarity Consistency

 ∀𝐷 ∈ 𝒮(𝐷1). ∀𝐷
′ ∈ 𝒮(𝐷1

′). (.𝐷⃗⃗ = 𝐷′⃗⃗ ⃗/ ⇒ (𝐷 ≅ΣS
Θ 𝐷′))

3) Closed Edit Operations:
 ∀𝐷 ∈ Ψ:

Δ. 𝐷 ∈ 𝒮(𝐷2)

The set of all limited change scripts for 𝐷1 and 𝐷2 modulo Θ with respect to Σ𝑆 and ΣE is
denoted by 𝕃Σ𝑆

ΣE(𝐷1, 𝐷2, Θ).

Analogously to change scripts modulo, we need to prove that a limited change script
modulo can be expanded by adding a limited change script modulo for one of its critical
tree pairs. This statement is important for the validation of the expansion principle of the
search for an optimal change script.

Lemma 5.1.15 (Expandability of Limited Change Scripts Modulo): Let 𝐷1 and 𝐷2 be
labeled trees and let Σ𝑆 be a similarity specification and ΣE = (ΣW, ΣL) be an edit specifi-

cation. Let Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) and (Δ, Θ) ∈ 𝕃Σ𝑆
ΣE(𝐷1, 𝐷2, Θ). For all (𝑡1, 𝑡2) ∈ Θ and Δ′ ∈

𝕃Σ𝑆
ΣE(𝑡1, 𝑡2, Θ′) with Θ′ = ∅ or Θ′ ∈ 𝒠

(𝑡1,𝑡2)

≅ΣS , it holds that (Δ⊞ Δ′, Θ′′) ∈ 𝕃Σ𝑆
ΣE(𝐷1, 𝐷2, Θ′′)

with Θ′′ ≔ (Θ*(t1, 𝑡2)+) ∪ Θ′ and 𝜉(Δ⊞ Δ′) ≥ 𝜉(Δ).

82 Critical Tree Pairs

Proof: By Lemma 5.1.11 it follows that (Δ⊞ Δ′, Θ′′) ∈ ℂΣ𝑆(𝐷1, 𝐷2, Θ
′′) with Θ′′ ≔

(Θ*(t1, 𝑡2)+) ∪ Θ′ and 𝜉(Δ⊞ Δ′) ≥ 𝜉(Δ). Since (Δ, Θ) ∈ 𝕃Σ𝑆
ΣE(𝐷1, 𝐷2, Θ) and (Δ′, Θ′) ∈

𝕃Σ𝑆
ΣE(𝑡1, 𝑡2, Θ′) hold, we have to show that the Properties 1a, 1b, 2 and 3 are also satisfied

by Δ⊞ Δ′. Because (𝑡1, 𝑡2) ∈ Θ we know that ∀𝐷 ∈ 𝒜𝐷1(𝑡1). Σ𝐿(𝐷) =⊥. Hence we have

∀𝛿 ∈ Δ′. ∀𝐷 ∈ 𝒜𝐷1(𝑡𝑎𝑟𝑔𝑒𝑡(𝛿)). Σ𝐿(𝐷) =⊥ and it follows that Property 1a holds for

Δ ⊞ Δ′. Analogously, we have ∀(𝑡𝑥, 𝑡𝑦) ∈ Θ′. ∀𝐷 ∈ 𝒜𝐷1(𝑡𝑥). Σ𝐿(𝐷) =⊥ because
𝑡𝑥 ∈ 𝒞(𝑡1). Therefore, Property 1b holds for Δ ⊞ Δ′. Property 2 is satisfied by composi-
tion because Θ′ ⊆ Θ′′ and Θ*(t1, 𝑡2)+ ⊆ Θ′′ hold. Since 𝑡2 ∈ 𝒮(𝐷2) holds, the Property 3

is clearly satisfied, too. Thus, we have (Δ ⊞ Δ′, Θ′′) ∈ 𝕃Σ𝑆
ΣE(𝐷1, 𝐷2, Θ′′).

∎

Finally, the notion of optimal change scripts, as introduced in Definition 4.4.4, has to be
adapted as well to account for critical tree pairs. An optimal change script modulo is a
limited change script modulo with minimal edit costs.

Definition 5.1.16 (Optimal Change Script Modulo): Let 𝐷1 and 𝐷2 be labeled trees and
let Σ𝑆 be a similarity specification and ΣE be an edit specification. Let Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) be
a set of critical tree pairs of 𝐷1 and 𝐷2, and let Δ be an edit script. The pair (Δ, Θ) is an
optimal change script for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS and ΣE if (Δ, Θ) ∈

𝕃Σ𝑆
ΣE(𝐷1, 𝐷2, Θ) holds and if 𝜉(Δ′) ≥ 𝜉(Δ) holds for all (Δ′, Θ) ∈ 𝕃Σ𝑆

ΣE(𝐷1, 𝐷2, Θ). The set

of all optimal change scripts for 𝐷1 and 𝐷2 modulo Θ with respect to Σ𝑆 and ΣE is denot-

ed by 𝕆Σ𝑆
ΣE(𝐷1, 𝐷2, Θ).

Not every optimal change script modulo can be extended to an optimal change script. The
changes that turn out to be necessary to make the critical tree pairs semantically equal
may increase the costs arbitrarily. Thus, the strategy that we will use for the search of an
optimal change script, is the successive expansion of a critical tree pair of a limited
change script modulo with minimal costs. The question rises whether such an optimal
change script modulo always exists.

Lemma 5.1.17 (Existence of Optimal Change Script Modulo): Let 𝐷1 and 𝐷2 be la-
beled trees and let Σ𝑆 be a similarity specification and ΣE be an edit specification. Let
Θ ⊆ 𝑇𝑃(𝐷1, 𝐷2) be a set of critical tree pairs of 𝐷1 and 𝐷2 such that ∀(𝑡1, 𝑡2) ∈ Θ. ∀𝐷 ∈
𝒜𝐷1(𝑡1). Σ𝐿(𝐷) =⊥. Then there exists an optimal change script modulo (Δ, Θ) for 𝐷1 and
𝐷2 modulo Θ with respect to ΣS and ΣE.

Computing Changes 83

Proof: In the case of (𝐷1, 𝐷2) ∈ Θ, the edit script Δx = , - represents with (Δ𝑥, Θ) always
a change script for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS because 𝐷1 =ΣS

Θ 𝐷2. Further-

more, (Δ𝑥, Θ) is a limited change script modulo Θ with respect to ΣS and ΣE because
Property 1a and Property 3 hold since the edit script is empty. Property 1b holds by the
assumptions of this lemma, and Property 2 holds because of the reflexivity of ≅ΣS

Θ . Since

𝑐𝑥 = 𝜉(Δ𝑥) = 0 is both an upper and lower bound of the edit costs of all optimal change
scripts for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS and ΣE, it follows that (Δ𝑥, Θ) ∈

𝕆Σ𝑆
ΣE(𝐷1, 𝐷2, Θ).

In the case of (𝐷1, 𝐷2) ∉ Θ, the edit script Δ0 = ,𝛿𝑅(𝐷1⃗⃗⃗⃗ , 𝐷2)- represents with (Δ0, Θ)
always a change script for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS because Δ0 patches 𝐷1
into 𝐷2, which is clearly semantically equal to 𝐷2 with respect to Σ𝑆. Hence, there exists a
labeled tree 𝐷1′ with (𝐷1, Δ0) ↪PATCH D1′ and 𝐷1′ =ΣS

Θ 𝐷2. Furthermore, (Δ0, Θ) is a lim-

ited change script modulo Θ with respect to ΣS and ΣE because Property 1a hold since the
root node does not have parents. Property 1b holds by the assumptions of this lemma.

Property 2 holds because ∀𝐷 ∈ 𝒮(𝐷1). ∀𝐷′ ∈ 𝒮(𝐷1′). 𝐷⃗⃗ ≠ 𝐷′⃗⃗ ⃗, and Property 3 because

Ψ:
Δ0 = *𝐷2+. Thus, 𝑐0 = 𝜉(Δ0) is an upper bound of the edit costs of all optimal change

scripts for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS and ΣE.
If (Δ0, Θ) is an optimal change script modulo, we are done, otherwise there exists a

limited change script (Δ′, Θ) for 𝐷1 and 𝐷2 modulo Θ with respect to ΣS and ΣE with edit
costs 𝑐′ = 𝜉(Δ′) and 𝑐0 > 𝑐′. The strict total ordering > inferred from the well-founded
total ordering ≥ on weights is well-founded, too. Thus, any chain of limited change
scripts modulo is finite because it is descending with respect to their edit costs and >. In
fact, the edit cost 0 of the empty edit script is the least possible weight and a lower bound
of the edit costs. Hence, the descending chain that starts with (Δ0, Θ) contains finitely
many elements. Thus, there exists an optimal change script (Δ, Θ) for 𝐷1 and 𝐷2 with re-
spect to ΣS and ΣE, which is either (Δ0, Θ) or the last element in the descending chain.

∎

We introduced extensible tree matching mappings between labeled trees and we intro-
duced critical tree pairs. Based on these notions, we adapted the semantic equality and
similarity to account for critical tree pairs, which are assumed to fulfill the properties by
postulation. Finally, we introduced the notion of change scripts modulo critical tree pairs,
which is the fundamental concept of the search for an optimal change script. Thereby, the
search strategy is to expand always a limited change script modulo with minimal costs by
adding a limited change script modulo for a critical tree pair, and thus reducing the set of
critical tree pairs.

84 Change Script Generation

5.2 Change Script Generation

After having introduced the theoretical notions for the semantic change computation, let
us now take a look at algorithms for the generation of change scripts. All algorithms,
which we present in the following, operate in a predefined shared context consisting of a
similarity specification Σ𝑆 and an edit specification Σ𝐸. We begin with the algorithm for
the generation of change scripts for tree layers.

Definition 5.2.1 (Generating Layer Edit Scripts): Let 𝐷𝑥 and 𝐷𝑦 be labeled trees,

𝑙 ∈ ℒ𝐴 and let Σ𝑆 = (Σ𝐾, Σ𝑂) be a similarity specification. Let 𝑓 ∈ 𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 be an extensi-

ble tree matching mapping. The judgment of deriving the valid edit script Δ for the layer 𝑙
of the extensible tree matching mapping 𝑓 is denoted by (𝑓, 𝑙) ↪𝐷𝐸𝐿𝑇𝐴 Δ. The operation-
al semantics of ↪𝐷𝐸𝐿𝑇𝐴 is defined by the following inference rules. Thereby, we define
the set 𝑉: ≔ 𝒞𝑙(𝐷𝑦)\𝑟𝑎𝑛(𝑓) of non-matched (new) elements of 𝒞𝑙(𝐷𝑦) and the set
𝑉; ≔ 𝒞𝑙(𝐷𝑥)\𝑑𝑜𝑚(𝑓) of non-matched (old) elements of 𝒞𝑙(𝐷𝑥). In the ordered case
𝛴𝑂(𝐷𝑥, 𝑙) = ⊤, we furthermore generate from 𝑉: a function 𝑔̂ which assigns the maximal
contiguous subsequences 𝑉 of 𝑉: in 𝒞𝑙(𝐷𝑦) to the direct right sibling in 𝒞𝑙(𝐷𝑦) which is
in turn also an element of 𝑟𝑎𝑛(𝑓). If there is no such element in case of a tailing subse-
quence, this subsequence is assigned to 𝜀.

(ordered case)
𝛴𝑂(𝐷𝑥, 𝑙)

Δ1 ≔ [𝛿𝐼(𝑡 , 𝑉)|(𝑡, 𝑉) ∈ 𝑔̂]

Δ2 ≔ [𝛿𝐴(𝐷𝑥⃗⃗ ⃗⃗ , 𝑙, 𝑉)|(𝜀, 𝑉) ∈ 𝑔̂]

Δ3 ≔ [𝛿𝐸(𝑡)|𝑡 ∈ 𝑉;]

(𝑓, 𝑙) ↪ Δ1 ∷ Δ2 ∷ Δ3

(unordered case)
≦𝛴𝑂(𝐷𝑥, 𝑙)

Δ1 ≔ [𝛿𝐴(𝐷𝑥⃗⃗ ⃗⃗ , 𝑙, 𝑉:)|𝑉: ≠ , -]

Δ2 ≔ [𝛿𝐸(𝑡)|𝑡 ∈ 𝒳;]

(𝑓, 𝑙) ↪ Δ1 ∷ Δ2

In the ordered case 𝛴𝑂(𝐷𝑥, 𝑙), the non-matched children of 𝐷𝑦 on the layer 𝑙 are inserted
as ordered contiguous sequence before a matched subtree or appended if they form the
end of the children of 𝐷𝑦 on the layer 𝑙. In the orderless case ≦𝛴𝑂(𝐷𝑥, 𝑙), the resulting
valid layer edit script removes the children of 𝐷𝑥 that are not matched by 𝑓 on the layer 𝑙
and appends the children of 𝐷𝑦 on the layer 𝑙 not matched by 𝑓.

We can show that the resulting valid layer edit script contains closed edit operations,
which means that inserted trees are subtrees of 𝐷𝑦 and deleted trees are subtrees of 𝐷𝑥.

Table 10. Algorithm DELTA

Computing Changes 85

Lemma 5.2.2 (Closed Edit Operations of Layer Edit Script Modulo): Let 𝐷𝑥 and 𝐷𝑦
be labeled trees and let Σ𝑆 = (Σ𝐾, Σ𝑂) be a similarity specification. Let 𝑙 ∈ ℒ𝐴 and
𝑓 ∈ 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 . If we have (𝑓, 𝑙) ↪𝐷𝐸𝐿𝑇𝐴 Δl, then it holds that

1) Ψ;Δl = *𝑡|𝑡 ∈ 𝒞𝑙(𝐷𝑥)\𝑑𝑜𝑚(𝑓)+,
2) Ψ:

Δl = {𝑡|𝑡 ∈ 𝒞𝑙(𝐷𝑦)\𝑟𝑎𝑛(𝑓)}.

Proof: In the case of ≦𝛴𝑂(𝐷𝑥, 𝑙) the properties follow immediately from the construction
of the edit script. In the case of 𝛴𝑂(𝐷𝑥, 𝑙), the Property 1 follows immediately from the
construction, too. Furthermore, we have split the set 𝑉: ≔ 𝒞𝑙(𝐷𝑦)\𝑟𝑎𝑛(𝑓) into contigu-
ous subsequences for the function 𝑔̂. These subsequences are all inserted by the construc-
tion of the edit script. Therefore, the Property 2 is satisfied, too.

∎

Furthermore, the resulting edit script establishes a matching mapping on a tree layer if
applied to the source tree, which means there exists a bijective function between a tree
layer of 𝐷𝑥 and 𝐷𝑦 with respect to a similarity specification Σ𝑆.

Lemma 5.2.3 (Matching Mapping of Layer Edit Script Modulo): Let 𝐷𝑥 and 𝐷𝑦 be
labeled trees and let Σ𝑆 = (Σ𝐾, Σ𝑂) be a similarity specification. Let 𝑙 ∈ ℒ𝐴 and 𝑓 ∈
𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 . If we have (𝑓, 𝑙) ↪𝐷𝐸𝐿𝑇𝐴 Δl and (𝐷𝑥, Δ𝑙) ↪PATCH 𝐷𝑥′ , then it holds with

𝑉𝑙,1 ≔ 𝒞𝑙(𝐷𝑥
′) and 𝑉𝑙,2 ≔ 𝒞𝑙(𝐷𝑦) in the context 𝜏 = (𝜑𝑙, ∅) and 𝜑𝑙 ≔ ΣO(Dx

′ , l) that

|Ω𝑉𝑙,1↔𝑉𝑙,2

<ΣS
𝑓

| > 0.

Thereby, we use the tree pairs contained in an extensible tree matching mapping 𝑓 ∈
𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 as the set of critical tree pairs Θ = 𝑓 in the semantic equality modulo =ΣS
𝑓 .

Proof: We construct a mapping 𝑔 ∈ Ω𝑉𝑙,1↔𝑉𝑙,2
<ΣS
𝑓

 as follows: By Lemma 5.2.2 we know that

the inserted trees are subtrees of the target tree. Therefore we map these trees onto them-
selves with 𝑕 ≔ {(𝑡, 𝑡)|𝑡 ∈ Ψ:

Δl}. In case of ΣO(Dx′ , l) = ⊤ the order is respected by the
construction of Δ𝑙. Finally, we construct 𝑔 ≔ 𝑕 ∪ 𝑓.

∎

86 Change Script Generation

By composing the generated layer edit scripts we are able to define an algorithm for gen-
erating change scripts modulo with respect to a given similarity specification Σ𝑆.

Definition 5.2.4 (Generating Change Scripts Modulo): Let 𝐷𝑥 and 𝐷𝑦 be labeled trees
and let Σ𝑆 be a similarity specification. The judgment of deriving the set 𝑆 of change
scripts modulo for 𝐷𝑥 and 𝐷𝑦 with respect to Σ𝑆 from the set of extensible tree matching
mappings 𝐹 ⊆ 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 is denoted by 𝐹 ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 𝑆. The operational semantics of

↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 is defined by the following inference rules.

Δ ≔ ⊞

𝑙∈ℒ𝐴
*Δ𝑙|(𝑓, 𝑙) ↪𝐷𝐸𝐿𝑇𝐴 Δ𝑙+

𝐹 ↪ 𝑆
*𝑓+ ∪ 𝐹 ↪ *(Δ, 𝑓)+ ∪ 𝑆

∅ ↪ ∅

The algorithm ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 iterates on the given set of extensible tree matching mappings
and computes for every mapping a change script modulo. We use the tree pairs contained
in an extensible tree matching mapping 𝑓 ∈ 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 as the set of critical tree pairs Θ = 𝑓

in the change script modulo (Δ, 𝑓). Thereby, the algorithm ↪𝐷𝐸𝐿𝑇𝐴 is used to compute a
valid edit script for every tree layer that does establish semantic equality on that layer
modulo the mapped tree pairs. Thus, the union of all layer edit scripts is a change script
modulo critical tree pairs, precisely the tree pairs contained in the specific extensible tree
matching mapping.

The definition states that the algorithm computes change scripts modulo for 𝐷𝑥 and 𝐷𝑦
with respect to a given similarity specification Σ𝑆. We will prove the correctness of this
statement and additionally that this change script modulo is a limited change script modu-
lo with respect to Σ𝑆 and a given edit specification Σ𝐸 if the tree 𝐷𝑥 is not edit limited,
that is ≦𝛴𝐿(𝐷𝑥) holds, and if both trees 𝐷𝑥 and 𝐷𝑦 are semantically similar, that is

𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 holds.

Lemma 5.2.5 (Correctness of Generated Change Scripts Modulo): Let 𝐷𝑥 and 𝐷𝑦 be
labeled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 = (Σ𝑊, Σ𝐿) be an edit specifi-
cation. Furthermore, let ≦𝛴𝐿(𝐷𝑥), 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 and 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 𝑆. Then, for all

(Δ, Θ) ∈ 𝑆 it holds that (Δ, Θ) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ).

Table 11. Algorithm GENERATE

Computing Changes 87

Proof: We show that for all (Δ, Θ) ∈ 𝑆 it holds that (Δ, Θ) ∈ ℂΣS(𝐷𝑥, 𝐷𝑦, Θ), which means

that (𝐷𝑥, Δ) ↪PATCH Dx′ and 𝐷𝑥′ =ΣS
Θ 𝐷𝑦. By Lemma 3.3.10 it holds that Δ is a valid edit

script as the union of valid edit scripts for different tree layers. By definition of ↪𝐷𝐸𝐿𝑇𝐴
we know that Δ does not modify any tree contained in the critical tree pairs Θ.
From 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 it follows that 𝐷𝑥 ≈ 𝐷𝑦, and since 𝐷𝑥 is neither replaced nor removed

by Δ, we have 𝐷𝑥′ ≈ 𝐷𝑦. It remains to be shown that |𝒯
(𝐷𝑥
′ ,𝐷𝑦)

<ΣS
Θ

| > 0 holds. By Lemma

5.2.3 we know that |Ω𝑉𝑙,1↔𝑉𝑙,2
<ΣS
Θ

| > 0 holds for all 𝑙 ∈ ℒ𝐴 with 𝑉𝑙,1 ≔ 𝒞𝑙(𝐷𝑥
′) and 𝑉𝑙,2 ≔

𝒞𝑙(𝐷𝑦) in the context 𝜏 = (𝜑𝑙, ∅) and 𝜑𝑙 ≔ ΣO(Dx
′ , l). Thus there exists at least one ele-

ment of 𝒯
(𝐷𝑥
′ ,𝐷𝑦)

<ΣS
Θ

 as the composition of elements from Ω𝑉𝑙,1↔𝑉𝑙,2
<ΣS
Θ

 for all 𝑙 ∈ ℒ𝐴. Therefore

we have (Δ, Θ) ∈ ℂΣS(𝐷𝑥, 𝐷𝑦, Θ).

It remains to be shown that all resulting change scripts modulo satisfy the properties of

limited change scripts modulo, too. The Properties 1a and 1b of limited change scripts

modulo are satisfied because ≦𝛴𝐿(𝐷𝑥) holds and the edit operations in Δ target 𝐷𝑥 or one
of its direct subtrees, furthermore we have Θ ⊆ 𝑇𝑃(𝐷𝑥, 𝐷𝑦). The Properties 2 and 3 are
satisfied by Lemma 5.2.2 as follows. Since all 𝑓 ∈ 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 map the key subtrees of 𝐷𝑥

and 𝐷𝑦, they are neither replaced nor removed by Δ, hence Property 2 holds. Inserted

trees are trees in 𝒞(𝐷𝑦) which are clearly member of 𝒮(𝐷𝑦), thus Property 3 holds. Alto-

gether, it follows that (Δ, Θ) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ) for all (Δ, Θ) ∈ 𝑆.

∎

Additionally, we can show that the resulting limited change scripts modulo are optimal.

Lemma 5.2.6 (Optimality of Generated Change Scripts Modulo): Let 𝐷𝑥 and 𝐷𝑦 be

labeled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 = (Σ𝑊, Σ𝐿) be an edit specifi-
cation. Furthermore, let ≦𝛴𝐿(𝐷𝑥), 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 and 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 𝑆. Then, for all

(Δ, Θ) ∈ 𝑆 it holds that (Δ, Θ) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ).

Proof: By Lemma 5.2.5 we know that Δ ∈ 𝕃𝛴𝑆

𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ) holds for all (Δ, Θ) ∈ 𝑆. Fur-

thermore, let 𝑓 ∈ 𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 be an extensible tree matching mapping. For the corresponding

generated limited change script (Δ, Θ) it holds that Θ = 𝑓. The children of 𝐷𝑥 that are not
matched by 𝑓 are not semantically similar to any non-matched children of 𝐷𝑦 in the same

layer because of the maximality of 𝑓.

88 Change Script Generation

Since the semantic similarity is an equivalence relation by Lemma 4.1.8 we are not al-
lowed to modify the non-matched children of 𝐷𝑥 because this would violate the semantic
similarity consistency of limited change scripts modulo. Thus, the only option is to delete
the non-matched children. The missing children in a layer, which are the non-matched
children of 𝐷𝑦 in that layer, have to be inserted with respect to the order.

By the closed edit operations property of limited change scripts modulo, these inserted
trees are subtrees of 𝐷𝑦. Therefore the generated limited change script modulo (Δ, Θ) is
similar to an optimal change script modulo (Δ′, Θ). By Lemma 5.1.13 both change scripts

modulo have the same costs. Thus, we have (Δ, Θ) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ).

∎

So far we considered the generation of optimal change scripts modulo for the case
≦𝛴𝐿(𝐷𝑥) with 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦. Let us now consider the general case.

Definition 5.2.7 (Expanding Critical Tree Pairs): Let 𝐷𝑥 and 𝐷𝑦 be labeled trees and let
Σ𝑆 be a similarity specification and Σ𝐸 = (Σ𝑊, Σ𝐿) be an edit specification. The judgment
of deriving the set 𝑆 of change scripts modulo for 𝐷𝑥 and 𝐷𝑦 with respect to Σ𝑆 from the
pair of labeled trees (𝐷𝑥, 𝐷𝑦) is denoted by (𝐷𝑥, 𝐷𝑦) ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆. The operational seman-
tics of ↪𝐸𝑋𝑃𝐴𝑁𝐷 is defined by the following inference rules. The algorithm distinguishes
four different cases.

(limited and not semantically equal)

𝛴𝐿(𝐷𝑥)

≦(𝐷𝑥 =𝛴𝑆 𝐷𝑦)

(𝐷𝑥, 𝐷𝑦) ↪ {([𝛿𝑅(𝐷𝑥, 𝐷𝑦)], ∅)}

(not limited and not semantically similar)
≦𝛴𝐿(𝐷𝑥)

≦(𝐷𝑥 ≅𝛴𝑆 𝐷𝑦)

(𝐷𝑥, 𝐷𝑦) ↪ {([𝛿𝑅(𝐷𝑥, 𝐷𝑦)], ∅)}

(limited and semantically equal)

𝛴𝐿(𝐷𝑥)
𝐷𝑥 =𝛴𝑆 𝐷𝑦

(𝐷𝑥 , 𝐷𝑦) ↪ *(, -, ∅)+

(not limited and semantically similar)
≦𝛴𝐿(𝐷𝑥)
𝐷𝑥 ≅𝛴𝑆 𝐷𝑦

𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 𝑆

(𝐷𝑥, 𝐷𝑦) ↪ 𝑆

Table 12. Algorithm EXPAND

Computing Changes 89

In the case of an edit limitation for the tree 𝐷𝑥 with 𝛴𝐿(𝐷𝑥), the algorithm ↪𝐸𝑋𝑃𝐴𝑁𝐷 only
needs to check for the semantic equality of both trees 𝐷𝑥 =𝛴𝑆 𝐷𝑦. If they are not semanti-

cally equal, then the tree 𝐷𝑥 is replaced by the tree 𝐷𝑦 with the returned change script
modulo. If they are semantically equal, then the algorithm returns an empty change script
modulo an empty set of critical tree pairs.

In the case of no edit limitation for the tree 𝐷𝑥 with ≦𝛴𝐿(𝐷𝑥), the algorithm ↪𝐸𝑋𝑃𝐴𝑁𝐷

first checks for the semantic similarity of both trees 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦. If they are not semanti-

cally similar, then the tree 𝐷𝑥 is replaced by the tree 𝐷𝑦 with the returned change script

modulo. If they are semantically similar, then the algorithm computes the set of extensi-

ble tree matching mappings 𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 and uses the algorithm ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 for computing the

corresponding set of change scripts modulo. Such a change script modulo establishes the
semantic equality on every tree layer modulo the set of critical tree pairs defined by an
extensible tree matching mapping.

We will show now the correctness of the algorithm by proving additionally that the com-
puted change scripts modulo for 𝐷𝑥 and 𝐷𝑦 with respect to a given similarity specification
Σ𝑆 are limited change scripts modulo with respect to Σ𝑆 and a given edit specification Σ𝐸.

Lemma 5.2.8 (Correctness of Expanding Critical Tree Pairs): Let 𝐷𝑥 and 𝐷𝑦 be la-
beled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification. Fur-
thermore, let (𝐷𝑥, 𝐷𝑦) ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆. Then, for all (Δ, Θ) ∈ 𝑆 it holds that (Δ, Θ) ∈
𝕃𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ).

Proof: In the case of Σ𝐿(𝐷𝑥) and 𝐷𝑥 =𝛴𝑆 𝐷𝑦 it holds that (, -, ∅) ∈ 𝕃𝛴𝑆

𝛴𝐸(𝐷𝑥, 𝐷𝑦 , ∅) be-

cause , - is a change script for 𝐷𝑥 and 𝐷𝑦, and all properties of limited change script mod-

ulo are clearly satisfied. In the case of Σ𝐿(𝐷𝑥) and ≦(𝐷𝑥 =𝛴𝑆 𝐷𝑦) it holds that

([𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦)], ∅) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, ∅) because [𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦)] is a change script for 𝐷𝑥 and

𝐷𝑦, the Properties 1a, 1b and 2 are clearly satisfied and Property 3 by the fact that

𝐷𝑦 ∈ 𝒮(𝐷𝑦) holds. The case of ≦𝛴𝐿(𝐷𝑥) and ≦(𝐷𝑥 ≅𝛴𝑆 𝐷𝑦) is analogously. In the last

case of ≦𝛴𝐿(𝐷𝑥) and 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 it holds for 𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 𝑆 by Lemma 5.2.5 that

we have (Δ, Θ) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ) for all (Δ, Θ) ∈ 𝑆.

∎

90 Change Script Generation

Lemma 5.2.9 (Optimality of Expanding Critical Tree Pairs): Let 𝐷𝑥 and 𝐷𝑦 be labeled
trees, let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification. Furthermore,
let (𝐷𝑥, 𝐷𝑦) ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆. Then, for all (Δ, Θ) ∈ 𝑆 it holds that (Δ, Θ) ∈ 𝕆𝛴𝑆

𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ).

Proof: By Lemma 5.2.8 we know that (Δ, Θ) ∈ 𝕃𝛴𝑆

𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ) holds for all (Δ, Θ) ∈ 𝑆.

In the case of Σ𝐿(𝐷𝑥) and 𝐷𝑥 =𝛴𝑆 𝐷𝑦 it holds that (, -, ∅) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, ∅) because the

edit cost of , - is the global minimum. In the case of Σ𝐿(𝐷𝑥) and ≦(𝐷𝑥 =𝛴𝑆 𝐷𝑦) it holds

that all limited change scripts modulo have to delete 𝐷𝑥 and insert 𝐷𝑦 because of the

Properties 1a and 3. Therefore the limited change script modulo ([𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦)], ∅) is

similar to all (Δ′, ∅) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, ∅). Hence we have ([𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦)], ∅) ∈

𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, ∅) by Lemma 5.1.13. In the case of ≦(𝛴𝐿(𝐷𝑥)) and ≦(𝐷𝑥 ≅𝛴𝑆 𝐷𝑦) it holds

that all limited change scripts have to delete 𝐷𝑥 and insert 𝐷𝑦 because of the Properties 2

and 3. Therefore the limited change script ([𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦)], ∅) is similar to all (Δ′, ∅) ∈

𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, ∅). Hence we have ([𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦)], ∅) ∈ 𝕆𝛴𝑆

𝛴𝐸(𝐷𝑥, 𝐷𝑦, ∅) by Lemma 5.1.13.

In the last case of ≦𝛴𝐿(𝐷𝑥) and 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 it holds for 𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 𝑆 by Lemma

5.2.6 that we have (Δ, Θ) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝐷𝑥, 𝐷𝑦, Θ) for all (Δ, Θ) ∈ 𝑆.

∎

Finally, we observe that either no new critical tree pair is added, or the critical tree level
pairs given by an extensible tree matching mapping.

Lemma 5.2.10 (Limited Expansion of Critical Tree Pairs): Let 𝐷𝑥 and 𝐷𝑦 be labeled
trees and let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification. Further-
more, let (𝐷𝑥 , 𝐷𝑦) ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆. Then, for all (Δ, Θ) ∈ 𝑆 it holds that either Θ = ∅ or
Θ ∈ 𝒠

(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 .

Proof: In both cases with Σ𝐿(𝐷𝑥) this follows from the construction. In the case of
≦(𝛴𝐿(𝐷𝑥)) with ≦(𝐷𝑥 ≅𝛴𝑆 𝐷𝑦) it holds also by construction. In the case of ≦(𝛴𝐿(𝐷𝑥))

and 𝐷𝑥 ≅𝛴𝑆 𝐷𝑦 it follows immediately from the operational semantics of ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸.

∎

Computing Changes 91

5.3 Change Graph Search

After introducing the building blocks for the generation of change scripts we will now
develop an efficient algorithm for computing an optimal change script by the exploration
of the search space of limited change scripts modulo. The general idea of reducing the
change computation to a search problem is to start the search with the source document
and to use valid edit scripts to successively transform this document into the target docu-
ment (or a semantically equal one). The problem with this approach is the unrestricted
and therefore infinite search space. To the best of our knowledge, there is as yet no effi-
cient method to restrict the search space in such a way that an optimal change script is
still guaranteed to be in the search space.

The essence of the method which we will present in this chapter is to restrict the search
space by considering the optimization problem modulo a set of critical tree pairs. The key
to this change of representation is that the nodes in the change graph represent sets of
critical tree pairs. They can thus be interpreted as tasks to compute an optimal change
script for each contained critical tree pair. We will start the search with an empty change
script, which is a limited change script modulo the critical tree pair of the source and tar-
get tree. Then, we will dynamically expand the search space by expanding a critical tree
pair of one of the current limited change scripts modulo. Thereby, we compute an optimal
change script modulo tree level pairs of the selected critical tree pair with minimal cost.
When we find a limited change script modulo an empty set of critical tree pairs and this
change script has minimal edit cost, we finally have constructed an optimal change script.

Let us now introduce the notion of a change graph, which is a representation for a sub-
set of the search space, the current expansion towards an optimal change script.

Definition 5.3.1 (Change Graph): Let 𝐷1 and 𝐷2 be labeled trees. A change graph
𝐶 = (𝑉, 𝐴) for 𝐷1 and 𝐷2 is a directed acyclic graph consisting of a finite set of nodes
𝑉 ⊆ 𝒫(𝑇𝑃(𝐷1, 𝐷2)), which are subsets of tree pairs of 𝐷1 and 𝐷2, and a finite set of edg-
es 𝐴 ⊆ 𝑉 × 𝑉 × 𝐷1Δ, which connect nodes by a valid edit script for 𝐷1. The graph contains
exactly one root node 𝑣0 = *(𝐷1, 𝐷2)+ without incoming edges. Furthermore, we define
the following notions:

1) Active Nodes
The set of active nodes Ο𝐶 = *𝑣𝑥 ∈ 𝑉|≦∃(𝑣1, 𝑣2, Δ) ∈ 𝐴. 𝑣1 = 𝑣𝑥+ contains all
nodes without outgoing edges.

92 Change Graph Search

2) Change Path
The change graph contains a change path 𝑝 = ,𝑣0, … , 𝑣𝑛- if 𝑣𝑖 ∈ 𝑉 for 𝑖 ∈
*0,… , 𝑛+ and (𝑣𝑖 , 𝑣𝑖:1, Δ𝑖:1) ∈ 𝐴 for 𝑖 ∈ *0,… , 𝑛 − 1+.

3) Path Edges
We denote the set of path edges of a change path 𝑝 by
𝐴𝐶(𝑝) ≔ *(𝑣𝑖 , 𝑣𝑖:1, Δ𝑖:1) ∈ 𝐴|0 ≤ 𝑖 ≤ 𝑛 − 1+.

4) Change Paths
For all 𝑣 ∈ 𝑉*𝑣0+ the set of change paths 𝒴𝐶(𝑣) contains all change paths from
𝑣0 to 𝑣. We require the change graph to be connected such that |𝒴𝐶(𝑣)| > 0 for
all 𝑣 ∈ 𝑉*𝑣0+.

5) Change Path Script
The change path script Δ(𝑝) of the change path 𝑝 is defined by Δ(𝑝) ≔

⊞
𝑖∈*0,…,𝑛;1+

Δ𝑖:1 with (𝑣𝑖 , 𝑣𝑖:1, Δ𝑖:1) ∈ 𝐴𝐶(𝑝).

6) Node Size
The node size WC(𝑣) for any node 𝑣 ∈ 𝑉 is defined by WC(𝑣) ≔ ∑ WTP(𝜇)𝜇∈𝑣 .
Note that a node 𝑣 is a set of tree pairs and thus 𝜇 ∈ 𝑣 is a tree pair.

7) Goal Node
The goal node is ∅, the empty set of tree pairs.

The nodes in the change graph are sets of critical tree pairs that still have to be made se-
mantically equal. This set still contains open change computation tasks. The edges in the
change graph contain optimal tree layer change scripts modulo. The idea is to start the
search at the root node and to dynamically expand an active node with minimal cost until
the goal node is an active node with minimal cost. To define the costs of a node in the
change graph we first introduce the notion of an optimal change path script for a node.

Definition 5.3.2 (Optimal Change Path Script): Let 𝐷1 and 𝐷2 be labeled trees, let Σ𝑆
be a similarity specification and let Σ𝐸 be an edit specification. Let 𝐶 = (𝑉, 𝐴) be a
change graph for 𝐷1 and 𝐷2, and 𝑣0 ∈ 𝑉 the root node with 𝑣0 = *(𝐷1, 𝐷2)+. For the root
node 𝑣0 we define the optimal change path script as Δ𝐶(𝑣0) ≔ , -. An optimal change
path script Δ𝐶(𝑣) for a node 𝑣 ∈ 𝑉*𝑣0+ is defined by Δ𝐶(𝑣) ≔ Δ(𝑝) where the path 𝑝
satisfies the following properties:

1) Change Path
𝑝 ∈ 𝒴𝐶(𝑣)

2) Minimal Cost Change Path Script
∀𝑝′ ∈ 𝒴𝐶(𝑣). 𝜉(Δ(𝑝

′)) ≥ 𝜉(Δ(𝑝))

Computing Changes 93

Then we can define the change path cost of a node as the cost of an optimal change path
script for that node. With this notion of change path cost we can also introduce the set of
minimal cost active nodes of a change graph.

Definition 5.3.3 (Change Path Cost): The change path cost 𝜉𝐶(𝑣) for any node 𝑣 ∈
𝑉*𝑣0+ are defined by 𝜉𝐶(𝑣) ≔ 𝜉 .Δ𝐶(𝑣)/. For the root node 𝑣0 we define the change

path cost by 𝜉𝐶(𝑣0) ≔ 0. Furthermore, we define the set of minimal cost active nodes of a
change graph 𝐶 by 𝛱𝐶 = *𝑣𝑥 ∈ Ο𝐶|∀𝑣 ∈ Ο𝐶 . 𝜉𝐶(𝑣) ≥ 𝜉𝐶(𝑣𝑥)+.

Using the example change graph shown in Figure 9 we will discuss the different notions
introduced with the change graph. The nodes of the change graph are represented in the
figure by circles containing the set of critical tree pairs of that node. We use the box label
𝑣𝑖 shown above any node to easily refer to it. The node 𝑣0 is the root of this example tree.
Nodes are connected by edges labeled by a valid edit script Δ𝑖.

The set of active nodes for this change graph is Ο𝐶 = *𝑣3, 𝑣4+ because these nodes do
not have outgoing edges. The set of change paths for the node 𝑣3 is 𝒴𝐶(𝑣3) =
*,𝑣0, 𝑣1, 𝑣3-, ,𝑣0, 𝑣2, 𝑣3-+ and for the node 𝑣4 is 𝒴𝐶(𝑣4) = *,𝑣0, 𝑣2, 𝑣4-+. Examples for
change path scripts are Δ(,𝑣0, 𝑣1, 𝑣3-) = Δ1⊞Δ3, Δ(,𝑣0, 𝑣2, 𝑣3-) = Δ2⊞Δ4 and
Δ(,𝑣0, 𝑣2, 𝑣4-) = Δ2⊞Δ5. Let the costs of the valid edit scripts in the change graph be
given by 𝜉(Δ1) = 10, 𝜉(Δ2) = 5, 𝜉(Δ3) = 3, 𝜉(Δ4) = 6 and 𝜉(Δ5) = 8.

Θ0

Θ2

Θ3

Θ1

Θ4

𝑣0

𝑣1 𝑣2

𝑣3 𝑣4

Δ1 Δ2

Δ4 Δ5

Figure 9. Example of a change graph

Δ3

94 Change Graph Search

The optimal change path script for the node 𝑣3 is Δ𝐶(𝑣3) = Δ(,𝑣0, 𝑣2, 𝑣3-) and for the

node 𝑣4 is Δ𝐶(𝑣4) = Δ(,𝑣0, 𝑣2, 𝑣4-). The change path cost for the node 𝑣3 is 𝜉𝐶(𝑣3) =
5 + 6 = 11 and for the node 𝑣4 is 𝜉𝐶(𝑣4) = 5 + 8 = 13. Thus, the set of minimal cost
active nodes is 𝛱𝐶 = *𝑣3+. Hence, the node 𝑣3 is the best choice for expansion. As we
outlined before, we do not explore the complete search space but a restricted subset.

Definition 5.3.4 (Restricted Change Graph): Let 𝐷1 and 𝐷2 be labeled trees, let Σ𝑆 be a
similarity specification and let Σ𝐸 be an edit specification. The change graph 𝐶 = (𝑉, 𝐴)
is a restricted change graph for 𝐷1 and 𝐷2 if there exists for all edges (𝑣1, 𝑣2, Δ) ∈ 𝐴 a
critical tree pair (𝑡1, 𝑡2) ∈ 𝑣1 such that 𝑣2 = (𝑣1*(𝑡1, 𝑡2)+) ∪ Θ with:

1) Limited Expansion
Θ = ∅ or Θ ∈ 𝒠(𝑡1,𝑡2)

≅𝛴𝑆

2) Optimal Expansion
(Δ, Θ) ∈ 𝕆𝛴𝑆

𝛴𝐸(𝑡1, 𝑡2, Θ)

Property 1 guarantees that between connected nodes exactly one critical tree pair is ex-
panded either by providing the final solution with Θ = ∅ or by expanding exactly one tree
layer using an extensible tree matching mapping Θ ∈ 𝒠(𝑡1,𝑡2)

≅𝛴𝑆 . Furthermore, Property 2

requires that the connecting valid edit script is an optimal change script modulo Θ for the
expanded pair of trees 𝑡1 and 𝑡2.

We show now that all change path scripts for a path in a restricted change graph are lim-
ited change scripts modulo the critical tree pairs defined by the node with that path.

Lemma 5.3.5 (Change Path Scripts are Limited Change Scripts Modulo): Let 𝐷1 and
𝐷2 be labeled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification.
Let 𝐶 = (𝑉, 𝐴) be a restricted change graph for 𝐷1 and 𝐷2. Then it holds that ∀𝑣 ∈

𝑉*𝑣0+. ∀𝑝 ∈ 𝒴𝐶(𝑣). (Δ(𝑝), 𝑣) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷1, 𝐷2, 𝑣).

Proof: Let 𝑣𝑛 ∈ 𝑉*𝑣0+ and 𝑝 ∈ 𝒴𝐶(𝑣𝑛), 𝑝 = ,𝑣0, … , 𝑣𝑛-. By definition we have

Δ(𝑝) ≔ ⊞
𝑖∈*0,…,𝑛;1+

Δ𝑖:1 where (𝑣𝑖 , 𝑣𝑖:1, Δ𝑖:1) ∈ 𝐴 for 𝑖 ∈ *0,… , 𝑛 − 1+. For Δ𝑅 ≔

(, -, 𝑣0) it holds that Δ𝑅 ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷1, 𝐷2, 𝑣0). By the Property 1 of restricted change graphs

we know that ∃(𝑡1, 𝑡2) ∈ 𝑣1. (𝑣2 = (𝑣1*(𝑡1, 𝑡2)+) ∪ Θ) with Θ = ∅ or Θ ∈ 𝒠(𝑡1,𝑡2)
≅𝛴𝑆 .

Computing Changes 95

Furthermore, by Property 2 it holds that (Δ, Θ) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝑡1, 𝑡2, Θ) and thus (Δ, Θ) ∈

𝕃𝛴𝑆
𝛴𝐸(𝑡1, 𝑡2, Θ). By applying Lemma 5.1.15 to the chain ΔR⊞Δ(𝑝) of unions of limited

change scripts modulo it follows that (ΔR⊞Δ(𝑝), 𝑣) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷1, 𝐷2, 𝑣). Since ΔR⊞

Δ(𝑝) = Δ(𝑝) we have (Δ(𝑝), 𝑣) ∈ 𝕃𝛴𝑆
𝛴𝐸(𝐷1, 𝐷2, 𝑣).

∎

From the properties of the restricted change graph it does not follow directly that an op-
timal change path script to the goal node in the change graph is an optimal change script.
Indeed, this depends additionally on the optimality of the expansion strategy as we will
show. Let us now introduce a concrete algorithm for extending restricted change graphs.

Definition 5.3.6 (Restricted Change Graph Extension): Let 𝐷1 and 𝐷2 be labeled trees,
let Σ𝑆 be a similarity specification, let Σ𝐸 be an edit specification, and let 𝐶 = (𝑉, 𝐴) be a
restricted change graph for 𝐷1 and 𝐷2. The judgment of deriving the restricted change
graph 𝐶′ of the restricted change graph 𝐶 and the critical tree pair 𝜇 = (𝐷𝑥 , 𝐷𝑦) ∈
𝑇𝑃(𝐷1, 𝐷2) is denoted by (𝐶, 𝜇) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶′. The operational semantics of ↪𝐸𝑋𝑇𝐸𝑁𝐷 is
defined by the following inference rule.

𝜇 ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆

𝑉𝐴 ≔ *𝑣 ∈ 𝑉|𝑣 ∈ 𝛱𝐶 ∧ 𝜇 ∈ 𝑣+

𝐴𝑆 ≔ {(𝑣, 𝑣′, Δ′)|
𝑣 ∈ 𝑉𝐴 ∧ (Δ

′, Θ′) ∈ 𝑆

∧ 𝑣′ ≔ (𝑣*𝜇+) ∪ Θ′
}

𝑉𝑆 ≔ *𝑣′|(𝑣, 𝑣′, Δ′) ∈ 𝐴𝑆+

((𝑉, 𝐴), 𝜇) ↪ (𝑉 ∪ 𝑉𝑆, 𝐴 ∪ 𝐴𝑆)

The algorithm ↪𝐸𝑋𝑇𝐸𝑁𝐷 expands the change graph 𝐶 by computing change scripts modu-
lo for the critical tree pair 𝜇 = (𝐷𝑥, 𝐷𝑦) using the algorithm ↪𝐸𝑋𝑃𝐴𝑁𝐷. Let (Δ′, Θ′) ∈ 𝑆 be
such a computed change script modulo, then the algorithm expands the change graph
simultaneously at all active nodes 𝑣 ∈ 𝛱𝐶 which contain the critical tree pair, that is 𝜇 ∈ 𝑣
holds. We denote this set of affected nodes in the algorithm ↪𝐸𝑋𝑃𝐴𝑁𝐷 with 𝑉𝐴. An affect-
ed node 𝑣 is expanded by adding an edge with the valid edit script Δ′ to a node 𝑣′ ≔
(𝑣*𝜇+) ∪ Θ′. The target node 𝑣′ is either an already existing node or a new node that has
to be added to the change graph. Altogether, the described simultaneous expansion strate-
gy realizes the idea of dynamic programming.

Table 13. Algorithm EXTEND

96 Change Graph Search

We show now that the resulting change graph is indeed a restricted change graph.

Lemma 5.3.7 (Soundness of Restricted Change Graph Extension): Let 𝐷1 and 𝐷2 be
labeled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification. Let
𝐶 = (𝑉, 𝐴) be a restricted change graph for 𝐷1 and 𝐷2, let 𝜇 ∈ 𝑇𝑃(𝐷1, 𝐷2) and
(𝐶, 𝜇) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶′, then 𝐶′ is a restricted change graph for 𝐷1 and 𝐷2.

Proof: We have to show that the properties of restricted change graph still hold for 𝐶′.
Let 𝜇 = (𝑡1, 𝑡2), for 𝜇 ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆 we know by Lemma 5.2.10 that for all (Δ, Θ) ∈ 𝑆 it

holds either Θ = ∅ or Θ ∈ 𝒠
(𝑡1,𝑡2)

≅𝛴𝑆 . Thus Property 1 is satisfied by the construction of the

new edges in the set 𝐴𝑆. From Lemma 5.2.9 we know additionally that for all (Δ, Θ) ∈ 𝑆 it

holds that (Δ, Θ) ∈ 𝕆𝛴𝑆
𝛴𝐸(𝑡1, 𝑡2, Θ). Thus Property 2 is also satisfied. Altogether, 𝐶′ is a

restricted change graph for 𝐷1 and 𝐷2.

∎

We now proceed to the central algorithm for the change computation by search, the algo-
rithm which defines the strategy of exploring the search space of limited change scripts
modulo. For this purpose, we adapted Dijkstra’s algorithm [Dijkstra, 1959] for the single-
source shortest-path-to-goal problem. In our context, the length of a path is defined by the
change path cost.

Definition 5.3.8 (Change Graph Search): Let Σ𝑆 be a similarity specification, let Σ𝐸 be
an edit specification and let 𝐶 be a restricted change graph. The judgment of deriving an
optimal change script Δ for 𝐷1 and 𝐷2 with respect to Σ𝑆 and Σ𝐸 of the valid change graph
𝐶 = (𝑉, 𝐴) is denoted by 𝐶 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, 𝐶′). The operational semantics of ↪𝑆𝐸𝐴𝑅𝐶𝐻 is
defined by the following inference rules.

𝑣𝑥 ∈ 𝛱𝐶
𝜇 ∈ 𝑣𝑥

(𝐶1, 𝜇) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶2
𝐶2 ↪ (Δ, 𝐶3)

𝐶1 ↪ (Δ, 𝐶3)

∅ ∈ 𝛱𝐶

𝐶 ↪ (Δ𝐶(∅), 𝐶)

Table 14. Algorithm SEARCH
 (adapted from [Dijkstra, 1959])

Computing Changes 97

This algorithm continuously expands the change graph at a node in the set of minimal
cost active nodes 𝛱𝐶 until the goal node is a minimal cost active node. Note that there
exist two choice points in this algorithm: (1) 𝑣𝑥 ∈ 𝛱𝐶 and (2) 𝜇 ∈ 𝑣𝑥. We will discuss
potential heuristics and their implications after completing the presentation and proofs for
this algorithm. Let us now prove the termination, correctness and optimality of the change
graph search algorithm.

Lemma 5.3.9 (Termination of Change Graph Search): Let 𝐷1 and 𝐷2 be labeled trees
and let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification. Let 𝐶 = (𝑉, 𝐴)
be a restricted change graph for 𝐷1 and 𝐷2. Then it holds that 𝐶 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, 𝐶′) termi-
nates.

Proof: By the definition of change graph we know that it consists of a finite set of nodes
𝑉 ⊆ 𝒫(𝑇𝑃(𝐷1, 𝐷2)) and a finite set of edges 𝐴 ⊆ 𝑉 × 𝑉 × 𝐷1Δ. By Lemma 5.3.7 it fol-
lows that every inference step expands the restricted change graph to another restricted
change graph. By the Property 1 of restricted change graphs and Lemma 5.1.7 it follows
that for all edges (𝑣1, 𝑣2, Δ) ∈ 𝐴 the node size is decreasing, formally 𝑊𝐶(𝑣1) > 𝑊𝐶(𝑣2).
Hence, an inference step expands an active node 𝑣𝑥, that is, a node without outgoing edg-
es, by adding at least one edge to the change graph and possibly nodes with a smaller size
if they are not already contained in the change graph. Thereby, the goal node ∅ forms a
lower bound with its node size 0. Thus, for any finite node size 𝑛 there is a finite number
of steps 𝑠 such that after 𝑠 inference steps the node size of all active nodes is smaller than
𝑛. Therefore, after finitely many steps we have 𝛱𝐶 = *∅+ which clearly satisfies the ter-
mination condition. Altogether, it holds that 𝐶 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, 𝐶′) terminates.

∎

Note that in practice, the change graph search does not fully extend the change graph be-
cause the termination condition is usually satisfied earlier. Indeed, the change graph
search does not expand nodes with a higher node size than the goal node.

We proceed by proving the correctness and optimality of change graph search.

Lemma 5.3.10 (Soundness and Completeness of Change Graph Search): Let 𝐷1 and
𝐷2 be labeled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification.
Let 𝐶1 = (𝑉, 𝐴) be a restricted change graph for 𝐷1 and 𝐷2, and let 𝐶1 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, 𝐶2).
Then it holds that Δ ∈ 𝕆𝛴𝑆

𝛴𝐸(𝐷1, 𝐷2).

98 Change Graph Search

Proof: Since 𝐶1 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, 𝐶2) terminates by Lemma 5.3.9, 𝐶2 is the last deduced

change graph with Δ = Δ𝐶2(∅). By Lemma 5.3.7 it follows that 𝐶2 is a restricted change
graph. By Lemma 5.3.5 we know that all change path scripts are limited change scripts
modulo. Furthermore, by the Property 2 of restricted change graphs we know that in eve-
ry step the generated edit script is an optimal change script modulo critical tree layer pairs
of that pair of trees. Since we expand always a critical tree pair of a minimal cost active
node, an optimal change path script of the active node ∅ is an optimal change script be-
cause of the optimality property of Dijkstra’s algorithm. Assume to the contrary that there
exists a limited change script Δ′ with less costs, then there exists a path 𝑝 ∈ 𝒴𝐶2(∅) with
Δ(𝑝) = Δ′ because this path must have been extended by the change graph search. Since

𝜉(Δ) > 𝜉(Δ′) holds, this is a contradiction to Δ = Δ𝐶2(∅). Therefore, it holds that

Δ ∈ 𝕆𝛴𝑆
𝛴𝐸(𝐷1, 𝐷2).

∎

It remains to initialize the search algorithm with an initial restricted change graph, which
is simply a change graph consisting only of the root node and no edges.

Definition 5.3.11 (Differencing): Let 𝐷1, 𝐷2 be labeled trees, let Σ𝑆 be a similarity speci-
fication and let Σ𝐸 be an edit specification. The judgment of deriving the optimal change
script Δ for 𝐷1 and 𝐷2 with respect to Σ𝑆 and Σ𝐸 of the labeled trees 𝐷1 and 𝐷2 is denoted
by (𝐷1, 𝐷2) ↪𝐷𝐼𝐹𝐹 (Δ, 𝐶). The operational semantics of ↪𝐷𝐼𝐹𝐹 is defined by the following
inference rule.

 𝐶1 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, 𝐶2)

(𝐷1, 𝐷2) ↪ (Δ, 𝐶2)

with
𝑣0 ≔ *(𝐷1, 𝐷2)+ ,
𝐶1 ≔ (*𝑣0+, ∅)

The initial change graph 𝐶1 ≔ (*𝑣0+, ∅) contains only the root node 𝑣0 ≔ *(𝐷1, 𝐷2)+.
Since the nodes of a change graph are sets of critical tree pairs, we can interpret the root
node as the task to compute an optimal change script for the labeled trees 𝐷1 and 𝐷2.

Finally, we can combine all results to prove the termination, soundness and completeness
of the presented differencing algorithm.

Table 15. Algorithm DIFF

Computing Changes 99

Theorem 5.3.12 (Termination, Soundness and Completeness of Differencing): Let 𝐷1
and 𝐷2 be labeled trees, let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specifica-
tion. Then it holds that (𝐷1, 𝐷2) ↪𝐷𝐼𝐹𝐹 (Δ, C) terminates and that Δ ∈ 𝕆𝛴𝑆

𝛴𝐸(𝐷1, 𝐷2).

Proof: The change graph 𝐶1 ≔ (*𝑣0+, ∅) with 𝑣0 ≔ *(𝐷1, 𝐷2)+ is clearly a restricted
change graph because it contains only a root node and no edges. Hence by Lemma 5.3.9 it
holds that

 𝐶1 ↪𝑆𝐸𝐴𝑅𝐶𝐻 (Δ, C2) terminates and by Lemma 5.3.10 it follows that Δ ∈

𝕆𝛴𝑆
𝛴𝐸(𝐷1, 𝐷2).

∎

Let us summarize the results of this chapter. We presented an algorithm for computing an
optimal change script between two labeled trees with respect to a similarity specification
and an edit specification. Thereby, we reduced the constrained weighted tree alignment
problem to a single-source shortest-path-to-goal problem. Furthermore, we adapted Dijks-
tra’s algorithm to efficiently find an optimal solution in the search space of limited
change scripts modulo, which is expanded dynamically by the presented algorithm.

In the description of the algorithm ↪𝑆𝐸𝐴𝑅𝐶𝐻 in Table 14 we pointed out the two choice
points (1) 𝑣𝑥 ∈ 𝛱𝐶 and (2) 𝜇 ∈ 𝑣𝑥. We will discuss now potential heuristics and their im-
plications. The choice point (1) selects a node in the change graph that is a minimal cost
active node. A potential heuristic may select a node with minimal node size. Thus, if we
for example expect very few and deep changes in a document, this heuristic helps to re-
duce the amount of extension steps required to find the goal node. In particular, if both
documents are semantically equal, we directly extend the change graph towards the goal
node using this heuristic. The choice point (2) selects a critical tree pair of the node se-
lected by (1). A potential heuristic may select a critical tree pair with minimal size. Thus,
analogously to (1) we can optimize the search strategy to account for relatively small
changes between both documents. As an alternative to the described heuristics, we can
also employ heuristics which extend specific labeled subtrees first, for example because
we expect significant changes in these subtrees.

Altogether, both choice points allow for fine-tuning the strategy of exploring the
search space. These choice points define essentially a second dimension of the search for
an optimal change script and the decision can be roughly compared with choosing depth-
first, breadth-first or custom-first comparison of the documents under consideration.

100 Use Case

5.4 Use Case

Let us now illustrate the change graph search with a concrete example. We use our run-
ning example with the two documents 𝐷1 and 𝐷2 shown in Table 16. These documents
contain two mathematical theories which both consist of one axiom and two theorems.

𝑫𝒕𝒉𝒆𝒐𝒓𝒚 \theory{}[

𝑫𝒂𝒙𝒊𝒐𝒎 \axiom{}[

 \name{}["AB"]],

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟏 \theorem{}[

 \name{}["XY"],

 \conj{}["#3"]],

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟐 \theorem{}[

 \name{}["YZ"],

 \conj{}["#2"]]]

𝑫𝒕𝒉𝒆𝒐𝒓𝒚
′ \theory{}[

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟏
′ \theorem{}[

 \name{}["YZ"],

 \conj{}["#3"]],

𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟐
′ \theorem{}[

 \name{}["XY"],

 \conj{}["#1"]],

𝑫𝒂𝒙𝒊𝒐𝒎
′ \axiom{}[

 \name{}["AB"]]]

We use the following similarity specification Σ𝑆 = (Σ𝑂 , Σ𝐾). The similarity order Σ𝑂 is
the default ∀𝑙 ∈ ℒ𝐴 . ∀𝐷 ∈ 𝒮(𝐷1). Σ𝑂(𝐿(𝐷), 𝑙). Furthermore, we define no similarity keys
Σ𝐾 except the following Σ𝐾("𝑡𝑕𝑒𝑜𝑟𝑒𝑚", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") = Σ𝐾("𝑎𝑥𝑖𝑜𝑚", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") =
* "𝑛𝑎𝑚𝑒" +. For the edit specification Σ𝐸 = (Σ𝑊, Σ𝐿) we use the payloads to define the
edit weight. We define the delete payload of the axiom subtree 𝐷𝑎𝑥𝑖𝑜𝑚 to be
Υ;(𝐷𝑎𝑥𝑖𝑜𝑚) = 10, because proofs in other theories depend on this axiom. Finally, we set
an edit limitation for axioms and theorems globally to Σ𝐿(𝐷𝑥) = ⊤ for all subtrees 𝐷𝑥 in
𝐷1 with 𝐿(𝐷𝑥) = "𝑡𝑕𝑒𝑜𝑟𝑒𝑚" or 𝐿(𝐷𝑥) = "𝑎𝑥𝑖𝑜𝑚". Thus, we restrict the granularity of
the optimal change script. Altogether, we use the following specifications.

\similarity{}[

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[

 \weight{}[

 \delete{ path=/theory[1]/axiom[1] weight=“10” }[]],

 \limit{}[

 \global{ name=“theorem” }[],

 \global{ name=“axiom” }[]]]

The search for an optimal change script begins with the initial change graph 𝐶0 =
(𝑉, 𝐴) = (*𝑣0+, ∅) with 𝑣0 = Θ0 = {(𝐷𝑡ℎ𝑒𝑜𝑟𝑦, 𝐷𝑡ℎ𝑒𝑜𝑟𝑦′)}. The minimal cost active nodes

are 𝛱𝐶0 = *𝑣0+. The algorithm selects 𝜇1 = (𝐷𝑡ℎ𝑒𝑜𝑟𝑦 , 𝐷𝑡ℎ𝑒𝑜𝑟𝑦′) ∈ 𝑣0 and calls ↪𝐸𝑋𝑇𝐸𝑁𝐷 to

extend the change graph by expanding the critical tree pair 𝜇1 with ↪𝐸𝑋𝑃𝐴𝑁𝐷.

Table 16. Comparing two mathematical documents 𝐷1 (on the left) and 𝐷2 (on the right)

Computing Changes 101

There, we have the case Σ𝐿(𝐷𝑡ℎ𝑒𝑜𝑟𝑦) =⊥ and 𝐷𝑡ℎ𝑒𝑜𝑟𝑦 ≅𝛴𝑆 𝐷𝑡ℎ𝑒𝑜𝑟𝑦

′ because both trees are
equally labeled. Thus, we need to compute the set of extensible tree matching mappings

𝒠
(𝐷𝑡ℎ𝑒𝑜𝑟𝑦,𝐷′𝑡ℎ𝑒𝑜𝑟𝑦)

≅𝛴𝑆 . This set contains the following three mappings.

𝑓1 = *(𝐷𝑎𝑥𝑖𝑜𝑚, 𝐷𝑎𝑥𝑖𝑜𝑚
′)+

𝑓2 = *(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2
′)+

𝑓3 = *(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)+

Using the algorithms ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 and ↪𝐷𝐸𝐿𝑇𝐴 we compute the following corresponding
valid edit scripts.

Δ1 = [𝛿𝐼(𝐷𝑎𝑥𝑖𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ,𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′ , 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′ -), 𝛿𝐸(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝛿𝐸(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)]

Δ2 = [
𝛿𝐼(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ,𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1

′ -), 𝛿𝐴(𝐷𝑡ℎ𝑒𝑜𝑟𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , "𝑐𝑜𝑛𝑡𝑒𝑛𝑡", ,𝐷𝑎𝑥𝑖𝑜𝑚
′ -),

𝛿𝐸(𝐷𝑎𝑥𝑖𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝛿𝐸(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)
]

Δ3 = ,𝛿𝐴(𝐷𝑡ℎ𝑒𝑜𝑟𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , "𝑐𝑜𝑛𝑡𝑒𝑛𝑡", ,𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2
′ , 𝐷𝑎𝑥𝑖𝑜𝑚

′ -), 𝛿𝐸(𝐷𝑎𝑥𝑖𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝛿𝐸(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)-

Therefore, we have 𝜇1 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(Δ1, 𝑓1), (Δ2, 𝑓2), (Δ3, 𝑓3)+. The edges are extended by
𝐴𝑆1 = *(𝑣0, 𝑣1, Δ1), (𝑣0, 𝑣2, Δ2), (𝑣0, 𝑣3, Δ3)+ with the new nodes 𝑉𝑆1 = *𝑣1, 𝑣2, 𝑣3+ where
𝑣𝑖 = Θ𝑖 = 𝑓𝑖. Hence we have (𝐶0, 𝜇1) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶1 with 𝐶1 = (𝑉 ∪ 𝑉𝑆1, 𝐴 ∪ 𝐴𝑆1).

Θ0

𝑣0

{(𝑫𝒕𝒉𝒆𝒐𝒓𝒚, 𝑫𝒕𝒉𝒆𝒐𝒓𝒚
′)}

Θ0

Θ3 Θ1

𝑣0

𝑣1 𝑣3

Δ1 Δ3

Θ2

𝑣2

Δ2

*(𝑫𝒂𝒙𝒊𝒐𝒎, 𝑫𝒂𝒙𝒊𝒐𝒎
′)+ *(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′)+ *(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)+

102 Use Case

In the second round of ↪𝑆𝐸𝐴𝑅𝐶𝐻, the minimal cost active nodes are 𝛱𝐶1 = *𝑣1+ because
𝜉(Δ1) = 20, 𝜉(Δ2) = 26 and 𝜉(Δ3) = 26. The algorithm selects
𝜇2 = (𝐷𝑎𝑥𝑖𝑜𝑚, 𝐷𝑎𝑥𝑖𝑜𝑚

′) ∈ 𝑣1 and calls ↪𝐸𝑋𝑇𝐸𝑁𝐷 to extend the change graph by expanding
the critical tree pair 𝜇2 with ↪𝐸𝑋𝑃𝐴𝑁𝐷. There, we have the case Σ𝐿(𝐷𝑎𝑥𝑖𝑜𝑚) = ⊤ and
𝐷𝑎𝑥𝑖𝑜𝑚 =𝛴𝑆 𝐷𝑎𝑥𝑖𝑜𝑚

′ because both trees are semantically equal. Thus, the algorithm returns

𝜇2 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(, -, ∅)+. The edges are extended by 𝐴𝑆2 = *(𝑣1, 𝑣4, , -)+ with the new node
𝑉𝑆2 = *𝑣4+ where 𝑣4 = Θ4 = ∅ and Δ4 = , -. Hence we have (𝐶1, 𝜇2) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶2 with
𝐶2 = (𝑉 ∪ 𝑉𝑆2, 𝐴 ∪ 𝐴𝑆2).

The third round of ↪𝑆𝐸𝐴𝑅𝐶𝐻 is also the last round because the goal node ∅ is an element

of 𝛱𝐶2 = *∅+. The algorithm finally returns the optimal change script Δ𝑋 = Δ𝐶2(∅) =
Δ1⊞Δ4.

Δ𝑋 = [𝛿𝐼(𝐷𝑎𝑥𝑖𝑜𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ,𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1

′ , 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2
′ -), 𝛿𝐸(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝛿𝐸(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)]

As a second example, we will compute an optimal change script for a slightly modified
similarity specification. We postulate that the order of the children in the content layer of
any theory subtree is not relevant, thus we have Σ𝑂("𝑡𝑕𝑒𝑜𝑟𝑦", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") =⊥. Let us
now discover how this modification influences the change graph search. We use now the
following specification.

Θ0

Θ3 Θ1

𝑣0

𝑣1 𝑣3

Δ1 Δ3

Θ2

𝑣2

Δ2

∅

*(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2
′)+ *(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1

′)+

Θ4

𝑣4

Δ4

Computing Changes 103

\similarity{}[

 \order{ name=“theory”, layer=“content”}[],

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[

 \weight{}[

 \delete{ path=/theory[1]/axiom[1] weight=“10” }[]],

 \limit{}[

 \global{ name=“theorem” }[],

 \global{ name=“axiom” }[]]]

The search for an optimal change script begins again with the initial change graph
𝐶0 = (𝑉, 𝐴) = (*𝑣0+, ∅) with 𝑣0 = Θ0 = {(𝐷𝑡ℎ𝑒𝑜𝑟𝑦, 𝐷𝑡ℎ𝑒𝑜𝑟𝑦′)}. The minimal cost active

nodes are 𝛱𝐶0 = *𝑣0+. Thus, the algorithm selects 𝜇1 = (𝐷𝑡ℎ𝑒𝑜𝑟𝑦 , 𝐷𝑡ℎ𝑒𝑜𝑟𝑦′) ∈ 𝑣0 and calls

↪𝐸𝑋𝑇𝐸𝑁𝐷 to extend the change graph.

When expanding the critical tree pair 𝜇1 with ↪𝐸𝑋𝑃𝐴𝑁𝐷, we have again the case
Σ𝐿(𝐷𝑡ℎ𝑒𝑜𝑟𝑦) =⊥ and 𝐷𝑡ℎ𝑒𝑜𝑟𝑦 ≅𝛴𝑆 𝐷𝑡ℎ𝑒𝑜𝑟𝑦

′ because both trees are equally labeled.

Thus, we need to compute the set of extensible tree matching mappings 𝒠
(𝐷𝑡ℎ𝑒𝑜𝑟𝑦,𝐷′𝑡ℎ𝑒𝑜𝑟𝑦)

≅𝛴𝑆 .

This turn, the set contains only the following mapping.

𝑓1 = *(𝐷𝑎𝑥𝑖𝑜𝑚, 𝐷𝑎𝑥𝑖𝑜𝑚
′), (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′), (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)+

Using the algorithms ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 and ↪𝐷𝐸𝐿𝑇𝐴 we compute the corresponding valid edit
script Δ1 = , -. Therefore, we have 𝜇1 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(Δ1, 𝑓1)+. The edges are extended by
𝐴𝑆1 = *(𝑣0, 𝑣1, Δ1)+ with the new node 𝑉𝑆1 = *𝑣1+ where 𝑣1 = Θ1 = 𝑓1. Hence we have
(𝐶0, 𝜇1) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶1 with 𝐶1 = (𝑉 ∪ 𝑉𝑆1, 𝐴 ∪ 𝐴𝑆1).

Θ0

𝑣0

{(𝑫𝒕𝒉𝒆𝒐𝒓𝒚, 𝑫𝒕𝒉𝒆𝒐𝒓𝒚
′)}

104 Use Case

In the second round of ↪𝑆𝐸𝐴𝑅𝐶𝐻, the minimal cost active nodes are 𝛱𝐶1 = *𝑣1+. The algo-
rithm selects 𝜇2 = (𝐷𝑎𝑥𝑖𝑜𝑚, 𝐷𝑎𝑥𝑖𝑜𝑚′) ∈ 𝑣1 but there are two other possible choices as well.
We call ↪𝐸𝑋𝑇𝐸𝑁𝐷 to extend the change graph by expanding the critical tree pair 𝜇2 with
↪𝐸𝑋𝑃𝐴𝑁𝐷. There, we have the case Σ𝐿(𝐷𝑎𝑥𝑖𝑜𝑚) = ⊤ and 𝐷𝑎𝑥𝑖𝑜𝑚 =𝛴𝑆 𝐷𝑎𝑥𝑖𝑜𝑚

′ because both

trees are semantically equal. Thus, the algorithm returns 𝜇2 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(, -, ∅)+. The edg-
es are extended by 𝐴𝑆2 = *(𝑣1, 𝑣2, , -)+ with the new node 𝑉𝑆2 = *𝑣2+ where 𝑣2 = Θ2 =
*(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′), (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)+ and Δ2 = , -. Hence we have

(𝐶1, 𝜇2) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶2 with 𝐶2 = (𝑉 ∪ 𝑉𝑆2, 𝐴 ∪ 𝐴𝑆2).

*(𝑫𝒂𝒙𝒊𝒐𝒎, 𝑫𝒂𝒙𝒊𝒐𝒎
′), (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′), (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)+

Θ0

𝑣0

Θ1

𝑣1

Δ1

*(𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟏, 𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟐
′), (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1

′)+

Θ0

𝑣0

Θ1

𝑣1

Δ1

Θ2

𝑣2

Δ2

Computing Changes 105

In the third round of ↪𝑆𝐸𝐴𝑅𝐶𝐻, the minimal cost active nodes are 𝛱𝐶2 = *𝑣2+. The algo-
rithm selects 𝜇3 = (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2′) ∈ 𝑣2 but there is another possible choice. We
call ↪𝐸𝑋𝑇𝐸𝑁𝐷 to extend the change graph by expanding the critical tree pair 𝜇2 with
↪𝐸𝑋𝑃𝐴𝑁𝐷. There, we have the case Σ𝐿(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1) = ⊤ and ≦(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1 =𝛴𝑆 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′)
because the “conj” subtrees of both trees are not semantically equal. Thus, the algorithm

returns 𝜇3 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(Δ3, ∅)+ with Δ3 = ,𝛿𝑅(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2
′)-. The edges are ex-

tended by 𝐴𝑆3 = *(𝑣2, 𝑣3, Δ3)+ with the new node 𝑉𝑆3 = *𝑣3+ where 𝑣3 = Θ3 =
*(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1

′)+. Hence we have (𝐶2, 𝜇3) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶3 with 𝐶3 = (𝑉 ∪ 𝑉𝑆3, 𝐴 ∪
𝐴𝑆3).

In the fourth round of ↪𝑆𝐸𝐴𝑅𝐶𝐻, the minimal cost active nodes are 𝛱𝐶3 = *𝑣3+. The algo-

rithm selects 𝜇4 = (𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1′) ∈ 𝑣3 as the only possible choice. We call
↪𝐸𝑋𝑇𝐸𝑁𝐷 to extend the change graph by expanding the critical tree pair 𝜇4 with ↪𝐸𝑋𝑃𝐴𝑁𝐷.
There, we have the case Σ𝐿(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2) = ⊤ and ≦(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2 =𝛴𝑆 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1

′) because
the “conj” subtrees of both trees are not semantically equal.

Thus, we have 𝜇4 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(Δ4, ∅)+ with Δ4 = ,δR(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)-. The

edges are extended by 𝐴𝑆4 = *(𝑣3, 𝑣4, Δ4)+ with the new node 𝑉𝑆4 = *𝑣4+ where 𝑣4 =
Θ4 = ∅. Hence we have (𝐶3, 𝜇4) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶4 with 𝐶4 = (𝑉 ∪ 𝑉𝑆4, 𝐴 ∪ 𝐴𝑆4).

*(𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟐, 𝑫𝒕𝒉𝒆𝒐𝒓𝒆𝒎𝟏
′)+

Θ0

𝑣0

Θ2

𝑣2

Θ3

𝑣3

Δ3

106 Use Case

The fifth round of ↪𝑆𝐸𝐴𝑅𝐶𝐻 is the last round because the goal node ∅ is an element of

𝛱𝐶4 = *∅+. The algorithm finally returns the optimal change script Δ𝑋 = Δ𝐶4(∅) = , - ⊞
, - ⊞ Δ3⊞Δ4.

Δ𝑋 = [𝛿𝑅(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2

′), 𝛿𝑅(𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐷𝑡ℎ𝑒𝑜𝑟𝑒𝑚1
′)]

As a third and last example, we will demonstrate the efficiency gain by using the edit
limitation. We consider the similarity specification with the default similarity order
∀𝑙 ∈ ℒ𝐴. ∀𝐷 ∈ 𝒮(𝐷1). Σ𝑂(𝐿(𝐷), 𝑙). Furthermore, as in the examples before we define no
similarity keys except the following Σ𝐾("𝑡𝑕𝑒𝑜𝑟𝑒𝑚", "𝑐𝑜𝑛𝑡𝑒𝑛𝑡") = Σ𝐾("𝑎𝑥𝑖𝑜𝑚",
"𝑐𝑜𝑛𝑡𝑒𝑛𝑡") = * "𝑛𝑎𝑚𝑒" +. For the edit specification Σ𝐸 = (Σ𝑊, Σ𝐿) we use no additional
payloads to define the edit weight. Finally, we set an edit limitation for theories globally
to Σ𝐿(𝐷𝑥) = ⊤ for all subtrees 𝐷𝑥 in 𝐷1 with 𝐿(𝐷𝑥) = "𝑡𝑕𝑒𝑜𝑟𝑦". Thus, we restrict the
granularity of the optimal change script to the topmost subtree.

\similarity{}[

 \keys{ name=“theorem”, layer=“content”}[“name”],

 \keys{ name=“axiom”, layer=“content”}[“name”]]

\edit{}[

 \limit{}[

 \global{ name=“theory” }[]]]

∅

Θ0

𝑣0

Θ3

𝑣3

Θ4

𝑣4

Δ4

Computing Changes 107

The search for an optimal change script begins again with the initial change graph
𝐶0 = (𝑉, 𝐴) = (*𝑣0+, ∅, 𝐷𝑡ℎ𝑒𝑜𝑟𝑦 , 𝐷

′
𝑡ℎ𝑒𝑜𝑟𝑦) with 𝑣0 = Θ0 = {(𝐷𝑡ℎ𝑒𝑜𝑟𝑦 , 𝐷𝑡ℎ𝑒𝑜𝑟𝑦′)}.

The minimal cost active nodes are 𝛱𝐶0 = *𝑣0+. Thus, the algorithm selects 𝜇1 =

(𝐷𝑡ℎ𝑒𝑜𝑟𝑦 , 𝐷𝑡ℎ𝑒𝑜𝑟𝑦
′) ∈ 𝑣0 as the only possible choice and calls ↪𝐸𝑋𝑇𝐸𝑁𝐷 to extend the

change graph by expanding the critical tree pair 𝜇1 with ↪𝐸𝑋𝑃𝐴𝑁𝐷. There, we have this
time the case Σ𝐿(𝐷𝑡ℎ𝑒𝑜𝑟𝑦) = ⊤. The algorithm is able to immediately verify that the con-

dition ≦(𝐷𝑡ℎ𝑒𝑜𝑟𝑦 =𝛴𝑆 𝐷𝑡ℎ𝑒𝑜𝑟𝑦
′) holds, because the first child in the content layer of both

trees is not semantically equal. Thus, the algorithm returns 𝜇1 ↪𝐸𝑋𝑃𝐴𝑁𝐷 *(Δ1, ∅)+ with

Δ1 = ,𝛿𝑅(𝐷𝑡ℎ𝑒𝑜𝑟𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐷𝑡ℎ𝑒𝑜𝑟𝑦
′)-. The edges are extended by 𝐴𝑆1 = *(𝑣0, 𝑣1, Δ1)+ with the

new node 𝑉𝑆1 = *𝑣1+ where 𝑣1 = Θ1 = ∅. Hence we have (𝐶0, 𝜇1) ↪𝐸𝑋𝑇𝐸𝑁𝐷 𝐶1 with
𝐶1 = (𝑉 ∪ 𝑉𝑆1, 𝐴 ∪ 𝐴𝑆1).

In the second and last round of ↪𝑆𝐸𝐴𝑅𝐶𝐻, the goal node ∅ is already an element of

𝛱𝐶1 = *∅+. Finally, the algorithm returns the optimal change script Δ𝑋 = Δ𝐶1(∅) = Δ1.

Δ𝑋 = [𝛿𝑅(𝐷𝑡ℎ𝑒𝑜𝑟𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐷𝑡ℎ𝑒𝑜𝑟𝑦

′)]

Θ0

𝑣0

{(𝑫𝒕𝒉𝒆𝒐𝒓𝒚, 𝑫𝒕𝒉𝒆𝒐𝒓𝒚
′)}

∅

Θ0

𝑣0

Θ1

𝑣1

Δ1

108 Complexity Comparison

5.5 Complexity Comparison

In this section, we will compare the time and space complexity of the change graph
search with the state-of-the-art algorithm given in [Radzevich, 2006]. Since we improved
and extended the definition of the semantic tree alignment problem, a direct comparison
of both algorithms is not adequate. Therefore, we first adapt the state-of-the-art algorithm
such that it uses the ↪𝐸𝑋𝑃𝐴𝑁𝐷 algorithm for generating all extensible tree matching map-
pings together with corresponding optimal tree layer change scripts with respect to a giv-
en similarity and edit specification. The adapted algorithm is shown in Table 17 and de-
fined in the context of a similarity specification Σ𝑆 and an edit specification ΣE.

(𝐷𝑥, 𝐷𝑦) ↪𝐸𝑋𝑃𝐴𝑁𝐷 𝑆

𝑆 ↪𝑅𝐷𝐼𝐹𝐹 𝐺
Δ𝑚𝑖𝑛 ∈ 𝐺

∀Δ ∈ 𝐺. 𝜉(Δ) ≥ 𝜉(Δ𝑚𝑖𝑛)

(𝐷𝑥, 𝐷𝑦) ↪𝑆𝐷𝐼𝐹𝐹 Δ𝑚𝑖𝑛

𝑅 ≔ *Δx|𝜇 ∈ Θ ∧ 𝜇 ↪𝑆𝐷𝐼𝐹𝐹 Δx+

Δ𝑅 ≔
⊞
Δx∈𝑅

Δ𝑥

𝑆 ↪𝑅𝐷𝐼𝐹𝐹 𝐺

*(Δ, Θ)+ ∪ 𝑆 ↪𝑅𝐷𝐼𝐹𝐹 *Δ ⊞ Δ𝑅+ ∪ 𝐺

∅ ↪𝑅𝐷𝐼𝐹𝐹 ∅

Table 17. Algorithms SDIFF and RDIFF

The main idea of the algorithm ↪𝑆𝐷𝐼𝐹𝐹 is (1) to compute all possible extensible tree
matching mappings, for which we use the algorithm ↪𝐸𝑋𝑃𝐴𝑁𝐷, then (2) to compute the
corresponding change scripts recursively, which is done by the algorithm ↪𝑅𝐷𝐼𝐹𝐹, and
finally (3) to return a computed change script with minimal edit cost.

In the spirit of dynamic programming, it is clearly possible to reuse computed results
for similar cases. We will now analyze whether reusing previous results is in these cases
reasonable from the point of view of efficiency. The ideal candidate for reusing results is
the judgment (𝐷𝑥 , 𝐷𝑦) ↪𝑆𝐷𝐼𝐹𝐹 Δ𝑚𝑖𝑛. Depending on the concrete case, the algorithm

↪𝐸𝑋𝑃𝐴𝑁𝐷, which is called by ↪𝑆𝐷𝐼𝐹𝐹, computes either ≦(𝐷𝑥 =𝛴𝑆 𝐷𝑦) and a replacing
change script, or for every tree layer recursively the set of extensible tree matching map-

pings 𝒠
(𝐷𝑥,𝐷𝑦)

≅𝛴𝑆 and optimal tree layer change scripts. The time and space complexity of all

these cases is approximately less or equal to one single successful test for semantic equal-
ity 𝐷𝑥 =𝛴𝑆 𝐷𝑦. But in order to reuse the result of (𝐷𝑥 , 𝐷𝑦) ↪𝑆𝐷𝐼𝐹𝐹 Δ𝑚𝑖𝑛 for a pair of trees

(𝐷𝑥
′ , 𝐷𝑦

′), we need to perform two successful tests for semantic equality 𝐷𝑥′ =𝛴𝑆 𝐷𝑥 and

𝐷𝑦
′ =𝛴𝑆 𝐷𝑦. Thus, reusing computed results for similar cases is not an efficient approach.

Computing Changes 109

Nevertheless, it is of course both possible and efficient to reuse computed results for the
exact same case, where we just have to compare the references to the trees provided as
arguments.

For the change graph search, this benefit from reuse has been made explicit in the def-
inition of the algorithm ↪𝐸𝑋𝑇𝐸𝑁𝐷 in Table 13. From this observation and the full recursive
definition of the algorithm ↪𝑆𝐷𝐼𝐹𝐹 we can conclude that the algorithm ↪𝑆𝐷𝐼𝐹𝐹 always
expands the complete search space of limited change scripts modulo. Thus, the time and
space complexity for the algorithm ↪𝑆𝐷𝐼𝐹𝐹 is always the same for all cases: the best case,
the average case and the worst case. Furthermore, this time and space complexity is an
upper bound for our change graph search algorithm ↪𝐷𝐼𝐹𝐹.

The interesting question is whether our algorithm ↪𝐷𝐼𝐹𝐹 performs even better in the
average case than in the worst case. Without further information about the concrete shape
of an average tree, we cannot precisely analyze the average time and space complexity.
What we can actually analyze is whether there exists a relationship between the degree of
the extension of the change graph and the properties of an optimal change script.

Let us assume the change graph search has computed an optimal change script by
(𝐷1, 𝐷2) ↪𝐷𝐼𝐹𝐹 𝛥. Before returning the optimal change script Δ, the algorithm ↪𝐷𝐼𝐹𝐹 has
constructed and extended a restricted change graph 𝐶. By the properties of Dijkstra’s al-
gorithm, we know that no limited change script modulo has been expanded that has great-
er edit cost than the returned optimal change script. This does not prove but it strongly
indicates that the change graph search is very efficient for computing an optimal change
script for two semantically equal or almost equal documents, where we expect an optimal
change script with low edit cost.

Let us assume that we use heuristics for the algorithm ↪𝑆𝐸𝐴𝑅𝐶𝐻 which select in the
choice point (1) 𝑣𝑥 ∈ 𝛱𝐶 a minimal cost active node with minimal node size and in the
choice point (2) 𝜇 ∈ 𝑣𝑥 a critical tree pair with minimal size. We assume further that these
heuristics need on average asymptotically log 𝑛 attempts out of 𝑛 possibilities to select an
extensible tree matching mapping that can be extended to show the semantic equality or
almost equality of two documents. Then, the time and space complexity for the change
graph search is indeed on average even quasi-linear for computing an optimal change
script for two semantically equal or almost equal documents.

Since the time and space complexity of the algorithm ↪𝑆𝐷𝐼𝐹𝐹 is an upper bound for the
complexity of our algorithm ↪𝐷𝐼𝐹𝐹, the change graph search is always at least as efficient
as the state-of-the-art algorithm. In the case of two semantically equal or almost equal
documents, which is the predominant case in the context of a Change-Oriented Architec-
ture, the change graph search outperforms the state-of-the-art algorithm by an order of
magnitude.

110 Discussion

5.6 Discussion

In this chapter, we presented a new algorithm for the constrained weighted tree alignment
problem that is more efficient than the state-of-the-art algorithm in [Radzevich, 2006].
The essential idea of our approach is to reduce the tree alignment problem to a search
problem. We introduced the notion of change scripts modulo critical tree pairs where the
critical tree pairs are the remaining tasks to be solved by the search algorithm. The change
graph search proceeds by successively extending limited change scripts modulo by an
optimal change script modulo for a critical tree pair in focus. In our context, the optimiza-
tion problem is a single-source shortest-path-to-goal problem where the change graph can
only be dynamically expanded and the length of a path is defined by the change path cost.

We adapted Dijkstra’s algorithm for exploring the search space dynamically with a
correct and optimal strategy. Since this algorithm is a special case of the 𝐴∗ algorithm
with the constant heuristic 𝑕 = 0, an obvious question is whether there exists an admissi-
ble non-constant heuristic. This is not the case, because any critical tree pair might turn
out during the search process to be already semantically equal. Thus the optimal change
script for these trees would be the empty change script with the minimum edit cost 0.
Since an admissible heuristic is not allowed to overestimate the real cost, it follows that
the constant heuristic 𝑕 = 0 is the only admissible heuristic. Thus, we cannot further re-
strict the search space. Since the 𝐴∗ algorithm is the computationally optimal search strat-
egy with respect to a given heuristic, and since there exist no other admissible heuristics,
our adaptation of Dijkstra’s algorithm is the computationally optimal search strategy for
our reduction of the constrained weighted tree alignment problem to a search problem.

This leads immediately to the interesting question whether there are other possibilities
to reduce the constrained weighted tree alignment problem to a search problem. We de-
cided in our approach to start the search at the root of both trees and to proceed in a top-
down fashion by comparing the subtrees of these trees. The reason for this decision is
mainly the change model: Since we do not support the move operation, we do not need to
compare arbitrary subtrees on different layers in the hierarchy of the trees.

Finally, we want to emphasize that we developed an efficient solution for a general
class of constrained weighted tree alignment problems, which can be instantiated by a
domain- and document-specific similarity specification and a component-specific edit
specification. Besides that level of generality, the developed algorithm only depends on
the document model, the change model, the semantics of the similarity specification and
the semantics of the edit specification.

Invertible Grammar Formalism 111

6 Invertible Grammar Formalism

The Change-Oriented Architecture requires a robust method to translate between two
different interface documents in both directions. In this chapter we will therefore develop
a new formalism for invertible transformation grammars which is based on the introduced
notions for the semantic equality and the semantic similarity of documents.

The content diversity of interface documents ranges from serialized data structures to
full natural language. Therefore, we have chosen the following two mature grammar
models as the foundation of the invertible grammar formalism which we will present in
this chapter. As a representative for flexible parser style grammar models we selected
attribute grammars [Knuth, 1968] which have a long track record in the translation of
programming languages. As a representative for flexible generator style grammar models
we selected TGL, the grammar model of the natural language production system TG/2
[Busemann, 1996]. Both grammar models are context-sensitive extensions of the context-
free grammar model [Chomsky, 1957]. We will analyze their differences before we pre-
sent our derived invertible grammar model. Due to the aim of inverting the grammar for
the inverse transformation of an interface document, we have to restrict the expressive
power of the context-sensitive extensions in our grammar model. The solution we pro-
pose is a compromise between totally invertible content-permuting copy rules and partial-
ly invertible full-fledged transformation rules with side-effects.

This chapter begins by introducing the invertible grammar model. This new model
significantly differs from the previous models by integrating the notion of semantic equal-
ity in the pattern matching method for grammar rules. Furthermore, we augment the
grammar rules by unification constraints which need to be satisfied by the constructed
parse tree. In addition, the invertible grammar model allows for restructuring the matched
input for recursive transformation and it allows for specifying the processing order of the
recursive transformations. Since we do not assume a one-to-one correspondence between
the contents of two transformed interface documents, we store a transformation trace
which we use for the incremental transformation and in particular for the incremental
inverted transformation. The idea of the transformation trace is to store the used rules
together with their input and output matching mapping, and thus to store in particular
those parts of the interface document that are not preserved by the transformation. Then,
the transformation trace is used by the inverse transformation process as an oracle for
generating content which is as close as possible to the original content. Finally, we will
illustrate the presented invertible grammar formalism with a use case.

112 Grammar

6.1 Grammar

As proposed by Noam Chomsky in the 1950s, a formal grammar consists of a finite set of
symbols and a finite set of production rules. The symbols are partitioned into terminal
symbols and nonterminal symbols, where one of the nonterminal symbols is marked as
the start symbol of the grammar. A production rule is of the form 𝐴1… 𝐴𝑛 ↠ 𝐵1… 𝐵𝑚
where all 𝐴𝑖 and 𝐵𝑘 are symbols and at least one 𝐴𝑖 is a non-terminal. A production rule
allows for rewriting every occurrence of its left side to its right side.

Chomsky described a containment hierarchy of classes of formal grammars in
[Chomsky, 1956] by placing restrictions on the form of the production rules. For the pur-
pose of this thesis, we will focus on the class of context-free grammars (CFGs). A CFG is
a formal grammar with the restriction that the left side of every production rule has length
one. Thus, a production rule of a CFG may only rewrite one nonterminal symbol into a
sequence of symbols. This conceptual simplicity leads to an intuitive tree representation
of the transformation process, the context-free parse tree. Furthermore, this explains the
broad acceptance of the CFG model as a grammar model for various tasks.

When using CFGs to describe programming languages, there is the problem of model-
ing context-dependent language features like static typing and static scoping. To this pur-
pose, various extensions of the CFG model have been developed. A popular example is
attribute grammars (AGs) [Knuth, 1968], developed by Knuth as a CFG model extended
by an attribute system. Thereby, the nodes in the context-free parse tree are decorated
with attribute-value pairs. The attribute system extends each production rule by a set of
formulas which define the dependencies between the attributes of a parent node and the
attributes of its children. Knuth distinguishes between inherited attributes, whose values
propagate down the parse tree, and synthesized attributes, whose values propagate up the
parse tree. In the years after, a family of attribute grammar variant models have been de-
veloped, whose members use different kinds of attributes and attribute evaluation meth-
ods. For example, the door attribute grammars model [Hedin, 1994] extends the context-
free parse tree by symbol tables, type environments and collection-valued attributes,
which are incrementally evaluated by using visiting procedures and a dependency graph.

In the research of an adequate grammar model for natural language, Chomsky’s work
inspired the development of several phrase structure grammar models, among others the
generalized phrase structure grammar GPSG [Gazdar et al, 1985], the lexical functional
grammar LFG [Kaplan & Bresnan, 1981], and the head-driven phrase structure grammar
HPSG [Pollard & Sag, 1994]. HPSG is a generative grammar theory which introduces
feature structures. These are nested attribute-value matrices for representing phonologi-
cal, syntactical and semantic information, from which natural language is generated.

Invertible Grammar Formalism 113

Two orthogonal methods have been pursued for the development of efficient natural lan-
guage generation systems: (1) reusable, general and linguistically motivated techniques,
and (2) simple, task-oriented template-based techniques. The natural language production
system TG/2 [Busemann, 1996] proposes a compromise between these two extreme ap-
proaches. With many years of practical application [Busemann, 2005] ranging from the
generation of air-quality reports [Busemann & Horacek, 1998] to cross-lingual document
summarization [Busemann, 2001], TG/2 has proven to be well-suited as a flexible shallow
approach to the generation of natural language with limited linguistic variations.

For the natural language surface generation, TG/2 uses production rules specified in its
grammar model TGL. A rule in TGL is a precondition-action pair where the precondition
contains the category of a rule, the left side in a CFG rule, and tests for the input struc-
ture, predicates written in a programming language. The action of a TGL rule reflects the
right side in a CFG rule with the small but significant difference that in TGL the nonter-
minal symbols are declaratively parameterized by the input subtree which they have to
transform. On the one hand, multiple nonterminal symbols may transform the same input
subtree. On the other hand, the assigned input subtree does not have to be a direct subtree
of the input tree, TGL allows also for assigning a subtree which is deep in the input tree to
simplify the generation of natural language from foreign data structures. Additionally, the
rules are augmented by side-effects, functions written in a programming language, and
constraints which decorate the nodes in the context-free parse tree with attribute-value
pairs, similar to AG but restricted to value equations and assignments. We summarize the
differences between the production rules used by AG and TGL in Table 18.

 AG TGL
Preconditions - only category check

(= left side nonterminal)
- category check
- test predicates on input

Actions - discovering an order-
preserving assignment of
subtrees to nonterminals is
the goal

- no multiple assignments
- only assignment of the di-

rect subtrees
- complete coverage re-

quired

- declarative assignment of
a subtree to a nontermi-
nal in arbitrary order

- multiple assignments of
same subtree

- assignment of arbitrary
deep subtrees

- no complete coverage
required

Side-Effects - part of attribute evaluation - designated functions
Constraints - arbitrary semantic func-

tions and data structures
- value equations
- value assignments

Output - value of a designated re-
sult attribute

- concatenation of all ac-
tion results

Table 18. Differences between production rules in AG and TGL

114 Grammar

In the following, we will analyze these differences with respect to the inversion of a
grammar. In the spirit of [Shieber, 1988], we will propose to use a single grammar and a
single interpreter as a unified approach for the bidirectional translation of documents.

Preconditions. Although TGL supports arbitrary test predicates on the input tree, this
grammar feature is in practice mainly used for checking the existence of specific attrib-
utes or attribute-value pairs in the input feature structure. Inverting such a test predicate
would require the automatic generation or adaptation of an output subtree in order to sat-
isfy the test predicate. Since this task is more difficult than it sounds, we propose an alter-
native solution. We will consider the right side of a CFG rule as a pattern with the non-
terminals being variables and the terminals being labeled trees. The input tree or tree se-
quence will be matched against the pattern using the notion of semantic equality. There-
by, we will introduce positive and negative filters for variables in order to compensate for
the missing test predicates. These filters will allow for specifying the kinds of labeled
trees which a variable is allowed to match or not allowed to match.

Actions. The envisaged invertible grammar model needs to support the parser style as
well as the generator style. Preferring either one of the styles for actions will make the job
more difficult for modeling the other style. Therefore, we propose to combine both ap-
proaches in the following two step style. The pattern of the rule is first matched against
the input tree or tree sequences in parser style, which means every direct subtree of the
input is assigned to one and only one symbol in the pattern with respect to the order of the
input and the similarity specification. In a second step, the subtransformation tasks are
defined by a rule category parameterized by a sequence of labeled trees containing varia-
bles from the matched input pattern. Thus, we go even further than the generator style of
TGL and allow a restructuring of the input tree.

Analogously to the generator style, we do not require that all input subtrees, matched
by a pattern variable, have to be processed by a subtransformation. However, the inver-
sion of a rule with such an incomplete coverage requires an oracle to construct the content
of all uncovered pattern variables. We will present a method which solves this problem
adequately. Does the proposed two step style support both original styles? Is it fully
backward compatible? The parser style of the AG model can be imported without further
adaptations by defining a subtransformation for every pattern variable and parameterizing
this subtransformation by the input subtrees matched with that pattern variable. Unfortu-
nately, the generator style of the TGL model cannot be imported that easily because a rule
may access any part of the input tree. These access points have to be analyzed and either
targeted by a pattern variable or transported by using the constraint system.

Invertible Grammar Formalism 115

Side-Effects. Grammars in the TGL model use the side-effect function to access a dis-
course memory. Likewise, grammars in the AG model use functions with side-effects in
the attributes to access a scoped environment for bounded expressions and type infor-
mation. Since side-effects are in general to be handled carefully when backtracking is
required, we prefer to avoid them completely if possible. Therefore, we will allow for
defining specific constraints that can be attached to each grammar rule. These constraints
are evaluated partly at the beginning and partly at the end of a rule and they are visible to
all subsequent transformations. Furthermore, we will introduce a semantic hash function
that maps semantically equal labeled trees to the same hash value. A built-in identity
grammar rule returns the hash value of the input tree as an attribute value in the con-
straints. In combination with meta-variables this can be used to model static scoping.

Constraints. Knuth originally introduced the attribute system as an extension that has to
be evaluated in a separate process after the context-free parse tree is completely built.
Since we want to use the constraints for type checking and since the TGL model uses the
constraints for agreement relations between constituents, we will develop an incremental
constraint evaluation method and integrate it with the transformation process. As suggest-
ed by definite clause grammars [Pereira & Warren, 1980], there is in this case no need to
distinguish between inherited and synthesized attributes. Since value equations and value
assignments satisfy most needs for constraints, we will use our notion of semantic equali-
ty as the fundamental equivalence relation for constraints. Additionally, there exists no
specific pass-oriented evaluation [op den Akker et al, 1990] for our grammar model, be-
cause we will allow for defining a rule-specific processing order of subtransformations.

Output. The result construction in generator style is a fairly simple task of concatenating
the results of the subtransformations. In contrast to that, the parser style of the AG model
allows for using arbitrary functions to construct the result. Clearly, we have to restrict the
expressive power of the AG model in this dimension for the grammar inversion. There-
fore, we propose to use a mirrored two step style for specifying the output of a grammar
rule as follows. First we define an output pattern containing labeled trees with variables.
In a second step, we add to each subtransformation task an output pattern containing vari-
ables from the output pattern of the rule. The result of a subtransformation is then
matched against its output pattern and the resulting mapping is used to successively con-
struct the output of the rule. If a variable in the output pattern is assigned to multiple sub-
transformations, then their matched content has to be semantically equal. Altogether, we
believe that with the recombination possibilities provided by this mirrored two step style
our grammar model inherits the benefits of the TGL model for reusing rules.

116 Grammar

After this analysis of grammar models and the high-level introduction of the new con-
cepts for the invertible grammar formalism, we will begin with developing the formal
theory of our invertible grammar model by first introducing a representation of variables
as labeled trees, which will be used in the constraints and patterns of grammar rules.

Definition 6.1.1 (Variable): Let ℒ𝑉𝐴𝑅 be the universal set of variable labels. A variable
is a labeled tree 𝐷 with a root label 𝑙 ∈ ℒ𝑉𝐴𝑅 and no children. The set of all variables is
denoted by 𝒱 ≔ *𝐷 ∈ 𝒟|𝐿(𝐷) ∈ ℒ𝑉𝐴𝑅 ∧ 𝒞(𝐷) = ∅+. The variables contained in all sub-
trees of a sequence of labeled trees 𝑌 is the set 𝑣𝑎𝑟𝑠(𝑌) ≔ *𝐷|𝐷 ∈ 𝒮(𝑌) ∧ 𝐷 ∈ 𝒱+. Let
𝑙 ∈ ℒ𝑉𝐴𝑅 be the label of a variable, then 𝑣𝑎𝑟(𝑙) returns the corresponding variable tree.

As described in the introduction, we allow for defining filters on variables in order to re-
strict the possible matching partners of a variable. The following specification allows for
defining a positive and negative filter of a variable, that is, the kinds of labeled trees this
variable is allowed to match or not to match. Furthermore, we can define whether a varia-
ble is only allowed to match exactly one labeled tree or at least one labeled tree.

Definition 6.1.2 (Variable Specification): Let 𝐷 be a variable with the label 𝑙 = 𝐿(𝐷)
and 𝑙 ∈ ℒ𝑉𝐴𝑅. The positive filter 𝑍:(𝑙) ∈ 𝒫(ℒ𝑉) is a finite set of node labels. If this set is
non-empty, a tree matched by the variable 𝐷 has to have a root label which is contained in
the positive filter. The negative filter 𝑍;(𝑙) ∈ 𝒫(ℒ𝑉) is also a finite set of node labels. A
tree matched by the variable 𝐷 is not allowed to have a root label which is contained in
the negative filter. The matching range Λ(𝑙) ∈ *⊤, ⊥+ is a Boolean value which indicates
whether the variable can match one or more labeled trees (⊤) or only exactly one labeled
tree (⊥). A variable specification is a triple Σ𝑉 = (𝑍:, 𝑍;, Λ) consisting of a positive fil-
ter, a negative filter and a matching range.

Note that the filters and matching range are defined on the labels of variables. This im-
plies that the restrictions hold for all occurrences of a variable with a specific label.
By analyzing the occurrences of a specific variable in the patterns of the grammar rules,
we will be able to compile additional delimiters for the matching partners of a variable.
A serialized representation of a variable specification is given by the following example.

\variables{}[

 \positive{ name=“X” }[“+”],

 \negative{ name=“Y” }[“.”],

 \negative{ name=“A” }[“theorem”, “axiom”],

 \multirange{}[“X”, “Y”, “Z”]]

Invertible Grammar Formalism 117

By default, the positive filter of any variable is defined to be empty. In this example we
have defined the positive filter of the variable 𝑋 to be the set of labels * "+" +. This im-
plies that the variable 𝑋 can only match trees with the root label " + ". Furthermore, the
negative filter of any variable is also empty by default. Here we have defined that the
variable 𝑌 is not allowed to match a tree with label ". " and that the variable 𝐴 is not al-
lowed to match trees with the label "𝑡𝑕𝑒𝑜𝑟𝑒𝑚" or "𝑎𝑥𝑖𝑜𝑚". Finally, all variables are by
default allowed to match exactly one labeled tree. In this example, we have overridden
this default range for the variables 𝑋, 𝑌 and 𝑍 such that they may match one or more la-
beled trees.

According to the semantics of the variable specification we define the validation of the
matching partner of a variable as follows.

Definition 6.1.3 (Valid Variable Matching Partner): Let 𝐷1 and 𝐷2 be two labeled trees
with 𝑙1 = 𝐿(𝐷1) and 𝑙2 = 𝐿(𝐷2), and let Σ𝑉 = (𝑍:, 𝑍;, Λ) be a variable specification. The
judgment 𝐷1 ↪𝑀𝐴𝑃 𝐷2 denotes that 𝐷2 is a valid variable matching partner of 𝐷1 with
respect to Σ𝑉. The operational semantics of ↪𝑀𝐴𝑃 is defined by the following inference
rules and reflects the semantics of Σ𝑉.

𝐷1 ∈ 𝒱 ∧ 𝐷2 ∉ 𝒱

𝑙2 ∉ 𝑍;(𝑙1)

(𝑍:(𝑙1) = ∅) ∨ (𝑙2 ∈ 𝑍:(𝑙1))

𝐷1 ↪ 𝐷2

𝐷1 ∈ 𝒱 ∧ 𝐷2 ∈ 𝒱

𝑍;(𝑙1) = 𝑍;(𝑙2)

𝑍:(𝑙1) = 𝑍:(𝑙2)

𝐷1 ↪ 𝐷2

𝐷1 ∉ 𝒱 ∧ 𝐷2 ∈ 𝒱

𝐷2 ↪ 𝐷1
𝐷1 ↪ 𝐷2

Table 19. Algorithm MAP

The first rule checks that the label of the non-variable tree 𝐷2 is not in the negative filter
of the variable 𝐷1 and that the label of 𝐷2 is in the positive filter if defined. The second
rule defines that two variables can be matching partners if their positive and negative fil-
ters are equal. The third rule is a simple swapping rule. The evaluation of the judgment
𝐷1 ↪𝑀𝐴𝑃 𝐷2 terminates because the positive and negative filters are finite sets and both
trees can only be swapped once by the third rule.

Note that the matching range of a variable will be checked at another level. If a variable
matches multiple labeled trees, then the task of the algorithm ↪𝑀𝐴𝑃 is to validate each of
these labeled trees as a matching partner of that variable.

118 Grammar

In the context of grammar processing, we will use variable mappings in the following
application cases:

1) Pattern Matching: 𝐷1 is a linear pattern containing variables with unique occur-
rences or no variables at all. 𝐷2 does not contain any variable. There is no re-
striction required for the variable specification Σ𝑉. In summary, the conditions
∀𝑣 ∈ 𝑣𝑎𝑟𝑠(𝐷1). ∃! 𝐷 ∈ 𝒮(𝐷1). (𝐷 ≈ 𝑣) and 𝑣𝑎𝑟𝑠(𝐷2) = ∅ hold in this case.

2) Constraint Evaluation: 𝐷1 and 𝐷2 may contain variables. All variables contained

in both trees have an empty positive filter (𝑍:
∅), an empty negative filter (𝑍;∅) and

match exactly one labeled tree (Λ⊥). In summary, the condition Σ𝑉 = (𝑍:
∅, 𝑍;

∅, Λ⊥)
holds in this case.

We extend now the notions of semantic equality and semantic similarity to account for
variables as follows.

Definition 6.1.4 (Extended Semantic Equality): Let ΣS be a similarity specification, let
Σ𝑉 = (𝑍:, 𝑍;, Λ) be a variable specification and let 𝐷1, 𝐷2 be labeled trees which satisfy
the conditions of an application case. The extended semantic equality of the labeled trees
𝐷1 and 𝐷2 with respect to Σ𝑆 and Σ𝑉, denoted by 𝐷1 =(ΣS,Σ𝑉) 𝐷2, is a predicate over pairs
of labeled trees defined as follows:

𝐷1 =(ΣS,Σ𝑉) 𝐷2 ∶⇔ {
𝐷1 ↪𝑀𝐴𝑃 𝐷2 𝑖𝑓 𝐷1 ∈ 𝒱 ∨ 𝐷2 ∈ 𝒱

(𝐷1 ≈ 𝐷2) ∧ |𝒯(𝐷1,𝐷2)
<(ΣS,Σ𝑉)| > 0 𝑖𝑓 𝐷1, 𝐷2 ∉ 𝒱

The difference to the standard semantic equality is that we use the notion of valid variable
mappings if one of the labeled trees is a variable. Note that the set of tree matching map-

pings 𝒯(𝐷1,𝐷2)
<(ΣS,Σ𝑉) in the context 𝜅 = (ΣS, Λ) contains all bijective multi-functions between

corresponding children of the labeled trees 𝐷1 and 𝐷2, respecting the subtree partitioning
by the layers of the tree and their order.

If for example a variable may match one or more labeled trees because of its matching
range, then the tree matching mapping may assign multiple matching partners to this vari-

able. By the definition of 𝒯(𝐷1,𝐷2)
<(ΣS,Σ𝑉), each of these matching partners has to satisfy the ex-

tended semantic equality with respect to this variable. Thus, each matching partner is then
validated by the algorithm ↪𝑀𝐴𝑃.

Invertible Grammar Formalism 119

Definition 6.1.5 (Extended Semantic Similarity): Let ΣS be a similarity specification,
let Σ𝑉 be a variable specification and let 𝐷1, 𝐷2 be labeled trees which satisfy the condi-
tions of an application case. The extended semantic similarity of the labeled trees 𝐷1 and
𝐷2 with respect to Σ𝑆, denoted by 𝐷1 ≅(ΣS,Σ𝑉) 𝐷2, is a predicate over pairs of labeled trees
defined as follows:

𝐷1 ≅(ΣS,Σ𝑉) 𝐷2 ∶⇔ {
𝐷1 ↪𝑀𝐴𝑃 𝐷2 𝑖𝑓 𝐷1 ∈ 𝒱 ∨ 𝐷2 ∈ 𝒱

(𝐷1 ≈ 𝐷2) ∧ |𝒦(𝐷1,𝐷2)
<(ΣS,Σ𝑉)| > 0 𝑖𝑓 𝐷1, 𝐷2 ∉ 𝒱

Analogously to semantic equality, the difference to the standard semantic similarity is
that we use the notion of valid variable mapping if one of the labeled trees is a variable.
Note that the set of tree key matching mappings 𝒦(𝐷1,𝐷2)

<(ΣS,Σ𝑉) in the context 𝜅 = (ΣS, Λ) con-

tains all bijective multi-functions between corresponding key children of the labeled trees
𝐷1 and 𝐷2, respecting the layers of the tree and their order.

The evaluation of both recursive definitions terminates for all labeled trees because they
have a finite amount of nodes and thus a finite amount of subtrees. The leaves of the
evaluation tree are either comparisons between equally labeled subtrees which do not
have any children in a specific layer, or the evaluations of valid variable mappings which
terminate.

For the application case of constraint evaluation, it is important to show that the extended
semantic similarity is a reflexive and symmetric relation.

Lemma 6.1.6 (Reflexivity and Symmetry of Extended Semantic Equality): Let

ΣS = (ΣO, ΣK) be a similarity specification and let Σ𝑉 = (𝑍:
∅, 𝑍;

∅, Λ⊥) be the variable spec-
ification of the extension case for constraint evaluation. The extended semantic equality
of labeled trees =(ΣS,Σ𝑉) is a reflexive and symmetric relation on the set of labeled trees 𝒟
in the extension case for constraint evaluation.

Proof: We have to show the reflexivity and symmetry of =(ΣS,Σ𝑉).

1) Reflexivity : ∀𝐷 ∈ 𝒟. (𝐷 =(ΣS,Σ𝑉) 𝐷)

If 𝐷 ∈ 𝒱 with 𝑙 = 𝐿(𝐷) holds, we have to show 𝐷 ↪𝑀𝐴𝑃 𝐷. Clearly, this holds
because we know that 𝑍:(𝑙) = ∅ and 𝑍;(𝑙) = ∅ hold. If 𝐷 ∉ 𝒱 holds, the proof is
analogous to the proof for the reflexivity of semantic equality in Lemma 4.1.8 (1).

120 Grammar

2) Symmetry : ∀𝐷1, 𝐷2 ∈ 𝒟. .(𝐷1 =(ΣS,Σ𝑉) 𝐷2) ⇒ (𝐷2 =(ΣS,Σ𝑉) 𝐷1)/

If 𝐷1 ∈ 𝒱 or 𝐷2 ∈ 𝒱 hold, we have to show that 𝐷1 ↪𝑀𝐴𝑃 𝐷2 implies
𝐷2 ↪𝑀𝐴𝑃 𝐷1. Let 𝑙1 = 𝐿(𝐷1) and 𝑙2 = 𝐿(𝐷2) be the labels of these trees. If both
trees are variables, this holds because we know that 𝑍:(𝑙1) = 𝑍:(𝑙2) = ∅ and
𝑍;(𝑙1) = 𝑍;(𝑙2) = ∅. If one tree is not a variable, this follows from the swapping
rule of ↪𝑀𝐴𝑃. If 𝐷1 ∉ 𝒱 and 𝐷2 ∉ 𝒱 hold, the proof is analogous to the proof for
the symmetry of semantic equality in Lemma 4.1.8 (2).

∎

In both application cases, namely pattern matching and constraint evaluation, we are es-
sentially constructing a substitution which is a finite set of replacements for variables.

Definition 6.1.7 (Substitution): A substitution 𝜎 is a function from variables to sequenc-
es of labeled trees, thus we have 𝜎 ∈ 𝒫(𝒱 × 𝒫(𝒟)). A substitution 𝜎 is valid if it is

idempotent and if ∀𝑥 ∈ 𝑑𝑜𝑚(𝜎). .∃! (𝑥, 𝑌) ∈ 𝜎 ∧ 𝑥 ∉ 𝑣𝑎𝑟𝑠(𝜎(𝑥))/ holds. An idempo-

tent substitution is a substitution which is stable under self-application. We denote the
identity substitution by 𝜎𝑖𝑑.

The judgment (𝐷1, 𝜎) ↪𝐴𝑃𝑃𝐿𝑌 𝐷2 denotes that the labeled tree 𝐷2 is the result of apply-
ing the substitution 𝜎 to the labeled tree 𝐷1. We use also the shorter notation 𝐷2 ≔ 𝜎(𝐷1)
as the usual homomorphic extension. The operational semantics of ↪𝐴𝑃𝑃𝐿𝑌 is defined by
the following inference rule.

Δ ≔ ,𝛿𝐼(𝑣 , 𝑌), 𝛿𝐸(𝑣)|𝑣 ∈ 𝒮(𝐷1) ∧ (𝑣, 𝑌) ∈ 𝜎-

(𝐷1, 𝜎) ↪ Δ(𝐷1)

Table 20. Algorithm APPLY

This inference rule describes the application of a substitution in terms of constructing and
applying an edit script to the target labeled tree 𝐷1.

For applying a substitution to another substitution we need a method which does not
replace the domain of a substitution. The judgment (𝜎1, 𝜎2) ↪𝑆𝑈𝐵𝐴𝑃𝑃𝐿𝑌 𝜎3 denotes that
the substitution 𝜎3 is the result of applying the substitution 𝜎2 to the substitution 𝜎1. We
use the same notation 𝜎2(𝜎1) = 𝜎3 since the semantics can be inferred from the context.
The operational semantics of ↪𝑆𝑈𝐵𝐴𝑃𝑃𝐿𝑌 is defined by the following inference rule.

Invertible Grammar Formalism 121

Δ ≔ ,𝛿𝐼(𝑣 , 𝑌2), 𝛿𝐸(𝑣)|(𝑥, 𝑌1) ∈ 𝜎1 ∧ 𝑣 ∈ 𝒮(𝑌1) ∧ (𝑣, 𝑌2) ∈ 𝜎2-

(𝜎1, 𝜎2) ↪ Δ(𝜎1)

Table 21. Algorithm SUBAPPLY

Although we have not explicitly defined the application of a change script to a sequence
of labeled trees, this is a homomorphic extension: Build a new labeled tree without chil-
dren and add the existing sequence as a specific layer to the new tree. Then use the algo-
rithm ↪𝑃𝐴𝑇𝐶𝐻 as defined and collect the resulting sequence from the specific layer.

In the application case of pattern matching, we have to deal with grounded substitutions,
which are substitutions 𝛾 with ∀(𝑥, 𝑌) ∈ 𝛾. 𝑣𝑎𝑟𝑠(𝑌) = ∅. For this case, we define the
subtraction (⊝) and addition (⊕) of two grounded substitutions 𝛾1 and 𝛾2 as follows.

𝛾1⊝𝛾2 ≔ *(𝑣1, 𝑌1) ∈ 𝛾1|∀(𝑣2, 𝑌2) ∈ 𝛾2. ≦(𝑣1 ≈ 𝑣2)+
𝛾1⊕𝛾2 ≔ (𝛾1⊝𝛾2) ∪ 𝛾2

In the non-grounded case, we would have to apply the resulting set of substitutions on
itself until it is idempotent, of course always assuming that it is free of cycles. However,
in the following we only need the subtraction and addition in the grounded case.

Before we introduce the invertible grammar model, we will present the employed con-
straint system. In the following we will define the notion of constraint and an algorithm
for the incremental evaluation of a set of constraints. The task of the constraint evaluation
is to check the satisfiability of the set of constraints by constructing a unifier.

Definition 6.1.8 (Constraint): Let ΣS be a similarity specification and let Σ𝑉 =

(𝑍:
∅, 𝑍;

∅, Λ⊥) be the variable specification of the application case for constraint evaluation.
A constraint is an ordered pair of two labeled trees (𝐷1, 𝐷2) with the desired semantics
𝐷1 =(ΣS,Σ𝑉) 𝐷2.

Thus, the task of checking the satisfiability of a set of constraints can be interpreted as a
unification problem [Robinson, 1965], that is, to find a substitution which, when applied
to each constraint, makes the contained trees satisfy the extended semantic equality. Pre-
cisely, the semantics of =(ΣS,Σ𝑉) turns the problem into a special case of C-unification
which is the unification with a commutativity theory C, usually defined by a set of equa-
tions.

122 Grammar

In our case, this commutativity theory is implicitly given by the similarity specification
ΣS = (ΣO, ΣK). Thereby, the similarity order ΣO specifies the relevance of the order of tree
layers for the equality of labeled trees and thus defines an equality theory for the unifica-
tion problem. The similarity key ΣK defines the layer-specific elements that are important
for the identification of corresponding labeled trees. Hence, this essentially provides the
unification method a priority check before problem decomposition. A unifier is a substitu-
tion for a set of constraints, such that - when applied to the constraints - they become syn-
tactically equal modulo the commutativity theory specified by ΣS.

Definition 6.1.9 (Unifier): Let ΣS be a similarity specification. The valid substitution 𝜃 is
a unifier for the set of constraints 𝐶 with respect to ΣS if it holds that (𝐶, 𝜃) ↪𝐴𝑃𝑃𝐿𝑌 𝐶′
and ∀(𝑥, 𝑦) ∈ 𝐶′. (𝑥 =ΣS 𝑦). The unifier 𝜃 is a most general unifier for the set of con-

straints 𝐶 with respect to ΣS if it holds that for all unifiers 𝜃𝑥 there exists a substitution 𝜎
such that 𝜃𝑥 = 𝜎 ∘ 𝜃. Thereby, 𝜎 ∘ 𝜃 denotes 𝜎(𝜃) ∪ 𝜎|𝐾 with 𝐾 ≔ 𝑑𝑜𝑚(𝜎)\𝑑𝑜𝑚(𝜃).
Since in general a single most general unifier may not exist, we define the set of most
general unifiers Θ for 𝐶 as follows:

1) Correctness
All substitutions 𝜃 in Θ are unifiers for 𝐶.

2) Completeness
For all unifiers 𝜃𝑥 for 𝐶 there exists a substitution 𝜎 and a unifier 𝜃 in Θ such that
𝜃𝑥 = 𝜎 ∘ 𝜃 holds.

3) Minimality
For all unifiers 𝜃1 and 𝜃2 both in Θ there does not exist a substitution 𝜎 such that
𝜃1 = 𝜎 ∘ 𝜃2 holds.

Jörg Siekmann reports in his survey [Siekmann, 1989] that the unification problem is de-
cidable for the first order case with a commutativity theory. Furthermore, there exist pairs
of labeled trees which have more than one most general unifier, but they always have at
most finitely many. In our parse scenario, we are only interested in the general satisfiabil-
ity of a set of constraints, we do not necessarily need to construct a most general unifier.

Since we will integrate the evaluation of constraints with the translation, we ideally
want to be able to evaluate the set of constraints incrementally. Therefore, the following
algorithm accepts together with the working set of constraints a partial solution of the
unification problem. The algorithm computes a unifier by treating a set of constraints as
an ordered sequence, which simulates the deterministic behavior of Robinson’s unifica-
tion algorithm [Robinson, 1965].

Invertible Grammar Formalism 123

Definition 6.1.10 (Incremental Constraint Evaluation): Let ΣS be a similarity specifi-

cation and let Σ𝑉 = (𝑍:
∅, 𝑍;

∅, Λ⊥) be the variable specification of the application case for
constraint evaluation. The judgment (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 denotes the evaluation of the set of
constraints 𝐶1 with the valid substitution 𝜃1 under the assumption that 𝑣𝑎𝑟𝑠(𝐶1) ∩
𝑑𝑜𝑚(𝜃1) = ∅. The result is a new valid substitution 𝜃2. The operational semantics of
↪𝑆𝐴𝑇 is defined by the following inference rules.

(constraint reduction)
𝐷1 ∉ 𝒱 ∧ 𝐷2 ∉ 𝒱

𝐷1 ≈ 𝐷2

𝜇 ∈ 𝒯(𝐷1,𝐷2)
<
(ΣS,Σ𝑉)

(𝜇 ∷ 𝐶1, 𝜃1) ↪ 𝜃2
((𝐷1, 𝐷2) ⋆ 𝐶1, 𝜃1) ↪ 𝜃2

(variable elimination)

𝐷1 ∈ 𝒱
𝐷1 ∉ 𝑣𝑎𝑟𝑠(𝐷2)

𝜎 ≔ *(𝐷1, ,𝐷2-)+

(𝜎(𝐶1), 𝜎 ∘ 𝜃1) ↪ 𝜃2
((𝐷1, 𝐷2) ⋆ 𝐶1, 𝜃1) ↪ 𝜃2

(identity elimination)
𝐷1 ∈ 𝒱 ∧ 𝐷2 ∈ 𝒱

𝐷1 ≈ 𝐷2
(𝐶1, 𝜃1) ↪ 𝜃2

((𝐷1, 𝐷2) ⋆ 𝐶1, 𝜃1) ↪ 𝜃2

(constraint swapping)
𝐷1 ∉ 𝒱 ∧ 𝐷2 ∈ 𝒱

((𝐷2, 𝐷1) ⋆ 𝐶1, 𝜃1) ↪ 𝜃2

((𝐷1, 𝐷2) ⋆ 𝐶1, 𝜃1) ↪ 𝜃2

(unifier found)

(∅, 𝜃) ↪ 𝜃

This algorithm is an adaptation of Martelli & Montanari’s unification algorithm [Martelli
& Montanari, 1982] to the semantics of =(ΣS,Σ𝑉). We will give a short description of the
five rules by referring to them as being numbered from top to bottom and left to right.
The first rule replaces a constraint by a set of decomposed constraints obtained from a

selected tree matching mapping 𝜇 ∈ 𝒯(𝐷1,𝐷2)
<
(ΣS,Σ𝑉)

. Since the tree matching mapping 𝜇 is a set

of pairs of labeled trees, we can interpret 𝜇 as a set of constraints. In the ordered case, we
have always at most one matching mapping. If a tree layer is unordered, this may be a
choice point for problem decomposition. The second rule transfers a constraint to the sub-
stitution after a negative occurs check and by applying it to the remaining constraints and
to the current substitution. The third rule removes an identity constraint. The fourth rule
swaps a constraint such that it is headed by a variable. Finally, the fifth rule is the only
concluding rule.

Table 22. Algorithm SAT
(adapted from [Martelli & Montanari, 1982])

124 Grammar

Note that we totally order the tree matching mappings by the position of the matching
partners from left to right. Hence, the alternatives at the choice point are ordered. Since
furthermore only one inference of this algorithm is applicable in a specific evaluation
state, we can conclude that the algorithm ↪𝑆𝐴𝑇 and its backtracking mechanism are de-
terministic.

The termination of the algorithm for constraint evaluation can be shown as follows by
analyzing the size of the set of constraints in every evaluation step.

Lemma 6.1.11 (Termination of Constraint Evaluation): Let ΣS be a similarity specifi-

cation and let Σ𝑉 = (𝑍:
∅, 𝑍;

∅, Λ⊥) be the variable specification of the application case for
constraint evaluation. Then the algorithm ↪𝑆𝐴𝑇 terminates.

Proof: The application of the fifth rule terminates clearly. Furthermore, the fifth rule is
only applicable once because it marks the end of the algorithm ↪𝑆𝐴𝑇. The fourth rule can
only be applied at most once to any constraint in the set of constraints. Since the second
rule reduces the amount of different variables in the set of constraints, since the other
rules do not introduce new variables, and since the set of constraints contains only finitely
many different variables, the second rule can only be applied finitely many times.

Thus, if we can prove that the remaining two rules reduce the set of constraints, the al-
gorithm ↪𝑆𝐴𝑇 terminates because the fifth rule is applicable when the set of constraints is
empty. We can prove this by showing that the size of the set of constraints is reduced by
rule one and three. Thereby, the size of a constraint is the sum of the sizes of both labeled
trees, and the size of the set of constraints is the sum of the sizes of all contained con-
straints. Since rule three removes a constraint, this is trivially clear. Rule one replaces a
constraint by a set of constraints which contains pairs of direct subtrees as constraints.
The size of this set is always smaller than the size of the original constraint because the
root nodes are missing. Additionally, the choice point in rule one has only finitely many
options of tree matching mappings. It follows that ↪𝑆𝐴𝑇 terminates, either with returning
a new substitution, or because all backtracking options are exhausted and no inference
rule is applicable.

∎

Since the purpose of the algorithm ↪𝑆𝐴𝑇 is to check the satisfiability of a set of con-
straints, it is not important to find a most general unifier. Let 𝑥, 𝑦 be variables and 𝑓
commutative, then ↪𝑆𝐴𝑇 computes indeed for (𝐶1, ∅) with 𝐶1 = *(𝑓,𝒙, 1-, 𝑓,1, 𝒚-)+ the
resulting unifier 𝜃2 = *(𝒙, 1), (𝒚, 1)+, although 𝜃3 = *(𝒙, 𝒚)+ is a more general unifier.

Invertible Grammar Formalism 125

In the following, we will prove that the incremental constraint evaluation method ↪𝑆𝐴𝑇 is
both sound and complete.

Lemma 6.1.12 (Soundness of Incremental Constraint Evaluation): Let ΣS be a simi-
larity specification. Let 𝐶1 be a set of constraints and let 𝜃1 be a valid substitution with
𝑣𝑎𝑟𝑠(𝐶1) ∩ 𝑑𝑜𝑚(𝜃1) = ∅. Furthermore, let (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 hold. Then 𝜃2 is a unifier
for the set of constraints 𝐶1 and 𝜃2 is a consistent extension of 𝜃1, that is, there exists a
substitution 𝜎 with 𝜃2 = 𝜎 ∘ 𝜃1.

Proof: We show this by proving the soundness of every inference rule of the algorithm
↪𝑆𝐴𝑇. The statement then follows because the derivation tree for (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 is a
sequence of inference applications.

1) Case Rule 1: By the assumptions of this rule, we know that 𝜃2 is a unifier for
𝐶1 ∪ 𝜇 with 𝜇 ∈ 𝒯(𝐷1,𝐷2)

<
(ΣS,Σ𝑉)

 and 𝜃2 is a consistent extension of 𝜃1. Let 𝐷1′ ≔

𝜃2(𝐷1), 𝐷2′ ≔ 𝜃2(𝐷2), and 𝜇′ ≔ 𝜃2(𝜇), then we know that 𝜇′ ∈ 𝒯
(𝐷1
′ ,𝐷2

′)

<ΣS

. Because

of 𝐷1 ≈ 𝐷2 it follows that 𝐷1′ ≈ 𝐷2′ and hence 𝐷1′ =ΣS
 𝐷2

′ . Therefore, it follows

that 𝜃2 is a unifier for *(𝐷1, 𝐷2)+, hence also for *(𝐷1, 𝐷2)+ ∪ 𝐶1. This shows the
soundness of the first rule.

2) Case Rule 2: We know that 𝜃1 is a valid substitution, then 𝜎 ∘ 𝜃1 is valid too with
𝜎 ≔ *(𝐷1, ,𝐷2-)+ because 𝐷1 ∉ 𝑣𝑎𝑟𝑠(𝐷2) and 𝑣𝑎𝑟𝑠(𝐷1) ∩ 𝑑𝑜𝑚(𝜃1) = ∅. Fur-
thermore, by construction it follows that 𝜎 ∘ 𝜃1 is a consistent extension of 𝜃1.
Hence, it holds that 𝑣𝑎𝑟𝑠(𝜎(𝐶1)) ∩ 𝑑𝑜𝑚(𝜎 ∘ 𝜃1) = ∅. By the assumption of this
inference rule, we thus know that 𝜃2 is a unifier for 𝜎(𝐶1). It remains to be shown
that 𝜃2 is a unifier for *(𝐷1, 𝐷2)+ ∪ 𝐶1. Since 𝜃2 is a consistent extension of 𝜎 ∘ 𝜃1,
it follows that there exists a substitution 𝜎′ such that 𝜃2 ≔ 𝜎′ ∘ 𝜎 ∘ 𝜃1 holds. From
𝑣𝑎𝑟𝑠(𝐷1) ∩ 𝑑𝑜𝑚(𝜃1) = ∅ and the definition of 𝜎 we can derive:

𝜃2(𝐷1) = 𝜎
′ ∘ 𝜎 ∘ 𝜃1(𝐷1) = 𝜎

′ ∘ 𝜎(𝐷1) = 𝜎′(𝐷2)
𝜃2(𝐷2) = 𝜎

′ ∘ 𝜎 ∘ 𝜃1(𝐷2) = 𝜎
′ ∘ 𝜎(𝐷2) = 𝜎′(𝐷2)

Therefore, it follows that 𝜃2 is a unifier for *(𝐷1, 𝐷2)+.
From 𝑣𝑎𝑟𝑠(𝐶1) ∩ 𝑑𝑜𝑚(𝜃1) = ∅ we can derive furthermore:

𝜃2(𝜎(𝐶1)) = 𝜎
′ ∘ 𝜎 ∘ 𝜃1(𝜎(𝐶1)) = 𝜎

′ ∘ 𝜎(𝜎(𝐶1)) = 𝜎′ ∘ 𝜎(𝐶1)
𝜃2(𝐶1) = 𝜎

′ ∘ 𝜎 ∘ 𝜃1(𝐶1) = 𝜎
′ ∘ 𝜎(𝐶1)

Hence, because 𝜃2 is a unifier for 𝜎(𝐶1) it is also a unifier for 𝐶1 and thus for
*(𝐷1, 𝐷2)+ ∪ 𝐶1. This shows the soundness of the second rule.

126 Grammar

3) Case Rule 3: Then we consider the case of the third rule. By the assumptions of
this inference rule, we know that 𝜃2 is a unifier for 𝐶1 and 𝜃2 is a consistent exten-
sion of 𝜃1. Because of 𝐷1, 𝐷2 ∈ 𝒱 and 𝐷1 ≈ 𝐷2 it follows immediately that
𝐷1 =(ΣS,Σ𝑉) 𝐷2 because =(ΣS,Σ𝑉) is reflexive by Lemma 6.1.6. Therefore, it follows

that 𝜃2 is a unifier for *(𝐷1, 𝐷2)+ ∪ 𝐶1. This shows the soundness of the third rule.

4) Case Rule 4: We continue with the fourth rule. By the assumptions of this infer-
ence rule, we know that 𝜃2 is a unifier for *(𝐷2, 𝐷1)+ ∪ 𝐶1 and 𝜃2 is a consistent
extension of 𝜃1. Since =(ΣS,Σ𝑉) is symmetric by Lemma 6.1.6, it follows that 𝜃2 is

a unifier for *(𝐷1, 𝐷2)+ ∪ 𝐶1, too. This shows the soundness of the fourth rule.

5) Case Rule 5: Finally, we have the case of the fifth rule. Clearly, any substitution 𝜃
is a unifier for the empty set of constraints ∅. This shows the soundness of the
fifth rule.

∎

It remains to be shown that if there exists a unifier 𝜃3 for 𝐶1 which is a consistent exten-
sion of 𝜃1, then the judgment (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 can be derived.

Lemma 6.1.13 (Completeness of Incremental Constraint Evaluation): Let ΣS be a
similarity specification. Let 𝐶1 be a set of constraints and let 𝜃1 be a valid substitution
with 𝑣𝑎𝑟𝑠(𝐶1) ∩ 𝑑𝑜𝑚(𝜃1) = ∅. If there exists a unifier 𝜃3 for 𝐶1 which is a consistent
extension of 𝜃1, then there exists a valid substitution 𝜃2 such that (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 holds.

Proof: We will prove this statement by contradiction. We assume that there exists a unifi-
er 𝜃3 for 𝐶1 which is a consistent extension of 𝜃1, but we cannot derive the judgment
(𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 for any valid substitution 𝜃2.

Since the fifth rule is not applicable, the set of constraints contains at least one constraint
(𝐷1, 𝐷2).

1) Case 𝐷1 ∉ 𝒱 ∧ 𝐷2 ∉ 𝒱: If ≦(𝐷1 ≈ 𝐷2) were the case, there cannot exist a unifier,

which contradicts the assumption. Thus 𝐷1 ≈ 𝐷2 must hold. In case of 𝒯(𝐷1,𝐷2)
<
(ΣS,Σ𝑉)

=

∅, there cannot exist a unifier. Thus there must exist a 𝜇 ∈ 𝒯(𝐷1,𝐷2)
<
(ΣS,Σ𝑉)

. The first rule

is applicable and can be used to decompose all such tree matching mappings.

Invertible Grammar Formalism 127

2) Case 𝐷1 ∉ 𝒱 ∧ 𝐷2 ∈ 𝒱: The fourth rule would be applicable.

3) Case 𝐷1 ∈ 𝒱 ∧ 𝐷2 ∉ 𝒱: If 𝐷1 ∈ 𝑣𝑎𝑟𝑠(𝐷2) were the case, there could not exist a
unifier. Thus 𝐷1 ∉ 𝑣𝑎𝑟𝑠(𝐷2) must hold and the second rule would be applicable.

4) Case 𝐷1 ∈ 𝒱 ∧ 𝐷2 ∈ 𝒱: If 𝐷1 ≈ 𝐷2 were the case, the third rule would be applica-

ble. Thus ≦(𝐷1 ≈ 𝐷2) must hold, hence we have 𝐷1 ∉ 𝑣𝑎𝑟𝑠(𝐷2) and the second
rule would be applicable.

We conclude that, as long as the set of constraints contains a constraint (𝐷1, 𝐷2), at least
one inference rule is applicable. If the algorithm ↪𝑆𝐴𝑇 does not directly select a correct

tree matching mapping 𝜇 ∈ 𝒯(𝐷1,𝐷2)
<
(ΣS,Σ𝑉)

 at the choice point in the application of the first rule,

we know that it will try all other alternatives by backtracking. Since there exists a unifier
𝜃3, this implies that 𝜃3(𝐷1) =ΣS

 𝜃3(𝐷2) holds and that there exists a tree matching map-

ping 𝜇′ ∈ 𝒯
(𝜃3(𝐷1),𝜃3(𝐷2))

<ΣS

. Hence there must also exist at least one correct tree matching

mapping 𝜇 ∈ 𝒯(𝐷1,𝐷2)
<
(ΣS,Σ𝑉)

 with 𝜇′ = 𝜃3(𝜇). Since the algorithm ↪𝑆𝐴𝑇 terminates by Lemma

6.1.11, we can conclude that the set of constraints will be reduced until the fifth rule is
applicable. Thus we have constructed a derivation tree for (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 which con-
tradicts our assumption.

∎

We have shown that, if a unifier 𝜃3 exists for 𝐶1 which is a consistent extension of 𝜃1, the
judgment (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 can always be derived for some 𝜃2. Furthermore, 𝜃2 is a uni-
fier for the set of constraints 𝐶1 and 𝜃2 is a consistent extension of 𝜃1. Altogether, we
have shown the soundness and completeness of the presented incremental constraint
evaluation method.

Note that the algorithm ↪𝑆𝐴𝑇 computes a unifier 𝜃2 for 𝐶1 that is a consistent extension of
𝜃1. Thus, if we first derive the judgment (𝐶1, 𝜃1) ↪𝑆𝐴𝑇 𝜃2 and if we then extend the set of
constraints by a new set of constraints 𝐶2, trying to derive (𝐶2, 𝜃2) ↪𝑆𝐴𝑇 𝜃3, this may not
succeed although 𝐶1 ∪ 𝐶2 is satisfiable. The reason is that the decisions taken at the
choice points of the construction for 𝜃2 might not be the correct decisions for (𝐶1 ∪
𝐶2, 𝜃1) ↪𝑆𝐴𝑇 𝜃3. For the practical application, this implies that the similarity order ΣO
should be used very carefully for the constraint system, because it possibly leads to back-
tracking.

128 Grammar

Before we present in the following the formal definition of an invertible grammar, we
would like to give an intuitive introduction by discussing examples of invertible rules.

FORALL-MULTI

𝑳 TERM

𝑷𝑰𝑵 { dir=“r” }[“\forall” c “,” n “:” t “.” f]

𝑴 [(k,[c “:” t],[v],VARINTRO),

 (m,[“\forall” n “:” t “.” f],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“forall”}[\B[v] , w]]

𝑪𝑷𝑹𝑬 { m.type = “bool”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { false }

This example shows a grammar rule called FORALL-MULTI which is part of a set of
grammar rules that transform a syntactic linear-style mathematical formula into a seman-
tic tree-style representation. The grammar rule is serialised as a labeled tree, where the
layers of the tree are the rows in the given example, except from the first row 𝑳 which
contains the label of the root node of the grammar rule, which is also the category of that
grammar rule. The name FORALL-MULTI has no technical significance. We will use this
name to refer to a specific rule in the textual description.

The second row 𝑷𝑰𝑵 contains the input pattern, against which the input will be
matched, and a matching direction. The matching direction of a pattern is by default to
the right, otherwise the direction can be specified as shown for the input pattern in the
example rule. Thereby, dir=“r” denotes the matching direction to the right, and
dir=“l” denotes the matching direction to the left. Since there exists often more than
one matching mapping because some variables might match more than one partner, we
order the matching mappings by the amount of matching partners for variables from high
to low, and from left to right (dir=“l”) or from right to left (dir=“r”). The matching
direction indicates in which order the matching mappings should be selected.

The third row 𝑴 contains the invocations of other rules. This example demonstrates
how the input pattern can be recombined for two recursive rule invocations. The first in-
vocation with the label k processes the first quantified typed variable, whereas the second
invocation m transforms the remaining linear-style formula. The second parameter of the
invocation is the input pattern for this rule invocation, whose variables will be substituted
by the matching mapping of the input pattern of the current rule. The output of the rule
invocation will be matched against the pattern in the third parameter of the invocation.
The fourth parameter is the category of the rule that can be invoked.

The fourth row 𝑷𝑶𝑼𝑻 contains the output pattern which will be completed by the
matching mappings of the output patterns of the recursive rule invocations.

Invertible Grammar Formalism 129

The fifth row 𝑪𝑷𝑹𝑬 and the sixth row 𝑪𝑷𝑶𝑺𝑻 contain constraints which are written as
equations. Constraint-variables are written in attribute-style notation by separating the
variable and its attribute with a dot. The special variable ME refers to the invocation of
the current grammar rule. This is in line with the idea of attaching attributes to the invoca-
tion nodes in the parse tree. We will illustrate this concept after the introduction of a se-
cond grammar rule. The difference between both rows is that the constraints in 𝐶𝑃𝑅𝐸 are
checked for satisfiability before the recursive rule invocations and the constraints in
𝐶𝑃𝑂𝑆𝑇 after them.

The last row 𝒊 indicates whether the environment of the invoked rules is inherited (⊤)
or not (⊥). The environment is by default inherited. The concept of an environment is
part of our solution for static scoping and will be explained in the following.

As a second example, let us consider the grammar rule TYPED-VAR which is of the cate-
gory VARINTRO and potentially used by the invocation k in the previous rule.

TYPED-VAR

𝑳 VARINTRO

𝑷𝑰𝑵 [c “:” t]

𝑴 [(k,[c],[v],IDI),

 (m,[t],[w],TYPE)]

𝑷𝑶𝑼𝑻 [\V{ v }[w]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { ME.type = m.type , (k.index).type = m.type }

𝒊 { true }

The first subrule k in this second example calls the special identity transformation rule
class IDI, which passes input to output and returns the semantic hash value #1 of the
input tree as the value of the attribute index. This index value k.index is in turn used to
assign a type to this particular variable with the meta-variable (k.index).type. Meta-
variables are evaluated by replacing the constraint-variable with the label of its value. In
this case, (k.index).type is evaluated to #1.type.

The semantic hash function returns the same hash value for semantically equal input
trees. Since we will use this feature in particular for assigning a unique identifier to varia-
bles in mathematical formulas, we need to take special care about scoping. The role of the
environment is to map the hash value to the correct identifier in the current scope. A local
scope is always bounded by a single grammar rule which does not inherit the environ-
ments of its recursive rule invocations. In this case, the environment at the beginning of
the rule processing is returned again.

130 Grammar

A (partial) parse tree for the mathematical formula ∀𝑥, 𝑦: 𝑠𝑒𝑡. … is shown in Figure 10.
The rule invocations are represented by nodes containing the invocation label. The node
with the label r is the root of this example parse tree. The box label above a node, for ex-
ample FORALL-MULTI, denotes the rule that is invoked at that node. Note that the invo-
cation labels defined in the rule TYPED-VAR have changed from k and m to p and q. The
reason is that every invocation label in the parse tree has to be unique. Therefore, a
grammar rule needs to be instantiated first with fresh invocation labels. Thereby, the label
ME is replaced by the current invocation label of that grammar rule in the parse tree. The
box below a node contains the constraints which are added by that rule invocation. On the
left hand side of a downward edge, we have written the input environment and input se-
quence of a rule invocation. On the right hand side of an upward edge, the ouput envi-
ronment and the output sequence is shown.

…

q.type = „set“ p.index = #1

k.type = q.type
#1.type = q.type

r.type = „bool“
m.type = „bool“

r

p
2

m k

q

FORALL-MULTI

TYPED-VAR ...

IDT TYPE-SET

𝜎1 ↓ ∀𝑥, 𝑦: 𝑠𝑒𝑡. …

𝜎1 ↓ 𝑥: 𝑠𝑒𝑡

𝜎1 ↓ 𝑥 𝜎2 ↑ 𝑥 𝜎2 ↓ 𝑠𝑒𝑡 𝜎2 ↑ 𝑇*𝑠𝑒𝑡+

𝜎2 ↑ 𝑉*𝑥+,𝑇*𝑠𝑒𝑡+- 𝜎2 ↓ ⋯ 𝜎𝑥 ↑ ⋯

𝜎1 ↑ …

𝜎2 ≔ *(𝑥, #1)+ ∘ 𝜎1

Figure 10. Example Parse Tree

Invertible Grammar Formalism 131

Our invertible grammar model will be extensively based on the concept of pattern match-
ing. Therefore we introduce now the notion of a pattern.

Definition 6.1.14 (Pattern): A pattern is a sequence of labeled trees with uniquely occur-
ring variables. A pattern has a direction which is either left or right. Let ℒ𝑇 be a set of text
labels, the lexicon. Then the set of all patterns with respect to ℒ𝑇 is denoted by 𝒬(ℒ𝑇) and
contains all pattern whose text subtrees have a label in ℒ𝑇.

We totally order the matching mappings between a pattern and a variable-free sequence
of labeled trees by the amount of labeled trees matched with the pattern variables. There-
by, we order the pattern variables by the traversal order of depth-first search. If the pat-
tern direction is left, the mappings are ordered from many to few matching partners of the
variables from left to right. If the pattern direction is right, this order is inverted. The
matching mappings are then additionally ordered by the position of the matching partners.
The described ordering of matching mappings allows for a deterministic pattern match-
ing. Furthermore, the pattern direction helps defining whether a rule is associative to the
left or to the right. We introduce now the new invertible grammar model as a combination
of the grammar models AG and TGL as follows.

Definition 6.1.15 (Invertible Grammar): Let ℒ𝑇 be a lexicon, let ℒ𝑅 be the set of rule
labels and let ℒ𝑀 be the set of subrule labels with ℒ𝑅 ∩ ℒ𝑀 = ∅. A rule 𝑟 of the set of
rules 𝒭 consists of

 a rule label 𝑙𝑟 ∈ ℒ𝑅,
 an input pattern 𝑃𝑖𝑛 ∈ 𝒬(ℒ𝑇),
 a sequence of invocations 𝑀 ⊂ℳ,
 an output pattern 𝑃𝑜𝑢𝑡 ∈ 𝒬(ℒ𝑇),
 a set of precondition constraints 𝐶𝑝𝑟𝑒 ∈ 𝒫(𝒟 × 𝒟),

 a set of postcondition constraints 𝐶𝑝𝑜𝑠𝑡 ∈ 𝒫(𝒟 × 𝒟),

 and an environment inheritance flag 𝑖 ∈ *⊤, ⊥+.
We denote a rule by 𝑟 = (𝑙𝑟 , 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡, 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖) and model it as a labeled tree
where 𝑙𝑟 is the root label and the other components form a layer of the tree. Thus, we
have 𝐿(𝑟) = 𝑙𝑟. An invocation 𝑚 of the set of rule invocations ℳ consists of

 an invocation label 𝑙𝑚 ∈ ℒ𝑀,
 an input pattern 𝑃𝑖 ∈ 𝒬(ℒ𝑇),
 an output pattern 𝑃𝑜 ∈ 𝒬(ℒ𝑇),
 and a rule label 𝑙𝑟 ∈ ℒ𝑅.

132 Grammar

We denote a subrule by 𝑚 = (𝑙𝑚, 𝑃𝑖, 𝑃𝑜 , 𝑙𝑟) and model it as a labeled tree with root label
𝑙𝑚 and the other components forming a layer of the tree. Thus, we have 𝐿(𝑚) = 𝑙𝑚.

Finally, an invertible grammar 𝐼 = (ℒ𝑇 , 𝑅, 𝑙0, Σ𝑆𝐼 , Σ𝑆𝑂 , Σ𝑆𝐶 , Σ𝑉) contains a lexicon ℒ𝑇, a
sequence of rules 𝑅 with a designated start rule label 𝑙0 ∈ ℒ𝑅, a similarity specification Σ𝑆𝐼
for the input, a similarity specification Σ𝑆𝑂 for the output, a similarity specification Σ𝑆𝐶 for
the constraints and a variable specification Σ𝑉. Altogether, an invertible grammar is repre-
sented as a labeled tree.

A grammar rule will be interpreted by first evaluating the set of precondition constraints.
Then we compute a matching mapping between the input pattern of the rule and the cur-
rent input sequence. Note that the matching mapping is computed with respect to the in-
put similarity specification, which may account for example for ordering variants of ter-
minals in the input pattern. After that, the matching mapping is used to recursively inter-
pret the rule invocations of the grammar rule. Thereby, the input of a rule invocation can
be defined by arbitrary input patterns which can access the variable matching mapping
partners of the variables in the input pattern of the grammar rule. The resulting output
sequence of a rule invocation is in turn matched with the output pattern. The variable
matching mapping partners of the variables contained in all invocation output patterns are
used to compute the output of the grammar rule from its output pattern. Finally, the set of
postcondition constraints is evaluated. The formal semantics of the invertible grammar
will be defined in the next section with the incremental interpreter.

We need to define additional conditions that have to be satisfied by an invertible grammar
in order to be a valid grammar for the invertible transformation of labeled trees.

Definition 6.1.16 (Valid Invertible Grammar): An invertible grammar 𝐼 =
(ℒ𝑇 , 𝑅, 𝑙0, Σ𝑆

𝐼 , Σ𝑆
𝑂 , Σ𝑆

𝐶 , Σ𝑉) is valid if the following conditions hold. For all rules 𝑟 ∈ 𝑅 with
𝑟 = (𝑙𝑟 , 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡, 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖) it holds that

1) Disjoint variables for patterns and constraints
a) 𝑣𝑎𝑟𝑠(𝑃𝑖𝑛) ∩ 𝑣𝑎𝑟𝑠(𝑃𝑜𝑢𝑡) = ∅
b) (𝑣𝑎𝑟𝑠(𝑃𝑖𝑛) ∪ 𝑣𝑎𝑟𝑠(𝑃𝑜𝑢𝑡)) ∩ (𝑣𝑎𝑟𝑠(𝐶𝑝𝑟𝑒) ∪ 𝑣𝑎𝑟𝑠(𝐶𝑝𝑜𝑠𝑡)) = ∅

2) Unique variable occurrences
a) ∀𝑣 ∈ 𝑣𝑎𝑟𝑠(𝑃𝑖𝑛). ∃! 𝐷 ∈ 𝒮(𝑃𝑖𝑛). (𝐷 ≈ 𝑣)
b) ∀𝑣 ∈ 𝑣𝑎𝑟𝑠(𝑃𝑜𝑢𝑡). ∃! 𝐷 ∈ 𝒮(𝑃𝑜𝑢𝑡). (𝐷 ≈ 𝑣)

3) Unique rule invocation labels

∀𝑚1 ∈ 𝑀. ∀𝑚2 ∈ 𝑀. .(𝑚1 ≠ 𝑚2) ⇒ (𝐿(𝑚1) ≠ 𝐿(𝑚2))/

Invertible Grammar Formalism 133

Furthermore, for all rule invocations 𝑚 ∈ 𝑀 with 𝑚 = (𝑙𝑚, 𝑃𝑖 , 𝑃𝑜 , 𝑙𝑟) it holds that

1) Subset of pattern variables
a) 𝑣𝑎𝑟𝑠(𝑃𝑖) ⊆ 𝑣𝑎𝑟𝑠(𝑃𝑖𝑛)
b) 𝑣𝑎𝑟𝑠(𝑃𝑜) ⊆ 𝑣𝑎𝑟𝑠(𝑃𝑜𝑢𝑡)

2) Unique variable occurrences
a) ∀𝑣 ∈ 𝑣𝑎𝑟𝑠(𝑃𝑖). ∃! 𝐷 ∈ 𝒮(𝑃𝑖). (𝐷 ≈ 𝑣)
b) ∀𝑣 ∈ 𝑣𝑎𝑟𝑠(𝑃𝑜). ∃! 𝐷 ∈ 𝒮(𝑃𝑜). (𝐷 ≈ 𝑣)

3) Smaller pattern size
a) |𝒮(𝑃𝑖𝑛)| > |𝒮(𝑃𝑖)|
b) |𝒮(𝑃𝑜𝑢𝑡)| > |𝒮(𝑃𝑜)|

The major changes of the presented invertible grammar formalism with respect to the
grammar models AG and TGL can be summarized as follows:

1) the integration of the similarity specification with the rule pattern matching,
2) the input and output recombination for the recursive rule processing,
3) the incremental unification-based constraint system, and
4) the automated inversion of the grammar.

Let us now take a closer look at the constraints and the support for static scoping. Our
solution to this problem is based on the following three parts:

1) a semantic hash indexing function which will be used by identity rules to pass a
hash value of the input tree to the constraints,

2) meta-variables in the constraints which will be evaluated to constraint-variables,
3) an environment which is maintained along the parse tree, which can be inherited

or not from recursive rule invocations, and which is used to locally map the result
of the semantic hash indexing function to different values.

We begin by introducing the semantic hash indexing function.

Definition 6.1.17 (Semantic Hash Indexing Function): Let Σ𝑆 be a similarity specifica-
tion. A semantic hash indexing function ℋ assigns to every labeled tree 𝐷 a hash value
𝐷𝑥 ∈ 𝒱𝐼, denoted by ℋ(𝐷) = 𝐷𝑥. Let ℒ𝐼 be the set of hash value labels, then we define
the set of all hash-variables by 𝒱𝐼 ≔ *𝐷 ∈ 𝒱|𝐿(𝐷) ∈ ℒ𝐼+. The semantic hash indexing
function satisfies the following property with respect to Σ𝑆:

134 Grammar

∀𝐷1, 𝐷2. .(𝐷1 =Σ𝑆 𝐷2) ⟺ (ℋ(𝐷1) ≈ ℋ(𝐷2))/

For our purpose of semantic hash indexing, we use the following simple implementation
of maximal structure sharing with respect to the similarity specification Σ𝑆:

1) If the tree has no children or only hash values as children, test for semantic equali-
ty with indexed labeled trees. If there is a tree found, return its hash value. If there
is no tree found, store the tree with a new hash value and return this hash value.
In all other cases, proceed with step (2).

2) Replace all leaves 𝐷𝑖 by the corresponding hash value ℋ(𝐷𝑖) = 𝐷𝑥. Replace all
subtrees 𝐷𝑘 except of the tree itself, which have only hash values as children, by
the corresponding hash value ℋ(𝐷𝑘) = 𝐷𝑦. Proceed with step (1).

Since =Σ𝑆 is an equivalence relation by Lemma 4.1.8, it is sufficient to test for semantic

equality with one labeled tree in the equivalence classes of labeled trees defined by =Σ𝑆.
Thus, the required property of the semantic hash indexing function follows immediately
from the construction steps by induction over the structure of labeled trees.

Next, we will take a closer look at the constraint-variables and meta-variables which can
be used in the constraints of a rule.

Definition 6.1.18 (Constraint- and Meta-Variables): Let ℒ𝑆 be a set of custom labels.
A constraint-variable 𝑣 ∈ 𝒱 is a variable with a label of the set of constraint labels ℒ𝐶 .
A constraint label 𝐿(𝑣) = (𝑙𝑛, 𝑙𝑎) is a pair consisting of a sublabel 𝑙𝑛 ∈ ℒ𝑀 ⊎ *𝑙𝑀𝐸+ ⊎
ℒ𝐼 ⊎ ℒ𝑆, and an attribute label 𝑙𝑎 ∈ ℒ𝐴. The set of all constraint-variables is defined by
𝒱𝐶 ≔ *𝐷 ∈ 𝒱|𝐿(𝐷) ∈ ℒ𝐶+. A meta-variable 𝑣 ∈ 𝒱 is a variable with a label of the set of
meta labels ℒ𝐸 . A meta label 𝐿(𝑣) = (𝑙𝑐, 𝑙𝑎) is a pair consisting of a constraint label
𝑙𝑐 ∈ ℒ𝐶, and an attribute label 𝑙𝑎 ∈ ℒ𝐴. The set of all meta-variables is defined by
𝒱𝐸 ≔ *𝐷 ∈ 𝒱|𝐿(𝐷) ∈ ℒ𝐸+. Note that the sets of labels ℒ𝐼, ℒ𝑆, ℒ𝐶 and ℒ𝐸 have to be
pairwise disjoint.

In summary, we have four types of variables which can be used in the constraints:
(1) constraint-variables like k.index, (2) meta-variables like (k.index).type, (3) hash-
variables like #1.type, and (4) custom-variables like A.type.

Invertible Grammar Formalism 135

In order to set the constraints of rules in a parse tree into relation, we need to instantiate a
rule by replacing the rule invocation labels consistently with fresh labels. Assume we
have an infinite amount of fresh labels ℒ𝑀𝐹𝑅𝐸𝑆𝐻 ⊆ ℒ𝑀 where fresh means unused in a spe-
cific parse tree of a document translation. Then we define an instance 𝑟(𝑙𝑥) with 𝑙𝑥 ∈ ℒ𝑀
of a rule 𝑟 = (𝑙, 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡, 𝐶𝑝𝑟𝑒 , 𝐶𝑝𝑜𝑠𝑡, 𝑖) by 𝑟(𝑙𝑥) = (𝑙, 𝑃𝑖𝑛, 𝑀′, 𝑃𝑜𝑢𝑡, 𝐶𝑝𝑟𝑒′ , 𝐶𝑝𝑜𝑠𝑡

′ , 𝑖)
where all subrule labels in 𝑀′, 𝐶𝑝𝑟𝑒′ , 𝐶𝑝𝑜𝑠𝑡

′ are consistently replaced by fresh subrule la-
bels. The special label 𝑙𝑀𝐸 is thereby replaced by the label 𝑙𝑥, which establishes a connec-
tion to the parent rule in the parse tree.

Then we proceed by introducing the method for the evaluation of a meta-variable.

Definition 6.1.19 (Meta-Variable Evaluation): Let 𝐷1 be a labeled tree and let 𝜃 be a
substitution. The judgment (𝐷1, 𝜃) ↪𝑀𝐸𝑇𝐴 𝐷2 denotes that the evaluation of meta-
variables in 𝐷1 by 𝜃 results in the labeled tree 𝐷2. The operational semantics of ↪𝑀𝐸𝑇𝐴 is
defined by the following inference rule. Thereby, we use the following additional nota-
tion. Let 𝑣 ∈ 𝒱𝐸 be a meta-variable with 𝐿(𝑣) = (𝑙𝑐, 𝑙𝑎). The corresponding constraint-
variable is 𝑣̃ ∈ 𝒱𝐶 with 𝐿(𝑣̃) = 𝑙𝑐. If (𝑣̃, ,𝐷-) ∈ 𝜃 and 𝑙𝑥 = 𝐿(𝐷) hold, we define the
evaluated meta-variable by 𝑣(𝜃) with 𝑣(𝜃) ∈ 𝒱𝐶 and 𝐿(𝑣(𝜃)) = (𝑙𝑥, 𝑙2).

Δ ≔ [𝛿𝑅(𝑣 , 𝑣(𝜃))|𝑣 ∈ 𝒮(𝐷1) ∧ 𝑣 ∈ 𝒱𝐸]

(𝐷1, Δ) ↪𝑃𝐴𝑇𝐶𝐻
 𝐷2

𝑣𝑎𝑟𝑠(𝐷2) ∩ 𝒱𝐸 = ∅

(𝐷1, 𝜃) ↪
 𝐷2

Table 23. Algorithm META

Let (k.index).type be a meta-variable and let the substitution 𝜃 assign the hash value #1 to
the constraint-variable k.index. Then the meta-variable (k.index).type is evaluated to the
hash-variable #1.type.

Our motivation for augmenting the semantic hash indexing function by an environ-
ment is to provide means to locally assign different hash values to semantically equal
input trees. The reason is that we want to support for example the introduction of a varia-
ble inside the scope of an equally named variable. The new introduced variable should
then be mapped to a fresh hash value as well as all variable occurrences in its scope.

Definition 6.1.20 (Environment): An environment 𝜎 is a function from the set of hash-
variables 𝒱𝐼 to 𝒱𝐼. The identity environment is denoted by 𝜎𝑖𝑑.

136 Incremental Interpreter

6.2 Incremental Interpreter

We introduced the invertible grammar together with an intuitive description of its seman-
tics. In the following, the formal semantics will be defined with the introduction of the
incremental grammar interpreter. With an incremental processing model we want to in-
vestigate how the transformation process can benefit from the information collected dur-
ing the transformation of a previous version of an interface document. The primary reason
is not efficiency but the possibility to reuse cached information in the inverse direction in
order to generate document parts that are lost in the transformation process. The follow-
ing list is a non-exhaustive enumeration of general techniques for incremental processing:

 Compiling incremental programs [Yellin & Strom, 1988]
 Exploiting the transformation result [Liu & Teitelbaum, 1995b]
 Discovering auxiliary information [Liu et al, 1996]
 Caching intermediate results [Liu & Teitelbaum, 1995a]

The first technique can be used to compile a program written in a special language auto-
matically into an incremental program. Transferred to our problem setting, this technique
would be interesting if we would compile a parser from an invertible grammar. Since we
expect frequent changes to a grammar, for example because of the definition of new nota-
tion, a direct interpretation of the grammar is a more suitable processing model.

The second technique transforms a program into an incremental version with respect to
possible input changes. The basic idea is to reuse as much subtransformations as possible
by caching transformation results. This technique is applicable to our grammar interpret-
er, in particular in cases where the set of constraints of subproblems are independent from
the parent set of constraints in the parse tree. However, since the conditions for the reuse
of results needs to be checked, a gain of efficiency cannot be guaranteed in all cases.

The third technique computes embedding relations and analyses forward dependencies
in the spirit of a binding-time analysis for partial evaluation. Thus, candidate auxiliary
information is collected which is used to generate an incremental version of a program.
This technique would be useful if we allowed in the constraints the same expressive pow-
er as attribute grammars.

The last technique extends a program in such a way that all intermediate results are re-
turned which are useful for the incremental computation. We will adapt this technique to
our setting by designing the grammar interpreter in such a way that it returns a sequence
of transformation traces of the grammar rules and matching mappings used to construct
the parse tree. The incremental interpreter then exploits these intermediate results.

Invertible Grammar Formalism 137

In order to be able to check the conditions for the reuse of intermediate results, we need
means to identify the preserved subtrees between two versions of the same interface doc-
ument. Figure 11 shows such a maximal tree alignment between two documents. In this
example, the order of the layers of the tree is not relevant. We call this maximal tree
alignment an incremental matching mapping. Note that a subtree is called preserved even
if some descendant trees are not preserved, for example 𝐴 is preserved while 𝐹 is not.

The algorithm for change graph search, which we presented in Chapter 5, computes an
optimal change script between two documents. Besides, it solves the dual problem of
computing an optimal tree alignment between these documents. Therefore, we exploit the
information contained in the computed change graph by the following algorithm to com-
pute an incremental matching mapping between two interface documents.

Definition 6.2.1 (Incremental Matching Mapping): Let 𝐷𝑜𝑙𝑑 and 𝐷𝑛𝑒𝑤 be labeled trees,
let Σ𝑆 be a similarity specification and let Σ𝐸 be an edit specification. Then we can con-
struct an incremental matching mapping of the preserved subtrees of 𝐷𝑜𝑙𝑑 in 𝐷𝑛𝑒𝑤 by
deriving the judgment (𝐷𝑜𝑙𝑑, 𝐷𝑛𝑒𝑤) ↪𝐼𝑁𝐶𝑀𝐴𝑃 𝛼. The mapping 𝛼 is an incremental match-
ing mapping between 𝐷𝑜𝑙𝑑 and 𝐷𝑛𝑒𝑤 with respect to Σ𝑆. The operational semantics of
↪𝐼𝑁𝐶𝑀𝐴𝑃
 is defined by the following inference rules.

A

C

E

F B C B

D

𝐷6

𝐷2 𝐷3 𝐷7 𝐷8 𝐷9

𝐷10 𝐷11

k k k k k

p p

A

𝐷1

D E

𝐷4 𝐷5

p p

Figure 11. Incremental Matching Mapping between two Documents

138 Incremental Interpreter

(𝐷𝑜𝑙𝑑 , 𝐷𝑛𝑒𝑤) ↪𝐷𝐼𝐹𝐹 (Δ, C)

𝑝 ∈ 𝒴𝐶(∅)

Δ(𝑝) = Δ𝐶(∅)

𝐴𝐶(𝑝) ↪𝑆𝑈𝐵𝐼𝑁𝐶 𝛼

(𝐷𝑜𝑙𝑑, 𝐷𝑛𝑒𝑤) ↪𝐼𝑁𝐶𝑀𝐴𝑃 𝛼

∅ ↪𝑆𝑈𝐵𝐼𝑁𝐶 ∅

Θ\Θ′ = {(𝐷x, 𝐷𝑦)}

∀𝐷𝑧 ∈ Ψ;
Δ. 𝐷𝑧⃗⃗⃗⃗ ≠ 𝐷𝑥⃗⃗ ⃗⃗

𝐴 ↪𝑆𝑈𝐵𝐼𝑁𝐶 𝛼

*(Θ, Θ′, Δ)+ ∪ 𝐴 ↪𝑆𝑈𝐵𝐼𝑁𝐶 {(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦⃗⃗ ⃗⃗)} ∪ 𝛼

Θ\Θ′ = {(𝐷x, 𝐷𝑦)}

∃𝐷𝑧 ∈ Ψ;
Δ. 𝐷𝑧⃗⃗⃗⃗ = 𝐷𝑥⃗⃗ ⃗⃗

𝐴 ↪𝑆𝑈𝐵𝐼𝑁𝐶 𝛼

*(Θ, Θ′, Δ)+ ∪ 𝐴 ↪𝑆𝑈𝐵𝐼𝑁𝐶 𝛼

Table 24. Algorithms INCMAP and SUBINC

The algorithm begins with computing the change graph 𝐶 for 𝐷𝑜𝑙𝑑 and 𝐷𝑛𝑒𝑤. Further-
more, let 𝑝 ∈ 𝒴𝐶(∅) be a path to the goal node ∅ in the change graph 𝐶 with an optimal
corresponding change path script Δ(𝑝) = Δ𝐶(∅). The idea of this algorithm is that the
critical tree pairs which are expanded on the path in the change graph are preserved sub-
trees, except of the case that a tree of a critical tree pair is removed by the change script.
Note that a node in the change graph represents a set of critical tree pairs Θ. A node Θ is
expanded to another node Θ′ by reducing a critical tree pair Θ\Θ′ = (𝐷x, 𝐷𝑦). Since a
path contains finitely many nodes, this algorithm is terminating.

Definition 6.2.2 (Incremental Semantic Equality): Let ΣS be a similarity specification
and let 𝛼 be an incremental matching mapping between two labeled trees 𝐷1 and 𝐷2 with
respect to ΣS. The incremental semantic equality of the labeled trees 𝐷𝑥 and 𝐷𝑦 with re-

spect to Σ𝑆 and 𝛼, denoted by 𝐷𝑥 =⃗⃗ (Σ𝑆,𝛼) 𝐷𝑦, is a predicate over pairs of labeled trees de-
fined as follows:

𝐷𝑥 =⃗⃗ (Σ𝑆,𝛼) 𝐷𝑦 ∶⇔ {
(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷𝑦⃗⃗ ⃗⃗) ∈ 𝛼 𝑖𝑓 𝐷𝑥⃗⃗ ⃗⃗ ∈ 𝑑𝑜𝑚(𝛼)

(𝐷𝑥 ≈ 𝐷𝑦) ∧ |𝒯(𝐷𝑥,𝐷𝑦)
<⃗⃗ (Σ𝑆,𝛼)| > 0 𝑖𝑓 𝐷𝑥⃗⃗ ⃗⃗ ∉ 𝑑𝑜𝑚(𝛼)

The difference to the standard semantic equality is that all preserved subtrees of 𝐷1 which
are contained in 𝐷𝑥 must have a matching partner in 𝐷𝑦 in conformance with the incre-
mental matching mapping 𝛼.

Regarding our example in Figure 11, we can derive the following statements about
preserved subtrees which satisfy the incremental semantic equality: 𝐷1 =⃗⃗ (Σ𝑆,𝛼) 𝐷6,

𝐷2 =⃗⃗ (Σ𝑆,𝛼) 𝐷9, 𝐷3 =⃗⃗ (Σ𝑆,𝛼) 𝐷7, 𝐷4 =⃗⃗ (Σ𝑆,𝛼) 𝐷11, and 𝐷5 =⃗⃗ (Σ𝑆,𝛼) 𝐷10.

Invertible Grammar Formalism 139

The second pillar of our incremental interpreter will be the caching of intermediate trans-
formation results. We will collect the input and output mappings of all successfully in-
voked rules during the transformation process and we will call this information the trans-
formation trace. The transformation process will then return the output document together
with a sequence of transformation traces, denoted by 𝛷.

The incremental interpreter will operate on specific nodes in the parse tree. Since the
parse tree is augmented by a constraint system, we will denote the current unifier for the
set of constraints by 𝜃. Furthermore, we will maintain an environment 𝜎 for modelling
static scoping. We will denote the state of the parse tree extensions by 𝒳 = (𝜃, 𝜎, 𝛷).

We are now ready to introduce the incremental interpreter for our invertible grammar
model. In the spirit of [Pereira & Warren, 1983], we will consider parsing as a deductive
process. Therefore we will define the operational semantics of the incremental interpreter
by inference rules which are employed by a backward reasoning process to construct the
parse tree. We will introduce the interpreter from high-level to low-level algorithms using
forward references in the description. All of the following algorithms operate in the con-
text 𝜅 = (𝐼, 𝛷, 𝛼), consisting of an invertible grammar 𝐼, a sequence of transformation
traces 𝛷 of a previous transformation, and an incremental matching mapping 𝛼. Note that
before the actual translation process begins, all text subtrees in the input document are
tokenized with respect to the lexicon of the specified invertible grammar.

Definition 6.2.3 (Translation): Let 𝐼 be a valid invertible grammar, let 𝑙0 be the label of
the start rule and let 𝐷1 be a labeled tree. The judgment 𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷) denotes
the translation of 𝐷1 to the labeled tree 𝐷2 with the sequence of transformation traces 𝛷
with respect to the default context 𝜅 = (𝐼, ∅, ∅), unless another context is defined. The
operational semantics of ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 is defined by the following inference rule.

(,𝐷1-, 𝒳1, 𝑙0, 𝑙𝑟𝑜𝑜𝑡) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (,𝐷2-, 𝒳2)

𝐷1 ↪ (𝐷2, 𝛷2)

with
𝒳1 ≔ (∅, 𝜎𝑖𝑑, ∅) ,
𝒳2 ≔ (𝜃2, 𝜎2, 𝛷2)

Table 25. Algorithm TRANSLATE

The document 𝐷1 is translated by calling the algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 with the initial parse
tree extensions 𝒳1 ≔ (∅, 𝜎𝑖𝑑, ∅), with the start rule label 𝑙0 and an initial invocation label
𝑙𝑟𝑜𝑜𝑡 which will be used as the root of the parse tree. Then the algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 trans-
forms the sequence ,𝐷1- into ,𝐷2- and returns the final state of parse tree extensions
𝒳2 = (𝜃2, 𝜎2, 𝛷2) which contains the sequence of transformation traces 𝛷2.

140 Incremental Interpreter

An incremental translation of a new version of an interface document then calls the trans-
lation algorithm with a different context 𝜅 = (𝐼, 𝛷, 𝛼). This context contains the sequence
of transformation traces of the translation of an old version of that document and an in-
cremental matching mapping between the old version and the new version of that docu-
ment.

Definition 6.2.4 (Incremental Translation): Let 𝐼 be a valid invertible grammar, let 𝐷𝑜𝑙𝑑
be the old labeled tree, let 𝐷𝑛𝑒𝑤 be the new labeled tree and let 𝛷1 be the sequence of
transformation traces of the previous translation of 𝐷𝑜𝑙𝑑. The judgment
(𝐷𝑛𝑒𝑤, 𝐷𝑜𝑙𝑑 , 𝛷1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷2) denotes the incremental translation of 𝐷𝑛𝑒𝑤 to
the labeled tree 𝐷2 and the sequence of transformation traces 𝛷2 with respect to the old
labeled tree 𝐷𝑜𝑙𝑑 and its sequence of transformation traces 𝛷1. The operational semantics
of ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 is defined by the following inference rule.

(𝐷𝑜𝑙𝑑, 𝐷𝑛𝑒𝑤) ↪𝐼𝑁𝐶𝑀𝐴𝑃 𝛼
𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷2)

(𝐷𝑛𝑒𝑤, 𝐷𝑜𝑙𝑑 , 𝛷1) ↪ (𝐷2, 𝛷2)

with
𝜅 = (𝐼, 𝛷1, 𝛼)

Table 26. Algorithm INCTRANSLATE

First of all, an incremental matching mapping 𝛼 between the old labeled tree 𝐷𝑜𝑙𝑑 and the
new labeled tree 𝐷𝑛𝑒𝑤 is computed with respect to the input similarity specification Σ𝑆𝐼
and the default edit specification Σ𝐸𝑑 which assigns uniform edit weights and which does
not limit the granularity of the edit operations. Together with the old sequence of trans-
formation traces 𝛷1, this information forms the context 𝜅 = (𝐼, 𝛷1, 𝛼) for the translation
of 𝐷1 into 𝐷2. This context will support the reuse of intermediate transformation results.

Next we will introduce the central algorithm of the incremental interpreter, the algorithm
for the processing of a grammar rule.

Definition 6.2.5 (Rule Processing): Let 𝜅 = (𝐼, 𝛷, 𝛼) be a context, let 𝒳1 be parse tree
extensions, let 𝑙𝑟 be a rule label and let 𝑙𝑣 be a subrule label. The judgment
(𝑌1, 𝒳1, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌2, 𝒳2) denotes the rule processing which translates the input
sequence 𝑌1 of labeled trees into the output sequence 𝑌2 of labeled trees and the new parse
tree extensions 𝒳2. The operational semantics of ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 is defined by the following
inference rule.

Invertible Grammar Formalism 141

(𝑌1, 𝜎1, 𝑙𝑟) ↪𝑀𝐴𝑇𝐶𝐻 (𝑟, 𝜇, 𝛾, 𝜎2)

𝑟(𝑙𝑣) = (𝑙𝑟, 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡 , 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖)

(𝐶𝑝𝑟𝑒 , 𝜃1) ↪𝐸𝑉𝐴𝐿 𝜃2
(𝑀, 𝜇, ∅,𝒳2) ↪𝐼𝑁𝑉𝑂𝐾𝐸 (𝛾2, 𝒳3)

(𝐶𝑝𝑜𝑠𝑡, 𝜃3) ↪𝐸𝑉𝐴𝐿 𝜃4
(𝛾, 𝛾2, 𝑃𝑜𝑢𝑡) ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 (𝛾3, 𝑌2)

𝛷4 ≔ (𝑙𝑟, 𝑟, 𝑌1, 𝜇, 𝛾3, 𝑌2) ⋆ 𝛷3
(𝑌1, 𝒳1, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌2, 𝒳4)

with
𝒳1 = (𝜃1, 𝜎1, 𝛷1) ,
𝒳2 ≔ (𝜃2, 𝜎2, 𝛷1) ,
𝒳3 = (𝜃3, 𝜎3, 𝛷3) ,
𝒳4 ≔ (𝜃4, 𝜎4, 𝛷4) ,
𝜎4 ≔ 𝑖 ? 𝜎3 ∶ 𝜎1

Table 27. Algorithm PROCESS

First, the algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 has to identify a grammar rule with the label 𝑙𝑟 whose input
pattern matches the input sequence 𝑌1. This task is handled by calling the algorithm
↪𝑀𝐴𝑇𝐶𝐻 which returns such a grammar rule, a matching mapping 𝜇 between the input
pattern and the input sequence, and possibly a reusable matching mapping 𝛾 between the
output pattern and the output sequence of the previous transformation. After that, the
grammar rule is instantiated by the current rule invocation label 𝑙𝑣 in the parse tree. Then,
the set of precondition constraints 𝐶𝑝𝑟𝑒 of the grammar rule is incrementally evaluated
with the current unifier 𝜃1 to the new unifier 𝜃2 by calling ↪𝐸𝑉𝐴𝐿.

The recursive rule invocations are then processed by calling the algorithm ↪𝐼𝑁𝑉𝑂𝐾𝐸
which successively computes the substitution 𝛾2 for the output pattern, together with new
parse tree extensions 𝒳3. Then, the set of postcondition constraints 𝐶𝑝𝑜𝑠𝑡 of the grammar
rule is incrementally evaluated with the current unifier 𝜃3 to the new unifier 𝜃4 by calling
↪𝐸𝑉𝐴𝐿. The (possibly empty) matching mapping 𝛾, which we reuse from a previous trans-
formation, is then overwritten by the computed matching mapping 𝛾2 by calling
↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸. In consequence, we recover the non-overwritten parts of 𝛾, which are those
parts of the original document that have not been translated. Thus, the matching mapping
𝛾 serves as the default substitution and as an oracle for parts of the tree which have been
lost during the two-way transformation process. Furthermore, the algorithm ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸
computes the resulting output sequence 𝑌2.

The resulting environment 𝜎4 is either the environment 𝜎3 inherited from the recursive
rule invocations if 𝑖 = ⊤ holds, or the environment 𝜎1 from the begin of this rule pro-
cessing if 𝑖 =⊥ holds. Finally, the transformation trace of this grammar rule is then col-
lected by 𝛷4 ≔ (𝑙𝑟, 𝑟, 𝑌1, 𝜇, 𝛾3, 𝑌2) ⋆ 𝛷3. The algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 returns the computed
output sequence 𝑌2, together with the new parse tree extensions 𝒳4.

142 Incremental Interpreter

The idea of the transformation trace is to store all information which is required to repro-
duce the transformation process, in particular to generate as an oracle those parts of the
output which have been lost during the inverse transformation process.

Definition 6.2.6 (Transformation Trace): A transformation trace (𝑙𝑟 , 𝑟, 𝑌1, 𝜇, 𝛾, 𝑌2) con-
tains the label 𝑙𝑟 of a rule, the rule 𝑟 itself, the input sequence 𝑌1, the input matching
mapping 𝜇, the output matching mapping 𝛾, and the output sequence 𝑌2.

The space for storing transformation traces can be reduced by storing a reference to the
rule instead of the rule itself, and by replacing the subtrees in the input and output se-
quence with references to subtrees in the input and output of the global transformation
process. Finally, we can also use references in the matching mappings 𝜇 and 𝛾. We will
give an illustrating example with the following grammar rule which translates a specific
step in a mathematical proof into its semantic representation.

FACT-2

𝑳 FACT

𝑷𝑰𝑵 [z “it” “holds” “that” x “.”]

𝑴 [(k,[x],[v],FORMS)]

𝑷𝑶𝑼𝑻 [\fact[v]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

We assume the following input sequence 𝑌1 for this grammar rule.

𝑌1 ≔ , "Hence" "it" "holds" "that" "$" "x" "\in" "A" "$" "." -
Then the matching mapping 𝜇 for the input pattern 𝑃𝑖𝑛 is computed as follows.

𝜇 ≔ *(𝒛, , "Hence" -), (𝒙, , "$" "x" "\in" "A" "$" -)+
Assume that the recursive rule invocation leads to the following matching mapping 𝛾.

𝛾 ≔ *(𝒗, , \𝐹*"in"+,\𝑉*"x"+,\𝑉*"A"+ - -)+
Then the rule processing terminates with the following output sequence 𝑌2.

𝑌2 ≔ , \𝑓𝑎𝑐𝑡, \𝐹*"in"+,\𝑉*"x"+,\𝑉*"A"+ - -
Hence, the transformation trace (𝑙𝑟 , 𝑟, 𝑌1, 𝜇, 𝛾, 𝑌2) is stored.

Now let us consider the inverse direction. The former output sequence 𝑌2 is now the new
input sequence and the input matching mapping is 𝛾, which allows to reuse the former
matching mapping 𝜇 as a new default output matching mapping. Indeed, thanks to the
transformation trace we can reconstruct the valid matching partner "𝐻𝑒𝑛𝑐𝑒" for the pat-
tern variable 𝒛. Otherwise, this grammar rule is not applicable in the inverse direction.

Invertible Grammar Formalism 143

The first step in the processing of grammar rules is the identification of a grammar rule
with the label 𝑙𝑟 whose input pattern matches the input sequence 𝑌1. This task is handled
by the following algorithm ↪𝑀𝐴𝑇𝐶𝐻.

Definition 6.2.7 (Grammar Rule Matching): Let 𝜅 = (𝐼, 𝛷, 𝛼) be a context, let 𝜎1 be an
environment and let 𝑙𝑟 be a rule label. The judgment (𝑌, 𝜎1, 𝑙𝑟) ↪𝑀𝐴𝑇𝐶𝐻 (𝑟, 𝜇, 𝛾, 𝜎2) de-
notes that the input sequence 𝑌 matches the input pattern of the grammar rule 𝑟 with the
matching mapping 𝜇 and that the matching mapping 𝛾 can be reused from a previous
transformation to complete the output substitution of the grammar rule. Furthermore, the
new environment 𝜎2 is returned. The operational semantics of ↪𝑀𝐴𝑇𝐶𝐻 is defined by the
following inference rules, where 𝐷𝑓𝑟𝑒𝑠ℎ ∈ 𝒱𝐼 denotes a fresh semantic hash value and
𝑣𝑖𝑛𝑑𝑒𝑥 ≔ 𝑛𝑒𝑤𝑣𝑎𝑟(𝑙𝑀𝐸 , 𝑙𝐼𝑁𝐷𝐸𝑋) denotes the constructed index constraint-variable.

(identity with introduction)
𝜎2 ≔ {(ℋ(𝐷), 𝐷𝑓𝑟𝑒𝑠ℎ)} ∘ 𝜎1

𝐶𝑝𝑜𝑠𝑡 ≔ {(𝑣𝑖𝑛𝑑𝑒𝑥, 𝐷𝑓𝑟𝑒𝑠ℎ)}

𝑟𝑖𝑑𝑖 ≔ (𝑙𝑖𝑑𝑖, ,𝐷-, ∅, ,𝐷-, ∅, 𝐶𝑝𝑜𝑠𝑡, ⊤)

(,𝐷-, 𝜎1, 𝑙𝑖𝑑𝑖) ↪ (𝑟𝑖𝑑𝑖, ∅, ∅, 𝜎2)

(identity with recognition)

𝐶𝑝𝑜𝑠𝑡 ≔ {.𝑣𝑖𝑛𝑑𝑒𝑥, 𝜎(ℋ(𝐷))/}

𝑟𝑖𝑑𝑟 ≔ (𝑙𝑖𝑑𝑟 , ,𝐷-, ∅, ,𝐷-, ∅, 𝐶𝑝𝑜𝑠𝑡, ⊤)

(,𝐷-, 𝜎, 𝑙𝑖𝑑𝑟) ↪ (𝑟𝑖𝑑𝑟 , ∅, ∅, 𝜎)

(identity)

𝑟𝑖𝑑 ≔ (𝑙𝑖𝑑, 𝑌, ∅, 𝑌, ∅, ∅, ⊤)

(𝑌, 𝜎, 𝑙𝑖𝑑) ↪ (𝑟𝑖𝑑, ∅, ∅, 𝜎)

(trace reuse with 𝜅 = (𝐼, 𝛷, 𝛼))
𝑙𝑟 ∉ *𝑙𝑖𝑑, 𝑙𝑖𝑑𝑖, 𝑙𝑖𝑑𝑟+

(𝑙𝑟, 𝑟, 𝑌1, 𝜇, 𝛾, 𝑌2) ∈ 𝛷
𝑟 ∈ 𝑅

|Ω𝑌1⟷𝑌
<⃗⃗ (Σ𝑆,𝛼)| > 0

𝑟 = (𝑙𝑟 , 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡 , 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖)

(𝑃𝑖𝑛, 𝑌) ↪𝑉𝐴𝑅𝑀𝐴𝑃 𝜇

(𝑌, 𝜎, 𝑙𝑟) ↪ (𝑟, 𝜇, 𝛾, 𝜎)

(standard rule matching)
𝑙𝑟 ∉ *𝑙𝑖𝑑, 𝑙𝑖𝑑𝑖, 𝑙𝑖𝑑𝑟+

𝑟 ∈ 𝑅
𝑟 = (𝑙𝑟 , 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡 , 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖)

(𝑃𝑖𝑛, 𝑌) ↪𝑉𝐴𝑅𝑀𝐴𝑃 𝜇

(𝑌, 𝜎, 𝑙𝑟) ↪ (𝑟, 𝜇, ∅, 𝜎)

Table 28. Algorithm MATCH

We will give a short description of the five inference rules by referring to them as being
numbered from top to bottom and left to right. The first three inference rules are built-in
identity rules, the only rules that are able to pass labeled trees from input to output, and as
a semantic hash value to the constraints. This aspect is very important for the inversion of
the grammar, because the built-in identity rules are invertible by construction. Note that
the input and output pattern of the identity rules are equal and contain no variables.

144 Incremental Interpreter

The first inference rule for the rule label 𝑙𝑖𝑑𝑖 is an identity rule that additionally computes
the semantic hash value of the input tree ℋ(𝐷) in the context Σ𝑆𝐼 . Then the environment is
modified to assign a fresh index value 𝐷𝑓𝑟𝑒𝑠ℎ to this semantic hash value. The fresh value
is returned as the value of the constraint-variable 𝑣𝑖𝑛𝑑𝑒𝑥.

The second inference rule for the rule label 𝑙𝑖𝑑𝑟 is similar to the first rule, but it does
not assign a fresh index value to the semantic hash value. Instead, it returns the value cur-
rently assigned to the semantic hash value by the environment as the value of the con-
straint-variable 𝑣𝑖𝑛𝑑𝑒𝑥.

The third inference rule for the rule label 𝑙𝑖𝑑 is also an identity rule but it just returns
the input sequence as the output sequence, without indexing the input tree.

The fourth inference rule tries to exploit the information contained in the translation
context 𝜅 = (𝐼, 𝛷, 𝛼). It looks for a transformation trace with a rule 𝑟 ∈ 𝑅 labeled by 𝑙𝑟. If
a tree matching mapping exists between the stored input sequence 𝑌1 and the current input

sequence 𝑌 with respect to incremental semantic equality, that is, |Ω𝑌1⟷𝑌
<⃗⃗ (Σ𝑆,𝛼)| > 0 holds,

then the inference rule verifies whether the stored input matching mapping 𝜇 is a variable
mapping between the input pattern 𝑃𝑖𝑛 and the current input sequence 𝑌 by calling
↪𝑉𝐴𝑅𝑀𝐴𝑃 for forward reasoning. Note that all transformation traces are ordered, thus the
choice of an alternative trace during backtracking is deterministic.

The fifth inference rule is the standard non-identity inference rule which selects a rule
𝑟 ∈ 𝑅 having the rule label 𝑙𝑟 and computes an input matching mapping 𝜇 between the
input pattern 𝑃𝑖𝑛 and the current input sequence 𝑌 by calling the algorithm ↪𝑉𝐴𝑅𝑀𝐴𝑃 with
the context (Σ𝑆𝐼 , 𝛴𝑉) for backward reasoning. All rules in the grammar are ordered, thus
the choice of an alternative rule during backtracking is deterministic. Note that the input
pattern is always ordered on top level.

Additionally, we define the following processing priority between the fourth and the
fifth inference rule: All application alternatives of the fourth inference rule have to be
tried first before the fifth inference rule is used. Thus, first we try to reuse the information
contained in the sequence of transformation traces before we use the standard rule match-
ing. This allows for a deterministic processing of the algorithm ↪𝑀𝐴𝑇𝐶𝐻 and its back-
tracking mechanism.

The following algorithm ↪𝑉𝐴𝑅𝑀𝐴𝑃 computes or verifies a variable mapping between a
pattern and a sequence of labeled trees. A variable mapping is a mapping of the variables
contained in the pattern to subtrees contained in the sequence of labeled trees.

Invertible Grammar Formalism 145

Definition 6.2.8 (Variable Mapping): Let Σ𝑆 be a similarity specification and let
Σ𝑉 = (𝑍:, 𝑍;, Λ) be a variable specification. The judgment (𝑃, 𝑌) ↪𝑉𝐴𝑅𝑀𝐴𝑃 𝜇 denotes
that 𝜇 is a variable mapping between the pattern 𝑃 and the sequence of labeled trees 𝑌.
The operational semantics of ↪𝑉𝐴𝑅𝑀𝐴𝑃 is defined by the following inference rules.

𝑓 ∈ Ω𝑃⟷𝑌
<(ΣS,Σ𝑉)

𝑓 ↪𝑆𝑈𝐵𝑀𝐴𝑃 𝑓
′

(𝑃, 𝑌) ↪𝑉𝐴𝑅𝑀𝐴𝑃 𝑓′

𝑥 ∈ 𝒱

𝑓 ↪𝑆𝑈𝐵𝑀𝐴𝑃 𝑓
′

*(𝑥, 𝑦)+ ∪ 𝑓 ↪𝑆𝑈𝐵𝑀𝐴𝑃 *(𝑥, 𝑦)+ ∪ 𝑓′

𝑥 ∉ 𝒱

𝑓𝑅 ∈ 𝒯(𝑥,𝑦)
<(ΣS,Σ𝑉)

𝑓𝑅 ∪ 𝑓 ↪𝑆𝑈𝐵𝑀𝐴𝑃 𝑓
′

*(𝑥, 𝑦)+ ∪ 𝑓 ↪𝑆𝑈𝐵𝑀𝐴𝑃 𝑓′

∅ ↪𝑆𝑈𝐵𝑀𝐴𝑃 ∅

Table 29. Algorithms VARMAP and SUBMAP

This algorithm generates a matching mapping 𝑓 ∈ Ω𝑃⟷𝑌
<(ΣS,Σ𝑉)

 between the pattern and the
sequence, and recursively for all layers in matched non-variable trees by the algorithm
↪𝑆𝑈𝐵𝑀𝐴𝑃. The resulting mapping is restricted to variables and finally returned. Since we
totally order the matching mappings between a pattern and a variable-free sequence of
labeled trees by the amount of labeled trees matched with the pattern variables, the algo-
rithm ↪𝑉𝐴𝑅𝑀𝐴𝑃 and its backtracking mechanism are deterministic.

The second step in the processing of a grammar rule is the satisfiability check of the set of
precondition constraints 𝐶𝑝𝑟𝑒 with respect to the current unifier 𝜃1 of the set of constraints
in the parse tree 𝐶1. The satisfiability check by the algorithm ↪𝑆𝐴𝑇 terminates with a new
unifier 𝜃2 for the new set of constraints 𝐶𝑝𝑟𝑒 ∪ 𝐶1.

Definition 6.2.9 (Constraint Evaluation): Let Σ𝑆 be a similarity specification. The
judgment (𝐶0, 𝜃1) ↪𝐸𝑉𝐴𝐿 𝜃2 denotes the constraint evaluation of the set of constraints 𝐶0
with respect to the current unifier 𝜃1 to the new unifier 𝜃2 which is a consistent extension
of 𝜃1. The operational semantics of ↪𝐸𝑉𝐴𝐿 is defined by the following inference rule.

(𝐶1
′ , 𝜃1) ↪𝑆𝐴𝑇 𝜃2
(𝐶0, 𝜃1) ↪ 𝜃2

with
𝐶1
′ ≔ 𝜃1(𝜃1,𝐶0-)

Table 30. Algorithm EVAL

146 Incremental Interpreter

First, the substitution 𝜃1 is used to evaluate the meta-variables in 𝐶0, denoted by 𝜃1,𝐶0-.
Then the substitution 𝜃1 is applied to the resulting set of constraints. Finally, the result 𝐶1′
is incrementally evaluated by calling the algorithm ↪𝑆𝐴𝑇 with the substitution 𝜃1. Since
𝜃1 is a valid substitution and 𝑣𝑎𝑟𝑠(𝐶1′) ∩ 𝑑𝑜𝑚(𝜃1) = ∅ holds, the requirements of ↪𝑆𝐴𝑇
are satisfied. The resulting unifier 𝜃2 is finally returned.

Note in case that the similarity order Σ𝑂 has been used in the similarity specification
for the constraint system, the incremental constraint evaluation might fail although the
overall set of constraints is satisfiable. Since we use meta-variables in the set of con-
straints, we cannot just compute a new unifier for the current set of constraints in the
parse tree. Thus, the backtracking method of the incremental grammar interpreter has to
explore all alternatives in the choice points of the incremental constraint evaluation. We
suggest waiving the use of the similarity order (when possible) in the constraints for the
benefit of having a method for constraint evaluation without the need for backtracking.

The third step in the processing of a grammar rule is the recursive rule invocation.

Definition 6.2.10 (Recursive Rule Invocation): Let 𝜅 = (𝐼, 𝛷, 𝛼) be a context, let 𝑀 be
a sequence of rule invocations, let 𝜇 be an input matching mapping, let 𝛾1 be the collected
output matching mapping and let 𝒳1 be the current parse tree extensions. The judgment
(𝑀, 𝜇, 𝛾1, 𝒳1) ↪𝐼𝑁𝑉𝑂𝐾𝐸 (𝛾2, 𝒳2) denotes the recursive rule invocation of the ordered se-
quence 𝑀 to compute an output matching mapping 𝛾2 and new parse tree extensions 𝒳2.
The operational semantics of ↪𝐼𝑁𝑉𝑂𝐾𝐸 is defined by the following inference rules.

(𝜇(𝑃𝑖),𝒳1, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌2, 𝒳2)

(𝛾1(𝑃𝑜), 𝑌2) ↪𝑉𝐴𝑅𝑀𝐴𝑃 𝛾2
(𝑀, 𝜇, 𝛾1⊕𝛾2, 𝒳2) ↪ (𝛾4, 𝒳3)

((𝑙𝑣, 𝑃𝑖, 𝑃𝑜 , 𝑙𝑟) ⋆ 𝑀, 𝜇, 𝛾1, 𝒳1) ↪ (𝛾4, 𝒳3)

(∅, 𝜇, 𝛾,𝒳) ↪ (𝛾,𝒳)

Table 31. Algorithm INVOKE

The algorithm ↪𝐼𝑁𝑉𝑂𝐾𝐸 processes all recursive rule invocations contained in 𝑀 in the
order of the sequence. An invocation 𝑚 = (𝑙𝑣, 𝑃𝑖 , 𝑃𝑜 , 𝑙𝑟) is processed by first substituting
the input variables in the input pattern of the rule invocation by the substitution 𝜇. The
resulting invocation input sequence is then recursively processed by calling the algorithm
↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 with the rule label 𝑙𝑟 and the subrule label 𝑙𝑣 of the invocation 𝑚. Hence, we
obtain an invocation output sequence 𝑌2 and new parse tree extensions 𝒳2. Next we apply
the already computed partial output substitution 𝛾1 to the output pattern 𝑃0.

Invertible Grammar Formalism 147

Finally, a variable matching mapping 𝛾2 is computed between the resulting pattern and
the computed invocation output sequence 𝑌2. The new partial output substitution is then
𝛾1⊕𝛾2. And the algorithm ↪𝐼𝑁𝑉𝑂𝐾𝐸 proceeds with the next rule invocation.

The fourth step in the processing of a grammar rule is the satisfiability check of the set of
postcondition constraints with respect to the current constraint evaluation context. For
this purpose, we use again the algorithm ↪𝐸𝑉𝐴𝐿. Finally, in the fifth processing step the
collected output matching mapping is extended by the information from the sequence of
transformation traces. All information is combined to construct the output sequence.

Definition 6.2.11 (Result Combination): Let 𝛾1 and 𝛾2 be output matching mappings
and let 𝑃𝑜𝑢𝑡 be the current parse tree extensions. The judgment
(𝛾1, 𝛾2, 𝑃𝑜𝑢𝑡) ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 (𝛾3, 𝑌) denotes the result combination of both output matching
mappings and the output pattern to a complete output matching mapping 𝛾3 and an output
sequence 𝑌. The operational semantics of ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 is defined by the following inference
rule.

𝛾3 ≔ 𝛾1⊕𝛾2
𝑌 ≔ 𝛾3(𝑃𝑜𝑢𝑡)

𝑣𝑎𝑟𝑠(𝑌) = ∅
(𝛾1, 𝛾2, 𝑃𝑜𝑢𝑡) ↪ (𝛾3, 𝑌)

Table 32. Algorithm COMBINE

This algorithm finally extends the collected output matching mapping 𝛾2 by the infor-
mation recovered from the output matching mapping 𝛾1 contained in a transformation
trace. The resulting substitution 𝛾3 is applied to the output pattern 𝑃𝑜𝑢𝑡 of the grammar
rule. We require that the resulting output sequence does not contain any variable.

All presented algorithms of the incremental interpreter are deterministic. For all algo-
rithms with a choice point we defined an order for the processing of alternatives. The only
choice points are in fact in the algorithms ↪𝑀𝐴𝑇𝐶𝐻 for finding a matching grammar rule,
↪𝑉𝐴𝑅𝑀𝐴𝑃 for finding a variable matching mapping for patterns, and ↪𝑆𝐴𝑇 for the incre-
mental constraint evaluation. Altogether, we presented an incremental interpreter for our
invertible grammar model that is composed of multiple deterministic algorithms with a
deterministic backtracking mechanism. In consequence, we do not have to remember
failed alternatives during the parsing process, which reduces the space complexity of the
incremental interpreter.

148 Incremental Interpreter

We will now prove the termination of the incremental interpreter, beginning with the ter-
mination of the processing of grammar rules.

Lemma 6.2.12 (Termination of the Rule Processing): Let 𝑌1 be a sequence of labeled
trees, let 𝒳1 be parse tree extensions, let 𝑙𝑟 be a rule label and let 𝑙𝑣 be a rule invocation
label. Then it holds that (𝑌1, 𝒳1, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌2, 𝒳2) terminates.

Proof: The algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 terminates because all substitutions are finite and be-
cause the called algorithms ↪𝑀𝐴𝑇𝐶𝐻, ↪𝐸𝑉𝐴𝐿, ↪𝐼𝑁𝑉𝑂𝐾𝐸 and ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 terminate, as we
will show. The algorithm ↪𝐸𝑉𝐴𝐿 terminates because the algorithm ↪𝑆𝐴𝑇 terminates by
Lemma 6.1.11 and because the algorithms ↪𝑀𝐸𝑇𝐴 and ↪𝐴𝑃𝑃𝐿𝑌 terminate. The algorithm
↪𝐼𝑁𝑉𝑂𝐾𝐸 terminates because the sequence of rule invocations 𝑀 is reduced in every step
and because the algorithm ↪𝑉𝐴𝑅𝑀𝐴𝑃 terminates, as we will show. The mutual recursion
between the algorithms ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 and ↪𝐼𝑁𝑉𝑂𝐾𝐸 terminates because ↪𝐼𝑁𝑉𝑂𝐾𝐸 calls
↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 always with a smaller input sequence because of the smaller size property of
subrules as required by Definition 6.1.16 for a valid invertible grammar. The algorithm
↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 terminates because ↪𝐴𝑃𝑃𝐿𝑌 terminates. It remains to be shown that the algo-
rithms with choice points terminate.

The algorithm ↪𝑀𝐴𝑇𝐶𝐻 terminates in the cases of identity rules because the semantic
hash indexing terminates. In the more general cases, the algorithm ↪𝑀𝐴𝑇𝐶𝐻 terminates
because the algorithm ↪𝑉𝐴𝑅𝑀𝐴𝑃 terminates. The backtracking mechanism terminates for
↪𝑀𝐴𝑇𝐶𝐻 because there are only finitely many alternatives, either applicable transfor-
mation traces or applicable rules in the invertible grammar. Finally, the algorithm
↪𝑉𝐴𝑅𝑀𝐴𝑃 terminates because it calls itself recursively with a smaller argument size. Fur-
thermore, the backtracking mechanisms for ↪𝑉𝐴𝑅𝑀𝐴𝑃 and ↪𝑆𝐴𝑇 terminate because there
are only finitely many alternative matching mappings. Altogether, we have shown that
(𝑌1, 𝒳1, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌2, 𝒳2) terminates.

∎
The termination of the translation of an interface document follows immediately.

Theorem 6.2.13 (Termination of the Translation): Let 𝐷1 be a labeled tree. Then it
holds that 𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1) terminates.

Proof: The algorithm ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 terminates because the constructed input sequence is
finite and the algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 terminates by Lemma 6.2.12.

∎

Invertible Grammar Formalism 149

Finally, the termination of the incremental translation can be proven.

Theorem 6.2.14 (Termination of the Incremental Translation): Let 𝐷𝑛𝑒𝑤 be a labeled
tree, let 𝐷𝑜𝑙𝑑 be a labeled tree and let 𝛷1 be a sequence of transformation traces from a
previous translation of 𝐷𝑜𝑙𝑑. Then it follows that the derivation of
(𝐷𝑛𝑒𝑤, 𝐷𝑜𝑙𝑑 , 𝛷1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷4, 𝛷2) terminates.

Proof: The algorithm ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 terminates because ↪𝐷𝐼𝐹𝐹 terminates by Theorem
5.3.12, because the constructed input sequence is finite and because ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 terminates
by Lemma 6.2.12.

∎

Besides the termination, we are also interested in the consistency of the results of the full
translation algorithm and the incremental translation algorithm. This means that the in-
cremental translation of an interface document should produce the same result as the plain
translation. Let us analyze the requirements for this consistency property.

Both translation algorithms call the algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆. The only difference is that
the incremental translation passes a context 𝜅1 = (𝐼, 𝛷1, 𝛼) whereas the standard transla-
tion uses the default context 𝜅2 = (𝐼, ∅, ∅). Since the incremental interpreter operates
completely deterministic, we have to analyze the impact of 𝛷1 and 𝛼 on the different al-
gorithms. The only algorithm which uses this information of the context is the rule match-
ing algorithm ↪𝑀𝐴𝑇𝐶𝐻. The processing priority is defined in such a way that the sequence
of transformation traces 𝛷1 is first exploited before the grammar rules are checked in the
standard rule matching case.

Observation 6.2.15 (Consistency Criterion): In order to guarantee the consistency prop-
erty, we have to exclude the possibility that the algorithm ↪𝑀𝐴𝑇𝐶𝐻 selects a transfor-
mation trace which produces a wrong but valid output. Since we cannot predict the effect
of a choice, we have to guarantee that at most one transformation trace is a valid choice
for the algorithm ↪𝑀𝐴𝑇𝐶𝐻.

Before we will present some possibilities to guarantee this consistency criterion, we will
now prove the consistency of the incremental interpreter under the assumption of this
consistency criterion.

150 Incremental Interpreter

Theorem 6.2.16 (Consistency of the Incremental Interpreter): Let 𝐼 be a valid inverti-
ble grammar and let 𝐷1 be a labeled tree. If we have 𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1) and the
consistency criterion holds, then it follows that (𝐷1, 𝐷1, 𝛷1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1).

Proof: The consistency criterion guarantees that there is always at most one matching
transformation trace in the set 𝛷1 for the grammar rule matching algorithm ↪𝑀𝐴𝑇𝐶𝐻. Thus
in contrast to the original transformation, the incremental transformation selects at this
choice point directly the rule which led to the final parse tree in the original transfor-
mation. By employing the sequence of transformation traces we only bypass the steps
which have been deterministically backtracked anyway by selecting an alternative gram-
mar rule in the algorithm ↪𝑀𝐴𝑇𝐶𝐻. Hence the incremental transformation returns the same
result and we have (𝐷1, 𝐷1, 𝛷1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1).

∎

In the following, we will describe possibilities to check the consistency criterion of the
incremental interpreter both statically and dynamically for a given translation context
𝜅 = (𝐼, 𝛷, 𝛼).

Dynamic Consistency Check. First of all, one can check this criterion dynamically for
every translation turn by verifying for every pair of transformation traces

(𝑙𝑟 , 𝑟, 𝑌1, 𝜇, 𝛾, 𝑌2) and (𝑙𝑟 , 𝑟′, 𝑌1′, 𝜇′, 𝛾′, 𝑌2′) in 𝛷 with equal rule label 𝑙𝑟 that |Ω
𝑌1⟷𝑌1

′

<⃗⃗ (Σ𝑆,𝛼)| = 0

holds. By the symmetry and transitivity of =⃗⃗ (Σ𝑆,𝛼) it follows that at most one transfor-

mation trace is a valid choice for ↪𝑀𝐴𝑇𝐶𝐻.

Static Consistency Check. Another option for checking the consistency criterion, is to
statically check for additional restrictive properties of the invertible grammar 𝐼 that im-
plicitly guarantee that the dynamic check always succeeds. One possibility is to require
for every grammar rule that all invocation input patterns contain only disjunctive subtrees
of the input pattern. Since the invocation patterns must have a smaller size than the origi-
nal pattern, the input pattern of all processed rules contain only preserved subtrees and are
thus unique with respect to =⃗⃗ (Σ𝑆,𝛼). Hence, the dynamic check for the consistency criteri-
on will always succeed. Note that the static check does not consider the effects of the
constraint system. There may well exist invertible grammars which do not pass the static
check but satisfy the consistency criterion because the evaluation of the constraints only
succeeds with one of the matching transformation traces in all cases.

Invertible Grammar Formalism 151

6.3 Inversion

The main motivation for the introduction of the invertible grammar formalism was the
ability to invert the grammar in order to transform between the interface documents of
two components in both directions. A particular problem of this scenario is that both in-
terface documents contain related information with a different level of detail and in dif-
ferent representations. In the following, we will describe how the inversion of the gram-
mar can be automated and used for the inverse transformation.

A related approach in the context of attribute grammars has been presented in [Yellin
& Mueckstein, 1985]. Yellin proposes to restrict attribute grammars by requiring the ex-
clusive use of token-permuting functions in the attribute system. These functions are not
allowed to modify or delete any of its arguments. Thus, this approach is only suitable for
transformations which permute parts of the interface document. Our scenario does not
satisfy these strict requirements.

We have designed the invertible grammar model with the primary aim of automating
the inversion of the grammar. The principle idea of the inversion is to swap the input and
output patterns in the grammar rules and their rule invocations, as shown in Figure 12.
Thus, the inversion of an invertible grammar is first of all based on the inversion of the
built-in identity rules. This is guaranteed because the input and output pattern of the iden-
tity rules are equal by construction. Hence, the inversion of an identity rule results in the
same identity rule.

This approach would be already sufficient for inverting simple content permuting rules as
used by [Yellin & Mueckstein, 1985]. But in our scenario, not all parts of the interface
document are translated. Therefore, we collect the sequence of transformation traces dur-
ing the translation process. A transformation trace contains among other information the
input and output variable matching mappings, thus in particular the matching partners of
variables which are not used in the translation process. This information can be exploited
by the inverse translation process to generate the non-translated parts of an interface doc-
ument, as we will outline in the correctness proof for the inverse translation.

𝑟 = (𝑙𝑟 , 𝑷𝒊𝒏, 𝑀, 𝑷𝒐𝒖𝒕, 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖)

𝑤𝑖𝑡𝑕 𝑀 = ,(𝑙𝑚, 𝑷𝒊, 𝑷𝒐, 𝑙𝑟),… , (𝑙𝑚
′ , 𝑷𝒊

′, 𝑷𝒐
′ , 𝑙𝑟

′)-

Figure 12. Principle Idea of the Inversion

152 Inversion

First of all, we will present methods for the automated inversion of the grammar and the
automated inversion of a sequence of transformation traces. With these methods, we will
then model the inverse transformation of an interface document as an incremental trans-
formation with the inverted grammar and the inverted sequence of transformation traces.
Thereby, we will analyze the requirements for a consistent inverse transformation. We
begin with presenting a method for inverting rule invocations.

Definition 6.3.1 (Rule Invocation Inversion): Let 𝑀 be a sequence of rule invocations.
The judgment 𝑀 ↪𝐼𝑁𝑉𝐼𝑁𝑉𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑆 𝑀;1 denotes that 𝑀 is inverted to the sequence of rule
invocations 𝑀;1. The operational semantics of ↪𝐼𝑁𝑉𝐼𝑁𝑉𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑆 is defined by the follow-
ing inference rules.

𝑀 ↪ 𝑀;1

(𝑙𝑚, 𝑃𝑖 , 𝑃𝑜 , 𝑙𝑟) ⋆ 𝑀 ↪ (𝑙𝑚, 𝑃𝑜 , 𝑃𝑖, 𝑙𝑟) ⋆ 𝑀;1

, - ↪ , -

Table 33. Algorithm INVINVOCATIONS

A rule invocation is inverted by swapping its input and output pattern. A sequence of rule
invocations is inverted by inverting every rule invocation in that sequence.

We continue by presenting the inversion method for a sequence of grammar rules.

Definition 6.3.2 (Rule Inversion): Let 𝑅 be a sequence of grammar rules. The judgment
𝑅 ↪𝐼𝑁𝑉𝑅𝑈𝐿𝐸𝑆

 𝑅;1 denotes that 𝑅 is inverted to the sequence of grammar rules 𝑅;1. The
operational semantics of ↪𝐼𝑁𝑉𝑅𝑈𝐿𝐸𝑆 is defined by the following inference rule.

𝑀 ↪𝐼𝑁𝑉𝐼𝑁𝑉𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑆
 𝑀;1

𝑅 ↪ 𝑅;1

(𝑙𝑟 , 𝑃𝑖𝑛, 𝑀, 𝑃𝑜𝑢𝑡, 𝐶𝑝𝑟𝑒 , 𝐶𝑝𝑜𝑠𝑡, 𝑖) ⋆ 𝑅 ↪ (𝑙𝑟 , 𝑃𝑜𝑢𝑡 , 𝑀;1, 𝑃𝑖𝑛, 𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡, 𝑖) ⋆ 𝑅;1

, - ↪ , -

Table 34. Algorithm INVRULES

A grammar rule is inverted by swapping its input and output pattern, and by inverting its
sequence of rule invocations. A sequence of grammar rules is inverted by inverting every
rule in that sequence.

Invertible Grammar Formalism 153

Then, we can define the method for inverting a complete grammar as follows.

Definition 6.3.3 (Grammar Inversion): Let 𝐼 be an invertible grammar. The judgment
𝐼 ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅

 𝐼;1 denotes that 𝐼 is inverted to the grammar 𝐼;1. The operational se-
mantics of ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 is defined by the following inference rule.

𝑅 ↪𝐼𝑁𝑉𝑅𝑈𝐿𝐸𝑆
 𝑅;1

(ℒ𝑇 , 𝑅, 𝑙0, Σ𝑆
𝐼 , Σ𝑆

𝑂 , Σ𝑆
𝐶 , Σ𝑉) ↪ (ℒ𝑇 , 𝑅;1, 𝑙0, Σ𝑆

𝑂 , Σ𝑆
𝐼 , Σ𝑆

𝐶 , Σ𝑉)

Table 35. Algorithm INVGRAMMAR

A grammar is inverted by inverting the sequence of rules and swapping the input and out-
put similarity specifications.

Finally, we introduce the method for inverting a sequence of transformation traces.

Definition 6.3.4 (Trace Inversion): Let 𝛷 be a sequence of transformation traces. The
judgment 𝛷 ↪𝐼𝑁𝑉𝑇𝑅𝐴𝐶𝐸𝑆 𝛷;1 denotes that 𝛷 is inverted to the sequence of transformation
traces 𝛷;1. The operational semantics of ↪𝐼𝑁𝑉𝑇𝑅𝐴𝐶𝐸𝑆 is defined by the following infer-
ence rules.

𝑟 ↪𝐼𝑁𝑉𝑅𝑈𝐿𝐸
 𝑟;1

𝛷 ↪ 𝛷;1

(𝑙𝑟, 𝑟, 𝑌1, 𝜇, 𝛾, 𝑌2) ⋆ 𝛷 ↪ (𝑙𝑟 , 𝑟;1, 𝑌2, 𝛾, 𝜇, 𝑌1) ⋆ 𝛷;1

, - ↪ , -

Table 36. Algorithm INVTRACES

A sequence of transformation traces is inverted by inverting its rule, swapping the input
and output sequence, and swapping the input and output matching mapping. A sequence
of transformation traces is inverted by inverting every contained transformation trace.

Altogether, we have presented terminating and deterministic methods for the automated
inversion of a grammar and the automated inversion of a sequence of transformation trac-
es. The principle idea of these methods is to swap the patterns, mappings and specifica-
tions between input and output.

154 Inversion

In the following, we will discuss how an inverted grammar and an inverted sequence of
transformation traces can be used to translate a labeled tree in the inverse direction.
First of all, we will state that the inversion of a valid invertible grammar produces a valid
invertible grammar.

Lemma 6.3.5 (Validity of Inverted Valid Grammars): Let 𝐼 be a valid invertible
grammar and let 𝐼 ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 𝐼;1 hold. It follows that 𝐼;1 is a valid invertible gram-
mar.

Proof: Since the inversion only swaps the input and output patterns of the grammar rules
and their rule invocations, this follows from the properties for validity in Definition 6.1.16
which are defined equally for the input and output patterns of a grammar rule and its rule
invocations.

∎

Therefore, we can model the inverse translation as an incremental translation with the
inverted valid grammar of the original translation.

Definition 6.3.6 (Inverse Translation): Let 𝐼 be a valid invertible grammar and let 𝐷1,
𝐷2, 𝐷3 and 𝐷4 be labeled trees. If we have the translation 𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1) then
we define the inverse translation by (𝐷3, 𝐷2, 𝛷1;1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷4, 𝛷2;1) with
𝛷1 ↪𝐼𝑁𝑉𝑇𝑅𝐴𝐶𝐸𝑆

 𝛷1
;1. The inverse translation then calls the algorithm ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 with

the translation context 𝜅 = (𝐼;1, 𝛷1;1, 𝛼) where 𝐼 ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 𝐼;1 holds.

The termination of the inverse translation follows immediately.

Theorem 6.3.7 (Termination of Inverse Translation): Let 𝐼 be a valid invertible gram-
mar and 𝐼 ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 𝐼;1, let 𝐷𝑛𝑒𝑤 be a labeled tree, let 𝐷𝑜𝑙𝑑 be a labeled tree and let
𝛷1
;1 be a sequence of transformation traces from a previous translation of 𝐷𝑜𝑙𝑑 with the

grammar 𝐼;1. Then it follows that (𝐷𝑛𝑒𝑤 , 𝐷𝑜𝑙𝑑 , 𝛷1;1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷4, 𝛷2;1) termi-
nates with the grammar 𝐼;1.

Proof: Since 𝐼;1 is a valid invertible grammar by Lemma 6.3.5, this follows directly from
the termination of the incremental translation in Theorem 6.2.14.

∎

Invertible Grammar Formalism 155

In the following we will show that the inverse translation of a translated interface docu-
ment results in an interface document which is semantically equal to the original one. We
can only prove this statement by assuming the consistency criterion stated in Observation
6.2.15. The reason is that we need to guarantee that we can always exploit the correct
transformation trace for generating content which has not been translated. To achieve this,
we need to extend our proposed checks for the consistency criterion to the inversion case.
In particular, we have to duplicate all requirements for the input patterns to the output
patterns, since input and output are inverted.

Dynamic Inverse Consistency Check. We can check the inverse consistency criterion
dynamically for every translation turn by verifying for every pair of transformation traces
(𝑙𝑟 , 𝑟, 𝑌1, 𝜇, 𝛾, 𝑌2) and (𝑙𝑟 , 𝑟′, 𝑌1′, 𝜇′, 𝛾′, 𝑌2′) in 𝛷 with equal rule label 𝑙𝑟 that both

|Ω
𝑌1⟷𝑌1

′

<⃗⃗ (Σ𝑆,𝛼)| = 0 and |Ω
𝑌2⟷𝑌2

′

<⃗⃗ (Σ𝑆,𝛼)| = 0 hold. By the symmetry and transitivity of =⃗⃗ (Σ𝑆,𝛼) it fol-

lows that at most one trace is a valid choice for ↪𝑀𝐴𝑇𝐶𝐻 in both translation directions.

Static Inverse Consistency Check. We can also statically check additional restrictive
properties of the invertible grammar 𝐼 that implicitly guarantee that the dynamic check
always succeeds. One possibility is to require for every grammar rule that all invocation
input patterns contain only disjunctive subtrees of the input pattern, and that all invoca-
tion output patterns contain only disjunctive subtrees of the output pattern. Since the in-
vocation patterns must have a smaller size than the original pattern, the input and output
patterns of all processed rules contain only preserved subtrees and are thus unique with
respect to =⃗⃗ (Σ𝑆,𝛼). Hence, the inverse consistency criterion is satisfied in both directions.

We will now prove the correctness of the inverse translation under the assumption that
the inverse consistency criterion is satisfied. We begin by proving the correctness of the
inverse rule processing which intuitively means that if we translate a sequence 𝑌1 into 𝑌2,
the inverse translation of 𝑌2 will produce 𝑌1′ which is semantically equal to 𝑌1.

Lemma 6.3.8 (Correctness of the Inverse Rule Processing): Let 𝐼 be a valid invertible
grammar, let 𝐼 ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 𝐼;1 hold and let the inverse consistency criterion be satis-
fied. Let 𝑌1 and 𝑌2 be sequences of labeled trees, let 𝒳1 and 𝒳2 be parse tree extensions,
and let 𝛷 be a sequence of transformation traces. If we have derived the judgment
(𝑌1, 𝒳1, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌2, 𝒳2), then (𝑌2, 𝒳1′, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌1′, 𝒳2′) follows with

|Ω
𝑌1⟷𝑌1

′

<
Σ𝑆
𝐼

| > 0 under the context 𝜅 = (𝐼;1, 𝛷;1, 𝛼) where 𝒳2 = (𝜃, 𝜎, 𝛷) and

𝛷 ↪𝐼𝑁𝑉𝑇𝑅𝐴𝐶𝐸𝑆
 𝛷;1 holds. Thereby, the parse tree extensions 𝒳1′ and 𝒳2′ are equal to 𝒳1

and 𝒳2 respectively modulo the sequence of transformation traces.

156 Inversion

Proof: We prove this statement by induction over the derivation tree for
(𝑌2, 𝒳1′, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌1

′, 𝒳2
′) with the grammar 𝐼;1. For all cases, we know that

(𝑌1, 𝜎1, 𝑙𝑟) ↪𝑀𝐴𝑇𝐶𝐻 (𝑟, 𝜇, 𝛾, 𝜎2) holds. The inverse consistency criterion guarantees at
most one matching transformation trace for the algorithm ↪𝑀𝐴𝑇𝐶𝐻. Since furthermore the
algorithm ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 stores the output sequence 𝑌2 in the transformation trace, it follows
that the transformation trace created by ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 in the first translation turn is matched
by the inverse rule processing and it holds that (𝑌2, 𝜎1, 𝑙𝑟) ↪𝑀𝐴𝑇𝐶𝐻 (𝑟;1, 𝛾, 𝜇, 𝜎2) with
𝑟 ↪𝐼𝑁𝑉𝑅𝑈𝐿𝐸

 𝑟;1.

Furthermore, note that the processing of the constraint evaluation context is complete-
ly independent of the overall translation direction. In particular, the built-in identity rules
compute an equal semantic hash value for the given labeled tree, regardless of whether it
stems from the input or output pattern of this rules. Therefore, we will take this aspect of
the proof for granted.

The base case for the induction is the case where the matched grammar rule 𝑟;1 does
not have any rule invocations, and the step case is the case where 𝑟;1 does have at least
one rule invocation.

(Base Case) In this case, the rule 𝑟;1 is either one of the built-in identity grammar rules
or an inverted original grammar rule. However, the rule 𝑟;1 does not have any rule invo-
cations, hence the algorithm ↪𝐼𝑁𝑉𝑂𝐾𝐸 returns an empty substitution. The substitution 𝜇
from the matched transformation trace is then combined with this empty substitution by
the algorithm ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸, and the result 𝜇 is applied to the output pattern of the inverted
grammar rule, which is the former input pattern of the original grammar rule. Note that
the substitution 𝜇 contains in particular the matching partners of those variables that have
not been used in the recursive translation process. Thus, we obtain 𝑌1′ as the output se-
quence together with the set containing the inverted transformation trace of the current
grammar rule. Altogether (𝑌2, 𝒳1′, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌1′, 𝒳2′) holds in this case and from
(𝑌1, 𝜎1, 𝑙𝑟) ↪𝑀𝐴𝑇𝐶𝐻 (𝑟, 𝜇, 𝛾, 𝜎2) and in particular (𝑃𝑖𝑛, 𝑌1) ↪𝑉𝐴𝑅𝑀𝐴𝑃 𝜇 it follows that

|Ω
𝑌1⟷𝑌1

′

<
Σ𝑆
𝐼

| > 0 holds additionally.

(Step Case) In this case, the rule 𝑟;1 is an inverted original grammar rule with at least one
rule invocation. The algorithm ↪𝐼𝑁𝑉𝑂𝐾𝐸 recursively calls ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 for every rule invoca-
tion with an invocation input sequence constructed by applying the substitution 𝛾 to the
invocation input pattern. By the induction hypothesis it follows that the processing of
these inverted rule invocations produce outputs which are semantically equal to the origi-
nal invocation input sequences. Therefore, the algorithm ↪𝐼𝑁𝑉𝑂𝐾𝐸 returns a substitution

Invertible Grammar Formalism 157

that contains semantically equal variable mapping partners. By combining the matching
mapping 𝜇 from the matched transformation trace with the computed substitution, the
algorithm ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 essentially extends the computed substitution by the original match-
ing partners of the variables which have not been translated. Finally, By applying this

substitution we hence obtain an output sequence 𝑌1′ with |Ω
𝑌1⟷𝑌1

′

<
Σ𝑆
𝐼

| > 0. Altogether

(𝑌2, 𝒳1′, 𝑙𝑟 , 𝑙𝑣) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (𝑌1
′, 𝒳2

′) holds in this case.

∎

The correctness of the inverse translation of an interface document follows immediately.

Theorem 6.3.9 (Correctness of the Inverse Translation): Let 𝐼 be a valid invertible
grammar, let 𝐼 ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 𝐼;1 hold and let the inverse consistency criterion be satis-
fied. Furthermore, let 𝐷1 be a labeled tree. If we have 𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1) then it
follows that (𝐷2, 𝐷2, 𝛷1;1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷1′ , 𝛷2;1) hold with 𝐷1 =Σ𝑆𝐼 𝐷1

′ . Thereby, the

inverse translation calls the algorithm ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 with the translation context 𝜅 =
(𝐼;1, 𝛷1

;1, 𝛼).

Proof: The algorithm ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 constructs the canonical incremental matching
mapping 𝛼 of 𝐷2, the input tree of the inverse translation. From 𝐷1 ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷2, 𝛷1)
we know that (,𝐷1-, 𝒳1, 𝑙0, 𝑙𝑟𝑜𝑜𝑡) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (,𝐷2-, 𝒳2) holds. By the correctness of the
inverse rule processing shown in Lemma 6.3.8, it follows directly that

(,𝐷2-, 𝒳1
′, 𝑙0, 𝑙𝑟𝑜𝑜𝑡) ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 (,𝐷1

′-, 𝒳2
′) with |Ω

,𝐷1-⟷[𝐷1
′]

<
Σ𝑆
𝐼

| > 0. Hence 𝐷1 =Σ𝑆𝐼 𝐷1
′ holds

and we can derive (𝐷2, 𝐷2, 𝛷1;1) ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝐷1′ , 𝛷2;1).

∎

Altogether, we have shown that the inverse translation terminates and that the translation
round-trip is correct for valid invertible grammars under the assumption of the inverse
consistency criterion.

In practice, the interface documents are continuously modified by the connected service
components. Thereby, our aim is to preserve as much as possible of the original interface
documents during the two-way translation by exploiting the sequence of transformation
traces. Note that the contained input/output matching mappings store the information
about parts of the interface documents that are not translated. In the following use case,
we will discuss to which extent our approach solves this incremental problem.

158 Use Case

6.4 Use Case

In this chapter, we will discuss an example from the mathematical domain as a practical
application of the invertible grammar formalism. We will illustrate the following author-
ing workflow where every step is accomplished automatically by the methods of the in-
vertible grammar formalism:

1) Translating a text-editor document into its semantic representation
2) Incrementally translating a modified version of the text-editor document into a

corresponding modified semantic representation
3) Inverse translating a modified semantic representation into a modified version of

the text-editor document

Before we jump into the translation process, we need to define the invertible grammar for
our use case. The mathematical document will consist in our example of a theorem and a
proof with some proof steps. Therefore, we will define grammar rules for the high-level
structure of the document like the sentences in theorems and proofs, and for the low-level
parts of the document like mathematical formulas.

Since the constraint system will not be used by the high-level grammar rules and since
these rules do not use the recombination of patterns for the recursive rule invocations, it is
reasonable to introduce a more compact way of representing grammar rules. Table 37
shows an example grammar in this new compact representation, in which a row repre-
sents a grammar rule. In this representation, the head value is the rule label, the produc-
tion is the input pattern and the creation is the output pattern of a rule. Note that the input
and output pattern of a rule use the same variables in the compact representation.

Head Production Creation
DOC [(TEO|PRF)*]

TEO [\theorem{ x:NAME }[y:ALTC]] [\theorem{ x }[y]]

ALTC [“It” “holds” “that” x:FORMS “.”] [x]

PRF [\proof{}[x:STEPS]] [\proof{}[x]]

STEPS [((STEP STEPS?)|TRIV)]

STEP [(ASS|FACT)]

TRIV [“Trivial” “.”] [\trivial[]]

ASS [“We” “assume” x:FORMS “.”] [\assumption[x]]

ASS [z “let” x:FORMS “.”] [\assumption[x]]

FACT [“It” “follows” “that” x:FORMS “.”] [\fact[x]]

FACT [z “it” “holds” “that” x:FORMS “.”] [\fact[x]]

NAME [ID]

Table 37. Example Grammar in Compact Representation

Invertible Grammar Formalism 159

This compact representation allows additionally the use of EBNF notation for rules which
do not have any terminals in the pattern like the start rule DOC of this example grammar.
In this case, the output pattern is equal to the input pattern of the rule, except that all oc-
currences of pattern variables are removed. On the one hand, the compact representation
provides a simple and intuitive access to the invertible grammar formalism. On the other
hand, it is a shortcut for writing grammar rules which do not make use of pattern recom-
bination for recursive rule invocations or the constraint system.

Grammar rules which are written in the compact representation are automatically
transformed into the extended original representation. Non-EBNF rules are transformed
by adding a rule invocation for every variable in the input pattern in DFS traversal order
in pattern direction. The second rule with the label ASS is for example transformed into
the following grammar rule, where the pattern variable x2 is automatically generated
with the same variable specification as the pattern variable x.

ASS-2

𝑳 ASS

𝑷𝑰𝑵 [z “let” x “.”]

𝑴 [(k,[x],[x2],FORMS)]

𝑷𝑶𝑼𝑻 [\assumption[x2]]

𝑪𝑰𝑵 { }

𝑪𝑶𝑼𝑻 { }

𝒊 { true }

For our use case, we define the following variable specification which does not allow the
pattern variable z to match “$” or “.”, thus preventing this pattern variable to match a
formula or a whole sentence. Furthermore, the pattern variable z is allowed to match one
or more labeled trees. The other pattern variables will be mainly used by the grammar
rules for the mathematical formulas, which we will introduce in the following.

\variables{}[

 \negative{ name=“z” }[“$”, “.”],

 \negative{ name=“a” }[“$”],

 \negative{ name=“b” }[“$”],

 \negative{ name=“t” }[“:”, “.”],

 \negative{ name=“c” }[“:”],

 \negative{ name=“n” }[“:”],

 \multirange{}[“z” , “x” , “y” , “a” , “b” , “f” , “t” , “n”]

]

160 Use Case

In order to convert the EBNF rules into non-EBNF rules we apply the following standard
rewrite rules until the grammar rules are stable:

1) Convert every repetition 𝐸 ∗ to a fresh non-terminal 𝑋 and add the grammar
rules 𝑋 ↠ , - and 𝑋 ↠ , 𝑋 𝐸 -.

2) Convert every repetition 𝐸 + to a fresh non-terminal 𝑋 and add the grammar
rules 𝑋 ↠ , 𝐸 - and 𝑋 ↠ , 𝑋 𝐸 -.

3) Convert every option 𝐸? to a fresh non-terminal 𝑋 and add the grammar rules
𝑋 ↠ , - and 𝑋 ↠ , 𝐸 -.

4) Convert every group (𝐸) to a fresh non-terminal 𝑋 and add the grammar rule
𝑋 ↠ , 𝐸 -.

5) Convert every alternative 𝐸1| … |𝐸𝑛 to a fresh non-terminal 𝑋 and add multiple
grammar rules 𝑋 ↠ , 𝐸1 -, …, 𝑋 ↠ , 𝐸𝑛 -.

Additionally, we apply the following standard techniques for grammar hygiene:

1) Eliminate unproductive rules:
A rule is productive if it is an identity rule or if all its invoked rules are produc-
tive. We remove all rules which are not productive.

2) Eliminate unreachable rules:
A rule is reachable if it is a rule with the start label of the grammar or if it is in-
voked by a reachable rule. We remove all rules which are not reachable.

3) Eliminate epsilon rules:
An epsilon rule is a rule with empty input and empty output pattern. Let A be the
label of an epsilon rule. Whenever A occurs in the rule invocations of another rule
with a single variable input and output invocation pattern, then we add a rule
without this rule invocation and where the pattern variables of the former rule in-
vocation are removed from the input and output patterns of the rule if they are not
used by other rule invocations. We repeat this procedure for all occurrences of ep-
silon rules. This process may generate new epsilon rules but it will loop to a
fixpoint because there are only finitely many rules. Finally, all epsilon rules can
be removed safely except epsilon rules with the start label of the grammar. Final-
ly, this process may generate unproductive rules which we need to remove again.

At the end of this process, we completely converted an invertible grammar in compact
representation into the extended original representation of invertible grammars.

Invertible Grammar Formalism 161

Note that there may still be some unit rules in the grammar, which are rules with an input
or output pattern that contains only one variable. These rules conflict with the property of
valid invertible grammars that requires a smaller size input and output for rule invoca-
tions. The reason for this property is a termination guarantee. We will ignore this property
in the practical examples because we assume that the grammar author checks for termina-
tion.

Having defined the grammar rules for the high-level structure of the document, we will
now present the grammar rules for translating LATEX–style mathematical formulas. There-
by, we will employ the constraint system for type checking.

The following rule translates a conjunction of two formulas. The constraints verify that
both formulas have the type “bool”.

FORMS-AND

𝑳 FORMS

𝑷𝑰𝑵 [“$” a “$” “and” “$” b “$”]

𝑴 [(k,[a],[v],TERM),

 (m,[b],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“and”}[v, w]]

𝑪𝑷𝑹𝑬 { k.type = “bool”, m.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The next rule is a unit rule which translates a single formula. We guarantee that there is
no cycle between rules with the label TERM and rules with the label FORMS. The con-
straint verifies that the formula has the type “bool”.

FORMS-SINGLE

𝑳 FORMS

𝑷𝑰𝑵 [“$” a “$”]

𝑴 [(k,[a],[v],TERM)]

𝑷𝑶𝑼𝑻 [v]

𝑪𝑷𝑹𝑬 { k.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The following rule translates a quantified formula by decomposition. Since the scope of
the variable bounded by this quantifier is limited to the enclosed formula, this grammar
rule does not inherit the environment of the recursive rule invocations. The constraints
verify that the enclosed formula has the type “bool”, and they define the type of this
quantified formula to be “bool”.

162 Use Case

FORALL-SINGLE

𝑳 TERM

𝑷𝑰𝑵 { dir=“r” }[“\forall” c “:” t “.” f]

𝑴 [(k,[c “:” t],[v],VARINTRO),

 (m,[f],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“forall”}[\B[v] , w]]

𝑪𝑷𝑹𝑬 { m.type = “bool”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { false }

A formula may also be quantified over multiple variables. The following rule recombines
the input sequence for the recursive rule invocation. The second rule invocation may be
processed for example by using the rule FORALL-MULTI or FORALL-SINGLE. The
environment resulting from the recursive rule invocations is not inherited because the
scope of the quantified variable is limited to the enclosed formula.

FORALL-MULTI

𝑳 TERM

𝑷𝑰𝑵 { dir=“r” }[“\forall” c “,” n “:” t “.” f]

𝑴 [(k,[c “:” t],[v],VARINTRO),

 (m,[“\forall” n “:” t “.” f],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“forall”}[\B[v] , w]]

𝑪𝑷𝑹𝑬 { m.type = “bool”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { false }

The following rule translates the intersection of sets in a term. Note that the constraints
are used to verify the type “set” of the terms and to define the type of this intersection to
be “set”.

INTERSECT

𝑳 TERM

𝑷𝑰𝑵 [x “\cap” y]

𝑴 [(k,[x],[v],TERM),

 (m,[y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“isect”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “set”, m.type = “set”, ME.type = “set” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

Analogously, the next rule translates the union of sets in a term.

Invertible Grammar Formalism 163

UNION

𝑳 TERM

𝑷𝑰𝑵 [x “\cup” y]

𝑴 [(k,[x],[v],TERM),

 (m,[y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“union”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “set”, m.type = “set”, ME.type = “set” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The following grammar rule translates the set membership with a weak type checking by
the constraints of this rule.

ELEM

𝑳 TERM

𝑷𝑰𝑵 [x “\in” y]

𝑴 [(k,[x],[v],TERM),

 (m,[y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“in”}[v , w]]

𝑪𝑷𝑹𝑬 { m.type = “set”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

A single variable is translated by the following rule. This rule calls the identity translation
rule IDR as a recursive rule invocation which returns the recognized semantic hash index
value of the input variable as the value of the attribute k.index. Since the meta-variable
(k.index).type can only be evaluated after the recursive rule invocations, we define
the type of this variable occurrence in the set of postcondition constraints.

VAR

𝑳 TERM

𝑷𝑰𝑵 [c]

𝑴 [(k,[c],[v],IDR)]

𝑷𝑶𝑼𝑻 [\V{ v }]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { ME.type = (k.index).type }

𝒊 { true }

The following rule translates the introduction of a typed variable. In addition to the last
rule, the type is processed by a rule invocation. The input variable is translated by calling
the identity translation rule IDI which assigns a fresh semantic hash index value to the
input variable and returns it as the value of the attribute k.index.

164 Use Case

TYPED-VAR
𝑳 VARINTRO

𝑷𝑰𝑵 [c “:” t]

𝑴 [(k,[c],[v],IDI),

 (m,[t],[w],TYPE)]

𝑷𝑶𝑼𝑻 [\V{ v }[w]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { ME.type = m.type, (k.index).type = m.type }

𝒊 { true }

The following rule translates the equality of terms. Thereby, the type equality of the terms
is checked by the constraint k.type = m.type. The type of the equality is defined in
the constraints to be “bool”.

EQUAL-TERMS

𝑳 TERM

𝑷𝑰𝑵 [x “=” y]

𝑴 [(k,[x],[v],TERM),

 (m,[y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“equal”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = m.type, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

Finally, the following rule translates the predefined type set and defines this also as the
type in the constraints.

SET

𝑳 TERM

𝑷𝑰𝑵 [“set”]

𝑴 []

𝑷𝑶𝑼𝑻 [\T{“set”}]

𝑪𝑷𝑹𝑬 { ME.type = “set” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

With these grammar rules we have introduced a basic grammar for translating a mathe-
matical document written in a text-editor into a semantic representation for a proof assis-
tance system. This basic grammar is by no means complete but it satisfies the illustrative
purpose of this use case.

Invertible Grammar Formalism 165

We will now illustrate the first step of the workflow in this use case, the translation of a
text-editor document into its semantic representation. The following example document
in the text-editor contains a theorem about the commutativity of ∩ in the theory of simple
sets. We have deliberately chosen such a simple mathematical example because we want
to focus on the translation aspects instead of mathematical problem solving capabilities.

[\theorem{ “Commutativity” “of” “\cap” }

 [“It” “holds” “that” “$” “\forall” “A” “,” “B” “:” “set”

 “.” “A” “\cap” “B” “=” “B” “\cap” “A” “$” “.”]

]

The first processing steps of the algorithm ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 do not have any alternatives. The
translation tree in Figure 13 shows the rules invoked in the parse tree. Let #A be the se-
mantic hash value of the equally named variable, then the first TYPED-VAR rule extends
the set of constraints by #A.type = “set”. Let #B be the index of the equally named
variable, then the second TYPED-VAR rule extends the constraints by #B.type =
“set”.

The translation of the quantified part of the formula, denoted by “…” in the translation
tree, is a more complex process where backtracking is required. The algorithm ↪𝑀𝐴𝑇𝐶𝐻
first returns the grammar rule INTERSECT with the mapping x->[“A”] and y->[“B”
“=” “B” “\cap” “A”]. Then, the processing of the first rule invocation succeeds.
The second rule invocation matches first the grammar rule INTERSECT with the map-
ping x->[“B” “=” “B”] and y->[“A”].

𝐷𝑂𝐶

Figure 13. Translation tree (Part 1)

𝑇𝐸𝑂

𝑁𝐴𝑀𝐸

𝐼𝐷

𝐴𝐿𝑇𝐶

𝐹𝑂𝑅𝑀𝑆 − 𝑆𝐼𝑁𝐺𝐿𝐸

𝐹𝑂𝑅𝐴𝐿𝐿 − 𝑀𝑈𝐿𝑇𝐼

𝐹𝑂𝑅𝐴𝐿𝐿 −𝑀𝑈𝐿𝑇𝐼

𝐹𝑂𝑅𝐴𝐿𝐿 − 𝑆𝐼𝑁𝐺𝐿𝐸

… 𝑇𝑌𝑃𝐸𝐷 − 𝑉𝐴𝑅

𝑆𝐸𝑇 𝐼𝐷𝐼

𝑆𝐸𝑇 𝐼𝐷𝐼

𝑇𝑌𝑃𝐸𝐷 − 𝑉𝐴𝑅

166 Use Case

In turn, the first rule invocation of INTERSECT matches the grammar rule EQUAL-
TERMS. This rule produces a type conflict in the evaluation of constraints with the algo-
rithm ↪𝐸𝑉𝐴𝐿 because the type “bool” does not unify with the type “set”. There are no
alternative mappings available. Thus, we have to backtrack two levels and instead of the
rule INTERSECT, the rule EQUAL-TERMS is matched with the mapping x->[“B”]
and y->[“B” “\cap” “A”]. But the result type “bool” of the rule EQUAL-TERMS
produces a type conflict with the required type “set”. After some further processing
steps, the backtracking reaches the top grammar rule INTERSECT.

An alternative mapping x->[“A” “\cap” “B” “=” “B”] and y->[“A”] is
selected, which leads to similar type conflicts. Finally, we backtrack and the algorithm
↪𝑀𝐴𝑇𝐶𝐻 returns the grammar rule EQUAL-TERMS with the mapping x->[“A”
“\cap” “B”] and y->[“B” “\cap” “A”]. The translation process continues
without any conflicts in the constraint evaluation and produces the translation subtree
shown in Figure 14. Note that the formula variables are recognized by the rule IDR and
the type of these variable occurrences is set in relation to the introduced type of this vari-
able via the constraint system.

The result of the translation process is the following semantic representation.

[\theorem{ “Commutativity” “of” “\cap” }

 [\F{“forall”}[\B[\V{“A”}[\T{“set”}]],

 \F{“forall”}[\B[\V{“B”}[\T{“set”}]],

 \F{“equal”}[\F{“isect”}[\V{“A”}, \V{“B”}],

 \F{“isect”}[\V{“B”}, \V{“A”}]]]]

]

Figure 14. Translation tree (Part 2)

𝐸𝑄𝑈𝐴𝐿 − 𝑇𝐸𝑅𝑀𝑆

𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇 𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇

𝑉𝐴𝑅 𝑉𝐴𝑅 𝑉𝐴𝑅 𝑉𝐴𝑅

𝐼𝐷𝑅 𝐼𝐷𝑅 𝐼𝐷𝑅 𝐼𝐷𝑅

𝐹𝑂𝑅𝐴𝐿𝐿 − 𝑆𝐼𝑁𝐺𝐿𝐸

Invertible Grammar Formalism 167

The second part of the workflow, which we want to illustrate, consists of incrementally
translating a modified version of the document in the text-editor into a corresponding
modified version of the semantic representation. We modify the example document by
adding a partial proof for the theorem as follows.

[\theorem{ “Commutativity” “of” “\cap” }

 [“It” “holds” “that” “$” “\forall” “A” “,” “B” “:” “set”

 “.” “A” “\cap” “B” “=” “B” “\cap” “A” “$” “.”],

 \proof{}

 [“First” “,” “let” “$” “x” “\in” “A” “\cap” “B” “$” “.”

 “It” “follows” “that” “$” “x” “\in” “A” “$” “.”]

]

The algorithm ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 first computes the incremental matching mapping between
the new and the old document using the algorithm ↪𝐼𝑁𝐶𝑀𝐴𝑃 . The computed mapping
maps all preserved subtrees to their canonical matching partners. Since the proof subtree
is inserted, it does not have any matching partner in the incremental matching mapping.
Therefore, the incremental translation process can reuse those parts of the translation tree
which are related to the translation of the theorem subtree using the information stored in
the transformation traces.

The new proof subtree is then processed by the rule PRF. The first proof step matches
the grammar rule ASS-2 with the mapping z->[“First” “,”] and x->[“$” “x”
“\in” “A” “\cap” “B” “$”]. Note that the pattern variable z is not used by the sub-
rules of ASS-2 but the information about the matching partners is stored in the transfor-
mation trace of that rule application. Then the rule FORMS-SINGLE is invoked with the
mapping a->[“x” “\in” “A” “\cap” “B”].

In the recursive rule invocation of FORMS-SINGLE, the algorithm ↪𝑀𝐴𝑇𝐶𝐻 first re-
turns the grammar rule INTERSECT with the mapping x->[“x” “\in” “A”] and
y->[“B”]. The processing of the first rule invocation of INTERSECT fails because of a
type conflict with the only compatible grammar rule ELEM. The backtracking mechanism
then selects the grammar rule ELEM instead of INTERSECT which leads to a valid trans-
lation tree.

After completing the processing of this branch of the translation tree, the second proof
step matches the rule FACT-1 with the input matching mapping x->[“$” “x”

“\in” “A” “$”]. Then the rule FORMS-SINGLE is invoked with the input mapping
a->[“x” “\in” “A”]. which in turn invokes the grammar rule ELEM. Finally, the
translation process succeeds with the incremental translation tree shown in Figure 15 that
extends the original translation tree.

168 Use Case

The result of the incremental translation process is the following semantic representation.

[\theorem{ “Commutativity” “of” “\cap” }

 [\F{“forall”}[\B[\V{“A”}[\T{“set”}]],

 \F{“forall”}[\B[\V{“B”}[\T{“set”}]],

 \F{“equal”}[\F{“isect”}[\V{“A”}, \V{“B”}],

 \F{“isect”}[\V{“B”}, \V{“A”}]]]],

 \proof{}

 [\assumption

 [\F{“in”}[\V{“x”}, \F{“isect”}[\V{“A”}, \V{“B”}]]],

 \fact

 [\F{“in”}[\V{“x”}, \V{“A”}]]]

]

Note that the scope of the formula variables A and B , which have been introduced in the
theorem, ends formally with the scope of the binding quantifier in the theorem. Thus, the
semantic hash values returned for the variable occurrences in the proof are different. A
possible solution could be to define a special binding sentence like “Let 𝐴, 𝐵: 𝑠𝑒𝑡.” As
part of the theorem content, whose scope ends with the proof of this theorem.

𝐷𝑂𝐶

Figure 15. Incremental translation tree

𝑃𝑅𝐹

𝑆𝑇𝐸𝑃𝑆

𝑆𝑇𝐸𝑃𝑆

𝑆𝑇𝐸𝑃

𝑆𝑇𝐸𝑃

𝐹𝐴𝐶𝑇 − 1

𝐹𝑂𝑅𝑀𝑆 − 𝑆𝐼𝑁𝐺𝐿𝐸

𝐸𝐿𝐸𝑀

𝑉𝐴𝑅

𝐼𝐷𝑅

𝑉𝐴𝑅

𝐼𝐷𝑅

𝐷𝑂𝐶

𝑆𝑇𝐸𝑃

𝑆𝑇𝐸𝑃

𝐴𝑆𝑆 − 2

𝐹𝑂𝑅𝑀𝑆 − 𝑆𝐼𝑁𝐺𝐿𝐸

𝐸𝐿𝐸𝑀

𝑉𝐴𝑅 𝐼𝑁𝑇𝐸𝑅𝑆𝐸𝐶𝑇

𝑉𝐴𝑅 𝑉𝐴𝑅 𝐼𝐷𝑅

𝐼𝐷𝑅 𝐼𝐷𝑅

Invertible Grammar Formalism 169

The third and final part of the workflow in this use case consists of the inverse translation
of a modified version of the semantic representation into a modified version of the text-
editor document. In this example, the proof assistance system has modified the semantic
representation by replacing the formula in the second proof step, the fact subtree, with a
formula which contains more derived information. The modified semantic representation
is shown in the following.

[\theorem{ “Commutativity” “of” “\cap” }

 [\F{“forall”}[\B[\V{“A”}[\T{“set”}]],

 \F{“forall”}[\B[\V{“B”}[\T{“set”}]],

 \F{“equal”}[\F{“isect”}[\V{“A”}, \V{“B”}],

 \F{“isect”}[\V{“B”}, \V{“A”}]]]],

 \proof{}

 [\assumption

 [\F{“in”}[\V{“x”}, \F{“isect”}[\V{“A”}, \V{“B”}]]],

 \fact

 [\F{“and”}[\F{“in”}[\V{“x”}, \V{“A”}],

 \F{“in”}[\V{“x”}, \V{“B”}]]]

]

For the inverse translation, the grammar is first inverted using the algorithm
↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅
 by swapping the input and output pattern of the rule and its recursive rule

invocations. Furthermore, the sequence of transformation traces is inverted using the al-
gorithm ↪𝐼𝑁𝑉𝑇𝑅𝐴𝐶𝐸𝑆 by swapping the stored input and output pattern and matching map-
pings. The inverse translation is then performed by the algorithm ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸.

First, the incremental matching mapping between the new and the old semantic repre-
sentation is computed using the algorithm ↪𝐼𝑁𝐶𝑀𝐴𝑃 . The computed mapping maps all
preserved subtrees to their canonical matching partners. In this case, this applies to all
subtrees except of the subtrees of the formula in the fact proof step. Therefore, the inverse
translation process can reuse all parts of the translation tree which are related to the trans-
lation of any subtree except of the fact subtree using the information stored in the trans-
formation traces.

Note in particular that the translation of the first proof step with the grammar rule
ASS-2 has access to the stored output matching mapping z->[“First” “,”] and
 x->[“$” “x” “\in” “A” “\cap” “B” “$”]in the corresponding inverted trans-
formation trace. Therefore, the original input can be reconstructed by the inverse transla-
tion process.

170 Use Case

The only part of the semantic representation, for which there is no matching transfor-
mation trace available, is the modified fact subtree. Hence, the inverse translation has to
process this part without hints. The algorithm ↪𝑀𝐴𝑇𝐶𝐻 returns the grammar rule FACT-1
with the matching mapping x2->[\F{“AND”}[\F{“IN”}[\V{“x”}, \V{“A”}],
\F{“IN”}[\V{“x”}, \V{“B”}]]]. Then, the processing of the first rule invocation
matches the grammar rule FORMS-AND with the input matching mapping
v->[\F{“IN”}[\V{“x”},\V{“A”}]] , w->[\F{“IN”}[\V{“x”},\V{“B”}]]].
Furthermore, both recursive rule invocations are successfully processed with the match-
ing grammar rule ELEM. Thereby, the type of the variables A and B is checked by the
constraint system. Finally, the inverse translation process succeeds with the incremental
inverse translation tree shown in Figure 16 that replaces the original translation tree at the
position corresponding to the second proof step.

The result of the inverse translation process is the following document in the text-editor.

[\theorem{ “Commutativity” “of” “\cap” }

 [“It” “holds” “that” “$” “\forall” “A” “,” “B” “:” “set”

 “.” “A” “\cap” “B” “=” “B” “\cap” “A” “$” “.”],

 \proof{}

 [“First” “,” “let” “$” “x” “\in” “A” “\cap” “B” “$” “.”

 “It” “follows” “that” “$” “x” “\in” “A” “$”

 “and” “$” “x” “\in” “B” “$” “.”]]

𝑆𝑇𝐸𝑃

Figure 16. Inverse translation tree

𝐹𝐴𝐶𝑇 − 1

𝐹𝑂𝑅𝑀𝑆 − 𝐴𝑁𝐷

𝐸𝐿𝐸𝑀

𝑉𝐴𝑅

𝐼𝐷𝑅

𝑉𝐴𝑅

𝐼𝐷𝑅

𝑆𝑇𝐸𝑃𝑆

𝐸𝐿𝐸𝑀

𝑉𝐴𝑅 𝑉𝐴𝑅

𝐼𝐷𝑅 𝐼𝐷𝑅

Invertible Grammar Formalism 171

In this use case, we illustrated how the invertible grammar formalism can be employed to
incrementally translate between two interface documents in both directions. We want to
emphasize the main benefits of the invertible grammar formalism in a short summary:

1) Workflow Automation
Based on the invertible grammar formalism, we presented methods for the com-
plete automation of the translation of interface documents, the incremental transla-
tion, and the inverse translation.

2) Hints for the Incremental Translation
The sequence of transformation traces which is stored during the translation
serves as hints for the incremental translation. By exploiting the change graph be-
tween the old and the new version of an interface document, we compute the set
of preserved subtrees. This information is then used to identify a reusable trans-
formation trace which guides the incremental translation process.

3) Oracle for the Inversion
Since the transformation trace stores the matching partners of the variables in the
input and output pattern of all invoked grammar rules, we can exploit this infor-
mation in the two-way translation process. If the conditions for reusing a trans-
formation trace are satisfied, we can complete the computed partial variable map-
pings by the stored information. Thus we use the transformation trace as an oracle
for generating parts of the interface document that are lost during translation.
Since the input of the current rule and the input of the candidate transformation
trace has to be semantically equal with respect to the preserved subtrees, we sug-
gest wherever possible to model grammar rules for the content of tree layers by
the recursive form 𝐴 ↠ 𝐵𝐴. This increases the possibility for reusing a transfor-
mation trace in the invocation of grammar rules for 𝐵.

4) Type Checking and Static Scoping
We have demonstrated how the constraint system can be used for the weak type
checking of mathematical formulas. Furthermore, we illustrated how the combina-
tion of a semantic hash indexing function, meta-variables and a managed envi-
ronment allows for the modeling of static scoping.

5) Support for Alternatives
In this use case, we have not exploited all possibilities of the similarity specifica-
tion with respect to the pattern matching of the grammar rule and input alterna-
tives. These features are more suitable for the two-way translation between two
different semantic representations.

172 Discussion

6.5 Discussion

In this chapter, we developed an invertible grammar formalism by combining concepts
from the parser-oriented attribute grammars and from the generator-oriented TGL. The
main motivation for the development of a new grammar formalism was the need for ade-
quate methods to transform between interface documents in both directions. Thereby, we
focused on the one hand on the complete automation of the inversion process, and on the
other hand on a technique which allows for preserving as much as possible of the non-
translated content during the continuous transformation round-trip.

Our contributions are a method for the automation of the grammar inversion, and an
incremental interpreter which can be used with both, a grammar and its inverted gram-
mar. By integrating the notion of semantic equality into the pattern matching method of
the grammar rule processing, we essentially transform an interface document modulo a
commutativity theory. In comparison to the two-way translators proposed by [Yellin &
Mueckstein, 1985], our invertible grammar formalism allows for more than just the per-
mutation of content. We support the recombination of parts of the input in a two-step pro-
cessing style with grammar rules and recursive rule invocations.

Besides that, there exists a subclass of attribute grammars called ordered attribute
grammars [Kastens, 1980] with the property that for all grammar rules a partial order of
the constraints can be given such that - in any context - the constraints can be evaluated in
an order which includes that partial order. Since we use unification constraints as attrib-
utes, the order of attribute evaluation is not as important as for a standard attribute gram-
mar. Indeed, we presented an incremental method for constraint evaluation. Nevertheless,
the specific processing order of recursively invoked rules is declaratively specified in
every rule of an invertible grammar.

With the invertible grammar formalism we presented a method to translate the change
script for one interface document into a change script for its connected interface docu-
ment. The translation of change scripts is a very general problem with many application
areas. The approach of [Greenwald et al, 2003] proposes for example a language for
primitive tree manipulation to describe the translations, called lenses. This approach as-
sumes that one tree is an abstraction of the other tree. In our scenario, both interface doc-
uments may contain detailed information which is not available in the other one. We can-
not require semantic tree inclusion. Another approach [Abiteboul et al, 2002] introduces a
declarative language for describing correspondences between parts of the trees in a data
forest. These correspondence rules can be used to translate one tree format into another
one through non-deterministic computation. However, this approach assumes an isomor-
phism between the trees, which is not a realistic requirement in our scenario.

Invertible Grammar Formalism 173

The approach we presented in this chapter uses the concept of a transformation trace to
store intermediate results of the translation process. The inverse translation process then
exploits the sequence of transformation traces in order to generate those parts of the orig-
inal input interface document which have not been translated. The important property for
the correctness of the inverse translation is the inverse consistency criterion that requires
that there is at most one matching transformation trace when the rule matching method
exploits the sequence of previous transformation traces in both translation directions. We
presented dynamic and static methods for checking whether the inverse consistency crite-
rion is satisfied.

Additional transformation aspects are methods for identifying and correcting errors.
One usually distinguishes between simple recovery techniques which use primitive edit
operations, phrase level recovery techniques which discard or replace sequences of to-
kens, and scope recovery techniques which insert for example closing fragments. For ex-
ample, for diagnosing the source of errors in the evaluation of constraints there exists the
method of inverse currying transformation for attribute grammars [Wilhelm, 1984]. In our
scenario with unification constraints, the method of source-tracking unification
[Choppella & Haynes, 2005] would be more suitable. Furthermore, one can integrate er-
ror correction methods that use the primitive edit operations to add, delete or replace
words [Mellish, 1989] or skip words for robustness [Lavie & Tomita, 1993].

In the context of bidirectional transformations, the problem of logical-form equiva-
lence [Shieber, 1993] is always mentioned. Given a logical form, that is, a semantic rep-
resentation, a translation process must then generate a string with that meaning, that is, a
string whose canonical logical form means the same as the given one.

String Canonical Logical Form
𝑨 ∪ 𝑩 ∩ 𝑪 \F{“union”}[\V{“A”},\F{“isect”}[\V{“B”},\V{“C”}]]

𝑨 ∪ (𝑩 ∩ 𝑪) \F{“union”}[\V{“A”},\F{“isect”}[\V{“B”},\V{“C”}]]
(𝑨 ∪ 𝑩) ∩ 𝑪 \F{“isect”}[\F{“union”}[\V{“A”},\V{“B”}],\V{“C”}]

Table 38. Examples of the Logical-Form Equivalence Problem

An example for this problem in our scenario is shown in Table 38. The inverse translation
of the third logical form should not generate the formula 𝐴 ∪ 𝐵 ∩ 𝐶 because its canonical
logical form does not mean the same as the original logical form. In practice, meaning
equivalence can be approximated by logical equivalence. We can solve the logical-form
equivalence problem for this example by translating the arguments of ∪ and ∩ with an
additional rule category whose default rule generates brackets around the term if the term
is not a single variable. Nevertheless, the logical-form equivalence problem includes ad-
ditionally the problem that there does not exist a formal definition of meaning equiva-
lence and that it is widely assumed that meaning equivalence is not computable.

III
Mathematical Authoring

Assistance

In this part, we illustrate a practical application of the Change-Oriented Architecture to
Mathematical Authoring Assistance using the proof assistance system ΩMEGA. In a math-
ematical course scenario, we will use the concepts and methods of the COA for the inte-
gration of the verification services of ΩMEGA with text-editors to provide assistance dur-
ing the authoring process. In this setting, we will present solutions for the following au-
thoring assistance cases in the course scenario.

1) How can we assist the lecturer with the authoring of lecture notes?
2) How can we assist the student with the authoring of exercise solutions?

To use the verification services of ΩMEGA, the content of a mathematical document in a
text-editor has to be transformed into the semantic representation required by ΩMEGA.
The results of verification services, like for example corrections or completions, need to
be inversely transformed into modifications of the document in the text-editor. For this
purpose, we use the invertible grammar formalism. Furthermore, the semantic change
scripts are computed with respect to the document-specific weights and processing re-
quirements of ΩMEGA. The solutions to the authoring cases share a common ground of
invertible transformation grammars, similarity and edit specifications. The presentation of
the solutions is organized as follows.

Before we start to address the authoring assistance cases, we will introduce the proof
assistance system ΩMEGA, its semantic representation of the mathematical document and
its verification services in Chapter 7. Furthermore, we will analyze the requirements of
Mathematical Authoring Assistance with an exploratory study conducted with the stu-
dents of a mathematics course.

In Chapter 8 we will address the first authoring assistance case for lecture notes. Be-
sides introducing the transformation pipeline between text-editor and proof assistance
system, the focus of this chapter is on the dynamic and extensible support of notation. We
will present a method that allows for exploiting the notation defined by the author in lec-
ture notes in order to automate the formalization of the formulas in a mathematical docu-
ment, and to adapt these formulas on notational changes.

The second authoring assistance case for exercise solutions in Chapter 9 sets the focus
on mathematical proofs. We will illustrate the process of incrementally creating proof
obligations for ΩMEGA from the proof steps in the exercise solutions written in a con-
trolled mathematical language. Furthermore, we will demonstrate how the transformation
pipeline can be used to propagate feedback for proof steps and to interact with the verifi-
cation services of the proof assistance system ΩMEGA within the text-editors TEXMACS and
MS WORD.

Application Scenario 179

7 Application Scenario

The vision of a powerful mathematical assistance environment, providing computer-based
support for most tasks of a mathematician, has stimulated the development of the proof
assistance system ΩMEGA. A mathematical assistance system that really supports mathe-
maticians in their daily work has to be highly user oriented. The mathematician is used to
formulate his problems with pen and paper, and we want to extend this traditional work-
flow by providing authoring assistance for encoding the solution of a problem and refin-
ing the details with a text-editor like the TEXMACS system [van der Hoeven, 2001].

Our aim is to build document-centric services that support the author in the text-editor
while preparing a document in a publishable format. In order to use the services of the
proof assistance system ΩMEGA, the content of a mathematical document in a text-editor
has first to be transformed into the semantic representation required by ΩMEGA. To ana-
lyze the complexity of the linguistic aspects of this transformation, we conducted an ex-
ploratory study in the mathematical domain. Although the goal of 90% coverage of com-
mon mathematical documents is clearly out of scope for this thesis, the study indicates the
relative importance of some linguistic features with respect to the coverage. Therefore,
we collected and analyzed in an exploratory study a corpus of sample documents.

The real-time behavior of a proof assistance system in the specific domain is very im-
portant because we need a quick response to user input. Regarding the capabilities of
state-of-the-art proof assistance systems like ISABELLE, COQ or ΩMEGA, it seems more
realistic to provide the authoring assistance to a first year mathematics student rather than
to a mathematician working on the cutting edge of research. Therefore we decided to
conduct the exploratory study with the first year mathematics course Mathematik für In-
formatiker by Prof. John at Saarland University.

This chapter is organized as follows: First, we introduce the proof assistance system
ΩMEGA, its semantic representation of a mathematical document and its verification ser-
vices. Then, the course scenario will be described together with our main research ques-
tions for authoring assistance. Furthermore, the architecture of the exploratory study is
described, which integrates TEXMACS and an exercise manager via a mediation module.
After that, we give a detailed report on a corpus analysis with respect to the authoring
behavior and selected linguistic aspects. Finally, we discuss potential added values before
we summarize the results.

180 Introduction to 𝛀 MEGA

7.1 Introduction to 𝛀MEGA

The long-term goal of the ΩMEGA system ([Siekmann et al, 2006], [Benzmüller et al,
2006]) is the development of a large, integrated assistance system supporting different
mathematical tasks and a wide range of typical research, publication and knowledge man-
agement activities. Examples of such tasks and activities are proving, verifying, explain-
ing, and many others. Mathematical assistance systems are knowledge-based systems in
which different kinds of knowledge must be maintained. Among others, this includes

1) theory knowledge like axioms and theorems organized in structured theories,
2) procedural knowledge like a symbol ordering or proof planning methods, and
3) notational knowledge used in the user interfaces of the system.

In our application scenario for Mathematical Authoring Assistance, we provide a part of
the theory knowledge via the semantic representation of the mathematical content of the
document in the text-editor. The ΩMEGA system then synthesizes additional procedural
knowledge from the provided theory knowledge and tries to verify proof sketches by con-
structing a valid proof plan using proof search techniques. Thereby, the notational
knowledge is not immediately relevant for the proof verification service.

In the following, we will first describe ΩMEGA’s main components as shown in Figure
17. Then, we describe the semantic document representation required by the text-editor
service interface of ΩMEGA’s service mediator PLATΩ. Furthermore, we give an over-
view of the mathematical assistance services offered by ΩMEGA via PLATΩ.

TEXMACS Ω-ANTS MULTI

Figure 17. Components of the ΩMEGA system

TASKLAYER MAYA PLATΩ

Proof Planner Suggestion Agents

Proof Manager Theory Manager Service Mediator

Text-Editor

Application Scenario 181

MAYA – The Theory Manager. Theory knowledge such as axioms, definitions, lemmas,
and theorems – collectively called assertions – are organized in structured theories and
maintained in MAYA [Autexier & Hutter, 2005]. These theories are built on top of each
other by importing knowledge from lower theories via theory morphisms. MAYA internal-
ly organizes the theories based on the notion of development graphs ([Hutter, 2000],
[Mossakowski et al, 2006]). Development graphs are used by MAYA to dynamically con-
trol which knowledge is available for which proof.

MAYA maintains the information on how global proof obligations are decomposed into
local proof obligations and which axioms, lemmas and theorems have been used in which
proofs. These dependency relations are exploited to provide an efficient support for
change operations which can modify the graph structure of the theories as well as their
content.

TASKLAYER – The Proof Manager. The TASKLAYER [Dietrich, 2006] provides the pri-
mary methods to represent, manipulate and maintain proofs in the ΩMEGA system. Its
main tasks are the construction of proofs and the maintenance of the current states of
proof attempts with their open goals.

The basic proof construction operator in the TASKLAYER is called inference. Inferences
are either operational representations of the axioms, lemmas and theorems provided by
MAYA, or they encode domain or problem specific mathematical methods, possibly in-
cluding the invocation of specialized external systems.

The states of proof attempts maintained by the TASKLAYER contain so-called tasks,
which are Gentzen-style multi-conclusion sequents [Gentzen, 1969], augmented by
means to define multiple foci of attention on subformulas. The goal of the proof construc-
tion is to recursively reduce each task to a possibly empty set of subtasks by one of the
following proof construction steps:

1) the introduction of a proof sketch ([Autexier et al, 2004], [Wiedijk, 2003]),
2) deep structural rules for weakening and decomposition of subformulas,
3) the application of a postulated lemma [Autexier & Dietrich, 2006],
4) the substitution of meta-variables, and
5) the application of an inference.

The operationalization of mathematical knowledge into inferences paired with the possi-
bility to apply inferences to subformulas results in natural, human-oriented proofs where
each step is justified by an assertion, such as a definition, axiom, theorem or lemma.

182 Introduction to 𝛀 MEGA

MULTI – The Proof Planner. The multi-strategy proof planner MULTI [Melis et al, 2008]
is used by the TASKLAYER to perform a heuristically guided search using the proof strate-
gies which it receives from MAYA. A proof strategy describes a set of inferences and con-
trol rules. Thereby, the control rules define how to proceed at choice points in the proof
planning process, for example they define the order in which inferences are applied to
tackle the next subgoal. Thus, the search space is restricted by the control rules, certain
search paths are preferred and others are pruned. MULTI can flexibly interleave different
strategies in a proof attempt.

Inferences can also encode some abstract-level proof ideas rather than low-level calcu-
lus rules and thus the proof plans delivered by MULTI may fail. However, abstract proof
plans can be recursively expanded to a logic level proof within a verifiable calculus. If
this expansion succeeds, a valid proof plan and a corresponding checkable proof on the
calculus level have been found. If the expansion fails, the proof plan remains invalidated.

𝛀-ANTS – The Suggestion Agents. The Ω-ANTS component ([Benzmüller & Sorge,
1998], [Benzmüller & Sorge, 2000]) supports interactive proof construction by generat-
ing a ranked list of bids of potentially applicable inferences in each proof state. In this
process, all inferences are uniformly viewed with respect to their arguments, that is, their
premises, conclusions, and additional parameters. An inference rule is applicable if a suf-
ficiently complete instantiation for its arguments has been computed. Hence, the goal of
Ω-ANTS is to determine the applicability of inference rules by incrementally computing
argument instantiations. These applicability checks are performed by separate processes,
that is, software agents which compute and report bids.

PLAT𝛀 – The Service Mediator. The goal of the PLATΩ component [Wagner et al,
2006] is to make ΩMEGA’s functionalities available in different application scenarios. One
application scenario is to support the writing of scientific publications in the WYSIWYG
text-editor TEXMACS [van der Hoeven, 2001] with the ΩMEGA system running in the back-
ground. Thereby, PLATΩ expects the mathematical content being provided by the text-
editor in a semantic representation. The PLATΩ component then establishes and guaran-
tees the consistency between the semantic representation at its interface and the theory
knowledge and global state of the ΩMEGA system. Finally, PLATΩ offers automated veri-
fication, completion and explanation services for proofs and proof steps provided by
ΩMEGA.

Application Scenario 183

In the following, we will introduce the language for the semantic representation of a
mathematical document required by the services of the PLATΩ component. This lan-
guage has been primarily designed as an annotation language for mathematical docu-
ments and consists of different modules for theories, proofs, references, definitions and
formulas. The development of this semantic representation language has been inspired by
the standard for semantic mathematical documents OMDOC [Kohlhase, 2000] and the
standard for semantic mathematical formulas OPENMATH [Davenport, 2000].

The reason for developing the semantic representation language of PLATΩ has been
twofold: On the one hand, we needed a more compact representation with a minimal syn-
tactic processing overhead for real-time usage. On the other hand, the model of proof
steps in OMDOC did not fit well to the model used by the ΩMEGA system. Nevertheless,
you will notice that the following semantic representation language shares the basic as-
pects of the above standards but with less verbosity.

We will present the XML grammar for the semantic representation language in EBNF
notation, partitioned into different sublanguages. Note that every non-terminal in the
grammar has to be treated as an XML element. Furthermore, the symbol text is a termi-
nal which matches an arbitrary string. Curly brackets in the content indicate that the ele-
ments can be ordered arbitrarily.

Element Args Content

DOCUMENT THEORY*

THEORY NAME? (CONTEXT|DEFINITION|AXIOM|THEOREM|PROOF|text)*

CONTEXT (REFERENCE|text)*

AXIOM NAME? {PRECONDITION*;CONCLUSION?;text*}

THEOREM NAME? {PRECONDITION*;CONCLUSION?;text*}

PRECONDITION {FORMULA;text*}

CONCLUSION {FORMULA;text*}

Table 39. Semantic Theory Language

Table 39 shows the grammar for representing a mathematical theory with definitions,
axioms, theorems and proofs. In the spirit of the notion of theory inheritance in develop-
ment graphs, the context of a theory allows for including the knowledge of other existing
theories in the document, but in this case without a theory morphism. Note that the termi-
nal text occurs in the content of almost all elements. This allows us to use this language
as a document annotation language.

Mathematical proofs can be annotated by the language shown in Table 40. This gram-
mar contains multiple semantically different annotations for proof steps. We will discuss
the semantics of these different types of proof steps after the presentation of the remain-
ing sublanguages.

184 Introduction to 𝛀 MEGA

Element Args Content
PROOF FOR (SET|FACT|DECOMPOSE|GOAL|SUBGOALS|ASSUMPTION|

 CASES|COMPLEX|text)*;TRIVIAL?

SET {FORMULA}

FACT {FORMULA+;BY*;FROM*;text*}

DECOMPOSE {ASSUME;OBTAIN;BY*;FROM*;text*}

GOAL {FORMULA;BY*;FROM*;text*}

SUBGOALS {FORMULA+;PROOF*;BY*;FROM*;text*}

ASSUMPTION {FORMULA;BY*;FROM*;text*}

CASES {FORMULA+;PROOF*;BY*;FROM*;text*}

COMPLEX {COMP+;PROOF*;BY*;FROM*;text*}

TRIVIAL (BY|FROM|text)*

BY (REFERENCE|text)*

FROM (REFERENCE|text)*

ASSUME {FORMULA+;text*}

OBTAIN {FORMULA+;text*}

COMP {ASSUME;OBTAIN;text*}

Table 40. Semantic Proof Language

The grammar for references is shown in Table 41. We distinguish between local refer-
ences (L) which point to elements inside of the same theory, and global references (R)
which point to elements in another specific theory.

Element Args Content

REFERENCE (R|L)

R NAME? THEORY

L NAME

Table 41. Semantic Reference Language

A definition may introduce either a new symbol or a new type. The grammar for defini-
tions is shown in Table 42. The only predefined name of a simple type (T) is the name of
the Boolean type bool. To specify the type of a new symbol, one may also use other
types defined in the actual theory or in the transitive closure of its context. Functional
types can be specified either in the Cartesian style (TX) or in the curried style (TF). Prede-
fined symbol names are false, true, =, impl, or, eqv, and, not, pi.

𝑎1 × 𝑎2 × …× 𝑎𝑛 is encoded as \TX[𝑎1 𝑎2 … 𝑎𝑛]
𝑎1 → 𝑎2 → ⋯ → 𝑎𝑛 is encoded as \TF[𝑎1 𝑎2 … 𝑎𝑛]

To give an example, a new symbol union with type 𝑠𝑒𝑡 × 𝑠𝑒𝑡 → 𝑏𝑜𝑜𝑙 is encoded as

 \S{“union”}[

 \TF[\TX[\T{“set”},\T{“set”}],

 \T{“bool”}]]

Application Scenario 185

Element Args Content
DEFINITION NAME? text*;(SYMBOL|TYPE);text*

SYMBOL NAME (T|TF|TX)

TYPE NAME

T NAME, THEORY?

TF (T|TF|TX);(T|TF|TX)+

TX (T|TF|TX);(T|TF|TX)+

Table 42. Semantic Definition Language

Finally, the sublanguage for formulas is shown in Table 43. A formula is either a function
application (F), a variable (V), or a symbol (S). Predefined function names are forall, ex-
ists, lambda, =, eqv, impl, not, and, or. The bounded variables of quantifiers are grouped
by (B). One may also use other symbols or functions defined in the actual theory or in any
theory in the transitive closure of the context. In case one uses a symbol or function
which is defined multiple times, the theory has to be indicated in order to resolve the am-
biguity.

Element Args Content

FORMULA NAME? (F|V|S)

F NAME, THEORY? B?;(F|V|S)*

B V+

V NAME (T|TF|TX)?

S NAME, THEORY?

T NAME, THEORY?

TF (T|TF|TX);(T|TF|TX)+

TX (T|TF|TX);(T|TF|TX)+

Table 43. Semantic Formula Language

A new variable 𝑥 with the type 𝑏𝑜𝑜𝑙 is encoded as \V{“x”}[\T{“bool”}]. Some other
examples of formulas with their encodings are given in Table 44.

∀𝑥. 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶) 𝑓(𝑥) = 𝑥2

 \F{“forall”}[

 \B[

 \V{“x”}],

 \F{“impl”}[

 \F{“in”}[

 \V{“x”},

 \V{“A”}],

 \F{“in”}[

 \V{“x”},

 \V{“B”}]]]

 \F{“in”}[

 \V{“x”},

 \F{“intersect”}[

 \V{“A”},

 \F{“union”}[

 \V{“B”},

 \V{“C”}]]]

 \F{“f”}[

 \V{“x”},

 \F{“square”}[

 \V{“x”}]]

Table 44. Examples for Semantic Representations of Formulas

186 Introduction to 𝛀 MEGA

We will now discuss the semantics of the different types of proof steps supported by
ΩMEGA. This will allow us to describe how proofs are processed by the proof assistance
system. In the ΩMEGA system, proofs are constructed by the TASKLAYER that uses an in-
stance of the generic proof data structure (𝒫𝒟𝒮) [Autexier et al, 2005] to represent
proofs.

Task. At the TASKLAYER, the main entity is a task 𝑇, a Gentzen-style multi-conclusion
sequent 𝐹1, … , 𝐹𝑖 ⊢ 𝐺1, … , 𝐺𝑘. Each formula in a task can be named by assigning a label 𝑙
to the formula.

Agenda. A proof attempt is represented by an agenda. It maintains a set of tasks, which
are the subproblems to be solved, and a global substitution which instantiates meta-
variables. Formally, an agenda is a pair 〈𝑇1, … , 𝑇𝑖;1, 𝑻𝒊, 𝑇𝑖:1, … , 𝑇𝑛; 𝜎〉 where 𝑇1, … , 𝑇𝑛 are
tasks, 𝜎 is a substitution, and 𝑻𝒊 is the task the system is currently working on.

In the following, we describe informally for each member of our semantic proof represen-
tation language how this type of proof step is processed by ΩMEGA. The detailed formal
modeling of these methods is described by Dominik Dietrich in [Dietrich, 2006],
[Dietrich & Buckley, 2007] and [Dietrich et al, 2008].

Fact. The command fact derives a new formula 𝜑 with label 𝑙 from the current proof con-
text. ΩMEGA tries to justify the new fact by the application of the inference name speci-
fied in by to term positions in the formulas with labels 𝑙1, … , 𝑙𝑛 in the current task, speci-
fied in from. If the information in by
and from is underspecified, all infer-
ences are matched against all admis-
sible term positions, and the first one
which delivers the desired formula 𝜑
is applied. If the above check fails,
ΩMEGA generates a new lemma with a
new proof tree, containing the as-
sumptions of the current task and the
newly stated fact 𝜑 as the goal (see
Figure 18). It then tries to automati-
cally close the lemma.

Γ ⋆ l: φ ⊢ Δ

Γ ⊢ 𝜑 Γ ⊢ Δ

Fact 𝑙: 𝜑

Figure 18. Fact Repair

Application Scenario 187

Goal. The command goal reduces the
current set of goals to a new formula
𝜑 with label 𝑙. ΩMEGA tries to justify
the new goal by the application of the
inference name in by to term positions
in from in the formulas with labels
𝑙1, … , 𝑙𝑛 in the current task. In the
case that by and from are underspeci-
fied, all inferences are matched
against all admissible term positions,
and the first one which delivers the
desired formula 𝜑 is applied. If the
above check fails, ΩMEGA generates a
new lemma with a new proof tree, containing the assumptions and the goals of the current
task and the newly stated goal 𝜑 as an assumption (see Figure 19). It then tries to auto-
matically close the lemma and continues analogously to fact.

Assumption. The command assumption introduces a new assumption 𝜑 on the left hand
side of the current task. ΩMEGA checks whether one of the following situations occurs,
each of which can be justified by an inference application:

 Δ contains 𝜑 ⇒ 𝜓. The implica-
tion is decomposed, 𝑙: 𝜑 is added
to the left side of the task and 𝜓
remains in right side of the task
(see Figure 20).

 Δ contains ≦𝜑. Then 𝑙: 𝜑 is add-
ed to the left side.

 Δ contains 𝜓 ⇒ ≦𝜑. Then 𝑙: 𝜑 is
added to the left side and ≦𝜓 to
the right side of the task.

If this check fails, ΩMEGA tries to derive
one of the above situations by applying in-
ferences to the goal of the current task.
Thereby, the hypotheses of the task remain untouched.

Γ ⊢ l: φ

Γ ⋆ φ ⊢ Δ Γ ⊢ Δ

Goal 𝑙: 𝜑

Figure 19. Goal Repair

Γ ⋆ l: φ ⊢ 𝜓 ⋆ Δ

Γ ⊢ (𝜑 ⇒ 𝜓) ⋆ Δ

Assumption 𝑙: 𝜑

Figure 20. Assumption Check

188 Introduction to 𝛀 MEGA

Decompose. The command decompose introduces a new assumption 𝜑 on the left hand
side of the current task and a new goal 𝜓 on the right hand side. The check for decompose
is a special case of the check for assumption. In fact, ΩMEGA checks whether Δ contains
𝜑 ⇒ 𝜓, which is the first case of the command assumption. If this check fails, ΩMEGA
tries to derive this situation by applying inferences to the goal of the current task, analo-
gously to the case for assumption.

Set. The command set is used to bind a me-
ta-variable or to introduce an abbreviation
for a term. If 𝑥 is an unbound meta-variable
in the proof state, the command set will in-
stantiate this variable with the term t. The
substitution 𝑥 → 𝑡 is added to the proof
state. If 𝑥 is already bound, a failure is gen-
erated. The formula 𝑥 = 𝑡 will be added as a
new premise to the task (see Figure 22).

Trivial. The command trivial is used to
indicate that a task is solved (see Figure 21).
This is the case if a formula 𝜑 occurs on
both the left and the right side of the task, if
the symbol false occurs at top level on the
left hand side of the task, or if the symbol
true occurs at top level on the right hand
side of a task. A task can also be closed if
the inference name in by is applied and all
its premises and conclusions are matched to
term positions in the current task.

Subgoals. The command subgoals reduces a goal of a given task to 𝑛 +𝑚 subgoals, each
of which is represented as a new task, where 𝑛 corresponds to the subgoals specified by
the user and 𝑚 denotes additional underspecified goals the user has omitted or forgotten
(see Figure 23). Each new task stems from a premise 𝑃𝑖 of the applied inference, where
the goal of the original task is replaced by the proof obligation for the premise. The check
succeeds if the inference name specified in by introduces at least the subgoals specified
by the user.

Γ ⋆ (x = t) ⊢ Δ

Γ ⊢ Δ

Set 𝑥 = 𝑡

Figure 22. Set Check

Γ ⊢ Δ

Trivial

Figure 21. Trivial Check

Application Scenario 189

If the user does not specify any inference which is able to introduce the subgoals, the
ΩMEGA system tries to further reduce the goal in the current task, thus introducing further
subgoals, until all specified subgoals are found. As in the case for assumption, the ante-
cedent of the sequent is untouched.

Cases. The command cases reduces a task containing a disjunction on the left hand side
of the task into 𝑛 +𝑚 subtasks where in each case an additional premise is added. As for
the subgoals command, the user can leave out some of the cases. If the task does not con-
tain a suitable disjunction, ΩMEGA tries to derive a desired disjunction by forward reason-
ing. The goal remains untouched.

Complex. The command complex is an abstract command which subsumes an arbitrary
sequence of the previous commands. Note that it is generally not possible to justify such a
step with a single inference application, and without further information a full blind
search has to be performed to justify this type of proof step.

An important result for the resource-bounded proof search is the empirical evaluation
with proof steps of first-year mathematics students in [Benzmüller et al, 2007]. They have
shown that 95,9% of all proof steps can be verified using a proof search depth limit of just
4 assertion-level steps. These results validate the decision to use Serge Autexier’s CORE
calculus [Autexier, 2005] as an alternative to the ND calculus [Gentzen, 1934]. The CORE
calculus supports deductions deeply inside a given formula without requiring preceding
structural decomposition as needed in ND or sequent calculus. In ΩMEGA we thus have a
smaller distance between the semantic proof representation level and their expansion to
the verifiable assertion level.

Γ ⊢ Δ

Subgoals 𝑙1: 𝜑1, … , 𝑙𝑛: 𝜑𝑛

Γ ⊢ 𝑙1: 𝜑1 Γ ⊢ 𝑙𝑛: 𝜑𝑛 Γ ⊢ 𝜑𝑛:1 Γ ⊢ 𝜑𝑛:𝑚

Figure 23. Subgoals Check

190 Introduction to 𝛀 MEGA

Proof Lifting. Whenever a part of a proof is changed or extended by ΩMEGA, it must be
propagated back to PLATΩ. In principle the proof assistance system can insert arbitrary
large parts. Given a selected part of a proof, each proof construction step has to be trans-
formed back into a command of the semantic proof representation language. This so
called proof lifting process is done by the following static analysis of the changes that a
proof construction step applies to the proof agenda.

A proof construction step is executed with respect to an agenda 𝐴1 = 〈*𝑻𝟏, … , 𝑇𝑛+, 𝜎〉 and
results in the new agenda 𝐴2 = 〈*𝑻𝟏′ , … , 𝑇𝑘′ , 𝑇2, … , 𝑇𝑛+, 𝜎′〉. The step has reduced the task
𝑇1 to the subtasks 𝑠𝑢𝑐𝑐(𝑇1) = *𝑇1′, … , 𝑇𝑘′+. We analyze the differences between two tasks
𝑇 = Γ ⊢ Δ and 𝑇′ = Γ′ ⊢ Δ′ as follows:

𝑡𝑎𝑠𝑘𝑑𝑖𝑓𝑓(𝑇, 𝑇′) = 〈*𝜑 ∈ Γ′|𝜑 ∉ Γ+, *𝜓 ∈ Δ′|𝜓 ∉ Δ+〉

If a task is reduced to several subtasks, we obtain a set of differences for each subtask.
The differences between the two agendas 𝐴1 and 𝐴2 are then defined by:

𝑎𝑔𝑒𝑛𝑑𝑎𝑑𝑖𝑓𝑓(𝐴1, 𝐴2) = 〈*𝑡𝑎𝑠𝑘𝑑𝑖𝑓𝑓(𝑇1, 𝑇𝑖)|𝑇𝑖 ∈ 𝑠𝑢𝑐𝑐(𝑇1)+, *𝛾 ∈ 𝜎

′|𝛾 ∉ 𝜎+〉

Moreover, we require that the name of the applied proof operator is available, and that the
function lab returns the set of labels of the formulas which are used in the premises and
conclusions of the proof operator. Then, the proof lifting rules are defined with respect to
the differences between two agendas as shown in Table 45.

𝒂𝒈𝒆𝒏𝒅𝒂𝒅𝒊𝒇𝒇(𝑨𝟏, 𝑨𝟐) Semantic proof step

〈∅, ∅〉 \trivial[\by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]

〈*〈*𝒙 = 𝒕+, ∅〉+, *(𝒙 → 𝒕)+〉 \set[𝒙 = 𝒕]
〈*〈*𝝋+, ∅〉+, ∅〉 \fact[𝝋,\by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]
〈*〈*𝝋+, *𝝍+〉+, ∅〉 \decompose[\assume[𝝋],\obtain[𝝍],

 \by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]
〈*〈∅, *𝝍+〉+, ∅〉 \goal[𝝍,\by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]

〈*〈∅, *𝝍𝟏+〉,… , 〈∅, *𝝍𝒎+〉+, ∅〉 \subgoals[𝝍𝟏,…, 𝝍𝒎,

 \by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]
〈*〈*𝝋𝟏+, ∅〉, … , 〈*𝝋𝒎+, ∅〉+, ∅〉 \cases[𝝋𝟏,…, 𝝋𝒎,

 \by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]
〈*〈𝚪𝟏, 𝚫𝟏〉, … , 〈𝚪𝒎, 𝚫𝒎〉+, ∅〉 \complex{}[

 \comp[\assume[𝚪𝟏],\obtain[𝚫𝟏]], …

 \comp[\assume[𝚪𝒎],\obtain[𝚫𝒎]],

 \by[𝑛𝑎𝑚𝑒],\from[𝑙𝑎𝑏(𝑛𝑎𝑚𝑒)]]
Table 45. Proof Step Lifting Rules

 (adapted from [Dietrich et al, 2008])

Application Scenario 191

After introducing the semantic representation language for mathematical documents
which is used by ΩMEGA’s interface for document services, we illustrated the different
types of proof steps which can be used to sketch a proof and we briefly described how
they are processed. Furthermore, we presented how parts of a proof, which have been
modified by ΩMEGA, can be lifted to corresponding modifications of the semantic repre-
sentation. Now we will introduce the document-centric services provided by ΩMEGA via
PLATΩ on that basis. The following services have been developed to assist the authoring
of mathematical proofs. The integration of these services with the text-editor will be de-
scribed in more detail in the Chapters 8 and 9.

Verification Service. For a mathematical document in semantic representation PLATΩ
offers to verify all contained proofs. To this purpose, PLATΩ stores the theory knowledge
of the mathematical theories in MAYA and constructs the proofs in the TASKLAYER. For
each proof, the proof data structure (𝒫𝒟𝒮) is initialized and a high-level proof plan is
built according to the proof steps in the document. Then, ΩMEGA tries to expand the proof
plan to the verifiable assertion level with a resource-bounded search. Thus, a proof step is
usually justified by a sequence of lower level proof steps, which turns the proof data
structure into a hierarchical data structure. Finally, PLATΩ returns the information about
the verification status of proof steps by attributing the corresponding element in the se-
mantic representation as follows.

 \decompose{ ”verified” }[…], \fact{ ”unknown” }[…],…

Explanation Service. The explanation service is only provided for a particular proof step
that has already been verified. The intention of this service is to show more detailed proof
steps that justify that particular step. For this purpose, we exploit the hierarchical proof
data structure by replacing the selected proof step in the semantic representation with the
lifted sequence of proof steps that justifies this step. This expansion can of course be re-
versed again on request, resulting in an abstraction of a sequence of proof steps.

Proving Service. Finally, ΩMEGA can be asked which assertions (definitions, axioms,
lemmas, theorems) are applicable at the actual task of a particular branch in a proof. Fur-
thermore, the application of a selected assertion can be requested as well as an automated
completion of parts of the proof. Both requests are processed with bounded resources and
as a matter of course may run out of resources before discovering the expected results.
The new constructed parts of the proof are lifted to corresponding modifications of the
semantic representation and returned by PLATΩ.

192 Course Scenario

7.2 Course Scenario

To demonstrate the benefits of the Change-Oriented Architecture to Mathematical Au-
thoring Assistance we selected the following course scenario. The lecturer of a mathemat-
ics course writes down the lecture notes and produces weekly exercise sheets. Thereby,
the exercises are based on the definitions, axioms, theorems and notations that are con-
tained in the lecture notes. The students solve the exercises and write down their solu-
tions. In this scenario, we will address the following two authoring assistance cases.

1) How can we assist the lecturer with the authoring of lecture notes?
2) How can we assist the student with the authoring of exercise solutions?

In order to use the verification services of ΩMEGA, the content of a mathematical docu-
ment in a text-editor has to be transformed into the semantic representation required by
ΩMEGA. Since the exercises depend on the mathematical content in the lecture notes, in
particular on the introduced notations, we first have to transform the lecture notes and
extend the transformation grammar with rules for the new notations, before we transform
the exercises and their solutions. In general, we will focus on the following aspects of the
authoring assistance cases.

Authoring Lecture Notes. In this assistance case, our main topic is the notation used by
mathematical formulas. How can we analyze the definitions of new notations? How can
we extend the invertible grammar for mathematical formulas with synthesized rules for
the new notations? How can we support sugaring and souring of notations? How can we
adapt the document if a notation is changed? How can we deal with ambiguities? How
can we support notational communities of practice?

Authoring Exercise Solutions. In this assistance case, we focus on the verification of the
exercise solutions. How can we analyze the proof steps and justifications? How can we
incrementally verify the proof steps? How can we propagate changes? How can we inte-
grate the feedback of the verification services in the text-editor? How can we interact with
the proof assistance system?

Since the transformation of the text-editor document into the semantic representation is
the foundation for authoring assistance, we first have to collect and analyze samples of
the content that we have to expect in this scenario.

Application Scenario 193

7.3 Exploratory Study

In order to analyze the linguistic requirements of the expected mathematical content in
the course scenario, we conducted an exploratory study with a first-year mathematics
course at Saarland University to collect a corpus of exercise solutions. We have chosen
the exercises of a first-year course because they fit reasonably well to the capabilities of
the proof assistance system ΩMEGA.

The idea of the exploratory study is to make the students familiar with the text-editor
TEXMACS which we use as a user interface (UI) for creating, browsing, solving and sub-
mitting exercises and their solutions. The main requirement for the study is the storage of
successive versions of exercise sheets, exercises and their student-specific solutions.
Therefore we integrated the text-editor TEXMACS with an exercise manager by using a
mediation module as shown in Figure 24.

The job of TEXMACS is to serve as a UI for navigating through exercises and solutions. We
encoded the exercise menu of the study as a regular document (see Figure 25) which
communicates with the exercise manager in an AJAX-style fashion [Garrett, 2005] via
the mediation module. The exercise manager provides the services to browse exercise
sheets and exercises, and to store their solutions. Furthermore, the user accounts of the
students are managed by the exercise manager.

In order to analyze the authoring behavior over time, we are also interested in succes-
sive snapshots of the exercise solutions written in the text-editor. To this purpose, we use
the versioning feature of the mediation module. A timed event in TEXMACS automatically
commits new versions of an exercise solution to the mediation module. Hence, successive
snapshots of this interface document are tracked by the version control of the mediation
module. In addition to that, we developed a replay mechanism in TEXMACS to watch the
authoring of exercise solutions over time, simulated by successive checkouts of subse-
quent solution versions from the mediation module. Thus, we are able to monitor the au-
thoring behavior over time.

PL

U
G

IN

Figure 24. Architecture of the Exploratory Study

TEXMACS
Mediation
Module

Exercise
 Manager

194 Exploratory Study

In the first week of the exploratory study, we introduced TEXMACS to the students who
then got quickly familiar with the intuitive usage provided by the WYSIWYG interface.
In the following ten weeks the students had to solve and submit one out of four exercises
per week with TEXMACS. After that training period we conducted the real study, a super-
vised classroom exercise that had to be completely solved using the text-editor TEXMACS.
Thereby, 49 students had 90 minutes to solve the following 4 exercises:

1) Let (𝑎𝑛)𝑛∈ℕ be a convergent sequence in ℝ with limit 𝑎 ∈ ℝ. Show that it is a

Cauchy sequence.
2) Compute the following limits of complex-valued sequences:
lim𝑛→∞

2𝑖𝑛3;𝑛4

𝑛4:3𝑖𝑛2;1
, lim𝑛→∞

3𝑛2;2

𝑛3:1
, lim𝑛→∞

5𝑛;7𝑛2

(𝑛:1)2;8𝑛
.

3) For 𝑥 ∈ ℝ: compute lim𝑛→∞
𝑥𝑛;𝑛

𝑥𝑛:𝑛
.

4) Compute the following limits of the sequences (𝑥𝑛)𝑛∈ℕ with the help of limits
proved in the lecture: 𝑥𝑛 = .1 −

1

𝑛
/
𝑛

, 𝑥𝑛 = .1 −
1

𝑛2
/
𝑛

.

Our software took automatic snapshots of the current state of the exercise solutions every
10 seconds. Note that we had no influence on the type of exercises at all, the exercise
sheet was completely regular. The exploratory study has been conducted in German. The
above exercise descriptions have been translated into English. More details of the explor-
atory study, briefly called IMATH, are available at [Wagner, 2007] and published as
[Wagner & Lesourd, 2008].

Figure 25. TEXMACS UI of the Exploratory Study

Application Scenario 195

7.4 Authoring Behavior

By using the replay mechanism (see Figure 26) specifically developed for this study we
were able to analyze the authoring behavior of the students per exercise over time. First
we observed that the students spend on average 30% of their time with searching relevant
definitions and theorems in the lecture notes, another 30% with producing a draft solution
on paper, and the final 40% with authoring the solution.

Analyzing the authoring behavior inside TEXMACS, we were able to identify the following
types of modifications:

 The standard type of modification is monotonic increase of the solution when

the student is continuously writing down the solution.
 Copy & Paste is used quite often to shorten the complicated input of long

mathematical formulas that differ only slightly from previous formulas.
 Local modifications can be observed regularly. That means that parts of the last

sentence are deleted, rewritten or corrected, like for example adding missing
brackets in formulas.

 Global modifications can only be observed in very few cases. Refactoring op-
erations like variable renaming affect in general more than one sentence. Some-
times such an operation is only described but not executed, for example
 ”By renaming 𝜀2 to 𝜀 the theorem follows.”.

Figure 26. Exercise Replay in TEXMACS

196 Linguistic Aspects

7.5 Linguistic Aspects

The mathematical documents collected during the experimental study have been analyzed
with respect to different linguistic aspects. In the following we will report in more detail
on the analysis of the aspects formula verbalization, style of sentences, concluding step
and justifications. We selected these aspects because the collected documents show sig-
nificant differences with respect to these aspects. Note that the exploratory study has been
conducted in German. The examples, which we reproduce in the following, have been
translated from German into English.

Formula Verbalization. The aspect formula verbalization is divided into the following
categories:

1) formalized (e.g. “lim𝑛→∞ 𝑎𝑛 = 𝑎”, “|𝑎𝑛 − 𝑎𝑚| < 𝜀 ∀𝑛,𝑚 ≥ 𝑛0(𝜀)”) where

formulas are completely written in symbolic notation,
2) weakly verbalized (e.g. “𝑎 is the limit of (𝑎𝑛)𝑛∈ℕ”, “There exists a 𝜀 > 0 for

which holds that ∀𝑛0(𝜀). ∃𝑛,𝑚 ≥ 𝑛0(𝜀)…”) where some relations or quantifiers
are partly verbalized, and finally

3) strongly verbalized (e.g. “For all 𝜀 holds: there exists a 𝑛0(𝜀) ∈ ℕ with …”, “For
𝑥 < 1, 𝑥𝑛 converges on 0.”) where all relations and quantifiers are fully verbal-
ized.

Exercise 1 Exercise 2 Exercise 3 Exercise 4
strongly verbalized 29% 0% 8% 8%
weakly verbalized 16% 0% 10% 0%
formalized 55% 100% 82% 92%

55%

100%
82%

92%

16%

0%
10% 0% 29%

0%
8% 8%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 27. Analysis of Formula Verbalization

Application Scenario 197

Figure 27 shows the formula verbalization grade for every exercise. An exercise is classi-
fied as weakly/strongly verbalized if at least one weakly/strongly verbalized formula oc-
curs. The analysis of the formula verbalization reveals that

 services for symbolic formulas (for example notation check) are worthwhile,
 being able to fully parse/render symbolic formulas and weakly verbalized for-

mulas gives a coverage of at least 70%,
 a linguistic ontology is required to deal with strongly verbalized formulas.

While the first two grades of formula verbalization may be reached by a general shallow
grammar, the third grade requires a significant amount of domain-specific information
and thus domain knowledge deeply encoded in the grammar.

Style of Sentences. The style of sentences is classified into the following categories:

1) no sentences if there are no sentences at all,
2) simple connections if the sentences contain simple key phrases (e.g. “There-

fore it holds that ...”, “It holds ...”, “Hence we have ...”, “Thus it follows ...”,
“Then ...”, “This means ...”, “Let ...”, “Select ...”, “Assuming ...”) and the build-
ing blocks are symbolic or weakly verbalized formulas, and

3) complete sentences if the sentences are fully verbalized with ontological build-
ing blocks like type, identifier, concept or attribute.

Figure 28. Analysis of the Style of Sentences

Exercise 1 Exercise 2 Exercise 3 Exercise 4
complete sentences 50% 2% 12% 14%
simple connections 25% 0% 41% 10%
no sentences 25% 98% 47% 76%

25%

98%

47%

76% 25%

0%

41%

10%
50%

2%
12% 14%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

198 Linguistic Aspects

The analysis of the style of sentences in Figure 28 shows that

 a linguistic ontology is absolutely necessary to support text-style proofs like the
one in the first exercise because a coverage of less than 50% is not acceptable,

 for computational proofs with case distinctions the handling of simple connect-
ors and weakly verbalized formulas gives an excellent coverage of at least
85%.

Again the first two styles of sentences may be covered by a general shallow grammar, but
the third style requires a significant amount of domain-specific information and thus do-
main knowledge deeply encoded in the grammar. As an intermediate step, one could de-
fine a controlled mathematical language which allows for supporting text-style proofs in a
controlled fashion.

Concluding Steps. The concluding steps are divided into the following categories:

1) not present if there is no step concluding the proof,
2) symbolic if there is a ∎, “qed” or “q.e.d.” at the end of the proof, and
3) verbalized if the concluding step is a fully verbalized sentence (e.g. “Therefore
(𝑎𝑛)𝑛∈ℕ is a Cauchy sequence.”, “... hence the theorem holds.”, “This contradicts
the assumption.”, “... and thus |𝑎𝑛 − 𝑎𝑚| < 𝜀 ∀𝑛,𝑚 ≥ 𝑛0(𝜀)”).

Figure 29. Analysis of Concluding Steps

Exercise 1 Exercise 2 Exercise 3 Exercise 4
verbalized 49% 2% 0% 8%
symbolic 16% 0% 0% 0%
not present 35% 98% 100% 92%

35%

98% 100% 92% 16%

0% 0%
0%

49%

2% 0%
8%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Application Scenario 199

Note that there are two types of verbalized concluding steps, one abstract type that could
be used for every proof of the same style, and one concrete type that performs the last
inference, repeats the theorem or justifies the last conclusion. Figure 29 shows the analy-
sis of concluding steps which draws the following conclusions:

 Verbalized concluding steps do almost never occur in computational proofs,

even symbolic conclusions are very rare.
 In correlation to the sentence style aspect we can observe that 50% of the text-

style proofs require a linguistic ontology in order to understand the verbalized
concluding step.

A verbalized concluding step either requires domain knowledge deeply encoded in the
grammar or it could be part of a controlled mathematical language. The analysis shows
that the concluding step almost solely occurs in text-style proofs. Thus, the expected style
of proofs indicates whether the support of concluding steps by the grammar is reasonable.

Justifications. The last aspect concerns the justification of proof steps and consists of the
following categories:

1) not present if no proof step is justified at all,
2) references if the proof steps are justified by referring to used theorems or con-

cepts (e.g. “... with the triangle inequality”, “From 14.23 it holds with 𝑝 = −1
…”, “𝑥1

𝑡ℎ𝑒𝑜𝑟𝑒𝑚 14.23

⇒ 𝑥2”), and
3) verbalized if the justification is a fully verbalized sentence, possibly with refer-

ences to proof strategies, complex methods or other sources of knowledge (e.g.
“Since ... it holds ...”, “... holds because ... and ...”, “By polynomial division we
compute ...”, “Reason: Main coefficient is −1”, “In the lecture we proved that ...”,
“From the first part of the exercise it follows that ...”, “It’s a matter of common
knowledge that ...”).

An exercise is classified as references/verbalized if at least one reference/verbalized justi-
fication sentence occurs in a mathematical proof. The analysis of justifications in Figure
30 reveals that

 not supporting verbalized references results in a medium coverage of at most

65% in the worst case, which might result in a low user acceptance,

200 Linguistic Aspects

 different linguistic ontologies are required to effectively understand verbalized
references: a document ontology (e.g. for references to other parts of a docu-
ment), an argumentation ontology (e.g. for references to the lecture or domain-
specific techniques), and a concept ontology (e.g. for references to definitions).
At least the concept ontology needs to be extended dynamically for example
whenever new definitions or named local hypothesis are stated.

The cited examples of justifications by references and verbalized justifications show a
wide range of notational and argumentative creativity. The collected documents reveal
indeed that every author has its unique style of justifying proof steps. Without imposing
authoring guidelines, the complexity of the justification analysis would be out of scope
for an automated analysis. An alternative solution would be to define justification
schemes as part of a controlled mathematical language.

In summary, the analysis of linguistic aspects allows for answering the choice between
shallow and deep linguistic grammars as follows. We assume that an author is satisfied
with the system if 90% of a common document are covered. Then, we conclude from the
analysis results that a system with a shallow linguistic grammar will not be able to satisfy
an author. Because of the wide range of justification variants, the development of a sys-
tem with a deep linguistic grammar and 90% of coverage is unfortunately out of scope for
this thesis. Besides, the amount of ambiguities would increase with the expressive power.
Therefore, we argue that a system with a controlled mathematical language is a reasona-
ble compromise between both extremes.

Figure 30. Analysis of Justifications

Exercise 1 Exercise 2 Exercise 3 Exercise 4
verbalized 26% 8% 35% 25%
references 39% 0% 4% 61%
not present 35% 92% 61% 14%

35%

92%

61%

14%

39%

0%

4%

61%

26%
8%

35%
25%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Application Scenario 201

7.6 Discussion

In order to develop an assistance system for the course scenario, which integrates the ser-
vices of a proof assistance system with the authoring of lecture notes and exercise solu-
tions, first of all we had to analyze the linguistic requirements of the expected mathemati-
cal content. Therefore, we conducted an exploratory study with a first-year mathematics
course to collect and analyze a corpus of documents. We have chosen exercises of a first-
year course because their problem complexity fits to the capabilities of a state-of-the-art
proof assistance system like the ΩMEGA system. The collected documents have been ana-
lyzed with respect to the authoring behavior and some selected linguistic aspects.

Regarding the authoring behavior, we observed a monotonic increase with the frequent
use of copy & paste. The last sentence is quite often modified locally, global refactoring
is used very rarely and often only described but not executed. Notational consistency
checks would be a very helpful authoring assistance service because a lot of modifica-
tions were related to the correction of notational errors. Altogether, since the authoring
behavior is rather incremental, the incremental translation method of the invertible gram-
mar formalism is well-suited for the continuous transformation of the document in the
text-editor into the semantic representation for the proof assistance system.

Regarding the linguistic aspects we analyzed that being able to fully deal with symbol-
ic and weakly verbalized formulas, simple connected sentences and references leads to an
average coverage of 70% in our course scenario. This level might be reached with a shal-
low linguistic grammar. By integrating linguistic ontologies (document, argumentation,
and concept) and mechanisms to extend these ontologies dynamically, we might reach a
coverage of more than 90%, which usually satisfies the expectations of an author. How-
ever, the analysis of justifications revealed a huge amount of linguistic and argumentative
variations. The resources needed to develop a system with a deep linguistic grammar and
a coverage of 90% are out of scope for this thesis. Nevertheless, a deep linguistic ap-
proach is being pursued for example by [Wolska & Kruijff-Korbayová, 2004]. As of May
2010, we could not test the coverage with respect to our collected corpus because there is
no system available yet.

As a compromise between shallow and deep linguistic approaches, we use a combina-
tion of an extensible shallow grammar for mathematical formulas and a controlled math-
ematical language for text-style mathematical theories, containing in particular defini-
tions, axioms, theorems and proofs with verbalized justifications. In the following chap-
ters we will illustrate how far we can get with this approach and the concepts and meth-
ods of the Change-Oriented Architecture.

Authoring Lecture Notes 203

8 Authoring Lecture Notes

As a first step towards assisting the authoring of mathematical documents like lecture
notes, we integrated the proof assistance system ΩMEGA with the text-editor TEXMACS
using an annotation based approach. Thereby we rely on annotations for the document
structure that must be provided manually by the user to understand the meaning of the
natural language parts in a mathematical document. Although it might be acceptable for
an author to indicate the macro-structures like theories, definitions and theorems, writing
annotated formulas (\F{“in”}[\V{“x”},\F{“cup”}[\V{“A”},\V{“B”}]])
instead of presentation formulas (x \in A \cup B) is definitely not acceptable. Aim-
ing at a document-centric approach to formalizing mathematics, we present in this chapter
a mechanism that allows authors to define their own notation und to use it when writing
formulas within the same document. Furthermore, this mechanism for notational self-
extensible documents enables the proof assistance system to access the formal content
and use the same notation when presenting computed formulas to the author.

In this chapter, we will investigate how notational information in a document can be
represented, processed and used to automatically annotate and generate mathematical
formulas in the same document. First of all, we will present the transformation pipeline
between the document in the text-editor and the semantic representation for the proof
assistance system using a Change-Oriented Architecture. Inspired by notation definitions
in text-books, we then present the means the author should have to define notations. The
goal consists of starting from such notations to synthesize invertible grammar rules that
allow for reading formulas using that notation. By automatically inverting these rules we
are then also able to render the formulas generated or modified by the proof assistance
system. After that, we present a basic mechanism for accommodating efficiently modifi-
cations of the notations. Finally, we will outline techniques for ambiguity resolution and
for the redefinition of notation.

Presentational Convention. The work presented in this chapter has been mainly realized
with the text-editor TEXMACS. Although the TEXMACS mark-up-language is analogous to
LATEX-macros, one needs to get used to it: For instance a macro application like
“\frac{A}{B}” in LATEX becomes “<frac|A|B>” in TEXMACS-markup. Assuming
that most readers are more familiar with LATEX than with TEXMACS, we will use our LATEX-
style syntax for labeled trees for the sake of readability.

204 Transformation Pipeline

8.1 Transformation Pipeline

We model the transformation between the document in the text-editor and the semantic
representation for the proof assistance system by the Chain of Responsibility Design Pat-
tern of the Change-Oriented Architecture, as shown in Figure 31.

Let us discuss now the different responsibilities of the components in this pipeline, and
how they interact in the usual authoring workflow.

Layout Processing. The main responsibility of the plugin in the text-editor is the pre-
processing of the document markup, in particular of the layout markup. The document in
the text-editor contains plenty of layout information in its plain serialized representation,
as well as other kinds of markup which are not relevant for the authoring assistance. Cov-
ering this additional markup by the grammar rules of a mediation module is not a reason-
able approach because of the tremendous combinatorial possibilities of all kinds of
markup. Therefore, we decided to extract the relevant content of the document by apply-
ing projections on the original document to lift the content subtrees in the document tree.
Table 46 shows an example for lifting markup, where the document element represents a
paragraph and the concat element a run in the document format of TEXMACS.

\body{}[

 \document{}[

 \concat{}[

 “We show ….”

],

 \theorem{}[

 \document{}[

 \concat{}[

 “It holds that”,

 “$\forall … $”,

 “.”

]]]]]

\body{}[

 “We show ….”,

 \theorem{}[

 “It holds that”,

 “$\forall … $”,

 “.”]]

Table 46. Plain Markup (on the left) vs. Lifted Markup (on the right)

PL

U
G

IN

Text-
Editor

Proof
Assistance

System

Mediation
Module

#1

Mediation
Module

#2

Notation
Manager

Figure 31. Transformation Pipeline

Authoring Lecture Notes 205

For the inverse processing direction, that is, the integration of generated content, we de-
signed a layout heuristic. This heuristic scans the generated content for keywords like
definition, axiom, theorem and proof, which indicate a major group of content, and places
this part of the content in the top paragraph of the document. The default behavior of the
heuristic is to insert generated content within the same run as the referenced target.

Component Interaction. The task of the first mediation module is then to translate be-
tween the filtered annotated document of the text-editor and a semantic representation for
the proof assistance system. The translation process includes theorems, proofs and proof
steps, but it does in particular not include the translation of the content of definitions, no-
tations and mathematical formulas. The notation manager now analyzes the definitions
and notations in the interface document of the first mediation module. The result of the
analysis is then used to synthesize invertible grammar rules for the translation of mathe-
matical formulas. The notation manager extends the invertible grammar of the second
mediation module by these new grammar rules. Finally, the second mediation module
translates the remaining plain parts of the interface document into a complete semantic
representation for the proof assistance system.

Synthesizing grammar rules from the defined notation is a process that does not need
to be inverted. Therefore it is encapsulated in a service component and not part of a medi-
ation module. Note that the proof assistance system is not able to trigger changes in the
notation because the definition of the notation is not anymore part of the interface docu-
ments of the second mediation module. This knowledge is only part of the grammar
which has been set up for the interface documents by the notation manager. Hence, we
prevent the need for inverting the synthesizing of grammar rules by design.

By describing this transformation pipeline, we only presented a high-level overview of
the tasks and the interplay of the components of this Change-Oriented Architecture.
In the following sections, we will provide detailed solutions for the different steps in the
transformation pipeline. First of all, we will describe how the semantic annotation lan-
guage can be translated with an invertible grammar. Then we will present the method for
synthesizing grammar rules by analyzing the defined notation. Furthermore, we will dis-
cuss how the features of the Change-Oriented Architecture can be exploited for the man-
agement of notation. Thereby, we will address questions like: How can we support sugar-
ing and souring of notations? How can we adapt the document if a notation is changed?
How can we deal with ambiguities? How can we support notational communities of prac-
tice?

206 Semantic Annotation Language

8.2 Semantic Annotation Language

Mediating between a text-editor and a proof assistance system requires the extraction of
the formal content of a document, which is already a challenge in itself if one wants to
allow the author to write in natural language without any restrictions. Therefore we cur-
rently use the semantic annotation language developed for the PLATΩ system [Wagner et
al, 2006] as introduced in Chapter 7.1 to semantically annotate different parts of a math-
ematical document. The annotations can be nested and subdivide the text into dependent
theories that contain definitions, axioms, theorems and proofs, which themselves consist
of proof steps like for instance subgoal introduction.

The annotations are a set of macros predefined in a TEXMACS style-file and must be
provided manually by the author. We were particularly cautious that adding the annota-
tions to a text does not impose any restrictions to the author about how to structure the
text. Note that for the proof assistance system the only annotation where the order of ar-
guments clearly matters is the annotation PROOF because the order of the contained proof
steps is clearly relevant. The semantic annotation language can be modeled by an inverti-
ble grammar as shown exemplary in Table 47 for the annotations of a theorem. The first
mediation module uses this grammar to translate the annotated document in the text-
editor to the semantic representation for the proof assistance system, except of definitions,
notation and mathematical formulas.

Head Production Creation
TEO [\theorem{ x:NAME }[y:TEOC]] [\theorem{ x }[y]]

TEOC [(PRE|t)* CON? (PRE|t)*]

PRE [\precondition{}[y:PREC]] [\precondition{}[y]]

PREC [(FORM|t)* FORM (FORM|t)*]

CON [\conclusion{}[y:CONC]] [\conclusion{}[y]]

CONC [t* FORM t*]

…

Table 47. Invertible Grammar for the Semantic Annotation Language

Thereby, we use the following variable specification to exclude the predefined annotation
macros as a matching partner of the pattern variable t. The role of this variable is indeed
to capture only the annotated natural language content and any custom markup.

\variables{}[

 \negative{ name=“t” }[“theorem”, “precondition”,

 “conclusion”, …],

 …

 \multirange{}[“x” , “y” , …]

]

Authoring Lecture Notes 207

Self-Extensibility. It is not acceptable to require writing formulas in an annotated form in
the text-editor. This motivates the need for an abstraction parser that converts formulas
in LATEX syntax into their fully annotated form. Furthermore, we also need a rendering
parser to convert fully annotated formulas obtained from the proof assistance system into
LATEX-formulas using the user-defined notation. The usual software engineering approach
would be to write grammars for both directions and integrate the generated parsers into
the system. Of course, this method is highly efficient but the major drawback is obvious:
the user has to maintain the grammar files together with her documents. In our document-
centric philosophy, the only source of knowledge for the mediation process should be the
source document in the text-editor.

Therefore, the idea of dynamic notation is to start from a basic invertible grammar for
types and formulas, where only the notation for the Boolean type bool, the complex type
constructors → and ×, and the logic operators ∀,∃,𝜆,⊤,⊥,∧,∨,≦,⇒,⇔ are predefined.
Based on that initial grammar the definitions and notations occurring in the document are
analyzed in order to extend incrementally the invertible grammar for dealing with new
notation knowledge. Note that we modeled the document as a set of mathematical theo-
ries with definitions, axioms, theorems and proofs. Thereby, the context of a theory al-
lows for including the knowledge of other existing theories in the document. The scope of
a notation should then respect the visibility of its defining symbol or type, that is, the
transitive closure of dependent theories.

In order to avoid the Nixon diamond problem with the inheritance of theories, we re-
quire that the inheritance network has a linear shape. To solve the problem of combining
invertible grammars in the case that the inheritance network would have a tree shape, we
refer to the works of [de Carvalho & Jürgensen, 2008] and [Ganzinger & Giegerich,
1984] who describe methods for joining and composing attribute grammars.

Illustrating Example. Notations defined by authors are typically not specified as gram-
mar rules. Therefore, we first need a user friendly WYSIWYG method to define notations
and to automatically generate grammar rules from it. Looking at standard mathematical
textbooks, one observes sentences like “Let 𝑥 be an element and 𝐴 be a set, then we write
𝑥 ∈ 𝐴, 𝑥 is element of 𝐴, 𝑥 is in 𝐴 or 𝐴 contains 𝑥.”. Supporting this format requires the
ability to locally introduce the variables 𝑥 and 𝐴 in order to generate grammar rules from
a notation pattern like 𝑥 ∈ 𝐴. Without using a deep linguistic analysis, patterns like “𝑥 is
in 𝐴” are only supported as pseudo natural language. Besides that, the author should be
able to declare a symbol to be right- or left-associative as well as the precedence of sym-
bols. We introduce the following annotation format to define the operator ∈ and to intro-
duce multiple alternative notations for ∈ as close as possible to the textbook style.

208 Semantic Annotation Language

\definition{“Predicate” “\in”}[

“The predicate”

\concept{“\in”}[“$elem \times set \rightarrow bool$”}

“takes an individual and a set and tells whether that

individual belongs to this set.”]

A definition may introduce a new type by \type{𝑛𝑎𝑚𝑒} or a new typed symbol by
\concept{𝑛𝑎𝑚𝑒}[𝑡𝑦𝑝𝑒]. We allow to group symbols to simplify the definition of
precedence and associativity. By writing \group{𝑛𝑎𝑚𝑒} inside the definition of a
symbol, this particular symbol is added to the group name which is automatically created
if it does not exist. Any new concept is first introduced as a prefix symbol. This can be
changed by declaring concept specific notations as follows.

\notation{“Predicate” “\in”}[

“Let” \declare{“x”} “be an individual and”

\declare{“A”} “a set, then we write”

\denote[“$x \in A$”] “,” \denote[“$x is element of A$”] “,”

\denote[“$x is in A$”] “or” \denote[“$A contains x$”] “.”]

A notation may contain some variables declared by \declare{𝑛𝑎𝑚𝑒} as well as the
patterns written as \denote[𝑝𝑎𝑡𝑡𝑒𝑟𝑛]. Furthermore, by writing \left{𝑛𝑎𝑚𝑒} or
\right{𝑛𝑎𝑚𝑒} inside the notation one can specify a symbol or group of symbols to be
left or right associative. Finally, the precedence between symbols or groups are defined
by \prec[𝑛𝑎𝑚𝑒1,…,𝑛𝑎𝑚𝑒𝑘], which partially orders the precedence of these symbols
and groups of symbols from low to high. Please note that a notation is related to a specific
definition by referring its name, in our example “Predicate \in”.

Figure 32 shows how the above example definition and notation appear in a TEXMACS
document. Using a keyboard shortcut the author can easily switch into a so-called “box-
mode” that visualizes the semantic annotations contained in the document by using an
alternative style sheet. Figure 33 shows this annotated view of the document.

So far we went rather informally through our concept of the self-extensibility of nota-
tion using illustrating examples. In the following we will describe the realization of this
concept using the invertible grammar formalism. Furthermore, we will discuss important
aspects as the management of change for notation and the resolution of ambiguities.

Authoring Lecture Notes 209

Figure 32. Annotated TEXMACS Document in Text Mode

Figure 33. Annotated TEXMACS Document in Box Mode

210 Synthesizing Invertible Grammar Rules

8.3 Synthesizing Invertible Grammar Rules

We start now with the translation of a semantically annotated document, as for example
the document shown in Figure 33. First of all, the natural language parts in the document
are removed by the first mediation module in the transformation pipeline. The notation
manager then receives a semantic representation of the document where the contents of
definitions, notation introductions and mathematical formulas are not yet translated.

The notation manager then computes the linear inheritance chain of the theories con-
tained in the document. For each of these theories, the notation manager sets up an inter-
face document in the second mediation module with the initial invertible grammar. The
rules for mathematical formulas can be divided into rules for types, symbols and operator
applications. This first step is summarized in Figure 34.

The following rule is an example for an initial rule of the category TERM, which is used
for any kind of operator application. This rule recognizes two chunks of input x and y in
the category TERM that are separated by “\wedge” and it substitutes the obtained
transformation results v and w into \F{“and”}[v , w] to create the semantic repre-
sentation. Furthermore, the constraints guarantee the correctness of our many-sorted sim-
ple types.

AND

𝑳 TERM

𝑷𝑰𝑵 [x “\wedge” y]

𝑴 [k:([x],[v],TERM) ,

 m:([y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“and”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “bool”, m.type, “bool”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

Mediation Module #1

Notation
Manager

Figure 34. Inverse Multiplexing Mathematical Theories

Mediation Module #2

 Theory 1

Theory 2

Theory 3

Theory 1

Theory 2

Theory 3

Authoring Lecture Notes 211

The goal of processing the theories in the document is now to produce a set of invertible
grammar rules for the defined notation. A classical top-down approach, that processes
each definition or notation on its own, extending the grammars and recompiling the
grammar before processing the next element, is far too inefficient for real time usage due
to the expensive compilation process. Therefore, we use a runtime interpreter for the in-
vertible grammar. Additionally, we try to minimize the translation steps as much as pos-
sible for a theory in a mathematical document by the following processing workflow.

1) Phase 1: All definitions are processed sequentially. For each definition the

name of the introduced type or symbol is added to the lexica of that interface
document. The scanners of the notation manager are rebuilt. We require that
the names of all definitions are unique.

2) Phase 2: All notations are processed sequentially. For each notation the intro-
duced patterns are analyzed and invertible grammar rules are synthesized for
the invertible grammar. Additionally, the synthesized rules of the transitive
closure of all inherited theories are added. The notation manager changes the
invertible grammar of that interface document in the second mediation module.
We require that there is in each theory at most one notation for a definition oc-
curring in this theory or in a transitively inherited theory.

3) Phase 3: The theory is uploaded as the corresponding interface document in the
second mediation module. The document is tokenized with the new lexicon and
all contained mathematical formulas are automatically processed and translated
into a semantic representation using the synthesized invertible grammar.

Note that all notation definitions in the interface document of the first mediation module
are processed and removed by the notation manager. Thus the interface document of the
second mediation module does not contain notation information. In the following, we will
discuss each phase of this translation process with our example from Figure 33.

Definitions

• processing
symbols,
base types

Notations

• processing
operators,
precedence

Theories

• translating
formulas

Phase 1 Phase 2 Phase 3

212 Synthesizing Invertible Grammar Rules

Processing Definitions. The author may introduce in a definition either a new type by
\type{𝑛𝑎𝑚𝑒} or a new symbol by \concept{𝑛𝑎𝑚𝑒}[𝑡𝑦𝑝𝑒]. In both cases, the
name is added as a token to the lexicon (if not yet included). Furthermore, we generate a
fresh internal name which will be the name of the type (or symbol) communicated to the
proof assistance system. The alphanumerical internal name is added to the lexicon as
well. Then we extend the grammar by a rule for types (or symbols) that converts name
into that internal name and by automatic inversion also vice-versa. Overloading of sym-
bol names is only allowed if their types are different.

In the definition of ∈ in our example document in Figure 33 we have the symbol decla-
ration \concept{“\in”}[“elem \times set \to bool”]. The name is \in
and assume the internal name being IN. Both tokens are added to the scanners. Further-
more the following rule is added to the invertible grammar.

SYMBOL-IN

𝑳 SYMBOL

𝑷𝑰𝑵 [“\in”]

𝑴 []

𝑷𝑶𝑼𝑻 [“IN”]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The type information of the symbol declaration is additionally processed in the second
phase to generate the type constraints in the grammar rule of this operator. Our system
supports many-sorted simple types.

Processing Notations. A notation defines one or more alternative notations for some
symbol. The author is able to introduce local variables by \declare{𝑥1}, …,

\declare{𝑥𝑛} and use them in the patterns defining the different notations:
\denote[𝑝𝑎𝑡𝑡𝑒𝑟𝑛1],…,\denote[𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑚].

Consider the following example for the introduction of alternative notations taken from
our running example in Figure 33.

“Let” \declare{“x”} “be an individual and”

\declare{“A”} “a set, then we write”

\denote[“$x \in A$”] “,” \denote[“$x is element of A$”] “,”

\denote[“$x is in A$”] “or” \denote[“$A contains x$”] “.”

Authoring Lecture Notes 213

We impose an ordering in which the variables are declared by \declare and comply
with the domain of the associated operator, that is, x is the first argument of \in and A
the second. First of all, the lexicon is locally extended by the terminals for the local varia-
bles 𝑥1, … , 𝑥𝑛 – in this case the variables x and A. Then each notation pattern is to-
kenized by the scanner, which returns a list of tokens including new tokens for unrecog-
nized chunks. For instance, in our example above, the scanner knows the tokens for the
local variables x and A when tokenizing “x is element of A”. The unknown
chunks are “is”, “element” and “of”, which are then added on the fly.

This behavior of the scanner is non-standard, but it is an essential feature to efficiently
accommodate new notations. The scanner has been implemented such that it returns the
longest match. A hard wired scanner cannot be used because the alphabet of the language
is unknown. By using the standard scanner generation algorithm described in [Wilhelm &
Maurer, 1997] a DFA is directly generated out of the given lexicon without generating a
NFA first. Due to the small size of the automaton, the generation of a scanner is a rela-
tively fast process.

A notation pattern is only accepted if all declared argument variables are recognized
by the scanner, namely 𝑥1, … , 𝑥𝑛 occur in the pattern without ambiguities. For every nota-
tion pattern, the grammar is extended by a rule for function application that converts the
notation pattern into the semantic function application with respect to the argument order-
ing. To this end we take the scanned pattern with local variables as the input pattern and
map the local variables to the arguments of the semantic representation of the function
application in the output pattern. The arguments are transformed with the category TERM.
From the type provided by the symbol declaration we generate constraints that guarantee
the type correctness. For instance, for the pattern “A contains x” we generate the
following invertible grammar rule. Note that the notation pattern permutes the arguments
of that operator.

OPERATOR-IN-1

𝑳 TERM

𝑷𝑰𝑵 [A “contains” x]

𝑴 [k:([x],[v],TERM),

 m:([A],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“in”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “elem”, m.type = “set”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The author is allowed to define multiple notation patterns for an operator. In this case, the
grammar rule synthesized from the first pattern has the highest priority and will be used
by default in the inverse translation process.

214 Synthesizing Invertible Grammar Rules

The notation manager uses the type of the defined operator to generate the precondition
constraints. Thereby, type equations are added for the rule invocations of the arguments,
as well as for the result of this rule. The constraint system of the invertible grammar for-
malism then guarantees the type correctness by continuously checking the satisfiability of
the type constraints during the translation process.

Additionally, the author can define the symbol name to be left- or right-associative by
\left{𝑛𝑎𝑚𝑒} or \right{𝑛𝑎𝑚𝑒}. This information is then encoded as the matching
direction of the input pattern. Note that the matching direction of a pattern is by default to
the right. Since there exists often more than one matching mapping because some pattern
variables might match more than one partner, we order the matching mappings by the
amount of matching partners for variables from high to low, and from left to right
(dir=“l”) or from right to left (dir=“r”).

The author can define the precedence of operators by using \prec[𝑛𝑎𝑚𝑒1,
…,𝑛𝑎𝑚𝑒𝑘] where each 𝑛𝑎𝑚𝑒𝑖 is a symbol given in the definitions. This declares the
relative precedence of these symbols, where 𝑛𝑎𝑚𝑒𝑖 is lower than 𝑛𝑎𝑚𝑒𝑖:1. Note that the
rule precedence is inverse to the corresponding operator precedence because we use a
top-down interpreter. From this partial rule order the notation manager computes a total
rule order using topological sort with the rules initially ordered as in the theory.

Finally, the author can indicate a chaining operator by \chaining{𝑛𝑎𝑚𝑒}, usually
used for commutative predicates like equality. The notation manager then generates a
special chaining rule as we will describe in the next chapter.

Processing Theories. The generated invertible grammar rules complement the grammar
of the inherited theory if inheritance is used, or they complement the initial grammar if
inheritance is not used. The lexicon of the invertible grammar is extended by the new
tokens. Then the notation manager changes the configuration of the interface document of
this theory in the second mediation module. The resulting invertible grammar is then
transmitted together with the type of the interface document used by the notation manag-
er. The mediation module then automatically translates the contained formulas to the se-
mantic representation of the proof assistance system.

Processing Documents. A document may contain multiple theories, each of these possi-
bly having another theory in its context, specified in the \context annotation. From the
partial order induced by the inheritance, the notation manager computes the total order of
all theories using topological sort with the theories initially ordered as in the document.
Then, the theories are processed in this order as described.

Authoring Lecture Notes 215

8.4 Sugaring and Souring

Syntactic sugar is often added to a programming language to make it easier to use by hu-
mans without affecting the functionality or expressive power of the language. In the con-
text of mathematical documents, we may consider for example the chaining of equalities
in a formula as syntactic sugar. Robert Lamar introduced in [Kamareddine et al, 2007b]
the inverse process that he calls souring. In his approach, the author has to manually add
souring annotations to the mathematical formulas to guide the de-sugaring process which
is realized by rewriting rules. In the following, we will present the souring classes that he
introduced and discuss how the souring process can be automated using the invertible
grammar formalism. By the automated inversion, we obtain automated sugaring for free.

Re-ordering. One regularly faces situations where two expressions with similar seman-
tics are ordered differently. Consider for example the expression “x is in A”, one
can also imagine the author writing “A contains x” instead. We presented the solu-
tion to this case already as part of the grammar rule synthesis. By declaratively specifying
the notation pattern in the document, the notation manager generates the following invert-
ible grammar rule automatically. Thereby, the mapping of positions is encoded in the
mapping of variables between the input and output pattern. The following resulting
grammar rule can be compared with a nested rewrite rule with additional constraints.

OPERATOR-IN-1

𝑳 TERM

𝑷𝑰𝑵 [A “contains” x]

𝑴 [k:([x],[v],TERM),

 m:([A],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“in”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “elem”, m.type = “set”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

Sharing/chaining. Mathematicians tend to aggregate equations which follow one anoth-
er. This is often used for commutative infix predicate operators like equality. The author
can indicate the chaining capabilities of an operator name in its notation definition by
adding \chaining{𝑛𝑎𝑚𝑒}. Then, the notation manager first verifies that the default
notation of the operator is infix by analyzing the input pattern. In the case of the equality
operator this would generate in addition to the regular grammar rule the following chain-
ing rule. Note that the shared argument y is duplicated in the recursive rule invocations.
In the inverse direction the grammar interpreter checks automatically the semantic equali-
ty of both y.

216 Sugaring and Souring

OPERATOR-EQ-CHAINING
𝑳 TERM

𝑷𝑰𝑵 [x “=” y “=” z]

𝑴 [k:([x “=” y],[v],TERM),

 m:([y “=” z],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“and”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “bool”, m.type = “bool”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The rule OPERATOR-EQ-CHAINING does not satisfy the static check for the inverse
consistency criterion because the pattern variable y occurs in both input patterns of the
recursive invocations. Thus, there is no formal guarantee that always a semantically equal
term is reconstructed when using the inverse translation on the result. But since we know
that the content matched by y will be translated equally in both branches, we can admit
this grammar rule as an exception of the check for the inverse consistency criterion. The
following rule will be invoked by the recursive translation process.

EQUAL-TERMS

𝑳 TERM

𝑷𝑰𝑵 [x “=” y]

𝑴 [(k,[x],[v],TERM),

 (m,[y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“equal”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = m.type, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

A single variable occurrence is translated by the following rule. The rule calls the identity
translation rule IDR as a recursive rule invocation which returns the recognized semantic
hash index value of the input variable as the value of the attribute k.index. Since the
meta-variable (k.index).type can only be evaluated after the recursive rule invoca-
tions, we add a type check constraint in the set of postcondition constraints.

VAR

𝑳 TERM

𝑷𝑰𝑵 [c]

𝑴 [(k,[c],[v],IDR)]

𝑷𝑶𝑼𝑻 [\V{ v }]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { ME.type = (k.index).type }

𝒊 { true }

Authoring Lecture Notes 217

As an illustrating example we show in Figure 35 the souring parse tree for the input for-
mula “a=b=c”.

t.index = #B s.index = #A

…

q.type = #B.type p.type = #A.type

k.type = „bool“
p.type = q.type

r.type = „bool“
k.type = „bool“
m.type = „bool“

r

p
2

m k

q

OPERATOR-EQ-CHAINING

EQUAL-TERMS EQUAL-TERMS

VAR VAR

𝜎1 ↓ 𝑎 = 𝑏 = 𝑐

𝜎1 ↓ 𝑎 = 𝑏

𝜎1 ↓ 𝑎 𝜎1 ↑ 𝑉*"𝑎"+ 𝜎1 ↓ 𝑏 𝜎1 ↑ 𝑉*"𝑏"+

𝜎1 ↑ 𝐹*"𝑒𝑞𝑢𝑎𝑙"+

 ,𝑉*"𝑎"+, 𝑉*"𝑏"+-
𝜎1 ↓ 𝑏 = 𝑐 𝜎1 ↑ ⋯

𝜎1 ↑ 𝐹*"𝑎𝑛𝑑"+,𝐹*"𝑒𝑞𝑢𝑎𝑙"+
 ,𝑉*"𝑎"+, 𝑉*"𝑏"+-, … -

𝜎1(ℋ(𝑎)) = #𝐴

s

IDR

𝜎1 ↓ 𝑎 𝜎1 ↑ 𝑎

t

IDR

𝜎1 ↓ 𝑏 𝜎1 ↑ 𝑏

𝜎1(ℋ(𝑏)) = #𝐵

Figure 35. Souring Parse Tree

218 Sugaring and Souring

List Manipulations. The souring annotations for lists indicate how lists of bounded ex-
pressions have to be unfolded. A major use case is to handle quantification over multiple
variables. Considering for example the sentence “\forall a,b,c : R.

(a+b)+c=a+(b+c)”, we would like to unfold this to a sequence of quantifications of
single variables. We support multi-bindings by special grammar rules that are part of the
initial grammar. The following rule is for the quantification over multiple variables.

FORALL-MULTI

𝑳 TERM

𝑷𝑰𝑵 { dir=“r” }[“\forall” c “,” n “:” t “.” f]

𝑴 [(k,[c “:” t],[v],VARINTRO),

 (m,[“\forall” n “:” t “.” f],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“forall”}[\B[v] , w]]

𝑪𝑷𝑹𝑬 { m.type = “bool”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { false }

The constraints are again used to guarantee type correctness and the environment is used
to transport the information for identifying quantified variables. If we would not check
the types, we would have to deal with lots of alternative readings, and the burden of dis-
ambiguation would be passed on to the proof assistance system.

The first quantified variable is recursively processed by the following rule which in-
troduces a typed variable. In order to able to recognize this variable during the translation
of its scope, the semantic hash value of that variable is computed, returned by the identity
rule IDI as value of k.index, and added to the environment. In particular the environ-
ment is propagated along the creation of the parse tree and allows for static scoping. The
type is then assigned to this variable by evaluating the meta-variable constraint
(k.index).type = m.type. Thereby, the value of m.type contains the translated
type of the new variable.

TYPED-VAR

𝑳 VARINTRO

𝑷𝑰𝑵 [c “:” t]

𝑴 [(k,[c],[v],IDI),

 (m,[t],[w],TYPE)]

𝑷𝑶𝑼𝑻 [\V{ v }[w]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { ME.type = m.type, (k.index).type = m.type }

𝒊 { true }

A complete worked out example can be found in the use case in Chapter 6.4.

Authoring Lecture Notes 219

8.5 Management of Change

The invertible grammars generated so far by the notation manager are valid for the theo-
ries in a specific version of the document in time. When the author continues to edit the
document, it may be modified in arbitrary ways, including the change of existing defini-
tions and notations. In order to compute the modified semantic representation of the doc-
ument for the proof assistance system, we need possibly to adjust the grammars and re-
process modified parts of the document. Always starting from scratch following the de-
scribed procedure is not efficient and may jeopardize the acceptance by the author if that
process takes too long. Therefore there is a need for management of change for the nota-
tional parts of a document and those parts that depend on them. The management of
change tasks are the following:

1) First, we have to determine any modifications in the context, definitions and nota-
tions of every theory in the document.

2) Second, we have to adjust only those theory specific grammars that are affected
by the determined modifications, and we have to retranslate the affected theories.

3) Third, the proof assistance system needs an optimal change description of the new
semantic representation of the document.

As an illustrating example, we consider the following change to the notation of ⊂ in our
running example from Figure 32 . We define the additional notation pattern 𝐵 ⊃ 𝐴.

\notation{“Predicate” “\subset”}[

“Let” \declare{“A”} “and” \declare{“B”}

“be sets, then we write” \denote[“$A \subset B$”]

“or” \denote[“$B \superset A$”] “.”]

Determining notational changes. The notation manager requests an update from the first
mediation module for the interface document. The mediation module uses the change
graph search to compute the changes with respect to the similarity and edit specification
provided by the notation manager. In this setting, the similarity specification is defined
such that it takes into account that the ordering of all annotations is not relevant except of
the content of definitions, notations and proofs. Furthermore, the notation manager does
not need change descriptions in full detail, thus the edit specification is defined such that
the computed changes are limited to the level of theories. In summary, the notation man-
ager is efficiently informed about deleted, added and modified theories.

220 Management of Change

Thus, the notation manager uses the following specifications when requesting the update.

\similarity{}[

 \order{ name=“body”, layer=“content”}[],

 \order{ name=“theory”, layer=“content”}[],

 \keys{ name=“theory”, layer=“content”}[“name”]]

\edit{}[

 \limit{}[

 \global{ name=“theory” }[]]]

The notation manager then receives a change script that replaces the theory which con-
tains the modified notation.

[\replace{ target=/body[1]/theory[1] }

 [\theory{}[…]]]

Adjusting invertible grammars. The introduced workflow of the notation manager has
to be slightly modified for the incremental case. The processing of the theories starts with
the first change in the computed total order of the theories. The former synthesized
grammar rules of the preserved heading theories are reused. Then, the usual workflow
proceeds. Note that the grammar interpreter of the second mediation module may be able
to reuse stored information of the transformation traces although the invertible grammar
has been changed.

Thus, the notation manager starts with the processing of the modified theory and then
needs to reprocess all succeeding theories in the total order of the theories. The second
phase of processing notation leads to the generation of the following grammar rule for the
additional notation pattern.

OPERATOR-SUBSET-2

𝑳 TERM

𝑷𝑰𝑵 [B “\superset” A]

𝑴 [k:([A],[v],TERM),

 m:([B],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“subset”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “set”, m.type = “set”, ME.type = “bool” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The notation manager changes the invertible grammar of the interface document which
corresponds to the modified theory. The alternative notation pattern can now be used.

Authoring Lecture Notes 221

Computing optimal changes. The proof assistance system requests an update from the
second mediation module. The mediation module computes the changes with respect to
the similarity specification and the edit specification provided by the proof assistance
system. In this setting, the similarity specification takes into account that the ordering of
all parts of the semantic representation except of the content of proofs is not relevant. The
edit specification contains the weights of all parts of the semantic representation of the
document. In particular, the weights of the theorems and axioms reflect the amount of
dependent proofs and proof steps. The changes are limited by the edit specification to the
level of definitions, theorems, axioms and proof steps. The mediation module computes
an optimal change script which is then processed by the internal management of change
component of the proof assistance system.

Thus, the notation manager uses the following specifications when requesting the update.

\similarity{}[

 \order{ name=“body”, layer=“content”}[],

 \order{ name=“theory”, layer=“content”}[],

 … ,

 \keys{ name=“theory”, layer=“content”}[“name”],

 \keys{ name=“theorem”, layer=“content”}[“name”],

 …]

\edit{}[

 \weight{}[

 \delete{ path=/body[1]/theory[1]/axiom[1] weight=“10” }[],

 …],

 \limit{}[

 \global{ name=“theorem” }[],

 \global{ name=“axiom” }[],

 \global{ name=“definition” }[],

 …]]

The proof assistance system then receives an empty change script because the content of
the theory has not been changed. Note that the notation definitions are not part of the in-
terface documents exchanged via the second mediation module.

[]

Another task that is usually considered part of the management of change is refactoring.
In software engineering, all major integrated development environments support refactor-
ing operations like renaming classes or methods. In the context of mathematical author-
ing, we want to provide notational refactoring. When the author changes the notation of a
symbol or operator we ideally want the formulas being automatically adapted.

222 Management of Change

Notational refactoring. The workflow of the notation manager needs to be again slightly
modified to support notational refactoring. In phase 3 of the processing of a theory, the
notation manager changes the configuration of the interface document of a theory in the
second mediation module by a new invertible grammar and the type of the interface doc-
ument. If the content of the interface document has not changed, thus only the notation
has been modified, the notation manager transmits the type of the interface document of
the proof assistance system instead of its own type. Then the second mediation module in
turn automatically inverse translates the formulas from the semantic representation with
the new grammar rules. Finally, the notation manager propagates these changes via the
first mediation module to the text-editor.

With respect to our running example, we consider the case that the notation of ⊂ has been
completely replaced by the new notation pattern.

\notation{“Predicate” “\subset”}[

“Let” \declare{“A”} “and” \declare{“B”}

“be sets, then we write” \denote[“$B \superset A$”] “.”]

The notation manager would then synthesize the new grammar rule for this pattern as
described before, but the grammar rule of the removed notation pattern is no longer part
of the grammar anymore. When the notation manager changes the invertible grammar of
the interface document corresponding to the modified theory, the mediation module au-
tomatically inverse translates the whole interface document using the provided grammar
rules. Hence, the notation used in the mathematical formulas is automatically adapted in
the whole document.

While notational refactoring is an operation that is only affecting the rendering of the
document in the text-editor, the refactoring of the names of theories, axioms, theorems,
basically any ontological unit, affects also the proof assistance system because it uses
these names for reference-by-name in its internal dependency graph. In this case the sys-
tem-wide consistency can only be guaranteed if one either uses an extensive locking
mechanism, or if the refactoring operation becomes an atomic change operation. System-
wide locking is not a desirable solution. As an intermediate step towards native refactor-
ing, we started investigating the benefits of methods for ontology-driven refactoring
[Müller & Wagner, 2007]. The idea is to detect (partial) refactoring operations in a
change script, report inconsistencies and propose repair operations.

Authoring Lecture Notes 223

8.6 Ambiguity Resolution

In order to enable a document-centric approach for formalizing mathematics, the added-
values offered by the authoring environment must outweigh the additional burden im-
posed to the author. In the following we present techniques to reduce the amount of am-
biguities for the formalization process by exploiting the theory structure contained in a
document. In addition to that, our approach offers the added-value of redefining notations
for different communities of practice.

Reducing Ambiguities. In a mathematical document, the logical context of a formula is
determined by the theory it occurs in. Therefore, the different parts of a document are
assigned to specific theories. New theories can be defined inside a document and built on
top of other theories. The notion of a theory as a collection of mathematical knowledge
with an inheritance hierarchy has been developed by OMDOC [Kohlhase, 2006] respec-
tively by development graphs ([Hutter, 2000], [Autexier & Hutter, 2005], [Mossakowski
et al, 2006]). With the inverse multiplexing process, the notation manager sets up for
each theory an interface document with its own invertible grammar. By maintaining dif-
ferent grammars for different theories we avoid some ambiguities that would arise when
sticking to have a single grammar. The benefits of this structured approach are that the
author can use the same notation pattern in parallel in any non-interfering theories, and
that inherited notation can be redefined in a new theory to prevent possibly arising ambi-
guities.

Consider for example a theory of the integers with multiplication denoted by “𝑥 × 𝑦” and
a completely unrelated theory about sets with the same notation for Cartesian products.
This is typically a source of ambiguities that would require the use of type information to
resolve the issue. Using different grammars for different theories completely avoids that
problem. However, what if the theory about sets inherits the theory of the integers to pro-
duce Cartesian products of sets of integers? The ambiguities may be resolved by the type
checks encoded in the constraints, as shown for example in the following grammar rule:

OPERATOR-INTMULT-1

𝑳 TERM

𝑷𝑰𝑵 [x “\times” y]

𝑴 [k:([x],[v],TERM),

 m:([y],[w],TERM)]

𝑷𝑶𝑼𝑻 [\F{“intmult”}[v , w]]

𝑪𝑷𝑹𝑬 { k.type = “int”, m.type = “int”, ME.type = “int” }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

224 Ambiguity Resolution

Redefining Notations. When inheriting a theory, we want to reuse the formal content,
but possibly adapt the notation used to write formulas. This scenario occurs less frequent-
ly with a single author but more often if the work is shared among a group of colleagues
who want to continue this work but with their own notation. In order to technically sup-
port the redefinition of notations, we modify again phase 3 of the theory processing work-
flow. If the current theory inherits another theory, only those grammar rules are inherited
that do not refer to a definition for which there exists a processed notation in the current
theory. In combination with notational refactoring, this feature can be used to translate the
formulas in a specific theory and all dependent theories from one notation to another one,
without affecting the formulas in the inherited theories.

Continuing with our running example, another author starts writing down a new theory
that inherits the theory in our example. Assume the author prefers the notation 𝐴 ⊏ 𝐵 for
the subset relationship, then the notation can be redefined as follows in the new theory.

\notation{“Predicate” “\subset”}[

“Let” \declare{“A”} “and” \declare{“B”}

“be sets, then we write” \denote[“$A \sqsubset B$”] “.”]

Note that the notation is linked to the definition by its name. In this example, the author
can use now the preferred notation in the new theory. Furthermore, all formulas with the
former notation in the current theory are automatically adapted by notation refactoring.

Communities of Practice. A notation practice is the selection of an adequate presenta-
tion for symbols. In this sense, an author’s notation practice is her individual way of se-
lecting her notation, which she has acquired, and which is influenced by a number of fac-
tors. Watt and Smirnova introduce possible reasons for multiple notations of the same
mathematical concept, namely area of application, national conventions, level of sophis-
tication, the mathematical context and the historical period [Smirnova & Watt, 2006].
The eLearning environment ACTIVEMATH [Melis et al, 2009] distinguishes similar cate-
gories but with additional dimensions. In [Kohlhase & Kohlhase, 2006] Kohlhase propos-
es the application of the economic theory of communities of practice [Wenger, 2005] to
the area of mathematics. According to their discussions, mathematical practice is in-
scribed into documents, for example by selecting specific notations or referencing other
mathematical publications. In [Wagner & Müller, 2007] we outline an extension of our
approach which aims at identifying and analyzing the notation practice of individual au-
thors in order to support mathematical communities of practice.

Authoring Lecture Notes 225

8.7 Discussion

In order to enable a document-centric approach for formalizing mathematics and soft-
ware, the added-values offered in an assisted authoring environment must outweigh the
additional burden imposed on the author compared to the amount of work for a non-
assisted preparation of a document. One step in that direction is to give the freedom to
define and use her own notation inside a document back to the author. In this chapter we
presented a mechanism that enables the author to define her own notation in a natural way
in the text-editor TEXMACS while being able to get support from the proof assistance sys-
tem, such as type checking, proof checking, interactive and automatic proving.

The notations are used to parse formulas written by the user in the LATEX-style she is
used to, as well as to render the formulas produced by the proof assistance system. Ambi-
guities are reduced by assigning a separate invertible grammar to each defined theory in
the document and by integrating a weak form of type-checking in the constraints of the
grammar rules to resolve remaining ambiguities during the parsing process. The structure
of theories also forms the basis to inherit notations defined in other theories. In the fol-
lowing, we will compare our approach [Autexier et al, 2007] to related work.

Related Work. Supporting specific mathematical notations is a major concern in all
proof assistance systems. With respect to supporting the definition of new notations that
are used for type-setting, the systems ISABELLE [Nipkow et al, 2002] and MATITA [Asperti
et al, 2006] are closest. ISABELLE comes with type-setting facilities of formulas and proofs
for LATEX and supports the declaration of the notation for symbols as prefix, infix, postfix
and mixfix. Furthermore, it allows the definition of translations which are close to our
style of defining notations. The main differences are that the notation is not defined in the
LATEX document but has to be provided in the input files of ISABELLE. Since the input and
output document of ISABELLE are different documents, there is no need for mechanisms to
efficiently deal with modifications of the notation, which is crucial in our setting.

In the context of MATITA, Padovani and Zacchiroli proposed a mechanism of abstrac-
tion and rendering parsers [Sacerdoti Coen & Zacchiroli, 2004] that are created from no-
tational equations which are comparable to the grammar rules we generate from the nota-
tional definitions. Their mechanism is mainly devoted to obtain MATHML [W3C, 2001]
representations where a major concern also is to maintain links to the internal objects.
Similar to ISABELLE, the notation must be provided in input files of MATITA that are sepa-
rated from the actual document. Also, they do not consider the effect of changing the no-
tation and to efficiently adjust the parsers. However, they concentrated on the develop-
ment of a sophisticated disambiguation procedure [Sacerdoti Coen & Zacchiroli, 2008].

226 Discussion

In mathematical textbooks, one observes that the authors start using a chaining style of
notation after having proved the commutativity of a predicate operator. Brackets are often
omitted when the associativity of an operator is proved. This level of support for notation
requires reasoning about the mathematical knowledge encoded in the document, basically
it requires the expert knowledge of the proof assistance system. This is not compatible
with our goal of developing a general mediation framework. We refer to the approach of
the system SAD [Verchinine et al, 2008], which performs the notational processing of the
document totally inside the proof assistance system.

Additionally, we note that our approach inspired the birth of similar methods in
OMDOC, namely a toolset for supporting notation-aware interactive documents [Kohlhase
et al, 2009]. Furthermore, the idea of a self-extensible pattern-based language has been
taken to an extreme by Roman Knöll who realized a new self-extensible pattern-based
programming language Π [Knöll & Mezini, 2009] where a pattern is simply speaking an
EBNF-expression with an associated meaning.

Conclusion. As a first step to reduce the burden of completely annotating the mathemati-
cal document in the text-editor, we presented in this chapter a formula language with self-
extensible notation. The author is able to define the notation for formulas as patterns in-
side the theories of a document. We use a structured approach for theories in order to
support the reuse of mathematical knowledge and to reduce ambiguities of overloaded
operators. We presented a transformation pipeline for generating an invertible grammar
from notation patterns defined in the document. This grammar can be used to translate the
formulas in a theory into their semantic representation, as well as to render modifications
of the semantic representation. The notational patterns allow for prefix, infix, postfix and
mixfix operators, as well as pseudo natural language patterns.

We have to admit that the expressive power of the pattern language for formulas is
limited in a sense, for example the pattern “x is in A” does not yet automatically add a
rule for “x and y are in A”. However, the support for natural language aggregation may be
hand-crafted by designing aggregation rules similar to the presented rules for the auto-
mated souring of lists of bounded elements.

We limited the theory inheritance to the theories in the same document because a criti-
cal problem of all approaches with libraries is the handling of concurrent changes to doc-
uments in the library. Clearly, these changes may invalidate the notation used as well as
the correctness of the document from a logical point of view. The only “solution” to this
problem, to the best of our knowledge, has been presented by Klaus Grue with the LOGI-

WEB system [Grue, 2007]. In his system, documents in the library are immutable by defi-
nition, thus he eliminates the need for dealing with changes.

Authoring Exercise Solutions 227

9 Authoring Exercise Solutions

Aiming at a document-centric approach to formalize and verify mathematics we integrat-
ed the proof assistance system ΩMEGA with the scientific text-editor TEXMACS. The author
writes her mathematical document entirely inside the text-editor in natural language with
formulas in LATEX style, enriched with semantic annotations. Assuming the author has
written down the lecture notes and stated some exercises, which are essentially theorems
that need to be proven. Then, we discuss in this chapter the authoring of exercise solu-
tions, that is, the authoring of proofs for theorems.

In the last chapter, we presented a self-extensible formula language that reduces the
burden to annotate the formulas in the document. We will now take a step further and
introduce a controlled mathematical language. The author now has the choice to either
use natural language with the need to provide the required semantic annotations, or to use
the controlled mathematical language without the need for further annotations. Since we
propose the controlled language as a conservative extension, both options can of course
be used in combination within the same document. Our main focus in this chapter will be
on the part of the annotations and of the controlled language that deals with the proofs.

After this discussion of the authoring process, we will describe how proof obligations
are generated from an annotated proof or a proof written in the controlled mathematical
language respectively, and we will describe how this process can be modeled incremen-
tally using the semantic change computation of the mediation modules. The task of the
proof assistance system is the verification of the semantic representation. This includes
the correction or completion of proofs, which includes the generation of document frag-
ments written in the controlled mathematical language. To this purpose, we inverse trans-
late the modified semantic representation with an invertible grammar. Note that not all
logically verifiable proof steps are acceptable in an exercise solution. For example, direct-
ly deriving the conclusion in the first proof step is most likely a too coarse grained proof
step. For a detailed discussion of proof step granularity we refer to the work of Marvin
Schiller in [Schiller et al, 2008] and [Schiller, 2010].

Finally, we integrate the feedback of the proof assistance system with the document in
the text-editor. We will propose a feedback language as part of the invertible grammar
used in the transformation pipeline. Furthermore, we interact with the proof assistance
system by writing queries within the document in the text-editor. Thus, we will propose
an interaction language as part of the invertible grammar. Altogether, the feedback and
the interactive queries will be first-class citizens of the document in the text-editor.

228 Controlled Mathematical Language

9.1 Controlled Mathematical Language

Let us first introduce an example of the kind of documents we want to support. Figure 36
shows a theory about Simple Sets written in the text-editor TEXMACS. This theory defines
two base types and several set operators together with their axioms and notation. In gen-
eral, theories are built on top of other theories and may contain definitions, notation, axi-
oms, lemmas, theorems and proofs. Note that in this example, set equality is written as an
axiom because equality is already defined in the base theory.

In the approach presented in the previous chapter, the author had full freedom in writing
her document but had to manually provide semantic annotations. We now introduce a
controlled mathematical language to skip the burden of providing these annotations.

Our aim in this thesis is not to carve the controlled mathematical language in stone.
Indeed, we believe that this language should be designed together with the target audi-
ence, the respective mathematical community. Our goal is the development of a frame-
work for designing and evaluating a controlled mathematical language. Furthermore, the
author should be able to use both approaches in combination, semantic annotations and a
controlled mathematical language, within the same document.

We propose the controlled mathematical language defined in Table 48 and Table 49
which satisfies the minimal requirements for a rapid authoring process. The invertible
grammar is presented in the compact representation to provide a better overview. After
the introduction of the controlled mathematical language, we will focus on a concrete
example with the invertible grammar rules for proof steps. These rules are the foundations
for the authoring of exercise solutions in our scenario.

Figure 36. TEXMACS Document with Controlled Mathematical Language

Authoring Exercise Solutions 229

Head Production Creation
DOC [THY*]

THY [v:TNAME y:CTX? w:THYC] [v , y , w]

TNAME [\section{x:NAME}[]] [\name{ x }]

CTX [“We” “use” x:NAME “.”] [\context[\R[x]]]

THYC (DEF|AXM|TEO|PRF)*

DEF [\definition{ x:NAME }

 [y:DEFC]]

[\definition{ x }[y]]

DEFC [(DEFT|DEFS) NOTC? ALTC? SPEC*]

DEFT [“We” “define” “the” “type”

 x:NAME “.”]

[\type{ x }]

DEFS [“We” “define” “the” “symbol”

 x:NAME “of” “type” y:TYPE “.”]

[\concept{ x }[y]]

NOTC [“Let” x:TVARS “then” “we”

 “write” y:PATS “.”]

[x , y]

TVARS [x:TVAR] [x]

TVARS [x:TVAR “and” y:TVAR] [x , y]

TVARS [x:TVAR “,” y:TVARS] [x , y]

TVAR [x:VAR “:” y:TYPE] [\declare{ x }[y]]

VAR [“$” x:ID “$”] [\V{ x }]

PATS [x:PAT] [x]

PATS [x:PAT “or” y:PAT] [x , y]

PATS [x:PAT “,” y:PATS] [x , y]

PAT [“$” x:ID “$”] [\denote[x]]

SPEC [GROUP|PREC|ASSOC|CHAIN]

GROUP [“We” “group” x:NAMES “by”

 y:NAME “.”]

[\group{ y }[x]]

PREC [“The” “precedence” “is” x:NAME

 “≺” y:NAME “.”]

[\prec[x , y]]

ASSOC [ASSOCR|ASSOCL]

ASSOCR [“The” “operator” x:NAME “is”

 “right-associative” “.”]

[\right{ x }]

ASSOCL [“The” “operator” x:NAME “is”

 “left-associative” “.”]

[\left{ x }]

CHAIN [“The” “operator” x:NAME “can”

 “be” “chained” “.”]

[\chaining{ x }]

NAMES [x:NAME] [x]

NAMES [x:NAME “and” y:NAME] [x , y]

NAMES [x:NAME “,” y:NAMES] [x , y]

NAME [ID]

Table 48. Grammar of the Controlled Mathematical Language (Part 1)

The grammar rules in Table 48 describe the sublanguage which is allowed to be used in
the content of definitions. This sublanguage allows for introducing new symbols and
types together with notation patterns and additional parsing information. This is an alter-
native to the semantic annotations for definitions presented in Chapter 8.

Table 49 shows the grammar rules for axioms, theorems and in particular for proofs
and proof steps. Note that the subproofs are linked to the subgoal or case they belong to
by referring to the label of that formula.

230 Controlled Mathematical Language

Head Production Creation
AXM [\axiom{ x:NAME }[y:ALTC]] [\axiom{ x }[y]]

TEO [\theorem{ x:NAME }

 [y:ALTC]]

[\theorem{ x }[y]]

ALTC [“It” “holds” “that” x:FORM

 “.”]

[\conclusion[x]]

FORMS [x:FORM] [x]

FORMS [x:FORM “and” y:FORM] [x , y]

FORMS [x:FORM “,” y:FORMS] [x , y]

FORM [“(” x:LABEL “)” “$” y:TERM

 “$”]

[\formula{ x }[y]]

FORM [“$” x:TERM “$”] [\formula{}[x]]

PRF [\proof[x:STEPS]] [\proof{}[x]]

STEPS [((OSTEP STEPS)|CSTEP)?]

OSTEP [(SET|ASS|FACT|GOAL|CGOAL)]

CSTEP [(GOALS|CASES|CGOALS|TRIV)]

TRIV [“Trivial” x:BY y:FROM “.”] [\trivial[x , y]]

SET [“We” “define” x:FORM “.”] [\set[x]]

ASS [“We” “assume” x:FORMS y:BY

 s:FROM “.”]

[\assumption[x , y , s]]

FACT [“It” “follows” “that”

 x:FORMS y:BY s:FROM “.”]

[\fact[x , y , s]]

GOAL [“We” “have” “to” “prove”

 x:FORM y:BY s:FROM “.”]

[\goal[x , y , s]]

GOALS [“We” “have” “to” “show”

 x:FORMS y:BY s:FROM “.”

 t:SPRFS]

[\subgoals[x , y , s , t]]

CASES [“We” “have” “the” “cases”

 x:FORMS y:BY s:FROM “.”

 t:SPRFS]

[\cases[x , y , s , t]]

CGOAL [“We” “have” “to” “prove”

 x:CFORM y:BY s:FROM “.”]

[\decompose[x , y , s]]

CGOALS [“We” “have” “to” “show”

 x:CFORMS y:BY s:FROM “.”

 t:SPRFS]

[\complex[x , y , s , t]]

CFORMS [x:CFORM] [\comp[x]]

CFORMS [x:CFORM “and” y:CFORM] [\comp[x] , \comp[y]]

CFORMS [x:CFORM “,” y:CFORMS] [\comp[x] , y]

CFORM [x:FORM “assuming” y:FORMS] [\assume[y], \obtain[x]]

SPRFS [SPRF*]

SPRF [“We” “prove” x:LABEL “.”

 y:STEPS]

[\proof{ x }[y]]

BY [“by” x:NAME “in” y:NAME] [\by[\R{ x }[y]]]

BY [“by” x:NAME] [\by[\L{ x }]]

BY [] []

FROM [“from” x:LABELS] [\from[x]]

FROM [] []

LABELS [x:LABEL] [\L{ x }]

LABELS [x:LABEL “and” y:LABEL] [\L{ x } , \L{ y }]

LABELS [x:LABEL “,” y:LABELS] [\L{ x } , y]

LABEL [ID]

Table 49. Grammar of the Controlled Mathematical Language (Part 2)

Authoring Exercise Solutions 231

We will now take a closer look at the interplay between the controlled mathematical lan-
guage and the semantic annotation language. Thereby, we focus on the invertible gram-
mar rules for the proof step FACT. The following grammar rule deals with all sentences
corresponding to this proof step in the controlled mathematical language, for example the
sentence “It follows that 𝑥 = 𝑦 = 𝑧”.

FACT-CML

𝑳 FACT

𝑷𝑰𝑵 [“It” “follows” “that” x “.”]

𝑴 [k:([x],[v],FORMS)]

𝑷𝑶𝑼𝑻 [\fact[v]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

In combination with the chaining rule for =, we obtain the following semantic representa-
tion for the input sentence “It follows that 𝑥 = 𝑦 = 𝑧”.

\fact[\F{“and”}[\F{“equal”}[\V{“x”},\V{“y”}],

 \F{“equal”}[\V{“y”},\V{“z”}]]]

Alternatively, the author could have written “\fact[Thus, we have 𝑥 = 𝑦 = 𝑧.]” by
using the semantic annotation language. Then, the following grammar rule for the seman-
tic annotation language would have produced the same semantic representation.

FACT-ANNOTATION

𝑳 FACT

𝑷𝑰𝑵 [\fact[z1 , x , z2]]

𝑴 [k:([x],[v],FORMS)]

𝑷𝑶𝑼𝑻 [\fact[v]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

Note that the variable specification has been specified such that the pattern variables z1
and z2 are not allowed to match the token “$”. This effectively reduces the combinatorial
matching possibilities of the input pattern, because the pattern variables z1 and z2 can-
not match formulas. Since these variables are not used in the rule invocations, the com-
plete input mapping z1->[“Thus” “,” “we” “have”] and z2->[“.”] is only
stored in the transformation trace. This allows for reconstructing the original annotated
sentence in the inverse translation process.

232 Controlled Mathematical Language

Let us now consider the inverse translation of the following semantic representation pro-
duced by the proof assistance system.

\fact[\F{“and”}[\F{“equal”}[\V{“z”},\V{“x”}],

 \F{“equal”}[\V{“x”},\V{“y”}]]]

First, there is the question which grammar rule to use, either the following inverted con-
trolled language rule or the inverted semantic annotation rule.

FACT-CML

𝑳 FACT

𝑷𝑰𝑵 [\fact[v]]

𝑴 [k:([v],[x],FORMS)]

𝑷𝑶𝑼𝑻 [“It” “follows” “that” x “.”]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

FACT-ANNOTATION

𝑳 FACT

𝑷𝑰𝑵 [\fact[v]]

𝑴 [k:([v],[x],FORMS)]

𝑷𝑶𝑼𝑻 [\fact[z1 , x , z2]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

Since the annotation rule can only be successfully processed if a transformation trace can
be reused, the controlled language rule is the better default choice in this case. The order
of the rules in the invertible grammar reflects this preference.

The second choice point is about the use of the chaining rule. Do we prefer the gener-
ated sentence “It follows that 𝑧 = 𝑥 = 𝑦.” or “It follows that 𝑧 = 𝑥 and 𝑥 = 𝑦.”. Intuitive-
ly, one would answer that it depends on the context. Indeed, our exploratory study indi-
cates that this choice depends on personal preferences.

We propose to address this problem in the notation manager by comparing separately
for every theory in a document the amount of formulas written in chaining and non-
chaining style. Then, we encode this information into the rule precedence between the
chaining and non-chaining rules. By default, the chaining rules have a higher priority.
Hence, when the author starts a proof in a theory with a formula written in chaining style,
the next proof step produced by the system will be rendered in chaining style, too.

Authoring Exercise Solutions 233

9.2 Incremental Proof Verification

Let us continue our initial example from Figure 36 with the theory in Figure 37 that inher-
its the previous one and that states a theorem about the distributivity of ∩, which the au-
thor already started to prove.

Note that a proof is implicitly related to the last stated theorem previous to this proof in
the document. The partial proof in this example is written in our controlled mathematical
language as follows.

\proof[

 “We assume” “$x \in A \cap (B \cup C)$” “.”

 “It follows that” “$x \in A$” “and” “$x \in (B \cup C)$” “.”]

The invertible grammar interpreter translates this proof to the following semantic repre-
sentation for the proof assistance system ΩMEGA.

\proof{}[

 \assumption[\F{“in”}[\V{“x”},\F{“cap”}[\V{“A”},

 \F{“cup”}[\V{“B”},\V{“C”}]]]],

 \fact[\F{“and”}[\F{“in”}[\V{“x”},V{“A”}],

 \F{“in”}[\V{“x”},\F{“cup”}[\V{“B”},\V{“C”}]]]]]

The verification service of ΩMEGA tries to reconstruct a high-level proof plan in its inter-
nal proof data structure (𝒫𝒟𝒮) according to the proof steps in the document. This proof
plan is then expanded to the verifiable assertion level with a resource-bounded search.
Thus, a proof step is usually justified by a sequence of lower level proof steps, which
turns the proof data structure into a hierarchical data structure.

Figure 38 shows the reconstructed proof plan for our example. The tasks of the proof
verification are shown as oval boxes connected by justifications, where the squared boxes
indicate which type of proof step has been applied.

Figure 37. Theorem with partial proof

234 Incremental Proof Verification

Figure 38. Repaired Partial Proof in ΩMEGA

⊢ 𝐴 ∩ (𝐵 ∪ 𝐶) =

 (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Subgoals by Set Equality

⊢ 𝐴 ∩ (𝐵 ∪ 𝐶)

 ⊂ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

⊢ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

 ⊂ 𝐴 ∩ (𝐵 ∪ 𝐶)

Goal by Subset

⊢ 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

 ⇒ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Assumption 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

 ⊢ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Assumption 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

Fact 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)

𝑥 ∈ 𝐴 , 𝑥 ∈ (𝐵 ∪ 𝐶)

 ⊢ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Authoring Exercise Solutions 235

The verification of a single proof step can become time consuming if some information is
underspecified. In the worst case a complete proof search has to be performed. To obtain
adequate response times, a given proof step is checked by ΩMEGA in two phases. First, a
quick check is performed, where ΩMEGA checks with a simple matching algorithm
whether the given proof step can be justified by a single inference application. If the test
succeeds, the step is sound, as the inference application method used by ΩMEGA is proved
to be correct.

If it is not possible to justify the proof step with a single inference application, a more
complex proof repair mechanism is started. This mechanism tries to derive the missing
information needed to justify the given proof step by performing a heuristically guided
resource bounded search. Otherwise, ΩMEGA reports a failure.

Looking at our running example, the user wanted to prove the theorem and started al-
ready with a partial proof. As none of the proof checking rules for assumption is applica-
ble, the proof plan repair mode of ΩMEGA is started. The repair method tries to further
refine the goal 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) to construct a situation in which the
assumption step is applicable. Indeed, after two refinements the proof step becomes ap-
plicable (see Figure 38). The proof repair revealed a second subgoal which is now lifted
to the semantic representation of the interface document used by the mediation module.

Besides that, the hierarchy of higher level and lower level proof steps in a proof plan is
shown in this example by the expansion of the assumption proof step which is justified by
the dashed sequence of a goal and an assumption proof step.

Considering our running example, the verification service of ΩMEGA returns the fol-
lowing modified semantic representation.

\proof{}[

 \subgoals[

 “(1)”:\F{“subset”}[\F{“cap”}[\V{“A”},\F{“cup”}[\V{“B”},\V{“C”}]],

 \F{“cup”}[\F{“cap”}[\V{“A”},\V{“B”}],

 \F{“cap”}[\V{“A”},\V{“C”}]]],

 “(2)”:\F{“subset”}[\F{“cup”}[\F{“cap”}[\V{“A”},\V{“B”}],

 \F{“cap”}[\V{“A”},\V{“C”}]],

 \F{“cap”}[\V{“A”},\F{“cup”}[\V{“B”},\V{“C”}]]],

 \by[\L{“Set” “Equality”}],

 \proof{“(1)”}[

 \assumption[\F{“in”}[\V{“x”},\F{“cap”}[\V{“A”},

 \F{“cup”}[\V{“B”},\V{“C”}]]]],

 \fact[\F{“and”}[\F{“in”}[\V{“x”},V{“A”}],

 \F{“in”}[\V{“x”},\F{“cup”}[\V{“B”},\V{“C”}]]]]]]]

236 Incremental Proof Verification

Finally, this new semantic representation is inverse translated by the mediation module.
Since all former children of the proof have been removed, the only preserved subtree is in
this case the proof subtree. Thus, the inverse translation cannot exploit any information
stored in the transformation trace and has to inverse translate the semantic representation
from scratch. This process computes the following interface document for the text-editor.

\proof[

 “We have to show” “(1)” “$A \cap (B \cup C) \subset (A \cap B)

 \cup (A \cap C)$” “and” “(2)” “$(A \cap B) \cup (A \cap C)

 \subset A \cap (B \cup C)$” “by Set Equality” “.”

 “We prove” “(1)” “.”

 “We assume $x \in A \cap (B \cup C)$” “.”

 “It follows that” “$x \in A$” “and” “$x \in (B \cup C)$” “.”]

The plugin in the text-editor requests an optimal change script from the mediation mod-
ule. Since there are no hidden costs or limitations when changing the document in the
text-editor, we use the default edit specification with uniform costs and no limitations.
Furthermore, we have to assume that the document in the text-editor does not contain any
semantic annotations. Since the order of the concrete syntax is in general relevant, we use
the default similarity specification which defines every tree layer to be ordered and to
have no keys. The repaired partial proof is then patched in the document in the text-editor
TEXMACS and rendered as shown in Figure 39.

The incremental proof verification now proceeds as follows: When the author modifies
the document, the content is automatically translated by the mediation modules to a new
semantic representation for the proof assistance system. ΩMEGA requests an optimal
change script from the mediation module and tries to verify or repair the modifications to
the proof plan. This may lead to modifications of the semantic representation which are
propagated to the document in the text-editor as just described. And the cycle continues.

Figure 39. Theorem with repaired partial proof

Authoring Exercise Solutions 237

9.3 Feedback Integration

Our worked out example always used screenshots taken from our client integration with
the scientific text-editor TEXMACS to show the effects on the rendered document. Besides
the integration with TEXMACS, we have a prototypical integration with MS WORD, devel-
oped by Thorsten Hey [Hey, 2009]. Figure 40 shows the same mathematical theory au-
thored with system support in both text-editors.

We proposed the authoring of exercise solutions with a combination of semantic annota-
tions and a controlled language. Since the authoring with any kind of controlled language
is clearly supported by both text-editors, we will briefly discuss the technical realization
of semantic annotations.

Realization of Semantic Annotations. In TEXMACS we use macros to represent semantic
annotations. We have written a style file with an identity macro for every element in the
semantic annotation language. The author has to place an annotation macro around the
content she wants to annotate. The advantage of this approach is that annotations can be
visualized in arbitrary ways by switching the style file. The drawback is that annotations
are invisible boxes in the document that handicap the cursor movement. Due to the fun-
damental rectangular style of these boxes, the layout is sometimes distorted.

In MS WORD we overload the comment feature for annotating the document. The au-
thor has to comment the content she wants to annotate with the name of the annotation.
Unfortunately, there is a technical limitation for the visualization of nested annotations.

The lesson learned is that a robust solution for the realization of semantic annotations
requires the means to represent annotations persistently as part of the document format of
the text-editor.

Figure 40. Feedback Integration with TEXMACS and MS WORD

238 Feedback Integration

Services and Feedback. The verification service of the proof assistance system ΩMEGA
returns the information about the verification status of proof steps by attributing the cor-
responding element in the semantic representation as follows.

 \fact{ “verified” }

 [\F{“and”}[\F{“in”}[\V{“x”},V{“A”}],

 \F{“in”}[\V{“x”},\F{“cup”}[\V{“B”},\V{“C”}]]]]]

In order to visualize this feedback of the proof assistance system, we propose to integrate
feedback annotations to the proof steps in the semantic annotation language. For example,
the inverse grammar rule of the fact proof step can be modified as follows to generate this
proof step in the controlled language but augmented with a semantic feedback annotation.

FACT-CML-FEEDBACK

𝑳 FACT

𝑷𝑰𝑵 [\fact{ w }[v]]

𝑴 [k:([v],[x],FORMS),

 m:([w],[y],ID)]

𝑷𝑶𝑼𝑻 [\fact{ y }[“It” “follows” “that” x “.”]]

𝑪𝑷𝑹𝑬 { }

𝑪𝑷𝑶𝑺𝑻 { }

𝒊 { true }

The incremental interpreter then generates the following fragment for the text-editor.

 \fact{ “verified” }

 [“It follows that” “$x \in A$” “and”

 “$x \in (B \cup C)$” “.”]

The macro evaluation of this proof step can be defined in arbitrary ways. The contained
sentence can be for example colored according to the verification status, or decorated
with () for a valid step, () for a step being processed, or () for an invalid step.

In order to integrate the feedback annotation with the grammar rules of the semantic
annotation language, we have to consider possible side-effects on the reuse of the trans-
formation trace for generating the custom content in the inverse translation process. This
is not important for the controlled language since there is no custom content in this case.
In order to be able to reuse the transformation trace, the annotated content has to be pro-
cessed by a separated grammar rule. The reason is that if the verification status changes,
the semantic representation of the whole proof step does not match anymore with the
stored transformation trace, but the semantic representation of the content still matches.

Authoring Exercise Solutions 239

9.4 Interactive Authoring

During the authoring of exercise solutions, the student might get stuck with the proof.
Besides the passive integration of the verification services of the proof assistance system
with visual feedback, we propose an active integration by an authoring integrated query
language (AIQL). The idea of this integration is to extend the controlled mathematical
language in order to enable the author to formulate an in-place request in the document
like “Prover: Explain.”, “Prover: Summarize.” “Prover: Complete.”, “Prover: Help.” or
for example “Prover: Apply Set Equality.”. The proof assistance system retrieves this
request as part of a change script and replaces the request by the computed results. This
approach to interactive authoring with the proof assistance system does neither require
additional methods in the interface protocol nor a bookkeeping of the relation between
elements in the different representations. We extend the controlled mathematical lan-
guage as shown in Table 50.

Head Production Creation
OSTEP [(SET|ASS|FACT|GOAL|CGOAL) AIQ?]

CSTEP [(GOALS|CASES|CGOALS|TRIV) AIQ?]

AIQ [“Prover:” x:CMDS] [\aiq[x]]

CMDS [CMD CMDS?]

CMD [(EXP|SUM|CPL|HLP|APP)]

EXP [“Explain” “.”] [\explain{}]

SUM [“Summarize” “.”] [\summarize{}]

CPL [“Complete” “.”] [\complete{}]

HLP [“Help” “.”] [\help{}]

APP [“Apply” x:NAME “.”] [\apply{ x }]

NAME [ID]

Table 50. Grammar of the Authoring Integrated Query Language

Considering our running example, the author asks the explanation service of ΩMEGA
(“Prover: Explain.”) to show more detailed proof steps that justify the assumption step.

\proof[…

 “We prove” “(1)” “.” “We assume” “$x \in A \cap (B \cup C)$” “.”

 “Prover: Explain.” “It follows that” …]

This query is translated by the mediation module to the semantic representation.

\proof{}[…

 \assumption[…], \aiq[\explain{}], \fact[…], …]

240 Interactive Authoring

We exploit the hierarchical proof data structure from our example in Figure 38 by replac-
ing the selected proof step in the semantic representation with the lifted sequence of proof
steps that justifies this step, as shown in Figure 41.

⊢ 𝐴 ∩ (𝐵 ∪ 𝐶) =

 (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Subgoals by Set Equality

⊢ 𝐴 ∩ (𝐵 ∪ 𝐶)

 ⊂ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

⊢ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

 ⊂ 𝐴 ∩ (𝐵 ∪ 𝐶)

Goal by Subset

⊢ 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

 ⇒ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Assumption 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

 ⊢ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Assumption 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶)

Fact 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)

𝑥 ∈ 𝐴 , 𝑥 ∈ (𝐵 ∪ 𝐶)

 ⊢ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Figure 41. Proof Step Explanation by Lifting Justifications

Authoring Exercise Solutions 241

As a result ΩMEGA removes the query from the semantic representation and adds the lift-
ed goal proof step as follows.

\proof{}[

 \subgoals[… ,

 \proof{“(1)”}[

 \goal[\F{“impl”}[\F{“in”}[\V{“x”},\F{“cap”}[\V{“A”},

 \F{“cup”}[\V{“B”},\V{“C”}]]],

 \F{“in”}[\V{“x”},\F{“cup”}[\F{“cap”}[\V{“A”},\V{“B”}],

 \F{“cap”}[\V{“A”},\V{“C”}]]]],

 \by[\L{“Subset”}]],

 \assumption[\F{“in”}[\V{“x”},\F{“cap”}[\V{“A”},

 \F{“cup”}[\V{“B”},\V{“C”}]]]],

 \fact[\F{“and”}[\F{“in”}[\V{“x”},V{“A”}],

 \F{“in”}[\V{“x”},\F{“cup”}[\V{“B”},\V{“C”}]]]]]]]

The mediation module then inverse translates this modified semantic representation to the
following modified interface document for the text-editor.

\proof[…

 “We prove” “(1)” “.” “We have to prove” “$(x \in A \cap

 (B \cup C)) \Rightarrow (x \in (A \cap B) \cup (A \cap C))$”

 “by Subset” “.” “We assume” “$x \in A \cap (B \cup C)$” “.” …]

This expansion can of course be reversed again on request (“Prover: Summarize.”), re-
sulting in an abstraction of the sequence of proof steps.

Similarly, the author may ask the proof assistance system to automatically complete a
proof attempt (“Prover: Complete.”), to show the next proof step as a hint (“Prover:
Help.”), or to apply an available assertion (“Prover: Apply Set Equality.”), that is, a defi-
nition, an axiom or a theorem. All requests are processed by generating one or more addi-
tional proof steps in the proof data structure. Finally, these proof steps are added to the
semantic representation and propagated to the text-editor via the inverse translation pipe-
line as described in the previous example.

The presented authoring integrated query language has been designed for the interac-
tion scenario between students and the proof assistance system. To satisfy the advanced
requirements of expert authors, we could similarly integrate a specialized language like
CRYSTAL [Dietrich & Schulz, 2010] which supports structured queries in a tactic lan-
guage for the proof assistance system ΩMEGA.

242 Discussion

9.5 Discussion

In this chapter, we introduced a Controlled Mathematical Language as an alternative to
the semantic annotation of the mathematical document. Furthermore, we illustrated how
proof obligations for ΩMEGA can be incrementally created from the proof steps written in
exercise solutions. Finally, we demonstrated how the transformation pipeline can be used
to propagate feedback for proof steps and to interact with the verification services of
ΩMEGA within the text-editor.

Styles of Authoring. One of the most prominent systems for the publication of machine
checked mathematics is MIZAR [Rudnicki & Trybulec, 1999] with one of the largest li-
braries of formalized mathematics. The language of the library is a well-designed com-
promise between a human-readable and a machine-processable language. Since the MI-

ZAR system is not interactive, the usual workflow is to prepare an article, compile it and
loop both steps until there is no error reported. In contrast to that, our Change-Oriented
Architecture allows for both, a human-oriented and a machine-oriented representation, by
providing techniques to automate the incremental translation in both directions.

ISABELLE/ISAR [Wenzel, 2007] is a generic framework for human-readable formal
proof documents, both like and unlike MIZAR. The ISAR proof language provides general
principles that may be instantiated to particular object-logics and applications. ISABELLE
tries to check an ISAR proof, shows the proof status but does not patch the proof script
for corrections. By integrating the services of the proof assistance system ΩMEGA, we are
able to repair detected errors or under-specifications in proof steps.

A representative of distributed systems for the publication of machine checked math-
ematics is LOGIWEB [Grue, 2007]. It allows the authoring of articles in a customizable
language but strictly separates the input from the output document, resulting in the usual
LATEX workflow. By using the WYSIWYG text-editors TEXMACS and MS WORD we com-
bine input and output representation in a document-centric approach. In contrast to the
standard batch-style workflow, we support an interactive style of authoring.

With respect to formalizing mathematical documents, there exist two extreme ap-
proaches. First, there is the MATHLANG [Kamareddine et al, 2004] approach of annotating
every single piece of information in the document with their semantic annotation lan-
guage in order to translate the result to various proof assistance systems [Lamar et al,
2009]. Second, there is the SAD system [Lyaletski et al, 2006] that tries to couple a con-
trolled natural language as deep as possible with a proof assistance system [Verchinine et
al, 2008]. In contrast to that, we presented a framework that supports both approaches in
parallel and even in combination within the same document.

Authoring Exercise Solutions 243

Management of Change. The way proof changes are handled in our approach differs to
the best of our knowledge significantly from the way they are handled in other proof as-
sistants, for example ISABELLE, COQ, or HOL. Two prominent user interfaces for such
proof assistants are CTCOQ [Bertot, 1999] and PROOFGENERAL. In these systems the user
develops a proof of a particular theorem of a given theory as a proof script by typing
commands in an ASCII text-editor. Information about the open goals and other messages
are sent to separate buffers of the text-editor. Proof scripts are composed of commands
and they can be stepwise executed by moving the execution point of the proof script. The
already executed parts of a proof script are thereby locked to avoid accidental editing. An
undo step moves the execution point one step backwards. In our approach a proof step or
an undo operation corresponds to the more general notion of a document change.

Locality of Proof Script Changes. In CTCOQ and PROOFGENERAL a change can only be
performed at the current execution point, while in our approach the user can directly edit
arbitrary parts of the proof script, in which case a corresponding change script is sent to
the proof assistance system via the mediation module.

Parallel Editing of Proof Scripts. Our approach allows the user to edit the proofs of sev-
eral theorems simultaneously, which is not possible if changes are restricted to only one
location. The assertions that are available at a specific location are always those which are
available in the theory or in an inherited theory. In our approach we therefore rely on the
elaborate truth maintenance capabilities of the proof assistance system.

A sophisticated truth maintenance mechanism that comes close to ΩMEGA’s approach is
implemented in MATITA, which is an interactive theorem prover which organizes the
mathematical knowledge in a searchable knowledge base. To ensure consistency of the
library, MATITA employs two mechanisms called invalidation and regeneration. If a
mathematical concept is changed, the concept itself and all concepts depending on it are
invalidated and need to be regenerated to verify whether they are still valid. To regenerate
an invalidated part of the library, MATITA re-executes the scripts that produced the invali-
dated concepts.

In our approach we do not invalidate the complete proof, but only those proof steps
that depend on a changed part. For these parts we would also have to re-execute the
scripts. However, we refrain to do so, because re-execution of scripts is time consuming.
Therefore, our objective has been to improve the mechanism for propagation of changes
and to develop mechanisms to repair proofs locally depending on the kinds of changes.

244 Discussion

Integration. The invertible grammar formalism is a solid basis for further linguistic im-
provements of the Controlled Mathematical Language. For example, Oliver Bender de-
signed grammar rules for the aggregation of proof steps [Bender, 2010] in our framework.
Note however that the expressive power is always limited by the representational power
of the proof assistance system. For example, how does the system deal with sequences
like 𝑎1 + 1,… , 𝑎𝑛 + 𝑛 ? (see [Kerber & Pollet, 2007] for more examples)

Besides the integration with the text-editor TEXMACS, Thorsten Hey developed a simi-
lar integration with MS WORD [Hey, 2009]. We have chosen WYSIWYG editors because
the macro expansion of LATEX causes severe problems for the processing of semantic an-
notations. Indeed, in order to analyze all semantically important parts we would have to
expand all macros, because a macro may hide an annotation or operators in a formula.
Since the language elements of LATEX are macros themselves, we need to stop the macro
expansion at the appropriate level, which is technically not supported by LATEX.

Furthermore, there is no possibility to implement the observer pattern in TEXMACS or
MS WORD by a plugin to track document changes. Therefore, we use the versioning-
based approach of mediation modules with documents as interfaces where the client
communicates the edit specification of a document to obtain an update with an optimal
change script at a reasonable granularity. Furthermore, we proposed to integrate a feed-
back annotation language and an interaction language with the controlled mathematical
language. This approach turns the feedback and the interaction queries into first-class
citizens of the document.

In our versioning-based approach, the task of conflict resolution is transferred to the
proof assistance system. The text-editor simply rejects conflicting changes and commits
its own state of the document. There are alternative approaches to this problem. Holger
Gast proposed the IAPP protocol [Gast, 2008] that transfers the rights to change regions
of a document between the text-editor and the proof assistance system. The PROOFGEN-

ERAL system [Aspinall, 2000] uses a locking approach where the regions of the document
are locked which are currently being processed by the proof assistance system. The PGIP
protocol of PROOFGENERAL is an interface protocol to connect theorem provers with user
interfaces based on ASCII-text input and a single focus point-of-control. Many interactive
theorem provers still use an interaction model that stems from command-line interpreters.
In [Aspinall et al, 2008] we outline how the PGIP protocol can be extended towards sup-
porting a Change-Oriented Architecture.

IV
Conclusion

Contributions 247

10 Contributions

In this thesis, we presented a novel Change-Oriented Architecture and we outlined its
application to Mathematical Authoring Assistance. The novelty of this architectural con-
cept is the usage of documents as interface between components of the architecture.
Thereby, the communication of document changes replaces standard method calls. A
benefit of this architecture is the more independent component development thanks to
mostly local change management.

We developed in this thesis an efficient algorithm for computing weighted semantic
differences between documents. By using this algorithm we produce optimal change
scripts for interface documents. The mediation between the interfaces of two components
requires potentially the bidirectional transformation of the interface documents. For this
purpose, we have developed a formalism for transformation grammars that is automatical-
ly invertible. Furthermore, we have developed a prototype system for mathematical au-
thoring assistance by integrating the ΩMEGA system with the text-editors TEXMACS and
MS WORD using a Change-Oriented Architecture. We will summarize the results of these
three parts in the following.

Semantic Change Computation. We introduced a similarity specification that allows for
defining when two documents are to be considered semantically similar or equal. Based
on this notion we developed an algorithm for computing the optimal change script be-
tween two documents. Since the elements of an interface document represent objects in
the interfaced component, we take into account the edit weights for changing or deleting
these objects to compute the globally optimal change script. This is not necessarily the
change script with the smallest change operations. Our contribution is the reduction of
this constrained weighted tree alignment problem to a search problem. We developed a
solution based on Dijkstra’s shortest path algorithm and we have proved the termination
and correctness of our algorithm. Its average time complexity is better in comparison to
the state-of-the-art algorithm.

Invertible Transformation Grammar. We introduced a new formalism for transfor-
mation grammars with a focus on its automatic inversion because interface documents
between two components have to be translated in both directions. A similarity specifica-
tion can be defined for the source and target document. The notion of similarity is then
taken into account in the pattern matching of the grammar interpreter. Unification con-
straints can be attached to the rules and have to be satisfied by the constructed parse tree.

248 Contributions

Furthermore, in order to generate non-translated parts of the document in the inverse
translation, we store the trace of the transformation. The presented formalism is a combi-
nation of the formalisms used by the natural language generation tool TG/2 and attribute
grammars. Hence both parser and generator paradigms are supported. Additionally, the
grammar writer declaratively defines the processing order for every rule. Thus, the
knowledge about information flow is embedded into the grammar rules. We proved the
correctness of the grammar inversion.

Mathematical Authoring Assistance. We illustrated the benefits of a Change-Oriented
Architecture in a course scenario. Thereby, we conducted an exploratory study with a
first-year mathematics course to analyze the edit behavior and selected linguistic aspects
for mathematical authoring assistance. In order to support the self-extensible nature of
mathematical documents we developed a new method which dynamically synthesizes
grammar rules for the notation introduced for example in lecture notes. Furthermore, we
presented incremental methods to verify the proof sketches in student exercise solutions
by the ΩMEGA system. We modeled the transformation between the text-editor document
and its formalization in multiple phases, each defined by an invertible transformation
grammar.

Altogether we presented in this thesis a novel architecture for continuously evolving dis-
tributed systems whose components communicate their declarative status descriptions. In
order to adapt this architecture to a particular system, one has to model the interface doc-
uments, define their similarity specifications and create transformation grammars for each
pair of connected components. This defines the instances of mediation modules between
the components of a system.

In this thesis, we described how the Change-Oriented Architecture solves the media-
tion problem in-the-small between a text-editor and the semantic services of the proof
assistance system ΩMEGA. There exists also the mediation problem in-the-large between
the different components of ΩMEGA. For this purpose, we outlined how the methods and
concepts of the Change-Oriented Architecture support the evolutionary development of a
knowledge-based system like ΩMEGA as presented in [Autexier et al, 2008]. The Change-
Oriented Architecture can be used as a uniform component interface that reduces the
amount of change management needed when the components evolve in parallel.

In combination with the prototypical integration with the text-editors TEXMACS and MS
WORD, we have developed a system that can be instantiated as a user interface for con-
tent-oriented applications. It allows the user to work in his concrete syntax, while the ab-
stract syntax of the application is automatically being synchronized.

Contributions 249

We conclude our presentation of a new Change-Oriented Architecture for Mathematical
Authoring Assistance by answering some reflective questions.

Why is the propagation of mathematical knowledge by changes a good choice?

Let us consider the use case of interactive mathematical authoring with a scientific
text-editor like TEXMACS. In this scenario, a mathematician develops a mathematical doc-
ument with definitions, axioms, theorems and proofs in the text-editor. Efficient propaga-
tion of mathematical knowledge is essential in this case, since the document needs to be
continuously synchronized with its formal counterpart in the proof assistance system. If
we always replace the complete knowledge, we would rewrite the whole document in the
text-editor. Consequently, we would lose large parts of the natural language text written
by the author. On the other hand, we would lose the verification previously performed by
the proof assistance system. For example, any already verified proof or any computation
result from external systems would be lost. Clearly, propagating the changes between
both sides preserves most of the work done on either side.

Can we do better than just computing and propagating syntactic changes?

By using semantic annotations or a controlled mathematical language for document
authoring, the mediation module is able to extract the semantic tree-structured representa-
tion using the invertible grammar. Structured means in this context, that for example the
proof steps are classified into assumptions, facts, subgoal introductions and other steps.
Additionally, the syntactic formulas are translated into structural formulas making varia-
bles and operators explicit. If any syntactic change is reflected in a change of the semantic
representation, this would trigger changes inside the proof assistance system, even if the
change was only a semantically irrelevant document reorganization. We can do better by
using our semantic change computation with an appropriate similarity specification.

How can we use the semantics to optimize the change computation?

A proof has in general to be re-verified when proof steps are permuted but not if the
order of subgoals or the order of their subproofs changes. The latter is in fact only syntax
sugaring and irrelevant to the formal verification. Although the document syntactically
changes in that case, such a modification is filtered out by specifying the similarity for
subgoal introductions in a way that the order of their content, that is the subgoals and
subproofs, is not relevant to the change computation. Furthermore, for the formal verifi-
cation all definitions, axioms and theorems are visible inside the whole theory. Hence, a
rearrangement has no effect and does not need to be propagated from the text-editor to the
proof assistance system.

250 Contributions

Is the smallest possible change always the optimal change?
The aim is to compute changes that are optimal, where optimal means that processing

them requires the least possible resources. Each element in the interface document of a
component corresponds to an internal knowledge item. This item may contain lots of hid-
den knowledge items, or it may be the case that lots of other items depend on this item in
its current state. For example, the weight of a theorem in a document can be defined by
the amount of proof steps which apply this theorem. An algorithm for change computa-
tion then has to take these hidden weights into account in order to compute the optimal
change script. Therefore, each service component sends the edit specification with these
edit weights to the mediation module which computes an optimal change script for that
service component.

Are there any other reasons to avoid arbitrary small changes?

The management of change is not equally sophisticated in all service components for
several reasons. On the one hand, a component might only be interested in high-level
changes because it is only responsible for the management in-the-large. On the other
hand, a component, that wants to deal with arbitrary small changes, has to implement
change methods for each type of element that can be changed. Hence, supporting arbi-
trary small changes implies implementing lots of change methods, which is not always a
reasonable task. Therefore, each component sends the edit specification with its edit limi-
tation to the mediation module which in turn computes a change script with an adequate
granularity of changes for that service component.

What are the benefits of using documents as interfaces?

The concept of documents as interfaces allows for a rapid prototyping of knowledge-
based distributed systems. The design process of a system using the Change-Oriented
Architecture is usually as follows: First, one has to classify the different kinds of
knowledge in the system and to separate their management into different components.
Then, the dependencies between the kinds of knowledge imply the connections between
the service components. The two-way translation between the interface documents of
connected components is modeled by invertible grammars. Finally, each component can
be developed independently and at different speed, since other connected components
need only to know the interface document. They do not depend on any particular method
or any particular level of change support of this component. Nevertheless, we have to
note that the developed level of management of change of the core components, that are
the components in the heart of the information flow, governs the performance and effec-
tiveness of the entire system.

Future Work 251

11 Future Work

 “To undertake the formalization of just 100,000 pages of core mathematics would be one
of the most ambitious collaborative projects ever undertaken in pure mathematics, the
sequencing of a mathematical genome” – Thomas Hales

The mathematician Thomas Hales is well-known for his computer-aided proof of the
Kepler conjecture, a centuries-old problem in discrete geometry which states that the
most space-efficient way to pack spheres is in a pyramid shape. The proof relies exten-
sively on methods from the theory of global optimization, linear programming, and inter-
val arithmetic. Hales’ proof proved difficult to verify. In 2003, it was reported that the
Annals of Mathematics publication had an unusual editorial note stating that parts of the
paper have not been possible to check, despite the fact that a team of 12 reviewers worked
on verifying the proof for more than four years and that the reviewers were 99% certain
that it is correct. However, the actual publication contains no such note. In response to the
difficulties in verifying his proof, Hales launched the FLYSPECK project, an attempt to use
computers to automatically verify every step of the proof. Unfortunately, Hales expects
the project is likely to take 20 man-years of work.

This example taken from the cutting-edge of mathematics indicates that we are living
in an era where proofs are becoming increasingly complex and computers are becoming
necessary to perform verification. Additionally, it shows two problems that are becoming
more and more important to solve. First, even after formalizing the proof with many years
of work, the formalization itself needs to be verified by mathematical reviewers. Consider
for example the inequality in Figure 42, which is one of the smaller inequalities by the
way. We believe the reviewers will have a hard time to get familiar with the complex
notation. This is only one example where our work could contribute in increasing the hu-
man readability of formalized mathematics.

(* SPIII-1998 Lemma 4.2 *)

let J_322621318 = (`!v0 v1 v2 v3 v4.

((is_quad_cluster_v v0 v1 v2 v3 v4) ==>

 ((sigma_quad_approx1 v0 v1 v2 v3 v4 <

 -- (&9494)/(&1000)

 + ((&30508)/(&100000))*

 ((dih_or_v v0 v1 v2 v4)+

 (dih_or_v v0 v2 v3 v1)))))`);;

Figure 42. Example inequality from the Flyspeck project
(reproduced from [Hales, 2010])

252 Future Work

Second, long-term projects often change team members over time or get contributions
from third party collaborators. The new contributors need to get familiar with the existing
results of the project. The pure verbalization of the formalized proof might be a good
starting point, but with a bidirectional transformational approach they are immediately
able to contribute.

Apart from providing a comfortable environment for editing formalized mathematics,
it is important to integrate the theorem prover with this environment to obtain a produc-
tive system. Like in software engineering where the code is written in a specific pro-
gramming language, mathematical theorems and proofs are formalized with respect to the
logical foundations of a specific theorem prover. Hence, in order to turn our prototype
system into an integrated development environment (IDE) for mathematics, which is the
vision of our work, we still have a long way to go. Let me list the major problems that we
encountered during our work, together with suggestions on how they could possibly be
solved.

Multiple Prover Integration. Many of the sophisticated mathematical assistance ser-
vices provided by our prototype have only been possible to be realized due to the special
services provided by the ΩMEGA system. Definitely, Thomas Hales would not be happy to
adapt the whole formalization of his proof to meet the requirements of a different theorem
prover.

Fortunately, there is an open mathematical document format OMDOC available which
proposes a standard to represent, provision and manage all kinds of mathematical
knowledge. The problem with using OMDOC as an interchange format for theorem prov-
ers is however the discrepancy of their logical foundations. Additionally, since most theo-
rem provers hide their creative knowledge in tactics and strategies, the devil lies clearly in
the detail. There have been first steps ([Horozal & Rabe, 2009], [Dumbrava et al, 2009])
towards an approach for solving this blocking problem, but these case studies are still far
away from an effective solution. Hence, we have to consider a different approach in the
meanwhile.

There has been a second approach focusing on a generic user interface for theorem
provers, the PROOFGENERAL project. Instead of trying to standardize the document format,
this approach analyzed the interfaces and processing states of interactive theorem provers.
They came up with a generic framework that has been adopted by all major theorem
provers. We acknowledge this success in the community and therefore started to work on
a plan to integrate our prototype system with PROOFGENERAL in order to integrate with all
major theorem provers. Technical details of this collaboration have already been pub-
lished in [Aspinall et al, 2008].

Future Work 253

Libraries of Formalized Mathematics. In software engineering we often judge the
productivity of a programming language by its battery of libraries. Nothing is more frus-
trating than losing time by reinventing the wheel. The same holds in fact for theorem
provers and their libraries of formalized mathematics. Freek Wiedijk is continuously
monitoring the progress made on an arbitrarily selected list of 100 well-known fundamen-
tal theorems [Wiedijk, 2010]. The statistics as of January 2010 are shown in Table 51. We
list only the top five theorem provers.

Theorem Prover Top 100 Theorems

HOL Light 74
Mizar 50
Isabelle 45
Coq 44
ProofPower 42

Table 51. Statistics of proved Top 100 theorems
(reproduced from [Wiedijk, 2010])

These results might be the reason why Thomas Hales has chosen HOL Light to formalize
his proof of the Kepler conjecture. A major part of the estimated 20 person years of work
is definitely devoted to formalize missing libraries. Libraries are in fact more important
than a particular system.

Theorem provers will become really productive systems as soon as their libraries re-
flect the mathematics in the undergraduate curriculum of a mathematics study. Freek
Wiedijk estimates the time to formalize such a standard library for mathematics to take
approximately 140 man-years of work [Wiedijk, 2000]. One important factor in this esti-
mation is the relation between the size of an informal text of mathematics and its formal-
ized counterpart. For the top five theorem provers this so called de Bruijn factor [Wiedijk,
1998] turned out to be close to 4. We argue that this factor can be significantly reduced by
using a controlled mathematical language and an invertible transformation to the formal
language of the theorem prover.

It is quite dazzling to see how much effort the mathematical knowledge management
community has already invested to digitalize libraries of mathematics (for example
[Bouche, 2008], [Ruddy, 2009], [Libbrecht et al, 2009]) in the last few years. New inter-
face paradigms have been explored with electronic pen based input interfaces (for exam-
ple [Suzuki et al, 2009], [Smirnova & Watt, 2008]). Unfortunately, all the expertise in
representing, provisioning and managing mathematical knowledge did not solve the fun-
damental lack of formalized libraries. In fact, there is a trend towards setting up a frame-
work and waiting for the Wikipedia effect.

254 Future Work

Controlled Mathematical Language. In our opinion, the development of a controlled
natural language for mathematics has to be a joint initiative with the target user group, the
mathematicians. Therefore, we are collaborating with the NAPROCHE project of the
Mathematical Institute in Bonn. They will use agile methods to continuously improve the
controlled mathematical language (CML). They start with a combination of the base lan-
guage, which we obtained from our exploratory study at Saarland University, and the
semantic annotation language of the PLATΩ system, which can be used to annotate
fragments that are beyond the coverage of the CML.

The members of the NAPROCHE project will then use the CML and the annotations
to formalize their lecture notes of an introduction course to formal logic which targets
Gödel’s completeness theorems [Koepke, 2007]. Additionally, the students of this course
will be asked to formalize their exercise solutions with the system. The continuous feed-
back will help us to naturally extend or adapt the CML in order to reduce the amount of
annotations needed. Our hope is of course that this process will converge.

For the aspect of natural language analysis our goal is the analysis of sentences and
parts of them that occur in definitions, theorems and proofs. Not all linguistic elements
are going to be covered by the CML because on the one hand the grammar of the lan-
guage would explode, and on the other hand these elements might not have a formal
counterpart, for example adverbs like “accordingly” or “finally”.

For the aspect of natural language generation we want to investigate the generation of
context-aware CML fragments. For example, the formula 𝑎 ∈ 𝑀 → ⋯ can be shown as
“if a is in M, then …” in a strongly verbalized context, and as “if 𝑎 ∈ 𝑀, then …” in a
weakly verbalized context. Furthermore, we will integrate a discourse memory [Mossel,
2005] in order to allow for referring expressions in CML.

In order to make the CML more robust, we plan to integrate the findings of the MATH-

LANG project about a narrative structure [Kamareddine et al, 2007a] of mathematical
texts. Thereby, Krzysztof Retel analyzed the rhetorical structure of articles in mathemati-
cal textbooks with respect to argumentative consistency and a gradual formalization into
the MIZAR system. Consistency checks on intermediate transformation results may im-
prove the general robustness of the CML.

Finally, we will have a close look at the results of the MOLTO project whose objective
is the development of a multilingual on-line translation service with a stronger focus on
translation correctness than on coverage. We will investigate the integration of the gram-
matical framework GF and its linguistic resources to transfer our resulting CML into mul-
tiple languages.

Future Work 255

Besides the strong application relevance for the mathematical domain we believe that the
presented Change-Oriented Architecture will offer significant performance and develop-
ment improvements to other domains. We discuss two interesting examples in the follow-
ing.

Visual Computing. In the field of visual computing, different technologies like multime-
dia or physics simulation merge with 3D computer graphics to create more realistic virtu-
al worlds. For describing such virtual worlds in great detail, the scene graph has proved
to be a flexible and powerful data structure to represent hierarchical data and its semantic
interrelationships. A monolithic rendering approach would prevent exchange and recom-
bination of different renderers. Therefore, a service-oriented rendering architecture SO-
RA is proposed in [Repplinger et al, 2010]. The most interesting aspect of this approach
is that it uses the interpretation-independent standard document format X3D [Brutzman &
Daly, 2007] to represent the scene graph semantically. We propose to investigate the ben-
efits of computing semantic changes between scene graphs to increase the rendering per-
formance.

Formal Methods. The design and development of safety-critical systems require the use
of formal methods in specification and verification [Frese et al, 2008]. The long-term
research goal in this area is a verification system that maintains the dependencies between
requirements, code and documentation, in order to actively support the change manage-
ment process by notifying about affected parts and possibly proposing corrections. Unfor-
tunately, the types of documents involved range from completely informal documents,
consisting of paragraphs with natural language, to formal specifications which are highly
structured and which have a precisely defined semantics. We propose to investigate the
benefits of a mixed initiative approach with annotations and controlled languages to for-
malize the content of informal documents such that formal methods for management of
change, for example development graphs [Autexier & Hutter, 2005], can be applied.

In general. It seems promising to investigate the benefits of semantic change computa-
tion for the performance optimization of distributed systems that use a structured seman-
tic representation at the interfaces of their system components. Furthermore, the applica-
tion areas which can profit from the formalism for invertible transformations are areas
where informal content needs to be formalized, formal content needs to be verbalized, or
different levels of formality need to be synchronized.

References 257

References

[Abiteboul et al, 2002] Abiteboul, Serge, Cluet, Sophie and Milo, Tova.
(2002). Correspondence and translation for
heterogeneous data. Theoretical Computer
Science, vol 275, no. 1-2, pp. 179-213.

[Alexoudi et al, 2004] Alexoudi, Marianthi, Zinn, Claus and Bundy,
Alan. (2004). English summaries of mathe-
matical proofs. In Benzmüller, Christoph and
Windsteiger, Wolfgang (eds.), Proceedings of
the Workshop on Computer-Supported Math-
ematical Theory Development, Cork, Ireland,
RISC Report Series, no. 04-14, RISC Insti-
tute, University of Linz, pp. 49-60.

[Amerkad et al, 2001] Amerkad, Ahmed, Bertot, Yves, Pottier, Loic
and Rideau, Laurence. (2001). Mathematics
and proof presentation in PCOQ. In Goré,
Rajeev, Leitsch, Alexander and Nipkow, To-
bias, (eds.), Proceedings of the 1st Interna-
tional Joint Conference on Automated Rea-
soning (IJCAR), Workshop on Proof Trans-
formation, Proof Presentations and Com-
plexity of Proofs, Siena, Italy, Springer.

[Asperti et al, 2006] Asperti, Andrea, Sacerdoti Coen, Claudio, Tassi,
Enrico and Zacchiroli, Stefano. (2006). User
Interaction with the MATITA Proof Assistant.
Journal of Automated Reasoning, vol 39, no.
2, pp. 109-139.

[Aspinall et al, 2005] Aspinall, David, Lüth, Christoph and Winter-
stein, Daniel. (2005). Parsing, editing, prov-
ing: The PGIP display protocol. In Aspinall,
David and Lüth, Christoph, (eds.), Proceed-
ings of 6th Workshop on User Interfaces for
Theorem Provers (UITP), Edinburgh, Scot-
land.

258 References

[Aspinall et al, 2008] Aspinall, David, Autexier, Serge, Lüth, Chris-
toph and Wagner, Marc. (2008). Towards
Merging PLATΩ and PGIP. In Autexier, Serge
and Benzmüller, Christoph, (eds.), Proceed-
ings of the 8th Workshop on User Interfaces
for Theorem Provers (UITP), Montréal, Qué-
bec, Canada, pp. 3-21.

[Aspinall, 2000] Aspinall, David. (2000). PROOF GENERAL: A ge-
neric tool for proof development. In Graf, Su-
sanne and Schwartzbach, Michael, (eds.),
Proceedings of 6th International Conference
on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Berlin,
Germany, Springer, pp. 38-42.

[Autexier & Dietrich, 2006] Autexier, Serge and Dietrich, Dominik. (2006).
Synthesizing proof planning methods and
ΩANTS agents from mathematical knowledge.
In Borwein, Jonathan M. and Farmer, William
M., (eds.), Proceedings of the 5th Internation-
al Conference on Mathematical Knowledge
Management (MKM), Wokingham, UK,
Springer, pp. 94-109.

[Autexier & Hutter, 2005] Autexier, Serge and Hutter, Dieter. (2005). For-
mal software development in MAYA. In Hut-
ter, Dieter and Stephan, Werner (eds.), Fest-
schrift in Honor of Jörg H. Siekmann, Sprin-
ger, pp. 407-432.

[Autexier et al, 2004] Autexier, Serge, Benzmüller, Christoph, Fiedler,
Armin, Horacek, Helmut and Vo, Bao Q.
(2004). Assertion-level proof representation
with under-specification. Electronic Notes in
Theoretical Computer Science, vol 93, pp. 5-
23.

References 259

[Autexier et al, 2005] Autexier, Serge, Benzmüller, Christoph, Diet-
rich, Dominik, Meier, Andreas and Wirth,
Claus-Peter. (2005). A generic modular data
structure for proof attempts alternating on
ideas and granularity.
In Kohlhase, Michael, (ed.), Proceedings of
the 4th International Conference on Mathe-
matical Knowledge Management (MKM),
Bremen, Germany, Springer, pp. 126-142.

[Autexier et al, 2007] Autexier, Serge, Fiedler, Armin, Neumann,
Thomas and Wagner, Marc. (2007). Support-
ing User-Defined Notations when Integrating
Scientific Text-Editors with Proof Assistance
Systems. In Kauers, Manuel, Kerber,
Manfred, Miner, Robert and Windsteiger,
Wolfgang, (eds.), Proceedings of the 6th In-
ternational Conference on Mathematical
Knowledge Management (MKM), Hagenberg,
Austria, Springer, pp. 176-190.

[Autexier et al, 2008] Autexier, Serge, Benzmüller, Christoph, Diet-
rich, Dominik and Wagner, Marc. (2008). Or-
ganisation, Transformation, and Propagation
of Mathematical Knowledge in ΩMEGA. Jour-
nal Mathematics in Computer Science, vol 2,
no. 2, pp. 253-277, Birkhäuser Basel.

[Autexier et al, 2009] Autexier, Serge, Benzmüller, Christoph, Diet-
rich, Dominik and Siekmann, Jörg. (2009).
ΩMEGA: Resource Adaptive Processes in Au-
tomated Reasoning Systems. In Crocker, Mat-
thew and Siekmann, Jörg H., (eds.), Resource
Adaptive Cognitive Processes, Part III – Re-
source-Adaptive Rationality in Machines,
Springer, pp. 389-423.

[Autexier, 2005] Autexier, Serge. (2005). The CORE calculus. In
Nieuwenhuis, Rober, (ed.), Proceedings of the
20th International Conference on Automated
Deduction (CADE), Tallin, Estonia, Springer,
pp. 84-98.

260 References

[Bender, 2010] Bender, Oliver. (2010). Natürlich sprachliche
Repräsentation von Mathematischen Diskur-
sen, Diploma Thesis, Computerlinguistik,
Universität des Saarlandes, Saarbrücken.

[Benzmüller & Sorge, 1998] Benzmüller, Christoph and Sorge, Volker.
(1998). A blackboard architecture for guiding
interactive proofs. In Giunchiglia, Fausto,
(ed.), Proceedings of the 8th International
Conference on Artificial Intelligence: Meth-
odology, Systems, and Applications (AIMSA),
Sozopol, Bulgaria, Springer, pp. 102-114.

[Benzmüller & Sorge, 2000] Benzmüller, Christoph and Sorge, Volker.
(2000). ΩANTS - An open approach at combin-
ing Interactive and Automated Theorem Prov-
ing. In Kerber, Manfred and Kohlhase, Mi-
chael, (eds.), Proceedings of the 8th Symposi-
um on the Integration of Symbolic Computa-
tion and Mechanized Reasoning (CAL-
CULEMUS), A K Peters, pp. 81-97.

[Benzmüller et al, 2006] Benzmüller, Christoph, Fiedler, Armin, Meier,
Andreas, Pollet, Martin and Siekmann, Jörg.
(2006). ΩMEGA. In Wiedijk, Freek, (ed.), The
seventeen provers of the world, Springer, pp.
127-141.

[Benzmüller et al, 2007] Benzmüller, Christoph, Dietrich, Dominik,
Schiller, Marvin and Autexier, Serge. (2007).
Deep Inference for Automated Proof Tutor-
ing. In Hertzberg, Joachim, Beetz, Michael
and Englert, Roman, (eds.), Proceedings of
the 30th Annual German Conference on Artifi-
cial Intelligence (KI), Osnabrück, Germany,
Springer, pp. 435-439.

[Bernth, 1997] Bernth, Arendse. (1997). EasyEnglish: A Tool
for Improving Document Quality. In Proceed-
ings of the 5th Conference on Applied Natural
Language Processing (ANLP), Washington,
USA, pp. 159-165.

[Bertot, 1999] Bertot, Yves. (1999). The CTCOQ system: Design
and architecture. Formal Aspects of Compu-
ting, vol 11, no. 3, pp. 225-243.

References 261

[Bille, 2005] Bille, Philip. (2005). A survey on tree edit dis-
tance and related problems. Theoretical Com-
puter Science, vol 337, no. 1-3, pp. 217-239.

[Bouche, 2008] Bouche, Thierry. (2008). CEDRICS: When
CEDRAM meets Tralics. In Sojka, Petr, (ed.),
Proceedings of the 1st Workshop Towards a
Digital Mathematics Library (DML), Bir-
mingham, UK, Masaryk University, pp. 153-
165.

[Brutzman & Daly, 2007] Brutzman, Don and Daly, Leonard. (2007). X3D:
Extensible 3D Graphics for Web Authors,
Morgan Kaufmann.

[Buchberger et al, 1997] Buchberger, Bruno, Jebelean, Tudor, Kriftner,
Franz, Marin, Mircea, Tomuta, Elena and Va-
saru, Daniela. (1997). A Survey of the Theo-
rema Project. In Küchlein, Wolfgang, (ed.),
Proceedings of the International Symposium
on Symbolic and Algebraic Computation (IS-
SAC), Maui, Hawaii, USA, ACM Press, pp.
384-391.

[Busemann & Horacek, 1998] Busemann, Stephan and Horacek, Helmut.
(1998). A flexible shallow approach to text
generation. In Hovy, Eduard, (ed.), Proceed-
ings of the 9th International Natural Lan-
guage Generation Workshop (INLG), Niaga-
ra-on-the-Lake, Ontario, Canada, pp. 238-
247.

[Busemann, 1996] Busemann, Stephan. (1996). Best-first surface
realization. In Scott, Donia, (ed.), Proceed-
ings of the 8th International Natural Lan-
guage Generation Workshop (INLG), Herst-
monceux, Sussex, UK, pp. 101-110.

[Busemann, 2001] Busemann, Stephan. (2001). Language genera-
tion for cross-lingual document summariza-
tion. In Sheng, Huanye, (ed.), Proceedings of
the International Workshop on Innovative
Language Technology and Chinese Infor-
mation Processing (ILT&CIP), Beijing, Chi-
na, Science Press.

262 References

[Busemann, 2005] Busemann, Stephan. (2005). Ten years after: an
update on TG/2 (and friends). In Wilcock,
Graham, Jokinen, Kristiina, Mellish, Chris
and Reiter, Ehud, (eds.),
Proceedings of the 10th European Natural
Language Generation Workshop (ENLG),
Aberdeen, Scotland, pp. 32-39.

[Chawathe et al, 1996] Chawathe, Sudardshan, Rajaraman, Anand, Gar-
cia-Molina, Hector and Widom, Jennifer.
(1996). Change detection in hierarchically
structured information. In Jagadish, H. V. and
Mumick, Inderpal Singh, (eds.), Proceedings
of the ACM SIGMOD International Confer-
ence on Management of Data, Montréal,
Québec, Canada, ACM Press, pp. 493-504.

[Cheikhrouhou & Sorge, 2000] Cheikhrouhou, Lassaad and Sorge, Volker.
(2000). PDS - A Three-Dimensional Data
Structure for Proof Plans. In Proceedings of
the 1st International Conference on Artificial
and Computational Intelligence for Decision
Control and Automation in Engineering and
Industrial Applications (ACIDCA), Monastir,
Tunisia.

[Chen, 1998] Chen, Weimin. (1998). More efficient algorithm
for ordered tree inclusion. Journal of Algo-
rithms, vol 26, no. 2, pp. 370-385.

[Chen, 2001] Chen, Weimin. (2001). New algorithm for or-
dered tree-to-tree correction problem. Journal
of Algorithms, vol 40, no. 2, pp. 135-158.

[Chomsky, 1956] Chomsky, Noam. (1956). Three models for the
description of language. IRE Transactions on
Information Theory, vol 2, no. 3, pp. 113-124.

[Chomsky, 1957] Chomsky, Noam. (1957). Syntactic Structures.
Mouton, The Hague.

[Choppella & Haynes, 2005] Choppella, Venkatesh and Haynes, Christopher.
(2005). Source-tracking unification. Infor-
mation and Computation, vol 201, no. 2, pp.
121-159.

References 263

[Clark et al, 2005] Clark, Peter, Harrison, Philip, Jenkins, Thomas,
Thompson, John and Wojcik, Richard H..
(2005). Acquiring and Using World
Knowledge Using a Restricted Subset of Eng-
lish. In Russell, Ingrid and Markov, Zdravko,
(eds.), Proceedings of the 18th International
Florida Artificial Intelligence Research Socie-
ty Conference (FLAIRS), Clearwater Beach,
Florida, USA, AAAI Press, pp. 506-511.

[Claypool & Rundensteiner, 2004] Claypool, Kajal and Rundensteiner, Elke.
(2004). AUP: Adaptive Change Propagation
Across Data Model Boundaries. In Williams,
Howard and MacKinnon, Lachlan, (eds.),
Proceedings of the 21st British National Con-
ference on Databases (BNCOD), Edinburgh,
Scotland, UK, Springer, pp. 72-83.

[Cobéna et al, 2002] Cobéna, Grégory, Abdessalem, Talel and Hin-
nach, Yassine. (2002). A comparative study
for XML change detection. In Pucheral,
Philippe, (ed.), Proceedings of the 18th
Journées Bases de Données Avancées (BDA),
Evry, Actes.

[Coquand & Huet, 1988] Coquand, Thierry and Huet, Gerard. (1988). The
calculus of constructions. Information and
Computation, vol 76, no. 2-3, pp. 95-120.

[Davenport, 2000] Davenport, James. (2000). A Small OPENMATH
Type System, ACM SIGSAM Bulletin, vol 34,
no. 2, pp. 16-21.

[de Bruijn, 1970] de Bruijn, Nicolaas G. (1970). The mathematical
language AUTOMATH, its usage and some of
its extensions. In Laudet, Michel, Lacombe,
Daniel, Nolin, Louis and Schützenberger,
Marcel, (eds.), Proceedings of the Symposium
on Automatic Demonstration, Versailles,
France, Springer, pp. 29-61.

264 References

[de Bruijn, 1994] de Bruijn, Nicolaas G. (1994). Mathematical
Vernacular: a Language for Mathematics with
Typed Sets. In Nederpelt, Rop P., Geuvers, J.
Herman and de Vrijer, Roel C., (eds.), Se-
lected Papers on Automath, North-Holland
Publishing Company, pp. 865-936.

[de Carvalho & Jürgensen, 2008] de Carvalho, Jackson Marques and Jürgensen,
Helmut. (2008). A Dynamical Document
Structure to Capture the Semantics of Mathe-
matical Concepts. In Dini, Petre and Dascalu,
Sergiu, (eds.), Proceedings of the 1st Interna-
tional Conference on Advances in Computer-
Human Interaction (ACHI), Sainte Luce,
Martinique, IEEE Computer Society, pp. 257-
264.

[Dietrich & Buckley, 2007] Dietrich, Dominik and Buckley, Mark. (2007).
Verification of Proof Steps for Tutoring
Mathematical Proofs. In Luckin, Rosemary,
Koedinger, Kenneth R. and Greer, Jim E.,
(eds.), Proceedings of the 13th International
Conference on Artificial Intelligence in Edu-
cation (AIED), Los Angeles, California, USA,
IOS Press, pp. 560-562.

[Dietrich & Schulz, 2010] Dietrich, Dominik and Schulz, Ewaryst. (2010).
Crystal: Integrating Structured Queries into a
Tactic Language. Journal of Automated Rea-
soning, vol 44, no. 1-2, pp. 79-110.

[Dietrich et al, 2008] Dietrich, Dominik, Schulz, Ewaryst and Wagner,
Marc. (2008). Authoring Verified Documents
by Interactive Proof Construction and Verifi-
cation in Text-Editors. In Autexier, Serge,
Campbell, John, Rubio, Julio, Sorge, Volker,
Suzuki, Masakazu and Wiedijk, Freek, (eds.),
Proceedings of the 7th International Confer-
ence on Mathematical Knowledge Manage-
ment (MKM), Birmingham, UK, Springer, pp.
398-414.

[Dietrich, 2006] Dietrich, Dominik. (2006). The TASKLAYER of
the ΩMEGA system, Diploma thesis, Informa-
tik, Universität des Saarlandes, Saarbrücken.

References 265

[Dijkstra, 1959] Dijkstra, Edsger W. (1959). A note on two prob-
lems in connexion with graphs. Numerische
Mathematik, vol 1, pp. 269-271.

[Dumbrava et al, 2009] Dumbrava, Stefania, Horozal, Fulya and Sojako-
va, Kristina. (2009). A Case Study on Formal-
izing Algebra in a Module System. In Rabe,
Florian and Schürmann, Carsten, (eds.), Pro-
ceedings of the 1st Workshop on Modules and
Libraries for Proof Assistants (MLPA), Mon-
treal, Canada, ACM Press, pp. 11-18.

[Fiedler, 2001] Fiedler, Armin. (2001). User-adaptive Proof Ex-
planation, PhD thesis, Naturwissenschaftlich-
Technische Fakultät I, Universität des Saar-
landes, Saarbrücken, Germany.

[Franke & Kohlhase, 1999] Franke, Andreas and Kohlhase, Michael. (1999).
System Description: MATHWEB a System for
Distributed Automated Theorem Proving. In
Ganzinger, Harald, (ed.), Proceedings of the
16th International Conference on Automated
Deduction (CADE), Trento, Italy, Springer,
pp. 217-221.

[Frese et al, 2008] Frese, Udo, Hausmann, Daniel, Lüth, Christoph,
Täubig, Holger and Walter, Dennis. (2008).
Zertifizierung einer Sicherungskomponente
mittels durchgängig formaler Modellierung.
In Maalej, Walid and Brügge, Bernd, (eds.),
Proceedings of Software Engineering (Work-
shops), Munich, Germany, Lecture Notes in
Informatics, GI, pp. 335-338.

[Fuchs et al, 2008] Fuchs, Norbert, Kaljurand, Kaarel and Kuhn,
Tobias. (2008). Attempto Controlled English
for Knowledge Representation. In Baroglio,
Cristina, Bonatti, Piero A., Maluszynski, Jan,
Marchiori, Massimo, Polleres, Axel and
Schaffert, Sebastian, (eds.), Proceedings of
the 4th International Summer School on Rea-
soning Web, Venice, Italy, Springer, pp. 104-
124.

266 References

[Gabbay et al, 2010] Gabbay, Dov, Siekmann, Jörg and Wirth, Claus-
Peter. (2010). Hilbert Bernays Project,
viewed 22 January 2010,
<http://www.ags.uni-
sb.de/~cp/p/hilbertbernays>.

[Gamma et al, 1994] Gamma, Erich, Helm, Richard, Johnson, Ralph
and Vlissides, John. (1994). Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley.

[Ganzinger & Giegerich, 1984] Ganzinger, Harald and Giegerich, Robert.
(1984). Attribute coupled grammars. In Pro-
ceedings of the SIGPLAN Symposium on
Compiler Construction, Montréal, Québec,
Canada, ACM Press, pp. 157-170.

[Garrett, 2005] Garrett, Jesse J. (2005). AJAX: A new approach
to web applications, viewed 22 January 2010,
<http://www.adaptivepath.com/ideas/essays/
archives/000385.php>.

[Gast, 2008] Gast, Holger. (2008). Managing proof docu-
ments for asynchronous processing. In Autex-
ier, Serge and Benzmüller, Christoph, (eds.),
Proceedings of the 8th Workshop on User In-
terfaces for Theorem Provers (UITP), Mont-
réal, Québec, Canada, pp. 37-51.

[Gazdar et al, 1985] Gazdar, Gerald, Klein, Ewan H., Pullum, Geoff-
rey K. and Sag, Ivan A. (1985). Generalized
Phrase Structure Grammar, Harvard Univer-
sity Press, Oxford.

[Gentzen, 1934] Gentzen, Gerhard. (1934). Untersuchungen über
das logische Schließen. Mathematische Zeit-
schrift, vol 39, pp. 176-210, 405-431.

[Gentzen, 1969] Gentzen, Gerhard. (1969). The Collected Papers
of Gerhard Gentzen (1934-1938), English
translation by M. E. Szabo, North-Holland
Publishing Company.

http://www.ags.uni-sb.de/~cp/p/hilbertbernays
http://www.ags.uni-sb.de/~cp/p/hilbertbernays
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php

References 267

[Geuvers et al, 2000] Geuvers, Herman, Wiedijk, Freek, Zwanenburg,
Jan, Pollack, Randy and Barendregt, Henk.
(2000). Theory development leading to the
Fundamental Theorem of Algebra, viewed 22
January 2010,
<http://www.cs.ru.nl/~freek/fta/>.

[Greenwald et al, 2003] Greenwald, Michael B., Moore, Jonathan T.,
Pierce, Benjamin C. and Schmitt, Alan.
(2003). A Language for Bi-Directional Tree
Transformations, Technical Report MS-CIS-
03-08, University of Pennsylvania.

[Grue, 2007] Grue, Klaus. (2007). The Layers of Logiweb. In
Kauers, Manuel, Kerber, Manfred, Miner,
Robert and Windsteiger, Wolfgang, (eds.),
Proceedings of the 6th International Confer-
ence on Mathematical Knowledge Manage-
ment (MKM), Hagenberg, Austria, Springer,
pp. 250-264.

[Hales, 2010] Hales, Thomas. (2010). The Flyspeck Project,
viewed 22 January 2010,
<http://code.google.com/p/flyspeck/>.

[Hedin, 1994] Hedin, Görel. (1994). An Overview of Door At-
tribute Grammars. In Fritzson, Peter, (ed.),
Proceedings of the 5th International Confer-
ence on Compiler Construction (CC), Edin-
burgh, UK, Springer, pp. 31-51.

[Hey, 2009] Hey, Thorsten. (2009). iMath - Ein Word Plugin
für Mathematische Assistenz-systeme, Ba-
chelorarbeit, Universität des Saarlandes,
Saarbrücken.

[Hilbert & Bernays, 1934] Hilbert, David and Bernays, Paul. (1934).
Grundlagen der Mathematik, Vol.1, Berlin,
Springer.

[Hilbert & Bernays, 1939] Hilbert, David and Bernays, Paul. (1939).
Grundlagen der Mathematik, Vol.2, Berlin,
Springer.

http://www.cs.ru.nl/~freek/fta/
http://code.google.com/p/flyspeck/

268 References

[Holland-Minkley et al, 1999] Holland-Minkley, Amanda M., Barzilay, Regina
and Constable, Robert L. (1999). Verbaliza-
tion of high-level formal proofs. In Proceed-
ings of the 16th National Conference on Artifi-
cial Intelligence and 11th Conference on In-
novative Applications of Artificial Intelligence
(AAAI), Orlando, Florida, USA, MIT Press,
pp. 277-284.

[Horozal & Rabe, 2009] Horozal, Fulya and Rabe, Florian. (2009). Rep-
resenting Model Theory in a Type-Theoretical
Logic Framework. In Ayala-Rincón, Mauricio
and Kamareddine, Fairouz, (eds.), Proceed-
ings of the 4th Workshop on Logical and Se-
mantic Frameworks, with Applications
(LSFA), Brasilia, Brazil, pp. 49-65.

[Huang, 1994] Huang, Xiarong. (1994). Human Oriented Proof
Presentation: A Reconstructive Approach,
PhD thesis, Saarland University.

[Hutter, 2000] Hutter, Dieter. (2000). Management of change in
verification systems. In Proceedings of the
15th IEEE International Conference on Auto-
mated Software Engineering (ASE), Grenoble,
France, IEEE Computer Society, pp. 23-34.

[ISO/IEC, 2006] ISO/IEC. (2006). Information Technology -
Open Document Format for Office Applica-
tions (OpenDocument) v1.0, International
Standards, ISO/IEC 26300:2006(E).

[ISO/IEC, 2008] ISO/IEC. (2008). Information Technology - Of-
fice Open XML Formats, International Stand-
ards, ISO/IEC 29500:2008.

[Jansson & Lingas, 2001] Jansson, Jesper and Lingas, Andrzej. (2001). A
fast algorithm for optimal alignment between
similar ordered trees. In Amir, Amihood and
Landau, Gad M., (eds.), Proceedings of the
12th Annual Symposium on Combinatorial
Pattern Matching (CPM), Jerusalem, Isreal,
Springer, pp. 232-240.

References 269

[Jaskowski, 1934] Jaskowski, Stanislaw. (1934). On the rules of
suppositions in formal logic, Studia Logica,
vol 1, pp. 5-32 (reprinted in: McCall, Storrs,
(ed.), Polish logic 1920-1939, pp. 232-258,
Oxford University Press, 1967).

[Jiang et al, 1994] Jiang, Tao, Wang, Lusheng and Zhang, Kai-
zhong. (1994). Alignment of trees - an alter-
native to tree edit. In Crochemore, Maxime
and Gusfield, Dan, (eds.), Proceedings of the
5th Annual Symposium on Combinatorial Pat-
tern Matching (CPM), Asilomar, California,
USA, Springer, pp. 75-86.

[Kamareddine & Nederpelt, 2004] Kamareddine, Fairouz and Nederpelt, Rob.
(2004). A Refinement of de Bruijn's Formal
Language of Mathematics. Journal of Logic,
Language and Information, vol 13, no. 3, pp.
287-340.

[Kamareddine et al, 2004] Kamareddine, Fairouz, Maarek, Manuel and
Wells, Joe B. (2004). MATHLANG: Experi-
ence-driven Development of a New Mathe-
matical Language. In Asperti, Andrea, Ban-
cerek, Grzegorz and Trybulec, Andrzej,
(eds.), Proceedings of the 3rd International
Conference on Mathematical Knowledge
Management (MKM), Bialowieza, Poland,
Springer, pp. 160-174.

[Kamareddine et al, 2007a] Kamareddine, Fairouz, Maarek, Manuel, Retel,
Krzysztof and Wells, Joe B. (2007). Narrative
Structure of Mathematical Texts. In Kauers,
Manuel, Kerber, Manfred, Miner, Robert and
Windsteiger, Wolfgang, (eds.), Proceedings
of the 6th International Conference on Math-
ematical Knowledge Management (MKM),
Hagenberg, Austria, Springer, pp. 296-312.

270 References

[Kamareddine et al, 2007b] Kamareddine, Fairouz, Lamar, Robert, Maarek,
Manuel and Wells, Joe B. (2007). Restoring
Natural Language as a Computerised Mathe-
matics Input Method. In Kauers, Manuel,
Kerber, Manfred, Miner, Robert and Wind-
steiger, Wolfgang, (eds.), Proceedings of the
6th International Conference on Mathematical
Knowledge Management (MKM), Hagenberg,
Austria, Springer, pp. 280-295.

[Kamp & Reyle, 1993] Kamp, Hans and Reyle, Uwe. (1993). From Dis-
course to Logic: Introduction to Modeltheo-
retic Semantics of Natural Language, Formal
Logic and Discourse Representation Theory,
Kluwer Academic Publisher.

[Kamprath et al, 1998] Kamprath, Christine, Adolphson, Eric, Mitamu-
ra, Teruko and Nyberg, Eric. (1998). Con-
trolled Language for Multilingual Document
Production: Experience with Caterpillar
Technical English. In Proceedings of the 2nd
International Workshop on Controlled Lan-
guage Applications (CLAW), Pittsburgh,
USA.

[Kaplan & Bresnan, 1981] Kaplan, Ronald and Bresnan, Joan. (1981). Lexi-
cal-functional Grammar: A Formal System
for Grammatical Representation. In Bresnan,
Joan, (ed.), The Mental Representation of
Grammatical Relations, Cambridge, MIT
Press.

[Kastens, 1980] Kastens, Uwe. (1980). Ordered attribute gram-
mars, Acta Informatica, vol 13, no. 3, pp. 229-
256.

[Kerber & Pollet, 2007] Kerber, Manfred and Pollet, Martin. (2007). In-
formal and Formal Representations in Math-
ematics. In Matuszewski, Roman and Zalew-
ska, Anna, (eds.), From Insight to Proof:
Festschrift in Honour of Andrzej Trybulec,
University of Bialystok, pp. 75-94.

References 271

[Kilpelainen & Mannila, 1995] Kilpelainen, Pekka and Mannila, Heikki. (1995).
Ordered and unordered tree inclusion, SIAM
Journal of Computing, vol 24, no. 2, pp. 340-
356.

[Klein, 1998] Klein, Philip N. (1998). Computing the edit-
distance between unrooted ordered trees. In
Bilardi, Gianfranco, Italiano, Giuseppe F.,
Pietracaprina, Andrea and Pucci, Geppino,
(eds.), Proceedings of the 6th Annual Europe-
an Symposium on Algorithms (ESA), Venice,
Italy, Springer, pp. 91-102.

[Knöll & Mezini, 2009] Knöll, Roman and Mezini, Mira. (2009). Π: A
Pattern Language. In Arora, Shail and Leav-
ens, Gary T., (eds.), Proceedings of the 24th
Annual ACM SIGPLAN Conference on Ob-
ject-oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), Orlan-
do, Florida, USA, ACM Press, pp. 503-522.

[Knuth, 1968] Knuth, Donald E. (1968). Semantics of context-
free languages, Theory of Computing Systems,
vol 2, no. 2, pp. 127-145.

[Knuth, 1969] Knuth, Donald E. (1969). The Art of Computer
Programming, Addison Wesley.

[Koepke & Schröder, 2003] Koepke, Peter and Schröder, Bernhard. (2003).
Natürlich formal. In Willee, Gerd, Schröder,
Bernhard and Schmitz, Hans-Christian, (eds.),
Computerlinguistik – Was geht, was kommt?
Computational Linguistics - Achievements
and Perspectives, St. Augstin, Gardez!-
Verlag.

[Koepke, 2007] Koepke, Peter. (2007). Gödel's completeness
theorem with natural language formulas. In
Müller, Thomas and Newen, Albert, (eds.),
Logik, Begriffe, Prinzipien des Handelns -
Logic, Concepts, Principles of Action, Pader-
born, mentis-Verlag, pp. 49-63.

272 References

[Kohlhase & Kohlhase, 2006] Kohlhase, Andrea and Kohlhase, Michael.
(2006). Communities of Practice in MKM:
An Extensional Model. In Borwein, Jonathan
M. and Farmer, William M., (eds.), Proceed-
ings of the 5th International Conference on
Mathematical Knowledge Management
(MKM), Wokingham, UK, Springer, pp. 179-
193.

[Kohlhase et al, 2009] Kohlhase, Michael, Lange, Christoph, Müller,
Christine, Müller, Normen and Rabe, Florian.
(2009). Notations for Active Mathematical
Documents. Technical Report, KWARC, Ja-
cobs University, Bremen, Germany.

[Kohlhase, 2000] Kohlhase, Michael. (2000). OMDOC: Towards
an Internet Standard for the Distribution and
Teaching of Mathematical Knowledge. In
Campbell, John A. and Roanes-Lozano, Eu-
genio, (eds.), Proceedings of the International
Conference on Artificial Intelligence and
Symbolic Computation (AISC), Madrid,
Spain, Springer, pp. 32-52.

[Kohlhase, 2006] Kohlhase, Michael. (2006). OMDOC: Open
Mathematical Documents, version 1.2,
Springer.

[Lamar et al, 2009] Lamar, Robert, Kamareddine, Fairouz and
Wells, Joe B. (2009). MATHLANG Translation
to Isabelle Syntax. In Carette, Jacques, Dixon,
Lucas, Sacerdoti Coen, Claudio and Watt,
Stephen M., (eds.), Proceedings of the 8th In-
ternational Conference on Mathematical
Knowledge Management (MKM), Grand
Bend, Canada, Springer, pp. 373-388.

[Lavie & Tomita, 1993] Lavie, Alon and Tomita, Masaru. (1993). GLR*
- An efficient Noise-skipping Parsing Algo-
rithm for Context Free Grammars. In Pro-
ceedings of the 3rd International ACM
SIGPARSE Workshop on Parsing Technolo-
gies (IWPT), Tilburg, The Netherlands, ACM
Press, pp. 123-134.

References 273

[Libbrecht et al, 2009] Libbrecht, Paul, Kortenkamp, Ulrich and Mercat,
Christian. (2009). Web-Library of Interactive
Geometry. In Sojka, Petr, (ed.), Proceedings
of the 2nd Workshop Towards a Digital Math-
ematics Library (DML), Grand Bend, Canada,
Masaryk University, pp. 95-106.

[Lin et al, 2001] Lin, Guo-Hui, Ma, Bin and Zhang, Kaizhong.
(2001). Edit distance between two RNA struc-
tures. In Lengauer, Thomas, Sankoff, David,
Istrail, Sorin and Peuvzner, Pavel, (eds.), Pro-
ceedings of the 5th International Conference
on Computational Biology (RECOMB), Mont-
réal, Québec, Canada, ACM Press, pp. 211-
220.

[Liu & Teitelbaum, 1995a] Liu, Yanhong A. and Teitelbaum, Tim. (1995).
Caching intermediate results for program im-
provement. In Scherlis, William, (ed.), Pro-
ceedings of the ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based
Program Manipulation (PEPM), La Jolla,
California, USA, ACM Press, pp. 190-201.

[Liu & Teitelbaum, 1995b] Liu, Yanhong A. and Teitelbaum, Tim. (1995).
Systematic derivation of incremental pro-
grams, Science of Computer Programming,
vol 24, no. 1, pp. 1-39.

[Liu et al, 1996] Liu, Yanhong A., Stoller, Scott D. and Teitel-
baum, Tim. (1996). Discovering auxiliary in-
formation for incremental computation. In
Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), St. Petersburg
Beach, Florida, USA, ACM Press, pp. 157-
170.

[Lyaletski et al, 2006] Lyaletski, Alexander, Paskevich, Andrey and
Verchinine, Konstantin. (2006). SAD as a
mathematical assistant - how should we go
from here to there?, Journal of Applied Logic,
vol 4, no. 4, pp. 560-591.

274 References

[Mamane & Geuvers, 2006] Mamane, Lionel E. and Geuvers, Herman.
(2006). A document-oriented Coq plugin for

TEXMACS. In Proceedings of the 2nd Work-
shop on Mathematical User Interfaces (MA-
THUI), Wokingham, Great Britain.

[Martelli & Montanari, 1982] Martelli, Alberto and Montanari, Ugo. (1982).
An Efficient Unification Algorithm, ACM
Transactions on Programming Languages
and Systems (TOPLAS), vol 4, no. 2, pp. 258-
282.

[Melis & Meier, 2000] Melis, Erica and Meier, Andreas. (2000). Proof
Planning with Multiple Strategies. In Lloyd,
John, Dahl, Veronica, Furbach, Ulrich, Ker-
ber, Manfred, Lau, Kung-Kiu, Palamidessi,
Catuscia, Pereira, Luís Moniz, Sagiv, Ye-
hoshua and Stuckey, Peter J., (eds.), Proceed-
ings of the 1st International Conference on
Computational Logic (CL), London, UK,
Springer, pp. 644-659.

[Melis & Siekmann, 1999] Melis, Erica and Siekmann, Jörg. (1999).
Knowledge-Based Proof Planning, Journal of
Artificial Intelligence, vol 115, no. 1, pp. 65-
105.

[Melis et al, 2008] Melis, Erica, Meier, Andreas and Siekmann,
Jörg. (2008). Proof planning with multiple
strategies, Journal of Artificial Intelligence,
vol 172, no. 6-7, pp. 656-684.

[Melis et al, 2009] Melis, Erica, Goguadze, George, Libbrecht, Paul
and Ullrich, Carsten. (2009). Culturally
Aware Mathematics Education Technology.
In Blanchard, Emmanuel and Allard, Danièle,
(eds.), The Handbook of Research in Cultur-
ally-Aware Information Technology: Perspec-
tives and Models, IGI-Global.

[Mellish, 1989] Mellish, Chris. (1989). Some chart-based tech-
niques for parsing ill-formed input. In
Hirschberg, Julia, (ed.), Proceedings of the
27th Annual Meeting on the Association for
Computational Linguistics (ACL), Vancouver,
British Columbia, Canada, ACL, pp. 102-109.

References 275

[Mossakowski et al, 2006] Mossakowski, Till, Autexier, Serge and Hutter,
Dieter. (2006). Development graphs - proof
management for structured specifications,
Journal of Logic and Algebraic Program-
ming, vol 67, no. 1-2, pp. 114-145.

[Mossel, 2005] Mossel, Eelco. (2005). A reference memory with
flexible rule-based functionality for anaphora
resolution, Diploma thesis, University of
Twente, Enschede, The Netherlands.

[Müller & Wagner, 2007] Müller, Normen and Wagner, Marc. (2007). To-
wards Improving Interactive Mathematical
Authoring by Ontology-driven Management
of Change. In Hinneburg, Alexander, (ed.),
Proceedings of Lernen – Wissen – Adaption
(LWA), Workshop Wissens- und Erfahrungs-
management (WM), Halle, Germany, Spring-
er, pp. 289-295.

[Nakagawa & Buchberger, 2001] Nakagawa, Koji and Buchberger, Bruno. (2001).
Presenting Proofs Using Logicographic Sym-
bols. In Proceedings of the 1st Workshop on
Proof Transformation and Presentation and
Proof Complexities (PTP), Siena, Italy.

[Nipkow et al, 2002] Nipkow, Tobias, Paulson, Lawrence C. and
Wenzel, Markus. (2002). Isabelle/HOL - A
Proof Assistant for Higher-Order Logic,
Springer.

[op den Akker et al, 1990] op den Akker, Rieks, Melichar, Borivoj and
Tarhio, Jorma. (1990). The hierarchy of LR-
attributed grammars. In Deransart, Pierre and
Jourdan, Martin, (eds.), Proceedings of the In-
ternational Conference on Attribute Gram-
mars and their Application (WAGA), Paris,
France, Springer, pp. 13-28.

[Padovani & Zacchiroli, 2006] Padovani, Luca and Zacchiroli, Stefano. (2006).
From Notation to Semantics: There and Back
Again. In Borwein, Jonathan M. and Farmer,
William M., (eds.), Proceedings of the 5th In-
ternational Conference on Mathematical
Knowledge Management (MKM), Woking-
ham, UK, Springer, pp. 194-207.

276 References

[Pereira & Warren, 1980] Pereira, Fernando and Warren, David. (1980).
Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a
Comparison with Augmented Transition Net-
works, Journal of Artificial Intelligence, vol
13, no. 3, pp. 231-278.

[Pereira & Warren, 1983] Pereira, Fernando and Warren, David. (1983).
Parsing as deduction. In Calzolari, Nicoletta,
(ed.), Proceedings of the 21st Annual Meeting
on the Association for Computational Lin-
guistics (ACL), Morristown, USA, ACL, pp.
137-144.

[Pfenning, 1999] Pfenning, Frank. (1999). Logical Frameworks. In
Robinson, John Alan and Voronkov, Andrei,
(eds.), Handbook of Automated Reasoning,
vol 2, Elsevier Science Publishers, pp. 1063-
1147.

[Pollard & Sag, 1994] Pollard, Carl and Sag, Ivan A. (1994). Head-
Driven Phrase Structure Grammar, Chicago,
University of Chicago Press.

[Radzevich, 2006] Radzevich, Svetlana. (2006). Semantic-based
diff, patch and merge for XML-documents,
Master thesis, Saarland University, Saar-
brücken.

[Ranta, 2004] Ranta, Aarne. (2004). Grammatical Framework:
A Type-Theoretical Grammar Formalism,
Journal of Functional Programming, vol 14,
no. 2, pp. 145-189.

[Repplinger et al, 2010] Repplinger, Michael, Löffler, Alexander, Schug,
Benjamin and Slusallek, Philipp. (2010). SO-
RA: a Service-Oriented Rendering Architec-
ture. In Latoschik, Marc Erich, Reiners, Dirk,
Blach, Roland, Figueroa, Pablo and Dachselt,
Raimund, (eds.), Proceedings of the 3rd Work-
shop on Software Engineering and Architec-
ture for Realtime Interactive Systems
(SEARIS), IEEE Virtual Reality, Waltham,
MA, USA, Shaker Verlag, pp. 25-32.

References 277

[Richter, 1996] Richter, Thorsten. (1996). A new measure of the
distance between ordered trees and its appli-
cations, Technical Report, Department of
Computer Science, University of Bonn.

[Richter, 1997] Richter, Thorsten. (1997). A new algorithm for
the ordered tree inclusion problem. In Apos-
tolico, Alberto and Hein, Jotun, (eds.), Pro-
ceedings of the 8th Annual Symposium on
Combinatorial Pattern Matching (CPM),
Aarhus, Denmark, Springer, pp. 150-166.

[Robinson, 1965] Robinson, John A. (1965). A Machine-Oriented
Logic Based on the Resolution Principle,
Journal of the ACM, vol 12, no. 1, pp. 23-41.

[Rönnau et al, 2009] Rönnau, Sebastian, Philipp, Geraint and Bor-
ghoff, Uwe. (2009). Efficient Change Control
of XML Documents. In Borghoff, Uwe M.
and Chidlovskii, Boris, (eds.), Proceedings of
the 9th ACM Symposium on Document Engi-
neering (DOCENG), Munich, Germany,
ACM Press, pp. 3-12.

[Ruddy, 2009] Ruddy, David. (2009). The Evolving Digital
Mathematics Network. In Sojka, Petr, (ed.),
Proceedings of the 2nd Workshop Towards a
Digital Mathematics Library (DML), Grand
Bend, Canada, Masaryk University, pp. 3-16.

[Rudnicki & Trybulec, 1999] Rudnicki, Piotr and Trybulec, Andrzej. (1999).
On Equivalents of Well-foundedness, Journal
of Automated Reasoning, vol 23, no. 3, pp.
197-234.

[Sacerdoti Coen & Zacchiroli, 2004] Sacerdoti Coen, Claudio and Zacchiroli, Stefano.
(2004). Efficient ambiguous parsing of math-
ematical formulae. In Asperti, Andrea, Ban-
cerek, Grzegorz and Trybulec, Andrzej,
(eds.), Proceedings of the 3rd International
Conference on Mathematical Knowledge
Management (MKM), Bialowieza, Poland,
Springer, pp. 347-362.

278 References

[Sacerdoti Coen & Zacchiroli, 2008] Sacerdoti Coen, Claudio and Zacchiroli, Stefano.
(2008). Spurious Disambiguation Errors and
How To Get Rid of Them, Journal of Mathe-
matics in Computer Science, vol 2, no. 2, pp.
355-378.

[Schiller et al, 2008] Schiller, Marvin, Dietrich, Dominik and Benz-
müller, Christoph. (2008). Proof step analysis
for proof tutoring – a learning approach to
granularity. Teaching Mathematics and Com-
puter Science, vol 6, no. 2, pp. 325-343.

[Schiller, 2010] Schiller, Marvin. (2010). Granularity Analysis
for Tutoring Mathematical Proofs, PhD thesis,
Naturwissenschaftlich-Technische Fakultät I,
Universität des Saarlandes, Saarbrücken,
Germany.

[Selkow, 1977] Selkow, Stanley M. (1977). The tree-to-tree edit-
ing problem, Information Processing Letters,
vol 6, no. 6, pp. 184-186.

[Shieber, 1988] Shieber, Stuart M. (1988). A Uniform Architec-
ture for Parsing and Generation. In Proceed-
ings of the 12th International Conference on
Computational Linguistics (COLING), Buda-
pest, Hungary, pp. 614-619.

[Shieber, 1993] Shieber, Stuart M. (1993). The Problem of Logi-
cal-Form Equivalence, Journal of Computa-
tional Linguistics, vol 19, pp. 179-190.

[Siekmann & Autexier, 2007] Siekmann, Jörg and Autexier, Serge. (2007).
Computer supported formal work: Towards a
digital mathematical assistant. In
Matuszewski, Roman and Zalewska, Anna,
(eds.), From Insight to Proof: Festschrift in
Honour of Andrzej Trybulec, University of
Bialystok, pp. 231-248.

References 279

[Siekmann et al, 2002] Siekmann, Jörg, Benzmüller, Christoph, Fiedler,
Armin, Meier, Andreas and Pollet, Martin.
(2002). Proof Development with ΩMEGA: √2
is irrational. In Baaz, Matthias and Voronkov,
Andrei, (eds.), Proceedings of the 9th Interna-
tional Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR),
Tbilisi, Georgia, Springer, pp. 367-387.

[Siekmann et al, 2006] Siekmann, Jörg, Benzmüller, Christoph and Aut-
exier, Serge. (2006). Computer supported
Mathematics with ΩMEGA, Journal of Applied
Logic, Special Issue on Mathematics Assis-
tance Systems, vol 4, no. 4, pp. 533-559.

[Siekmann, 1989] Siekmann, Jörg. (1989). Unification Theory,
Journal of Symbolic Computation, vol 7, no.
3-4, pp. 207-274.

[Smirnova & Watt, 2006] Smirnova, Elena and Watt, Stephen M. (2006).
Notation Selection in Mathematical Compu-
ting Environments. In Dumas, Jean-
Guillaume, (ed.), Proceedings of the 1st Con-
ference on Transgressive Computing (TC),
Granada, Spain, pp. 339-355.

[Smirnova & Watt, 2008] Smirnova, Elena and Watt, Stephen M. (2008).
Communicating Mathematics via Pen-Based
Computer Interfaces. In Negru, Viorel, Jebe-
lean, Tudor, Petcu, Dana and Zaharie, Dan-
iela, (eds.), Proceedings of the 10th Interna-
tional Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYN-
ASC), Timisoara, Romania, IEEE Computer
Society Press, pp. 9-18.

[Suzuki et al, 2009] Suzuki, Yu, Misue, Kazuo and Tanaka, Jiro.
(2009). Interaction Technique for a Pen-Based
Interface Using Finger Motions. In Jacko, Ju-
lie A., (ed.), Proceedings of the 13th Interna-
tional Conference on Human Computer Inter-
action, Part II: Novel Interaction Methods
and Techniques (HCI), San Diego, CA, USA,
Springer, pp. 503-512.

280 References

[Tai, 1979] Tai, Kuo-Chung. (1979). The tree-to-tree correc-
tion problem, Journal of the ACM, vol 26, no.
3, pp. 422-433.

[van der Hoeven, 2001] van der Hoeven, Joris. (2001). GNU TEXMACS: A
free, structured, WYSIWYG and technical
text editor, In Cahiers GUTenberg, no. 39-40,
pp. 39-50.

[Verchinine et al, 2008] Verchinine, Konstantin, Lyaletski, Alexander,
Paskevich, Andrei and Anisimov, Anatoly.
(2008). On Correctness of Mathematical
Texts from a Logical and Practical Point of
View. In Autexier, Serge, Campbell, John,
Rubio, Julio, Sorge, Volker, Suzuki, Masa-
kazu and Wiedijk, Freek, (eds.), Proceedings
of the 7th International Conference on Math-
ematical Knowledge Management (MKM),
Birmingham, UK, Springer, pp. 583-598.

[W3C, 1999] W3C. (1999). XML Path Language (XPath) Ver-
sion 1.0, viewed 22 January 2010,
<http://www.w3.org/TR/xpath>.

[W3C, 2001] W3C. (2001). Mathematical Markup Language
(MathML) Version 2.0, viewed 22 January
2010, <http://www.w3.org/TR/MathML2>.

[W3C, 2008] W3C. (2008). Extensible Markup Language
(XML) Version 1.0 (5th Edition), viewed 22
January 2010, <http://www.w3.org/TR/xml>.

[Wagner & Lesourd, 2008] Wagner, Marc and Lesourd, Henri. (2008). Us-

ing TEXMACS in Math Education: An explora-
tory Study. In Proceedings of the 4th Work-
shop on Mathematical User Interfaces (MA-
THUI), Birmingham, UK.

[Wagner & Müller, 2007] Wagner, Marc and Müller, Christine. (2007).
Towards Community of Practice Support for
Interactive Mathematical Authoring. In Pro-
ceedings of the 1st Workshop on Scientific
Communities of Practice (SCOOP), Bremen,
Germany.

http://www.w3.org/TR/xpath
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/xml

References 281

[Wagner et al, 2006] Wagner, Marc, Autexier, Serge and Benzmüller,
Christoph. (2006). PLATΩ: A Mediator be-
tween Text-Editors and Proof Assistance Sys-
tems. In Autexier, Serge and Benzmüller,
Christoph, (eds.), Proceedings of the 7th
Workshop on User Interfaces for Theorem
Provers (UITP), Seattle, USA, pp. 65-84.

[Wagner, 2007] Wagner, Marc. (2007). iMath - Exploratory
Study in Math Education, viewed 22 January
2010, <http://www.marcwagner.info/imath>.

[Wenger, 2005] Wenger, Etienne. (2005). Communities of Prac-
tice: Learning, Meaning, and Identity, Cam-
bridge University Press.

[Wenzel et al, 2008] Wenzel, Makarius, Paulson, Lawrence C. and
Nipkow, Tobias. (2008). The Isabelle Frame-
work. In Mohamed, Otmane Ait, Muñoz,
César and Tahar, Sofiène, (eds.), Proceedings
of the 21st International Conference on Theo-
rem Proving in Higher Order Logics
(TPHOLs), Montréal, Québec, Canada,
Springer, pp. 33-38.

[Wenzel, 2007] Wenzel, Markus. (2007). Isabelle/Isar - A gener-
ic framework for human-readable proof doc-
uments. In Matuszewski, Roman and Zalew-
ska, Anna, (eds.), From Insight to Proof:
Festschrift in Honour of Andrzej Trybulec,
University of Bialystok, pp. 277-298.

[Whitehead & Russell, 1910-1913] Whitehead, Alfred N. and Russell, Bertrand.
(1910-1913). Principia Mathematica, Cam-
bridge University Press.

[Wiedijk, 1998] Wiedijk, Freek. (1998). The De Bruijn Factor,
viewed 22 January 2010,
<http://www.cs.ru.nl/~freek/factor>.

[Wiedijk, 2000] Wiedijk, Freek. (2000). Estimating the costs of a
standard library for a mathematical proof
checker, viewed 22 January 2010,
<http://www.cs.ru.nl/~freek/notes/mathstdlib2
.pdf>.

http://www.marcwagner.info/imath
http://www.cs.ru.nl/~freek/factor/factor.pdf
http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf
http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf

282 References

[Wiedijk, 2003] Wiedijk, Freek. (2003). Formal Proof Sketches.
In Berardi, Stefano, Coppo, Mario and Dami-
ani, Ferruccio, (eds.), Proceedings of the In-
ternational Workshop on Types for Proofs
and Programs (TYPES), Torino, Italy,
Springer, pp. 378-393.

[Wiedijk, 2010] Wiedijk, Freek. (2010). Formalizing 100 Theo-
rems, viewed 22 January 2010,
<http://www.cs.ru.nl/~freek/100>.

[Wilhelm & Maurer, 1997] Wilhelm, Reinhard and Maurer, Dieter. (1997).
Übersetzerbau - Theorie, Konstruktion, Gene-
rierung, 2nd edn, Springer.

[Wilhelm, 1981] Wilhelm, Reinhard. (1981). A modified tree-to-
tree correction problem, Information Pro-
cessing Letters, vol 12, no. 3, pp. 127-132.

[Wilhelm, 1984] Wilhelm, Reinhard. (1984). Inverse currying
transformation on attribute grammars. In Pro-
ceedings of the 11th Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL), Salt Lake
City, Utah, USA, ACM Press, pp. 140-147.

[Wolska & Kruijff-Korbayová, 2004] Wolska, Magdalena and Kruijff-Korbayová,
Ivana. (2004). Analysis of Mixed Natural and
Symbolic Input in Mathematical Dialogs. In
Scott, Donia, (ed.), Proceedings of the 42nd
Annual Meeting on the Association for Com-
putational Linguistics (ACL), Barcelona,
Spain, ACL, pp. 25-32.

[XML:DB, 2000] XML:DB. (2000). XUpdate XML Update Lan-
guage, viewed 22 January 2010,
<http://xmldb-org.sourceforge.net/xupdate>.

[Yellin & Mueckstein, 1985] Yellin, Daniel M. and Mueckstein, Eva-Maria
M. (1985). Two-way translators based on at-
tribute grammar inversion. In Proceedings of
the 8th International Conference on Software
Engineering (ICSE), London, UK, IEEE
Computer Society Press, pp. 36-42.

http://www.cs.ru.nl/~freek/100/

References 283

[Yellin & Strom, 1988] Yellin, Daniel and Strom, Rob. (1988). INC: a
language for incremental computations. In
Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia,
USA, ACM Press, pp. 115-124.

[Zhang & Shasha, 1989] Zhang, Kaizhong and Shasha, Dennis. (1989).
Simple fast algorithms for the editing distance
between trees and related problems, SIAM
Journal of Computing, vol 18, no. 6, pp.
1245-1262.

[Zhang et al, 1992] Zhang, Kaizhong, Statman, Rick and Shasha,
Dennis. (1992). On the editing distance be-
tween unordered labeled trees, Information
Processing Letters, vol 42, no. 3, pp. 133-139.

[Zhang, 1995] Zhang, Kaizhong. (1995). Algorithms for the
constrained editing problem between ordered
labeled trees and related problems, Pattern
Recognition, vol 28, no. 3, pp. 463-474.

[Zimmer & Autexier, 2006] Zimmer, Jürgen and Autexier, Serge. (2006).
The MATHSERVE Framework for Semantic
Reasoning Web Services. In Furbach, Ulrich
and Shankar, Natarajan, (eds.), Proceedings
of the 3rd International Joint Conference on
Automated Reasoning (IJCAR), Seattle, USA,
Springer, pp. 140-144.

[Zinn, 2004] Zinn, Claus. (2004). Understanding Informal
Mathematical Discourse, PhD thesis, Univer-
sity of Erlangen-Nürnberg.

Index 285

Index

agenda .. 186

ambiguity resolution 223

communities of practice 224

redefining notations 224

reducing ambiguities 223

assertions .. 181

authoring integrated query language .. 239

change graph .. 91

active nodes Ο𝐶 91

change path cost 𝜉𝐶(𝑣) 93

change path 𝑝 92

change path script Δ(𝑝) 92

change paths 𝒴𝐶(𝑣) 92

goal node ∅ 92

minimal cost active nodes 𝛱𝐶 93

node size WC(𝑣) 92

optimal change path script Δ𝐶(𝑣) 92

path edges 𝐴𝐶(𝑝) 92

change graph search

algorithm ↪𝑆𝐸𝐴𝑅𝐶𝐻 96

completeness 97

soundness ... 97

termination 97

change script ℂΣ𝑆(𝐷1, 𝐷2) 59

change script modulo ℂΣ𝑆(𝐷1, 𝐷2, Θ) ... 79

change-oriented architecture 40

adapter pattern 47

bridge pattern 47

chain of responsibility pattern 47

change management 40

command pattern 48

conflict resolution 50

decorator pattern 47

façade pattern 47

lock prevention 50

mediation module 42

mediator pattern 48

memento pattern 48

observer pattern 48

read-write lock pattern 48

transformation integrity 50

consistency criterion 149

dynamic check 150

static check 150

constraint .. 121

evaluation ↪𝐸𝑉𝐴𝐿 145

constraint-variable 134

controlled mathematical language 228

critical tree pairs 74

size WTP ... 77

tree layer pairs 𝑇𝐿𝑃(𝐷1, 𝐷2) 77

tree pairs 𝑇𝑃(𝐷1, 𝐷2) 77

development graphs 181

differencing .. 98

algorithm ↪𝐷𝐼𝐹𝐹 98

completeness 99

soundness ... 99

termination 99

document .. 24

attribute .. 24

286 Index

comment ... 24

element ... 24

serialization 25

text .. 24

edit costs... 60

costs of an edit operation 𝜉(𝛿) 61

costs of an edit script 𝜉(Δ) 61

delete payload Υ; 66

delete weight W; 60

insert payload Υ: 66

insert weight W: 60

weights 𝒲 .. 60

edit granularity 62

edit limitation Σ𝐿 62

edit operations 29

append 𝛿𝐴(𝐷𝑥⃗⃗ ⃗⃗ , 𝑙, ,𝐷1, … , 𝐷𝑛-) 29

application ⟦𝛿⟧𝐷 33

delete 𝛿𝐸(𝐷𝑥⃗⃗ ⃗⃗) 29

insert 𝛿𝐼(𝐷𝑥⃗⃗ ⃗⃗ , ,𝐷1, … , 𝐷𝑛-) 29

path ... 29

replace 𝛿𝑅(𝐷𝑥⃗⃗ ⃗⃗ , 𝐷1) 29

trees deleted Ψ;𝛿 34

trees inserted Ψ:𝛿 34

edit script .. 33

filter by target Δ(𝐷𝑘⃗⃗ ⃗⃗ ⃗),Δ|𝐷𝑘⃗⃗ ⃗⃗ ,Δ|(𝐷𝑘⃗⃗ ⃗⃗ , 𝑙) 33

filter by type Δ𝐸,Δ𝐼,Δ𝑅,Δ𝐴 33

edit specification ΣE = (Σ𝑊, Σ𝐿) 63

edit weight Σ𝑊 = (W;,W:) 60

environment 135

expanding critical tree pairs 88

algorithm ↪𝐸𝑋𝑃𝐴𝑁𝐷 88

correctness .. 89

optimality ... 90

exploratory study 193

authoring behavior 195

concluding steps 198

formula verbalization 196

justifications 199

linguistic aspects 196

style of sentences 197

extended semantic equality

𝐷1 =(ΣS,Σ𝑉) 𝐷2 118

extended semantic similarity

𝐷1 ≅(ΣS,Σ𝑉) 𝐷2 119

extensible tree matching mapping

𝒠(𝐷1,𝐷2)
𝑃 ... 76

feedback annotations 238

function .. 18

composition 𝑓 ∘ 𝑔 19

set of all bijective functions 𝔉𝐴⟷𝐵𝜏 .. 19

set of all mappings 𝔐𝐴⟷𝐵
𝜏 19

generating change scripts modulo

algorithm ↪𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸 86

correctness 86

optimality ... 87

graph .. 21

circuit ... 21

path .. 21

walk .. 21

incremental constraint evaluation 123

algorithm ↪𝑆𝐴𝑇 123

completeness 126

soundness 125

termination 124

Index 287

incremental matching mapping 137

algorithm ↪𝐼𝑁𝐶𝑀𝐴𝑃 137

incremental proof verification 233

incremental semantic equality

𝐷𝑥 =⃗⃗ (Σ𝑆,𝛼) 𝐷𝑦 138

incremental translation 140

algorithm ↪𝐼𝑁𝐶𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 140

termination 149

inference ... 181

inverse consistency criterion 155

dynamic check 155

static check 155

inverse translation 154

correctness 157

termination 154

invertible grammar 131

inversion ↪𝐼𝑁𝑉𝐺𝑅𝐴𝑀𝑀𝐴𝑅 153

rule invocations ℳ 131

rules 𝒭 .. 131

validity ... 132

invertible grammar rule 131

environment inheritance 𝑖 131

input pattern 𝑃𝑖𝑛 131

inversion ↪𝐼𝑁𝑉𝑅𝑈𝐿𝐸𝑆 152

invocations 𝑀 131

label 𝑙𝑟 .. 131

matching ↪𝑀𝐴𝑇𝐶𝐻 143

output pattern 𝑃𝑜𝑢𝑡 131

postconditions 𝐶𝑝𝑜𝑠𝑡 131

preconditions 𝐶𝑝𝑟𝑒 131

processing ↪𝑃𝑅𝑂𝐶𝐸𝑆𝑆 140

recursive rule invocation ↪𝐼𝑁𝑉𝑂𝐾𝐸 146

result combination ↪𝐶𝑂𝑀𝐵𝐼𝑁𝐸 147

invertible grammar rule invocation ... 131

input pattern 𝑃𝑖 131

inversion ↪𝐼𝑁𝑉𝐼𝑁𝑉𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑆 152

label 𝑙𝑚 .. 131

output pattern 𝑃𝑜 131

rule label 𝑙𝑟 131

labeled tree ... 22

direct subtree layer 𝒞𝑙(𝑡) 22

left siblings 𝑆𝐿(𝐷𝑖) 22

right siblings 𝑆𝑅(𝐷𝑖) 22

tree label 𝐿(𝑇) 22

layer edit scripts 84

closed edit operations 85

generation ↪𝐷𝐸𝐿𝑇𝐴 84

matching mapping 85

limited change script 𝕃Σ𝑆
ΣE(𝐷1, 𝐷2) 64

limited change script modulo

𝕃Σ𝑆
ΣE(𝐷1, 𝐷2, Θ) 81

management of change 219

adjusting invertible grammars 220

computing optimal changes 221

determining notational changes 219

notational refactoring 222

mapping condition 𝜙(𝑓, 𝑃) 53

matching mappings Ω𝑉1↔𝑉2
P 53

mathematical authoring assistance 180

maximal partial matching mappings

ϖ𝑉1↔𝑉2
P .. 75

maximal partial tree matching mapping

ℳ(𝐷1,𝐷2)
𝑃 .. 75

288 Index

meta-variable...................................... 134

evaluation ↪𝑀𝐸𝑇𝐴 135

multi-conclusion sequents 181

optimal change script 𝕆Σ𝑆
ΣE(𝐷1, 𝐷2) 64

optimal change script modulo

𝕆Σ𝑆
ΣE(𝐷1, 𝐷2, Θ) 82

order ... 19

parse tree extensions 𝒳 = (𝜃, 𝜎, 𝛷) .. 139

partial matching mappings ω𝑉1↔𝑉2
P 74

pattern .. 131

set of all patterns 𝒬 131

proof data structure 186

proof sketch .. 181

proof step ... 186

assumption 187

cases ... 189

complex .. 189

decompose 188

fact .. 186

goal ... 187

lifting .. 190

set ... 188

subgoals .. 188

trivial .. 188

relation ... 18

restricted change graph 94

extension ↪𝐸𝑋𝑇𝐸𝑁𝐷 95

soundness of extension 96

semantic annotation language 206

self-extensibility 207

semantic equality 𝐷1 =ΣS 𝐷2 55

semantic equality modulo 𝑡1 =ΣS
Θ 𝑡2 78

semantic hash indexing 133

function ℋ 133

hash value 133

hash-variables 𝒱𝐼 133

semantic representation language 183

semantic similarity 𝐷1 ≅ΣS 𝐷2 58

semantic similarity modulo 𝑡1 ≅ΣS
Θ 𝑡2 . 78

sequence ... 20

adding element 𝑠1 ⋆ 𝑆 20

cardinality |𝐴| 20

concatenation 𝑆 ∷ 𝑆′ 20

contiguous subsequence 𝑆′ ⋐ 𝑆 20

empty sequence , - 20

subsequence 𝑆′ ⊑ 𝑆 20

set ... 18

cardinality |𝐴| 18

cartesian product 𝐴 × 𝐵 18

difference 𝐴\𝐵 18

empty set ∅ 18

intersection 𝐴 ∩ 𝐵 18

powerset 𝒫(𝐴) 18

subset 𝐴 ⊆ 𝐵 18

union 𝐴 ∪ 𝐵 18

similarity keys Σ𝐾 52

similarity order Σ𝑂 52

similarity specification ΣS = (Σ𝑂 , Σ𝐾) . 52

substitution ... 120

addition 𝛾1⊕𝛾2 121

application ↪𝐴𝑃𝑃𝐿𝑌 120

grounded .. 121

subtraction 𝛾1⊝𝛾2 121

sugaring and souring 215

Index 289

list manipulations 218

re-ordering 215

sharing and chaining 215

synthesizing grammar rules 210

processing definitions 212

processing documents 214

processing notations 212

processing theories 214

task ... 186

transformation pipeline 204

transformation trace 142

inversion ↪𝐼𝑁𝑉𝑇𝑅𝐴𝐶𝐸𝑆 153

translation ... 139

algorithm ↪𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 139

termination 148

tree .. 21

children .. 21

depth ... 21

leaves .. 21

parent .. 21

root ... 21

set of all direct subtrees 𝒞(𝑇) 22

set of all subtrees 𝒮(𝑇) 22

siblings ... 21

tree alignment distance 27

tree edit distance 27

tree inclusion .. 27

tree key matching mappings 𝒦(𝐷1,𝐷2)
𝑃 .. 58

tree matching mappings 𝒯(𝐷1,𝐷2)
𝑃 54

tree-to-tree correction problem 27

unifier ... 122

most general unifier 122

set of most general unifiers Θ 122

valid edit script 35

application ↪𝑃𝐴𝑇𝐶𝐻 38

confluence of variants 39

difference Δ1⊟Δ2 37

sequentiality 37

trees deleted Ψ;Δ 36

trees inserted Ψ:Δ 36

union Δ1⊞Δ2 36

variants ... 38

variable .. 116

mapping ↪𝑉𝐴𝑅𝑀𝐴𝑃 145

matching range Λ 116

negative filter 𝑍; 116

positive filter 𝑍: 116

set of all variables 𝒱 116

specification Σ𝑉 = (𝑍:, 𝑍;, Λ) 116

subtree variables 𝑣𝑎𝑟𝑠(𝑌) 116

valid matching partner ↪𝑀𝐴𝑃 117

