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Abstract 

We shall consider an application in mechanical engineering, and shall 
show that the adequate modeling of the terminology of this problem do­
main in a conventional concept language poses two main representation 
problems. The first requires access to concrete domains, such as real num­
bers, while the second asks for a construct which can be used to represent 
sequences of varying length . As shown in recent papers by the authors 
there exist extended concept languages- equipped with sound and com­
plete reasoning algorithms- that satisfy the respective representation de­
mands separately. 

The main result presented in this paper is that the combination of both 
extensions leads to undecidable terminological inference problems. In par­
ticular, the important subsumption problem is undecidable. It should be 
noted that the need for these extensions is not particular to the consid­
ered problem domain ; similar representation demands are likely to occur 
in other non-toy applications . 
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1 Introduction 

Concept languages based on KL-ONE [Brachman and Schmolze, 1985J are mostly 
used to represent the terminological knowledge of a particular problem domain 
on an abstract logical level. To describe this kind of knowledge, one starts with 
atomic concepts and roles, and defines new conc )ts using the operations pro­
vided by the language. Concepts can be considere~' as unary predicates which 
are interpreted as sets of individuals, and roles as binary predicates which are in­
terpreted as binary relations between individuals. Examples for atomic concepts 
may be Human and Fem ale, and for roles child. If the logical connective conjunc­
tion is present as language construct, one may describe the concept Woman as 
"humans who are female", and represent it by the expression Hu man n Female. 
Many languages provide quantification over role fillers which allows for example 
to describe the concept Mother by the expression Woman n :lch ild .Human. 
KL-ONE was first developed fo r the purpose of natural language processing [Brach­
man et ai., 1979], and some of the existing systems are still mostly used in this 
context (see e.g., SB-ONE [Kobsa, 1989]). However, its success in this area has 
also led to applications in other fields (see e.g., MESON [Edelmann and Owsnicki, 
1986J which is used for computer configuration tasks, CLASSIC [Borgida et ai., 
1989J which is e.g. used for retrieval in software information systems, or K-REP 
[Mays et at., 1987; Mays et at., 1988] which is used in a financial marketing 
domain). 
In this paper we shall investigate how concept languages can be used in a me­
chanical engineering domain. More precisely, we shall consider the representation 
of concepts that are related to lathe workpieces. We shall describe this applica­
tion in more detail in Section 2. There it will be pointed out that the adequate 
formalization of these concepts demands two substantial extensions of conven­
tional concept languages. On the one hand, reference to concrete notions such 
as real numbers is mandatory to represent, for example, the geometric aspects of 
a lathe workpiece. On the other hand, the abstraction in this domain requires 
to describe classes of lathes which are sequences of geometric primitives. These 
sequences have a finite , but varying and not a priori bounded length. 
The extensions needed to satisfy these demands have separately been considered 
in recent papers by the authors . Section 4 summarizes the schematic extension 
by concrete domains proposed in [Baader and Hanschke, 1991J. An instantiation 
of this scheme appropriate for representing the geometric aspects in our problem 
domain is obtained by taking the concrete domain "real numbers." In Section 5 
we recall the extension of a conventional concept language by a transitive closure 
operator as proposed in [Baader, 1991J. This can be used to deal with the varying 
length aspect. Both papers not only introduce the extended formalisms, but also 
describe decision procedures for the common terminological inference problems 
such as subsumption. 
In contrast to these positive results we shall show in the present paper (Section 6) 
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that the subsumption problem in a concept language combining both extensions 
is undecidable. The paper concludes with some remarks on how this a lgorithmic 
problem can be circumvented in a hybrid knowledge representation architf'cture. 
As the common base for both extensions the concept language A.cCF is intro­
duced in Section 3. It provides abstract concept-forming operators as tlsed in the 
introductory examples above. 

2 Motivation and Problem Domain 

As already mentioned, the domain we want to consider is production plallnillg 
for CNC lathe machines. More precisely, our work has been motivated by the 
following application: 

Given the geometry of a rotational-symmetric workpiece, generate ab­
stract NC macros for turning the workpiece on a CNC lathe machine. 

Reasoning in this app li cation follows a scheme (Figure 1) that is inspired by 
William J. Clancey's hW1'istic classification: The input to the system is a CAD 
drawing describing the workpiece in terms of primitive surfaces and basic tech ­
nological data. The abstraction phase generates a schematic description of the 
workpiece in terms of (CAD/CAM) jeatU1'es [Klauck et al., 1991]. Such features 
are often associated with parts of the workpiece that are characteristic with r('­
spect to how these parts (or the whole lathe) may be manufactured. The secolld 
phase associates skeletal (production) plans to the features (i.e. to the nodes ill 
the feature DAG). Finally, the third phase refines and merges the skeletal plans 
to a complete numerical control (NC) program. 

association 
feature DAG • skeletal plan 

jabs/raC/ion rejinemen\ 

CAD drawing NC program 

Figure 1: Planning Scheme Figure 2: A Truncated Cone 

This problem domain requires, among other things, the representation of ge­
ometric primitives used in the CAD drawing and of technological data of the 
workpiece. It also contains the features which characterize the workpiece. If this 
could be done with a concept language, the abstraction phase cou ld be mapped 
naturally into a terminological framework: 

• Arrange the features represented as concepts in a generalization hierarchy 
using the subsumption service of the terminological system . 

• Represent a particular CAD drawing of the workpiece with its geometric 
and technological information as instances of appropriate concepts. 
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• Employ the so-called realization service [Nebel, 1990] to compute the most 
specific concepts that apply to the part icular lathe. T he features corre­
sponding to these concepts are then the output of the abstraction phase to 
which the skeletal plans can be associated. 

However it is easy to see that conventional concept languages cannot be used to 
adequately represent this problem domain. Consider for example the concept of 
a truncated cone (see Figure 2). Since we consider geometric objects as fixed to 
an axis, a truncated cone can be characterized by four real numbers, two for its 
radii and two for the corresponding centers. But of course not all quadruples of 
rational numbers represent a truncated cone. So we have to restrict the values 
such that the radii are positive. In addition, one has to exclude cases where 
the truncated cone degenerates to a line, a circle, or even a point. It seems to 
be impossible to represented this using only "abstract" concept terms without 
reference to predicates over, for example, real numbers, which shows the need for 
an integration of concrete domains. 
Another problem is due to the fact that one has to describe classes of lathes which 
are sequences of geometric primitives . The problem is that these sequences have 
a finite, but varying and not a priori bounded length . It is quite simple to define 
concepts for features such as 

' 1 truncated cone', '2 truncated cones', 

Assume, for example, that the following two concepts are already defined: Truncone, 
which stands for the class of truncated cones, and Neighboring , which character­
izes when two truncated cones fit together. We shall see later how these concepts 
could be defined using our firs t extension. Then the mentioned sequence of con­
cepts can be defined as follows : 

One :l head .Truncone n Vtail.Bottom 
Two :lhead .Tru ncone n :ltail.One n Neighboring 

But it remains the problem to represent the most specific generalization (union) 
of these infinitely many features (concepts). The resulting concept could be 
termed a 'sequence of neighboring truncated cones' . It should be noted that 
its specialization 'ascending sequence of truncated cones' (see the definition in 
Section 6) is essential for characterizing the production classes of lathes. In 
Section 6 we shall give a formal representation of the kind of sequences exemplified 
in the figure . 

3 The Concept Language ALCF 

This section introduces the language ALeF as a prototypical conventional con­
cept language. It will be the starting point for the two extensions described in 
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the next two sections. 

D e fi nit ion 3.1 (syntax of ACeF) Concept terms are built Fom concept, mle, 
and attribute1 names using just the concept-f07'ming operators 

negation (--,G) , disjunction (G U D) , conjunction (G n D) , 
exists-in restriction (3R.G) , and value rest riction 01 R .G) . 

Here G and D are syntactic variables for concept terms and R is a TOle 07' attribute 

name. 
Let A be a concept name and let D be a concept term. Then A = D is a termino­
logical axiom. A terminology (T-box) is a finite set T of terminological a.7:ioms 
with the additional restrictions that (i) no concept name appea7'S more than once 
as a left hand side of a definition , and (ii) T contains no cyclic definilions.2 

Please note that the exists-in and the value rest rictions are not only defined for 
roles but also for attributes. The next definition gives a model-theoretic semanti cs 
for the language introduced in Definition 3.1. 

Definition 3.2 (semantics of ACeF) An interpretation I for AceF consists 
of a set dom(I) and an inte7'pretation function. The inte7'prelalion funci 'ion 
associates with each concept name A a subset AI of dom(I) , with each role name 

R a bina7'y relation RI on dom(I), i. e., a subset of dom(I) x dom(I), and with 
each attribute name f a partial function fI from dom(I) into dom(I). 
For such a partial function fI the expression fI (x) = y is sometimes w'rilten 
as (x, y) E fl. The interpretation function - which gives an inle'rpretation f07' 
atomic terms - can be extended to arbitrary concept te7'ms as follows: Let G and 
D be concept terms and let R be a role or attribute name. Assume that G I and 
DI are already defined. Then 

1. (G U D)I = G I U D I , (G n D)T = G I n D I , and (--,G)I = dom(I) \ G I , 

2. (VR.G)I = {x E dom(I); for all y such that (x , y) E RI we have y E GI } 
and 
(3R.G)I = {x E dom(I); there exists y such that (x,y) E RI and y E G I } 

A n interpretation I is a model of the T-box T iff it satisfies AI = DI for all 
terminological axioms A = D in T. 

An important service terminological representation systems provide is computing 
the subsumption hierarchy, i.e., computing the subconcept-superconcept relation­
ships between the concepts of a T-box. This inferential service is usually called 
classification. The model-theoretic semantics introduced above allows the follow­
ing formal definition of subsumption. 

ITo avoid confusion with the 'CAD/CAM features' of the application domain we refer to 
the functional roles as attributes and not as features as, e.g., in [Baader and Hanschke , 1991]. 

2See [Nebel, 1989; Baader, 1990] for a treatment of cyclic definitions in concept languages. 
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Definition 3.3 (subsumption) Let T be a T-box and let C, D be concept 
terms. Then D subsumes C with respect to T iff CI ~ DI holds for all models 
I ofT. 

In addition to the formalism defined so far, terminological systems usually provide 
for an assertional component, and corresponding reasoning services [Nebel, 1990]. 
Because of the space limitations we shall not address this aspect in the present 
paper. 

4 Integrating Concrete Domains 

In this section we introduce a formalism that is capable to deal with the first 
representational problem mentioned in the introductory sections. Before we can 
define this extended language, we have to formalize the notion "concrete domain" 
which has until now only been used in an intuitive sense. 

Definition 4.1 A concrete domain V consists of a set dom(V), the domain of 
V, and a set pred(V) , the predicate names of V . Each predicate name P is 
associated with an arity n , and an n-ary predicate p1) ~ dom(v)n. 

An important example for our application is the concrete domain R of real arith­
metic. The domain of R is the set of all real numbers, and the predicates of 
R are given by formulae which are built by first order means (i.e., by using 
logical connectives and quantifiers) from equali ties and inequalities between in­
teger polynomials in several indeterminates. 3 For example, x + Z2 = Y is an 
equality between the polynomials p(x,z) = x + Z2 and q(y) = y; and x > y 
is an inequality between very simple polynomials. From these equalit ies and 
inequalities one can e.g. build the formulae 3z( x + Z2 = y) and 3z( x + Z2 = 
y) V (x > y) . The first formula yields a predicate name of arity 2 (since it 
has two free variables ), and it is easy to see that the associated predicate is 
{( 1', s); l' and s are real numbers and l' S; s} . Consequent ly, the predicate asso­
ciated to the second formula is {(r, s); l' and s are real numbers} = dom(R) x 
dom(R). 
To get inference algorithms for the extended concept language which will be 
introduced below, the concrete domain has to satisfy some addit ional properties. 
For technical reasons we have to require that the set of predicate names of the 
concrete domain is closed under negation, e.g. , if P is an n-ary predicate name 
in pred(V) then there has to exist a predicate name Q in pred(V) such that 
Q1) = dom(Vt \ p1). In addition, we need a unary predicate name which denotes 
the predicate dom(V). 

3For the sake of simplicity we assume here that the formula itself is the predicate name. In 
applications, the user will probably take his own intuitive names for these predicates. 
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The property which will be formulated now clarifies what kind of reasoning mech-
anisms are required in the concrete domain. Let PI, ... , Pk be k (not necessarily 
different) predicate names in pred(D) of arities n1, ... , nk. We consider the con-
junction 

i=l 

Here .:f(i) stands for an ni-tuple (X~i), ... , x~.)) of variables. It is important to note 
that neither all variables in one tuple nor those in different tuples are assumed 
to be distinct. Such a conjunction is said to be satisfiable iff there exists an 
assignment of elements of dom(D) to the variables such that the conjunction 
becomes true in D. 
For example, let P1(x,y) be the predicate :3z(x +::;2 = y) in pred(R), alld IcL 
P2 (x,y) be the predicate x > y in pred(R). Obviously, neither the conjunction 
H(x,y) 1\ P2(x,y) nor P2(X,X) is satisfiable. 

Definition 4.2 A concrete domain D is called admissib le if] (i) the set oj its 
p1'edicate names is closed under negation and contains a name J01' dom(D), and 
(ii) the satisfiability problem J01' finite conjunctions oj the above mentioned Jorm 
is decidable. 

The concrete domain R is admissible. This is a con. f'quence of Tarski's de­
cidability result for real arithmetic [Tarski, 19.51; Collin s, 1975J. However, for 
the linear case (where the polynomials in the equalities and inequalities have 
to be linear) there exist more efficient methods (see e.g. [Weispfenning, 1988; 
Loos and Weispfenning, 1990]). We are now ready to define the extension 
A£CF(D) of A£CF which is parametrized by an admissible concrf'te domain 
D. 

Definition 4.3 (A£CF(D)) The concept Jormalism oj A£CF is extended by 
one new construct, called predicate restriction. Assume that J1' ... , f mare m > 0 
attributes. Then fl ... fm is called an attribute chaining. IJ U1, ... ,Un are at-
tribute chainings and P is an n-ary concrete predicate then P( U1 , ... ,un) (pred-
icate restriction) is a concept term. 
The only differences between interp1'etations I oj A£CF(D) and ALe F a1'e: 

• The abstract domain dom(I) is required to be disjoint to dom(D) . 

• Attributes f are interpreted as partial functions fI : dom(I) -----t dom(I) U 

dom(D). They establish the link between the abstract and the concrete do­
mazn. 

The semantics oj the predicate restriction is defined as 

P(U1, ... , un)I = {x E dom(I); there exist 1'1, ... , rn E dom(D) such that 
uf(x) = r1""'U~(x) = rn and (r1, ... ,rn) E pD}. 
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Here the application of the interpretation function to the attribute chainings Ui is 
the composition of the respective partial functions . 

Under the assumption that the concrete domain is admissible [Baader and Han­
schke, 1991J describes sound and complete algorithms for all reasoning services for 
this extended language that are usually provided for terminological systems. In 
particular, for two concept terms C and D and a terminology T over A£CF(D ) 
it is decidable whether C subsumes D w.r.t. T . The basic algorithm relies on 
a form of tableaux calculus and is an extension of the procedures in [Schmidt­
SchauB and Smolka, 1991; Hollunder et al., 1990; Hollunder, 1990; Donini et al. , 
1991J that have been designed for concept languages without a concrete domain. 
The following sample terminology shows how a part of the problem domain of 
lathes can be formali zed using A £CF (R ). 

Bottom 
Truncone 

Ascend 
Cylinder 

Neighboring 

Last 
One 
Two 

An -,A 
tru ncone-condition (r1' r2, C1 , C2) 
Truncone n (r1 ~ r2) 
Truncone n (r1 = r2) 
3head .Truncone n 3tail.3head .Truncone n 
(head r2 = tail head r1) n (head C2 = tail head C1) 
Vtail. Bottom 
3 head.Truncone n Last 
3 head.Truncone n 3tail.One n Neighboring 

In this terminology r}, r2, C1, C2, head , and tail are attributes . The A is an arbitrary 
concept name used to define the empty concept Bottom. The concrete predicate 
truncone-condition restricts the attribute fi llers for r1, r2, C1, and C2, according to 
the requirements mentioned in Section 2. For the concrete predicates = and < 
we have used infix notat ion to increase readabi lity. The expression 

(head r2 = tail head rd n (head C2 = tail head cd 

in the definition of Neighboring ensure that the 'right' co-ordinates of the 'left' 
truncated cone coincide with the ' left' co-ordinates of the 'right' truncated cone. 

5 Adding Transitive Closure 

This section introduces an extension A£CF * of A£CF that can satisfy the de­
mands of the problem domain for representing concepts which contain objects 
that are sequences of finite but previously unknown length (varying length as­
pects). The basic idea of this extension is to allow role and attribute terms 
in value-restrictions and exists-in restrictions instead of just allowing role and 
attribute names as in A £ CF . 
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Definition 5.1 (syntax of A.cCF*) The role/attribute terms are built from 1'Ole 
and attribute names with 

union (R US) , composition (R 0 S), and transitive closure (trans(R)) 

of roles and atl7'ibutes. Concept terms in A.cCF* are defined as in A.cCF with 
the only difference that role/at17'ibute te1'ms can be used in valu e-restrictions and 
exists-in 'res17'ictions. 

For example, a sequence of truncated cones can be defined as follows: 

Sequence = 3head.Truncone n Vtrans(tail).3head.Truncone 

Since A.cCF* provides no concrete domains Truncone is a primitive (i.e., flot 
further defined) concept in this terminology and we have not expressed that the 
truncated cones are neighboring. 

Definition 5.2 (semantics of A.cCF*) The inte1']J1'etalion can be easily e:rlended 
to attribute/role terms in the obvious way: RU ST = RT U ST, Ro 8 T = {( x, y); 3 z : 
(x,z) E RT and (z,y) EST}, and trans(R)I := Un21 (RTt. 

In [Baader, 1991] it is shown that for A.ce (i.e., A.cCF* without attributes) the 
subsumption problem is decidable. A close look at the algorithm for A.ce (which 
is much too complex to be sketched here) reveals that the result also holds for 
A.cCF*, that means, for concept terms C, D and a terminology T over A.cCF* 
(with attributes and roles) it is decidable whether C subsumes D. 

6 Combining the Extensions 

Up to now we have considered two different extensions of our base language 
A.cCF: The extension by concrete domains and the extension by role/attribute 
terms involving transitive closure. Now we consider the language A.cCF*(V) 
which we obtain if we combine both extensions . 
As mentioned in the introductory sections we should like to have both represen­
tational facilities available to solve our representation problems. With n as the 
concrete domain this language is expressive enough to define concepts that are of 
great importance in our application domain, such as a 'sequence of neighboring 
truncated cones' (Seq-tc) and its specialization 'ascend ing sequence of truncated 
cones' (Aseq-tc): 

Seq-tc 

Aseq-tc 

Sequence n (Last U Neighboring) n 
Vtrans(tail) .( Last U Neighboring) 
Seq-tc n Vhead.Ascend n Vtrans(tail) 0 head.Ascend 
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where the other concepts are as in the sample terminology of Section 4. 
The price we have to pay for this expressiveness is that we cannot decide in 
general whether a concept C subsumes a concept D in this language. 
This will be shown by reducing the Post Correspondence Problem to the sub­
sumption problem for this language. The reduction will use only very simple 
predicates from real arithmetic, namely equalities between linear polynomials in 
at most two variables. 
First, we recall the definition of the Post Correspondence Problem. Let ~ be 
a finite alphabet. A Post COllespondence System (PCS) over ~ is a nonempty 
finite set S = {(ii, Ii); i = 1, ... , m} where the Ii, 'i are words over ~. A non empty 
sequence 1 :S i1 , ••• , in :S m is called a solution of the system S iff Ii} ... lim = 
' i } ... lim' It is well-known that the Post Correspondence P,oblem, i.e., the ques­
tion whether there exists a solution for a given system, is in general undecidable 
if the alphabet contains at least two symbols [Post, 1946]. 
A solution of a PCS is a sequence of pairs of words with a previously unknown 
size. The varying size is represented with the help of the transitive closure on 
the abstract level, whereas, the words and their concatenation is modeled by 
predicates of the concrete domain R over real numbers. 
The words are encoded into R as follows. For B := I~I + 1 we can consider 
the elements of ~ as digits 1,2, ... , B-1 of numbers represented at base B. For 
a given nonempty word w over I: we denote by w the nonnegative integer (in 
ordinary representation at base 10) it represents at base B. We assume that the 
empty word € represents the integer O. Obviously, the mapping w 1--+ W is a 1-1-
mapping from ~* into the set of nonnegative integers. Concatenation of words 
is reflected on the corresponding numbers as follows. Let v, W be two words over 
~. Then we have vw = v· Blwl + w, where Iwi denotes the length of the word w. 
We are now ready to define names for the predicates of the concrete domain R 
we shall use in our reduction. For i = 1, ... , m, 

Ct(x, y, z) {=:=} y = ~ A z = Y + x· BII;!, 

C;(x, y, z) {=:=} y = 'i A z = Y + x· Bhl, 

E(x , y) {=:=} x = y, and L(x) {=:=} x = O. 

Let I, I, WI, W r , and! be at t ribute names. The concept term C(S) corresponding 
to the Post Correspondence System S is now defined as follows: 

m 

C(S) = U (C! (wl,I,!wl) n C;(wr",!Wr)) n 
i=1 

L(wl) n L(wr) n 

Vtrans(f). CQ (C!(wl,I,!wl) n C;(wr",!wr))) n 

3trans(f).E( WI, w r ). 
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A concept term D is satisfiable iff there is a interpretation such that DI is not 
empty. Obviously, a concept term D is satisfiable iff Bottom does not subsume 
D. Thus, undecidability of satisfiability implies undecidability of subs llmption. 

Theorem 6.1 The concept term C(S) is satisfiable if and only iJ the Post Cor-

1'espondence System S has a solution. Consequently, satisfiabilily is in geneml 
undecidable f01' concept terms which may conlain tmnsitive c/OSU1'e of at l7'ibuies 
and p1'edicate restrictions of an admissible concrete domain. 

Proof. Assume that S has a solution it, ... , in of length n. We extend this sequence 
to an infinite sequence iI, ... , in, in+1 , in+2 , ••• by choosing arbitrary indices 1 ~ 
in+l' in+2 , ... :::; 1TI. This new sequence is used to define an interpretat ion I as 
follows: 

dom(I) .- {k;k 2: I}, and for all k 2: 1, 

fI(k) .- k+1, 

II(k) .- t;;; and rI(k):= 1·ik, 

wf(k) .- lil···lik_1 and w;(k):=1·il···rik_l. 

Please note that for k = 1, the word Iii·· ·lik_1 is thE' empty word, and thus 
IiI· .. li k _ 1 

= O. It is now easy to show that 1 E C(S)I. Obviously, this implies 
that C( S) is sat isfiable. 
On the other hand, assume that C(S) is sat isfiable, and let I be an in terpretation 
such that C(S)I oF 0. This interpretat ion can be used to find a solution of S. 
Consider an arbitrary element c of C(S)I. Obviously, c E (L(wt) n L(wr )/ yields 
wT( c) = 0 = w; (c). Since 

cE CQ (C;(w/ ,I,fw,)nC;(w"r,!w,l) )' , 

we know that there ex ists an index between 1 and m, say iI, such that 

c E (Ctl(wt,l ,fwt) n C;I(w).,r,fwr)t. 

By the definition of the concrete predicates we get that II(c) = t:: and rI(c) = 1'7;, 
I - I-and (fW{) (c) = I i I and (fwr ) (c) = ri l • 

Similarly, one can show by induction on k that for all k 2: 0 there ex ists an index 
Zk+l between 1 and m such that 

(fkl)I(C) 

(fk+l W{)I(C) 

(fk r)I(c) 

(fk+l wr)I(c) 

From c E (:3trans(f).E(w{,wr ))I we can now deduce that there ex ists a posi­
tive integer n such that (fn W{V (c) = (fn wr ? (c), and thus we have IiI· .. lin = 
ri l •.. rin· Consequently, IiI··· lin = ri l ... rin, which shows that the sequence 
i l , ... , in is a solution of S. o 
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7 How to Live with this Undecidability Result 

Since terminological systems are only subsystems in larger representation archi­
tectures which usually have incomplete reasoners or provide only semidecision 
procedures, there are two possible ways to avoid undecidable inference problems 
in the concept language: 

• Take A£C:F(1)) and deal with the varying length aspects in the surrounding 
formalism . 

• Take A£C:F* and provide for concrete domains in the surrounding system. 

The first approach has been taken in the ARC-TEC project at DFKI, where the 
varying size aspects are shifted to a rule formalism [Hanschke and Baader, 1991; 
Hanschke and Hinkelmann, 1991J. 
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