
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-92-11

Deductive Planning and Plan Reuse
in a

Command Language Environment

Susanne Biundo, Dietmar Dengler, Jana Koehler

March 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz

GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-32 11/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken 11 , FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Daimler Benz ,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Krupp-Atlas , Mannesmann-Kienzle , Philips,
Sema Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies , or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Deductive Planning and Plan Reuse
in a Command Language Environment

Susanne Biundo, Dietmar Dengler, Jana Koehler

DFKI-RR-92-11

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9000 8).

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

Deductive Planning and Plan Reuse
.
In a

Command Language Environment

S. Biundo D. Dengler J. Koehler
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
D-W-6600 Saarbriicken 11

Germany
e-mail: <lastname>@dfki.uni-sb.de

Abstract

In this paper we introduce a deductive planning system currently being develop ed
as the kernel of an intelligent help system. It consists of a deductive planner and a
plan reuse component and with that provides planning from first as well as planning
from second principles . Both components rely upon an interval-based temporal logic.
The deductive formalisms realizing plan formation from formal specifications and
the reuse of already existing plans respectively are presented and demonstrated by
examples taken from an operating system's domain .

Contents

1 Introduction

2 The Planning System

3 The Logical Framework
3.1 Syntax ..
3.2 Semantics

3.3 Calculus
3.4 Representation of the Planning Domain.

4 Deductive Planning

5 Deductive Plan Reuse
5.1 The 4-Phase Model
5.2 A DeduCtive Approach to Plan Modification
5.3 Example....................

1

2

3

3
4
4
5
6

7

9
9

10
10

1 Introduction

Intelligent help systems aim at supporting users of complex software systems. Advanced
active help can thereby be provided if the help system on the one hand is able to observe
and interpret the users actions in order to recognize the goals she pursues . On the other
hand, based on this information plans have to be generated and supplied to the user that
enable her to reach these goals properly.
Consequently, the PHI-System [BBD+91] currently being developed as the kernel of an
intelligent help system provides both, a plan recognizer to anticipate the users goals and a
plan generation component that supports the user with plans to reach these goals.
One of PHI's main characteristics are the close mutual cooperation between the plan recog­
nition and plan generation components. One feature of this cooperation distinguishes itself
by the use of (abstract) plans as the basis for plan recognition. Starting from a formal
plan specification the generation component produces a set of hypothetical plans. These
hypotheses are used by the recognizer to identify the users plan by trying to map the ob­
served actions on an instance of any of the plan hypotheses. By abstract plans we mea.n
plans that contain variables, abstract commands, control structures, and indeterministic
branching.
Besides these abstract ones also concrete plans, i.e., sequences of fully instantiated basic
actions, playa central role in our scenario since the user has to be supported by executable
and even by optimal plans [BBD+91].
The planning system we introduce in this paper meets the claims described a.bove by

relying on methods borrowed from the formal (logic-based) t reatment of programs. The
reason is that we follow the "plans are programs" paradigm proposed by other authors
as well (d. [Bib86] and [MW87]), because this seems to be highly adequate in our case:
The planning system works in a help system's context . Hence, the planning domain is
a command language environment where the basic actions are elementary statements of
the application system's language. The state changes performed by these basic actions
correspond to changes provided by assignment statements in programming languages. As
a consequence, the logical framework we have developed to realize deductive planning and
plan reuse in this context differs in several aspects from the deductive planning approaches
known from the literature (d. [Gre69], [Kow79], [Bib86], and [MW87]). It relies upon
an interval-based temporal logic that combines features of traditional programming logics ,
like, for example, dynamic logic [Har79] or temporal logic of programs [Kro87].
In the examples presented in this paper our planning domain is chosen to · be a subset of
an operating system, namely a mail system, where commands like type, delete, or save
manipulate objects, like messages or mailboxes.

The paper is organized in the following way: In Section 2 we briefly sketch the architecture
of our planning system. Section 3 introduces the logical framework underlying both, the
deductive planner as well as the deductive reuse component, and describes our deductive
planning method by means of a short example. In Section 5 a four-phase plan reuse model
is proposed. We present a method to realize plan modification deductively and demonstra.te
this method by a detailed example.

2

2 The Planning System

The planning system, shown in Figure 1, consists of a deductive plan generator, the reuse
component, and a plan interpreter.

Formal Plan Specification
I

~
(Abstract) Plans I Plan Generator I

I

:/Plar

/'
r-...

Subplan Subplan Plan Concrete Plan Specilicatior Specification Interpreter Plans Library

,-
I Reuse Component I

I (Abstract) Plans

Figure 1: The Planning System

To solve the tasks of producing abstract plan hypotheses and executable plans, respectively,
the system provides means for both, planning from first as well as planning from second
principles. It works in the following way:
A formal plan specification <I> (i.e. a special LLP-formula, d . Section 3) given to the de­
ductive planner is forwarded to the reuse component. If the reuse component succeeds in
hunting up a plan from the library that (perhaps after minor modifications) can be used
to solve <I> the plan modification process starts (d. Section 5) . This process implements
planning from second principles: It takes an existing plan together with its generation pro­
cess (which in our case is represented by a proof tree, d . Section 3) out of the library. If
the plan has to be modified, for example, by insert ing additional actions, a formal subplan
specification is generated and passed to the planner. The planner generates a subplan,
which then is used to extend the already existing plan in such a way that it satisfies even
the current specification <I>.

If no reuse "candidate" can be found the deductive planner has to generate a completely
new plan out of the given specification by carrying out a special kind of constructive P1'00/

of the specification formula. As a result a so-called plan f ormula occurs that represents the
specified plan (d. Section 3) .
Besides linear plans, being seqences of basic actions, even conditional and while-plans can
be derived [BD91] as well as plans containing indeterministic branching. If executable plans
are required to be produced in a certain situation the plan interpreter finally is activated
to eliminate these control structures if necessary.

3 The Logical Framework

The logical language f or planning (LLP) we have developed to do deductive planning in
our help system context is an interval-based modal temporal logic that combines features
of choppy logic [RP86] with a temporal logic f or programs [Kro87] . The basis of LLP

3

relies on a many-sorted first-order language and, besides the normal logical variables, LLP
provides a set of so-called local variables for each sort. The local variables are borrowed
from programming logics where they correspond to program variables whose values can
change from one state to another. We use local variables in the same way and describe the
effects of basic actions by a change of values of certain local variables.
The modal operators provided by LLP are O(next), 0 (sometimes), 0 (always), and a
sequential composition offormulas by the two-place modal operator; (chop). Besides these
operators, like in programming logics, also control structures are available. The conditional
if t: then a else /3 for example, stands for the formula [t: ~ aJ /\ [-,t: ~ /3J. The while­

operator is defined by the following axiom:
while t: do a od j /3 +-+ [if t: then [a j while t: do a od j /3J else /3J.
Basic actions are represented by atomic formulas using the predicate EX ("execute").
EX (type(1, mbox)), for example, represents the basic action of reading the first message in
a mailbox mbox.
Certain formulas of our temporal logic are viewed as plans. Those plan formulas are

• all formulas EX(c), where c is a term of type command,

• all formulas a; /3 where a and /3 are plan formulas,

• all formulas if t: then a else /3, where a and /3 are plan formulas and t: is a formula.
not containing any temporal operator or basic plan formula,

• all formulas while t: do a od j /3, where a and /3 are plan formulas and t: is a formula
not containing any temporal operator or basic plan formula.

3.1 Syntax

LLP provides a many-sorted language with equality where we have a nonempty set of so'/'t

symbols S, a S-sorted signature of function symbols EF = (E~s)wES., sES and as-sorted
signature of predicate symbols E

P = (E~)vES., where {EX} ~ E~mmand and {T} ~ E;.
For f E E~s we call ws the rank, w the arity, and s the sort of f. For p E E~ is v the arity
of p. The signature E is defined according to E = EF U EP.
Having VGs and V Ls as the sets of all global and local variables of sort s E S, respect ively,
and defining Ys = V G s U V Ls as all variables of sort s E S the set of well-sorted E- terms of
sort s E S is obtained as usual. Finally, we have Ty:, = (T(E)s)SES as the set of all E-terms .
The set :FE of E-formulas is built using the following operators {-', /\, '11,0,0, ;} .
We use the abbreviations 04> f-t -,0-,4>, 4> ~ 'f f-t -,(4)/\ -,'f), and -, T f-t F.

3.2 Semantics

Given a signature E, a E-structure is a pair (D, I), where D = (DS)SES is called the domain
and J = (I(J))fEE is a family of mappings assigning functions and predicates over (D, T)
to the symbols in E.
Global variables are mapped to elements of the domain using the sort-preserving valuation
function /3 : VG ~s D.
To define the notion of an interval we start from a nonempty infinite set of states
S = {ao 1 ••• , an, ... }. Each state ai is a pair ai = (at, an. a: : V L ~s D is a valuation
that assigns an element of D to each local variable. (7; E Dcommand is the so-called control

component that indicates the command to be executed in state ai.

4

We define an interval U to be a nonempty sequence of states: < UOUI ... > and W denotes
a nonempty infinite set of intervals.
The immediate accessibility on intervals is defined as the subinterval relationship R with
(7 R(7' iff U =< (70Ul ... > and u' =< Ul ... >
R' and R* denote the transitive and the reflexive and transitive closure of R, respectively.
The composition is defined as a partial function over the set of intervals:

, {u, if U is infinite
uou = . ,

< Uo ... Un.·· >, If U =< (70'" Un > and U =< Un'" >

We call the triple (W, R, 0) a frame.
Given a 'f,-interpretation I the value of a term tETE in an interval U E W is defined
according to:

• Idx) = (3(x) for every x E VG;

• Ida) = (7o(a) for every a E V L;
• Function expressions ft* are interpreted as usual.

A formula 4> E :FE holds under a E-interpretation I in an interval (7 E W (u PI 4»
according to:

• (7 PI T
• (7 PI EX(t) iff Idt) = (76

• (J PI 04> iff (J' PI 4> for all (J' E W where (J R(J'

• (J PI 04> iff (7' PI 4> for all u' E W where (7 R* (7'

• (7 PI 4> ; 'IjJ iff there are (7', (7" E W, where (7 = (7' 0 u", (7' fini te
and (7' PI 4> and (J" PI 'IjJ

• (7 PI 'IjJ is defined as usual for 'IjJ = pt! ... tn, 'IjJ = tl == t2, 'IjJ = -4>, 'IjJ = [4>1 1\ 4>2],
'IjJ = Vx 4>.

Finally, a E-interpretationI is a model of a formula 4> E :FE (pI 4» iff (7 PI 4> for every
(7 E W. 4> E :FE is valid iff PI 4> for every E-interpretation I . A formula 4> E :FE follows
from a set of formulas <P C :FE iff PI 4> for every 'f,-interpretation I with PI 'IjJ for every
'IjJ E <P.

3.3 Calculus

The calculus we use for LLP is based on a complete sequent calculus for S4 modal logi c
as it is defined in [WaI89]. We have extended this calculus by giving additional rules for
handling the modalities 0 , ; and while.
For lack of space we describe here only the next- and the chop composition-rule and
introduce other basic as well as derived rules when we use them in the sequel.
Remember that a sequence is denoted by f ::} ~ , where f and ~ are sequences of (LLP-)
formulas and the conjunction of the formulas in the antecedent f implies the disjunction of
the formulas in the consequent ~ .

• next-rule:
f*::} A,~*

f::} OA,~
with

f* = {B I OB E f} U {DB I DB E f}, and
~*={BIOBE~}U{OBI OBE~}

5

• chop composition-rule:

3.4 Representation of the Planning Domain

As described above the application domain we choose for our examples is a mail system.
The main objects in this domain are "mailboxes" and "messages"; a mailbox is viewed as a
list of one or more messages. During the activation of the mail system different aspects of
messages can be changed by the commands the user executes: so every executed command
causes a state transition of the current mailbox. In our logical formalism we deal with this
behaviour by the use of local variables for identifying objects of type mailbox or message,

respectively.
The axioms describing the different mail commands as basic actions are given like axioms
for assignment statements in programming logics.
As an example we sketch the axiomatization of the "type" command for reading a message:

Vi : integer
[[--,flag(i, CurrenLmbox) == "d" /\

P flag(i,CurrenLmbox) Current /\EX(type(i,Cu1T enLmbox))]---+ OP]
"r" Current + 1

The symbol P is a metavariable for formulas; the substitution instructions correspond to
the effect of the "type" command: "type" does nothing else than changing the flag of the
i-th message in CurrenLmbox to "r" and increases the Current-counter by 1. Applying
the "type" axiom during the deductive plan generation process is done by building an
appropriate instance of the above axiom schema and applying it to the actual sequent.
On e instance that is often used, for example, is:

Vi: integer
[[--,flag(i, CurrenLmbox) == "d" /\ EX(type(i, CurrenLmbox))]

---+ Oflag(i, CurrenLmbox) == "r"]

A corresponding instance of the axiom schema describing the "delete" command reads:

Vi: integer
[[--,flag(i, CurrenLmbox) == "d" /\ EX(delete(i, CurrenLmbox))]
---+ 0 flag(i, CurrenLmbox) == "d"]

Note, that the axiom schemata describing the mail actions can also be instantiated with
arbitrary frame conditions. That means only one axiom schema is needed for each action
to describe its effects as well as its invariants and with that we also have obtained a
representational solution of the frame problem [BD91] .
Basic actions are required to terminate. This fact is expressed by special axioms. We have:

Vc : command [EX(c) ---+ OO F]

6

4 Deductive Planning

The planning process starts from a plan specification formula. Specifications are formulas
containing metavariables for plans. Deriving a plan from such a specification is done by
constructing a sequence proof that provides appropriate instantiations for these variables.
That means, based on the specification we develop a proof tree applying several sequence
rules in turn until all leaves of the tree are closed, i.e. are instances of the initial sequent
r, </y =} </y,~. The instantiations to be made for the plan metavariable are restricted to
plan formulas. This means if we starting from the specification formula end up with a proof
tree the instantiation generated for the plan variable represents a correct (i.e. executable)
plan, i.e., a plan that satisfies the given specification.
We distinguish between different types of plan specifications. Among them we have asser­
tions about intermediate states (also called liveness properties [Kro87]). They read

stating that </Yg holds some time during the execution of Plan . The examples we will present
deal with these kind of specifications.
Suppose, the plan specification is "Read any message of the mailbox C _mb and delete it".
The input for the plan generation process is then a formula of the form:

(1) Plan -+ [Jlag(x, C_mb) ~ "d" -+ O[Jlag(x, C_mb) - "1''' /\ Oflag(x, C_mb) == "d"]]

Now we give a sequent proof for formula (1) during which Pia n will be replaced by a plan
formula satisfying the above specification.
We start with formula (1) which corresponds to the following sequent:

(2) Plan, flag(x, C _mb) ~ "d" =} O[Jlag(x, C _mb) "r" /\ 0 flag(x, C _mb) == "d"]

A pplying the rule rul e1:

rulel
r =} O</y /\ ,OF, ~

r =} O</Y, ~
we obtain sequent (3):

(3) Plan, flag(x,C_mb) ~ "d" =}

O[flag(x,C_mb) == "r" /\ Of1ag(x,C_mb) == "d"]/\ ,OF

To prove (3) it is splitted into two sequents (4) and (5):

(4) Plan, flag(x, C _mb) ~ "d" =} O[Jlag(x, C _mb) = "1''' /\ 0 flag(x , C _mb) == "d"]

(5) Plan, flag(x, C_mb) ~ "d" =} ,OF

Sequent (5) can easily be proved if the instantiation for Plan has been found, because it
only says that the plan is not the empty plan . We are further going on with sequent (4),
make an equivalence transformation reaching (6) :

(6) Plan,flag(x,C_mb) ~ "d" =} Oflag(x,C_mb) == "r" /\ OOflag(x ,C_mb) == "d"

and then apply rule rule2:

rule2
r =} 1/J /\ O[O</y /\ ,OF], ~

r =} 1/J /\ OO</Y, ~
reaching sequent (7) :

(7) Plan,flag(x,C_mb) ~ "d" =} Oflag(x, C_mb) == "r" /\
0[0 flag(x, C_mb) == "d" /\ ,OF]

7

Applying rule rule1 and some equivalence transformations sequent (8) and two assertions
are reached. Simultaneously, we introduced a structure into the metavariable Plan by the
assumption Plan+--+ P1 jP2 •

(8) flag(x, C_mb) ;j. "d", p}jP 2 =} 0 flag(x, C-:mb) - "r" A OOflag(x, C_mb) - "d"

and the two assertions

(8') p}jP2 , flag(x, C_mb) ;j. "d" =} ,OF

(8") p}jP2 , flag(x, C_mb) ;j. "d" =} O,OF

On sequent (8) we apply rule rule3:

rule3
r =} O</> A OOFjO'lj;, 6

r =} O</> A 00'lj; , 6
with </> first-order formula

yielding

(9) PI jP 2 ,flag(x,C_mb);j. "d" =} Oflag(x,C_mb) _ "r" A OOFjOflag(x,C_mb) == " eI "

At this point in the proof construction it becomes necessary to make the connection between
PI a nd P2 more concrete using rule rule4:

rule4
</>,Pj'lj; A Q =} r </>,P =} O[OF A 'lj;]

</>, PjQ =} r
The intention in using this rule is to force PI to cause an effect which is the precondition
of P2 . Sequents (10) and (11) are the result of applying rule4 to sequent (9).

(10) Jlag(x,C _mb) 1= "d",P};pre A P2 =} OJlag(x,C_mb) == "r" A OOF;
Oflag(x, C_mb) == "d"

(11) flag(x, C_mb) ;j. "d", p} =} O[OF A pre]

Note, that we have introduced also a metavariable for a precondition here that has appro­
priately to be instantiated in the sequel.
First we go on with sequent (10) and split it with the chop composition rule above to get
(12) and (13).

(12) PI ,flag(x,C_mb);j. "d" =} Oflag(x,C_mb) == "r" A OOF

(13) pre A P2 =} Oflag(x, C_mb) == "d"

Sequent (12) can be split ted into the sequents

(14) PJ,flag(x,C_mb) -::t "d" =} Oflag(x,C_mb) == "r"

(15) P},flag(x,C_mb) -::t "d" =} OOF

Closing one part of the proof tree can be achieved by instantiating PI in sequent (14)
with the predicate EX(type(x, C_mb)). The resulting sequent is then an instan ce of the
Ilonlogical axiom for the "type" command known from above.
The branch in sequent (15) can also be closed, because (15) only demands that P1 is a plan
of leng th one.
In sequent (13) the metavariables pre and P2 can be instantiated with flag(x, C_mb) -::t "d"
and EX(delete(x, C_mb)) , respectively. Having carried out that substitution this part of
the proof tree can also be closed because we end with a nonlogical axiom that is an instan ce
of the "delete" command axiomatization. Now, all metavariables are instantiated and their
substitution can be propagated through the proof tree. Sequents (8') and (8") also close

bra.nches of the proof tree because they only demand that plan Plan is not empty. The last

8

branch remaining still open is that ending in sequent (l1)j with the substitutions found it
looks like:

(11') EX(type(x, C_mb)),Jlag(x, C_mb) ¢ "d" => O[OF 1\ Jlag(x,C_mb) ¢ "d"]

Sequent (11 ') can easily be proved using rule rule1 and an appropriate frame instance of
the "type" axiom which says that the property Jlag(x,C_mb) ¢ "d" is not destroyed by
executing "type(x,CJllb)".
Then, all branches of the proof tree are closed and the resulting plan, the substitution for
the metavariable Plan in (1), is:

EX(type(x, C_mb))jEX(delete(x, C_mb)) .
The deductive planning system currently under implementation provides automatic strate­
gies to guide the plan generation process according to the current specification. These
strategies - besides those for sequential plans also strategies for deriving conditional and
while-plans have been developed [BD91] - are implemented using concepts from tactical
theorem proving.

5 Deductive Plan Reuse

Once a plan is generated it represents problem solving knowledge which is generally lost
in classical planning systems after the plan has been successfully executed. Methods of
planning from second principles try to reuse former problem solutions in order to ma.ke
planning more efficient and flexible. In this section we demonstrate how plan reuse can be
performed deductively.

5.1 The 4-Phase Model

To formalize planning from second principles a four-phase model of plan reuse has been
proposed in [Koe91]:

1. In the Plan Determination phase a plan specification formula <I> is retrieved from the
plan library to solve a new planning problem given as a plan specification formula \II.

2. In the phase of Plan Interpretation the formula <I> has to be interpreted in the cu rrent
planning situation by investigating whether <I> can be instantiated to <I>inst such tha.t
\II is obtained.

3. In the Plan Refitting phase the instantiated plan specification <I>inst is compa.red with
\II and refitting tasks for the planner are derived. Planner and plan reuse component
interact in such a way that the reuse component generates subplan specifications ror
which the planner is activated to generate the subplans which have to be deleted from
or incorporated into the plan to be reused.

4. The reuse process ends with a Plan Library Update in which the plan specification
formula \II is generalized and compared with already stored plans. If \II is "worth"
storing it is added to the plan library.

In the following we describe how plan interpretation and refitting, summarized as plan
modification are realized deductively and demonstrate our method by means of an example.

9

5.2 A Deductive Approach to Plan Modification

For the following we assume that plan specification formulas [Plan"" ----+ .,p] are of form
[Pia n"" ----+ [.,pi ----+ .,pg]], where the subformulas .,pi and .,pg describe the facts holding before
executing the plan and the facts that have to be reached by it, respectively.
Suppose, given a plan specification [Plan"" ----+ .,p] the plan determination process succeeds in
finding an appropriate entry in the plan library and comes up with a specification formula
[P ia n¢ ----+ ¢>] and a plan formula P¢ that had been generated from this specification to
replace the metavariable Plan¢. To find out whether P¢ can be reused to replace even
Plan"" in order to satisfy the current specification we try to prove the formula:

This step is justified by the fact that [P¢ ----+ .,p] if [¢> ----+ .,p], provided [P¢ ----+ ¢>] holds.
If the proof of [¢> ----+ .,p] succeeds the "old" plan P¢ can be reused without any modifications .
If the proof fails information for successfully modifying P¢ can be extracted from it. [¢>----+
'/p] is attempted to be proved using a matrix calculus based on the connection method
introduced by Bibel [Bib82] which has been extended to certain modal logics by \"fallen
in [WaI89]. He has extended the concept of complementary literals by considering even
the modal context, i.e., the modal operators in the scope of which these literals occur.
Modal contexts are represented by so-called prefixes of the literals concerned. They can be
viewed as strings denoting possible worlds, or, in our case, intervals. Wallen then defines
two literals to be simultaneously complementary iff they are first-order complementary a.nd

additionally their prefixes unify according to a modal substitution reflecting the property
of the accessibility relation on worlds (intervals), d. [WaI89] .
We distinguish between constant and variable atomic prefixes and denote them by aj and
ai, respectively. Suppose, we have (7R*(7' and (7' R*(7" for intervals (7, (7', and (7" and consider
the following correspondence between prefixes and these intervals:
aOa}a2 ; (7, ala2; (7', a2; (7".
According to the accessibility relation R* the prefix a3a2 can then denote any interval from
which (7" can be reached. Consequently, our prefix substitution function allows to map, for
example, a3 to aOal'

5.3 Example

Suppose, we have to construct a plan to "Read a mail, save it in a fil e, and then delefe the
mail", formally specified . by the following formula:
[Plan ", ----+ .,p], where .,p abbreviates
[flag(y, C_mb) ~ "d" ----+

O[Jlag(y,C_mb) == "r" 1\ O[Jlag(y,C_mb) == "s" 1\ Oflag(y,C_mb) == "d"]]]
And suppose, the plan determination process having analyzed this specification formul a.
comes up with a reuse candidate we know from the example in Section 3: the specification
formula [Plan¢ ----+ ¢>] with ¢> abbreviating
[flag(x,C_mb) ~ "d" ----+ O[Jlag(x,C_mb) == "r" 1\ Of1ag(x,C_mb) == "cl"]]
and the plan formula P¢: EX(type(x,C_mb));EX(delete(x,C_mb)).

The plan modification process then starts with trying to prove formula [¢> ----+ .,p], i.e.,

10

[Jlag(x,C_mb);p. "d" --t O[Jlag(x,C_mb) == "r" 1\ Oflag(x,C_mb) = "d"]]
--t [Jlag(y, C_mb) ;p. "d" --t

O[Jlag(y, C _mb) = "r" 1\ O[Jlag(y, C _mb) "s" 1\ 0 flag(y, C _mb) - "d"]]].
The proof attempt consists of two steps.
First the matrix corresponding to that formula has to be built. Each matrix element
consists of a prefixed literal (described by a prefixed atom and a sign E {O,l}) and a
label indicating whether the literal belongs to the i(nitial)- or g(oal)-part of one of the
specification formulas, respectively.
Following Wallen the matrix representation of the formula is obtained by applying certain
sequence rules in turn to eliminate logical and modal operators until no non-atomic formulas
are left. The sequence rules used for building the matrix of a formula have to have the
so-called subformula property [WaI89]. Prefixes are introduced when we apply rules that
introduce modal operators. Applying, for example the rule

r =? A,~

r =? OA,~
to the sequent aoa'(A) =? aoa'(OB) leads to aoala"(A) =? ala"(B), where a' and a" are
metavariables for (even empty) prefixes.
Proceeding in this way the matrix we finally obtain for our formula above consists of th e
following paths:

Path 1: {< ala2flag(x,C_mb) == "r",rPg,l >,< a2flag(x,C_mb) == "d",rPg, 1 >,
< aoala2a3flagflag(y,C _mb);p. "d",7jJi, 1 >,< aoaladlag(x,C_mb);p. "d",rPi , O > }

Path 2: {< ala2f1ag(x,C_mb) == "r", rPg, 1 >,< a2flag(x,C_mb) = "d", rPg,l >,
< aoala2aJ/lag(y, C_mb) ;p. "d", 7jJi, 1 >, < ala2a3flag(y, C_mb) == "1''', 1/;g, 0 > }

Path 3: {< ala2flag(x, C _mb) == "r", rPg, 1 >, < a2flag(x, C _mb) == "d", rPg, 1 >,
< aOal a2a3f lag(y, C _mb) ;p. "d", 7jJi, 1 >, < a2a3f lag(y, C _mb) == "s", 7jJg, 0 > }

Path 4: {< aladlag(x,C_mb) == "r",rPg, 1 >,< a2flag(x,C_mb) == "d",rPg,l >,
< aOala2a3flag(y, C_mb) ;p. "d", 7jJi, 1 >, < a3flag(y, C_mb) == "d", 1/;g, 0 >}

In the second step we have to determine the paths that contain simultaneously con1.ple­
mentary literals. To do this we consider the following pairs of elements in the paths:
In path 1: {< aoala2a3f1ag(y,C_mb);p. "d",7jJi, 1 >,

< aoaladlag(x,C_mb) 1= "d",rPi,O >}
In path 2: {<ala2flag(x,C_mb) == "r", rPg, 1 >,<ala2a3flag(y,C_mb) = "r", 7jJg, 0 > }
In path 4: {< a2flag(x, C_mb) "d", rPg, 1 >, < a3flag(y, C_mb) = "d", 7jJg, 0 >}
They are complementary under the first order substitution P = {y / x} and the modal

substitution PM = {a3/ a2,ala2/ad·
The complementary paths 1, 2 and 4 describe a valid formula [rP --t 1/;'] that can be con­
structed from [rP --t 7jJ] where 7jJ' is a part of 7jJ, i.e., the specification of P"n the plan to be
reused, contains not all of the subgoals of the new specification 7jJ. This is found out as
follows:
The complementary literals above are characterized as pairs of kind (rPi, 'IjJ;) or (rPg, 7jJg),
respectively. For the remaining path path 3 no complementary connection can be found
and that causes the proof of [rP --t 7jJ] to fail. At this point the refitting phase start.s.
Since 7jJ' is a part of 7jJ and the only literal in the matrix which is not part of a complementary
connection is of kind 7jJg this indicates the "difference" between the two plan specifications:
Compared to the current one there is a subgoal rPg "missing" in the plan specificatioll for

11

P",. As a consequence an additional subplan Pnew has to be included into P", reaching P~
which is then the desired substitution for Planv.-.
Therefore, from path 3 we extract literals of kind 7/;i and 7/;g and build a specification formula
for the remaining subgoal.
The literals are:
< ao7hcha3flag(y, C _mb) ¥= "d", 7/;i, 1 > and < 7ha3flag(y, C_mb) "s", 7/;g, 0 >,
and the specification formula then reads:
Plan new --+ [flag(y,C_mb) ¥= "d" --+ Oflag(y,C_mb) == "s"]
The plan generation process produces Pnew=EX(save(y, file, C_mb)) as a substitution for
Plan n ew ·

From the modal substitution information in PM according to the correspondence between
prefixes and intervals, the literals of kind <pg and 7/;g in path 3, and the relation between
formula <p and the Plan P", known from the plan generation process the position in P", where
Pnew has to be included can be derived. With that we reach the modified plan P~ = Pv.- as:

Pv.- = EX(type(y, C_mb)); EX(save(y, file, C_mb)); EX(delet e(y, C_mb))
It finally has to be verified that the modification of P", leads to a correct (i.e. executabl e)
plan. That means we have to prove whether the effects of type and save imply the preCOll ­
ditions of save and delete, respectively.

6 Conclusion

We have introduced a deductive planning system that realizes planning from first as well
as planning from second principles.
The system is intended to supply the kernel of an intelligent help system with a planning
component. Hence, the planning domain is a command language, namely the langu age of
the application system for which the help is provided . Planning in this command language
environment suggests to view plans as programs and with that follow the plans are]JTOgmms
paradigm. As a consequence, deductive planning in this context is based on a programming
logic.
We have introduced the logical language for planning LLP, an interval-based tempora l logic
t.hat provides control structures, like ;, if then else, and while. An appropriate axionuttiza­
tion of the application domain is obtained by describing basic actions like ass ignments in
programming languages. With that we have only one axiom schema for each basic act ion
characterizing both , its effects as well as the (fram e) properties that are not affected by the
act ion. Thus, the frame problem is addressed in a representation al way.
Different kinds of plan specifications can be formulated in terms of special LLP fOrJllu];.I.S.
Pl ans are then obtained by proving the specification formulas using a sequence calcu lus
for LLP. The search for proofs is guided by several strategies that are implemented using
concepts from the field of tactical theorem proving.
Planning from second principles is done by trying to reuse plans stored in a plan library.
We have proposed a method for modifying a given reuse candidate in such a way that it
(\.lso satisfies the current specification. The modification process is based on a spec ial kind
of subsumption test. If the test succeeds the plan can be reused without any modific(l,Lion.
Otherwise, information is extracted from the failed proof and used to form a lly spec ify tlie
modifications that have to be done.

12

References

[BBD+91]

[BD91]

[Bib82]

[Bib86]

[Gre69]

[Har79]

[Koe91]

[Kow79]

[Kro87]

[MW87]

[RP86]

[Wa189]

M. Bauer, S. Biundo, D. Dengler, M. Hecking, J. Kohler, and G. Merziger. Inte­
grated plan generation and recognition: A logic-based approach. In Proceedings
of the 4. Internationaler GI-Kongress Wissensbasierte Systeme, Miincl~en, pages
266-277. Springer IFB 291, 1991.

S. Biundo and D. Dengler. An interval-based temporal logic for planning. Re­
search report, German Research Center for Artificial Intelligence, Saarbriicken,
1991. also subrilltted to the 1st International Conference on AI Planning Sys­
tems.

W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 1982.

W. Bibel. A deductive solution for plan generation. New Generation Comput­
ing, 4:115-132, 1986.

C. Green. Application of theorem proving to problem solving. In Proceedings of
the 1st International Joint Conference on Artificial Intelligence, pages 219- 239,
1969.

D. Harel. First Order Dynamic Logic. Springer LNCS 68, New York, 1979.

J. Koehler. Approaches to the reuse of plan schemata in planning formalisms.
Technical Memo TM-91-01, German Research Center for Artificial Intelligence,
January 1991.

R. Kowalski. Logic for Problem Solving. North-Holland Publishing Company,
Amsterdam, New York, Oxford, 1979.

F. Kroger. Temporal Logic of Programs. Springer, Heidelberg, 1987.

Z. Manna and R. Waldinger. How to clear a block: Plan formation in situational
logic. Journal of Automated Reasoning, 3:343-377,1987.

R. Rosner and A. Pnueli. A choppy logic. In Symposium on Logic in Computer
Science, Cambridge, Massachusetts, 1986.

L. A. Wallen. Automated Deduction in Non-classical Logics. MIT-Press, Ca,lll­
bridge, London, 1989.

13

Deutsches
Forschu ng szentrum
fOr KOnstilche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI VerMfentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kOnnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet. kostenlos abgegeben.

DFKI Research Reports

RR-91-03
BHollunder, Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR-91-04
Harald Trost: X2MORF: A Morphological
Component Based on Augmented Two-Level
Morphology
19 pages

RR-91-05
Wolfgang Wahlster, Elisabeth Andre, Winfried
Gra/, Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by
Graphics Generation.
17 pages

RR-91-06
Elisabeth Andre, Thomas Rist: Synthesizing
Ulustrated Documents: A Plan-Based Approach
11 pages

RR-91-07
Giinter Neumann, Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wah/ster, Elisabeth Andre,
Som Bandyopadhyay, Win/ried Graf, Thomas Rist:
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR-91-09
Hans-Jwgen Bwckerl, Jwgen Muller,
Achim Schupeta: RA TMAN and its Relation to
Other Multi-Agent Testbeds
31 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-10
Franz Baader, Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
J.Mark Gawron, John Nerbonne, Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer, Jwgen Muller: A Two Level
Representation for Spatial Relations, Part I
27 pages

RR-91-15
BernhardNebel, Gert Smolka:
Attributive Description Fonnalisms ... and the Rest
of the World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

RR-91-17
Andreas Dengel. Nelson M. Mattos:
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
lohnNerbonne. Klaus Netter. Abdel Kader Diagne.
Ludwig Dickmann. Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P . Singh: On the Commitments and
Precommitments of Limited Agents
15 pages

RR-91-20
Christoph Klauck. Ansgar Bernardi. Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Netter: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner: Akquisition und
Reprasentation von technischem Wissen ftiT
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-2S
Karin Harbusch. Wolfgang Finkler. Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer. S. Biundo. D. Dengler. M. Hecking.
J. Koehler. G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi. H. Boley. Ph. Hanschke.
K. Hinkelmann. Ch. Klauck. O. Kuhn.
R. Legleitner. M. Meyer. M. M. Richter.
F. Schmalhofer. G. Schmidt. W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen. Harald Trost. Hans Uszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger. John Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger. J . Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen. Lutz Euler. Gunther Gorz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages
RR-91-33
Franz Baader. Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel. Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-3S
Winfried Graf. Wolfgang Maaj3: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-02
Andreas Dengel. Rainer Bleisinger. Rainer Hoch.
Frank Hones. Frank Fein. Michael Malburg:
nODA: The Paper Interface to ODA

53 pages

RR·92·03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages'

RR·92·04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR·92·0S
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR·92·07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR·92·08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92·11
Susane Biundo. Dietmar Dengler. Jana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR·92·1S _
Winfried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations
23 pages

DFKI Technical Memos

TM·91·01
Jana Kohler: Approaches to the Reuse of Plan
Schemata in Planning Formalisms
52 pages

TM·91·02
Knut Hinkelmann: Bidirectional Reasoning of Hom
Clause Programs: Transformation and Compilation
20 pages

TM·91-03
Otto Kuhn. Marc Linster. Gabriele Schmidt:
Clamping. COKAM. KADS. and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM·91·04
Harold Boley (Ed.):
A sampler of RelationallFunctional Definitions
12 pages

TM·91·0S
Jay C. Weber. Andreas Dengel. Rainer Bleisinger:
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM·91·06
Johannes Stein: Aspects of Cooperating Agents
22 pages

TM·91·08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM·91·09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM·91·10
Bela Buschauer. Peter Poller. Anne Schauder. Karin
Harbusch : Tree Adjoining Grammars mit
Unifikation
149 pages

TM·91·11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM·91·12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PA TR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM·91·13
Knut Hinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM·91·14
Rainer Bleisinger. Rainer Hoch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM·91·1S
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge
Representation
28 pages

TM·92·01
Lijuan Zhang:
Entwurf und Implementierung eines Compilers zur
Transformation von Werkstiickreprlisentationen
34 Seiten

DFKI Documents

D-91-01
Werner Stein. Michael Sintek: RelfunIX - An
Experimental Prolog Implementation of Relfun
48 pages

D-91-02
Jorg P. Muller: Design and Implementation of a
Finite Domain Constraint Logic Programming
System based on PROLOO with Coroutining
127 pages

D-91-03
Harold Boley. Klaus Elsbernd. Hans-Gunther Hein.
Thomas Krause: RFM Manual: Compiling
RELFUN into the Relational/Functional Machine
43 pages

D-91-04
DFKI Wissenschaftlich-Technischer J ahresbericht
1990
93 Seiten

D-91-06
Gerd Kamp: Entwurf, vergleichende Beschreibung
und Integration eines Arbeitsplanerstellungssystems
fiir Drehteile
130 Seiten

D-91-07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprlisentation von Geometrie- und
Technologieinformationen
70 Seiten

D-91-08
Thomas Krause: Globale DatenfluBanalyse und
horizon tale Compilation der relational-funktionalen
Sprache RELFUN
137 Seiten

D-91-09
David Powers. Lary Reeker (Eds.):
Proceedings MLNLO'91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-10
Donald R. Steiner. Jilrgen Muller (Eds.):
MAAMA W'91: Pre-Proceedings of the 3ed
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

D-91-11
Thilo C. Horstmann:Oistributed Truth Maintenance
61 pages

D-91-12
Bernd Bachmann:
Hieracon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel. Christof Peltason.

Kai von Luck
131 pages

D-91-14
Erich Achilles. Bernhard Hollunder. Armin Laux.
J6rg-Peter Mohren: ')(JUS: ~owledge
~presentation and lilference System
- Benutzerhandbuch -
28 Seiten

D-91-15
Harold Boley. Philipp Hanschke. Martin Harm.
Knut Hinkelmann. Thomas Labisch. Manfred
Meyer. J6rg Muller. Thomas Oltzen. Michael
Sintek. Werner Stein. Frank Steinle:
J-lCAD2NC: A Declarative Lathe-Worplanning
Model Transforming CAD-like Geometries into
Abstract NC Programs
100 pages

D-91-16
J6rg Thoben. Franz Schmalhofer. Thomas Reinartz:
Wiederholungs-, Varianten- und Neuplanung bei der
Fertigung rotationssymmetrischer Drehteile
134 Seiten

D-91-17
Andreas Becker:
Analyse der Planungsverfahren der KI im Hinblick
auf ihre Eignung fiir die Abeitsplanung
86 Seiten

D-91-18
Thomas Reinartz: Definition von Problemklassen
im Maschinenbau a1s eine Begriffsbildungsaufgabe
107 Seiten

D-91-19
Peter Wazinski: Objektlokalisation in graphischen
Darstellungen
110 Seiten

Deductive Planning and Plan Reuse
in a Command Language Environment

RR-92-11
Research Report

Susanne Blundo, Dletmar Denger, Jana Koehler

