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Abstract 

To integrate CAD systems with other applications in the ClM world, two prin­
cipal approaches are currently under development. The feature based CAD systems 
provide higher level primitives which support not only the generation of the drawing 
but also serve as basic input for other ClM components. Another approach enables 
any ClM component to recognize the higher level entities used in CAD systems 
out of a lower level data exchange format, which might be the internal representa­
tion of such systems as well as some standard data exchange format. In this paper 
the authors examine both approaches in more detail. First a conceptual llIodel of 
CAD and - as an example of another e lM component - of ('APP is represented. 
Comparing these two models the authors investigate the possible int.egratiolls on t.he 
different levels and provide a concise t.erminology and advant.ages ami disadvant.ages 
of the different approaches. 

'Phone: ++49-631-205-3477, e-mail: klauck@dfki.uni-kl.de 
tPllOne: ++49-681-302-3607 , e-mail: st.ark@olymp .cad.uni-sb.de 
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1 Motivation 

The expected advantages of a close coupling of CAD and CAPP are the same which also 
apply to any other CIM related connection between different components: The infor­
mation interchange shall lead to better knowledge transfer, to shorter turnaround times 
and to improved feedback . In the end, higher flexibility and generally better results are 
expected. 

2 Conceptual Model of CAD 

The task of design in mechanical engineering is to come from an abstract or logic idea of 
a technical product or system to a specific solution which obeys certain constraints. In 
recent years many models have been developed to describe and prescribe this design pro­
cess (e.g. [Cross89, Pah188, VDI86, VDI7:3]). According to the rea.sonable comprehensive 
model of Pahl and Beitz [Pahl88] the design process comprises the following stages: 

1. Clarification of the task 
Design activity of collecting information about the requirements - e.g. functions -
to be embodied in the solution and about the constraint.s 

2. Conceptual design 
Design activity of establishing function structures, searching for suitable solution 
principles, and combining them into first concept variants 

3. Embodiment design 
Design activity of determining the layout a.nd forms of the technical product or sys­
tem in accordance with technical and economic cons iderat. ions 

4. Detail design 
Design activity of laying down the arrangetllent, fonn, dillWllSiollS, alld surface prop­
erties of all individual parts; subsequent ly materials have to be specified, technical 
and economic feasibilities are re-checked, and all technical drawings and other pro­
duction documents are produced. 

When classifying the conceptual framework of current CAD systems into the above 
described model of the design process it is only the fourt.h stage - detail design - which 
represents the predestinated stage of designing with the help of CA D systems. Since 
the heart of a conventional mechanical CAD system is its geometric modeller the use 
of current CAD systems is mainly restricted to allowing and supporting the designer to 
conceive, evolve, and document the design in terms of technical drawings . 

According to Koller [Koller89] it is usually not worthwhile extending the conceptual 
framework of future. CAD systems to earlier design stages than detail design. T he main 
use of CAD systems should be concentrated on the design tasks which occur most often 
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Figure 1: Conceptual modf'l of (':\ 0: ff'at urI" ha:·;pd modellillg al I he' stage' of dt/al/ dts/.fJlI 

in design problems: thf' design and rf'-design of already - at leasl ill prillciple - kllowll 
solutions. But to come to more effective support of t.he designf'r ('AD systems have 
to be extended to more intelligent design tools. For installce, it is desirable to develop 
CAD systems which are ab le to heed design rules and design intf'lTf'la.tionships or to mef't. 
requirements of strength. 

Besides the domain of geometric modelling which already has obtained a very high, 
sophisticated degree, CAD systems can be made more intelligent in terms of non-geometric 
technical information (e.g. functional requirement specificat ions, ma.terial propertif's, etc.) 
and administrative information (e.g. standards for common parts. evolution and versIons 
of design, related families of parts, schedul ing, inventory, etc.) [Arbab87]. 

One approach of coming to 1110re intelligf'nt desigll t.ools wit.hill ('.\ I) S}stellls is to 
integrate the concept of design by features (d. [( 'unningham88, ])ixolI~7, PrattS·), Shah!;!l, 

Sha.h88]) into a feature based 11l0dellf'r (eL [1'rause88]). Furt.lJ('r e'xplallatiolls to tllf' 
concept of design by features are made ill the following chapter of this art.icle. 

The conceptual framework for intelligent CAD systems in terms of feature ba.sed mod­
elling can be illustrated as figure 1 shows: 

According to the described design process the preliminary layollt. of the t.echnical 
system or product (result of design stage three: embod/m.fll.t (h ,"'/gll) SCl'\'t'S a.s illPut for 
the detail design whereas the definitivf' Ia.yout. represent.s t.lw out.put.. The a.ctivity of 

feature based modelling is chara.cterized by both, the selectioll/COlllpositioll process and 
the specification/computation process. To be a.b le to make df'cisions in a design process 
the user - designer - and/or the CAD system need help in the form of specific design 
knowledge (d. [Stark91]) . If the desigu problems do not vary to a high degree, the effort 
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of implementing design rules into CAD systems or into other supporting design systems 
(e.g. knowledge based systems for design) is justified. Since the designer intends to use 
only a certain number of design features (d. the following chapter) for specific design 
problems, it is useful to provide a libra.ry of them within tlw CAD systf'm. 

3 Design by Features 

Current CAD systems usually provide engineering drawings (2D), resp. wire frame models, 
surface models, solid boundary representation models, or solid constructive geometry 
models (3D). This implies that a product or assembly unit - sub-assembly or individual 
part - is represented by sets of points, lines, surfaces, and/or primitive volumes. This 
type of representation influences the way designers have to work with CAD systems. To 
a certain extent the designer is forced to translate his (high level feature) conception of 
the assembly units into sets of points, lines, surfaces, anel/or primitive volumes. 

The term feature is used to indicate form elements that are described on a higher 
semantic level than those primitives that can be found in the traditional geometric models. 
The conviction has been accepted that different classes of features have to be used in 
different engineering domains. In [Shah88] feature definitions depend on disciplines like 
engineering design or process planning. In the authors' view features used in engineering 
design have to be "elements used in generating, analyzing. or f'va.luat.illg desigll" and in 
geometric modelling features arf' "groupings of geomf'tric a.llcl/or topologica.l f'1It.ities tha.t. 
need to be referenced togethN" . 

However, in this paper features for desigll - from now Oil cailed df'sigll ff'al.Llres - ha.ve 
to meet the following two requirements: 

• They are mappable to a generic shape . 

• They have an engineering significance resp. a semantic meaning in engineering de­
sign. 

In design the engineering significallce Ca.ll be seen frolll fOLlI' POill!.S of view: 

1. required function, 

2. manufacturing, 

3. assembly, and last but not least 

4. strength. 

To determine the design of all assf'lllb ly Ullit. Ow desigllf'r first Ita.s 1.0 (Teat.e t. I lOSt-· part.s 
of the geometry that are necessary for realizing the required fUIICt.iollS. Furt.lwrl1lore, he 
has to ensure that the a.ssembly unit. can be manufactured aud tllOLlllteu. Finally, the 
assembly unit has to fulfill the conditions of strength. 

In the context of design by features the designer determines the geometry of assembly 
units by employing design features for all those four points of view. For instance, the 
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Figure 2: Compound feat ure shaft end and its single features 

design feature f ea th er key groove serves for the transmissioll of torque in con nection with 
a feather key - point of view function; the feature chamfe1' makes mounting easier - point 
of view assembly. Some design features influence the design in more than one aspect. The 
feature undercut realizes a space for running out of a tool - point of \'i ew IIwJl.ufactul'ing 
- as well as it helps to minimize the stress concentration at the transition from one shaft 
section to another one - point of view streitgth. 

Furthermore, features can be classified according to their level of complexity. Two 
terms are used: single features and comp01ll~d f eatures. Compound features are a combi­
nation of more elementary featmes which may themselves Iw compound features. Single 
features are the lowest order canonica.l forms supported by a fea.t.ure based systf'rn. The 
usefulness of the concept of compound feat.ures is the generation and manipulatioll of 
features at multiple levels. A related group resp . compound feature could be manipulated 
as a unit rather than working on each single feature individually. The feat ure shaft end in 
figure 2 can be disintegrated into its su b-features - single features - sha.fl shoulder. round­
ing, underc ut. f eathtl" key gmoL'(. and (Iw.lllft/". The ability 1.0 cavlurf' Ilw r<·lat.iollsitips 
between the single feat ures ill a cOl1lpoulld df'fillit.ioll is lIsefUI. (IS w('lI. 

Using design features two differellt feat.ure classes call bf-' dist.illgllislw<.i: Desigll features 
like bearing application or gearing are not. related to a single pari. E.g. a feature bea7'ing 
application can have effects on different parts of a housillg as well as 011 different parts 
of a shaft (cf. figure 3). Furthermore. the feature may include t.wo bearings and parts to 
fix the bearings on the shaft and on the casing - e.g. spring rings. However. most design 
features described in the literature are related to single parts. The feature shaft end and 
its single features shown in figure 2 are examples for such a feature type. The above 
described features refering to a group of parts can be decomposed into several features 
related to single parts. Figure 4 shows the detail design of t.he seat.s of t.he rolling beari IIgs 
on the shaft. 

At the beginning of the feature based modelling process t.lw desigllf'r 11l0stly uses 
features which are referred to a group of parts. The IllOrf' t IIf' ddai I desigll process is 
advanced the less complex features are L1sed. The desigll ff'atlll'(-'s lIs('d at. dw f'l1d of the 
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detail design process are just referenced to single parts. 

Design by features can be seen as a two-step process. The first step is the modelling 
of the features themselves. This leads to a list of predefined feature types. The second 
step is the actual feature based modelling. This is a typical repetitioll of the following 
actions: 

1. select a feature type from the pl:edefined list, 

2. define values for the feature parameters to scale the feature to the desired shape 
and size, and 

3. 3) define position and orientation of the feature, or define to which other feature(s) 
the new one applies. 

The complete definition of a feature requires the specification of all dimension aud 
location parameters. However, not all these parameters are availa.ble, or even important, 
until the final stages in design. Therefore, it is necessary to introduce the concept of 
abstract featu1'es, which are defined as entities that cannot be evaluated or physically 
realized until all variables have been specified (d. [Shah91]). 

It depends on the definition of the term design feature if besides geometry characteris­
tics such as type of material, surface finish, dimensional or shape tolerallces. and relatiolls 
between design features - e.g. parallelism and ma.ting surfaces - call be expressed as well. 
Otherwise, property features, precision features, and/or assembly rea,tures ha,ve t.o be used 
in addition to the design features. 

4 Conceptual Model of CAPP 

The task of process planning is the generation of a sequence of actions which must be 
performed in order to manufacture a given workpiece. The generation starts on the basis 
of information obtained from the design and the knowledge about tlw manufacturing 
process; it also takes into account the given manufacturing environment as well as general 
planning principles. 

To build a computer aided process planning system which will be accepted from the 
staff of a company it is necessary to simulate the behaviour of a humall planner as wf'll as 
to integrate the system with the other CA * applications of the COl1lpall.y. From a general 
point of view the behaviour of a human planner in manufacturing call be described by 
the conceptual model in figure 5. 

The production engineer - the expert (in operation scheduling) - is given a descriptioll 
of the workpiece. This description consists of all geometrical and technological data 
which are necessary for the generation of a process plan. In this description the expert 
identifies characteristical parts or areas which are related to special information about 
the manufacturing process. e.g. an insertion. This parts an·' tlw so-callf'd feaiurr::s (for 
manufacturing) and can be seen as an abstraction of the mallufacturillg task to build a 
structure of the manufacturing problem. According to these features. the expert selects 
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Manufacturing Task 

Abstraction of the 
Manufacturing Task 

Input: 
Description of the 

Manufacturing Environment 

complete 
and feasible plan 

Abstraction of the 
Manufacturing 
Environment 

Figure 5: Conceptual Model of Process Planning 

out of his memory (or out of existing plan libraries) generalized plan fragments, the so­
called skeletal plans. By combining these skeletal plans according to the feature structure 
and by adapting them to the concrete workpiece, a complete production plan can be 
created. This conceptual model of an expert's way of process planning wa.s simulated by 
the implementation of the prototypical system PIM [Legleitnern]. 

The different abstraction and refinement steps the expert perfOrlllS lead to the defi­
nition of suitable domain specific higher level representation languages which allow the 
adequate representation of the expert 's terminology and know-Ilow . The integration of 
the PIM system into the ClM area was realized by connections to existing interfaces from 
the CAD and CAM world like STEP 1 and CLDATA2. The main idea of this higher level 
language system is shown in figure 6. 

lSTandard for the Exchange of Product Model Data. ISO TC 184/S(' 11. NAM 96.4 
2Cutter Location DATA (DIN 66025) 
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Based on TEC-REP (TEChnological REPresentation) [Bernardi91]. a general rep1'f-'­
sentation formalism for geometrical/technological informatioll about tlw workpiecf', fea­
tures can be defined according to the expert's view. They are represented in the dOl1lai 11 

specific language FEAT-REP (FEATure REPresentation) [h.lauck91]. Note that these 
descriptions represent the personal terminology of this expert together with thf Sf'ts of 
alternative skeletal plans (abstracted plans or fragments of pla.ns). rf'prf'sf'lIted in t.Iw hi­
erarchical formalism SKEP-REP (SKEletal Plan REPreselltat.ioll). which are associated 
with every feature. The generation of a production plan by the PIM syst.f'1ll boils dowll 
to a sequence of abstraction, selection, and refinement: The geol1letrical/ technological 
representation of a workpiece allows the recognition of the relevallt features. The associ­
ated skeletal plans are selected, merged, and refined until a complete plan is crea.ted. (d. 
[Becker91]) 

5 CAD Features Versus CAPP Features 

The principal description of the CAD process alld t1w ("01 1 ("(-'pI ual l11odf'l of CAPP elll­
ployed the term features to denote some higher level entities which rf'prf'Sellt. kllowledge of 
the respective experts. Using the example presented ill figul'f-' :j th(' a.uthors IIOW COl11pare 
the features used in the different areas. 

The CAD expert thinks .in terms of functionality which results ill all appropriate fea.­
ture structure of the workpiece under construction. This feature structure of an example 
is illustrated in figure 7. The functional entity bea1"ing consists of a loose bearing seat 
and a locating bearing seat; the loose bearing seat is build upon tIl(" singlf' design features 
groove, cylinder and undercut. These geometric entities are the direct. results of the func­
tional description. The other points of view mentioned in section 3 lead to more details 
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Figure 7: Design Features - Functional View 

of the realization , e.g. the functional design feature loose bearing seal i~ a!j!jociated to the 
geometrical design feature shajt end. The final result is shown in figure 8, wl1f'rf' those ge­
ometrical design features are presented which describe tl1f' geomet.rical allCl techuologica.l 
phenotype of the designed shaft. 

The expert in process planning starts from the geometrica.l/technological description 
of the workpiece which is the result of the CAD process . Based on this information the 
expert recognizes his own features. In the example this may lead to a, feature structure 
as illustrated in figure 9: The basic surfaces as primitive elements are aggregated to man­
ufacturing dependent higher level entities which the expert can associate with fragmenb 
of the process plan, the skeletal plans. 

Comparing the feature!j of the different experb it ha,!j to be lIoted tiIat 

1. Some basic features arise in both featur~ structures, e.g. the groove. While the 
descri bed enti ties are the same in both areas, the experts associate different infor­
mation with them. 

2. The domain specific view of the experts may result in different names for the same 
geometric entity: The chamfer of the CAD expert is a functional ity re lated term -
point of view assembly -, whereas the process planller calls Lllf' sanw f'lltity trunnion 
because of manufacturing aspects. 

3. On higher levels the feature structures differ: The lower levc'l entltle!j are aggre­
gated in different ways. This is the direct result of the domain dependent point of 
view of the experts. Whi le the bea1'ing as a higher level funct ional feature unites 
several surfaces forming the two bearing seats, these surfaces do not form a single 
manufacturing feature, since these surfaces appear in an ascending part and a de­
scending part of the shaft and therefore in general cannot be manufactured without 
tool change or chucking change. 
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In summary, while some features are used in both areas, principal differences in single 
features as well as in feature structures separate the domains. Higher features which bear 
more information lead in general to bigger differences. However, the idea of a /ealun 
as some entity representing expert's knowledge and aggregating lower level information 
is the same in both areas. This results in certain cha.racteristics of features which the 
authors investigate in the next section. 

6 What are Features ? 

Currently there is no consensus on a precise definition of the term feaht1'e. Most re­
searchers working in this area agree that a feature is an abstraction of lower level design 
or manufacturing information [Dixon89a]. Features that are required for design may differ 
considerably from those required for manufacturing or assembly, even though they may be 
based on the same lower level entities. This was discusspc! in Illorp dptail ill tllP previous 
section. 

John R. Dixon and John .J. CUlJllillgltall1 have clefilwd (l fcalure as "any gWlltttri.c 

f01'm 01' entity that isttsed in reasoning in ont or mol'( de.<:;i.gll o/' IIwnafactttring activ­
ities" [Cunningham88]. T.-C. Chang has defined a feat.ure ill his book [Chang90] as "a 
subset of geometry on an enginee1'ing pa1't which has a special design or manu/acht'J"ing 
characteristic.", Other similar definitions of features can be found in [Dixon89b]. 

Definition Based on the requirements pointed out in chapter 3 the authors define the 
term feature as a description element based on geometrical and technological da.ta. 
of a product which an expert in a domain associates with (prtain information . 
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Figure 9: Feature Structure - View of Manufacturing 

They are firstly distinguished by their kind as: 

--

1. functional fea t-u res , e.g. seat of tl1f' rolling bearing or O-ring groovf' (d. [Wf'lwr92j). 

2. qualitative Jeatu'l'es , e.g, bars or solid workpiece, 

3. geometrical (form) features, e.g. shoulder, groove or drillf>c\ bole, 

4. atomic Jeatw'es, e.g. toroidal shell, ring, shape tolerance or surface finish. 

and they are secondly dist inguished by their application as 

1. design feat 'uTes, e.g. crank or coupler (d. the more detail classification of design 
features in section 3), 

2. nwn·ufadttring leahtres: 

3. 

(a) turning features, e.g. shoulder or neck, 

(b) milling featu1'es, e.g. step or pocket, 

(c) drilling featw'es, e.g. stepped hole or lowering, 

(d) 

In the area of CAD the design feat.urf's an' additionally c1istillgllisllf'd by their associated 
information as single features and compound fea,tures whereas tllf' sillglf' ff'at urf'S represf'llt 
the smallest geometrical features with associated informatioll. The cOIllPound features 
are defined via single features or compound features. 

It is important to keep in mind t hat the above ment ioned features descri be a certain 
kind of a shape and that they are also related to some information about this shape. So the 
proposed feature language has a syntax (shape description) and a semantics (description 
of related information). In [Klauck91] several syntactical characteristics of features have 
been outlined. 
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1. Contextsensitivity: In dependence of the context of a structure different features 
are formed. 

2. Interaction: Areas of features can overlap. 

3. Dependence of Dimensions: In dependence of the dimensions the same struc­
tures may be identified as different features. 

4. Fragmentary Description: Some features are described by not connected areas . 

5. Hierarchy: A complete feature description of a workpiece forms a hierarchical 
structure of features. 

6. Qualitative Description: Instead of describing a feature in terms of geollletrical 
and technological information the expert mostly uses a qualitative descript.ioll. 

It is obvious that the phenotype of these characteristics differ, if the same workpiece is 
described in CAD features based on functional requirements or in CAPP features ba:;ed 
on the available manufacturing processes, as we have described in the previous section. 

The analogue between the feature language and formal language with semantics is 
explained in [Klauck91]. There it is stated out that the geometrical description in addition 
to attributes about the context, functionality and technology forlll:; tbe sYlltax of a feature. 
The information associated with the feature forms the semantics of a featurf>. A de:;igner 
for example associates functionality and costs with his features wherea.s a manufacturer 
a.ssociates a set of skeletal plans with his features. 

The area of formal languages is a well established field of research and provides a 
powerful set of methods like parsing and knowledge about problems, their complexity, and 
the way of how to solve them efficiently. The use of formal langu age techniques for feature 
descriptions facilitates the application of these results to the area of feature recognition 
(in CAPP) and feature expansion (in CAD). So a major compollellt of tlte CAD/CAM 
integration can be realized with such techniques. (d. [hla.uck92a. Klau ck92b]) 

7 Possible Integrations 

To integrate CAD systems with other applications in the CIM world, two principal ap­
proaches are currently under development [Chang90]. The feature based CAD systems 
provide higher level primitives which support not only the generation of the design but 
also serve as basic input for other elM components. Another approach enables any elM 
component to recognize the higher level entities used in this component out of a lower 
level data exchange format which might be the internal representatioll of a. CAD system 
as well as some standard data exchange format. 

Feature based CA* systems of the future ha.ve to offer bot.h killds of in tegra.tioll: The 
former to allow a more efficient integration of feature ba.sed CA * syst.ertls and t.he latter 
to guarantee an integration with other CA'" systems and to make the achieved data of a 
company like technical drawings usable in the systems. 

14 



qualitative 
level 

quantitative 
level 

Figure 10: Principle view of CAD and CA PP 

The basic functionality of t.he different systems and their principle desigll is nol affectf'd 
by the selected kind of int.egrat.ion. Both CAD systems and CAPP syst('IIIS rf-'Iy OIl SOl1le 
internal representatioll, which is t.ailored to their respectivf-' IWe'ds (d. figurf-' 10). 'fllis 
quantitative data level is connect.ed to some external interface. ideally a standard like 
STEP. In special cases this standard can be used as the intel'llal representation of the 
system; in general a well beha\'ing transformation procedure call be lIsed. 

The qualitative levels are based on the quantitative informatioll. The features used Oil 

these levels bridge the gap between the quantitative level and the expert's way of thinking. 
The transformation between the quantitative and the qualitative level is complex and 
expensive. The expert's knowledge must be represented and used in suitable tools in 
order to realize this step. Nevertheless this transition is feasible. which is proved by 
the analogue to formal languages where such transformations are already realized, e.g. 
described in [Legleitner92J. 

According to this model. a self-evident solution is the integral iOIl 011 the quantitative 
level via a standard like STEP, illustral.ed ill figure Ii. Not.e tllClt tile stalldard COlltaillS 
no qualitative information. As outlined ill the previous sectiolls a st.andardization of the 
qualitative information like the feature defini tions is in general i m possi ble, even though the 
underlying principles of the feature definitions and the resulting representation languages 
are similar (d. [Klauck91]). 

The more interesting integration of feature based CA 0 alld CA PP systellls is i1lus­
boated in figure 12. The integration will be realized by a. so-called intf,l)rat-ioll function 

INT. This function INT is defined according to three cases: 
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Figure 11: Minimal Integration via a Standard 

Figure 12: Close Integration on the qualitati\"(· IpvC'1 

1. The CAD feature have the sallie structlue (syntax) a.s a ('A tv! feaLure: IN'!' is the 
bijective identity function. 

2. The CAD feature (respectively CAM feature) have tlw samf-' structurp as a spt 
of complex CAM features: The CAD feature is reproduced by INT to the set of 
complex CAM features. 

3. The CAD feature (respectively CAM feature) is only describable by a set of atomic 
CAM features: The CAD feature is reproduced by INT to the set of atomic CAM 
features. 

In the la.st two cases a feature recognition process is llecessary to build the complete 
CAM feature structure out of the result of INT. This is necessary because the feature 
structure of a workpiece always forms a hierarchical structure as mentioned in section 6. 
Because all possible surfaces are contained in the set of atomic CAM features respectively 
CAD features INT can reproduce every CAD feature to a set of CAM features and vice 
versa. 
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The advantage of the integration model of figure 12 lies in the distinction between the 
time-complexity of the integration function INT and the fea.ture recognition process. The 
former realize a hard link between two structures in a constant. time whereas the latter 
realize a generation of a structure in a maybe non polynomial time. Independent of the 
kind of integration the user's view of the CAD or CAPP system is always the same: The 
system c'an be tailored to the domain experts terminology, the selected kind of integration 
may influence only the efficiency, not the terminology. 

8 Conclusion 

Features in CAD and CAPP represent specific experts knowledge; interesting features 
- which represent more knowledge - are very domain specific. Because of this fact a 
standardization of features in general and especially on a higher level seems impossible. 

Nevertheless, an integration on the qualitative level is a.t least possible. Due to similar­
ities in the structure of the feature definitions an integration function INT can be found. 
Using a standardized representat ion formalism for the feature definitions, this function 
can be generated automatically. 
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