
Deutsches
Forschungszentrum
fOr Kunstliche
Intelligenz GmbH

Research
Report

RR-92-03

Extended Logic-plus-Functional
Programming

Harold Boley

January 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
relatedsubfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J . Wendl
Director

Extended Logic-plus-Functional Programming

Harold Boley

DFIG-RR-92-03

To appear in:

Lars-Henrik Eriksson, Lars Hallnas, Peter Schroeder-Heister Ceds.):
Proceedings of the second workshop on extensions of logic programming. ELP '91,
SICS, Stockholm, Sweden, January 1991,
Springer, Lecture Notes in Artificial Intelligence, 1992.

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Contents

1 Introduction 1

2 R elat ions D efin ed by Horn ish Clauses 3

2.1 Open-World DATALOG .. :3

2.2 PROLOG- like Structlll'es a.nd Lists .. 4

2.3 Varying-Arity Structures .. .5

2.4 Varying-Arit.y Re latiollsiI ips .. 7

2.5 Higher-Orde r ('o lls t. ruC'tors alld R.e lations ~

3 Functions Defined by Footed Clauses 10

:3.1 DATAFlJN as a Funct ional Data.base Language 10

3 .1. 1 Footed Facts a nd NOli -G ro und Funct ioll s to

:3.1.:2 Footed Rules a.ucl the density Example 1:2

3.1.3 Non-Determinism, DATALOG Relationalizing, and WAM Compi-
lati on

:3.2 Full RELftiN Exempli ned by "Self" -Functions 14

:3.:3 Higher-Order ('ollsLructors allCl FUllctions 16

4 The Logic/Functional Style in Use 19

4.1 serialise: lllplace {lpclates of Non-Ground Structures 19

4.:2 wang: On-t.he-Fly (;ollst.rllct.ioll of Proof Trees 21

-1.:3 eval: 11l\.('I'prct illg <I LIS!' SIII)sc\. III RELFl! N n

5 Conclusions 25

Extended Logic-plus-Functional Programming

Harold Boley
Deutsches Forschungszentrum fur Kunstliche Intelligenz

Box 2080, D-6750 Kaiserslautern, F. R. Germany
boley@informatik. uni-kl.de

Abstract

Extensions of logic and functional programming are integrated in RELFUN. Its val
ued clauses comprise Horn clauses ('true'-valued) and clauses with a distinguished 'foot'
premise (returning arbitrary values) . Both the logic and functional components permit
LISP-like varying-arity and higher-order operators. The DATAFUN sublanguage of the
functional component is shown to be preferable to relational encodings of functions in
DATALOG. RELFUN permits non-ground, non-deterministic functions, hence certain
functions can be inverted using an 'is'-primitive generalizing that of PROLOG. For func
tion nestings a strict call-by-value strategy is employed. The reduction of these extensions
to a relational sublanguage is discussed and their WAM compilation is sketched. Three ex
amples ('serialise', 'wang', and 'eval') demonstrate the relational/functional style in use.
The list expressions of RELFUN's LISP implementation are presented in an extended
PROLOG-like syntax.

1 Introduction

Many approaches are possible for combining logic and functional programming, as illus
trated by the collection [DL86]. These can be preclassified in two principal dimensions.
(1) The combination may start with a model-theoretic semantics which is then refined (via
proof theory) for practical programming or, it may start with an implemented operational
semantics which is tuned in pra.ctice and then abstracted for model-theoretic foundation.
(2) A quite separate distinction is whether one is interested in a loosly coupled hybrid
system or, whether one strives for a tightly integrated logic/functional language.

With RELFUN we have been pursuing the latter alternatives of these dimensions: it
is an operationally defined, highly integrated language (cf. [BoI86]).

The language's operational spirit stems from its origin as a pure-LISP-based inter
preter. Also the present version is both implemented in, and can access precoded func
tionality from (a subset of) COMMON LISP. Besides the definitional interpreter this
implementation consists of a WAM compiler/emulator system. The RELFUN-in-LISP
implementation runs all the examples to be presented here, where the speed is acceptable
except , understandably, for the LISP-in-RELFUN example.

RELFUN's integrating concept is valued clauses, encompassing both PROLOG-style
Horn clauses (for defining relations) and directed conditional equations (for defining func
tions). While the former start off from Horn logic, the idea for the latter is to regard a
function definition like

{

-1

signum(x) = ~
if
if
if

x<O
x::::'O
x>O

not as clauses of a logic with equality (shown on the left) but as clauses that return
the right-hand sides of the directed equations via a ("&"-marked) premise following after
possible conditions (shown on the right):

eq(signum(X),-l)
eq(signum(O),O).
eq(signum(X),l)

x < O.

.- X > o.

signum(X)
signum(O)
signum(X) '-

x < 0 & -1.
& O.
X>O&1.

Hence, function calls need not be embedded into eq calls with auxiliary request variables,
as in eq (signum(-2.7) ,SignumA), eq (signum(3 .1), SignumB), SignumA < SignumB,
but can be written directly, as in signum(-2.7) < signum(3. 1). We then interpret
value-returning premises (after the ampersand) as generalized Horn-rule premises: apart
from being terms like -1 they may be calls like *(-l,X) or member(X, [-1,-3,-5]) and
nestings likes +(*(-l,X) ,3) or member(X,rest([-1,-3,-5]». Nestings are evaluated
strictly call-by-value, as, classically, in FP [Bac78].

The RELFUN notions of relation and function are amalgamated to an abstract opera
tor concept: functions are generalized to non-ground, non-deterministic operators, hence
relations can be viewed as characteristic functions. Our notion of relations as true-valued
functions is like in SLOG [Fri85], except that RELFUN's valued facts return true implic
itly. Another amalgamating notion is akin to LISP's "useful non-nil values": relation
like operators may on success return a value more informative than true (e.g., we can let
member return the list starting from the element found). All kinds of RELFUN operators
can be applied in generalized Horn-rule premises, which are usable uniformly to the left
as ';veIl as to the right of the "&;" -separator. Actually, such premises constitute a val
ued conjunction, also permitted as a top-level query (e.g., member(X,L) &; member(X,M)
non-deterministically returns rest lists of M whose first element also occurs in L). A special
valued conjunction calling only relations to the left of "&;" and having a single variable to its
right (e.g., country(X), between(X,atlantic,pacific) &; X) can be viewed as an in
definite description or 1]-expression (e.g., 1](x)[country(x)!\ between(x, atlantic, pacific)]),
also provided in other relational/functional amalgamations (see [PS91]).

Certain RELFUN functions can be inverted by calling them non-ground (by-value)
on the right-hand side (rhs) of a generalized PROLOG is-primitive, mimicking relations

2

(incl. the above eq predicate). RELFUN thus provides a version of innermost conditional
narowing [Fri85]. Its operational semantics flattens functional nestings to relational con
junctions; thus inherits the search-space reduction of SLD-resolution [BGM88]. Hence,
our WAM implementation of (first-order) RELFUN can approach the speed of PROLOG
[Bol90] .

Besides its attempt at integrating basic notions of PROLOG and LISP, many of REL
FUN's extended concepts can also be transferred to relational and functional program
ming individually. In the following section (2) the extended relational component will
be treated, including higher-order relations. The next section (3) will then augment this
by the extended functional component and discuss its benefits. Finally, the section (4)
before the conclusions will give three sample uses of the relational/functional style.

2 Relations Defined by Hornish Clauses

2.1 Open-World DATALOG

First we consider DATALOG i.e., PROLOG without structures (constructor symbols ap
plied to arguments). This kernel language of deductive databases is also a subset of REL
FUN. DATALOG clauses have identical syntax l and equivalent semantics in PROLOG
and RELFUN. Queries to RELFUN differ only as follows: they return the truth-value
true instead of printing the answer yes; they signal failure by yielding the truth-value
unknown instead of printing no .

When we stay in the relational realm of RELFUN this makes not much of a difference
since true can be mapped to yes and unknown can be mapped to no. However, when
proceeding to RELFUN's functional realm, queries will be able to return the third truth
value false: this is to be mapped to those of PROLOG's no answers for which the
closed-world assumption is justified. In general, however, RELFUN does not make the
closed-world assumption, and in the absence of explicit negative information modestly
yields unknown instead of 'omnisciently' answering no.

For example, given the DATALOG knowledge base

subfield(architecture,bridgebuilding).
applicable(pharmacy,medicine).
applicable(computerscience,bridgebuilding).
applicable(computerscience,computerscience).
applicable(Tool,Field) :- subfield(Field,Sub), applicable(Tool,Sub).

a successful query like applicable(computerscience,architecture) returns true
III RELFUN and prints yes III PROLOG; however, a failing query like

IThe syntax shown for full RELFUN will continue to be PROLOG-like. In the implementation it
becomes equivalent LISP-like list expressions. Although the (older) LISP-like syntax will not be shown
in this paper, it is actually used more often than the (newer) PROLOG-like syntax. RELFUN has been
given two syntaxes to facilitate communication between users from the LISP and PROLOG communities.

3

applicable (computerscience , agriculture) yields unknown in RELFUN but prints no
in PROLOG. As with most real-life knowledge, what we know about computer-science
applications is inherently open-ended; RELFUN's unknown reply agrees to the required
open-world semantics.

Later, in DATAFUN, certain relations such as subfield will be reformulated as func
tions (d. subsection 3.1). This will also have consequences for 'Horn' rules such as the
applicable rule which still define a relation but call a subfunction, e.g., in an is-rhs:
applicable(Tool,Field) :- Sub is subfield(Field), applicable(Tool,Sub). To
accomodate such functional (and i s- 'equational ') extensions in relational rules, we speak
of hornish rules or, generally, hornish clauses.

Two further extensions of DATALOG, varying-arity DATALOG and higher-order
DATALOG, will be treated implicitly in the corresponding full-PROLOG extensions (see
subsections 2.4 and 2.5).

2.2 PROLOG-like Structures and Lists

Let us now proceed to PROLOG with structures and its RELFUN extensions. PROLOG
has only constructor symbols and no defined function symbols; arguments to PROLOG
relations must always be (passive) structures and can never be (active) calls. RELFUN,
on the other hand, does support both of these categories, hence has a notational need to
distinguish between them.

First consider the more basic distinction of relations on the one hand, and constructors
and defined functions on the other hand: while mathematical accounts of first-order
logic express the distinction by disjoint sets of relation (predicate) and function symbols,
PROLOG just distinguishes predicate (top-level) and functor (sublevel) uses of these
symbols, and permits the same symbol to occur as a predicate and as a functor. This
permits metalogical reinterpretations of certain structures as goals (via call).

In the same interactive-programming spirit RELFUN does not distinguish active and
passive functor symbols but just active and passive functor uses. For this we note that
all functor uses take the form of applications, which we write with round parentheses
for 'active' operator calls and with square brackets for 'passive' structured terms. In the
relational part of RELFUN this means that only top-level relation calls are written with
parentheses, PROLOG-like structures are written with brackets. (In the functional part
both top-level and nested function calls will be parenthesized, too.)

Consider the successor constructor s, often used together with 0 for specifying invert
ible operations on natural numbers. Thus, while in PROLOG the structure corresponding
to 2 is s(s(O)) , in RELFUN it is s[s[O]]. For instance, the RELFUN lesseq relation
definition

lesseq(O,N).
lesseq(s[M] ,seN]) :- lesseq(M,N).

permits the call lesseq (X, s [s [0]]) to generate the X-values 0, s [0], or s [s [0]].

4

N-element RELFUN lists, as in LISP and PROLOG, can be regarded as a short-hand
for nested binary structures (we use the distinguished constructor "ens" instead of the
usual " ;"). For example, the (non-ground) list [s[s[O]], [E,F] ,s[O]] reduces to the
nesting ens [s [s [0]] , ens [ens [E, ens [F ,nil]] ,ens [s [0] ,nil]]]. A vertical bartn lists
causes their ens-reduction to end with the element after the" I" (usually a variable) rather
than with the distinguished constant nil. Thus, [X, Y I Z] reduces to ens [X, ens [y , Z]].
This "lists-to-structures" transformation is used both for WAM compilation and mathe
matical formalization. Note that the sorted relation definition in PROLOGjRELFUN

sorted([]) .
sorted ([X]) .
sorted([X,YIZ]) :- lesseq(X,Y), sorted([YIZ]).

and its ens-reduced form in RELFUN

sorted(nil) .
sorted(ens[X,nil]).
sorted(ens[X,ens[Y,Z]]) :- lesseq(X,Y), sorted(ens[Y,Z]).

consistently employ square brackets to indicate the 'passiveness' of lists and structures,
while in PROLOG the ens-reduced form would employ round parentheses.

2.3 Varying-Arity Structures

Lists can also be given a direct N-element interpretation because RELFUN permits
varying-arity structures i.e., structures containing a vertical bar. Like ens was used as a
binary list constructor we use tup as an N-ary list constructor (N ~ 0). That is, [...]
should be regarded as an abbreviation for tup [...]. This convention holds even if [...]
contains a "I". So, the earlier lists really stand for tup [s [s [0]] , tup [E, F] , s [0]] and
tup [X, Y I Z]. Such tup structures can again be viewed as nested ens structures as shown
for lists above.

Varying arities are also permitted for all other RELFUN constructors. This can be used
for reinterprating many 'untyped' list representations as constructor-'tagged' structures.
For instance, unbounded staples and dumps of elements can be written as varying-arity
structures staple [...] and dump [...], whose constructors distinguish the two 'types'
of element collections. The unification of RELFUN structures containing a "I" generates
a list value for a variable after the "I", as if the "I" would appear in a list context.
Similarly, lists constitute the only structures to be spliced into other structures after the
" I". Lists are thus the 'neutral' data structure for transporting the "I" -remainders of
varying-arity structures.

For example, staple [book, f older, folder I Rest] represents a staple with a book
followed by two folders on the top, and some unspecified remainder Rest. When unified
with staple [book, Y , Y , paper, Z , paper], Y is bound to folder and Rest to the list

5

[paper, Z, paper]. This list can again be spliced into, say, a dump beginning with a
book, dump [book IRest] , resulting in dump [book,paper,Z ,paper].

Unlike PROLOG we permit the vertical bar to follow directly after an opening square
bracket, both in lists and in (other) structures. For any list x, the list [I x] is the same as
X; additionally given a constructor e, the structure e [I X] exclusively uses the elements of
the list X as its arguments. Thus with the Rest binding [paper,Z,paper], dump[IRest]
is equivalent to dump [paper, Z, paper].

It is now possible to define elementwise equality of staples and dumps using the facts

argumenteq(staple[IArgs],dump[IArgs]).
argumenteq(dump[IArgs] ,staple[IArgs]).

where the two Args occurrences of each fact will be bound to unifying lists of elements.
Thus, while staple [book, X, X] and dump [y , paper, paper] would not unify, the call
argumenteq (staple [book, X ,X] , dump [y ,paper ,paper]) succeeds.

Another use of varying-arity structures is the term representation of clauses them
selves. In PROLOG": -" can be regarded as a binary functor whose arguments are the
clause head and a nesting of binary '" , ,,, -conjunctions for the body; in RELFUN it is
reinterpreted more concisely as an N-ary constructor (N ~ 1) whose first argument is
the head and whose remaining arguments make up the body conjuncts. The rule of the
DATALOG example in subsection 2.1 thus becomes the PROLOG structure

:-(applieable(Tool,Field),
, ,'(subfield(Field,Subfield),applieable(Tool,Subfield)))

and the RELFUN structure

:-[applieable[Tool,Field] ,subfield[Field,Subfield],
applieable[Tool,Subfield]]

The use of lists to treat" I" in all contexts suggests a technique for reducing varying
arity structures to fixed-arity ones. Each varying-arity e [xl, ... ,xN I X] could be re
placed by the unary e [[x 1 , ... , xN I X]] , where the single argument is a list containing
the original e arguments as elements. However, this naive method introduces unnecessary
bracketing (which could be hidden to the user) and hinders intrastructure WAM indexing
[Sin92] with respect to a structure's top-level arguments (which become 'neutralized' to a
tup or ens constructor). Instead of listifying all <:: arguments, a 'semi-listifying' method
might keep a fixed number, K :s; N, of initial arguments and only listify the remain
ing ones, resulting in the (K+1)-ary e[xl, ... ,xK, [xK+l, ... ,xNIX]]. However, even if
global static analysis is used to find the smallest K such that a vertical bar or a closing
square bracket is used after the Kth argument of e (for K = 0 leading back to the naive
method), an interactive user could employe [al, ... ,aI I R] with I < K. In certain queries
such a structure could be pretranslated to e[al, ... ,aI,Rl, ... ,RJ,R*], with I+J = K,
by 'unrolling' the variable R used after the" I" i.e., generating new variables R1, ... , RJ and
R*, and on success binding R to [Rl, ... ,RJ IR*]. In general, it is hard to avoid making
possible query patterns statically known to the global analyzer.

6

2.4 Varying-Arity Relationships

Proceeding from constructor terms to atomic formulas, we come to the LISP-inspired
PROLOG extension of varying-arity relation applications i.e., clause heads and bodies
directly containing a "I". Thus, both structures and applications can be ended by a
vertical bar followed by an ordinary variable; equivalently, they could be ended by a
"sequence variable" as used in KIF [GF91]. Varying-arity applications give argument
sequences the flavor of an implicit list data structure. For instance, the N-ary version (N
~ 0) of the sorted relation

sortedO.
sorted(X).
sorted(X,YIZ) :- lesseq(X,Y), sorted(YIZ).

permits calls like sorted(O,W,s[s[O]] ,s[s[s[O]]]), binding W to 0, s[O], or s[s[O]].

As in LISP, the N-ary flexibility gained can be used, among other things, to flatten
nestings of binary associative operators like + and append. Their output cannot go to
the (usual) last argument position because of the asymmetry of " I" -list-splicing; the only
uniformly usable output argument is the first one.

For example, while ordinary PROLOGs' ternary append relation is already quite flex
ible, LM-PROLOG [CK85] defines a natural N-ary extension (N > 0), which in RELFUN
is rewritten as

append ([]) .
append(Total,[] I Back) :- append(TotalIBack).
append([FirstITotal],[FirstIFront] I Back) .- append(Total,FrontIBack).

It ' contains' LISP 's unary null predicate, a list-typed PROLOG-like binary
"=" relation, and a permuted, list-typed version of PROLOG's ternary append
relation (append(1, [] ,1) won't succeed), but is actually a varying-arity rela
tion, which can be used in surprisingly diverse ways. Two samples are
append([a,b,c],L1, ... ,Lm) , splitting a given list into arbitrarily many lists,
and append ([a, b, a, b, a, b] , Leftcontext, [a, b, a] ,Rightcontext), unifying symmet
ric list segments.

Of course, a simple transformer can put the varying number of arguments of such
relations into a single list. For sorted the additional brackets would lead back to the
original definition; for append, with its distinguished first argument, however, they would
become a syntactic burden. Also, the transformation can result in serious problems for
even the standard WAM-indexing scheme because the first (and only) relation argument
becomes of type 1 i st indiscriminately. This could be remedied by a version of the semi
listifying arity-fixing technique sketched for structures in subsection 2.3 (e.g., listifying
only the N-l input lists of append).

7

2.5 Higher-Order Constructors and Relations

While PROLOG restricts constructors and relations to constants, RELFUN also permits
them to be variables or structures. This enables a restricted kind of higher-order operators,
syntactically reducible to first-order operators, but more expressive and cleaner than
PROLOG's use of extralogical builtins like functor, ": .. ", and metacall as higher-order
substitutes. Higher-order unification of the kind studied with AProlog [NM90], however,
is orthogonal to the extensions in RELFUN, which for simplicity and efficiency lives
without A-expressions (thus avoiding problems with A-variables [Bac78]) and 'semantic'
extensions of Robinson unification.

Constructor variables can be used to abstract . from, or force equality of, the
'type' of structures, as encoded by their constructor. For example, the unification
of staple[book,X,X] and F[Y,paper,paper] succeeds, binding F to the constructor
staple. Also, the argumenteq definition of subsection 2.3 can be generalized to arbitrary
constructors, using a single fact:

argumenteq(F[IArgs] ,G[IArgs]).

A converse definition, of constructoreq,

constructoreq(F[IArgsl] ,F[IArgs2]).

may be used to check equality of only the 'types' of two structures, as in the success
ful constructoreq (staple [paper, book] , staple [book, folder ,X]). For PROLOG's
structures constructoreq could be simulated by two calls of the functor builtin.

Constructor structures embody parameterized constructors such as stack [integer] ,
which are themselves applicable to arguments as in stack [integer] [3,1,2]. The above
constructoreq fact can thus be refined to a conspareq definition, succeeding for equally
parameterized constructor applications such as a stack and a heap of integers:

conspareq(F[Argtype] [IArgsl] ,G[Argtype] [IArgs2]).

The variables F and G stand here for constructors, e.g. stack and heap, of constructor
structures, whose single Argtype parameters must be equal.

Relation variables in queries enable to find all relationships between given ar
guments. In the DATALOG knowledge base (d. subsection 2.1) the query
R(X, bridgebuilding) needs only fact retrieval for binding R to the relation subfield
and X to the object architecture or, R to applicable and X to computersciencej
the query R(computerscience, archi tecture) requires rule deduction for binding
R to applicable. Later, using footed clauses (section 3), relations found in
this way will become returnable values, as in R(X, X) &: self [R] [X], returning
self [applicable] [computerscience], where the R-value is part of a constructor struc
ture. Note that the R's employed here are 'relation-request' variables, free at the time of
invoking the queries. More usual (mainly in LISP-based PROLOGs) is to permit variables

8

in relation position only if they are always bound at the time of the call, as in the example
of the next paragraph.

Relation variables in clauses permit the use of higher-order facts (recognized as such
by the context) like virtue(supports), virtue(protects), etc. to abstract rules like

honorable(X) .- supports(X,Y).
honorable(X) .- protects(X,Y).

etc. to the single rule ("Honorable is who has a virtuous relationship to someone")

honorable (X) :- virtue(R), R(X,Y).

Here we apply virtue as a unary second-order relation over binary relations, but more
general higher-order relations can be useful.

Relation structures can be employed for defining operations on relations. For example,
the relational product can be defined using the structure relproduct [R,S] as a relation,
which permits relational square to be defined with just a fact that uses a relproduct
structure as its second argument:

relproduct[R,S](X,Z) :- S(X,Y), R(Y,Z).
relsquare(R,relproduct[R,R]) .

While the structure relproduct [...] can be (higher-order-) called directly, as in
reI product [f athrel, mothrel] (j ohn, W), the constant reI square is (first-order-) called
to bind a variable, which is then used as a structure-valued relation variable, as in
relsquare(fathrel,T), T(john,W).

As discussed in [BoI90], higher-order relations of this form are not easily compiled into
the WAM, which collects all clauses with the same constant relation name and arity
into a procedure. However, relation variables and structures can be eliminated by simply
introducing an apply relation constant as in [War82]' which we shorten to ap: hor(...)
is replaced by ap (hor, ...) in all heads and bodies, moving the higher-order relation hor
to the first argument position. The last example thus becomes

ap(relproduct[R,S],X,Z) :- ap(S,X,y), ap(R,Y,Z).
ap(relsquare,R,relproduct[R,R]).

and can be queried by, e.g., ap(relsquare,father,T), ap(T,john,W). Note that
the relsquare clause and goal would not have needed the ap dummy because the
relsquare relation is a constant. However, even if all calls to a relation in a pro
gram can be found to be first-order by static analysis, the user could still issue relation
variable queries like P (R, relproduct [R, R]). In the WAM these would only work in t he
form ap (P , R, relproduct [R, R]), and presuppose that the reI square clauses are ap
transformed, like all other ones. Consider the effect of having all clauses collected into
apt i procedures, whose first arguments always are the former relation names (hence, i >

9

0). The discriminating effect of calling differently named procedures is lost; but is simu
lated by the usual first-argument indexing, loosing of course the refined discrimination of
non-ap first-argument indexing. Fortunately, in our WAM we can index on all arguments
(to the left of "I "), thus regaining full discriminative power for ap-reduced clauses.

For constructor variables and structures an analogous first-order reduction is possible
using a dummy constructor, which should again be ap in order to permit metacalls for
reduced clauses. As for earlier reductions this will affect WAM indexing: (top-level) struc
ture's constructors are all mapped to the same dummy constant, loosing the constructors'
inde'ring power, which could be regained by also indexing on their first arguments.

3 Functions Defined by Footed Clauses

3.1 DATAFUN as a Functional Database Language

We now proceed to functions, first considering DATAFUN, the functional subset of REL
FUN corresponding to PROLOG's DATALOG subset.

3.1.1 Footed Facts and Non-Ground Functions

Let us consider the database example in [WPP77], containing the following DATALOG
facts about country areas (given in thousands of square miles):

area(china,3380).
area(india,1139) .
area(ussr,8708).
area(usa, 3609).

Although these binary relations would permit requests like area (entry, 8708), their nor
mal use direction is of the kind area(ussr ,Area): the large value range of possible areas
makes it unlikely that a user ask for a country with a precisely given thousands-of-square
miles area such as 8708 (the problem would become even more noticeable if the exact
areas were stored, perhaps as real numbers, with rounding problems etc.) Therefore2 ,

in our opinion this 'historical' DATALOG example should be rewritten functionally, as
already implied in [GM84]. For this we extract the second argument from the DATALOG
facts and use it as the so-cailed foot after a ": -&;" -infix:

area(china) :-&; 3380.
area(india) :-&; 1139.
area(ussr)
area(usa)

:-&; 8708.
:-&; 3609.

2We do not make use of the argument that area : entry ---+ Area is a mapping (or 'functional' in,
e.g ., the relational database sense) while its inverse is not (some small countries' areas coincide if rounded
to 10~O sq. mi.), because RELFUN does allow non-deterministic functions, as will be shown shortly.

10

The resulting special DATAFUN clauses are called footed facts, here used for the point
wise definition of the RELFUN function area mapping from country names to natural
numbers. The definition emphasizes the natural area use direction, as in area (ussr), a
function call returning the value 8708.

The main advantage of distinguishing an 'output' argument of a relation as the re
turned value of a corresponding function is the possibility of nested calls such as

+(area(china),area(india),area(usa))

where the parenthesized inner applications are (not passive structures but) active function
calls that return their values to the ternary + use (cf. subsection 2.2); for reasons of
conciseness, program analysis, and variable elimination this is preferable to flat relational
conjunctions such as

area(china,Al), area(india,A2), area(usa,A3), +(Area,Al,A2,A3)

The main disadvantage lies in the issue of inverted calls, which are easier and sometimes
more logically complete for 'usage-neutral' relations: a functional non-termination prob
lem is illustrated in [Fri84]. However, RELFUN's inversion method for functions appears
quite natural, and for its DATAFUN subset completeness problems do not arise. A gener
alized form of PROLOG's is-primitive is employed to unify the values of a free function
call with the value to be used as the argument of the inverse function, where a call is
free if all its (actual!) arguments are different free variables. More generally, DATAFUN
(RELFUN) permits non-ground function calls which like DATALOG (PROLOG) goals
may contain repeated logical variables (non-ground terms).

As a simple example with just one free variable consider 8708 is area(Cntry),
the inverse function call corresponding to the above-discussed relational inversion
area(Cntry,8708). Independently from the context (e.g., in an is-rhs) the free call
area(Cntry) non-deterministically returns the values 3380, 1139, 8708, or 3609, at the
same time binding Cntry to china, india, ussr, or usa, respectively, in the textual order
of the area footed facts in the knowledge base. Within the above is-call only the third of
the returned values unifies with the left-hand side (lhs), so the inversion correctly binds
Cntry to ussr.

Other operators such as the exponentiation relation may be hardly or impossibly
inverted, which again suggests to rewrite them as 'directed' functions, leading from non
ground facts like

exp(X,O,l).
exp(X,l,X).

to non-ground footed facts like

exp(X,O) :-.t 1.
exp(X,l) :-.t X.

11

Here, the first clause has a ground foot, 1, while the second one has a non-ground foot,
X (in DATAFUN this must be a variable). Non-ground foots can yield both ground and
non-ground values, as in exp(2, 1), returning 2, and exp(Y, 1), returning Y, respectively.

3.1.2 Footed Rules and the density Example

In [WPP77] there are also DATALOG Horn facts about population (in millions), which
we think should be 'functionalized' to DATAFUN footed facts as demonstrated for area.
On this basis the paper supplies the population density (per square mile) of a country,
using the DATALOG rule (somewhat extralogical because of the is-call for 0)

density(C,O) :- pop(C,P), area(C,A), D is (P*1000)/A.

This can be mimicked by the equivalent DATAFUN rule (with is-calls for P and A)3

density(C) P is pop(C), A is area(C) & /(*(P,1000),A).

which may be condensed to the DATAFUN rule (without is-calls or auxiliary variables)

density(C) :-& /(*(pop(C),1000),area(C)).

Rules containing an "&" separator are called footed rules. The rule premises to the left
of "&" are called body premises and act exactly like the premises of a hornish rule. The
premise to the right of "&" is called a foot premise and differs from the other premises only
in that its value becomes the value of the entire rule. Together, these premises form a
valued conjunction, which like an "&" -less conjunction can also be used directly as a query.
Footed facts are special footed rules with an empty conjunction of body premises (the sepa
rator sequence" : - &" is normally joined to " : -&") and a foot premise which just denotes a
value (without evaluation). So the shortened footed densi ty rule above is not a footed fact
since its foot evaluates an expression. The most natural use of the DATAFUN database
would be functional calls like density(usa), returning the density value for usa. How
ever, these rule formulations could also be inverted or even be called freely to enumerate
all country/density pairs as in the relational call dens i ty (Cntry , Dnsty) (delivering both
countries and their densities as bindings) or the functional call density(Cntry) (deliver
ing countries as bindings with their densities as values).

To conclude the density example of [WPP77], PROLOG's "database query" rule

ans(C1,D1,C2,D2) :- density(C1,D1), density(C2,D2),
01 > D2, 20*01 < 21*D2.

and request ans (C1 ,01, C2, D2) for finding countries whose population density differs
by less than 5%, in RELFUN could be mimicked directly but can also be rewritten as a
single valued conjunction

3Following LISP, RELFUN currently does not distinguish arithmetic operators as infixes, but like all
other operators applies them as prefixes.

12

01 is density(Cl), 02 is density(C2), >(01,02), «*(20,01),*(21,02» t
ans [Cl, 01, C2, 02]

where the auxiliary global ans relation transmutes to a temporary ans constructor.

3.1.3 Non-Determinism, DATALOG Relationalizing, and WAM Compilation

While free calls for the inversion of the area and density functions produce non
deterministic results, the area anddensi ty definitions themselves are deterministic.
In RELFUN non-deterministic function definitions are also allowed, which return more
than one value even for ground calls.

For instance, the subfield relation of the DATALOG example in subsection 2.1 could
be extended non-deterministically, expanded by a transitive~closure version subclosure,
and transcribed into a function definition, as in the following DATAFUN example:

subfield(engineering) :-t mechanics.
subfield(engineering) :-t architecture.
subfield(architecture) :-& bridgebuilding.
subclosure(Field) :-& subfield(Field).
subclosure(Field) :-t subclosure(subfield(Field».
applicable(pharmacy,medicine).
applicable(computerscience,bridgebuilding).
applicable(computerscience,computerscience).
applicable(Tool,Field) :- applicable(Tool,subclosure(Field».

In this kno.wledge base the ground call subfield(engineering) non-deterministically re
turns the values mechanics or architecture; finding a subfield path from engineering
to bridgebuilding, applicable(computerscience, engineering) returns true. Note
that the operator applicable itself is left a relation but its former Horn rule using
a flat relational conjunction became a hornish rule that nests the (non-deterministic!)
subclosure function into the recursive call. The original relational form could again be
mimicked using an is-call, leading to

applicable(Tool,Field) :- Sub is subclosure(Field), applicable(Tool,Sub).

This flattening of the applicable definition exemplifies the first step of RELFUN's re
lationalize transformation leading from DATAFUN clauses to DATALOG clauses. The
second step introduces extra arguments for values returned in an is-rhs or in the foot,
where new first (not: last) arguments are used to cope with varying-arity DATAFUN
(" I" -calls); denotative foots directly become the extra argument of the conclusion while
evaluative foots generate a new variable (from _1, _2, ...) used as the extra argument of
both the foot and the conclusion. Thus, the relationalized form of the above DATAFUN
example is

13

subfield(mechanics,engineering).
subfield(architecture,engineering).
subfield(bridgebuilding,architecture).
subclosure(_l,Field) :- subfield(_l,Field).
subclosure(_2,Field) :- subfield(_l,Field), subclosure(_2,_1).
applicable(pharmacy,medicine).
applicable(computerscience,bridgebuilding).
applicable(computerscience,computerscience).
applicable(Tool,Field) :- subclosure(_l,Field), applicable(Tool,_l).

Besides this kind of RELFUN-to-PROLOG translation we have implemented a more
direct WAM compilation of non-deterministic, non-ground functions [BoI90]: the WAM
temporary register Xl (identical to the argument register Al) is also used for passing
returned values , so that first-argument nestings need not be flattened because the caller
directly finds the returned value of the first callee in argument register X1.

3.2 Full RELFUN Exemplified by "Self"-Functions

When enriching DATAFUN with structures and lists we arrive at full RELFUN (we
will immediately transfer the relational varying-arity extensions). Returning to successor
structures for natural numbers, one should first note that it is illegal to nest active calls
into passive structures like this: s [+ (M, N)]. The usual equational definition of binary
addition could still be transcribed by employing an is-call for +'s recursion:

+(O,N) :-&; N.
+(s[M] ,N) :- A is +(M,N) &; s[A]. (or +(s[M] ,N) :-&; +(M,s[N]).)

However, we prefer another method, relying on functions defined to simply return
"their own call as a structure". Since the same functor can be a constructor and a defined
function, we can define, e.g., sand tup as the following self-passivating functions:

sCM) :-&; s[M].
tup(IZ) :-&; tup[lZ]. (or tup(IZ) :-&; [Iz]. or tup(IZ) :-&; Z.)

Now, sand tup may also be called as active functions, evaluating their arguments in
the usual call-by-value manner and returning passive structures that use the evaluated
arguments as their arguments and the respective function names as their constructors.

For example, the call tup (subfield (engineering) , s (s (0») non-deterministically
returns the lists [mechanics, s [s [0]]] or [architecture, s [s [0]]]; the LISP-eons-like
tup-" I" -use tup (s (0) I [0]) returns [s [0] ,0]; the COMMON LISP-list*-like tup-" 1"
use tup(a,b,cl [d e]) returns [a,b:c,d,e] . Moreover, the s definition enables a direct
analogue to equational addition:

+(O,N) :-&; N.
+(s[M],N) :-&; s(+(M,N».

14

It should also be noted here that RELFUN definitions obey the "constructor discipline"
[O'D85], which with our notation amounts to saying simply that "clause heads must not
have embedded parenthesized expressions". This would be violated by the eq-nested
signum calls shown in the introduction.

The earlier relation-to-function transcriptions (e.g., for the subfield operator) de
creased the arity by one because one relation argument was distinguished as the function
value. Alternatively, relations can often be refined to functions of the same arity returning
an additional useful value. One class of functions generated in this way is filter functions
i.e., functions acting as the identity for certain arguments or argument combinations, and
failing for other ones. For instance, the sorted relation on lists of subsection 2.2 can be
refined to the following filter function , whose recursive call is nested after the"!" into a
cons-like tup call:

sorted ([]) : -&: [].
sorted([X]) :-&: [X].
sorted([X,Y!Z]) :- lesseq(X,Y) &: tup(X!sorted([Y!Z])).

This sorted function returns sorted (possibly non-ground) lists like [s[O] ,E,s[s[O]]]
unchanged (up to variable names), and fails for unsorted ones like [s [s [0]] ,E, s [0]].

Below, a sample sorted call is given, which occurs in an (internally non-ground
and non-deterministic) functional version of the well-known relational slow-sort program
[11087]. This sort definition also exemplifies an essential use of non-ground function calls:
since such calls both bind request variables and return a value, they can be used to split
results into bindings, for the calls occurring somewhere above or after them, and a value,
for the caller nested directly above them.

sort(X) :-&: sorted(perm(X)).

perm([]) :-&: [].
perm([X!Y]) :-&: tup(U!perm(delete(U,[X!Y]))).

delete(X,[X!Y]) :-&: Y.
delete(X,[Y!Z]) :-&: tup(Y!delete(X,Z)).

Let us consider this bottom-up. The auxiliary function delete non-deterministically
removes occurrences of its first argument from the list in its second argument. The
permutation function can then use a non-ground delete call for result splitting: it non
deterministically binds U to arbitrary list elements, for the cons-like tup call, and returns
U-Iess lists, for the recursive perm call. Finally, the sort main function calls the above
sorted filter on the non-deterministic permutations of its argument. Note that this func
tional sort version specifies a computationally preferable (nesting) sequence by calling·
perm before sorted. In the relational sort specification commutativity of conjunction
appears to permit calling sorted before perm, which, however, would not run in normal
PROLOGs, as discussed in [11087]. A related benefit of the functional formulation is
that the computationally less meaningful sort use for 'unsorting' a given sorted list is

15

syntactically marked by an is-call over a free sort call, whereas the relational version
employs symmetrically-looking non-ground sort calls for both use modes, that would
suggest "equality of rights" .

A variant of filters is self-testing functions, which can also be viewed as self-passivating
functions that yield unknown for an argument (sequence) considered "ill-formed". For
example, the varying-arity sorted relation of subsection 2.4 can be refined to a self
testing function that fails for unsorted argument sequences:

sorted() :-& sorted[].
sorted(X) :-& sorted[X].
sorted(X,YIZ) :- lesseq(X,Y), sorted[IW] is sorted(YIZ) & sorted[XIW].

Now, the non-ground call sorted(s(O),E,s(s[O])) returns a renaming variant of
sorted[s[O] ,E,s[s[O]]], while sorted(s(s[O]) ,E,s(O)) yields unknown.

Concluding the series of "self" -functions, let us proceed to self-normalizing functions,
a variant of self-testing functions performing argument normalization. For instance, the
previous list sort function can be used to define bag as a varying-arity function that
returns a bag structure of the sorted arguments i.e., a normalized multiset:

bag(IX) :- W is sort(X) & bag[IW].

Now, the call bag (s [s [0]] ,0, s (s [0]) , s (0)) returns bag [0, s [0] , s [s [0]] ,s [s [0]]] .
Recalling the discussion in subsection 2.2, it should be clear that even for a defined func
tion (e.g., bag) no evaluation (e.g., normalization) will happen if it is applied with square
brackets: tup (bag (s [0] ,0) ,bag [s [0] ,0]) returns [bag [0, s [0]] , bag [s [0] ,0]].

The flattening, extra-arguments, and relationalize transformations from DATAFUN
to DATALOG in subsection 3.1.3 are easily generalized to corresponding RELFUN
to-PROLOG transformations. For example, the above varying-arity bag function
becomes a relation which must bind normal forms to a request variable (the ex
tra first argument) instead of just returning them: bag (bag [I W] I X) : - sort (W ,X) .
However, self-normalizing functions constitute a paradigmatic class of operators for
which a relational reformulation seems not practically useful: a concise functional
nesting like set (bag(s [0] ,0) ,bag [0, s [0]]) would become the relational conjunction
bag(B,s[O],O), set(S,B,bag[O,s[O]]), treating the active and passive bags com
pletely differently, even though they both evaluate to (equal) structures for the set.
Again recalling subsection 3.1.3, the Xl-reuse for value returning in the WAM also sup
ports full RELFUN because Xl can point to structured return values on the heap just as
it points to structured variable values.

3.3 Higher-Order Constructors and Functions

Our derivation of functional programming extensions now arrives at variables and struc
tures used as constructors or functions, and at their combination with non-ground and
non-deterministic calls.

16

Constructor variables and structures, introduced in a relational context (subsection
2.5), are also useful in a functional setting. For instance, a function genints enumer
ates the integers in the alternating order 0, ±1, ±2, ... , returned as the infinitely non
deterministic values 0 or s [0] or p [0] or s [s [0]] or p [p [0]] or ... Its definition employs
a constructor variable, Sign, for building up a homogeneous, 'absolute' nesting before
binding the structure's "neutral signs" (equal in all levels!) to either the successor or
predecessor constructor. Instead of using the constants sand p, we could also apply as
constructors the defined functions 1+ and 1-4 or structures like inc[l] and inc[-l].

genintsO :-8/; o.
genints() :-8/; genints(Sign[O]).
genints(Sign[N]) :- Sign is s 8/; Sign[N].
genints(Sign[N]) :- Sign is p 8/; Sign[N].
genints(Sign[N]) :-8/; genints(Sign[Sign[N]]).

While the main nullary genints/O generates all integers, the auxiliary unary genints/1
can also be called as genints (Sign [... Sign [0] ...]) to generate the integers whose
absolute value is not less than the 'absolute' argument, as genints(s [0]) to generate
the positive integers, as genints (p [0]) to generate the negative integers, and in other
meaningful ways.

Function variables in queries can be utilized much like the corresponding relation
variables (see subsection 2.5). For example, given the DATAFUN version of the density
database (d. subsection 3.1.2)' the query F (china) asks for all unary properties of china,
enumerating the attribute F = area with the returned value 3380, the attribute F = pop
with its value, etc.

Function variables in clauses give us the abstraction power of functional arguments in
the fashion of functional programming. Thus, revise is a ternary function applying any
unary function F to the Nth element of a list (for N greater than the list length or Niess
than 1 it returns the list unchanged) :

revise(F,N, [J) :-8/; [J.
revise(F,l,[HIT]) :-8/; tup(F(H) IT).
revise(F,N,[HIT]) :-8/; tup(Hlrevise(F,l-(N),T)).

Similarly, the sort function could be parameterized by a Compare relation to be handed
to the sorted filter, which would abstract from the specific lesseq relation (in particular,
from the representation of naturals as s structures). Of course, this "functional style"
of universally quantified operator variables, occurring on both sides of definitions, is also
useful in purely relational examples. Conversely, the "relational style" of existentially
quantified operator variables, occurring only on the rhs of definitions, would also be useful

4RELFUN accesses a selected subset of COMMON LISP functions as builtins. Unusually named ex
amples are the numeric successor and predecessor functions 1+ and 1-, whose application to an argument,
say 6, in mathematical or PROLOG syntax becomes 1+(6) and 1-(6), returning 7 and 5, respectively.
RELFUN's ecal primitive, a combination of LISP's eval and PROLOG's metacall, permits the acti
vation of structures, as in ecal(1-[l-[O]]), returning -2.

17

in purely functional examples. Thus, the earlier function-variable query about china
could be further abstracted for use in the rhs of a rule returning attribute/value pairs
of an object. The below attval function employs both the rhs-only variable Attribute
and an lhs/rhs variable Valfilter (bound, e.g., to numfil ter) for filtering the values
returned by Attribute:

attval(Obj,Valfilter) :-& tup(Attribute,Valfilter(Attribute(Obj))).
numfilter(X) :- numberp(X) & X.

Note that the free variable Attribute in the first tup position becomes bound by its
application in the second tup position before the tup actually returns the pair.

Function structures can be employed like "function-forming operators" in FP [Bac78].
Bringing the relational-product example in subsection 2.5 back to functional program
ming, functional composition can be defined by using the structure compose [F ,G] as a
function, which permits twice to be defined as a compose-structure-valued footed fact:

compose[F,G](X) :-& F(G(X)).
twice(F) :-& compose [F,F] .

Again, while the structure compose [...] can be (higher-order-) called directly, as in
compose [f athfun, mothfun] (j ohn) , the constant twice is (first-order-) called in function
position to return an applicable function structure, as in twice (fathfun) (j ohn).

Let us now turn to the combination of higher-order operators with non-ground and
non-deterministic calls.

For example, F-1 , the inversion of a unary function F, can be defined as a function
structure inv [F] which calls F freely within an is-call only accepting F values that match
the argument Vof F-1 (for an N-ary F we just add a "I"):

inv[F](V) :- V is F(X) & X. (generally inv[F](V) :- V is F(IX) & X.)

Thus, inv[area] (1139) calls 1139 is area(X), hence returns india or other countries
for which area returns 1139 (the general inv would also work, returning [india]).

Another example, a version of the Ii-operator, additionally employs a result-splitting
like technique (used in the sort definition) to fork the entire result of a call into both the
binding of a request variable and the returned value. First, we define a non-deterministic
generator naturals, enumerating the naturals from an initialization given in the first
argument, where the next natural is always both bound to the second argument and
returned.

naturals(N,N) :-& N.
naturals(N,V) :-& naturals(1+(N),V).

For instance, naturals (3, V) binds V to 3 or 4 or ... ; at the same time it returns each of
these values. This then permits to concisely define a non-deterministic mu higher-order

18

function taking unary functions over the naturals as its argument and returning their
smallest argument for which they return 0, then their second-smallest argument, etc.,
diverging if there is none (leftS):

mu(F) :- ° is F(natura1s(0,V)) & V.

The ap reduction of higher-order relations in subsection 2.5 directly transfers to func
tion variables and structures. For instance, the above rule could be reduced to

ap(mu,F) :- ° is ap(F,ap(natura1s,0,V)) & V.

changing F from a function variable into an argument variable. The effects on the WAM
implementation are the same as discussed for higher-order relations.

4 The Logic/Functional Style in Use

Recent RELFUN projects have explored the use of relational/functional programming for
non-toy problems: the language has been evaluated and tuned by programs for realistic
tasks such as hypergraph processing [Bo192] and NC-program generation [BHH+91]. In
order to facilitate comparison with other languages, this section gives versions of three
well-known non-trivial programs in RELFUN's logic/functional style (some features of
RELFUN, most notably higher-order operations, will not be needed in these examples).

4.1 serialise: Inplace Updates of Non-Ground Structures

After the density database, the second practical PROLOG example given in [WPP77]
is the relational seria1ise program. Its task is to transform a list of items into a
corresponding list of their alphabetic serial numbers; e.g., [p, r , 0 , 1 ,0, gJ should become
[4,5,3,2,3, iJ .

The subrelations of serialise demonstrate the use of the "logical" variable: first
pairlists binds a request variable to a non-ground list of free variables (the prospective
answer list), e.g. [Yi, Y2, Y3, Y4, Y5, ysJ , and another request variable to a corresponding
list of non-ground structures, e.g. [pair [p, YiJ , pair [r , Y2J , pair [0, Y3J , pair [1, Y4J ,
pair [0, Y5J , pair [g, YSJ J , thus generating two variable-coupled "incomplete data struc
tures"; then arrange (quick)sorts the list of pairs into a binary tree, calling a partition
relation that uses the items in the first pair arguments for (string) comparison; now

5RELFUN's once primitive (or "!" symbol) could be employed above (or after) the is-call to prevent
the possibly diverging search for further solutions when the first solution is found, thus simulating the
usual - unbounded - minimalization of unary functions [for (1+N)-ary functions "I" can be used to
minimalize over the first argument, making mu[F] a function structure, as shown in square brackets]:

mu(F) :- once(O is F(naturals(O,V))) 1 V. (or mu(F) :- 0 is F(naturals(O,V)) ! 1 V.)
[mu[F](llargs) :- once(O is F(naturals(O,V)llargs)) 1 V.]

19

numbered can count the items, left to right, at the fringe of the tree and note the result
ing serial numbers by "inplace updates" in the second pair arguments, which by logical
variable equality instantiate pairlists' prospective answer list to the final, ground result.

Although this binary serialise relation can be called like seria1ise([p,r ,0,1,0 ,g] ,
[4,5,3,2,3, 1J), to check the relationship, and like serialise ([p, r, 0,1,0 ,gJ, S), to
generate the list of serial numbers, it cannot be called like serialise(r, [4,5,3,2,3,1]),
to generate all item lists mapping to given serial numbers (the comparison relation ex
pects constant items): the main serialise algorithm just employs a relational syntax
to express a non-invertible function from item lists to serial-number lists, while it does
make an essential, "two-results" use of the subrelation part it ion and of intermediate
non-ground terms.

Therefore it appears natural to reformulate seria1ise in RELFUN's non-ground
functional style, keeping the partition relation and intermediate non-ground re
turned values6 . Relationship-checking calls will then look like [4,5,3,2,3,1] is
serialise ([p, r, 0,1,0 ,g]), an is-call containing a ground function call for serial
number generation as its rhs. The above explanation for the relational version can be
transferred to this functional one by noting that the "principal result" is now always re
turned as a value instead of being bound to a request variable: the pairlists non-ground
function only binds its prospective-answer result for . use as seria1ise's foot premise R,
but directly returns the list of pairs to the arrange function, which again returns its
non-ground tree to the first argument of the self-nested numbered function.

seria1ise(L) :- numbered(arrange(pair1ists(L,R)),1) & R.

pairlists([XILJ,[YIRJ) :-& tup(pair[X,Y] Ipairlists(L,R)).
pairlists ([] , [J) : -& [].

arrange([XIL]) :
partition(L,X,L1,L2),
T1 is arrange(L1),
T2 is arrange(L2) &
tree[T1,X,T2] .

arrange([J) :-& void.

partition([XIL],X,L1,L2) :- partition(L,X,L1,L2).
partition([XILJ,Y,[XIL1J,L2) :-

before(X,Y), partition(L,Y,L1,L2).
partition([XILJ,Y,L1,[XIL2J) :-

before(Y,X), partition(L,Y,L1,L2).
part it ion ([] , Y , [J , []) .

6While the need for non-ground terms is self-evident in relational programming (ground relational pro
gramming isn't very useful), they require some justification in functional programming. The serialise
example shows how non-ground terms can be useful internally in a computation even if its external in
put/output is ground terms. This is analogous to an internal use of complex numbers in computing real
results .

20

before(pair[X1,Y1],pair[X2,Y2]) :- string«X1,X2).

numbered(tree[T1,pair[X,N1] ,T2] ,NO) :-t
numbered(T2,1+(N1 is numbered(T1,NO»).

numbered(void,N) :-t N.

Note that the body of the first arrange clause can be simplified to part it ion (L , X , L 1 , L2)
t tree(arrange(L1) ,X,arrange(L2» if tree is defined as a self-passivating function
or, similarly, if 3-tups are used instead of labeled binary trees (d. subsection 3.2). Also
notice that numbered 'updates' the pair structures at the roots of the tree structures
by is-binding the unavoidable logical variable N1 to the recursion result obtained from
traversing the left subtree T1 , a value which is incremented by 1+ for use in traversing
the right subtree T2. This works since RELFUN's is-builtin both binds and returns the
value of its rhs.

4.2 wang: On-the-Fly Construction of Proof Trees

Since its pure LISP description in [MAE+62], Wang's proof algorithm for the propositional
calculus has often been reformulated to demonstrate the use of declarative languages. The
algorithm applies reduction rules to a sequent representation of propositional formulas
until an atomic formula occurs in both the antecedent and consequent of all derived
sequents, reporting true, or no more rule is applicable to a sequent, reporting false.
[PS91] gives a version with an extra relation argument for constructing a proof tree "on
the-fly", whose size can be computed by an invertible function.

Here we give a RELFUN version that returns the trees of successful proofs, where
subtrees are built and their roots labeled "on-the-fly" by a constructor and two self
passivating functions: the constructor indicates that an atomic formula occurs on both
sequent sides and the self-passivating functions exhibit the reduction of a formula on the
right (consequent) or on the left (antecedent) side.

For example, wang([], [impl[and[p,and[q,r]] ,and[and[p,q] ,r]]]) returns the
and-associativity proof tree

right [
impl[and[p,and[q,r]] ,and[and[p,q],r]],
right [

and[and[p,q],r],
right [

and[p,q] ,
left[

and[p,and[q,r]] ,
left[and[q,r],both[p,wang[[r,q,p],[p]]]]],

left[
and[p,and[q,r]] ,
left[and[q,r],both[q,wang[[r,q,p],[q]]]]]]

left [and[p,and[q,r]] ,left [and[q,r] ,both[r,vang[[r,q,p] ,[r]]]]]]]

21

The main wang function's first clause initializes with [] two auxiliary (atomic formula)
arguments of a workhorse function that either returns a proof tree, or yields unknown. In
the former case, wang commits to the tree value by employing a 'sole' cut ("! . " , joined
to "!" , instead of " ." as the footed-clause terminator). In the latter case the second wang
clause returns false, thus implementing a procedure-specific closed-world assumption for
the wang operator. The work function realizes the usual reduction rules deterministically,
employing 'ankle' cuts ("! &;" or "!&;" instead of just a "&;" separator) for committing to
each rule before its foot is reached. In most work clauses no body premises are needed
between the conclusion and the foot, hence their ankle cut coincides with a 'neck' cut
(":- !" is joined to "!-", ":- !&;" to "!-&;")1.

wang(L,R) :-&; work(L,R,[] ,[])!
wang(L,R) :-&; false.

(or wang(L,R) :-&; if W is work(L,R,[],[])
then W else false.)

work([] ,[],A,B) :- member(X,A), member(X,B) !&
both[X,wang[A,B]] .

work([X!L],R,A,B) :- atomic(X) !&;
work(L,R,[X!A],B).

work(L,[X!R] ,A,B) :- atomic(X) !&;
work(L,R,A,[X!B]).

work(L,[not[P] !R] ,A,B) !-&;
right(not[P] ,work([P!L] ,R,A,B)).

work([not[P] !L] ,R,A,B) !-&;
left(not[P],work(L,[P!R],A,B)).

work(L,[and[P,Q] !R] ,A,B) !-&;
right (and[P,Q] ,work(L, [P!R] ,A,B) ,work(L, [Q!R] ,A,B)).

work([and[P,Q] !L] ,R,A,B) !-&;
left(and[P,Q] ,work([P,Q!L] ,R,A,B)).

work(L,[or[P,Q] !R],A,B) !-&;
right(or[P,Q] ,work(L,[P,Q!R],A,B)).

work([or[P,Q] !L] ,R,A,B) !-&;
left(or[P,Q] ,work([P!L] ,R,A,B),work([Q!L],R,A,B)).

7RELFUN only permits a single cut per clause, so premises to the left of "!" can be interpreted as
the arguments of an implicit once operator followed by a neck cut. Also, as a "single-cut language",
it is akin to a committed-choice language (eeL), obtainable by (1) restricting the left-"!" premises to
'guards' and by (2) parallelizing clause invocation. Like for PROLOG, a cut(-avoidance) discussion will
be necessary for relational/functional languages. For example, wang's sole cut can be encapsulated into
an it ... then ... else ... (as shown in parentheses), a valued version of PROLOG's ... -> ... ; ... , but
this entails an is-variable to avoid recomputation of the entire work. Although some relational/functional
cuts may be justified by the determinism of many functions, the question of better ways of determinism
specification remains. For instance, one could declare the work procedure as deterministic in one place
instead of using a "!" in each of its clauses (in the final clause, just for uniformity and eeL kinship).
Note, however, that RELFUN employs"!" as part of the clause syntax, like eeLs use "I", not
as an "extra-logical goal". In work this syntax acts like clause-oriented determinism annotations (for a
non-neck cut also specifying a clause's "commit point"), from which a declaration for the entire procedure
could be extracted .

22

work(L,[impl[P,Q] IR] ,A,B) !-&
right (impl [P,Q] ,work([PIL],[QIR],A,B)).

work([impl[P,Q] IL],R,A,B) !-&
left(impl[P,Q],work([QIL],R,A,B),work(L,[PIR] ,A,B)).

work(L, [equiv[P,Q] IR] ,A,B) !-&
right(equiv[P,Q],work([PIL],[QIR],A,B),work([QIL] ,[PIR],A,B)).

work([equiv[P,Q] IL] ,R,A,B) !-&
left(equiv[P,Q] ,work([P,QIL],R,A,B),work(L,[P,QIR],A,B)).

left(IR) :-& left[IR].
right(IR) :-& right [IR] .

member (X, [X I R]) .
member(X,[yIR]) :- member(X,R).

atomic(F[IR]) 1- unknown.
atomic(X) .

(or member(X,[XIR]) :-& [XIR].)
(or member(X,[yIR]) :-& member(X,R).)

The alternative member definition (using both parenthesized clauses) is the LISP-like
version mentioned in the introduction. (Using the first parenthesized clause and the
second unparenthesized clause gives a definition returning [X I R] instead of true only for
an X occurring as the first element of the original list.) Our functional wang algorithm
could again be degenerated to a non-tree-building relational algorithm by just omitting all
"&" -separators; the resulting hornish clauses could then be simplified, mainly by bringing
the work recursions to the top-level.

4.3 eval: Interpreting a LISP Subset in RELFUN

Most LISP-in-LISP metainterpreters descended from the metacircular evall apply spec
ification of LISP 1.5 [MAE+62]. The operational semantics of pure LISP was later tran
scribed to a concise pure PROLOG relation eval [PP82]. The below deterministic
RELFUN function eval, corecursive with apply, defines, without concern for efficiency,
a non-trivial LISP subset including closures, macros, and an object-level eval8

.

LISP lists (and function calls) are represented as RELFUN lists (with distinguished
first elements). As usual, lists wi th first element lambda are interpreted as temporary
functions. Permanent functions (and macros) become relational defun (and defmacro)
facts from which calls extract lambda functions . .

For instance, defun (ff , [x] , [cond, [[atom, x] , x] , [t , [ff, [car, x]]]]), asserted as

8We do not try here to capture the LISP subset in RELFUN which is required for our implementation
of RELFUN in LISP; it would need some profane features for reading/printing etc., but could avoid the
advanced features mentioned . This would provide a 'codefinition ' of RELFUN and LISP, like the one
proposed for PROLOG and LISP in Kenneth M. Kahn's "Pure Prolog in Pure Lisp" response (Logic
Programming Newsletter 5, Winter 83/84) to the "Pure Lisp in Pure Prolog" [PP82] paper. A direct
definition of RELFUN in RELFUN has been prepared by reducing it to a meaning-preserving kernel (via
flattening or relationalizing) , for which a PROLOG-like (vanilla) metainterpreter can be given.

23

a fact, can be called as in eval ([ff, [list, [cdr, [quote, [a, [[b, c] , d]]]] ,2,3]] , []),
returning the atom b.

eval([] , A) ! -&; [].
eval(t,A) !-&; t.
eval(E,A) :- numberp(E) !&; E.
eval(E,A) :- atom(E) ! [_,V] is assoc(E,A) &; V.

eval([quote,Exp] ,A) !-& Exp.
eval([function,Fn],A) !-&; [closure,Fn,A].

eval([cond] ,A) !-& [].
eval([cond,[P,Q] IR] ,A) :- [] is eval(P,A) !& eval([condIR] ,A).
eval([cond,[P,Q] IR] ,A) !-& eval(Q,A).

eval([FnIExps],A) :-
atom(Fn) ,
defmacro(Fn,Args,Body) !&
eval(apply([lambda,Args,Body] ,Exps,A),A).

eval([FnIExps] ,A) :-& apply(Fn,evlis(Exps,A),A).

apply(Fn,Vals,A) :-
atom(Fn),
defun(Fn,Args,Body) !&
apply([lambda,Args,Body] ,Vals,A).

apply(car,[[HdITl]] ,A) !-&; Hd.
appIy(cdr,[[HdITI]] ,A) !-&; TI.
appIy(cons,[Hd,TI],A) !-& [HdITI].
appIy(atom,[Val] ,A) !-& lispatom(Val).
appIy(eq,[Vali,Va12] ,A) !-& lispeq(Vali,Va12).

apply(addi,[Val],A) !-&; i+(Val).
appIy(subi,[Val] ,A) !-& i-(Val).

apply(list,Vals,A) !-& Vals.
appIy(eval,[Val] ,A) !-&; eval(Val,A).

apply([lambda,[] ,Body],[],A) !-& eval(Body,A).
appIy([lambda,[ArgIRargs] ,Body] ,[VaIIRvals],A) !-&

apply([lambda,Rargs,Body],Rvals,[[Arg,Val] IA]).

appIy([cIosure,Fn,Env],Vals,A) !-&; appIy(Fn,Vals,Env).

apply(Fn,Vals,A) :-& apply(eval(Fn,A),Vals,A).

24

evlis([],A) :-& [].
eVlis([EIRe] ,A) :-& tup(eval(E,A)levlis(Re,A».

as soc (N, []) : -& [].
assoc(N,[[N,V] IAr]) !-& [N,V].
assocCN, [_I ArJ) : -& assoc (N, Ar) .

lispatom([HdITl]) !-& [].
lispatom(X) :-& t.

lispeq(X,X) :-& t is lispatom(X)!
lispeq(X,Y) :-& [].

This LISP interpreter performs more well-formedness checks than most LISP-based ones:
the correct number and structure of arguments is verified by unification (e.g., quote
should have exactly one argument), yielding unknown for ill-formed expressions. The
eval function corecurses with the usual evlis auxiliary to evaluate actual arguments;
for uniformity, even arguments of special forms and macros are submitted to evlis (in
the final eval clause) iff their function is itself the result of an evaluation (in the final
apply clause). The specification has no need for the usual pairlis auxiliary because a
lambda application leads to an apply recursion through the lambda-argument and actual
value lists; that the Arg/Val pairs thus extend the environment, A, in reversed order does
not matter for legal LISP operators, having no duplicate lambda variables (as usual, our
interpreter does not prevent formal-argument repetitions; however, by reversing the pair
order in the A-list it effects LISP's normalleft-to-right evaluation even on lambda binding).

5 Conclusions

The RELFUN research attempts to combine and extend programming concepts and tech
niques that have accumulated in the relational (principally, PROLOG) and functional
(prototypically, LISP) communities.

A comprehensive subset of PROLOG is kept as a sublanguage with little syntactic
modification (structures written with square brackets instead of parentheses, cut used as
a separator instead of a goal). This basis is then systematically extended by advanced
relational notions, a rich set of functional notions, and a combination of both.

The functional sublanguage of RELFUN is much influenced by the implementation
language LISP. But as in newer funct ional languages, like ML and MIRANDA, a function
is defined by "pattern-+action" clauses instead of a conditional expression. Generalizing
pattern matching to unification, RELFUN permits non-ground functions, as allowed in
other logic/functional integrations [DL86]. This also leads to non-deterministic functions,
enumerating finitly or infinitly many values via backtracking.

25

The relational/functional integration entails a continuing cross-fertilization of the two
language styles. For instance, relational (logical) variables are reused for enabling the
non-ground function arguments and values; also, the relational (extra-logical) once/"!"
is reused for making function calls/definitions deterministic. In RELFUN these constructs
are employed in the same fashion for relations and functions. Conversely, varying-arity
and certain higher-order operators are transferred from the functional to the relational
world. Again, the cross-fertilization leads to a uniform use of such operators in both
sublanguages.

In fact, some operators can play the role of both functions and relations. For example,
the concise pair of clauses

disj[OpIOps]CIArgs) :-& OpCIArgs).
disj[OpIOps]CIArgs) :-& disj[IOps]CIArgs).

defines disj as a varying-arity, higher-order, non-ground, non-deterministic function
structure that recursively applies its operator parameters op1, ... (one or more relations
or functions) to zero or more (possibly non-ground) arguments arg1, ... , enumerating
the (possibly non-ground) values of op1 Carg1, ...), ... A disj call fails if none of these
operator calls successfully returns a value, hence we have at the same time defined a
disjunction relation of 'success' /'failure' logic. (A cut ending the first clause would
prevent functional value enumeration as well as relational truth multiplicity after the first
success.)

Summarizing, RELFUN provides a tunable system of relational/functional language
extensions, which can be used in isolation and in free combination. In particular, this
holds for the orthogonal functional, varying-arity, higher-order, and cut extensions of the
pure-PROLOG-like kernel. Several other extensions of pure PROLOG, e.g. types (incl.
finite domains) and modules, being quite independent from the ones in RELFUN, could
probably be added without difficulty, e.g. leading to typed values as well as arguments.

Besides the 'dynamic' interplay between our language extensions, there are 'static'
reduction possibilities for several of them. Most notably, the functional sublanguage
can be relationalized and the higher-order part can be reduced to the first-order part.
While with these reductions RELFUN 's semantics is indirectly founded on the usual
Herbrand models for Horn clauses, the author is working on a more direct characterization
of RELFUN's first-order hornish and footed clauses using functionally extended Herbrand
models (instead of distinguishing an equality relation). The 'horizontal' transformations
of the full language into a kernel are also importanOt in preparation for RELFUN's 'vertical'
WAM compilation. While the complete language is implemented as an interpreter, a first
order subset is realized as a compiler/emulator. The RELFUN sources are available in (a
portable subset of) COMMON LISP along with the program samples of this paper.

In our hybrid expert-system shell, COLAB, RELFUN's backward rules are augmented
by forward rules, taxonomies, and constraints [BHHM91]. Problems of realistic size are
now being solved by RELFUN [Bo192] and RELFUN/COLAB [BHH+91] programs.

26

References

[Bac78] John Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. CACM, 21(8):613- 641, August
1978.

[BGM88] P.G. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-resolution.
Theoretical Computer Science, 59:3- 23, 1988.

[BHH+91] Harold Boley, Philipp Hanschke, Martin Harm, Knut Hinkelmann, Thomas
Labisch, Manfred Meyer, Joerg Mueller, Thomas Oltzen, Michael Sin
tek, Werner Stein, and Frank Steinle. J.lCAD2NC: A declarative lathe
workplanning model transforming CAD-like geometries into abstract NC pro
grams. Technical Report Document D-91-15, University of Kaiserslautern,
DFKI, November 1991.

[BHHM91] H. Boley, P. Hanschke, K. Hinkelmann, and M. Meyer. COLAB: A Hybrid
Knowledge Compilation Laboratory. 3rd International Workshop on Data,
Expert Knowledge and Decisions: Using Knowledge to Transform Data into
Information for Decision Support, September 1991.

[BoI86]

[BoI90]

[BoI92]

[CK85]

[DL86]

[Fri84]

[Fri85]

Harold Boley. RELFUN: A relational/functional integration with valued
clauses. SIGPLAN Notices, 21(12):87- 98, December 1986.

Harold Boley. A relational/functional language and its compilation into the
WAM. Technical Report SEKI SR-90-05, University of Kaiserslautern, De
partment of Computer Science, April 1990.

Harold Boley. Declarative operations on nets. In Fritz Lehmann, editor,
Semantic Networks in Artificial Intelligence. Special Issue of Computers &
Mathematics with Applications, Pergamon Press, 1992. Preprinted as: DFKI
Research Report RR-90-12, Oct. 1990.

Mats Carlsson and Kenneth M. Kahn. LM-Prolog user manual. Technical
Report UPMAIL 24, Uppsala University, Department of Computer Science,
Revised April 1985.

D. DeGroot and G. Lindstrom, editors. Logic Programming: Functions, Re
lations, and Equations. Prentice-Hall, 1986.

Laurent Fribourg. Oriented equational clauses as a programming language. J.
Logic Programming, 1(2):165- 177, 1984.

Laurent Fribourg. SLOG: A logic programming language interpreter based on
clausal superposition and rewriting. In 1985 Symposium on Logic Program
ming, pages 172- 184. IEEE Computer Society Press, 1985.

27

[GF91]

[GM84]

[Ll087]

Michael R. Genesereth and Richard Fikes in collaboration with Danny Bo
brow, Piero Bonissone, Ron Brachman, Ramanathan Guha, Reed Letsinger,
Valdimir Lifschitz, Bob MacGregor, John McCarthy, Peter Norvig, Ramesh
Patil, and Len Schubert. Knowledge Interchange Format Version 2.2 Reference
Manual. Technical Report Logic-90-4, Stanford University, Computer Science
Department, Logic Group, March 1991.

Joseph A. Goguen and Jose Meseguer. Equality, types, modules, and (why
not?) generics for logic programming. J. Logic Programming, 1(2):179- 210,
1984.

John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
Heidelberg, New York, 1987.

[MAE+62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael!. Levin. LISP 1.5 programmer's manual. MIT Press, Cambridge,
Mass., 1962.

[NM90] Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. JACM,
37(4):777-814, October 1990.

[O'D85] M. J. O'Donnell. Equational Logic as a Programming Language. MIT Press,
Cambridge, Mass., 1985.

[PP82] Luis Moniz Pereira and Antonio Porto. Pure Lisp in pure Prolog. Logic
Programming Newsletter 3, Summer 1982. Universidade Nova de Lisboa,
Departamento de Informatica.

[PS91] Lawrence C. Paulson and Andrew W. Smith. Logic programming, functional
programming, and inductive definitions. In P. Schroeder-Heister, editor, Ex
tensions of Logic Programming, pages 283- 309, Berlin, Heidelberg, New York,
1991. Springer-Verlag. LNCS 475.

[Sin92] Michael Sintek. Generalized indexing methods for higher-order PROLOG ex
tensions: A case study with the RELFUN WAM. Technical report , University
of Kaiserslautern, DFKI, Forthcoming 1992.

[War82] David H. D. Warren. Higher-order extensions to PROLOG: Are they needed?
Machine Intelligence, 10:441-454, 1982.

[WPP77] David H. D. Warren, Luis M. Pereira, and Fernando Pereira. Prolog - the
language and its implementation compared with Lisp. SIGPLAN Notices,
12(8):109- 115, August 1977. Special Issue.

28

Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI Verllffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kllnnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-90-1S
Harald Trost: The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR-90-16
Franz Baader. Werner Nutt: Adding Homomor
phisms to Commutative/Monoidal Theories, or:
How Algebra Can Help in Equational Unification
25 pages

RR-90-17
Stephan Busemann:
Generalisierte Phasenstrukturgrammatiken und ihre
Verwendung zur maschinellen Sprachverarbeitung
114 Seiten

RR-91-01
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Nebel. Werner Nutt. Gert Smolka: On the
Expressivity of Feature Logics with Negation,
Functional Uncertainty, and Sort Equations
20 pages

RR-91-02
Francesco Donini. Bernhard Hol/under. Maurizio
Lenzerini. Alberto Marchetti Spaccamela. Daniele
Nardi . Werner Nutt: The Complexity of Existential
Quantification in Concept Languages
22 pages

RR-91-03
B.Holiunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages
RR-91-04
Harald Trost: X2MORF: A Morphological
Component Based on Augmented Two-Level
Morphology
19 pages

DFKl
-Bibliothek
PF 2080
D-6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-0S
Wolfgang Wahlster. Elisabeth Andre. Winfried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by
Graphics Generation.
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
Illustrated Documents: A Plan-Based Approach
11 pages

RR-91-07
Ganter Neumann. Wolfgang Finkler: A Head
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster. Elisabeth Andre.
Som Bandyopadhyay. Winfried Graf, Thomas Rist:
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR-91-09
Hans-Jiirgen Barckert. Jargen MUller.
Achim Schupeta: RATMAN and its Relation to
Other Multi-Agent Testbeds
31 pages

RR-91-10
Franz Baader. Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
J.Mark Gawron, JOM Nerbonne, Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Srrwlka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer, JiUgen MUller: A Two Level
Representation for Spatial Relations, Part I
27 pages

RR-91-1S
Bernhard Nebel, Gert Srrwlka:
Attributive Description Formalisms ... and the Rest
of the World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

RR-91-17
Andreas Dengel, Nelson M. Mattos:
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
lohnNerbonne, Klaus Netter,Abdel Kader Diagne ,
Ludwig Dickmann, Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On the Commitments and
Precommitments of Limited Agents
15 pages

RR-91-20
Christoph Klauck, Ansgar Bernardi, Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Netter: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter, Ansgar Bernardi, Christoph
Klauck, Ralf Legleitner: Akquisition und
Reprtlsentation von technischem Wissen fUr
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-2S
Karin Harbusch, Wolfgang Finkler, Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer, S. Biundo, D. Dengler, M. Hecking,
J. Koehler, G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi, H. Boley, Ph. Hanschke,
K. Hinkelmann, Ch. Klauck, O. Kuhn,
R. Legleitner, M. Meyer, M. M. Richter,
F. Schmalhofer, G. Schmidt, W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen, Harald Trost, Hans Uszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger, JOM Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger, J. Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen, Lutz Euler, Gunther Gorz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader. Klaus Schulz :
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel. Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-35
Winfried Graf, Wolfgang Maaj3: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
JOM Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DATR
15 pages

RR-92-05
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

DFKI Technical Memos

TM-91-01
Jana Kohler: Approaches to the Reuse of Plan
Schemata in Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmann: Bidirectional Reasoning of Hom
Clause Programs: Transformation and Compilation
20 pages

TM-91-03
Otto Kuhn. Marc Linster. Gabriele Schmidt:
Clamping, COKAM, KADS. and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM-91-04
. Harold Boley (Ed.):
A sampler of RelationallFunctional Definitions
12 pages

TM-91-05
Jay C. Weber. Andreas Dengel. Rainer Bleisinger:
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM-91-06
Johannes Stein: Aspects of Cooperating Agents
22 pages

TM-91-08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM-91-09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM-91-10
Bela Buschauer. Peter Poller. Anne Schauder. Karin
Harbusch : Tree Adjoining Grammars mit
Unifikation
149 pages

TM-91-11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger. Rainer Hoch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to KnOWledge
Representation
28 pages

TM-92-01
Lijuan Zhang:
Entwurf und Implementierung eioes Compilers zur
Transformation von WerkstiickrepdLsentationen
34 Seiten

DFKI Documents

D-91.01
Werner Stein. Michael Sintek: Relfun/X - An
Experimental Prolog Implementation of Relfun
48 pages

D-91-02
Jorg P. Muller: Design and Implementation of a
Finite Domain Constraint Logic Programming
System based on PROLOG with Coroutining
127 pages

D-91-03
Harold Boley. Klaus Elsbernd. Hans-Gunther Hein.
Thomas Krause: RPM Manual: Compiling
RELFUN into the RelationallFunctional Machine
43 pages

D-91-04
DFKI Wissenschaftlich-Technischer lahresbericht
1990
93 Seiten

D-91-06
Gerd Kamp: Entwurf, vergleichende Beschreibung
und Integration eines Arbeitsplanerstellungssystems
fUr Drehteile
130 Seiten

D-91-07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprlisentation von Geometrie- und
Technologieinformationen
70 Seiten

D-91-08
Thomas Krause: Globale DatenfluBanalyse und
horizon tale Compilation der relational-funktionalen
Sprache RELFUN
137 Seiten

D-91-09
David Powers. Lary Reeker (Eds.):
Proceedings MLNLO '91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-10
Donald R. Steiner. JUrgen Muller (Eds.) :
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available · only for a
nominal charge of 25 DM (or 15 US-$).

D-91-11
Thilo C. Horstmann:Distributed Truth Maintenance
61 pages

D-91-12
Bernd Bachmann:
Hieracon - a Knowledge Representation System

with Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel. Christof Peltason.

Kai von Luck
131 pages

D-91-14
Erich Achilles. Bernhard Hollunder. Armin Laux.
Jorg-Peter Mohren : 'l('}lJS: ~owledge

~presentation and mference System
- Benutzerhandbuch -
28 Seiten

D-91-15
Harold Boley. Philipp Hanschke. Martin Harm.
Knut Hinke/mann. Thomas Labisch. Manfred
Meyer. Jorg Muller. Thomas Oltzen. Michael
Simek. Werner Stein. Frank Steinle:
jlCAD2NC: A Declarative Lathe-Worplanning
Model Transforming CAD-like Geometries into
Abstract NC Programs
100 pages

D-91-16
Jorg Thoben. Franz Schmalhofer. Thomas Reinartz:
Wiederholungs-, Varianten- und Neuplanung bei der
Fertigung rotationssymmetrischer Drehteile
134 Seiten

D-91-17
Andreas Becker:
Analyse der Planungsverfahren der KI im Hinblick
auf ihre Eignung fiir die Abeitsplanung
86 Seiten

D-91-18
Thomas Reinartz: Definition von Problemklassen
im Maschinenbau als eine Begriffsbildungsaufgabe
107 Seiten

D-91-19
Peter Wazinski: Objektlokalisation in graphischen
Darstellungen
110 Seiten

:I: m
Q) >< ~ -0 (I)
Q. ::J

a.
III (I)
0 a.
(I)

'< r
0

(C

0
I

"'C
c:
(J)

I

"'TI
c:
::J
0 -0
::J
Q)

"t] .,
0

(C .,
Q)

3
3
::J

(C

