
Deutsches
Forschungszentrum
fOr KOnstliche
Inteiligenz GmbH

Research
Report

RR-91-25

Incremental Syntax Generation with

Tree Adjoining Grammars

Karin Harbusch Wolfgang Finkler Anne Schauder

October 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Q Intelligent Engineering Systems
Q Intelligent User Interfaces
Q Intelligent Communication Networks
Q Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Incremental Syntax Generation with
Tree Adjoining Grammars

Karin Harbusch Wolfgang Finkler Anne Schauder

DFKI-RR-91-25

A version of this paper has been published in the Proceedings of the 4th International GI
Congress: "KNOWLEDGE-BASED SYSTEMS" Distributed Artificial Intelligence and
Cooperative Work, October 23rd and 24th, 1991.

This work has been supported by a grant from The Federal Ministry for Research and
Technology (FKZ ITW-8901 8).

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Incremental Syntax Generation with
Tree Adjoining Grammars

Karin Harbusch, Wolfgang Finkler, Anne Schauder

Authors' Abstract

With the increasing capacity of AI systems the design of human- computer interfaces has
become a favorite research topic in AI. In this paper we focus on aspects of the output of a
computer. The architecture of a sentence generat ion component - embedded in the WIP
system - is described. The main emphasis is laid on the motivation for the incremental
sty le of processing and the encoding of adequate linguistic units as rules of a Lexicalized
Tree Adjoining Grammar with Unification .

Contents

1 Introduction

2 The WIP System

3 Incremental Natural Language Generation

4 The Grammar of the Text Realization Component
4.1 Lexicalized LD /LP- TAGs with Unification
4 .2 Adequacy of the Formalism for Incremental Generation

5 The Architecture of the Syntax Generation Component
5.1 Requirements and Design Cri teria for our Generator.
5 .2 The Individual Components

6 Conclusions

1

2

2

4

6

6
10

11
11
12

14

1 Introduction

The acceptance of an AI system directly depe·nds on its user interface facilities. For
the next generation of user interfaces it is no longer acceptable to use a restricted input
mode (e.g., an inflexible sequence of prompts of the system and required user input) or
inadequate canned text as output (e.g., "Rule 31 was chosen because of precondition 2.").

An AI system with user interface should be capable to play the role of the producer
as well as the role of the consument in conversational situations. Therefore it must be
able to analyze user input and to present new information in an adequate way. To be
adequate human-computer dialogue must share the properties of human-human dialogue.
This means for the generation of ouput that e.g., size and granularity of the presented
information should depend on the communicative context (novices must be informed in
a more detailed manner than skilled persons).

The central topic of this paper is the generation of natural language output. Since
natural language analysis and generation share ?- lot of properties, they could be seen as
two directions of the same process. In order to motivate the extra research on natural
language generation we have to differentiate between the two topics. One example for
such a difference is given by the used search spaces: During analysis all syntactic and
semantic ambiguities of an input sentence (e .g., "Time flies like an arrow.") must be
resolved in order to find the intended meaning. Generation means to choose between an
infinite number of utterances which are possible but more or less adequate in a situation
("Would you please close the window?" , "Shut the window!", "It is cold here.", "I already
had three influenzas .this year.", .. .).

Our generation component is embedded in the WIp 1 system whose architecture is
presented in Section 2. The decision for an incremental processing mode is essential for the
architecture of the generation component as well as for the determination of size and shape
of processed linguistic units . We motivate this processing mode with psycholinguistical
and computational arguments in Section 3. In Section 4 we argue that the formalism
of Lexicalized LD /LP-Tree Adjoining Grammars with Unification is well suited for the
representation of the knowledge used during verbalization (grammar and lexicon). The
overall architecture of our sentence generation module is explained in Section 5. It is a
system of concurrently and cooperatively working objects which manage the composition
and linearization of the linguistic units.

2 The WIP System

The aim of the WIP project (see, e.g., [Wahlster et al. 91]) is to contribute in basic re­
search in the field of 'Intelligent User Interfaces'. With increases in the amount and

1 WIP is the acronym for "W issensbasierte Informationspriisentation" which means knowledge-based
presentation of information. The WIP project is supported by the German Ministry of Research and
Technology under grant ITW8901 8.

2

sophistication of information that must be communicated to the user of a complex techni­
cal system, new ways to present that information flexibly and efficiently become necessary.
Since in many situations information is presented efficiently only through particular com­
binations of communication modes (e.g., graphics and text), the automatic generation
of multimodal presentations is an important task of such a system. One basic principle
of the WIP system is that the various constituents of a multimodal presentation should
be generated dynamically from a common representation, i.e. no predefined pictures or
texts are used. This is the presupposition for flexibility (e.g., change of perspective) and
interrelationship in the different modes of output (e.g., the use of cross-modal references).

Knowledge to be presented C Generation Parameters ~

Knowleclge

i

-----------------------_._._--------_._._------!

IUustraJed Document

Fi gu re 1: The Architecture' of the WIP System

Tile Presentation Planner (see Figure 1) is the component that is responsible for
tile select ion of contents. Furthermore, it decides which parts of the presentation shall
I)(~ realized as text and which as graphics. The input for the planner consists of the
kllowledge to be presented together with some information about the communicative
cOlltext in form of so- called Generation Parameters. A second control instance of the
system is the Layout Manager. It uses semantic and pragmatic relations specified by
tile pla.nner to arrange the graphical and tex tual fragments produced by the two mode-

3

specific generators (see W. Graf and W. MaaB in this volume for detailed information
about the Layout Manager). The two generator components are divided into a design
and a realization part. They produce textual and graphical parts of output without direct
communication. References and influences between the two generators are nevertheless
required for multimodal output: The Document History Handler as a central blackboard
is the shared medium for communication between the different components. Here the need
for a common representation for all components becomes obvious again. In the following
we focus on the text generation part of WIP.

The Text Design component receives as input from the Presentation Planner exactly
that piece of knowledge, which was chosen to be presented as text. Furthermore the
Presentation Planner defines an adequate set of parameters for the Text Design component
which consists partially of the parameters that are given as input to the Presentation
Planner itself. The other parameters are specific to text not to graphics and are set
dynamically by the Presentation Planner or the Layout Manager (e.g., "sentence mode:
noun phrase" for the generation of titles, "short utterance" to have some text fitted into
a given graphical box, ...). The Text Design component determines in which order the
givell input elements shall be realized in the text. The structure of a text is worked out at
several levels. This comprises for example the partition of a paragraph into sentences, the
assigllment of a perspective or the use of anaphora to obtain a coherent text. Therefore,
t lti s component is comparable with the so- called "Micro- planner", a part of the What­
to- Say component - where the Presentation Planner can be seen as "Macro- planner"
(d. [Levelt 89]).

The res ulting preverbal message is grammatically encoded, linearized and inflected
in the Text Realization component (How- to- Say component) . Thereby, the Generation
Parameters direct the choice of syntactic structures . One difficulty is to define the bound­
ary between the What- to- Say and the How- to- Say component. We decided to associate
t hc process of lexical choice with the Text Design component. This results in syntactic
constraints expressed as valency information of the chosen lemmas which could lead to
collflicts during verbalizi!.tion in the Text Realization component. To be able to report
t hcse problems to the Text Design component we propose a model with feedback between
th e two modules.

In the following section we motivate the incremental style of processing during gener­
ation which is supported by such a model of a cascade with feedback.

3 Incremental Natural Language Generation

/n cremenlality stands for piecemeal process ing of information. For the text generation
task which is assumed to be executed on sevc::ral stages of processing, this means an
i IILCl'connection between the stages: Instead of working sequentially on the whole input
the components work on partial input and produce parts of output for the next stage as
soon as possible.

4

The idea of incrementality in natural language generation is motivated by psycholin­
guistic studies (see, e.g., [Kempen 78]) . Humans often start speaking before they know
exactly what the whole contents of their utterance will be. When describing a scene where
a big man and a smaller man are visible and the big man does something, it is possible
to focus on this man without knowing how to describe his activity. Thereby incremental
processing is possible because the disambiguating modifier "big" can be added to the
noun "man" without regarding the actions of the two persons . This observation can be
interpreted as follows: The time that passes during the articulation of the first parts of
the utterance can be used to process further parts of information which shall be realized
in the utterance (e.g., that the action can be described as "laughing"). Special kinds of
human speech errors and empirical results of other psycholinguistical experiments give
ev idence for this interpretation.

Advantages of incrementality in human language generation are that less information
must be kept in mind, that pauses between parts of the utterance become shorter and
consequentially that the danger of being interrupted by the dialogue partner decreases .
Most important for AI generation systems are the first two facts .

Prom a computational point of view the main advantage of an incremental approach
is the improvement of efficiency. A reduction of response time enhances the user's accep­
tance of an information system. Different components of the text generation system (see
Section 5) can start working as soon as they obtain their first partial input . They should
produce their output in a piecemeal fashion, too. Therefore, efficiency is gained by paral­
lelism in the cascade of text generating components. On the contrary, a strictly sequential
1l10de of operation would force them to work one after the other; their processing times
wo uld have to be added up.

There is a need for incremental presentation in WIP, especially, if knowledge to be
presented is not completely available when the processing in the WIP system starts. A
sce llario can be imagined where information is continuously supplied by the application
system (e.g., data obtained from measuring instruments) and where such information
must be simultaneously presented in a condensed form to assist human decision- makers .
III i:\,cld i tion, an online presentation mode that aims to instantaneously illustrate the devel­
oprncnt of the document on a screen can be more appropriate for users even in situations
where all information to be presented is available before the system starts. The advan­
ta.ge is that the user receives the reaction of the system earlier, i.e. before the output is
cO lllpleted.

For the transfer of an incremental approach to a computational model basically two
quest ions must be examined: Firstly, how can an incremental and parallel mode between
the components of the system (here, e.g., Presentation Planner, Text Design, ...) be
realized, and secondly, can this kind of processing be furthermore enhanced by paral­
leli sm inside the components (e.g., parallel processing of parts of a sentence in the Text
Realization component)?

Our answer to the first question is the previously mentioned model of a cascade for the

5

architecture of the WIP system. "Coarse grained" parallelism between the text generator,
the graphics generator and the planning component is possible.

In this paper, we will try to answer the second question with regard to the Text Re­
alization component . A simultaneous activity 011 existing parts of the syntactic structure
would support the incremental processing of such parts (d. [Finkler & Neumann 89]). A
discussion about the degree of parallelism possible inside a component ends up in a dis­
cussion about the degree of independence that can be observed between the computed
parts. On the other hand, this question has some influence on the determination of the
s ize of entities the sentence generator should work with.

Our ideas to solve these problems are presented in the next two sections . We will
translate the incremental mode of processing into a parallel model of cooperating objects
which deal with entities from our knowledge base: structures of a Lexicalized LD/LP- Tree
Adjoining Grammar with Unification.

4 The Grammar of the Text Realization Compo­
nent

Tile task of our generator consists in finding a syntactic realization for the preverbal
Illessage which has been given as input. The additional information contained in the
para.meter settings has likewise to be integrated. Therefore we must have a look at the
structure of syntactic knowledge and find a good representation for it .

We refine the problem stepwise. First an adequate formalism for the representation of
syntactic knowledge is presented (Tree Adjoining Grammars with some extensions). Then
the appropriateness of the TAG extension 'Lexicalized LD /LP- UTAG' for grammatical
ellcoding is evaluated.

4.1 Lexicalized LD / LP- TAGs w ith U nificatio n

Tree Adjoining Grammars

III 1975, the formalism of Tree Adjoining Grammars (TAGs) was introduced (see [Joshi et
al. 75]. Since then, a wide variety of properties - formal properties as well as linguistically
relevant ones - were studied (see, e.g., [Joshi 85] for a good overview).

1\ Tree Adjoining Grammar is a tree generation system. It consists of two different
set.s of trees, initial and auxiliary trees, which together form the set of elementary trees.
Int.uitively the set of initial trees can be seen as context-free derivation trees. The start
sY 1111)O) of the grammar is the root node, all inner nodes are nonterminals and all leaves
~I . rc terminals (e.g., tree Q in Figure 2). Auxiliary trees (e.g., tree f3 in Figure 2) can be
coll1bined with initial (or already modified initial) trees by replacing an inner node of
the latter. This combination operation is called a¢ioining or adjunction. The result of
~L11 adjoining must again have the form of a derivation tree (e.g., the rightmost tree in

6

Figure 2). This demand restricts the structure of auxiliary trees: In order to replace a
node labelled X, the root node of the auxiliary tree must also be labelled with X and one
of its leaves, called the foot node, serves as the new root for the former subtree below
the adjoining node. Another restriction for auxiliary trees is the requirement, that such
a tree must derive at least one terminal. This disallows the repetition of arbitrary many
adj unctions without growt h in the terminal string.

s

adjoining
I

s

Figure 2: Elementary Trees and the Adjoining Operation in a TAG

The most obvious property of TAG trees' which arises from the close relation with
context- free derivation trees is the easy way to write and understand syntactic rules.
The advantage over CFGs (context- free grammars) is that related facts can be described
in side one rule (see, e.g., [Kroch &. Joshi 85]). TAGs are more powerful than CFGs, they
;-\.rc Illildly context- sensitive (d. [Weir 88]). In the linguistic community, it is discussed
cO IILroversially, how powerfu l a lingu istic formalism should be (see, e.g., [Pullum 84]).
Ollr decision for the TAG formalism is oriented' at the thesis that natural language can
be described very well by a mildly context-sensitive formalism.

One disadvantage of the TAG formalism is the redundancy of subtrees as a consequence
of the relatively large size of the structures. One attempt to weaken this disadvantage
is the introduction of a second combination operation - substitution - into the TAG
formalism. This operation allows nonterminalleaves of elementary trees to be substituted
by substitution trees. A substitution t ree looks like an initial tree but the root node may
be labelled with any nonterminal symbol. Substitution does not increase the power of the
forillalism because it can be eliminated by context- free preprocessing. Substitution nodes
([.1 ways mark places of obligatory expansions of a tree. A derivation tree is not completed
lIntil all substitutions have taken place.

The extensions of the TAG formalism that are described in the following are primarily
linguistically motivated.

7

TAGs with Unification

Tree Adjoining Grammars - same as the CFGs - lack the necessary structures to express
and compute complex attributes in the linguistic application domain, e.g., agreement.
The encoding of such attributes (like person, number and case for nouns) in the cat­
egory name (e.g., NP1plnom) leads to combinatory explosion of the grammar. In the
framework of CFGs, this disadvantage is removed by combining the CFG with feature
structures thereby defining a Unification Grammar (see [Shieber 86] for an introduction
to Unification Grammar). This technique can also be applied to the TAG formalism. The
formal definition is given in [Buschauer et al. 89] and in [Harbusch 90].

TA Gs with Unification (UTAGs) allow each node of a tree to be associated with a list
of specification rules. Such a rule consists either of a pair of two paths or of a path and
a value. A path consists of a number uniquely referring to a node of an elementary tree
followed by some feature names, e.g., ((0 pers) (01 pers)) means that the value of feature
person must be shared by node a and node 01. If the second part of a rule is an atomic
value then the rule specifies a 'definition'. All rules associated with nodes of a TAG tree
are unified if there exists no contradiction between them, e.g., ((01 pers) 3) unified with
((00 1 pers) 2) and ((0 1 pers) (00 1 pers)) fails. The specification rules of a node are often
represented as DAG (directed acyclic graph), where common prefixes are only represented
once and different sons of a common prefix become brothers.

The trees in Figure 3 describe an example UTAG which allows the propagation of
some syntactic information (here just the. value of the feature person) from the lexical
item "Mann" upwards. For reasons of simplification the determiner which is obligatory

50 _pers

f PUllpers V P02j pers
I I

NUll V021

i\Lnn pers -31a~h .. .

Lexicon:
(Mann ((pers) 3) ...)

Specification list at node N POI:
((0 pel's) (0 1 pel's))

01 all
=>jX
=>lX

52 _pers

after adjunction

Figure 3: Trees of a TAG with Unification

for the represented german sentence is left out. The example illustrates that information
specified in DAGs at nodes can be propagated upwards as well as downwards in the tree.

8

Thus there may be links (points of unification) between the DAGs all over the elementary
tree, graphically represented as arcs in Figure 3. The question is how to manage these links
during adjunction. If a node becomes an adjoining node it is replaced by an auxiliary tree.
Thereby existing links from this node into the tree have to be cut and newly connected
wi th parts of the auxiliary tree in order to fit in this tree correctly.

More formally spoken, we divide the specification lists of the adjoining node X into
the three sets iX, lX and oX, stressing the different partner nodes mentioned in the r~le:
iX is the set of all specifications which relate X to its father or brothers in the tree, lX
is the set of all specifications which relate X to its sons, oX is the set of value definitions
for X. During the adjoining with unification at a node X, first this node is replaced by
th e auxiliary tree. All links of X upwards and downwards in the tree are cut- off. Then
the OAG of the root node of the auxiliary tree is unified with iX and the DAG of the
foot node is unified with lX (see the links in the resulting tree in Figure 3). The value
definitions of oX are reintroduced at positions in the auxiliary tree, which are computed
by a specific inheritance examination (see [Buschauer et al. 89]), to avoid unexpected
unifi cation failures. It becomes clear that TAGs can be naturally combined with the
cxtcllding unification to form a representation for specific linguistic terms .

LD/LP-TAGs

Alloth er disadvantage of the TAG formalism as well as for context- free grammars is that
both formalisms cannot handle the problem of free word order efficiently. Each conste l­
lation of leaves has to be expressed by an individual tree. For CFGs this disadvantage
was eliminated by defining two sets: Immediate Dominance Hules (ID- rules) contain in~
formation about the sons of a node without specifying their ordering (e.g., (NP --t DET,
AD.J, N), which specifies the constituents of a noun phrase as determiner; adjective and
IIOll II , corresponds to the context- free rules which result from the permutation of the
three constituents on the right side). Linear Precedence rules (LP- rules) restrict the set
of permutations (e.g., DET < ADJ produces on ly the context- free rules NP --t DET ADJ
N, N r --t DET N ADJ and NP --t N DET ADJ). This idea can be used for TAGs as well
but with a slight modification. For CFGs the LP- rules are defined globally on the base
of the nonterminals of the grammar. In the TAG formalism the unique node numbers are
llsee! to express the constraints on the elementary trees locally: Trees are interpreted as
IllObilcs. In the name LD/LP- UTA G LO stallds for Local Dominance (trees as domains
of loca li ty).

Lexicalized TAGs

TIle motivation for the use of the last extens ion of the formalism is the assumption
tha'\' the process of syntactic generation is lexically guided (see [Kempen & Hoenkamp
87]) : The adequate strategy for the verbalization of a preverbal message seems to be
lexi calization, i.e. the choice of lemmas which are suitab le to represent some elements of

9

the message followed by the construction of syntactic structures which is controlled by
syntactic constraints introduced by the lemmas.

The principle of lexical guidance can best be supported by the grammar if it is lexical­
ized, that means that each rule has an anchor iIi the lexicon. The constraint for trees of
Lexicalized TA Gs (d. [Schabes et al. 88]) is that each structure must be associated with
at. least one lemma which has to be the lexical head of the represented phrase (e.g., the
noun of a noun phrase). The other way round, each input lemma from the Text Design
component can directly be associated with a tree of the Lexicalized TAG.

4 .2 Adequacy of the Formalism for Incremental Generat io n

The extended domain of locality within the basic TAG formalism (in contrast to CFGs)
allows to express many linguistic phenomena by single trees. This property remains valid
in all of the presented extensions of the formalism. TAGs with Unification aU~w a detailed
declarative description of all kinds of syntactic phenomena (e.g., the formulation of agree­
ment between subject and predicate of a sentence). However, it must be mentioned that
the use of unification results in a formalism which is no longer context- sensitive and prob­
ably too powerful for the representation of natural language. The LD /LP-extension that
di vi des the grammar rules into a set of mobiles and a set of order restricting constraints
allows a more compact description of syntactic structures and their possible lineariza­
tions. Finally lexicalization demands that TAG trees contain at least (and for practical
purpose often just) their lexical head as a leaf so that the focus lies on the description of
a ll obligatory parts required for this lexical entry, i.e. the sub categorization frame.

The adequacy of Lexicalized LD/LP-UTAGs for sentence generation in the WIP sys­
tem must be examined with respect to the incremental mode of processing and the incor­
poration of the generation parameters .

The consequence of incremental processing through the components of the text gener­
ator is that the input to the Text Realization component - the lemmas - are given step by
step, as soon as the corresponding concepts are chosen by the Presentation Planner and
the lexical choice inside the Text Design component is done. To gain best efficiency these
input elements should be processed by the Realizer as soon as possible. This presupposes
that with each given input lemma a syntactic rule (a TAG tree) can be cposen at once.
The lexicalization property of our formalism allows such a one to one correspondence be­
tween lexical items and syntactic structures whose respective heads they are. Remember
the example of the conceptual addition of a modifier to a noun in Section 3. As soon
as the noun "man" is given to the Text Realization component it can be mapped to a
subst itution tree with root NP and sole son N. This tree describes the complete phrase
opened by the noun at this moment . The modifier "big" can be mapped to an auxiliary
tree with leaf AD) and root and foot node NP ~ecause it modifies a noun phrase.

With the given example it should be intuitively clear that each lemma can be associated
with an appropriate lexicalized structure. The combination of these structures depends
on the defined relations between the lemmas (which are also given as input) and can be

10

handled by applying the grammar internal operations adjoining and substitution. In our
example the auxiliary tree representing the modifier can be adjoined into the -NP node of

the substitution tree.
Notice, that a given lexical item can be associated with a whole set of alternative syn­

tactic representations instead of exactly one lexicalized tree. Another possible realization
of the modifier "big" could be a relative clause with the verb "to be" ("which is big") . A
specific choice on such sets of rules is possible by using the given parameter settings, so
the size of knowledge base entities seems adequate again.

5 The Architecture of the Syntax Generation Com­
ponent

The integration of the syntax generation component into the WIP system imposes some
specific requirements upon its architecture. They are described in the next section as
well as some more general software engineering demands. The effects of an incremental
processing mode on the archi tecture are shown in Section 5.2.

5.1 Requirements and Design Criteria for our Generator

To produce interrelated multimodal output - the overall task of the WIP system - its two
mode specific generators must influence each other. They must be able to communicate.
For this purpose the Document History Handler serves as a shared medium. One example
for crossmodal references between the different modes is the generation of "middle knob"
versus "left knob" for the same object in the knowledge representation according to its
difFerent graphical realizat ions, where the same knob can be seen either between two other
knobs or - with another perspective in an en lal:gement of a part of the picture - as the
leftmost of two knobs (d. [Wahlster et al. 91]).

Allother relation to surrounding components of the WIP system is indicated by the
f eedback arrow from the Text Realization component back to the Text Design component
shown in the architecture in Figure l. The syntax generator must be able to signal back
a fail during its processing which can lead to revision processes in higher components.

By means of the incoming parameter settings the WIP system should be able to trigger
the production of different utterances. This results in a flexible output medium which can
be used to produce appropriate presentations for different users and which can be easily
expanded by further parameter values , e.g ., new categories of users.

The use of the WIP system in its online presentation mode where illustrated documents
,He shown on the screen -- in contrast to the production of a whole document in batch
moue - demands that the response time of the system should be acceptable for the user.
The response time can be shortened and better efficiency can be gained by incremental

processing which itself can be supported by parallelism (see Section 3). This demands of

11

the generator to process its input in a piecemeal fashion and to be able to integrate later
specified input into already produced partial processing results.

In the following we describe some more general aspects which are important for the
architecture of our generator.

By identifying different processes within the overall task of natural language generation
they can be treated in distinct modules of the system (see Figure 4) leading to a modular
design. They differ with respect to the used knowledge and/or methods. This separation
makes it easier to test and exchange single components. Examples for tasks which can be
isolated are the inflection of lexemes, linearizat ion or the selection of grammar trees.

A strict separation of knowledge sources and operations, i.e. a declarative formula­
tion of the knowledge sources, supports the transparency of the descriptions and the
extendability and adaptability of the system. For the grammar and the lexica this is very
common. In addition to that there are further knowledge sources (see, ~.g., the Meta­
Rule box described in Section 5.2), which are declaratively specified. Anotlier advantage
of this technique is that the operations can be developed without a detailed; consideration
of the actual content of the knowledge sources.

Of course, the produced utterances should obey the grammar rules of the target lan­
guage, resulting in grammatically correct surface sentences.

5.2 The Individual Components

The illdividual components of the generator and their relations are shown in Figure 4.
The left side of the architecture shows 'the connections of the generator to other com­

ponents of the WIP system. In the following they are shortly described together with the
modules of the syntax generator (on the right side of the picture) which use them. For
more details see [Harbusch et al. 91].

The goal of the utterance contains content words and their functional relations. It is
passed stepwise to the Int erface which selects the corresponding elementary trees for the
lemInas. This selection varies according to the setting of the parameters. For example,
tile pa.rameters which concern resources like space and execution time of the utterallce
call lead to the selection of "less expensive" trees (e.g., if a modifier of .a noun shall
be vcrbalized, an adjective phrase is preferred to a relative clause). Combinations of
paraillcters must be explicitly controlled because they can contradict or strengthen each
other. The selection relative to the parameter setting is done by declarative rules in the
left Meta- Rule box.

All object in a distributed parallel model is created for each input element in order
to process the chosen tree set. Trees in a lexicalized TAG have an adequate size which
a.llows the objects to manage exactly the local syntactic and semantic information of the
ilicoilling concepts. The task of verbalization is 'distributed among several active objects
wllicll try to work as independent as possible. This introduces "fine-grained" parallelism
into our generator in add ition to the "coarse-grained" parallelism resulting from the
cascaded architecture of the text generator as a whole.

12

r------7
/Goalof /

I the
/utterance /

I I I _______ J Selection of
grammar

rules

Construction
of partial

phrase
structures

Figure 4: The Architecture of. the Syntax Generator

In the Phrase Formulator the objects attempt to combine their locally represented
trees with those of other objects according to the specified conceptual information using
the TAG operations subs t itution and adjunction. According to the separation of the
grammar into an LD- and an LP- part the combination operations are performed without
regarding linear precedence const raints.

Since a distributed parallel model is used and the objects have to communicate and
exchange data during these attempts, it follows that the overall task of verbalization can­
not optimally be parallelized. Optimal parallelism would mean that the objects could
rLln totally independent of each other. However, partial phrase structures can be simulta­
neoLlsly assembled at different nodes. To avoid inconsistency the following r.estriction is
imposed on the objects: They must not participate in more than one comrriunication at a
ti rue. Each object controls an own history of its represented structures which is expanded
a fter a. successful communication. This history will be used if a combination of structures
Illllst be retracted (e.g., in t he case of syntactic dead- ends which are likely to occur during
ilicrelllental generation).

Tlte fact that objects represent sets of trees enables the objects to create several
a.lternative partial structures as paraphrases at the same time. The decision between the
alternatives must be made when an object hands over some structure to the Linearization
component.

13

The inflection of the lemmas according to morphosyntactic information which has been
collected in the DAGs is performed by the package MORPHIX ([Finkler & Neumann 88]).

The Linearization component tests whether a partial phrase can be uttered next - i.e.
according to the text already uttered and the associated LP-rules . In that case, the surface
st ring is sent. to the output window. In the case that incoming partial structures cannot
be integrated 'to the existing linearized structure, the Linearization component informs
t he Interface component to choose new phrase structures for the embedded lemmas. The
second Meta- Rule box contains rules which direct the new selection.

Interface, Phrase Formulator and Linearization component seem to work sequentially.
Bu t with the central control instance - the Monitor component - an integrated system has
been constructed. Since the Monitor is attached to each of the three components it can
ident ify all transitions of data between them as well as changes inside the components.
T hi s enables it to have a global view of the states of affair and to give advices to individual
components or objects.

One example for the influence of the Monitor on the Phrase Formulator is the following:

If the parameter setting expresses that the time for constructing the presentation is very
short, then the monitor tries to speed up isolated objects which are still waiting for
communication partners. This can be done by providing default information, e.g., the
case "nominative" is set for a noun phrase whose functional relation has not yet been
speci ned. Another possibility is to make the Interface create an object ·~hich represents
a. d ummy lemma of a certain category. Assuming that a verb "to burn" and a modifier
"hllge" have been associated with objects and cannot combine because a noun is missing,
t he Monitor can force the creation of an object for the default noun "thing" which results
in t he alarming utterance: "A huge thing burns."

6 C o nel usion s

Lexicalized LD /LP-TAGs with Unification provide a set of adequate linguistic units as
e lementary structures. The trees can be chosen and processed incrementally and are
combined to a whole syntactic tree, whose parts are linearized and uttered as soon as
poss ible. Thereby an incremental mode is realized within input , processing and output
of the Text Realization component. The textual output of an AI system can be speeded
up by using an incremental style of processing.

We have implemented a first prototype (see [Schauder 90J) separated from other com­
ponents of the WIP system. The input is simulated and there is just one fixed combina­
tion of parameters (target language German, no time or space restrictions, free style). All
cent ra l components of the generator - Interface, Phrase Formulator, Linearization compo­
nent and Monitor - are basically implemented, but with restricted features. A grammar
is prototypically realized which covers a small part of German. The inflection component
MOllPHIX is embedded as a complete module.

14

Our experience with the prototype is very promising. The separation of generation
tasks into the presented components has shown to be an adequate solution. The definition
of active objects in a distributed parallel model has turned out to be realizable and will
be used more intensively within the system.

Acknowledgements

We would like to thank Tilman Becker and Christoph Kilger for their valuable suggestions.

References

[Buschauer et al. 89] B. Buschauer, P. Poller, A. Schauder, K. Harbusch: Parsing
natiirlicher Sprache: Tree Adjoining Grammars mit Unifikation, "AI-Laboratory"
Memo in press, · Department of Computer Science, University of the Saarland,
Saarbrucken, 1989

Willkler & Neumann 88] W. Finkler, G. Neumann: MORPHIX: A Fast Realization of
a Classification-Based Approach to Morphology, Proceedings of the fourth OGAI,
Wiener Workshop Wissensbasierte Sprachverarbeitung, Wien, 1988

[Finkler & Neumann 89] W. Finkler, G. Neumann: POPEL- HOW: A Distributed Paral­
lel Model for Incremental Natural Language Production with Feedback, Proceedings
of the 11 th IJCAI, Detroit, 1989

[Ha.rbusch 90] K. Harbusch: Constraining Tree· Adjoining Grammars by U'{iijication, Pro­
ceedings of the 13th Interna.tional Conference on Computational Linguistics (COL-
TNG'90), Helsinki, 1990 •

[l-Ia.rbusch et al. 91] K. Harbusch, W. Finkler, A. Schauder, T. Becker, B. Buschauer, P.
Poller: Generation with Tree Adjoining Grammar in the WIP project, forthcoming,
German Research Center for Artificial Intelligence, Saarbrucken, 1991

[.Joshi et al. 75] A. Joshi, 1. Levy, M. Takahashi: Tree Adjunct Grammars, Journal of the
Computer and Systems Science, Volume 10, No 1, 136-163, 1975

[.Joshi 85] A. Joshi: An Introduction to Tree Adjoining Grammars, Technical Report MS­
CIS-86-64, LINC-LAB-31, Department of Computer and Information Science, Uni­
versity of Pennsylvania, Philadelphia, Pennsylvania, 1985

[Kempen 78] G. Kempen: Sentence construction by a psychologically plausible formula­
tor, in R. Campbell, P. Smith (eds.): Recent advances in the psychology of language,
Plenum Press, New York, 1978

[Kempen & Hoenkamp 87] G. Kempen, E. Hoenkamp: An incremental procedural gram­

mar for sentence formulation, Cognitive Science, Volume 11,201-258, 1987

15

[Krach & Joshi 85] A. Krach, A. Joshi: Linguistic Relevance of Tree Adjoining Gram­
mars, Technical Report MS-CIS-85-16, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, Pennsylvania, 1985

[Levelt 89] W. Leve1t: Speaking: From Intention to Articulation, The MIT Press, Cam­
bridge, Massachusetts, 1989

[Pullum 84] G. Pullum: On two Recent Attempts to show that English zs not a CFL,
Computational Linguistics, Volume 10, No 4, 1984

[Schabes et al. 88] Y. Schabes, A. Abeille, A. Joshi: Parsing Strategies with Lexicalized
Grammars: Application to Tree Adjoining Grammar, Proceedings of the 12th Inter­
national Conference on Computational Linguistics (COLING'88), Budapest, 1988

[Scha.uder 90] A. Schauder: Inkrementelle syntaktische Generierung natiiriicher Sprache
mit Tree Adjoining Grammars, Master's Thesis, Department of Computer Science,
University of the Saarland, Saarbri.icken, 1990

[S lli eber 86] S. Shieber: An Inlr'oduction to Unification-based Approaches to Grammar,
CSLI Lecture Notes, No.4, Stanford University, Stanford, California, 1986

[Wa.hlster et al. 91] W. Wahlster, E. Andre, W. Graf, T. Rist: Designing Illustrated Texts:
How Language Production is influenced by Graphics Generation, Fifth Conference
of the European Chapter of the ACL, Berlin, 1991

[Weir 88] D. Weir: Characterizing mildly context-sensitive grammar formalisms, PhD
Thesis, Department of Computer and Information Science, University of Pennsyl­
vania, Philadelphia, Pennsylvania, 1988

16

Deutsches
Forschungszentrum
far KOnstliche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI Verl>ffentlichungen oder die
aktuelle Liste von erhlUtlichen Publikationen
kl>nnen bezogen werden von der oben angegebenen
Adresse.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-90-01
Franz Baader: Terminological Cycles in KL-ONE­
based Knowledge Representation Languages
33 pages

RR-90-02
Hans-Jurgen Biirckert: A Resolution Principle for
Clauses with Constraints
25 pages

RR-90-03
Andreas Dengel. Nelson M. Mallos: Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hol/under. Werner Null: Subsumption
Algorithms for Concept Languages
34 pages

RR-90-0S
Franz Baader: A Formal Defmition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard Hol/under: Hybrid Inferences in KL-ONE­
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre. Thomas Rist: Wissensbasierte
Informationsprasentation:
Zwei Beitrage zum Fachgesprach Graphik und KI:
1. Ein planbasierter Ansatz zur Synthese

illustrierter Dokumente
2. Wissensbasierte Perspektivenwahl fiir die

automatische Erzeugung von 3D­
Objektdarstellungen

24 pages

DFKl
-Bibliothek­
PF 2080
6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of
currently available publications can be ordered from
the above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR-90-09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Hol/under. Werner Nutt. i(jrg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andre. Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR-90-14
Franz Schmalhofer. 0110 Kuhn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-1S
Harald Trost: The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR·90·16
Franz Baader, Werner NUlt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR·90·17
Stephan Busemann
Generalisierte Phasenstrukturgrammatiken und ihre
Verwendung zur maschineUen Sprachverarbeitung
114 Seiten

RR·9l·0l
Franz Baader, Hans-Jiirgen Biirckert, Bernhard
Nebel, Werner Nutt, and Gert Smolka :
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR-91-02
Francesco Donini, Bernhard Hollunder, Maurizio
Lenzerini, Alberto Marchetti Spaccamela, Daniele
Nardi, Werner NUlt:
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR·91·03
B.Holiunder, Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR·91·04
Harald Trost
X2MORF: A Morphological Component Based on
Augmented Two-Level Morphology
19 pages

RR·91-05
Wolfgang Wahlster, Elisabeth Andre, Winfried
GraJ, Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation.
17 pages

RR·91·06
Elisabeth Andre, Thomas Rist: Synthesizing
lllustrated Documents
A Plan-Based Approach
11 pages

RR·91·07
GUnter Neumann, Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR·91·08
Wolfgang Wahlster, Elisabeth Andre, Som
Bandyopadhyay, Winfried Gra/. Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR·91·09
Hans-Jiirgen Burckert, Jiirgen Muller, Achim
Schupeta
RATMAN and its Relation to Other Multi-Agent
Testbeds
31 pages

RR·91·10
Franz Baader, Philipp Hanschke
A Scheme for Integrating Concrete Domains into
Concept Languages
31 pages

RR·91·11
Bernhard Nebel
Belief Revision and Default Reasoning: Syntax­
Based Approaches
37 pages

RR·91·12
J.Mark Gawron, John Nerbonne, and Stanley Peters
The Absorption Principle and E-Type Anaphora
33 pages

RR·91·13
Gert Smolka
Residuation and Guarded Rules for Constraint Logic
Programming
17 pages

RR·91·15
Bernhard Nebel, Gert Smolka
Attributive Description Formalisms ... and the Rest
of the World
20 pages

RR·91·16
Stephan Busemann
Using Pattern-Action Rules for the Generation of
GPSG Structures from Separate Semantic
Representations
18 pages

RR·91·17
Andreas Dengel & Nelson M. Mattos
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR·91·20
Christoph Klauck, Ansgar Bernardi, Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-23
Prof Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner
Akquisition und Reprlisentation von technischem
Wissen fiir Planungsaufgaben im Bereich der
Fertigungstechnik
24 Seiten

RR-91-25
Karin Harbusch. Wolfgang Finkler. Anne Schauder
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

DFKI Technical Memos

TM-89-01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse
18 pages

TM-90-02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM-90-03
Franz Baader. Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-Jiirgen Biirckert. Jochen
Heinsohn. Bernhard Hollunder. Jurgen MUller.
Bernhard Nebel. Werner Nutt. Hans-Jiirgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM-91-01
JanaKohler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmann
Bidirectional Reasoning of Hom Clause Programs:
Transformation and Compilation
20 pages

TM-91-03
Otto Kuhn. Marc Linster. Gabriele Schmidt
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM-91-04
Harold Boley
A sampler of RelationallFunctional Definitions
12 pages

TM-91-05
Jay C. Weber. Andreas Dengel and Rainer
Bleisinger
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

DFKI Documents

D-89-01
Michael H. Malburg. Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypermedia­
Informationssystem
43 Seiten

D-90-01
DFKI Wissenschaftlich-Technischer lahresbericht
1989
4S pages

D-90-02
Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

D-90-03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD
36 Seiten

D-90-04
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: STEP: Uberblick tiber eine zuktinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D-90-05
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Formalismus zur Reprlisentation von
Geo-metrie- und Technologieinformationen a1s Teil
eines Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becker: The Window Tool Kit
66 Seiten

0-91-01
Werner Stein. Michael Sintek
Relfun/X - An Experimental Prolog
Implementation of Relfun
48 pages

0-91-03
Harold Boley. Klaus Elsbernd. Hans-Gunther Hein .
Thomas Krause
RFM Manual: Compiling RELFUN into the
Relational/Functional Machine
43 pages

D-91-04
DFKI Wissenschaftlich-Technischer Jahresbericht
1990
93 Seiten

0-91-06
GerdKamp
Entwurf. vergleichende Beschreibung und
Integration eines Arbeitsplanerstellungssystems fUr
Drehteile
130 Seiten

D-91-07
Ansgar Bernardi . Christoph Klauck. Ralf Legleitner
TEC-REP: Reprllsentation von Geometrie- und
Technologieinformationen
70 Seiten

0-91-08
Thomas Krause
Globale DatenfluBanalyse und horizontale
Compilation der relational-funktionalen Sprache
RELFUN
137 pages

0-91-09
David Powers and Lary Reeker (Eds)
Proceedings MLNLO '91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-91-10
Donald R. Steiner. Jurgen Muller (Eds.)
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

0-91-11
Thilo C. Horstmann
Distributed Truth Maintenance
61 pages

Incremental Syntax Generation with
Tree Adjoining Grammars

Karin Harbusch, Wolfgang Finkler, Anne Schauder

RR-91-25
Research Report

