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A Hybrid Approach for Modeling Uncertainty 
in Terminological Logics* 

J ochen Heinsohn 
German Research Center for Artificial Intelligence (DFKI) 

Stuhlsatzenhausweg 3 
~600 Saarbriicken 11, Germany 
e-mail: heinsohn@dfki.uni-sb.de 

Abstract 

This paper proposes a probabilistic extension of terminological logics. The ex­
tension maintains the original performance of drawing inferences in a hierarchy of 
terminological definitions. It enlarges the range of applicability to real world do­
mains determined not only by definitional but also by uncertain knowledge. First, 
we introduce th e propositionally complete terminological language ACe. On the ba­
sis of the language construct "probabilistic implication" it is shown how statistical 
information on concept dep endencies can be represented. To guarantee (terminolog­
ical and probabilistic) consistency, several requirements have to be met. More.over , 
these requirements allow one to infer implicitly existent probabilistic relationships 
and their quantitative computation . By explicitly introducing restrictions for the 
ranges derived by instantiating the consistency requirements, exceptions can also be 
handled. In the categorical cases this corresponds to the overriding of properties in 
nonmonotonic inheritance networks. Consequently, our model applies to domains 
where both term descriptions and non-categorical relations between term extensions 
have to be represented . 

"This work has been carried out in the WIP project which is supported by the German Ministry for 
Research and Technology BMFT under contract ITW 8901 8. I would like to thank Fahiem Bacchus, 
Bernhard Nebel, Bernd Owsnicki-Klewe , Hans-Jiirgen Profitlich, Alessandro Saffiotti, and the members 
of the Berlin BACK group for valuable comments on earlier versions of this paper. 
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1 Introduction 

Research in knowledge representation led to the development of terminological logics [31] 
which originated mainly in Brachman's KL-ONE [7]. In such languages the terminological 
formalism (TBox) is used to represent a hierarchy of terms (concepts) that are partially 
ordered by a subsumption relation: Concept B is subsumed by concept A, if, and only 
if, the set of B's real world objects is necessarily a subset of A's world objects. In this 
sense, the semantics of such languages can be based on set theory. Two-place relations 
(roles) are used to describe concepts. In the case of defined concepts, restrictions on roles 
represent both necessary and sufficient conditions. For primitive concepts, only necessary 
conditions are specified. The algorithm called classifier inserts new generic concepts at the 
most specific place in the terminological hierarchy according to the subsumption relation. 
Work on terminological languages further led to hybrid representation systems. Systems 
like BACK, CLASSIC, LOOM, KA.NDOR, KL-TWO, KRYPTON, MESON, SB-ONE, and YAK 

(for an overview and analyses see [23,36]) make use of a separation of terminological and 
assertional knowledge. The assertional formalism (ABox) is used to represent assertions 
about the real world. The mechanism for finding the most specific generic concept an 
object is an instance of and to maintain consistency between ABox and TBox is called 
the realizer. 

Since, on one hand, the idea of terminological representation is essentially based on the 
possibility of defining concepts (or at least specifying necessary conditions), the classifier 
can be employed to draw correct inferences. On the other hand, characterizing domain 
concepts only by definitions can lead to problems, especially in domains where certain im­
portant properties cannot be used as part of a concept definition. As argued by Brachman 
[5] this may happen in "natural" environments (in contrast to "technical/mathematical" 
environments). The source of this problem is the fact that in natural environments, besides 
their description, terms can only be characterized as having additional typical properties 
or properties that are, for instance, usually true. If such properties are interpreted as being 
categorical, this can lead to problems concerning multiple inheritance. One example that 
can be used to highlight these problems is known as the "Nixon diamond": quakers are 
typ ically pacifist, republicans are typically non-pacifist, and Nixon is known to be both 
quaker and republican. Modeling these relationships categorically results in the detection 
of a contradiction. However, in the real world such properties often are only tendencies, 
i.e., republicans "usually" are non-pacifist, for example. Tendencies as well as differences 
in these tendencies cannot be considered in the framework of term definitions. Several 
attempts have been made to cope with these problems. 

Considering "typical" properties led to nonmonotonic inheritance networks, and may 
be viewed as "cancellation of inheritance links" or "assume to be true unless told oth­
erwise" [45,10,11,30,40]. These approaches work well if exceptions are explicitly known. 
However, in the case of conflicts the results can be unsatisfactory (i.e., the "multiple 
extension problem", compare, e.g. [35]). 

A solution concerning "usually true" properties is proposed by Shastri [43,44]. He 
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offers 'a language to represent empirical information about properties of hierarchically 
ordered concepts. This empirical knowledge is used instead of definitional roles. His 
system works well in the case of exceptions and for ambiguities. However, the system 
is built for handling a large amount of statistical data and is not meant to consider 
terminological and statistical incompleteness. Other related work can be found in [12,13, 
26,25,29]. A detailed survey is given by Pearl ["34]. 

In all these proposals, there is no algorithm comparable to the classifier for main­
taining the consistency of the terminology and for reorganizing it according to implicitly 
existing subsumption relationships. It does not exist because concepts cannot be defined 
by necessary and sufficient conditions. Recent approaches that provide an integration of 
both term classification and uncertainty representation and that are related to our work 
are discussed in Section 5. 

We propose an extension of terminological logics that allows one to handle the prob­
lems discussed above [15,16] and that pursues our earlier investigation [17]. First, we 
briefly introduce .ACe [41], a propositionally complete terminological language containing 
the logical connectives conjunction, disjunctiop and negation, as well as role quantifica­
tion. By keeping the TBox semantics, which is based on term descriptions, we are able to 
use the classifier for extending and reorganizing the terminology. In Section 3 we extend 
.ACe by defining syntax and semantics of prQbabilistic implication, a construct aimed at 
considering non-terminological knowledge sources and based on a statistical interpreta­
tion. As demonstrated in Section 4, on the basis of the terminological and probabilistic 
knowledge, certain consistency requireme~ts have to be met. Moreover, these require­
ments allow one to infer implicitly existent probabilistic relationships and their quantita­
tive computation. While this paper mainly focuses on TBox and statistical aspects, the 
consideration of an ABox would mean the ability to draw inferences about "probabilistic 
memberships" of instances. ' 

2 The Terminological Language .ACe 

The basic elements of the terminological language .ACe [41] are concepts and roles (denot­
ing subsets of the domain of interest and binary relations over this domain, respectively). 
Assume that T ("top", denoting the entire domain) is a concept symbol, that A denotes 
a concept symbol, and R denotes a role. Then the concepts (denoted by letters C and 
D) of the language .ACe are built according to the abstract syntax rule 

C, D --t A I V R : C I ~R : C I C n D I CUD I -,C 

To introduce a formal semantics of .ACe we give a translation into set theoretical 
expressions with 1) being the domain of discourse. For that purpose, we define a mapping 
£ that maps every concept description to a subset of 1) and every role to a subset of 
1) x 1) in the following way: 
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1. £[T] = V 
2. £[YR: C] = {x E VIY(x,y) E £[R] : y E £[C]} 
3. £[:3R: C] = {x E V/:3(x,y) E £[R] : y E £[Cn 
4. £[C n D] = £[C] n £[D] 
5. £[C U D] = £[C] U £[D] 
6. £[-,C] = V - £[C] 

Concept descriptions are used to state necessary, or necessary and sufficient conditions 
by means of specializations "~" or definitions "==", respectively. Assuming symbol 
A and concept description C, then "A ~ C" means the inequality £[A] ~ £[C], and 
"A == C" means the equation £[A] = £[C]. A set of well formed concept definitions and 
specializations forms a terminology, if every concept symbol appears at most once on the 
left hand side and there are no terminological cycles [24]. A concept C1 is said to be 
subsumed by a concept C2 in a terminology T, iff the inequality £[Cd ~ £[C2 ] holds 
for all extension functions satisfying the equations introduced in T. ACe is used in the 
implemented prototype system K:T?Is [1] where all reasoning facilities such as computing 
the subsumption hierarchy are realized by sound and complete algorithms. 

Terminological languages as ACe can be usefully applied to definitional world knowl­
edge. For instance, we may introduce 

Example 1 animal c::: T 
flying c::: T 

antarctic_animal c::: animal 
bird ...:... animaln (Ymoves_by : flying) 

antarcticbird ...:... antarctic_animal n bird 
pengum c::: antarcticbird 

To characterize the expressiveness of terminological languages, we will examine the three 
different relations imaginable between two concept extensions, i.e., (i) inclusion, (ii) dis­
jointness, and (iii) overlapping: 

The first case can be caused by (terminological) subsumption. To express extensional 
inclusion (i) without a subsumption relation on terms, some hybrid systems introduced 
non-terminological language constructs such as implication [21,28] or assert-rule [4] . 

Disjointness (ii) can be a terminological property. This is the case if, for instance, the 
above language construct "concept negation" as contained in the expression C1 ~ C, 
C2 == (C n -,C1 ) is used. To express non-terminological disjointness between concepts, 
some systems use the language construct disjoint. 

However, the information given in case (iii) cannot be reasonably1 used in existing 
terminological logics . It seems to be more suitable to generally consider the "degree 

lexcept in stating that concept C1 n C2 is not incoherent, i.e., it has a necessarily non-empty extension 
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of intersection" between the respective concept's extensions and to characterize it using 
an appropriate technique. The idea behind this generalization is to use a probabilistic 
semantics. 

3 The Probabilistic Extension 

In the following we consider only one representative for equivalent concept expressions 
(such as A, AnT, A n A). The algebra based on representatives of equivalence classes 
and on the logical connectives n, U, and --, is known as Lindenbaum algebra of the set S 
of concept symbols. We use the symbols D for the set of concept descriptions and D-, 
D- ~ D, for the set of atoms of the Lindenbaum algebra. For every function £ the set 
of extensions of the elements in D- forms a partition of D. D is assumed to be finite. 
As a language construct that takes into account all cases (1), we introduce the notion of 
conditional probabilistic implication (p-implication), which is a generalization of the above 
mentioned implication construct: 

Definition 1 An extension function £ over D satisfies a p-implication G1 .!!... G2 , written 

Fe G1 .!!... G2 , iff 
1£[G1 n O2 ]1 

p = 1£[Cdl 

holds for concepts Gt, G2 E D.2 

Proposition 1 The real-valued set function Pe: 2D - -t [0,1], Pe( {Gi }) = Pi lS a 
p . 

probability function over D-, iff Fe T ~ Gi for all Gi E D- . In particular, the 
following conditions are satisfied: 

Pe(D-) 1 

Pe(Di) > 0 for all Di ~ D-

Pe(D; U Dj ) Pe(Di) + Pe(D j ) if Di n Dj = 0 

For every concept expression G; E D there exists a subset D; ~ D- of atoms such that 

G; = U D;. In this way Pe can be extended to concept expressions. In particular, 

Pe(T) Pe( U D-) = 1 

Pe(G;) > 0 

Pe(G; U Gj ) - Pe(G;) + Pe(Gj ) if G; n Gj = ..L 

hold. 

2The definition can be extended in such a way that a possible uncertainty about the exact probability 
value can be represented by means of a subrange of [0,1] (see, e.g., [19] for a general examination of 
numerical models for handling uncertainty) . 
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Definition 2 Pe = {Pe I Fe {Ci ~ C j }} is called the set of consistent probability func­
tions. 

From the above explanations it is obvious that we use the relative cardinality for 
interpreting the notions of conditional probability Pe( C2 1C1 ) and probabilistic implication 
introduced in Definition 1. 

Example 2 Assume the set {A ~ T, B ~ T, C == An B} of terminological axioms. From 
S = {T, A, B} we obtain D- = {...,An ...,B, ...,An B, An B, An ...,B}. Then, £ and V with 

1'01 = 100, I£[A] I = 40, I£[B] I = 20, l£lA n B] I = 10 induce a probability function 

Pc: ...,An...,B 1-----+ 0.5 

...,AnB 1-----+ 0.1 

AnB 1-----+ 0.1 

An...,B 1-----+ 0.3 

Note that in spite of having the same name "implication", our "conditioning semantics 
BIA" is different from that of "logical implication ...,A V B". However, it can simply be 
derived that between both the relationship 

holds. Nevertheless, with respect to the propositional completeness of the terminological 
language it is obvious that the notion of logical implication is covered also by our approach. 
Note further that non-emptyness of Pe implies the consistency of the whole knowledge 
base. 

Example 2 shows that, assuming complete knowledge on domain V and on the cardi­
nalities involved, a probability function Pe over D- is induced by the extension function 
£ . However, it is generally more realistic to assume less complete knowledge and cardi­
nalities that are rather relative. In the following, we will concentrate on how to extend 
such knowledge and how to guarantee consistency. 

For illustrating the meaning of Definition 1, assume that an observer examines the 
fl ying ability of a real class of birds. When finishing his study he may have learned 
that , different from the model of Example 1, relation moves_by:flying holds only for a 
certain percentage of the birds. The notion of p-implication now allows a representation 
of universal knowledge of statistical kind in a way that maintains the semantics of the roles: 
the new concept flying_object is created with role moves_by restricted to range flying. The 
uncertainty is represented by a p-implication stating that "a certain percentage 100 . PI 
of birds are flying_objects that, by definition, all move by flying". The now more detailed 
view to the example world leads to the following revision of Example 1: 
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Example 3 (revises Example 1) 

animal C T 
flying C T 

antarctic_animal C animal 
bird C animal -

antarctic-bird - antarctic_animaln bird 
pengum C antarctic_bird 

flying_object - Vmoves_by: flying 

bird Pl flying_object -+ 

This demonstrates that set theory is sufficient for a consistent semantic basis on which 
both terminological and probabilistic language constructs can be interpreted. On this 
basis, the p-implication serves as a generalization of both the "implication" and the "dis­
joint" construct (now appearing as A ~ B and A ~ B , respectively) used in many 
hybrid systems. 

Proposition 2 V A,B:kl-.1.,Bt-.1. : 

B~A => B~A (2) 

A~B <=> B~A (3) 
A~B and A~B => p=q (4) 

A~A => p=1 (5) 
T~A <=> Pc(A) = p (6) 

Because of the set theoretic semantics, (2) holds. Consequently, derived extensional 
relations b~ween concepts are based on the union of both terminological and proba­
bilistic statements. We do not, however, interpret the I-implication as terminological 
subsumption . . In the case of disjointness the equivalence (3) holds for concepts A, B 
with non-empty extensions. Following (4), for every pair of concepts there is at most one 
p-implication. Nontrivial reflexive p-implications do not exist (5). Since domain 1) is as­
sumed to be exhaustive with respect to our frame of discernment, Pc(T) = 1 holds. Prior 
probabilities can be represented by special p-implications (6) pointing along subsumption 
links from general terms to more special ones. 

Note that "pointing from exactly one concept to another one" does not mean a restric­
tion con'cerning the representation of complex "premises and conclusions of rules":3 in the 
propositionally complete language .ACe the domain and range concepts of a p-implication 
may be constructed by means of the operations negation, conjunction, and disjunction. 

3This was correctly criticized by Yen and Bonissone [47] when discussing our earlier language presented 
in [17J. 
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4 Probabilistic Consistency and Inferences 

First of all we examine the possible relationships between extensions of simple concepts 
that are introduced by means of the specialization operator "~". Taking into account 
concept definitions "==" involving the connectives concept negation, conjunction, and 
disjunction means, however, that some of the results can be strengthened. This is shown 
in Section 4.2. 

4.1 Triangular Cases - Concept Specializations 

When representing p-implications, their consistency has to be maintained. The simplest 
case is that of one isolated p-implication for which the consistency requirements are con­
sidered in Proposition 2. The requirements for relative proportions when three concepts 
are involved were examined by Dubois and Prade [9] and Heinsohn and Owsnicki [17]. 
The most specific case, in which non-trivial assertions can be made, is characterized as 
follows [17]: 

Proposition 3 Assuming concepts A, B, C, subsumption B ~ A, p-implications A ~ 
C, B 2t C, and A ~ B, then this knowledge is (statistically) inconsistent, if the three 
(equivalent) inequalities are violated: 

• for known r, q: q. r ~ p ~ 1 - q' (1 - r) (7) 

{l - P P if q =I 0 • Jor known p, q: max(1 - --, 0) ~ r ~ min( -, 1) (8) q q 
o ~ r ~ 1 if q = 0 

{ P l-p if 0 < r < 1 • Jor known p, r: o ~ q ~ min(-,--) 
r 1- r (9) 0~q~1-p ifr = 0 

O~q~p ifr = 1 

Proof Sketch: From Law oj Total Probability and equation Pc( CIA) = Pc( C n AlA) 
we derive 

PC(CIB) . Pc(BIA) + Pc(CIA n -,B) . Pc(A n -,BIA)) 

PC(CIB)· Pc(BIA) + pc(CIAn -,B) · (1 - Pc(BIA)) 

and from unknown x ~ Pc( CIA n -,B) ranging from 0 to 1 the equation 

p = q . r + x . (1 - q), x E [0,1] 

from which the equivalent inequalities (7), (8), and (9) can be derived by simple refor­
mulations. Note that due to Definition 1 these equations apply to extensions of concepts . 

• 
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The inequalities specify the range allowed for one probability depending on the other 
two. To maintain local consistency, their satisfiability has to be proved. If exactly two 
probabilities are given, the inequalities are applied to derive and to keep the information 
about the range of the other value. In case (8), the condition q = ° implies the range 
r " E [0,1], but states that B has an empty extension. 

Example 4 (Bacchus) 
Assume P£(BIT) = 0.6 and Pt:(GIB) = 0.8. So, the knowledge base contains B ~ T, 
G ~ T, T ~ B, and B ~ G. Application of inequality (7) then leads to T ~ G with 
p E [0.48,0.88]' i.e., Pt:(GIT) E [0.48,0.88]. 

The quantities employed in Example 4 are exactly those used by Bacchus [3, p. 226]. 
In his logic Lp Bacchus focusses on statistical probabilities but, as Nilsson did in his 
probabilistic logic [27], uses the "material implication" interpretation "-,B V G" for this 
example knowledge. Because of these different viewpoints, Bacchus' result [0.4,0.8] is 
different from that based on "relative cardinalities" and derived in Example 4. 

The following theorem examines a more gene1"al case of statistical relationships with 
three concepts involved. This generality results from a substitution of subsumption B ~ A 
used in Proposition 3 by a less categorical p-implication. Concerning the involved set of 
relative proportions the consistency requirements can be formulated as follows: 

Theorem 1 Assuming concepts A, B, G, p-implications A ~ G, A 4 B, p, q =I 0, 

B ~ A, G ~ A, G ~ Band B ~ G, then this knowledge is (statistically) inconsistent, if 
inequalities 

are violated. 

q' 
- . max(O, q + p - 1) 
q 
p' 
- . max( 0, p + q - 1) 
p 

I 

< r < min(l,l - q' + p .1..) 
q 

I 

< r' < min(l, 1 - p' + q. ~) 
p 

(10) 

(11) 

Proof: The proof (of (10)) is based on the common intersection of the extensions of A, 
B, and C, for which £[A n B n G] ~ £[A n G] and £[A n B n G] ~ £[B n GJ hold. Since 
the cardinalities of £[A n -,B n -,G] and £[-,A n B n -,G] are completely indeterminate, 
we derive 

1£[BnG]1 < 1£[B]I-I£[AnBJI + 1£[AnBnG]1 

< 1£[B]I-I£[AnB]1 + 1£[AnG]1 
I£lBnG]1 > 1£[AnBnG]1 

> l£lAnB]1 + 1£[AnG]I-I£[AJI 
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From Bayes rule it is known that 

Pe(BIA) . PelA) 

Pd CIB) . Pe(B) 

PdCIA) . Pe(A) 

Pe(AIB) . Pe(B) 

Pe(BIC) . Pe(C) 

Pe(AIC) . PdC) 

(12) 

(13) 

(14) 

Taking into account equation (12) the cardinalities can be substituted by p-implications 
as follows 

PdB n CIB) 

pt:(BnCIB) 

Pe(A) 
< 1 - PdA n BIB) + Pe(A n CIA) . Pe(B) 

Pe(AIB) 
1 - Pe(AIB) + PdCIA) . Pe(BIA) 

q' 
1 - q' + p'­

q 

Pe(A) Pe(A) 
> Pe(A n CIA) . Pe(B) + Pe(A n BIB) - PdB ) 

Pe(AIB) Pe(AIB) 
PdCIA) . Pe(BIA) + Pt:(AIB) - Pe(BIA) 

q' ,q' q' 
p . - + q - - - . (p + q - 1) 

q q q 

In analogy, (11) can be proved. -

Note that, for instance, inequality (8) can be derived from (10) by assuming q' = l. 
In analogy to the set of equivalent requirements of Proposition 3, e.g., inequality (10) 
can also be reformulated into equivalent requirements that take into account unknown 
quantities for p, q, and q'. 

I I I 

The whole set A ~ C, C ~ A, A ~ B, B ~ A, B ~ C, and C ~ B of p-implications 
is considered in the following theorem that results directly from Bayes' rule. Note that it 
does not generalize Theorem 1 but serves as an additional consistency requirement. In the 
case of five consistent p-implications, the (consistent) value of the unknown p-implication 
is obtained. 

Theorem 2 Assuming concepts A, B , C, p-implications A ~ C, C ~ A, A ~ B, B ~ 
A , B ~ C, and C ~ B, with p,p', q, q', r, r' =I 0, then this knowledge is (statistically) 
inconsistent, if equation 

r' p q' 
1=-·_·-

r p' q 
(15) 

is violated. 
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Proof: Using the notation of Theorem 2, equations (12), (13), and (14) are the same as 

q -
I Pe(B) 

q . Pe(A) 

Pe(B) 
r' 

Pe(C)· -
r 

Pe(A) 
p' 

Pe(C), -
p 

A substitution of Pe(A) and Pe(B) in the first equation by the right hand sides of the 
last two equations leads to the desired result. -

This result also applies to the situation given in Theorem 1 where the consistency of 
five p-implications has to be tested, or where for four probability values the range for the 
fifth one has to be derived: 

Proposition 4 Assuming concepts A) B) C) p-implications A ~ C) C ~ A ) A ~ B) 

B ~ A } and B ~ C) p', q =I=- 0) then this' knowledge is (statistically) inconsistent) if 
inequality 

q' P q' p' , _. - . (1 - p' + q . - ) ) 
q p' q p 

1 p 
-·max(O,q+p-l) < r < min(1, 
q p' 

(16) 

is violated. 

Proof: Inequality (16) follows directly from substituting the unknown r' in (15) by the 
respective range (11). -

It is obvious that (16) does not improve the lower bound of the range given by (10). 

Example 5 (Dubois and Prade) 
A ssume the notation of Theorem 2) q' = 0.9) q = 0.25) p = 0.9) and p' = 0.6. Application 
of (10) leads to the ranges [0.54,1.00] and [0.10,0.567] for rand r') respectively) which 
are identical to those derived in [9}. This result however may still lead to inconsistent as­
sumptions for r'o Following requirement (15) we get ratio? = 5.4 and the new consistent 
range [0.10,0.185] for r'o Moreover) to know the exact value ofr (r') means to know the 
exact value of r' (r). 

There are several special cases of Proposition 3, and Theorems 1 and 2 that are of 
interest since they present well-known probabilistic requirements. The expressions put in 
parentheses are optional: 
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Proposition 5 V A,B:Ai-.l.,Bi-.l. : 

(B~A,C~A,)A~B,A~C,B~C 
B ~A, C ~B,A~B, A~C,B~C 

B~C{given by B~C, e.g.),A~B,A~C 

B~C1,B~C2,A~B,A~C1,A~C2 

B1 ~C,B2 ~C,A~BI,A~B2,A~C 

=} 

=} 

=} 

=} 

=} 

p+q:Sl (17) 

p = r . q, p :S q, p :S r (18) 

q:Sp (19) 

q :S min (PI, P2) (20) 

p ~ max(q1' q2) (21) 

Note that requirements (20) and (21) are direct consequences of applying require­
ment (19) twice and that they are closely related to the connectives concept conjunction 
and disjunction, respectively. For instance, assuming A = T and B ~ (C1 n C2 ), (20) 
leads to the upper limit P£(B) :S min(P£(C1 ),P£(C2 )). 

By explicitly introducing restrictions for the ranges derived by instantiating the consis­
tency requirements, exceptions can also be handled. For illustration, assume in Example 3 
the situation in which the p-implication antarcticbird ~ flying_object is known. In the 
absence of further information, all that can be concluded for the "flying proportion of 
penguins" is the range [0,1]. If a derived range is considered not to fit the subconcept, 
the range can be restricted further. For example, "no penguins fly" is represented by the 
p-implication penguin~ flying_object, which satisfies the [0, 1]-implication obtained from 
consistency tests. In the categorical cases this corresponds to the overriding of properties 
in nonmonotonic inheritance networks. 

Example 6 (extending Example 3) 

bird PI flying_object --+ 

antarcticanimal P2 flying_object --+ 

antarcticbird P3 flying_object --+ 
0 flying_object pengum --+ 

Note that some approaches for handling uncertainty in term hierarchies propose prin­
ciples such as probabilistic inheritance operating in analogy to terminological inheritance. 
Mapped into our framework, the simple case of direct probabilistic inheritance would be 
formulated as follows: "Given concepts A, B, C, subsumption B ~ A, p-implication A~C 
{and no more information}, then assume B ~ C with r := p." However, for this situa­
tion where the extension of B is contained in that of A and a certain proportion of the 
extension of A is contained in that of C, the only necessarily true conclusion that can be 
drawn is r E [0,1]' i.e., r remains completely indeterminate. This was clearly pointed out 
by Dubois and Prade [9].4 Since in our model the statistical knowledge base covers neces­
sarily true relationships only, this or similar principles will not be employed. Probabilistic 

41f, instead, the semantics of a p-implication would be based on "uncertain conjecture" (which means 
the uncertainty of a proposition that can be represented by a first order logic expression and whose truth 
or falsity cannot be established using the available knowledge), the necessarily true conclusion could be 
strengthened. For instance, for objects denoted by x and from knowledge P(Vx: B(x)-A(x)) = 1 and 
P(Vx : A(x) -C(x)) :::: p one concludes P(Vx: B(x) -C(x)) :::: p [9]. 
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inheritance aspects, however, playa role in the framework of assertional reasoning where 
p-implications are used to infer knowledge about instances of concepts (see, e.g., [20]). 

4.2 Triangular Cases - Concept Definitions 

The above section copes with concepts introduced by means of simple terminological ax­
ioms involving only the specialization operation "~". So, for instance, Proposition 3 is 
based on the simple assumption B ~ A. The associated local consistency requirements, 
however, have to be strengthened if concept definitions introduced by means of the oper­

ation "==" are involved. 

Proposition 6 (Concept Negation and Conjunction) 

A~ B ¢:> A l~-,B 

A~-'A :::} p = 0 

A~C ¢:> A~AnC 

(22) 

(23) 

(24) 

Note that if ~oncept negation is involved, the result p + q :::; 1 derived in (17) has to 
be substituted by p + q = 1. 

If we consider the situation of a concept conjunction (such as B == (A n C)) in the 
framework of Proposition 3, inequality (9), e.g., has to be based on the assumption r = 1 
derived from subsumption (A n C) ~ C. ; This however leads to the p-implication A ~ 
(A n C) with q :::; p, a result which is less crisp than that of equivalence (24). The reason 

for now having the precise result is that specialization B ~ A (and p-implication B ~ C) 
is substituted by concept definition B == (A n C). 

Proposition 7 The following results are obtained from local (triangular) computations: 

A~(AnB) 

B~A: (AUB)~A 
o :::; PdA n CID) 

1 ~ Pe(A U CID) 

PdAnC) 
P£(A) (Bayes rule) 

¢:} A ~ (A n -,B) 

¢:> (A U B) 1~ B (Concept Disjunction) 

< min(Pe(AID), Pe(CID)) 

> max(Pe(AID), P£(CID)) 

(25) 

(26) 

(27) 
(28) 

(29) 

Proof: Equation (25) follows from (24) Pe(CIA) = P£(A n CIA) and from applying (18) 
. to the specialization hierarchy An C ~ A ~ T. Equivalence (26) is based on 
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· 0 (24) 0 (26) 1 • 
Smce B -+ A {:? B -+ (A n B) {:? B -+ (...,A n B) (*) holds, eqUIvalence (27) can be 
derived from 

(A U B) ~A (24U26) (A U B) l.=f(...,A n (A U B)) 

¢? (AUB)t..=r(""AnB) (1~") (AUB)l.=fB 

Inequalities (28) and (29) follow directly from (20) and (21), respectively. -

The following proposition examines the notion of concept conjunction and disjunction 
in a more complex probabilistic framework. Note that it can be easily generalized to the 
situation where T is substituted by an arbitrary concept C: 

Proposition 8 (Additivity) 
(a) From T ~ A, T ~ B, and T ~ (A n B) one obtains on the basis of local (triangular) 
computations the p-implication T ~ (A U B) with probability range 

{ 
s = ql + q2 - P if p is known 
max( qll q2) ::; s ::; min(l, ql + q2) otherwise 

(30) 

(b) From T ~ A, T ~ B, and T ~ (A U B) one obtains on the basis of local (triangular) 
computations the p-implication T ~ (A n B) with probability range 

{ 
S = ql + q2 - P if P is known 
max(O,ql + q2 -1)::; s::; min(qI,q2) otherwise 

Proof: The result (30) for known p is obtained from equations 

Pt:(AUBIT) 

(22h(25) 

1 - Pt:(...,A n ...,BIT) 

1 - Pt:(...,B I...,A) . Pt:(...,AIT) 

1 - (1 - Pt:(BI...,A)) . (1 - Pc{AIT)) 
pt:(Bn...,AIT) 

1 - (1 - 1 _ Pt:(AIT) ). (1 - Pc(AIT)) 

1 - (1 - Pt:( ...,AIB) . Pc(BIT)) . (1 - Pt:(AIT)) 
1 - Pc(AIT) 
~ 

1 - (1 _ (1 - PdAIB))· Pc(BIT)). (1 - Pc(AIT)) 
1 - Pc{AIT) 

(1 _ 'FdA n BIT)') . Pc(BIT) 
1 - (1 - Pc(BIT) ) . (1 - Pc(AIT)) 

1 - Pc(AIT) 
(1 - .P.. ) . q2 

1 - (1 - q2 ) " (J - ql) ql + q2 - P 
1 - ql 

15 
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involving only the local computations (22), (25), and logical reformulations over concept 
descriptions for which the correct subsumptions are offered by the terminological logic. 
Wi th assumption A ~ B (or B ~ A, resp.) the expressions covered by horizontal braces 
become 0 such that s = ql + q2, and for unknown p the right hand side in the otherwise­
part is obtained: The left-hand side is given by (29). The proof of result (31) can be 
obtained analogously. 

In the more general case where T is substituted by an arbitrary concept C, the proof 
would be based on the concepts C n A, C n B, C nA n B, and C n (A U B) that are all 
subsumed by C . • 

The main advantage of examining local triangular cases as in Theorems 1, 2, and 
Proposition 6 is that "most" of the inconsistencies are discovered early and can be taken 
into account just in the current context of the three concepts involved. Further, not as 
yet known p-implications can be generated and the associated probability ranges can be 
stepwise refined. However, testing local consistency requirements only for those concepts 
that are introduced explicitly is no guarantee for global probabilistic consistency. How to 
proceed in such situations is demonstrated in the following example. 

Example 7 Assume the knowledge Bi ~ A, A ~ Bi, i = 1,2,3, Bl ~ B 2, B2 ~ B3, 
and Bl ~ B 3 • Although global inconsistency is obvious, the four local triangular cases 
are consistent. Constructing now, e.g., the concept Bl U B2 for which (Bl U B 2) ~ A, 

A~(BI UB2), and (Bl UB2)~B3 hold, with the help of A~B3 we get a new local case 
that is inconsistent. 

In the general case, testing global probabilistic consistency leads to a constraint satis­
faction problem on a non-discrete domain (for discrete cases see, e.g., [8,22,38]) and, for 
every p-implication, to successively computing the intersections of the probability ranges 
derived on the basis of different local examinations. 

Remark 1 For simplicity, the above examinations have been based On the assumption of 
knowing exact probability values (such as p, q, and r). The more general probabilistic 
framework that checks consistency for ranges can be simply obtained by substituting the 
variables by ranges (such as [pI,Pu]' [ql,qu]' and [rl,ru]). Consequently, in the involved 
inequalities for testing local consistency, the lower and upper values have to be used with 
respect to signs and fractions. 

Beside the studies of Dubois and Prade already mentioned above, work related to 
our approach of checking probabilistic consistency was presented by Paass [29] for the 
framework of probabilistic logic (see also Bacchus [3] for a logical formalism dealing with 
qualitative statistical information). The ,system INFERNO [37] is based on the idea of 
bounds propagation. There, the drawn inferences are provably correct but may lead to 
probability bounds that are too weak [19]. The reader is also referred to [32]. 
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5 Related Work 

The importance of providing an integration of both term classification and uncertainty 
representationS was recently emphasized in several publications. However, they differ from 
each other and also from our proposal. Yen and Bonissone [47] consider this integration 
from a general point of view which, for instance, does not require a concrete uncertainty 
model (e.g., probabilistic, fuzzy, Dempster-Shafer [18,19]), while in our approach specific 
properties of an integration are demonstrated, based on a concrete probabilistic model. 
In [46] Yen proposes an extension of term subsumption languages to fuzzy logic that aims 
at representing and handling vague concepts. His approach generalizes a subsumption 
test algorithm for dealing with the notion of vagueness and imprecision. Since our ap­
proach aims at modeling uncertainty, it already differs from Yen's proposal in its general 

I 

objectives. Saffiotti [39] presents a hybrid framework for representing epistemic uncer-
tainty. His extension allows one to model uncertainty about categorical knowledge, e.g., 
to express one's belief on quantified statements such as "I am fairly (80%) sure that all 
birds fly". Note the difference from "I am sure that 80% of birds fly", which is modeled in 
our present paper and requires a completely different formal basis. The work of Bacchus 
[2,3] is important because he not only explores the question of how far one can go using 
statistical knowledge but also presents Lp, a logical formalism for representing and rea­
soning with statistical knowledge. In spite of being closely related to our work and being 
able to represent conditional probabilities, Bacchus does not provide a deep discussion of 
conditionals and the associated local consistency requirements. 

6 Conclusions and Outlook 

We have proposed a probabilistic extension of terminological logics that takes into account 
uncertain knowledge arising when certain properties are, e.g., usually but not categori­
cally true. For this purpose, the notion of probabilistic implication based on a statistical 
interpretation has been introduced. This theoretical approach has several advantages: 
The construct probabilistic implication opens the way to an integration of strictly termi­
nological knowledge and the possibility of modeling exceptions. These no longer appear 
as contradictions [5], but as a set of weaker inequalities that guarantees the consistency 
of probability assignments. Moreover, being based on conditional probabilities, consis­
tency can be checked in the current context of the three concepts involved. By separating 
terminological and probabilistic knowledge, processes maintaining the consistency of the 
terminological part remain operational. In fact, probabilistic consistency depends heavily 
on correct terminological subsumptions as established by the classifier. 

Current investigations are related to the further refinement of the rules for testing 
consistency and to the consideration of assertional (ABox) knowledge. The second aspect 

5Brachman [6] considers "probability and statistics" as one of the "potential highlights" in knowledge 
representation . 
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however has the consequence that two different semantics of probabilities have to be 
integrated, i.e., we have to cope with both universal (statistical) statements involving 
probabilities over domains and assertions describing particular degrees of belief [14,3]. 
Furthermore, the way assertions about the real world are taken into account differs from 
classical hybrid representation systems: even if an instance is known to belong to a concept 
"with certainty", its belonging to other concepts maybe uncertain. So, as discussed in 
[17], our framework of terminological and probabilistic knowledge is strongly associated 
with how to answer questions about probabilistic memberships of instances and requires 
an extension of the "classical" realizer. 

The computational costs of the algorithms involved are quite high and need theoretical 
examination. Confining oneself to those p-implications explicitly introduced is of cubic 
(worst case) complexity and already allows one to draw non-trivial inferences and to 
detect local inconsistencies. Global consistency however means taking into account the 
propositional completeness of the terminological language. 

Another investigation concerns the implementation of the presented extension and its 
integration in, e.g., the prototype system K:RIS [1]. Within the WIP project the extended 
terminological logic can be applied to model tlie typical (in the statistical interpretation) 
behavior of users of technical environments and to quantify preferences in choosing actions 
and plans. . 
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