
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-91-13

Residuation and Guarded Rules for

Constraint Logic Programming

Gert Smolka

May 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Daimler Benz ,
Fraunhofer Gesellschaft , GMD, IBM , Insiders, Krupp-Atlas , Mannesmann-Kienzle, Philips ,
Sema Group Systems , Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies , or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently , there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Residuation and Guarded Rules for
Constraint Logic Programming

Gert Smolka

DFKI-RR-91-13

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

Residuation and Guarded Rules for
Constraint Logic Programming

Gert Smolka

German Research Center for Artificial Intelligence and

Universitat des Saarlandes

Stuhlsatzenhausweg 3, 6600 Saarbrucken 11, Germany

smolka@dfki.uni-sb.de

Abstract

A major difficulty with logic programming is combinatorial explosion:
since goals are solved with possibly indeterminate (Le., branching) re­
ductions, the resulting search trees may grow wildly. Constraint logic
programming systems try to avoid combinatorial explosion by build­
ing in strong determinate (Le., non-branching) reduction in the form
of constraint simplification. In this paper we present two concepts,
residuation and guarded rules, for further strengthening determinate
reduction. Both concepts apply to constraint logic programming in
general and yield an operational semantics that coincides with the
declarative semantics. Residuation is a control strategy giving prior­
ity to determinate reductions. Guarded rules are logical consequences
of programs adding otherwise unavailable determinate reductions.

1

Contents

1 Introduction
1.1 Residuation
1.2 Guarded Rules
1.3 Nondeclarative Use of Guarded Rules
1.4 Rest of The Paper

2 Reduction Systems

3 Constraint Systems

4 Definite Construction

5 Guarded Rules

6 Conclusions

2

3
3
5
8
9

9

11

12

14

15

1 Introduction

A major difficulty with logic programming is combinatorial explosion: since
goals are solved with possibly indeterminate (i.e., branching) reductions, the
resulting search trees may grow wildly. Constraint logic programming sys­
tems [5, 12, 7] try to avoid combinatorial explosion by building in strong
determinate (i.e., non-branching) reduction in the form of constraint sim­
plification. In this paper we present two concepts, residuation and guarded
rules, for further strengthening determinate reduction. Both concepts apply
to constraint logic programming in general and yield an operational seman­
tics that coincides with the declarative semantics.

1.1 Residuation

Residuation1 is a control strategy for constraint logic programming meant
to replace the rigid depth first strategy of Prolog, which amounts to eager
generation of usually wrong assumptions. Residuation makes determinate
reduction the rule and indeterminate reduction the exception that must be
requested explicitly by declaring relations as generating. Given a goal, an
atom is called determinate if reduction with all but possibly one clause defin­
ing the atom immediately fails due to constraint simplification. Residuation
is now the following control strategy:

• given a goal that contains determinate atoms, a determinate atom must
be reduced

• given a goal that contains no determinate atoms, an atom whose rela­
tion is declared as generating must be reduced.

Thus the user controls which atoms can reduce indeterminately by declaring
relations as generating. If no relation is declared generating, indeterminate
reduction cannot occur. Even with generating relations, indeterminate re­
duction can only occur if determinate reduction is not possible. A relation is
called residuating if it is not declared generating. Given a goal, an atom is
called residuated if it is not determinate and its relation is residuating. An
important feature of the residuation strategy is that goals whose atoms are
all residuated are taken as answers. Often such complex answers are fine as
they are. For instance, if length is a length predicate for lists, the goal

3N (length(L, N) /\ N ~ 47)

IThe term residuation was coined by Hassan Ait-Kaci [1] for delaying control schemes.

3

("L is a list with at most 47 elements") is a perfect answer. If the user is not
satisfied with a complex answer, he can request indeterminate reduction of
a residuated atom.

Residuation is similar to the control strategy of the Andorra model [8, 9],
with the difference that residuation performs indeterminate reduction only
on atoms whose relation is explicitly declared as generating. The philosophy
behind residuation is that for most relations indeterminate reduction simply
does not make sense, and that complex answers are often appropriate.

In the examples of this paper we will assume a constraint system with
trees and linear integer arithmetic.

A length relation for lists can be defined as follows (constraints are written
in italic font):

length(L, N) +--7 L = nil AN = 0

V :lH, R, M (L = H.R AN> 0 A M = N - 1

A length(R, M)).

Instead of the conventional definite clause syntax we use definite equivalences,
which make more explicit that the relation on the left hand side is in fact
defined (we are committed to least model semantics).2

Now, given a goal whose constraint is </>, an atom length(L, N) in this
goal is determinate if either the constraint </> A L = nil A N = 0 simplifies to
..1, or the constraint </> A :lH, R (L = H.R AN> 0) simplifies to ..1, where
..1 is the canonical unsatisfiable constraint. Assuming a sufficiently power­
ful constraint simplifier, the goal length(X, N) A N 2: 2 reduces in two steps
determinately to the goal

:lY, Z, U, M (X = Y.Z.U A M = N - 2 A M 2: 0 A length(U, M)),

which is an answer if the relation length is residuating. In any case, it would
not make sense to reduce this goal further.

Residuation is a simple and powerful alternative to delay primitives such
as the delay annotations of Ie-Prolog [4], the freeze construct of Prolog II [6],
or the wait declarations of MU-Prolog [15]. Major advantages of residuation
over these delay primitives are:

• residuation applies to every constraint system (rather than to tree sys­
tems only)

• no annotations in clauses are needed-the programmer only decides
which relations should be generating

2For the special case of Horn clause programming, the translation from the conventional
definite clause syntax to definite equivalences is given by Clark's completion [2].

4

• residuation is much more flexible--even if all relations are declared
generating the search space is considerably pruned since determinate
reductions are performed first.

An idealized method for solving problems with residuation splits the prob­
lem solver in a propagating and a generating part:

• a predicate propagate(S) that holds if and only if 5 is a solution of the
problem, and that depends only on residuating relations

• a predicate generate(S) that defines candidates for (partial) solutions
and depends on generating relations.

A problem instance is then given as a query

¢> " propagate(S) " generate(S),

where the constraint ¢> describes the particular problem instance. With resid­
uation ¢>" propagate(S) will reduce determinately to a constraint propagation
network consisting of residuated atoms and a shared constraint. In general,
the constraint propagation network alone is too weak to exhibit solutions.
Thus generate(S) is needed to incrementally generate assumptions about the
value of the variable S. As soon as an assumption is made, the constraint
propagation network will become active since atoms that where residuated
before can now fire. Typically, most, of the generated assumptions will be
invalidated immediately by constraint propagation leading to a failure. To
obtain a feasible search space, two things are essential: careful design of
the propagation and generation component, and an expressive underlying
constraint system.

1.2 Guarded Rules

Guarded rules are logical consequences of the program introducing additional
determinate reduction rules. We will see that guarded rules can significantly
strengthen the propagation component of a problem solver.

Consider the following definition of list concatenation:

app(X, V, Z) ~ X = nil" V = Z

X = H.R" Z = H.U " app(R, V, U).

It is written in sugared syntax (indicated by writing I rather than V), which
suppresses existential quantification of auxiliary variables and allows nesting
of constraint terms.

5

With this definition the goal app(X, Y, Y) does not reduce determinately
although it is equivalent to X = nil. In fact, the relation app satisfies the
formula

Y = Z -+ (app(X, Y, Z) +-t X = nil),

which validates the determinate reduction of the atom app(X, Y, Z) to the
constraint X = nil if the constraint of the goal entails the "guard" Y = Z.

A guarded rule is a formula

c/> -+ (A +-t G),

for convenience written as
c/> 0 A t> G,

where c/> is a constraint (called the guard), A is an atom, and G is a goal.
A guarded rule is admissible if it is valid in every model of the declarative
semantics (we are committed to least model semantics). Thus admissible
guarded rules are redundant as far as the declarative semantics is concerned.

The operational semantics of guarded rules is defined as follows. Given a
goal G

3X(c/> t\ A t\ R)

and a guarded rule
'I/; 0 A l> G',

the goal G can reduce determinately to

3X(c/> t\ G' t\ R)

if the constraint c/> entails the constraint '1/;, that is, the implication c/> -+ 'I/;
is valid in every model of the constraint system. Note that 3X(c/> t\ G' t\ R)
is logically equivalent to G in all models of the declarative semantics if the
guarded rule is admissi hIe. Moreover, 3X (c/> t\ G' t\ R) is a goal up to con­
straint simplification and minor syntactic rearrangement.

Two further admissible guarded rules for app are

Y = nil 0 app(X, Y, Z) t> X = Z t\ list(X)

X = Z 0 app(X, Y, Z) t> Y = nil t\ list(X),

w here the relation list is defined as follows:

list(L) +-t L = nil I L = H.R t\ list(R).

Admissible guarded rules are a new concept that must not he confused
with the guarded clauses of committed-choice languages such as Concur­
rent Prolog [16] or Parlog [3]. In these languages guarded clauses are used

6

to define agents, while in our framework relations are defined by definite
equivalences and admissible guarded rules are logical consequences of the'
definitions. Moreover, committed-choice languages usually do not have a
declarative semantics. Maher [14] . has given a declarative semantics for a
strongly restricted class of committed-choice languages, where guards must
be mutually exclusive. This is usually not the case for guarded rules, as can
be seen in the list concatenation example.

Guarded rules have some similarity with the demon predicates of CHIP
[7], but are much more general. First, demon predicates in CHIP are defined
by guarded rules only, while in our apI !Oach the relation is defined indepen­
dently by clauses. Second, in CHIP guards are restricted to positive tree
patterns. Third, in our approach guarded rules can be given for generating
relations, while in CHIP demon predicates are residuating by definition. And
last not least, CHIP does not even outline a declarative semantics for demon
predicates.

In the presence of guarded rules, an atom in a goal is called determinate
if it either is determinate as defined before, or if it can reduce with a guarded
rule. Residuation is defined as before, except that it now relies on the stronger
notion of determinate atoms.

Residuation with guarded rules yields a surprisingly strong constraint
propagation mechan ism, which we will illustrate with two further examples.

Consider the following relational definition of the Boolean "and" function:

and(X, Y, Z) +--+ X ~ 1/\ Y = Z /\ bool(Y)

X = 0 /\ Z = 0 /\ bool(Y)

bool(X) +--+ X = 1 I X = O.

First note that the definition of and in the presence of residuation already
realizes four implicit guarded rules:

X:;f1D and(X, Y, Z) t> X = 0 /\ Z = 0 /\ boo I (Y)

Y:;fZD and(X, Y, Z) t> X = 0 /\ Z = 0 /\ bool(Y)

X:;fOD and(X, Y, Z) 1> X = 1/\ Y = Z /\ bool(Y)

Z:;fOD and(X, Y, Z) t> X = 1 /\ Y = Z /\ bool(Y).

The second and fourth rule could be optimized since under their guards
we have Y = 1, but residuation will reduce bool(Y) anyway to Y = 1. By
exploiting the symmetry of and with respect to its first two arguments we

7

obtain the admissible guarded rules

v =I- 1 0 and(X, V, Z) t> V = 0/\ Z = 0/\ bool(X)
X =I- Z 0 and(X, V, Z) t> X = 1 /\ Y = 0/\ Z = 0
Y =I- 0 0 and(X, Y, Z) t> X = Z /\ Y = 1/\ bool(X).

By adding two further admissible guarded rules

X = Y 0 and(X, Y, Z) t> X = Z /\ bool(X)
X =1= Y 0 and(X, Y, Z) t> Z = 01\ bool(X) 1\ bool(Y),

we obtain optimal constraint propagation.
For our next example assume that we want to solve a crossword puzzle.

For this task a predicate 5(1, U, J, V) is useful that holds if and only if the
I's letter of the word U is identical with the J's letter of the word V. This
predicate is defined by

5(1, U,J, V) - 1 = 1/\ U = H.R /\ at(J, V, H)
1 > 1/\ U = H.R /\ 5(1 - 1, R, J, V)

at(l, U, X) - 1 = 1/\ U = X.R
.I> 1/\ U = H.R/\at(l-l,R,X).

Now the goal 5(2, U, J, V) reduces to

::lX, Y, W (U = X.Y.W 1\ at(J, V, V)),

which makes explicit that the word U consists of at least two characters.
However, the symmetric goal 5(1, U, 2, V) does not reduce determinately. This
can be fixed by making the symmetry explicit with the admissible guarded
rules

J :s 1 0 5(1, U, J, V) t> 3H, R (J = 1/\ V = H.R /\ at(l, U, H))

J =I- 1 0 5(1, U, J, V) t> 3H, R (J > 1/\ V = H.R /\ 5(1, U, J - 1, R))
-.3H, R (V = H.R) 0 5(1, U, J, V) t> .l...

1.3 Nondeclarative Use of Guarded Rules

So far we have only seen admissible guarded rules, that is, guarded rules that
were logical consequences of the declarative semantics and whose operational
effect was compatible with the declarative semantics. However, the opera­
tional semantics obtained by residuation and nonadmissible guarded rules is

8

significantly stronger than what can be captured by classical declarative se­
mantics. In fact, the object-oriented programming techniques developed for
Concurrent Prolog [16] become available if determinate atoms are selected
for reduction with a fair st rategy.

For instance, an agent that reads two input streams X, V and merges them
into one output stream Z can be defined by four nonadmissible guarded rules:

X = nil 0 merge(X, V, Z) l> V=Z
X = H.R 0 merge(X, V, Z) l> 3U (Z = H.U !\ merge(R, V, U))

V = nil 0 merge(X, V, Z) l> X=Z
V = H.R 0 merge(X, V, Z) l> 3U (Z = H.U !\ merge(X, R, U)).

Operationally this merge agent will behave just right: as soon as a message
appears on one of the two input streams, it can fire and put the message on
the output stream.

It is easy to see that there is no relation merge such that the given guarded
rules are admissible. For merge this could be cured by modeling streams as
bags (i.e., lists whose order does not matter) rather than lists, but this would
destroy the declarative semantics of most stream consumers.

1.4 Rest of The Paper

The rest of the paper presents a simple and general framework for declarative
constraint logic programming with re;iduation and admissible guarded rules.
The complications of Jaffar and Lassez's framework [11] are avoided by not
providing for negation as failure.

2 Reduction Systems

The abstract notion of a well-founded reduction system captures important
properties of logic programming. It builds on predicate logic in that it takes
for granted first-order structures and formulae with the usual connectives
and quantifiers. We assume that .1 ("falsity") is a variable-free formula that
is invalid in every structure.

A reduction system consists of the following:

• a set of formulae called goals containing the trivial goal 1..

• a set of structures called models in which the goals are interpreted

• a set of equivalences G +-+ G1 V ... V Gn called reductions such that:

9

G and Gl, ... , Gn are goals, and G =I- ..L

G f-+ G1 V ... V Gn is valid in every model.

A reduction G f-+ G1 V ... V Gn applies to the goal G and no other goal.
Typically, a reduction systerri contains many reductions with the same left
hand side, that is, more than one reduction applies to a goal. A reduction
system can be seen as a rewrite system, which allows to rewrite a disjunction
of goals into an equivalent disjunction of goals by replacing a goal according
to a reduction. The idea is to rewrite until no further reduction applies.
The reduction systems corresponding to logic programs are in general non­
terminating, that is, there are goals from which infinite rewrite derivations
Issue.

A reduction system can be separated into a declarative component
given by its goals and models, and an operational component given by its
goals and reductions.

We say that a goal G reduces in one step to G' and write G => G'
if there exists a reduction G f-+ G1 V ... V Gn such that G' = G i for some i.
We say that a goal G reduces to G' if G =>* G', where =>* is the reflexive
and transitive closure of =>.

An interpretation is a pair consisting of a model A and a variable
valuation a into A. A solution of a goal G is an interpretation (A, a) such
that G is valid in A under a. A goal is satisfiable if it has at least one
solution.

An answer is a goal to which no .reduction applies. Note that ..L is always
an answer (the trivial answer). An answer for a goal G is an answer G'
such that G =>* G'. A set of answers for a goal G is complete if it contains
for every solution (J of G an answer G' such that (J is a solution of G'.

The computational service to be provided by a reduction system is
solving of goals, that is, enumeration of a complete set of answers for a
given goal. The declarative component of a reduction system specifies a class
of problems, where every goal corresponds to a particular problem instance,
and the solutions of the goal are the solutions of the problem instance. The
operational component of a reduction system specifies a method for solv­
ing problem instances, where solving means to enumerate a complete set of
answers.

A reduction system is well-founded if there exists a well-founded or­
dering on pairs of goals and interpretations such that for every reduction
G f-+ G1 V ... V Gn and every solution (J of G there exist an i = 1, ... , n such
that (G, (J) > (Gi , (J) and (J is a solution of Gi . -A well-founded reduction
system has two important properties:

• every goal has a complete set of answers

10

• a complete set of answers for a goal G can be enumerated as follows: if
no reduction applies to G, then {G} is a complete set of answers; oth­
erwise, choose don't care any reduction G +-+ Gt V ... V Gn and solve
the goals Gt , . . . ,Gn in parallel.

We will see that every Horn clause program yields a well-founded reduction
system.

A reduction is determinate if its right hand side is a single goal. We
say that G reduces determinately to G' if G reduces to G' using only de­
terminate reductions. If G reduces determinately to G', then G and G' have
exactly the same solutions. A reduction system is determinate if it has only
determinate reductions. Note that in well-founded and determinate reduc­
tion systems there exist no infinite reduction chains G :::} Gt :::} G2 :::} G3 •••

issuing from a satisfiable goal G.
A reduction system is terminating if there exists no infinite chain

G :::} Gt :::} G2 :::} G3 :::} •• • of reduction steps. Note that a terminating re­
duction system is always well-founded, but not vice versa. Even a well­
founded and determinate reduction system may not terminate on unsatisfi­
able goals.

3 Constraint Systems

A constraint system is a terminatir;g and determinate reduction system
whose goals are closed under conjunction, existential quantification, and vari­
able renaming. In a constraint system we call the goals constraints, the
answers simplified constraints, and the process of reducing a constraint
to a simplified constraint constraint simplification. Note that in a con­
straint system one can compute for every constraint a simplified constraint.
Moreover, if a constraint simplifies to the trivial constraint .1, it must be
unsatisfiable. A constraint system is called complete if a constraint is un­
satisfiable if and only if it simplifies to L Thus constraint simplification
in a complete constraint system is a decision algorithm for satisfiability of
constraints.

The operational component of a constraint system is called a constraint
simplifier, and the operational component of a complete constraint system is
called a constraint solver. Our framework for constraint logic programming
does not require that the underlying constraint system is complete. Given a
set of constraints with the corresponding models, one may prefer in practice
an incomplete constraint simplifier since a (tractable) constraint solver may
not exist.

11

Our notion of a constraint system is deliberately very general: every set
of formulae with a corresponding class of models can be seen as a constraint
system if we provide no reductions and close the formulae under conjunction,
existential quantification and variable renaming. Such trivial constraint sys­
tems providing no computational service are of course not what we want in
practice.

4 Definite Construction

We now introduce definite construction, which is the principle underlying
constraint logic programming. We obtain a very simple framework for con­
straint logic programming with residuation. The two theorems given in this
section are consequences of the results in [10].

We assume that a constraint system and a set of definite relation sym­
bols are given, where the definite relation symbols take a fixed number of
arguments and do not occur in the constraint system.

An atom takes the form r(xll ... , xn), where r is a definite relation sym­
bol taking n arguments and Xl, ••• , Xn are pairwise distinct variables. A
definite goal takes the form

3X (4) 1\ R),

where X is a possibly empty set of existentially quantified variables, 4> is a
constraint, and R is a possibly empty conjunction of atoms. Note that the
definite goals containing no atoms are exactly the constraints. A definite
equivalence takes the form

where A is an atom and GI , ... , Gn are definite goals called the clauses of
A. A definite specification is a set of definite equivalences containing for
every definite relation symbol r exactly one equivalence with r appearing at
the left hand side.

In the following we assume that a definite specification is given. Moreover,
we assume that 4> and t/J range over constraints, A over atoms, R over possibly
empty conjunctions of atoms, and G over definite goals. We will construct a
reduction system for definite goals by defining definite models (the declarative
semantics) and definite reductions (the operational semantics).

For convenience, we will often refer to definite goals simply as goals.
A definite structure is a structure that can -be obtained from a model

of the constraint system by adding interpretations for the definite relation
symbols. Definite structures are partially ordered as follows: A ~ 8 iff A

12

and 8 extend the same constraint model and r.A ~ r8 for every definite
relation symbol r. A definite quasi-model is a definite structure that is a
model of the definite specification. A definite model is a minimal definite
quasi-model. The following theorem validates our declarative semantics.

Theorem 4.1 For every model of the constraint system there exists exactly
one definite model extending it.

Next we define the operational semantics. We assume that the order in
which atoms are written in a definite goal does not matter.

An equivalence G ~ D is a definite reduction iff the following condi~
tions are satisfied:

• G = 3X(<P 1\ A 1\ R) is a definite goal

• A ~ Vi=l 3Yi (<Pi 1\ ~) is obtained from a definite equivalence of the
definite specification by variable renaming such that only the variables
in A are shared with G

• obtain for every clause 3Yi (<Pi 1\ Ri) of the definite equivalence the goal

if <P 1\ <Pi simplifies to 1-
if <P 1\ <Pi simplifies to tPi =f 1-

• D is the disjunction of all Gi =f .l; if all Gi's are 1-, then D = 1-.

Note that our definition of definite reductions corresponds exactly to SLD­
resolution [13] for the special case of Horn clauses.

Given a constraint system C and a definite specification 1) over C, we
define R(C,1)) as the reduction system whose goals are the corresponding
definite goals, whose models are the corresponding definite models, and whose
reductions are the corresponding definite reductions together with the reduc­
tions of the constraint system C. It is easy to verify that R(C,1)) is in fact
a reduction system.

Theorem 4.2 R(C,1)) is a well-founded reduction system whose answers
are exactly the simplified constraints.

It is now straightforward to build III residuation. We only have to
discard unnecessary indeterminate reductions:

• discard all indeterminate reductions for goals that do have determinate
reductions

13

• discard all indeterminate reductions obtained by reduction upon a
residuating atom (an atom whose relation is not declared generating).

Let us call the thus obtained reduction system n*(C, V, Q), where Q is the set
of generating relation symbols. Clearly, n*(C, V, Q) is still a well-founded re­
duction system. Moreover, let n*(C, V) be the reduction system n*(C, V, Q)
where all definite relations are declared generating. Then n*(C, V) is well­
founded and has again exactly the simplified constraints as answers (follows
immediately from the above theorem). The important difference between
n(C, V) and n*(C, V) is that n*(C, V) has significantly smaller search spaces
(even for the case of Horn clauses), a fact that has only been realized recently
in the Andorra model [8, 9].

5 Guarded Rules

Let a constraint system C and a definite specification V over C be given. A
guarded rule is a formula

</> ~ (A H G),

where </> is a constraint (called the guard), A is an atom, and G is a definite
goal. A guarded rule is admissible if it is valid in every definite model.

Let :F be a set of admissible guarded rules. Then G H G' is called a
forward reduction iff the following conditions are satisfied:

• G = 3X(</> /\ A /\ R) is a definite goal

• 'I/; ~ (A H 3Y(</>' /\R')) is obtained from a guarded rule in :F by variable
renaming such that only the variables in the atom A are shared with
G

• </> /\ -,'1/; is a constraint that simplifies to ..L

• G' = { ~x u Y (<//' /\ R' /\ R)
if </> /\ </>' simplifies to ..L
if </> /\ </>' simplifies to </>" "I ..L.

If </> /\ -,'1/; simplifies to ..L, then </> entails '1/;, that is, the implication </> ~ 'I/;
is valid in every model of the constraint system. Moreover, if the constraint
system is complete, then </> /\ -,'1/; simplifies to ..L if and only if </> entails '1/;.

The reduction system n(C, V,:F) is obtained from n(C, V) by adding the
forward reductions defined by the admissible guarded rules in:F. It is easy
to verify that n(C, V,:F) is in fact a reduction system, and that every goal
of n(C, V,:F) has a complete set of answers.

In general, n(C, V,:F) is not well-founded; consider, for instance, the
admissible guarded rule -,..L ~ (A H A). It is the responsibility of the

14

programmer to design the guarded rules in F such that n(C, V, F) is well­
founded. Further research is necessary to find good sufficient conditions for
the well-foundedness of n(C, V, F).

Residuation for n(C, V, F) is d~fined as before.

6 Conclusions

Residuation is a cont~ol strategy for CLP meant to replace the rigid depth
first strategy of Prolog, which amounts to eager generation of usually wrong
assumptions. Residuation makes determinate reduction the rule and indeter­
minate reduction the exception that must be requested explicitly by declaring
relations as generating. Consequently, residuation may produce complex an­
swers containing residuated atoms.

Guarded rules are logical consequences of programs adding otherwise un­
available determinate reductions. Together with residuation guarded rules
yield a general and powerful constraint propagation mechanism resulting in
drastically smaller search spaces.

Residuation overcomes the strictly sequential computation strategy of
Prolog. With residuation every determinate atom can be reduced next, which
amounts to multiple threads of computation if a fair selection strategy is used.

The operational semantics of residuation and nonadmissible guarded rules
is more expressive than what can be captured by classical declarative se­
mantics. In fact, the object-oriented programming techniques developed for
Concurrent Prolog [16] can be expressed.

Topics for further research include: investigation of abstract incremen­
tality properties ensuring efficient implementation if satisfied by constraint
simplifiers; design of an abst ract machine separating control from constraint
simplification; and investigation of parallel reduction strategies.

Acknowledgments. The research reported in this paper was
inspired by my collaboration with Hassan Ait-Kaci and Andreas
Podelski on the semantics of LIFE. I'm also thankful to Ralf
Scheidhauer who contributed several examples.

References

[1] H. Ait-Kaci and R. Nasr. Integrating logic and functional programming.
Lisp and Symbolic Computation, 2:51-89, 1989.

15

[2] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and Databases, pages 293-322. Plenum Press, New York, NY,
1978.

[3] K. Clark and S. Gregory. PARLOG: Parallel programming in logic.
ACM Transactions on Programming Languages and Systems, 8(1):1-
49, 1986.

[4] K. 1. Clark and F. G. McCabe. The control facilities of IC-PROLOG.
In D. Mitchie, editor, Expert Systems in tbe Micro-Electronic Age. Ed­
inburgh University Press, Edinburgh, Scotland, 1979.

[5] A. Colmerauer. An introduction to PROLOG III. Communications of
the ACM, pages 70-90, July 1990.

[6] A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical
principles and current trends. Technology and Science of Informatics,
2(4):255- 292, 1983.

[7] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Pro­
ceedings of the International Conference on Fiftb Generation Computer
Systems FGCS-88, pages .693- 702, Tokyo, Japan, Dec. 1988.

[8] S. Haridi. A logic programming language based on the Andorra model.
New Generation Computing, 7:109- 125, 1990.

[9] S. Haridi and S. Janson. Kernel Andorra Prolog and its computation
model. In D. Warren and P. Szeredi, editors, Logic Programming, Pro­
ceedings of the 7th International Conference, pages 31-48, Cambridge,
MA, June 1990. The MIT Press.

[10] M. Hohfeld and G. Smolka. Definite relations over constraint languages.
LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000
Stuttgart 80, Germany, Oct. 1988. To appear in the Journal of Logic
Programming.

[11] J. Jaffar and J.-1. Lassez. Constraint logic programming. In Proceed­
ings of the 14tb ACM Symposium on Principles of Programming Lan­
guages, pages 111-119, Munich, Germany, Jan. 1987.

[12] J. Jaffar and S. Michaylov. Methodology and implementation of a CLP
system. In J.-L. Lassez, editor, Proceedings of the 4tb International
Conference on Logic Programming, Cambridge, MA, 1987. The MIT
Press.

16

[13] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computa­
tion. Springer-Verlag, Berlin, Germany, 1984.

[14] M. J. Maher. Logic semantics for a class of committed-choice programs.
In J.-L. Lassez, editor, Logic Programming, Proceedings of the Fourth
International Conference, pages 858-876, Cambridge, MA, 1987. The
MIT Press.

[15] L. Naish. Automating control for logic programs. Journal of Logic
Programming, 3:167-183, 1985.

[16] E. Shapiro and A. Takeuchi. Object oriented programming in Concur­
rent Prolog. New Generation Computing, 1:24- 48, 1983.

17

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen
oder die aktuelle Liste von erhliltlichen
Publikationen konnen bezogen werden von
der oben angegebenen Adresse.

DFKI Research Reports

RR-90-01
Franz Baader: Tenninological Cycles in KL-ONE­
based Knowledge Representation Languages
33 pages

RR-90-01
Hans-Jurgen Biirckert: A Resolution Principle for
Clauses with Constraints
25 pages

RR-90-03
Andreas Dengel. Nelson M. Mattos: Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hollunder. Werner Nutt: Subsumption
Algorithms for Concept Languages
34 pages

RR-90-0S
Franz Baader: A Formal Defmition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard Hollunder: Hybrid Inferences in KL-ONE­
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andrt. Thomas Rist: Wissensbasierte
Informationspdlsentation:
Zwei Beitrlige zum Fachgesprl1ch Graphik und KI:

1. Ein planbasierter Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fUr die
automatische Erzeugung von 3D­
ObjektdarsteUungen

24 pages

DFKI
-Bibliothek­
PF 2080
6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR-90-09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Hollunder. Werner Nutt. Jorg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andrt. Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Tenninological Cycles
40 pages

RR-90-14
Franz Schmalhofer. Otto Kuhn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-1S0
Harald Trost: The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR-90-16
Franz Baader. Werner NUlt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR-91-01
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Nebel. Werner Nutt. and Gert Smolka :
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR-91-02
Francesco Donini. Bernhard HoI/under. Maurizio
Lenzerini. Alberto Marchetti Spaccamela. Daniele
Nardi. Werner NUlt:
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
B.Hollunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR-91-04
Harald Trost
X2MORF: A Morphological Component Based on
Augmented Two-Level Morphology
19 pages

RR-91-05
Wolfgang Wahlster. Elisabeth Andrt. Winfried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation.
17 pages

RR-91-06
Elisabeth Andrt. Thomas Rist: Synthesizing
DIustrated Documents
A Plan-Based Approach
11 pages

RR-91-07
GOOter Neumann, Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster. Elisabeth Andrt. Som
Bandyopadhyay. Win/ried Graf, Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR-91-09
Hans-Jiirgen Biirckert. Jiirgen Muller. Achim
Schupeta
RATMAN and its Relation to Other Multi-Agent
Testbeds
31 pages

RR-91-10
Franz Baader. Philipp Hanschke
A Scheme for Integrating Concrete Domains into
Concept Languages
31 pages

RR-91-11
BernhardNebel
Belief Revision and Default Reasoning: Syntax­
Based Approaches
37 pages

RR-91-13
GertSmolka
Residuation and Guarded Rules for Constraint Logic
Programming
11 pages

DFKI Technical Memos

TM-89-01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse
18 pages

TM-90-02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM-90-03
Franz Baader. Bernhard HoI/under: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-Jiirgen Biirckert. Jochen
Heinsohn. Bernhard HoI/under. Jiirgen Millier.
BernhardNebel. Werner NUlt. Hans-Jiirgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
1 pages

TM-91-01
JanaKoh/er
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM·91·02
Knut Hinkelmann
Bidirectional Reasoning of Hom Clause Programs:
Transfonnation and Compilation
20 pages

TM·91·03
Otto Kuhn. Marc Linster. Gabriele Schmidt
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization
of a }(ADS Conceptual Model
20 pages

TM·91·04
Harold Boley
A sampler of Relational/Functional Definitions
12 pages

TM·91·0S
Jay C. Weber. Andreas Dengel and Rainer
Bleisinger
Theoretical Consideration of Goal Recognition
Aspects for Understanding Infonnation in Business
Letters
10 pages

DFKI Documents

D·89·01
Michael H. Malburg. Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypennedia­
Infonnationssystem
43 Seiten

D·90·01
DFKI Wissenschaftlich-Technischer Iahresbericht
1989
45 pages

D·90·02
Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

D·90·03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: AbschiuBbericht des Arbeitspaketes
PROD .
36 Seiten

D·90·04
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: STEP: Uberblick tiber eine zuktinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D·90·05
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Formalismus zur Repriisentation von
Geo-metrie- und Technologieinfonnationen aIs Teil
eines Wissensbasierten Produktmodells
66 Seiten

D·90·06
A!}dreas Becker: The Window Tool Kit
66 Seiten

D·91·01
Werner Stein. Michael Sintek
RelfunIX - An Experimental Prolog
Implementation of Relfun
48 pages

D·91·03
Harold Boley. Klaus Elsbernd. Hans-Giinther Hein,
Thomas Krause
RPM Manual: Compiling RELFUN into the
Relational/Functional Machine
43 pages

D·91·04
DFKI Wissenschaftlich-Technischer Iahresbericht
1990
93 Seiten

G') o:::r
CD 0 CD
~ ::;, til
en t/) -
3 - c .. c
o m m
~ a g

I::;'
o m cc::;,
(;' c

4Jc
o m cc.., .. c
3 ~
~. ~
;:, -cc3: ... o ..

