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Abstract 

A major difficulty with logic programming is combinatorial explosion: 
since goals are solved with possibly indeterminate (Le., branching) re­
ductions, the resulting search trees may grow wildly. Constraint logic 
programming systems try to avoid combinatorial explosion by build­
ing in strong determinate (Le., non-branching) reduction in the form 
of constraint simplification. In this paper we present two concepts, 
residuation and guarded rules, for further strengthening determinate 
reduction. Both concepts apply to constraint logic programming in 
general and yield an operational semantics that coincides with the 
declarative semantics. Residuation is a control strategy giving prior­
ity to determinate reductions. Guarded rules are logical consequences 
of programs adding otherwise unavailable determinate reductions. 
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1 Introduction 

A major difficulty with logic programming is combinatorial explosion: since 
goals are solved with possibly indeterminate (i.e., branching) reductions, the 
resulting search trees may grow wildly. Constraint logic programming sys­
tems [5, 12, 7] try to avoid combinatorial explosion by building in strong 
determinate (i.e., non-branching) reduction in the form of constraint sim­
plification. In this paper we present two concepts, residuation and guarded 
rules, for further strengthening determinate reduction. Both concepts apply 
to constraint logic programming in general and yield an operational seman­
tics that coincides with the declarative semantics. 

1.1 Residuation 

Residuation1 is a control strategy for constraint logic programming meant 
to replace the rigid depth first strategy of Prolog, which amounts to eager 
generation of usually wrong assumptions. Residuation makes determinate 
reduction the rule and indeterminate reduction the exception that must be 
requested explicitly by declaring relations as generating. Given a goal, an 
atom is called determinate if reduction with all but possibly one clause defin­
ing the atom immediately fails due to constraint simplification. Residuation 
is now the following control strategy: 

• given a goal that contains determinate atoms, a determinate atom must 
be reduced 

• given a goal that contains no determinate atoms, an atom whose rela­
tion is declared as generating must be reduced. 

Thus the user controls which atoms can reduce indeterminately by declaring 
relations as generating. If no relation is declared generating, indeterminate 
reduction cannot occur. Even with generating relations, indeterminate re­
duction can only occur if determinate reduction is not possible. A relation is 
called residuating if it is not declared generating. Given a goal, an atom is 
called residuated if it is not determinate and its relation is residuating. An 
important feature of the residuation strategy is that goals whose atoms are 
all residuated are taken as answers. Often such complex answers are fine as 
they are. For instance, if length is a length predicate for lists, the goal 

3N (length(L, N) /\ N ~ 47) 

IThe term residuation was coined by Hassan Ait-Kaci [1] for delaying control schemes. 
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("L is a list with at most 47 elements") is a perfect answer. If the user is not 
satisfied with a complex answer, he can request indeterminate reduction of 
a residuated atom. 

Residuation is similar to the control strategy of the Andorra model [8, 9], 
with the difference that residuation performs indeterminate reduction only 
on atoms whose relation is explicitly declared as generating. The philosophy 
behind residuation is that for most relations indeterminate reduction simply 
does not make sense, and that complex answers are often appropriate. 

In the examples of this paper we will assume a constraint system with 
trees and linear integer arithmetic. 

A length relation for lists can be defined as follows (constraints are written 
in italic font): 

length(L, N) +--7 L = nil AN = 0 

V :lH, R, M (L = H.R AN> 0 A M = N - 1 

A length(R, M)). 

Instead of the conventional definite clause syntax we use definite equivalences, 
which make more explicit that the relation on the left hand side is in fact 
defined (we are committed to least model semantics).2 

Now, given a goal whose constraint is </>, an atom length(L, N) in this 
goal is determinate if either the constraint </> A L = nil A N = 0 simplifies to 
..1, or the constraint </> A :lH, R (L = H.R AN> 0) simplifies to ..1, where 
..1 is the canonical unsatisfiable constraint. Assuming a sufficiently power­
ful constraint simplifier, the goal length(X, N) A N 2: 2 reduces in two steps 
determinately to the goal 

:lY, Z, U, M (X = Y.Z.U A M = N - 2 A M 2: 0 A length(U, M)), 

which is an answer if the relation length is residuating. In any case, it would 
not make sense to reduce this goal further. 

Residuation is a simple and powerful alternative to delay primitives such 
as the delay annotations of Ie-Prolog [4], the freeze construct of Prolog II [6], 
or the wait declarations of MU-Prolog [15]. Major advantages of residuation 
over these delay primitives are: 

• residuation applies to every constraint system (rather than to tree sys­
tems only) 

• no annotations in clauses are needed-the programmer only decides 
which relations should be generating 

2For the special case of Horn clause programming, the translation from the conventional 
definite clause syntax to definite equivalences is given by Clark's completion [2]. 
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• residuation is much more flexible--even if all relations are declared 
generating the search space is considerably pruned since determinate 
reductions are performed first. 

An idealized method for solving problems with residuation splits the prob­
lem solver in a propagating and a generating part: 

• a predicate propagate(S) that holds if and only if 5 is a solution of the 
problem, and that depends only on residuating relations 

• a predicate generate(S) that defines candidates for (partial) solutions 
and depends on generating relations. 

A problem instance is then given as a query 

¢> " propagate(S) " generate(S), 

where the constraint ¢> describes the particular problem instance. With resid­
uation ¢>" propagate(S) will reduce determinately to a constraint propagation 
network consisting of residuated atoms and a shared constraint. In general, 
the constraint propagation network alone is too weak to exhibit solutions. 
Thus generate(S) is needed to incrementally generate assumptions about the 
value of the variable S. As soon as an assumption is made, the constraint 
propagation network will become active since atoms that where residuated 
before can now fire. Typically, most, of the generated assumptions will be 
invalidated immediately by constraint propagation leading to a failure. To 
obtain a feasible search space, two things are essential: careful design of 
the propagation and generation component, and an expressive underlying 
constraint system. 

1.2 Guarded Rules 

Guarded rules are logical consequences of the program introducing additional 
determinate reduction rules. We will see that guarded rules can significantly 
strengthen the propagation component of a problem solver. 

Consider the following definition of list concatenation: 

app(X, V, Z) ~ X = nil" V = Z 

X = H.R" Z = H.U " app(R, V, U). 

It is written in sugared syntax (indicated by writing I rather than V), which 
suppresses existential quantification of auxiliary variables and allows nesting 
of constraint terms. 
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With this definition the goal app(X, Y, Y) does not reduce determinately 
although it is equivalent to X = nil. In fact, the relation app satisfies the 
formula 

Y = Z -+ (app(X, Y, Z) +-t X = nil), 

which validates the determinate reduction of the atom app(X, Y, Z) to the 
constraint X = nil if the constraint of the goal entails the "guard" Y = Z. 

A guarded rule is a formula 

c/> -+ (A +-t G), 

for convenience written as 
c/> 0 A t> G, 

where c/> is a constraint (called the guard), A is an atom, and G is a goal. 
A guarded rule is admissible if it is valid in every model of the declarative 
semantics (we are committed to least model semantics). Thus admissible 
guarded rules are redundant as far as the declarative semantics is concerned. 

The operational semantics of guarded rules is defined as follows. Given a 
goal G 

3X( c/> t\ A t\ R) 

and a guarded rule 
'I/; 0 A l> G', 

the goal G can reduce determinately to 

3X( c/> t\ G' t\ R) 

if the constraint c/> entails the constraint '1/;, that is, the implication c/> -+ 'I/; 
is valid in every model of the constraint system. Note that 3X( c/> t\ G' t\ R) 
is logically equivalent to G in all models of the declarative semantics if the 
guarded rule is admissi hIe. Moreover, 3X ( c/> t\ G' t\ R) is a goal up to con­
straint simplification and minor syntactic rearrangement. 

Two further admissible guarded rules for app are 

Y = nil 0 app(X, Y, Z) t> X = Z t\ list(X) 

X = Z 0 app(X, Y, Z) t> Y = nil t\ list(X), 

w here the relation list is defined as follows: 

list(L) +-t L = nil I L = H.R t\ list(R). 

Admissible guarded rules are a new concept that must not he confused 
with the guarded clauses of committed-choice languages such as Concur­
rent Prolog [16] or Parlog [3]. In these languages guarded clauses are used 
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to define agents, while in our framework relations are defined by definite 
equivalences and admissible guarded rules are logical consequences of the' 
definitions. Moreover, committed-choice languages usually do not have a 
declarative semantics. Maher [14] . has given a declarative semantics for a 
strongly restricted class of committed-choice languages, where guards must 
be mutually exclusive. This is usually not the case for guarded rules, as can 
be seen in the list concatenation example. 

Guarded rules have some similarity with the demon predicates of CHIP 
[7], but are much more general. First, demon predicates in CHIP are defined 
by guarded rules only, while in our apI !Oach the relation is defined indepen­
dently by clauses. Second, in CHIP guards are restricted to positive tree 
patterns. Third, in our approach guarded rules can be given for generating 
relations, while in CHIP demon predicates are residuating by definition. And 
last not least, CHIP does not even outline a declarative semantics for demon 
predicates. 

In the presence of guarded rules, an atom in a goal is called determinate 
if it either is determinate as defined before, or if it can reduce with a guarded 
rule. Residuation is defined as before, except that it now relies on the stronger 
notion of determinate atoms. 

Residuation with guarded rules yields a surprisingly strong constraint 
propagation mechan ism, which we will illustrate with two further examples. 

Consider the following relational definition of the Boolean "and" function: 

and(X, Y, Z) +--+ X ~ 1/\ Y = Z /\ bool(Y) 

X = 0 /\ Z = 0 /\ bool(Y) 

bool(X) +--+ X = 1 I X = O. 

First note that the definition of and in the presence of residuation already 
realizes four implicit guarded rules: 

X:;f1D and(X, Y, Z) t> X = 0 /\ Z = 0 /\ boo I (Y) 

Y:;fZD and(X, Y, Z) t> X = 0 /\ Z = 0 /\ bool(Y) 

X:;fOD and(X, Y, Z) 1> X = 1/\ Y = Z /\ bool(Y) 

Z:;fOD and(X, Y, Z) t> X = 1 /\ Y = Z /\ bool(Y). 

The second and fourth rule could be optimized since under their guards 
we have Y = 1, but residuation will reduce bool(Y) anyway to Y = 1. By 
exploiting the symmetry of and with respect to its first two arguments we 
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obtain the admissible guarded rules 

v =I- 1 0 and(X, V, Z) t> V = 0/\ Z = 0/\ bool(X) 
X =I- Z 0 and(X, V, Z) t> X = 1 /\ Y = 0/\ Z = 0 
Y =I- 0 0 and(X, Y, Z) t> X = Z /\ Y = 1/\ bool(X). 

By adding two further admissible guarded rules 

X = Y 0 and(X, Y, Z) t> X = Z /\ bool(X) 
X =1= Y 0 and(X, Y, Z) t> Z = 01\ bool(X) 1\ bool(Y), 

we obtain optimal constraint propagation. 
For our next example assume that we want to solve a crossword puzzle. 

For this task a predicate 5(1, U, J, V) is useful that holds if and only if the 
I's letter of the word U is identical with the J's letter of the word V. This 
predicate is defined by 

5(1, U,J, V) - 1 = 1/\ U = H.R /\ at(J, V, H) 
1 > 1/\ U = H.R /\ 5(1 - 1, R, J, V) 

at(l, U, X) - 1 = 1/\ U = X.R 
.I> 1/\ U = H.R/\at(l-l,R,X). 

Now the goal 5(2, U, J, V) reduces to 

::lX, Y, W (U = X.Y.W 1\ at(J, V, V)), 

which makes explicit that the word U consists of at least two characters. 
However, the symmetric goal 5(1, U, 2, V) does not reduce determinately. This 
can be fixed by making the symmetry explicit with the admissible guarded 
rules 

J :s 1 0 5(1, U, J, V) t> 3H, R (J = 1/\ V = H.R /\ at(l, U, H)) 

J =I- 1 0 5(1, U, J, V) t> 3H, R (J > 1/\ V = H.R /\ 5(1, U, J - 1, R)) 
-.3H, R (V = H.R) 0 5(1, U, J, V) t> .l... 

1.3 Nondeclarative Use of Guarded Rules 

So far we have only seen admissible guarded rules, that is, guarded rules that 
were logical consequences of the declarative semantics and whose operational 
effect was compatible with the declarative semantics. However, the opera­
tional semantics obtained by residuation and nonadmissible guarded rules is 
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significantly stronger than what can be captured by classical declarative se­
mantics. In fact, the object-oriented programming techniques developed for 
Concurrent Prolog [16] become available if determinate atoms are selected 
for reduction with a fair st rategy. 

For instance, an agent that reads two input streams X, V and merges them 
into one output stream Z can be defined by four nonadmissible guarded rules: 

X = nil 0 merge(X, V, Z) l> V=Z 
X = H.R 0 merge(X, V, Z) l> 3U (Z = H.U !\ merge(R, V, U)) 

V = nil 0 merge(X, V, Z) l> X=Z 
V = H.R 0 merge(X, V, Z) l> 3U (Z = H.U !\ merge(X, R, U)). 

Operationally this merge agent will behave just right: as soon as a message 
appears on one of the two input streams, it can fire and put the message on 
the output stream. 

It is easy to see that there is no relation merge such that the given guarded 
rules are admissible. For merge this could be cured by modeling streams as 
bags (i.e., lists whose order does not matter) rather than lists, but this would 
destroy the declarative semantics of most stream consumers. 

1.4 Rest of The Paper 

The rest of the paper presents a simple and general framework for declarative 
constraint logic programming with re;iduation and admissible guarded rules. 
The complications of Jaffar and Lassez's framework [11] are avoided by not 
providing for negation as failure. 

2 Reduction Systems 

The abstract notion of a well-founded reduction system captures important 
properties of logic programming. It builds on predicate logic in that it takes 
for granted first-order structures and formulae with the usual connectives 
and quantifiers. We assume that .1 ("falsity") is a variable-free formula that 
is invalid in every structure. 

A reduction system consists of the following: 

• a set of formulae called goals containing the trivial goal 1.. 

• a set of structures called models in which the goals are interpreted 

• a set of equivalences G +-+ G1 V ... V Gn called reductions such that: 
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G and Gl, ... , Gn are goals, and G =I- ..L 

G f-+ G1 V ... V Gn is valid in every model. 

A reduction G f-+ G1 V ... V Gn applies to the goal G and no other goal. 
Typically, a reduction systerri contains many reductions with the same left 
hand side, that is, more than one reduction applies to a goal. A reduction 
system can be seen as a rewrite system, which allows to rewrite a disjunction 
of goals into an equivalent disjunction of goals by replacing a goal according 
to a reduction. The idea is to rewrite until no further reduction applies. 
The reduction systems corresponding to logic programs are in general non­
terminating, that is, there are goals from which infinite rewrite derivations 
Issue. 

A reduction system can be separated into a declarative component 
given by its goals and models, and an operational component given by its 
goals and reductions. 

We say that a goal G reduces in one step to G' and write G => G' 
if there exists a reduction G f-+ G1 V ... V Gn such that G' = G i for some i. 
We say that a goal G reduces to G' if G =>* G', where =>* is the reflexive 
and transitive closure of =>. 

An interpretation is a pair consisting of a model A and a variable 
valuation a into A. A solution of a goal G is an interpretation (A, a) such 
that G is valid in A under a. A goal is satisfiable if it has at least one 
solution. 

An answer is a goal to which no .reduction applies. Note that ..L is always 
an answer (the trivial answer). An answer for a goal G is an answer G' 
such that G =>* G'. A set of answers for a goal G is complete if it contains 
for every solution (J of G an answer G' such that (J is a solution of G'. 

The computational service to be provided by a reduction system is 
solving of goals, that is, enumeration of a complete set of answers for a 
given goal. The declarative component of a reduction system specifies a class 
of problems, where every goal corresponds to a particular problem instance, 
and the solutions of the goal are the solutions of the problem instance. The 
operational component of a reduction system specifies a method for solv­
ing problem instances, where solving means to enumerate a complete set of 
answers. 

A reduction system is well-founded if there exists a well-founded or­
dering on pairs of goals and interpretations such that for every reduction 
G f-+ G1 V ... V Gn and every solution (J of G there exist an i = 1, ... , n such 
that (G, (J) > (Gi , (J) and (J is a solution of Gi . -A well-founded reduction 
system has two important properties: 

• every goal has a complete set of answers 
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• a complete set of answers for a goal G can be enumerated as follows: if 
no reduction applies to G, then {G} is a complete set of answers; oth­
erwise, choose don't care any reduction G +-+ Gt V ... V Gn and solve 
the goals Gt , . . . ,Gn in parallel. 

We will see that every Horn clause program yields a well-founded reduction 
system. 

A reduction is determinate if its right hand side is a single goal. We 
say that G reduces determinately to G' if G reduces to G' using only de­
terminate reductions. If G reduces determinately to G', then G and G' have 
exactly the same solutions. A reduction system is determinate if it has only 
determinate reductions. Note that in well-founded and determinate reduc­
tion systems there exist no infinite reduction chains G :::} Gt :::} G2 :::} G3 ••• 

issuing from a satisfiable goal G. 
A reduction system is terminating if there exists no infinite chain 

G :::} Gt :::} G2 :::} G3 :::} •• • of reduction steps. Note that a terminating re­
duction system is always well-founded, but not vice versa. Even a well­
founded and determinate reduction system may not terminate on unsatisfi­
able goals. 

3 Constraint Systems 

A constraint system is a terminatir;g and determinate reduction system 
whose goals are closed under conjunction, existential quantification, and vari­
able renaming. In a constraint system we call the goals constraints, the 
answers simplified constraints, and the process of reducing a constraint 
to a simplified constraint constraint simplification. Note that in a con­
straint system one can compute for every constraint a simplified constraint. 
Moreover, if a constraint simplifies to the trivial constraint .1, it must be 
unsatisfiable. A constraint system is called complete if a constraint is un­
satisfiable if and only if it simplifies to L Thus constraint simplification 
in a complete constraint system is a decision algorithm for satisfiability of 
constraints. 

The operational component of a constraint system is called a constraint 
simplifier, and the operational component of a complete constraint system is 
called a constraint solver. Our framework for constraint logic programming 
does not require that the underlying constraint system is complete. Given a 
set of constraints with the corresponding models, one may prefer in practice 
an incomplete constraint simplifier since a (tractable) constraint solver may 
not exist. 
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Our notion of a constraint system is deliberately very general: every set 
of formulae with a corresponding class of models can be seen as a constraint 
system if we provide no reductions and close the formulae under conjunction, 
existential quantification and variable renaming. Such trivial constraint sys­
tems providing no computational service are of course not what we want in 
practice. 

4 Definite Construction 

We now introduce definite construction, which is the principle underlying 
constraint logic programming. We obtain a very simple framework for con­
straint logic programming with residuation. The two theorems given in this 
section are consequences of the results in [10]. 

We assume that a constraint system and a set of definite relation sym­
bols are given, where the definite relation symbols take a fixed number of 
arguments and do not occur in the constraint system. 

An atom takes the form r(xll ... , xn), where r is a definite relation sym­
bol taking n arguments and Xl, ••• , Xn are pairwise distinct variables. A 
definite goal takes the form 

3X (4) 1\ R), 

where X is a possibly empty set of existentially quantified variables, 4> is a 
constraint, and R is a possibly empty conjunction of atoms. Note that the 
definite goals containing no atoms are exactly the constraints. A definite 
equivalence takes the form 

where A is an atom and GI , ... , Gn are definite goals called the clauses of 
A. A definite specification is a set of definite equivalences containing for 
every definite relation symbol r exactly one equivalence with r appearing at 
the left hand side. 

In the following we assume that a definite specification is given. Moreover, 
we assume that 4> and t/J range over constraints, A over atoms, R over possibly 
empty conjunctions of atoms, and G over definite goals. We will construct a 
reduction system for definite goals by defining definite models (the declarative 
semantics) and definite reductions (the operational semantics). 

For convenience, we will often refer to definite goals simply as goals. 
A definite structure is a structure that can -be obtained from a model 

of the constraint system by adding interpretations for the definite relation 
symbols. Definite structures are partially ordered as follows: A ~ 8 iff A 
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and 8 extend the same constraint model and r.A ~ r8 for every definite 
relation symbol r. A definite quasi-model is a definite structure that is a 
model of the definite specification. A definite model is a minimal definite 
quasi-model. The following theorem validates our declarative semantics. 

Theorem 4.1 For every model of the constraint system there exists exactly 
one definite model extending it. 

Next we define the operational semantics. We assume that the order in 
which atoms are written in a definite goal does not matter. 

An equivalence G ~ D is a definite reduction iff the following condi~ 
tions are satisfied: 

• G = 3X( <P 1\ A 1\ R) is a definite goal 

• A ~ Vi=l 3Yi (<Pi 1\ ~) is obtained from a definite equivalence of the 
definite specification by variable renaming such that only the variables 
in A are shared with G 

• obtain for every clause 3Yi (<Pi 1\ Ri ) of the definite equivalence the goal 

if <P 1\ <Pi simplifies to 1-
if <P 1\ <Pi simplifies to tPi =f 1-

• D is the disjunction of all Gi =f .l; if all Gi's are 1-, then D = 1-. 

Note that our definition of definite reductions corresponds exactly to SLD­
resolution [13] for the special case of Horn clauses. 

Given a constraint system C and a definite specification 1) over C, we 
define R(C,1)) as the reduction system whose goals are the corresponding 
definite goals, whose models are the corresponding definite models, and whose 
reductions are the corresponding definite reductions together with the reduc­
tions of the constraint system C. It is easy to verify that R(C,1)) is in fact 
a reduction system. 

Theorem 4.2 R(C,1)) is a well-founded reduction system whose answers 
are exactly the simplified constraints. 

It is now straightforward to build III residuation. We only have to 
discard unnecessary indeterminate reductions: 

• discard all indeterminate reductions for goals that do have determinate 
reductions 
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• discard all indeterminate reductions obtained by reduction upon a 
residuating atom (an atom whose relation is not declared generating). 

Let us call the thus obtained reduction system n*(C, V, Q), where Q is the set 
of generating relation symbols. Clearly, n*(C, V, Q) is still a well-founded re­
duction system. Moreover, let n*(C, V) be the reduction system n*(C, V, Q) 
where all definite relations are declared generating. Then n*(C, V) is well­
founded and has again exactly the simplified constraints as answers (follows 
immediately from the above theorem). The important difference between 
n(C, V) and n*(C, V) is that n*(C, V) has significantly smaller search spaces 
(even for the case of Horn clauses), a fact that has only been realized recently 
in the Andorra model [8, 9]. 

5 Guarded Rules 

Let a constraint system C and a definite specification V over C be given. A 
guarded rule is a formula 

</> ~ (A H G), 

where </> is a constraint (called the guard), A is an atom, and G is a definite 
goal. A guarded rule is admissible if it is valid in every definite model. 

Let :F be a set of admissible guarded rules. Then G H G' is called a 
forward reduction iff the following conditions are satisfied: 

• G = 3X( </> /\ A /\ R) is a definite goal 

• 'I/; ~ (A H 3Y( </>' /\R')) is obtained from a guarded rule in :F by variable 
renaming such that only the variables in the atom A are shared with 
G 

• </> /\ -,'1/; is a constraint that simplifies to ..L 

• G' = { ~x u Y (<//' /\ R' /\ R) 
if </> /\ </>' simplifies to ..L 
if </> /\ </>' simplifies to </>" "I ..L. 

If </> /\ -,'1/; simplifies to ..L, then </> entails '1/;, that is, the implication </> ~ 'I/; 
is valid in every model of the constraint system. Moreover, if the constraint 
system is complete, then </> /\ -,'1/; simplifies to ..L if and only if </> entails '1/;. 

The reduction system n(C, V,:F) is obtained from n(C, V) by adding the 
forward reductions defined by the admissible guarded rules in:F. It is easy 
to verify that n(C, V,:F) is in fact a reduction system, and that every goal 
of n(C, V,:F) has a complete set of answers. 

In general, n(C, V,:F) is not well-founded; consider, for instance, the 
admissible guarded rule -,..L ~ (A H A). It is the responsibility of the 
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programmer to design the guarded rules in F such that n(C, V, F) is well­
founded. Further research is necessary to find good sufficient conditions for 
the well-foundedness of n(C, V, F). 

Residuation for n(C, V, F) is d~fined as before. 

6 Conclusions 

Residuation is a cont~ol strategy for CLP meant to replace the rigid depth 
first strategy of Prolog, which amounts to eager generation of usually wrong 
assumptions. Residuation makes determinate reduction the rule and indeter­
minate reduction the exception that must be requested explicitly by declaring 
relations as generating. Consequently, residuation may produce complex an­
swers containing residuated atoms. 

Guarded rules are logical consequences of programs adding otherwise un­
available determinate reductions. Together with residuation guarded rules 
yield a general and powerful constraint propagation mechanism resulting in 
drastically smaller search spaces. 

Residuation overcomes the strictly sequential computation strategy of 
Prolog. With residuation every determinate atom can be reduced next, which 
amounts to multiple threads of computation if a fair selection strategy is used. 

The operational semantics of residuation and nonadmissible guarded rules 
is more expressive than what can be captured by classical declarative se­
mantics. In fact, the object-oriented programming techniques developed for 
Concurrent Prolog [16] can be expressed. 

Topics for further research include: investigation of abstract incremen­
tality properties ensuring efficient implementation if satisfied by constraint 
simplifiers; design of an abst ract machine separating control from constraint 
simplification; and investigation of parallel reduction strategies. 
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