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Abstract 

A drawback which concept languages based on KL-ONE have is that all the termino­
logical knowledge has to be defined on an abstract logical level. In many applications, 
one would like to be able to refer to concrete domains and predicates on these domains 
when defining concepts. Examples for such concrete domains are the integers, the real 
numbers, or also non-arithmetic domains, and predicates could be equality, inequality, or 
more complex predicates. 

In the present paper we shall propose a scheme for integrating such concrete domains 
into concept languages rather than describing a particular extension by some specific con­
crete domain. We shall define a terminological and an assertionallanguage, and consider . 
the important inference problems such as subsumption, instantiation, and consistency. 
The formal semantics as well as the reasoning algorithms are given on the scheme level. 
In contrast to existing KL-ON E based systems, these algorithms will be not only sound 
but also complete. They generate subtasks which have to be solved by a special purpose 
reasoner of the concrete domain. 
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1 Introd uction 

Concept languages based on KL-ONE [Brachman and Schmolze, 1985] are used to represent the 
taxonomical and conceptual knowledge of a particular problem domain on an abstract logical 
level. To describe this kind of knowledge, one starts with atomic concepts and roles, and defines 
new concepts using the operations provided by the language. Concepts can be considered as 
unary predicates which are interpreted as sets of individuals, and roles as binary predicates 
which are interpreted as binary relations between individuals. Examples for atomic concepts 
may be Human and Female, and for roles child. If the logical connective conjunction is present 
as language construct, one may describe the concept Woman as "humans who are female", and 
represent it by the expression Human n Female. Many languages provide quantification over 
role fillers which allows for example to describe the concept Mother by the expression Woman 

n 3child.Human. 

KL-ONE was first developed for the purpose of natural language processing [Brachman et at., 
1979], and some of the existing systems are still mostly used in this context (see e.g., SB-ONE 

[Kobsa, 1989]). However, its success in this area has also led to applications in other fields (see 
e.g., MESON [Edelmann and Owsnicki, 1986] which is used for computer configuration tasks, 
CLASSIC [Borgida et at., 1989] which is e.g. used in the area of CAD/CAM, or K-REP [Mays et 
ai., 1987; Mays et ai., 1988] which is used in a financial marketing domain). 

A drawback which pure KL-ONE languages have is that all the terminological knowledge 
has to be defined on the abstract logical level. In many applications, one would like to be 
able to refer to concrete domains and predicates on these domains when defining concepts. An 
example for such a concrete domain could be the set of nonnegative integers. In the above 
example, one might think that being human and female is not enough to make a woman. 
As an additional property one could require that she should be old enough, e.g., at least 21. 
Thus one would like to introduce a new role age, and define Woman by an expression of the 
form Human n Female n ~21(age) . Here ~21 stands for the unary predicate {n;n ~ 21} of all 
nonnegative integers greater or equal 21. Stating such properties directly with reference to 
a given concrete domain seems to be easier and more natural than encoding them somehow 
into abstract concept expressions. 1 Though this drawback already appears in natural language 
processing, it becomes even more important if one has other applications in mind. For example, 
in a technical application the adequate representation of geometrical concepts requires to relate 
points in a coordinate system. For that purpose one would e.g. like to have access to real 
arithmetic. Similar motivations have already led to extensions of KL-ONE in the above mentioned 
systems MESON, CLASSIC, and K-REP. The MESON system provides "a separate hierarchy for 
describing non-concepts (e.g., integer ranges and strings)" ([Patel-Schneider et al., 1990], p. 8) 
which are given as user-defined or machine-defined predicates. Similar features are provided 
by the "test" construct in CLASSIC. In K-REP "the roles of concepts may in turn be other 
(complex) concepts, as well as numbers, strings and ... arbitrary Lisp objects" ([Mays et at., 
1988], p. 62). Schmiedel's Temporal Terminological Logic [Schmiedel, 1990] can also be seen in 
this light. In this case the concrete domain is given by an extension of Allen's interval calculus 
[Allen, 1983]. 

1 See e.g. [Brachman and Schmolze, 1985], Section 9.2, where so-called Structural Descriptions are used to 
encode the concrete predicate "less than one hour". From a computational point of view, Structural Descriptions 
are as bad as Role Value Maps which cause undecidability of subsumption [Schmidt-SchauB, 1989]. 
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For similar reasons, Logic Programming has been extended to Constraint Logic Programming 
(CLP) (see e.g., [Jaffar et al., 1990; Colmerauer, 1990; Dincbas et ai., 1988]). The constraints 
in CLP languages "state properties directly in the domain of discourse as opposed to having 
these properties encoded into Prolog terms" ([Lassez, 1987], p. 2). 

Before describing our approach for extending a concept language by concrete domains we 
shall state some of the properties which such an extension should satisfy: 

• The extension should still have a formal declarative semantics which is as close as possible 
to the usual semantics employed for concept languages. 

• It should be possible to combine existing inference algorithms for concept languages with 
well-known reasoning algorithms in the concrete domain in order to get the appropriate 
algorithms for the extension. 

• One should provide a scheme for extending concept languages by various concrete domains 
rather than constructing a single ad hoc extension for a specific concrete domain. The 
formal semantics as well as the combination of the algorithms should already be treated 
on this scheme level. 

In order to satisfy these properties it is important to choose an appropriate interface between 
the concept language and the concrete domain. The interface which we shall use in the present 
paper was inspired by a construct which is e.g. present in the CLASSIC system, namely coreference 
constraints (also called agreements) between chains of single-valued roles (also called features).2 
With such a coreference constraint one can for example express the concept of all women whose 
father and husband are of the same age by the expression Woman n (fatherage)l (husband age). 
But one cannot express that the husband is even older than the father. This becomes possible 
if we take the set of nonnegative integers as concrete domain. Then we can simply write 
Woman n ~(husband age, father age) where ~ stands for the binary predicate {(n,m); n ~ m} on 
nonnegative integers. More general, our extension will allow to state that feature chains satisfy 
a (nonnecessarily binary) predicate which is provided by the concrete domain in question. 

The next section will contain a formal definition of what we mean by the notion "concrete 
domain". In this section we shall also define important properties of such domains, and give 
examples of concrete domains. Section 3 describes our scheme for extending a concept language 
by an arbitrary concrete domain. As a starting point for this extension we use the language 
ACC of [Schmidt-SchauB and Smolka, 1991]. The reason for choosing this language was that it is 
large enough to exhibit most of the problems connected with such an extension. Taking a larger 
language (e.g., including number restrictions) would only mean more work without bringing 
new insights. Section 4 describes how an assertional component for such an extended concept 
language can be defined. For both the terminological and the assertional part of our formalism 
we shall introduce the important inference problems. Section 5 describes an algorithm which can 
be used to decide all of these problems. As we shall see in Section 6 this algorithm is not only 
sound but also complete.3 As an example, an instance of the language scheme is used in Section 
7 to express Allen's interval relations [Allen, 1983]. In [Baader, 1991] an extension of ACC in a 

2 Agreements on feature chains are just the restriction of Role Value Maps to single-valued (i.e., functional) 
roles; but unlike Role Value Maps they usually do not cause undecidability of subsumption [Hollunder and Nutt, 
1990]. 

3 All the above mentioned systems employ sound but incomplete algorithms. 
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different direction is presented. It provides role-forming operators including a transitive closure 
operator. It is shown that the extended language still has a decidable satisfiability problem for 
concept terms. Section 8 shows that this problem becomes undecidable if concept terms may 
contain both a transitive closure operator for features and predicates of a concrete domain. 

2 Concrete Domains 

The following definition formalizes the not ion "concrete domain" which has until now only been 
used in an intuitive sense. 

Definition 2.1 A concrete domain V consists of a set dom(V), the domain of V, and a set 
pred(V) , the predicate names of V. Each predicate name P is associated with an arity n, and 
an n-ary predicate pV ~ dom(Vt. 

We shall now give some examples of concrete domains. 

• In the examples of the introduction we have considered the concrete domain N which has 
the set of nonnegative integers as its domain. We have also used the binary predicate 
name ~, and one of the unary predicate names ~n. 

• The concrete domain n is defined as follows. The domain of n is the set of all real numbers, 
and the predicates of n are given by formulae which are built by first order means (i.e., by 
using logical connectives and quantifiers) from equalities and inequalities between integer 
polynomials in several indeterminates.4 For example, x + z2 = Y is an equality between 
the polynomials p(x, z) = x + Z2 and q(y) = Yj and x > y is an inequality between very 
simple polynomials. From these equalities and inequalities one can e.g. build the formulae 
:3z(x + z2 = y) and :3z(x + Z2 = y) V (x > y). The first formula yields a predicate name of 
arity 2 (since it has two free variables), and it is easy to see that the associated predicate 
is {(r,s)j rand S are real numbers and r ~ s}. Consequently, the predicate associated to 
the second formula is {(r,s)j rand S are real numbers} = dom(n) x dom(n). 

• The concrete domain Z is defined as n with the only difference that dom( Z) is the set of 
all integers instead of all real numbers. 

• Our next example leaves t he realm of nu~bers and arithmetic. Assume that VB is an 
arbitrary relational database equipped with an appropriate query language. Then VB can 
be seen as a concrete domain where dom(VB) is the set of atomic values in the database. 
The predicates of VB are the relations which can be defined over VB with the help of the 
query language. 

• One can also consider Allen's interval calculus [Allen, 1983] as concrete domain A.c. Here 
dom(A.c) consists of intervals, and the predicates are built from Allen's basic interval 
relations with the help of logical connectives. 

4For the sake of simplicity we assume here that the formula itself is the predicate name. In applications, the 
user will probably take his own intuitive names for these predicates. 
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As mentioned in the introduction, we want to combine inference algorithms for the given 
concept language with reasoning algorithms for the concrete domain in order to get inference 
algorithms for the extended concept language. This is only possible if the concrete domain 
satisfies some additional properties. 

For technical reasons we shall have to push negation into concept terms (see Lemma 3.3 
below). To make this possible we have to require that the set of predicate names of the concrete 
domain is closed under negation, i.e., if P is an n-ary predicate name in pred(V) then there has 
to exist a predicate name Q in pred(V) such that Q'D = dom(V)n \ p'D. We will usually refer 
to this predicate name by P. In addition, we need a unary predicate name which denotes the 
predicate dom(V). The domain .N from above does not satisfy these properties. We should 
have to add the predicate names <, <no The domains n, Z and AC satisfy the properties. 
Whether a domain of the form VB satisfies these properties depends on the query language. 

The property which will be formulated now clarifies what kind of reasoning mechanisms are 
required in the concrete domain. Let Pt, ... , Pk be k (not necessarily different) predicate names 
in pred(V) of arities nt, ... , nk. We consider the conjunction 

k 

1\ Pi(~(i)). 
i=1 

Here ~(i) stands for an ni-tuple (x~i), ... , x~!) of variables. It is important to note that neither all 
variables in one tuple nor those in different tuples are assumed to be distinct. Such a conjunction 
is said to be satisfiable iff there exists an assignment of elements of dom(V) to the variables 
such that the conjunction becomes true in V. 

For example, let PI(x, y) be the predicate 3z(x + z2 = y) in pred(n), and let P2(x, y) be the 
predicate x > y in pred(n). Obviously, neither the conjunction PI(x,y) /\ P2(x,y) nor P2(x,x) 
is satisfiable. 

Definition 2.2 A concrete domain V is called admissible iff (i) the set of its predicate names 
is closed under negation and contains a name for dom(V), and (ii) the satisfiability problem for 
finite conjunctions of the above mentioned form is decidable. 

The concrete domain n is admissible. This is a consequence of Tarski's decidability result for 
real arithmetic [Tarski, 1951; Collins, 1975]. However, for the linear case (where the polynomials 
in the equalities and inequalities have to be linear) there exist more efficient methods (see e.g. 
[Weispfenning, 1988; Loos and Weispfenning, 1990]). The concrete domain Z is not admissible 
since Hilbert's Tenth Problem-one of the most prominent undecidable problems [Matijacevic, 
1970; Davis, 1973]-is a special case of its satisfiability problem. 

Sometimes the adequate modeling of a problem domain could be facilitated if reference to 
more than one concrete domain would be possible in a terminology. Therefore, we show how 
two disjoint admissible concrete domains VI and V 2 can be combined to a new concrete domain 
VI EB V 2 • It turns out (Lemma 2.4) that this combination is also admissible. 

Definition 2.3 Assume that VI and V 2 are admissible concrete domains with predicate names 
PI,t, . .. , PI,n) (resp. P2,t, . .. , P2,n)J such that dom(VI ) and dom(V2) are disjoint. Then VI EBV2 

can be constructed as follows: 

• The domain dom(VI EB V 2) is the union of dom(VI ) and dom(V2). 
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• The predicates of VI EB V 2 are 

Ql,I, . .. , Ql,n1' Q;,}, . . . , Q---;:1' 
Q2,I, ... , Q2,n2' {f;,1, ... , Q---;:2' 

where the predicates are defined by 

(Xl , ... ,Xn) E QI',i (XI, ... , Xn) E PI',i' and 

(XI, . .. , Xn) E Q;i 

iff 

iff (XI, . .. , Xn) E P~,i. or there zs an z such that Xi E 

dom(V6(~»)5 . 

The reason why C[;,i has to be defined this way is that in Vt EB V 2 the complement has to 
be considered with respect to dom(Vt EB V 2 ) = dom(Vt ) U dom(Vt ) and not just with respect 
to dom(V~). 

Lemma 2.4 IfVt and D2 are admissible concrete domains, then VI EB V 2 is also an admissible 
concrete domain . 

Proof. We use the same naming conventions as in the previous definition. Obviously, VI EB V 2 

is a concrete domain. According to Definition 2.2 for J.L = 1,2 there has to be a name Topv ,.. 
for the entire domain of Vw Let PI,t be a name for the empty predicate 0 = TOPVl. Then, 

using the definition of the predicates in . Vt EB V 2 , we derive that Q;:t is a name for the domain 

of Vt EB V 2. It is also easy to verify Q ~,i = C[;,i and C[;,i = Q ~ ,i. It remains to be shown that 
there is a satisfiability test for VI EB V 2. 

1. Assume that a conjunction 
k 

¢ = 1\ Pi(~(i») 
i=I 

is given, where the Pj are predicates of Vt EB V 2 • 

2. Replace in ¢ all occurrence Q~,i(Xt, ... , xn) by P~,i and all occurrences Q;i(XI, ... , xn) 
by P~i V Topv ( )(Xl) V ... V Topv ( )(xn ). , 6,.. 6 ,.. 

3. Denote the disjunctive normal form of the resulting formula by ¢/. 

4. Let M be a monom in ¢/. 

(a) If a variable X occurs as an argument of predicates from both domains then M is not 
satisfiable, because dom(Vd and dom(V2 ) are disjoint. 

(b) Otherwise, M can be split into conjunctions Mt and M2 such that, for J.L = 1, 2, M~ is 
a conjunction in VI' and no variable occurs in both conjunctions. Finally, we observe 
that M is satisfiable iff the satisfiability tests of the respective admissible concrete 
domains succeed for Mt and M2 respectively. 

D 

This construction shows that it will not be a restriction that in the next section we shall 
integrate only one concrete domain into the concept language. 

SHere and in the following we assume 6(1) = 2 and 6(2) = 1. 
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3 The Concept Language 

We shall now present our scheme for integrating an arbitrary concrete domain V into the concept 
language A.cC. The result of this integration will be called A.cC(V). 

3.1 Syntax and Semantics 

In addition to the usual language constructs of A.cC, the language A.cC(V) allows features (i.e., 
functional roles) in value restrictions, and predicate names of V applied to feature chains. For 
a set F of feature names, a feature chain is just a nonempty word over F. 

Definition 3.1 (concept terms and terminologies of A.cC(V)) 
Let (, R, and F be disjoint sets of concept, role, and feature names. The set of concept terms 
of A.cC(V) is inductively defined. As a starting point of the induction, any element of C is 
a concept term (atomic terms). Now let C and D be concept terms, let R be a role name or 
feature name, P E pred(V) be an n-ary predicate name, and UlJ ... , Un be feature chains. Then 
the following expressions are also concept terms: 

1. CUD (disjunction), C n D (conjunction), and -,C (negation), 

2. 3R.C (exists-in restriction) and VR.C (value restriction), 

3. P( Ul, ... , un) (predicate restriction). 

Let A be a concept name and let D be a concept term. Then A = D is a terminological axiom. 
A terminology (T-box) is a finite set T of terminological axioms with the additional restrictions 
that (i) no concept name appears more than once as a left hand side of a definition, and (ii) T 
contains no cyclic definitions.6 

Please note that the exists-in and the value restrictions are not only defined for roles but 
also for features. For a feature chain U = !th ... fs we shall sometimes use the notations :3u.C 
and Vu.C as abbreviations for :3fl.:3h .... 3fs.C and Vfl.Vf2 ... Vfs.C. 

A T-box contains two different kinds of concept names. Defined concepts occur on the left 
hand side of a terminological axiom. The other concepts are called primitive concepts. The 
following is an example of a T-box in A.cC(N). Let Human, Female, Mother, Woman be concept 
names, let child be a role name, and let age be a feature name. The T-box- which proposes yet 
another definition of the concept woman-consists of the following axioms: 

Mother 

Woman 

Human n Female n 3child.Human 

Human n Female n (Mother U ~21(age)) 

Here Mother and Woman are defined concepts, and Human and Female are primitive concepts. 
The reason for choosing child as role and age as feature was that an individual can have more 
than one child, but (s )he has only one age. The next definition gives a model-theoretic semantics 
for the languages introduced in Definition 3.1. 

6See [Nebel, 1989; Baader, 1990] for a treatment of cyclic definitions in concept languages. 
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Definition 3.2 (interpretations and models) 
An interpretation I for ACC(V) consists of a set dom(I) , the abstract domain of the inter­
pretation, and an interpretation function. The abstract domain and the given concrete domain 
have to be disjoint, i.e., dom(V) n dom(I) = 0. The interpretation function associates with 
each concept name A a subset AI of dom(I), with each role name R a binary relation RI on 
dom(I) , i.e., a subset of dom(I) x dom(I), and with each feature name f a partial function fI 
from dom(I) into dom(I) U dom(V). 
For such a partial function fI the expression fI (x) = y is sometimes written as (x, y) E fI. 
If U = /I ... fn is a feature chain, then uI denotes the composition ff 0 ... 0 f~ of the partial 
functions ff, ... , f~·7 
The interpretation function-which gives an interpretation for atomic terms-can be extended 
to arbitrary concept terms as follows: Let G and D be concept terms, let R be a role name 
or feature name, P E pred(V) be an n-ary predicate name, and UlJ ... , Un be feature chains. 
Assume that GI and DI are already defined. Then 

1. (G U D)I = GI U DI , (G n D)I = GI n DI , and (.G)I = dom(I) \ GI , 

2. (VR.G? = {x E dom(I); for all y such that (x,y) E RI we have y E GI } and 
(3R.G? = {x E dom(I); there exists y such that (x,y) E RI and y E GI }, 

3. P(Ul, ... ,Un)I = {x E dom(I); there exist rl, ... ,rn E dom(V) such that 
uf(x ) = rl, ... ,u~(x) = rn and (rl, ... ,rn ) E PV}. 

An interpretation I is a model of the T-box T iff it satisfies AI = DI for all terminological 
axioms A = D in T. 

The philosophy underlying this definition is that we assume that the concrete domain V is 
sufficiently structured by the predicates in pred(V). That means that we do not want to define 
new classes of elements of dom(V) or new relations between elements of dom(V) with the help 
of our concept language. Consequently, concept terms are always interpreted as subsets of the 
abstract domain, i.e., an individual of the concrete domain cannot be element of a concept . 
For this reason, the complement is defined with respect to dom(I) and not with respect to 
dom(I) U dom(V); roles are only defined on dom(I) x dom(I); and the features may have 
values in dom(V) U dom(I), but an element of dom(V) cannot have a feature value. 

3.2 Terminological Reasoning 

An important service terminological representation systems provide is computing the subsump­
tion hierarchy, i.e., computing the subconcept-superconcept relationships between the concepts 
of a T-box. This inferential service is usually called classification. The model-theoretic seman­
tics introduced above allows the following formal definition of subsumption. Let T be aT-box 
and let A, B be concept names. Then B subsumes A with respect to T (symbolically A ~T B) 
iff AI ~ BI holds for all models I of T. 

In our example, it is very easy to see that Woman subsumes Mother. However, in general 
it is not at all trivial to determine such relationships. Until recently, sound and complete 
subsumption algorithms were only known for rather trivial concept languages (see [Levesque 
and Brachman, 1987]). Consequently, all the existing KL-ONE systems use only sound, but 

7The composition should be read from left to right, i.e., If 0 ... 0 f~ means apply first If, then H, and so on . 
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incomplete algorithms. If such an algorithm gives a positive answer, a subsumption relationship 
really exists; but if its answer is negative, then we do not know anything. A subsumption 
relationship mayor may not exist. In [Schmidt-SchauB and Smolka, 1991] a sound and complete 
subsumption algorithm for ACC is described. The underlying method of constraint propagation 
was used in [Hollunder et al., 1990] to derive algorithins for various other concept languages. 
This method can-with appropriate modifications-also be applied to the languages of the 
form ACC(V). As a subtask, such an algorithm for ACC(V) will have to decide satisfiability 
of conjunctions of the form /\7=1 Pi(±(i)) in the concrete domain. Thus we shall have to require 
that V is admissible. 

In the literature (e.g., [Levesque and Brachman, 1987; Schmidt-SchauB and Smolka, 1991; 
Hollunder et al., 1990]), subsumption is often defined without reference to a T-box as a relation­
ship between concept terms. For two concept terms e, D we say that D subsumes e (written 
e ~ D) iff eT ~ DT holds for all interpretations T. Two concept terms e, D are said to be 
equivalent iff e subsumes D and vice versa. Equivalent terms denote the same set in every 
interpretation. 

It is sufficient to find an algorithm which decides subsumption between concept terms since 
subsumption w.r.t. a T-box can be reduced to this problem; one simply has to unfold the T­
box. Unfolding of a T-box means substituting defined concepts which occur on the right hand 
side of a definition by their defining terms. This process has to be iterated until there remain 
only primitive concepts on the right hand sides of the definitions. Obviously, this procedure 
terminates since the terminology is acyclic; and it does not change the meaning of the T-box. 
In the example, the unfolded definition for Woman is Woman = Human n Female n ((Human n 
Female n 3child.Human) U ~21(age)). 

Let T be a T-box, and assume that A= e and B = D are terminological axioms in the 
unfolded T-box corresponding to T. Then we have A ~T B iff e ~ D.s 

The subsumption problem for concept terms can now further be reduced to another inter­
esting problem: the satisfiability problem for concept terms. Let e be a concept term. Then 
e is said to be satisfiable9 iff there exists an interpretation T such that eT =I 0. Thus, an 
unsatisfiable concept term denotes the empty set in every interpretation, which means that it 
is worthless. 

Obviously, we have e ~ D iff en oD is unsatisfiable. This shows that an algorithm for 
checking satisfiability of concept terms also yields a subsumption algorithm. The algorithms 
described in [Schmidt-SchauB and Smolka, 1991] and [Hollunder et al., 1990] are satisfiability 
algorithms. However, in the present paper we shall not directly give such an algorithm for 
ACC(V). Instead we shall reduce the satisfiability problem for concept terms to a problem 
which will be introduced in the next section: the consistency problem for A-boxes. In Section 
5 we shall describe a sound and complete algorithm which decides this problem. 

For this algorithm it will be convenient to have all the concept terms in negation normal 
form. A concept term is in negation normal form iff negation signs occur only immediately 
in front of concept names. If the set of predicate names of the concrete domain V is closed 
under negation and contains a name for dom(V) , then any concept term of ACC(V) can be 
transformed into an equivalent term in negation normal form by using the transformations 

BOne should however note that the size of the concept terms C, D may be exponential in the size of the 
original T-box (see [Nebel, 1990]). 

9Sometimes also called "coherent" or "consistent" in the literature. 
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described in the following lemma. 

Lemma 3.3 Let V be a concrete domain such that pred(V) is closed under negation and con­
tains a name for dom(V). Assume that this name is Topv, and let Top be an abbreviation for 
the concept term A U -,A where A is an arbitrary concept name. Let C, D be concept terms 
of A.cC(V), R be a role name, f be a feature name, P be an n-ary predicate in pred(V), and 
UlJ ... , Un be feature chains. Then the following transformations preserve equivalence of concept 

terms: 

-,(C n D) ==} ((-,C) U (-;D)), 1. -,(C U D) ==} ((-,C) n (-,D)), 
-,(V R.C) ==} (:JR. -,C), and -,(:JR.C) ==} (V R. -,C). 

2. -'(VJ.C) ==} ((:JJ.-'C) U Topv(J)) and -,(:JJ.C) ==} ((VJ.-'C) U Topv(J)). 

3. -,P(ut, ... , un) ==} (P(Ul, ... , Un) U (VUl' Top) U ... U (VUn. Top)). 

The first set of transformations is straightforward. The reason why the other transformations 
are more complex is that features may have values in dom(T) or dom(V). For example, an 
individual a of dom(T) is in (V f.C)I iff fI (a) is undefined or fI (a) = b for an individual b in 
CI . Since concepts are always interpreted as subsets of dom(T) this means in particular that 
b t/. dom(V). If we negate these conditions we get that fI(a) has to be defined and that its 
value must lie in (-,C)I or in dom(V) . 

4 The Assertional Language 

The terminological formalism introduced in the previous section allows to describe knowledge 
about classes of objects (the concepts) and relationships between these classes (e.g., subsumption 
relationships which are consequences of the descriptions). Many applications, however, requite 
that one can also say something about objects in the world. For this reason, most KL-ONE 

systems provide additional assertional capabilities. This assertional part of the system uses the 
concept terms for making statements about parts of a given world. The expressiveness of this 
component varies between the rather weak formalism employed in the original KL-ONE system 
[Brachman and Schmolze, 1985] to full first order predicate logic as used in KRYPTON [Brachman 
et al., 1985]. We shall now show how to integrate a concrete domain into an assertionallanguage 
which is similar to the ones used in KANDOR [Patel-Schneider, 1984], MESON [Edelmann and 
Owsnicki, 1986], CLASSIC [Borgida et al. , 1989], or BACK [Nebel and von Luck, 1988]. 

4.1 Syntax and Semantics 

Let V be an arbitrary concrete domain. We have seen in Section 3 that we have to deal with 
two different kinds of objects: the individuals of the concrete domain and the individuals in the 
abstract domain (see Definition 3.2). The names for objects of the concrete domain will come 
from a set OC of object names, and the names for objects of the abstract domain from a set 
~A. 

Definition 4.1 (assertional axioms and A-boxes for A.cC(V)) 
Let OC and OA be two disjoint sets of object names. The set of all assertional axioms is defined 
as follows. Let C be a concept term of A.cC(V), R be a role name, f be a feature name, P be 
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an n-ary predicate name of V, and let a, b be elements of OA and y, Y1, ... , Yn be elements of 
oc. Then the following are assertional axioms: 

a: G, (a,b): R, (a,b): f, (a,y): f, (YI, .. ·,Yn): P. 

An A-box is a finite set of such assertional axioms. 

The assertionallanguage can for example be used to express the facts that the woman Lolita, 
the daughter of Humbert, is married to Vladimir, a man older than Humbert, by the asser­
tional axioms LOLITA: Woman, (LOLITA, HUMBERT) : father, (LOLITA, VLADIMIR) : husband, 
(HUMBERT,AI) : age, (VLADIMIR,A2) : age, (A2,AI) : >. Here LOLITA, HUMBERT, and 
VLADIMIR are elements of OA, and Al and A2 are elements of Oc. 

It may seem to be a drawback of the above defined assertional language that it disallows the 

use of specific elements of dom(V) in the assertions. For example, we are not allowed to write 
the axiom (LOLITA, 12) : age. However, if we have a predicate name for the singleton set {12}, 
say =12, then we can express the same fact by the two axioms (LOLITA, A3) : age and =12(A3). 
In A-boxes of A£C(n) one can use algebraic numbers such as V2 because the corresponding 
singleton set {V2} corresponds to a predicate name in n, namely (x 2 = 2) 1\ x ~ o. 

Definition 4.2 (interpretations and models) 
An interpretation for the assertionallanguage is simply an interpretation for A£C(V) which, in 
addition, assigns an object aI E dom(T) to each object name a E OA, and an object xI E dom(V) 
to each object name x E Oc. Such an interpretation satisfies an assertional axiom 

a: G iffaI E GI , (a,b): R iff· (aI,~) E RI, (a,b): f iff fI(aI ) = bI , 
(a,y): f iff fI(a I ) = yI, (YI, ... ,Yn): P iff(yf, ... ,y;) E p1J. 

An interpretation is a model of an A-box A iff it satisfies all the assertional axioms of A, and 
it is a model of an A-box A together with aT-box T iff it is a model of T and a model of A. 

The definition shows that we do not require unique names for the objects.lO For example, 
assume that we have the abstract names VLADIMIR and LOLlTA'S_FATHER in our A-box. As 
our knowledge about the world increases, we may learn that Vladimir is in fact Lolita's father. 
Similarly, if we introduce concrete names AI, A2 for the ages of two persons PERSONI, PERSON2 
into the A-box, we do not want to assume automatically that these two numbers are different. 

Considering an A-box without a corresponding T-box means that all the concepts names 
occurring in concept terms are assumed to be primitive. For example, if we consider the above 
A-box concerning Lolita and her family alone, then the concept name Woman in the axiom 
LOLITA: Woman is treated as a primitive concept. However, if we consider it together with 
the T-box defined in the previous section, then Woman stands for the concept term Human n 
Female n ((Human n Female n :3child.Human) U ~21(age)). 

lOMany KL-ONE based systems have a unique name assumption for their A-box individuals; but for example 
KL-TWO [Vilain, 1985] does not assume unique names. For our algorithm, it would be easy to handle a unique 
name assumption for the abstract objects. If we want to treat a unique name assumption for the concrete objects 
we have to require that the concrete domain contains a predicate name for equality. 
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4.2 Assertional Reasoning 

In the following, A will always denote an A-box, TaT-box, C, D concept terms, a, b E OA 
names of abstract objects, and x, y E OC names of concrete objects. 

An obvious requirement on the represented knowledge is that it should not be contradic­
tory. Otherwise, it would be useless to deduce other facts from this knowledge since logically, 
everything follows from an inconsistent set of assumptions. However, for a given A-box (or 
an A-box together with a T-box) it is not necessary to have a model. For example, an A-box 
containing the axioms a : C and a : .C, or the axioms (a, b) : j, (a, y) : f for a feature name f 
is contradictory, and thus cannot have a model. 

We say that an A-box (an A-box together with a T-box) is consistent iff it has a model. 
Otherwise, it is called inconsistent. 

For the above mentioned reason it is important to have an algorithm which decides consis­
tency of a given A-box. In addition, it will turn out that such an algorithm can also be used 
to solve all the other important inference problems, namely subsumption between concepts, 
satisfiability of concepts, consistency of an A-box together with a T-box, and the so-called 
instantiation problem. 

This last problem is defined as follows. The abstract object a is an instance of C with respect 
to A (with respect to A together with T) iff aT E CT for all models of A (for all models of A 
together with T). 

As an example, we consider the T-box defining the concepts Mother and Woman of Section 
3, and an A-box containing the axioms (LOLITA, A3) : age, =12(A3) and LOLITA: Woman. Then 
LOLITA is an instance of Mother with respect to the A-box together with the T -box. 

Consistency of- as well as instantiation with respect to-an A-box together with aT-box 
can easily be reduced to the corresponding problems for A-boxes alone. In fact, one must 
simply unfold the corresp'onding T-box, and then replace all defined concept names occurring 
in concept terms of the A-box by their definitions in the unfolded T-box. 

In addition, the instantiation problem can be reduced to the consistency problem as follows: 
a is an instance of C with respect to A iff the A-box Au {a : .C} is inconsistent. 

Finally, the satisfiability problem for concept terms (and thus also the subsumption problem) 
can also be reduced to the consistency problem for A-boxes. In fact, C is satisfiable iff the A-box 
{a : C} is consistent. 

5 The Basic Reasoning Algorithm 

In this section we shall describe a sound and complete algorithm which decides the consistency 
of an A-box for A.cC(1)), provided that the concrete domain 1) is admissible. Such an algorithm 
for A.cC without concrete domain and features can be found in [Hollunder, 1990]. Since all the 
inference problems introduced above can be reduced to the consistency problem (see Section 
3.2 and 4.2)' we thus have 

Theorem 5.1 Let 1) be an admissible concrete domain. Then there exists a sound and complete 
algorithm which is able to decide the following problems for A.cC(1)): the subsumption problem 
w. r . t. a T-box, the subsumption problem and the satisfiability problem for concept terms, the in­
stantiation problem w.r.t. an A-box (w.r. t . an A -box together with a T-box), and the consistency 
problem for an A-box (an A-box together with aT-box). 
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Let An be an arbitrary A-box for ACC(1'). Without loss of generality we assume that all the 
concept terms occurring in this A-box are in negation normal form. In principle, the algorithm 
will start with the given A-box, and transform it with the help of certain rules until one of 
the following two situations occurs: (i) the obtained A-box is "obviously contradictory" , or (ii) 
the obtained A-box is "complete", i.e., one can apply no more rules. In the second case, the 
complete A-box describes a model of the original A-box. 

Because of the presence of disjunction in our language, a given A-box must sometimes be 
transformed into two different new A-boxes. For that reason, we shall work with sets M of 
A-boxes rather than with a single A-box. If we want to test An for consistency, we start with 
the singleton set Mo := {Ao}. 

Before we can formulate the transformation rules we need a technical definition. Let A be 
an A-box, f be a feature name, a, b, c be names of abstract objects, and x, y be names of 
concrete objects. If A contains the axioms (a,b): f and (a,e): f (resp. (a,x): f and (a,y): f) 
then we call such a pair of axioms a fork in A. Since f is interpreted as a partial function, such 
a fork means that band c (resp. x and y) have to be interpreted as the same object. A fork 
(a, b) : f, (a, c) : f (resp. (a, x) : f, (a, y) : f) can be deleted by replacing all occurrences of c in 
A by b (resp. all occurrences of y in A by x). 

Definition 5.2 (transformation rules) 
Let M be a finite set of A-boxes, and let A be an element of M. The following rules will replace 

A by an A-box A' or by two A-boxes A' and A". In the formulation of the rules, the letters a, b 
(possibly with indices) stand for names of abstract objects, and x, y (possibly with indices) stand 
for names of concrete objects. The letters C, D denote concept terms, the letter R denotes a 
feature or a role name, the letter P denot~s an n-ary predicate name of 1', and the letters UlJ 
. . . , Un denote feature chains. 

1. The conjunction rule. Assume that a : (C n D) is in A and a : C or a : D is not in A. 
The A-box A' is obtained from A by adding the two axioms a : C, a : D to A. 

2. The disjunction rule. Assume that a : (C U D) is in A and neither a : C nor b : D is in 
A. The A-box A' is obtained from A by adding a : C to A, and the A-box A" is obtained 
from A by adding the axiom a : D to A. 

3. The exists-in restriction rule. Assume that a : ?JR.C is in A and that there is no object 
name c in OA such that the axioms (a, c) : Rand c : C are in A. Let b E OA be a 
"new" abstract object name (i. e., a name not occurring in A). First, we add the two 

axioms (a, b) : R, b: C to A. IJ.R is a featur~ name, we may have created a fork by this 
replacement. If this is the case, we delete this fork as described above. The resulting A-box 
is the A-box A'. 

4. The value restriction rule. Assume that a : V R.C and (a, b) : R are in A and that b : C is 
not in A. The A-box A' is obtained from A by adding the axiom b: C. 

5. The predicate restriction rule. Assume that a : P( Ul, ... , un) is in A and that the following 
does not hold: 

For the feature chains Ui = fil .. .jin" i = 1, ... , n, there are object names bil , ... , bin,-l E 
OA and Xi E OC such that the A-box A contains axioms (a,bil ): filJ (bit,bi2 ): 

fi2, ... , (bin,_t,xi) : fin" and (Xl, ... ,xn) : P. 
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For each of the feature chains Ui = fil ... finj we choose new object names bil , ... , binj - l E 
OA and Xi E 0(, and augment the A-box by the axioms (a, bil) : iiI, (bib bi2 ) : fi2, ... , 
(bin;-l, Xi) : fin;. If we have created new forks, we delete them as described above. Finally 
we add (Xl, ... , Xn) : P to obtain the A -box A'. 

We will see in Lemma 6.3 that there cannot be an infinite chain of sets MI, M 2 , M 3 , ••• 

where each Mi+l is obtained from Mi by application of one of the above defined rules. Thus 
if we start with a set MI = {Ad and apply rules as long as possible we finally end up with a 
complete set M r , i.e., a set to which no rules are applicable. We shall now formalize what it 
means that an A-box in this set is "obviously contradictory". 

Definition 5.3 (clash rules) 
We use the same name conventions as in Definition 5.2. We say that an A-box A contains a 

clash iff one of the following situations occurs in A: 

1. A contains axioms (a , x) : f and ( a, b) : f for a feature name f. This is an obvious 
contradiction because we should have to identify a concrete object with an abstract object. 

2. A contains axioms (a, x) : f and a : V I.e. This is an obvious contradiction because a 
concrete object cannot be an element of a concept. 

3. A contains axioms a : A and a : --,A for a concept name A. This is an obvious contradiction 
because an object cannot be both in a set and in its complement. 

4. A contains axioms (xP), ... ,x~I?) : PI, ... ,(x~k), ... ,x~:)) : Pk, and the corresponding 
conjunction 1\7=1 Pi(;£(i)) is not satisfiable in 1). We are able to detect this contradiction 

because we have assumed that 1) is admissible. 

Let Ao be the A-box which is to be tested for consistency. In a preprocessing step we 
transform Ao into an A-box Al by eliminating all forks. By applying the rules of Definition 5.2 
to MI := {Ad as long as possible, we can compute a complete set of A-boxes Mr. Now Ao is 
consistent iff there exists an A-box in Mr which does not contain a clash (see Section 6 for a 
proof). This characterization yields a decision criterion for consistency of A-boxes because the 
set Mr is obtained in finitely many steps, and for a given A-box in Mr one can decide whether 
it contains a clash. 

Thus the decision procedure can be defined in a pseudo programming language as follows: 

Algorithm 5.4 (consistency test) 
The following procedure takes an A -box Ao as an argument and checks whether it is consistent 
or not. 

define procedure check-consistency(Ao} 
Al := eliminate-forks(Ao} 
r:= 1 
M 1 := {Ad 
whi le 'a transformation rule is applicable to Mr' do 

r := r + 1 
Mr := apply-a-transformation-rule(M r _ l} 
od 

if 'there is an A E Mr that does not contain a clash' 
then return consistent 
else return inconsistent 
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6 Soundness and Completeness 

In this section we shall prove termination, soundness, and completeness of the consistency test 
(Algorithm 5.4). Taking these facts together, we get that the algorithm is a decision procedure 
for the consistency of an A-box Ao. 

Proposition 6.1 Assume that the algorithm as described in Section 5 is applied to .40. Then 

1. the algorithm always computes a complete set of A-boxes Mr in finite time, and 

2. the initial A-box is inconsistent iff all A-boxes A E Mr contain a clash. 

Proof. The proposition is a consequence of the four lemmata (6.2, 6.3, 6.6, 6.7) stated and 
proved below. 0 

Assume that an A-box 8 ' has been obtained from an A-box 8 by a single fork-elimination 
step. The first part of the following lemma implies that a model I of 8 is also a model of 8 '. 
Conversely, as a consequence of the second part, a model of 8 ' can always be extended to a 
model of 8. Hence, fork elimination preserves (in)consistency. 

Lemma 6.2 (fork elimination) 
Assume that (a, b) : f together with (a, c) : f is a fork. 

1. Then for any interpretation I of an A-box 8 = Au ((a,b): f,(a,c): f} we have bI = cI
. 

2. Conversely, if there is a model I of an A-box 8 ' = A' U {(a, b) : f} and c is a new object 
name then I extended by cI := bI is a model of 8 = A U {(a, b) : f, (a, c) : fl. Here A 
denotes an A-box such that A' can be obtained from A by replacing all occurrences of c by 
b. 0 

In addition, the elimination of finitely many forks in a finite A-box takes finite time. Thus 
we may without loss of generality assume that we start with a fork free A-box AI. 

By the while loop of Algorithm 5.4 the semantic problem of consistency for the A-box Al is 
reduced to a simple syntactic problem for a finite set Mr of A-boxes. This syntactic problem 
is to check whether there is an A-Box in Mr that does not contain a clash. In order to show 
the correctness of the ~eduction, we first have to demonstrate that for all A-boxes Al the loop 
terminates with a complete set Mr of A-boxes in finite time. 

Assume that a computation using the algorithm is given and that in a single execution of the 
loop body the A-box A' has (resp. the A-boxes A' and A" have) been derived by an application 
of one of the transformation rules to an A-box A. T.hen A' is called a descendant (resp. A' and 
A" are called descendants) of A. 

Lemma 6.3 (termination) 
The algorithm always computes a complete set of A-boxes Mr in finite time. 

Proof. Assume that a possibly infinite computation is given. In order to show termination 
it suffices to proof that there is no infinite sequence of A-boxes AI, A 2 , ••• where Ai+! is a 
descendant of Ai. 

Assume to the contrary that there is such an infinite sequence. We shall map each Ai to an 
element W(Ai) of a set Q which is equipped with a well-founded strict partial ordering ~. Since 
the ordering is well-founded, i.e., has no infinitely decreasing chains, we get a contradiction as 
soon as the following lemma has been established. 
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Lemma 6.4 If A' is a descendant of A, we have w(A) ~ w(A'). 

The elements of the set Q will have a rather complex structure. They are finite multisets of 
4-tuples. Each component of the tuples is either a finite multiset of nonnegative integers (for 
the second, third, and fourth component) or a nonnegative integer (for the first component). 
Multisets are like sets, but allow multiple occurrences of identical elements. For example, 
{2, 2, 2} is a multiset which is distinct from the multiset {2}. A given ordering on a set T can 
be extended to form an ordering on the finite multi sets over T. In this ordering, a finite multi set 
M is larger than a finite multiset M' iff M' can be obtained from M by replacing one or more 
elements in M by any finite number of elements taken from T, each of which is smaller than one 
of the replaced elements. For example, {2, 2, 2} is larger than {2} and {2, 2,1,1, OJ. [Dershowitz 
and Manna, 1979] show that the induced ordering on finite multisets over T is well-founded if 
the original ordering on T is so. 

The nonnegative integer components of our 4-tuples are compared with respect to the usual 
ordering on integers, and the finite multiset components by the multiset ordering induced by 
this ordering. The whole tuples are ordered lexicographically from left to right, i.e., (CI, ... , C4) 
is larger than (c~, ... ,c~) iff there exists i,l ~ i ~ 4, such that CI = c~, ... ,Ci-1 = Ci-I' and Ci 

is larger than ci. Since the orderings on the components are well-founded, the lexicographical 
ordering on the tuples is also well-founded. Finite multisets of these tuples are now compared 
with respect to the multiset ordering induced by this lexicographical ordering. This is the 
well-founded ordering ~ on Q mentioned above. 

Before we can define the mapping W from A-boxes to elements of Q, we need three more 
definitions. For two nonnegative integers n, m we denote by n ...:... m the asymmetrical difference 
between nand m, i.e., n ...:... m := n - m if n 2: m, and n ...:... m := 0 if n < m. For a concept C 
the size ICI is inductively defined as 

1. IP( UI, ... , un)1 = 1 for all n-ary predicates of the concrete domain and feature chains 

2. IQI = I-,QI = 1 for primitive concepts Q, 

3. IV R.CI = 13R.CI = 1 + ICI for all value and exists-in restrictions, and 

4. IC U DI = IC n DI = ICI + ID I for disjunctions and conjunctions. 

One difficulty in the termination proof is caused by possible cycles (e. g. (a, b) : R, (b, c) : S, 
(c, a) : R) in the initial A-box. But fortunately, objects introduced during the computation 
cannot be involved in a cycle. Therefore we distinguish old objects that occur already in Al from 
new objects that are introduced during the computation by an exists-in or predicate restriction 
rule. The definition of the mapping W will assure that the contribution of an old object is always 
"greater" than the contribution of a new object. To achieve this we shall need the constant 
M defined as the number of different concept terms C that occur in Al in an axiom or as a 
subterm. Please observe that this is also the number of different concepts that may occur in 
the computation, and that M is greater than max{ICI; C occurs in Ad ll . 

We are now ready to define the mapping W. Let A be an A-box. Then w(A) is the multiset 
which contains for each object a occurring in A a 4-tuple 'l/J.A(a) defined as follows: 

11 Here and in the following we assume that max 0 is set to o. 

15 



1. Let N be the number of different feature names occurring in Al and for a set S let #S 
denote the number of elements of S. The first component of 'ljJ,A(a) is the nonnegative 
integer 

2M+1 
+ N 

#{a:C; a:CisinA} 
#{(a, b) : I; (a, b) : I is in A and I is a feature}, 

if a is old. Otherwise, it is max{ICI; a: C is in A}. 

2. The second component of 'ljJ,A(a) is the empty muItiset, if a is old. Otherwise, it is the 
multiset consisting of all positive integers IC n DI (resp. IC U D!), where a : C n D (resp. 
a : CUD) occurs in A and the conjunction (resp. disjunction) rule is applicable to this 
assertional axiom. 

3. The third component of 'ljJ,A(a) is the multiset consisting of all positive integers I:3R.CI 
(resp. IP(ut, ... , un)!), where a : :3R.C (resp. a : P(ut, ... , un)) occurs in A and the exists­
in (resp. predicate) restriction rule is applicable to this assertional axiom. 

4. The fourth component of 'ljJ,A(a) is the muItiset consisting of all positive integers IVR.CI, 
where a : V R.C and ( a, b) : R occur in A and the value restriction rule is applicable to this 
pair of assertional axioms. 

To prove Lemma 6.4 we have to consider the respective 4-tuples corresponding to names of 
objects that occur in A or A'. To reduce the number of cases we introduce the notion of affected 
objects and show that 'ljJ,A(a) is always greater than or equal to 'ljJ,AI(a) for objects that are not 
affected. Hence, in order to prove the lemma, only affected objects have to be considered. 

Without loss of generality, we assume thatin the fork elimination steps, due to the applica­
tion of transformation rules, the newly introduced objects are replaced by the elder ones. We 
define an object a to be affected by the transformation from A to A', if 

• the transformation rule has been applied to an axiom a : C in this derivation step, or 

• an axiom (a, b) : R, (b, a) : R, or a : C is in A' but not in A. 

Please observe that the definition of the third and the fourth component of the 4-tuple of 
any object as well as the definition of the second component for new objects, have the following 
structure in common: First a set of, (pairs of) axioms is determined. Then this set is made 
smaller due to the applicability of ce:r;tain transformation rules. Finally, the remaining set is 
mapped to a muItiset of integers using the I . I-function. Assume that A is transformed to 
A' by a transformation rule. By th~ definition of transformation rules, non-applicability of a 
rule to a certain axiom (resp. pair of axioms ) comes from the presence of other axioms. Since 
transformation rules do not remove axioms, we observe that to every axiom (resp. pair of axioms ) 
in A to which a transformation rule is applicable in the context of A', the same rule has already 
been applicable in the context of A. Thus there is only one possibility how a derivation step 
can increase one of the mentioned components for an object name a. A new axiom a : C or 
( a, b) : R has been asserted. 

Similarly, the first component of a 4-tuple of a new object a can only be changed, if a new 
axiom a : C is asserted. But all this cannot happen for objects that have not been affected. 
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The fact that transformation rules do not remove axioms also implies that the first component 
of an old object can only decrease or it remains unchanged in a derivation step. 

Hence, we can conclude that in order to show that w(A') can be obtained from w(A) by 
replacing 4-tuples by smaller ones, we do not have to worry about 4-tuples of objects which are 
not affected. The following lemma will be useful for the remaining case of affected objects. 

Lemma 6.5 Assume that a is a new object in A. 

1. If there is an outgoing edge12 from a to b {i. e. an axiom (a, b) : R) then b is new. 

2. There is exactly one object b and one feature or role R such that (b, a) : R is in A. In 
other words, new objects have exactly one incoming edge. 

3. If there is an axiom (b,a): R, the first component oftPA(a) is smaller than the first com­

ponent oftPA(b), or both tuples are equal to (0,O,O,O). 

Proof. No transformation rule generates a new incoming edge for an object, beside the case 
when the object is introduced. Hence, the first part of the lemma is obvious. Taking the same 
argument and recalling that new objects are introduced along with exactly one incoming edge, 
we immediately get part two. Now, consider the last claim of the lemma. If there is no axiom 
a : C then tPA(a) is equal to the minimal element (0,0,0,0) and we are done. Otherwise, take 
an axiom a : C in A such that ICI is maximal. This axiom must have been introduced applying 
the value restriction (resp. the exists-in restriction rule) to an axiom b: VR.C together with 
(b, a) : R (resp. b: :lR.C). In both cases we are done because IVR.CI = I:lR.CI > ICI. 0 

Please recall that we have to show that w(A') can be obtained from w(A) by replacing some 
(but at least one) 4-tuple by finitely many smaller ones. We have already seen that the 4-tuples 
related to not affected objects do not cause any trouble, because they do not increase. Now 
consider the affected objects. 

(1) Assume that the conjunction rule has been applied to a : C n D. The object a is the only 
object that is affected in this derivation step. If a is old, the first component decreases because 
at least one of the axioms a : C and a : D is new in A'. If a is new, the first component of the 
tuple does not change because of IC n DI > ICI and IC n DI > IDI. In the second component, 
IC n DI is removed and possibly replaced by ICI or/and IDI. Hence, it decreases . Starting with 
w(A) we obtain w(A') by replacing tPA(a) by the strictly smaller tuple tPA,(a), and by possibly 
several other replacements from greater by smaller 4-tuples related to objects not affected. 

(2) The disjunction rule can be handled in a similar way. 
(3) Assume that the value restriction rule has been applied to a: VR.C, (a, b) : R. Then a 

and b are the affected objects. First assume that a and b are equal. Because of part three of 
Lemma 6.5, this is only possible if a is old. But then the first component already decreases 
because a new axiom a : C has been asserted. Now assume that a and b are different. We first 
consider a . 

• If a is old, its associated 4-tuple decreases. In fact, the first component cannot increase, as 
mentioned in the argumentation attached to the affected objects. The second component 
is always O. Because a and b are distinct, no new axiom a : D has been asserted, and the 
third component cannot increase. Finally, the fourth component must decrease, because 
the value restriction rule is no longer applicable to a : VR.C, (a, b) : R. 

12Roles and feature axioms in A can be visualized by a directed graph where nodes are objects and edges are 
labeled by features or roles . 
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• If a is new, its associated 4-tuple also decreases. No new axiom a : D has been asserted, 
and hence the first and second component remain unchanged. For the third and fourth 
component the same arguments as in the case of an old a can be used. 

We shall now show that tPA,(b) is smaller than tPA(b) or smaller than tPA(a). The latter 
suffices, because tPA(a) is removed from w(A). 

• If b is old, its first component already decreases because of the assertion of b : C. 

• If b is new, we make a case distinction on a. 

- If a is old, the first component of tPA,(b) is smaller than the first component of tPA(a), 
because the constant M used in the definition of the first component for old objects 
is large enough. 

If a is new, the first component of tP.A(a) is equal to the first component of tP.A,(a), 
which in turn is greater than tP.A,(b) by part three of Lemma 6.5. 

(4) Assume that the application of the exists-in restriction rule to a : :JR.C yields the new 
axiom b : C. Then a and b are the affected objects. First assume that a and b are equal. Because 
of part three of Lemma 6.5, this is only possible if a is old. But then the first component already 
decreases because a new axiom a : C has been asserted. Now assume that a and b are different. 
We first consider a. 

• If a is old, its associated 4-tuple decreases. In fact, the first component cannot increase, 
as shown above. The second component is always 0. Now, consider the third component. 
The exists-in restriction rule is no longer applicable to a : :JR.C, and because a and bare 
distinct, no new axiom a : D has been asserted. Hence, the third component gets smaller. 

• The remaining case for a new a is analogous to (3). 

The remaining cases related to b correspond to the respective cases in (3). 
(5) Assume that the predicate restriction rule has been applied to a : P( Ul, ... , Un). We use 

the same naming as in the definition of the rule. Every affected object is mentioned in the rule 
as an a, bij, or an Xi. We observe that 

(*) in this derivation step no axiom of the form c : C is asserted. 

For old objects, the first component cannot increase, and it may decrease by inserting a new 
feature axiom. The second component remains 0. For new objects, the first and second compo­
nent remain unchanged as a consequence of (*). For the object a, the third component strictly 
decreases, because the predicate-restriction rule is no longer applicable to a : P(UI, ... , un). For 
the other affected objects it cannot increase, because of (*). But the fourth component might 
increase, because there could be a new pair of axioms b: V j.C, (b, c) : j, where the latter has 
been newly introduced. Fortunately, if b is old, the first component of its 4-tuple must get 
smaller. If b is new, its first component is already smaller than the first component of tP.A(a). 
The latter can be seen along the same lines as in the last part of (3) and (4). 

This concludes the proof of Lemma 6.4 and thus the first part of Proposition 6.1. 0 

To prove the second part of Proposition 6.1, we now define the notion of contradictory A­
boxes which is the syntactic equivalent of inconsistent A-boxes. The definition is by induction on 
the relation "descendant" which we have just proved to be noetherian. An A-box A occurring 
in the computation is contradictory with respect to a computation iff 
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• A does not have descendants and ccntains a clash, or 

• all descendants of A are contradictory. 

Please note that according to this definition Al is contradictory iff after the loop there is no 
clash free A-box A in the set Mr. 

Lemma 6.6 (soundness) 
A n A -box that is contradictory with respect to a given computation is inconsistent. 

Proof. The proof is by induction on the definition of contradictory, with a case analysis according 
to the transformation rule applied. Assume that a contradictory A-box A is given. We have to 
show that it does not have a model. 

If A does not have a descendant, it must contain a clash. But obviously, an A-box with a 
clash cannot have a model. For the induction step, assume to the contrary that A has a model 
I. We have to show that the descendant (resp. one of the descendants in case of the disjunction 
rule) of A has a model. This will be a contradiction to the induction hypothesis, because all 
descendants of contradictory A-box are contradictory. 

We shall only demonstrate the case of the value restriction rule. The other cases can be 
treated similarly. Assume that the rule has been applied to the axioms a : VR.C and (a, b) : R 
in A, generating the descendant A'. Please, note that A' is a superset of A and that the only 
axiom in A' that is not in A is b : C. Hence, it suffices to show that I satisfies b : C. This is an 
immediate consequence of the definition of a value restriction. 0 

Lemma 6.7 (completeness) 
If the initial A-box Al is not contradictory with respect to a given computation then it has a 

model. 

Proof. If Al is not contradictory then there is an A-box A ;2 Al in Mr to which none of the 
clash rules is applicable. We define an interpretation I of A as follows: 

1. Because the clash rule related to the concrete domain is not applicable, there is a vari­
able assignment 0:' that satisfies the conjunction of all occurring axioms of the form 
P(x}, ... , xn). The interpretation I interprets an x E OC as O:'(x). 

2. The domain dom(I) consists of all the objects of OA occurring in A. 

3. Let Q be a primitive concept name. Then we set a E QI iff a : Q occurs in A. 

4. Let R be a role or feature name. Then we set (a, b) E RI iff (a, b) : R occurs in A. This is 
well defined even if R is a feature, because there is no fork in A, and the first clash rule 
is not applicable. 

It will be shown by induction on the size of the axioms that I is not only an interpretation but 
also a model of A. Assume that ax is an axiom in A. 

1. Let ax be (a, b) : R. Then I satisfies the axiom by definition. 
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2. Let ax be a: P(Ul,"" un). We use the sam~ naming conventions as in the predicate 
restriction rule. Then there is an axiom P(XI, ... , xn) in A and uf(a) = x{ holds for all 
i = 1, ... , n. Hence by definition of a we get that I satisfies a : P(UI, ... , Un). 

3. Let ax be a : Q, where Q is a primitive concept name. Then by definition of I we have 
a E QI. 

4. Let ax be a : -,Q. Then Q is a primitive concept, and because A is clash free, a : Q is not 
in A. Hence we get by definition of I that ax is satisfied by I. 

5. Let ax be a : C n D (resp. a : CUD). Because no transformation rule is applicable a : C 
and a : D (resp. a : C or a : D) are in A. By induction a : C and (resp. or) a : Dare (resp. 
is) satisfied by I, and hence ax is satisfied. 

6. Let ax be a: VR.C. If there is an axiom (a, b) : R in A then b is in OA, because the 
second clash rule is not applicable. Hence for a : VR.C and all axioms (a, b) : R the value 
restriction rule has been applied. By induction hypothesis, I satisfies b : C for all these b, 
and hence ax is satisfied. 

7. Let ax be a : ~R.C. Then the exists-in restriction rule has been applied and two axioms 
(a, b) : Rand b: C are in A. By the induction hypothesis they are satisfied by I, and 
hence ax is satisfied. 

Finally, we use Al ~ A to conclude that I is also a model for AI. o 

7 Expressing Interval Relations: An Example 

In [Allen, 1983] J. F. Allen proposes a formalism to represent relations between time intervals 
that is based on 13 disjoint basic relations on pairs of intervals. These relations correspond 
to a case analysis of the relative positions of the interval borders. In addition, he presents a 
consistency test for given sets of relations that is built around a transitive closure algorithm. 
This algorithm uses a big propagation table which has the following form: Given two basic 
interval relations C(iI' i2), d(i2' i3) it says which basic relations could possibly apply to (iI, i3). 

In this section we show how the instance A.cC(R) of our language scheme can be used 
to check his choice of basic relations and his propagation table. We will define concepts that 
correspond to the basic interval relations. The subsumption and the satisfiability test of the 
T-box can then be used to check that ,his case analysis of relative positions of interval borders 
is exhaustive and that there are no overlapping cases. Finally, the consistency test for A-boxes 
will be used to verify the propagation table.13 

The set dom(R) together with the predicates <,~, >,~, =, f:. generates a simple admissible 
concrete domain that suffices for the purpose of this section. We will write the binary predicates 
in the more readable infix notation. 

An interval i is considered as an ordered pair of real numbers (XI, X2), Xl ~ X2. This is 
reflected in the definition of the concept Interval. Its definition refers to the predicate ~ of the 
concrete domain, and applies it to the features left and right. 

Interval = (left ~ right) 

13Th is example has been implemented by Andreas Abecker and Dennis Drollinger. 
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Allen's 13 basic relations are binary relations on intervals. Thus, we define a concept Pair that 
groups two intervals using the features first and second. 

Pai r = :3first.lnterval n :3second.lnterval 

Now Allen's 13 basic interval relations can be defined in a straightforward manner as 

Equa ls 

Before 

After 

Meets 

Met-by 

Overlaps 

Overla p ped- by 

During 

Contains 

Starts 

Started-by 

Finishes 

Finished-by 

Pair n (first left = second left) 
n (fi rst right = second right) 

Pair n (fi rst right < second left) 

Pair n (first left> second right) 

Pair n (first right = second left) 

Pair n (first left = second right) 

Pair n (first left < second left) 
n (fi rst right < second right) 
n (first right> second left) 

Pair n (first right> second right) 

n (first left> second left) 
n (fi rst left < second right) 

Pair n (first left> second left) 
n (first right < second right) 

Pair n (first right> second right) 
n (first left < second left) 

Pair n (first left = second left) 
n (first right < second right) 

Pair n (first left = second left) 
n (fi rst right> second right) 

Pair n (first left> second left) 

n (fi rst right = second right) 

Pair n (first right = second right) 
n (first left < second left) 

To show that the 13 cases considered by Allen do not overlap, we verify that all pairwise 
conjunctions of the respective concepts are inconsistent. For example to check that Meets does 
not overlap with After we check whether t he concept 

Meets n After 

is not satisfiable. 
It is obvious that the set of all pairs of intervals form a predicate that is more general 

than each of Allen's interval relations. Nevertheless, we could use the subsumption service to 
verify, for example, that Pair subsumes Meets. To see conversely that Allen's case distinction is 
exhaustive, we show that the disjunction of all corresponding concepts 
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Equals U Before U After U Meets U Met-by U Overlaps U Overlapped-by U During U 
Contains U Starts U Started-by U Finishes U Finished-by 

subsumes Pair. 
To verify the propagation table we make use of A-box reasoning. Assume that C and Dare 

concepts that correspond to basic interval relations c and d, respectively, and that Pairj, Ik are 
object names from OA. Then the A-box A defined by 

(Pair}, It) : first, (Pair}, 12) : second, 
(Pair2, 12) : first, (Pair2,13): second, 

Pairt : C, Pair2 : D, 

corresponds to interval relations c( ill i2) and d( i2, i3)' If we want to know, whether an interval 
relation e may possibly apply to (it, i3), then in a first step we extend A with the following 
axioms where E denotes the concept corresponding to e. 

Pair3 : E. 

In a second step, the consistency test for A-boxes checks whether the extended A-box has a 
model. If it has a model M, the basic interval relation e(it, i3) holds in conjunction with c(it, i2) 
and d(i2,i3) for the intervals i j = (leftM(If),rightM(If)),j = 1,2,3. Otherwise such intervals 
do not exist. Iterating the procedure over all triples of interval relations (c, d, e) we can verify 
Allen's propagation table. 

8 An Undecidability Result 

The concept languages we have considered until now do not provide any operators for con­
structing complex role terms out of role names. However, for many applications it would be 
convenient if one were allowed to use e.g. transitive closure of roles when defining concepts. For 
example, assume that we have the concept Man and the role child. We can easily define the 
concept Mos of all men having only sons as 

Mos = Man n Vchild.Man. 

Assume that we also want to express the concept of all men having only male offsprings, for 
short Momo. We cannot just introduce a new role offspring because there would be no connection 
between the two atomic roles child and offspring. But the intended meaning of offspring is that 
it is the transitive closure of child, i.e., in any interpretation I the binary relation offspringI 
should be the transitive closure of the binary relation childI . 

In [Baader, 1991], the following "transitive extension" of the language ACe is investigated: 
instead of roles names one may use role terms involving union, composition and transitive closure 
of roles in concept definitions. In this language, the concept Momo can be defined as 

Momo = Man n Vtrans( child).Man. 
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The semantics of the role operator trans is defined in the obvious way, i.e., for any role R 
and any interpretation 'I, one has trans(R)I := Un~l (RIt. Baader [Baader, 1991] shows that 
satisfiability and subsumption of concept terms in the extended language are still decidable. 

For many applications it is desirable to have both access to an admissible concrete domain 
and transitive closure of features. As a motivation, consider the example given in Section 7. 
There we have defined the concept "pair of intervals" as 

Pair = :3first.lnterval n :3second.lnterval 

and for instance the subconcept "pair of successive intervals" as 

Meets = Pair n (first right = second left) 

To improve the readability we have written the binary concrete predicate "=" in infix notation. 
Similarly, one can of course define triples, quadruples, etc. of successive intervals; but it is not 
possible to define the concept "sequence of successive intervals" this way. However, if we were 
allowed to use transitive closure of features the concept "sequence of intervals" could be defined 
as 

Sequence :3head.lnterval n 
Vtrans(tail). (:3head.lnterval) , 

where the feature head yields the first element of a given sequence and the feature tail yields the 
remaining sequence after the first element is removed. Now the concept "sequence of successive 
intervals" can be expressed by the concept term 

sequence n ((head right = tail head left) U Vtail.Bottom) n 
Vtrans(ta il}. ((head right = tail head left) U Vtail.Bottom) 

Here Bottom is intended to denote a concept which is always interpreted as the empty set; 
for example, defining Bottom = A n -,A for an arbitrary concept A would do. Thus the term 
Vtail.Bottom expresses that the feature tail is undefined. This means that the end of the sequence 
is reached . 

In the above concept term we have used both transitive closure of features and predicates of 
a concrete domain. We know that adding one of these two facilities to a concept language such 
as ALe leaves the interesting inference problems decidable. However, the situation changes if 
we want to have both facilities in one language. 

If, starting with ALe, we allow transitive closure of features and integrate the admissible 
concrete domain n (which stands for real arithmetic) then the satisfiability problem becomes 
undecidable. 

This will be shown by reducing the Post Correspondence Problem to the satisfiability prob­
lem for this language. The reduction will use only very simple predicates from real arithmetic, 
namely equalities between linear polynomials in at most two variables. 

First, we recall the definition of the Post Correspondence Problem. Let E be a finite alpha­
bet. A Post Correspondence System over E is a nonempty finite set S = {(li,ri);i = 1, ... ,m} 
where the Ii, ri are words over E. A nonempty sequence 1 ~ i l , ... , in ~ m is called a solution of 
the system S iff Ii} ... lim = ri} ... rim. It is well-known that the Post Correspondence Problem, 
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i.e., the question whether there exists a solution for a, given system, is in general undecidable if 
the alphabet contains at least two symbols [Post, 1946]. 

In order to reduce this problem to a satisfiability problem for concept terms which use 
transitive closure of features and refer to the concrete domain n, we have to encode words into 
real numbers. This can be done as follows. For B := lEI + 1 we can consider the elements of E 
as digits 1,2, ... , B-1 of numbers represented at base B. For a given nonempty word W over 
E we denote by W the nonnegative integer (in ordinary representation at base 10) it represents 
at base B. We assume that the empty word c; represents the integer O. Obviously, the mapping 
W I-t W is a I-I-mapping from E* into the set of nonnegative integers. Concatenation of words 
is reflected on the corresponding numbers as follows. Let v, W be two words over E. Then we 
have vw = v· Blwl + w, where Iwi denotes the length of the word w. 

We are now ready to define names for the predicates of the concrete domain n we shall use 
in our reduction. For i = 1, ... , m, 

cf(x,y,z) ¢=:> y=T;l\z=y+x.Blld, 

C;(x, y, z) {::::=} y = ri 1\ z = Y + x . Bird, 

E(x, y) ¢=:> X = y, and L(x) ¢=:> x = O. 

Let I, r, WI, W r , and f be feature names. The concept term C(S) corresponding to the Post 
Correspondence System S is now defined as follows: 

m 

C(S) = U (Cf(wl,l,fwl) n C;(wr,r,fwr)) n 
i=l 

L(wl) n L(wr) n 

Vtrans(J). CQ (C/( WI, I, f WI) n C;( Wr, r, f w r )) ) n 

3trans(J).E(wl, wr ). 

Proposition 8.1 The concept term C(S) is satisfiable if and only if the Post Correspondence 
System S has a solution. Consequently, satisfiability is in general undecidable for concept terms 
which may contain transitive closure of features and predicate restrictions of an admissible con­
crete domain. 

Proof Assume that S has a solution it, ... , in of length n. We extend this sequence to an infinite 
sequence iI, ... , in, in+t, in+2 , ... by choqsing arbitrary indices 1 ::; in+! , in+2 , ... ::; m. This new 
sequence is used to define an interpretation I as follows: 

dom(I) 

fI(k) 

II (k) 

wf(k) 

{k; k ~ I}, and for all k ~ 1, 

k+ 1, 

r:: and rI(k):= ri k , 

IiI' .. lik _ 1 and w; (k) := ril ... rik_ 1 . 

Please note that for k = 1, the word IiI' .. lik _ 1 is the empty word, and thus IiI' . ·li
k

_
1 

= O. It 
is now easy to show that 1 E C(S)I. Obviously, this implies that C(S) is satisfiable. 
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On the other hand, assume that C (S) IS satisfiable, and let I be an interpretation such that 
C(S)I =/=0. This interpretation can be used to find a solution of S. Consider an arbitrary 
element c of C(S)I. Obviously, c E (L(w/) n L(wr))I yields wf(c) = 0 = w;(c). Since 

C E CQ (C!(w/,l'/w/l n C;(w"r,!w,l) r, 
we know that there exists an index between 1 and m, say i l , such that 

By the definition of the concrete predicates we get that II (c) = IiI and rI (c) = rill and 
(JwdI(c) = z:: and (Jwr)I(c) = riI · 

Similarly, one can show by induction on k t hat for all k :::: 0 there exists an index i k+1 between 
1 and m such that 

(Jk l)I (c) 

(Jk+l w/)I(c) 
lik +I , (Jk r)I(c) 

(Jk+l wr)I (c) 
rik+I , 

From c E (3trans(J).E(w/,wr))I we can now deduce that there exists a positive integer n 
such that (In w/)I(c) = (In Wr)I(C), and thus we have IiI" . lin = ri l ••• rin. Consequently, 
IiI" . lin = ri l .. . rin, which shows that the sequence ill ... , in is a solution of S. 0 

9 Conclusion 

We have proposed a KL-ONE based knowledge representation and reasoning system which is hy­
brid in two respects . On the one hand, it makes the usual distinction between two epistemolog­
ical different kinds of knowledge, the terminological knowledge and the assertional knowledge. 
On the other hand, the terminological and assertional language, which usually describes the 
knowledge on an abstract logical level, is extended by allowing to refer to concrete domains and 
predicates on these domains. 

The different parts of the system are integrated with the help of a unified model-theoretic 
semantics. Reasoning in the terminological and the assertional part can be done with the help 
of a single basic reasoning algorithm. This algorithm creates subtasks which have to be solved 
by the special purpose reasoner of the concrete domain (see the fourth clash rule in Definition 
5.3). But there is no other interaction necessary between our basic reasoning algorithm and the 
reasoner on the concrete domain. 

Our approach differs from other extensions of KL-ONE which were done for similar reasons in 
several respects . Firstly, we have proposed a scheme for such an extension, and not a particular 
extension by some specific concrete domains. The formal semantics and the algorithm are 
given on this scheme level. Secondly, the basic reasoning algorithm is not only sound but also 
complete with respect to this semantics. In addition, we can utilize special purpose reasoners 
which may already exist for the concrete domain in question. This shows another difference to 
e.g. the MESON system where the important relationships between the user-defined or machine­
defined predicates have to be explicitly supplied by the user. Because of the relatively narrow 
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interface which we allow between the abstract and the concrete part of our formalism, the special 
purpose reasoner of the concrete domain may be considered as a black box. This is different 
to e.g. Schmiedel's Temporal Terminological Logic where the terminological and the temporal 
parts are interleaved in a way which seems to make it impossible to separate the corresponding 
reasoning components. 

Our main motivation for developing the presented KL-ONE extension was to represent knowl­
edge in a mechanical engineering domain. In particular, we wanted to describe both geometric 
and other attributes of lathe work pieces in a unified framework. For that purpose we intend 
to use the language A£C(n) where geometric properties can be described with the help of 
predicates over real numbers. Unfortunately, linear predicates (i.e., predicates built from equal­
ities and inequalities between linear polynomials) are not sufficient in this context. However, 
it is possible to specify geometric primitives-such as circle, cone, lateral area of a cone, etc.­
which can be used to build up larger predicates. Since these primitives are relatively simple 
they can be preprocessed with the help of a quantifier elimination procedure for linear state­
ments with parameters (see e.g. [Weispfenning, 1988; Loos and Weispfenning, 1990]). After this 
elimination-which has to be done only once for a given collection of geometric primitives­
the satisfiability problems generated by our basic reasoning algorithm are purely existential 
problems. These problems can e.g. be solved by the method described in [Canny, 1988]. 

As already indicated by the examples given in Section 2, there are also other interesting 
instances of our scheme. For example, by using the language A£C(A£), or by expressing 
intervals in A£C(n) as demonstrated in Section 7, one can get a simple integration of temporal 
knowledge into KL-ONE. Though this approach is not as expressive as the one of Schmiedel, it 
may be sufficient for some applications; and it has the obvious advantage that there exist sound 
and complete reasoning algorithms. 
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