
Deutsches
Forschungszentrum
fur Kunstl iche
Intelligenz GmbH

Research
Report

RR-90-12

Declarative Operations

on Nets

Harold Boley

October 1990

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem , FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 S aarbriicken 11, FR G
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr Kunstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies , or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation .

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

Declarative Operations on Nets

Harold Boley

DFKI-RR-90-12

To appear in: Fritz Lehmann (Ed.) "Semantic Networks /in Artificial Intelligence",
Computers & Mathematics with Applications, Pergamon Press.

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1990

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Contents

1 Introduction

2 From Sets to DLGs and DR.CHs

3 DR.CH Construction and Normalization in RELFUN

4 Labelnode Sharing

5 Structure-Reducing Operat ions

6 Searching Paths via Hyperarc Transits and Level Shifts

7 A Mechanical Engineering Application: Parts Lists

8 DRCH Database Storage and Retrieval

9 Conclusions

A Generalizations of Standard Set Operations

B The Hyperarc and Labelnode Merging Functions

C The Traversal function

1

3

10

15

20

25

28

32

35

38

41

42

Declarative Operations on Nets

Harold Boley

Deutsches Forschungszentrum fur Kunstliche Intelligenz
Box 2080, D-6750 Kaiserslautern, F. R. Germany

boley@informatik. uni-kl.de

October 16, 1990

Abstract

To increase the expressiveness of knowledge representations, the graph-theoretical basis of
semantic networks is reconsidered. Directed labeled graphs are generalized to directed recur
sive iabelnode hypergraphs, which permit a most natural representation of multi-level struc
tures and n-ary relationships. This net formalism is embedded into the relational/functional
programming language RELFUN. Operations on (generalized) graphs are specified in a
declarative fashion to enhance readability and maintainability. For this, nets are repre
sented as nested RELFUN terms kept in a normal form by rules associated directly with
their constructors. These rules rely on equational axioms postulated in the formal definition
of the generalized graphs as a constructor algebra. Certain kinds of sharing in net diagrams
are mirrored by binding common subterms to logical variables. A package of declarative
transformations on net terms is developed. It includes generalized set operations, structure
reducing operations, and extended path searching. The generation of parts lists is given
as an application in mechanical engineering. Finally, imperative net storage and retrieval
operations are discussed .

1 Introduction

The representational paradigm of semantic networks has been explored most formally for tax
onomic inheritance systems. These can be based on strict hierarchies (trees) or 'multiple
inheritance' heterarchies (directed acyclic graphs) . Recently, the formal study of "cyclic defi
nitions" in KL-ONE-like languages has again acknowledged the general-graph basis of classical
semantic networks ([Neb89], [Baa90]). But even this more truthful net concept has represen
tational deficiencies . Three of these are highlighted here to provide some background for the
following discussion .

1) Semantic networks are used as graph-based formalisms for structuring knowledge. However,
the classical directed labeled graphs (DLGs) are too simple-"flat & binary"-to capture the rich
ness of human knowledge structures. Therefore, we will employ the generalized graph-theoretical
notion of directed recursive labelnode hypergraphs (DR.CHs), as developed in [Bol77]' [BoISO],
and [BoI84]. Our objective here is to obtain the greatest expressive power in a representation of
knowledge by maximizing generality, thus minimizing representational artifacts imposed by the
DLG 'syntax' . We will postpone the recursive and labelnode features to the following section.
Regarding directed hypergraphs, Fig. 1 exemplifies the usual DLG way ternary or higher-arity
relations are represented by regarding a relation r as a node linked to artificially created nodes
r', r", ... for its relationships (most semantic net systems, including KL-ONE, promote such
pseudo-entities into the un iverse of concepts); from these, three or more artificial arcs, labeled
by binary pseudo-relations argl, arg2, arg3, ... , point to the arguments (such pseudo-relations
are syntactic placeholders, often reinterpreted as KL-ONE-like semantic "roles"). On the other

l

a b c

Figure 1: A graph simulating two ternary r relationships with artificial nodes r' and r"

Figure 2: A hypergraph representing r relationships by arrows cutting intermediate nodes

hand, Fig. 2 shows how directed hypergraphs permit a natural representation of n-ary relations
(n 2: 3) by directed hyperarcs or arrows starting with the relation node r, cutting the first n - 1
argument nodes, and ending at the nth argument node (artificial nodes and arcs become su
perfluous because of the more powerful 'built-in' structure of DR.cHs). Note that the DR.cH
representation gracefully specializes to binary relations, while in DLG representations thert~ is a
discontinuity if normal r-labeled arcs are kept for the binary case. Just as DLGs have permitted
natural binary links in ordinary semantic networks, directed hypergraphs permit natural n-ary
links in our generalized nets; there is now a parallel development from ordinary KL-ONE systems
to n-ary ones [Sch89].

2) The intuitive appeal of semantic nets is largely due to their pictorial, 2-dimensional (or even
spatial) diagram forms. Yet I-dimensional linear strings of symbols are often used instead of
drawing large nets on paper, for representing nets as data structures, and for specifying oper
ations on them. So we will carefully tailor such a "symbolic form" to our generalized graph
notion, trying to keep the principal 2D advantage of "node sharing" by using terms with coref
erential "logical variables". For example, the DR.CH in Fig. 2 will be put into the symbolic form
l(r, a, b, c), (r, c, b, a)J, where the hyperarcs become list terms and the entire DR.cH becomes an
enclosing set-like" L J" -term. The nodes a, b, and c can be shared by both hyperarcs by assigning
them to variables A, B, and C via A is a, B is b, Cis c, and then writing the symbolic DR.cH
pattern L(r, A, B, C), (r, C, B, AW.

3) Any knowledge representation formalism should, besides its 'static' expressiveness, provide a
library of useful operations. Semantic nets have traditionally focused on inheritance and path-

1 As in PROLOG, variable names will be distinguished from constants by a capital first letter (the anonymous
variable being "_It); "single-assigrunent lt variable bindings will be specified by an is infix.

2

tracing operations in DLGs. Our main goal in this article is to show that many further (DRCH)
net operations are of interest for a complete library. For example, the generalized set intersection
of the previous DRCH with L(r, c, b, a) , (s, a, b, a, c)J will return l(r, c, b, a)J . The operations are
defined as RELFUN [Bol9D] pattern-matching rules on a slightly modified term representation of
DRCHs.

Two main classes of operations on nets have to be distinguished . Operators can take network
pieces as input arguments , and (1) return (functionally) or bind (relationally) other pieces as
output values (declarative operations), or (2) effect state changes in a knowledge base (imperative
operations) .

Research in programming languages since [Bac78] suggests that declarative, side-effect-free
operators are easier to understand, maintain, and parallelize than imperative ones. Transferring
this to knowledge processing, a promising approach consists in defining most operators as declara
tive knowledge-item transformations, and clearly separating them from the remaining imperative
knowledge-base updates. Besides FP-like functional languages [Bac78] and PROLOG-like rela
tional languages [CoI83], more specific declarative tools such as graph grammars [EHK] can be
used for processing semantic networks.

For DRCH processing we will make a mostly functional use of the relational/functional lan
guage RELFUN: high-level nested-term representations of these generalized graphs become the
arguments and returned values of functions. Many such declarative term-rewriting operations on
DReHs are defined using RELFUN's "valued clauses" as pattern-matching rules (sections 3-7) ;
some imperative DRCH-update operations are introduced via assert-like primitives (section 8).

After a derivation of DRCHs from list sets (section 2) , our first use of RELFUN will be
the normalization of algebraic DRCH terms employing rules that generalize set-like duplicate
removal and canonical ordering (section 3) . Also, high-level methods of sharing common
DRCH parts using logical variables and an 'unpack' operator are given (section 4) . To provide an
often-needed subpackage, standard set operations are generalized to the (hyper)graph-theoretical
framework (appendix A).

We will then discuss two classes of operations which critically depend on the full power of
DRCHs: structure-reducing operations are used for analyzing complex DRCHs (section 5) and
path searching is extended to traverse arbitrary-length hyperarcs and the leveled structure of
recursive graphs (section 6).

Although our emphasis will be on such structural operations on DRCHs, we will also sketch
principles of applying these generalized graphs to real problems from belief sharing to public
transportation. As an application in the domain of mechanical engineering we discuss the gener
ation of parts lists from DRCH representations of workpieces (section 7) . In any case, we try to
illustrate all abstract concepts by concrete examples .

The conclusions will provide additional background on the DRCH/RELFUN formalism , and
compare it with related work (section 9) .

2 From Sets to DLGs and DR.cHs

Since declarative specification of transformations has been best explored for functions on- finite
lists (e.g. pure LISP or PROLOG) and sets (e.g. standard LISP/PROLOG packages), it would
be nice if these data types could be used as a basis for network processing . Indeed, we can
regard an arbitrary set like {nail , stone, scissors, paper, terminal} itself as a degenerate graph
consisting only of isolated nodes. Suppose we would now like to introduce the (directed) graph
links stone "-'tscissors, scissors "-'tpaper, and paper"-'tstone in order to represent the three
win relationships of the children's game "Stone, Scissors, Paper". Fig. 3 depicts the resulting
Directed Graph as an Euler-Venn diagram of the original set augmented by three arrows. In the
symbolic representation we replace some isolated nodes by (ordered) lists, obtaining

{nail, (stone, scissors), (scissors, paper), (paper, stone), terminal}

3

scissors

stone

terminal

Figure 3: A directed graph with three (cyclically) linked and two isolated nodes

However, for such a heterogeneous collection of list (pair) and non-list elements it must be
made explicit whether it still represents a set, keeping 'curly' brackets "{ ... }", or now denotes a
directed graph , introducing 'floor' brackets "L ... J": two collections can be different as sets,

{nail, (stone , scissors), (scissors, paper), (paper, stone), terminal} f.
{nail, stone, (stone, scissors), scissors, (scissors, paper), paper, (paper, stone), terminal}

but identical as graphs,

Lnai/, (stone, scissors), (scissors, paper), (paper, stone), termina/J

Lnai/, stone, (stone, scissors), scissors, (scissors, paper) , paper, (paper , stone), termina/J

This is the case since, in addition to the normalization axioms of sets (in the "{ .. . }" -representa
tion, generalized commutativity and idempotence), graph normalization includes joining a "quasi
isolated" node x with any identical node occurring in an are, using term-rewriting rules like
L ... , x, ... , (x, y), .. . J ---+ L···, ... , (x, y), ... J. Thus, uniqueness is maintained for isolated nodes,
whereas a non-isolated node is still represented for all arrows (directed arcs) in which it occurs.

If we want to make the three special win relationships explicit, we can proceed to Directed
Labeled Graphs (DLGs) by labeling the arcs with relation names or, inserting the labels as first
list elements:

L nail, (sharpen, stone, scissors), (cut, scissors, paper), (wrap, paper, stone), termina/J

Fig. 4 gives a corresponding diagram form of DLGs in which each arrow starts at the label, cuts
the first node, and ends at the second node2 •

2The cut-style arcs anticipate the DLG generalization to directed hypergraphs; the labels are drawn as in

4

stone

sharpen

terminal

Figure 4: A DLG refinement with arc labels sharpen, cut, and wrap drawn like nodes

Looking at these representations of DLGs as collections of isolated nodes mixed with directed
labeled arcs (lists), three graph generalizations appear very natural:

First, since set elements may again be sets, complex nodes can be introduced as nodes that are
graphs themselves. For example, going back to our original set we can refine the elements scissors
and terminal to embedded sets3 : {nail, stone, {axle, bo.ttomblade, topblade}, paper, {keyboard,
screen} }. The new set can already be regarded as a degenerate recursive graph consisting
only of isolated atomic and complex nodes (atoms and complexes). Besides the external arcs
of the previous DLG we can also insert directed labeled arcs describing the internal structure
of the complex nodes scissors ("axle is fixed at bottomblade", "topblade turns around axle")
and terminal ("keyboard is wired to screen"), thus obtaining the Directed Recursive Labeled
Graph ('pretty-print' indentation will be used to enhance the readability of line-exceeding linear
representations) :

labelnode graphs. On the other hand, Euler-Venn-like boundary lines are only kept for sublevels of recursive
graphs.

3Since an embedded set carries no mark, we lose unrefined-element names like scissors and terminal at this
point. This could be avoided, e .g ., by using RELFUN variable names like Scissors and Terminal of section 4 as
DR.eH labelnodes marked by the (complex) labelnodes that are their values.

5

bottomblade

stone

screen

Figure 5: A directed recursive graph with scissors and terminal expanded to complex nodes

6

nail stone

IscrOll r ~terminal
~--

Figure 6: A directed hypergraph with hang/scroll-labeled hyperarcs of lengths three/one

L nail,
(sharpen, stone, LUixed, axle, bottomblade), (turn, axle, topblade)J),
(cut, LUixed, axle, bottomblade), (turn, axle, topblade)J, paper),
(wrap, paper, stone),
L(wired, keyboard, screen)J J

The diagram form in Fig. 5 indicates a complex node as a boundary line completely boxing in
all its arrows, labels, and nodes.

Second, since lists may have n f. 2 elements after the label-representing first element, di
rected hyperarcs can be introduced as arcs that link an arbitrary number of n ~ 0 nodes. (The
degenerate case n = 0 corresponds to a nullary relationship like nightO; the special case n = 1
permits the direct-"non-isa" - representation of a unary relationship like bright(sun), as uti
lized below and discussed in section 7.) For instance, we can also structure the original set
{nail, stone, scissor s, paper, terminal} by inventing a ternary hang relationship ("nail and stone
hang paper") and a unary scroll relationship ("terminal scrolls"), obtaining the Directed La
beled Hypergraph:

L(hang, nail, stone, paper), scissors, (scroll, termina/)J

The diagram form in Fig. 6 depicts each directed hyperarc as an arrow starting from the label,
cutting all intermediate nodes, and ending at the finar node. (In the special case n = 1 the label
directly points to the single node, which looks like an ordinary unlabeled arc but actually depicts
a labeled length-one hyperarc.) Of course, since arcs are special hyper arcs, we could likewise
have extended the DLG in Fig. 4 to a directed hypergraph, as implicit in Fig. 8.

Third, since relation names may occur not only as first list elements (labels) but also as
arguments of other relationships (nodes), labe lnodes can be introduced as uniform base objects
usable as labels, nodes, or both. The earlier DLG example can thus be extended by a second-order
preference relation between the win relations ("preference of sharpening over wrapping", .. .),
obtaining the Directed Labelnode Graph:

7

stone

terminal

Figure 7: A directed labelnode graph with labels also used as nodes of preference arcs

L nail,
(sharpen, stone, scissors),
(cut, scissors, paper),
(wrap, paper, stone),
terminal,
(preference, sharpen, wrap),
(preference, cut, sharpen) J

The diagram form in Fig. 7 shows each labelnode as a box which may be used at arbitrary
positions of arrows.

Bringing all three DLG generalizations together we obtain Directed Recursive Labelnode
Hypergraphs (DR£Hs). For instance, this is a DR£H combination of the previous examples with
a color screen for the terminal and two new preference relations:

8

axle

bottomblade

wrap

Figure 8: A DR£H synthesizing the recursive, 'hyper', and labelnode extensions of DLGs

9

l (sharpen, stone, l(Jixed, axle, bottomblade) , (turn, axle, topblade)J),
(cut, LUixed, axle, bottomblade), (turn, axle, topblade)J, paper),
(wrap, paper, stone),
(hang, nail, stone,paper),
(scroll, L(wired, keyboard, screen), (color, screen)J),
(preference, wrap, scroll),
(preference, sharpen, wrap),
(preference, cut, sharpen),
(preference, hang, cut) J

The diagram form in Fig. 8 combines the syntax of Figs. 5-7, but duplicates the labelnodes used
as preference arguments in order to avoid overfull diagram regions and arrow crossings.

As suggested by the "L ... J" -form, each DRCH can be regarded as one complex labelnode,
which can again be used inside a larger DRCH. In the diagram form, however, the surrounding
boundary line of the top-level (outermost) DRCH is usually omitted.

We have not yet discussed a 'focussing' feature, which can already extend the usefulness
of directed recursive labeled graphs. Up to now, hyperarcs have viewed an incident complex
labelnode only as an atomic-labelnode-like entirety ("black box"); alternatively, hyperarcs may
focus a complex labelnode on any of its inner labelnodes, which thus play the role of contact
labelnodes. Such a "contacted DRCH" will be wl\itten by using a "L J"-DRCH as the second
argument of a 'ceiling'-bracket term 'T.T' whose first argument exposes the contact labelnode .

Refining our example, the sharpen hyperarc may contact the scissors complex labelnode via
axle (focussing axle as the scissors' part to grasp for sharpening), and the cut hyperarc may
contact it via turn (focussing the scissors' functionality of turning during a cut), where the
latter contact labelnode happens to act as a label internally. Also, the scroll hyperarc may view
the terminal complex as a screen with a keyboard, rather than vice versa (screens of terminals
scroll, not terminals themselves, nor their keyboards). Even though isolated complexes may also
distinguish contact labelnodes, we leave the top-level DRCH uncontacted:

L (sharpen, stone, r axle, L(Jixed, axle, bottomblade), (turn, axle, topblade)Jl),
(cut, rturn, LUixed, axle, bottomblade), (turn, axle, topblade)Jl, paper),
(wrap, paper, stone),
(hang, nail, stone, paper),
(scroll, r screen, L(wired, keyboard, screen), (color, screen)Jl),
(preference, wrap, scroll),
(preference, sharpen, wrap),
(preference, cut, sharpen),
(preference, hang, cut) J

The diagram form in Fig. 9 introduces contact labelnode lines within complex boxes, connecting
arrows with contact labelnodes: contact labelnode lines of start and end labelnodes have addi
tional arrow heads at the complex-box boundary line, those of intermediate labelnodes emanate
from the arrow part cutting the boundary line.

Normalization axioms for such (contacted) DRCHs will extend those of DLGs discussed above.
In particular, a contact labelnode x not occurring in a complex labelnode L ... J is added to it via
the term-rewriting rule r x, L·· ·Jl ---+ r x, Lx, ···Jl, relying on "inverse contaction" (see section 3) .

We have now introduced the 'static' features contributing to the representational power of
DR.CHs. The following sections will proceed to various 'dynamic' aspects, making these structures
a computationally useful net formalism.

3 DR£H Construction and Normalization in RELFUN

It is possible to embed DRCHs into the relational/functional programming language RELFUN
and at the same time provide a formal, 'constructor-algebraic' DRCH definition . First, 'T.T'-,

10

axle

bottomblade

screen

wrap

Figure 9: A refined DR£H with double/single-contacted scissors/terminal complexes

11

"L ... J"-, and "(...)"-terms can be represented as structures with the three functors "cntct",
"drlh", and "tup", respectively (we use RELFUN's PROLOG-like syntax in which, however,
structures employ "[...]"-brackets) . Since RELFUN already uses "tup"-structures as lists, this
language embedding identifies DRCH hyperarcs with RELFUN lists. Our sample DRCH of Fig.
9 can then be processed in this form :

drlh[tup[sharpen, stone ,cntct [axle,drlh[tup[1ixed,axle,b ottomblade],
tup[turn,axle,topblade]]]],

tup[cut,cntct[turn,drlh[tup[1ixed,axle,bottomblade],
tup [turn,axle ,topblade]]] ,paper]"

tup[wrap,paper, stone] ,
tup[hang,nail,stone,paper],
tup[scroll,cntct[screen,drlh[tup[wired,keyboard,screen],

tup[pre1erence ,wrap, scroll] ,
tup[pre1erence , sharpen, wrap] ,
tup[pre1erence,cut,sharpen] ,
tup[preference,hang,cut]]

tup[color,screen]]]] ,

The above use of [square] brackets for structures F[ql, .. . , am] makes explicit that they just
denote themselves: each operator F E {cntct, drlh, tup }-with cntct being binary, drlh and
tup of variable arity-is employed here passively; it would not even require a definition. A REL
FUN operator-of fixed or variable arity-can also be called actively with (round) parentheses;
in this case it must have a definition that is applied to the recursively evaluated arguments .

This LISP-like distinction (of 'quoted' vs. 'non-quoted' expressions) will be exploited for
what we call "self-normalization": normal-form term-rewriting rules are associated directly with
every main operator:F. The definition of every :F will assume that each argument ai of a call
:F(al, ... , am) is normalized through call-by-value evaluation, and applies a rule with a matching
left-hand side (lhs), whose right-hand side (rhs) constructs the normal form of the main call.
Normal forms, then, employ" [...] " -structures to indicate the irreducibility of the represented
data collections. For example, the definition of drlh given later will transform the un-normalized
(set-degenerated) call drlh(b,c,b,a) to the normalized structure drlh[a,b,c].

Our representation of DRCHs with the three constructors cntct , drlh, and tup also permits
their formal definition as a "constructor algebra" [BoI84]. (The other graph concepts intro
duced in section 2 could all be formalized as special cases of the below definition.) Here, we
regard the set of all DRCHs over a given set A of atomic labelnodes as the carrier U of a
"many-sorted" [GTW78] algebra generated from the carrier A by (nested) applications of the
DRCH-construction operators4 . Along with the domain and range carriers of each operator, its
(active) "(...)"-application to arguments will be defined as the trivially corresponding [passive]
" [...]" -structure, which amounts to a sorted Herbrand-universe construction of the carriers.
The 'syntactic' constructor-term nestings in U are partitioned into 'semantic' equivalence classes
(or quotients) by axioms formulated as equalities. It is these equations on which our normalization
rules-as their oriented versions-are relying.

The below definition is somewhat less rigid but more concise than those in [BoI84] because it
employs ellipses (" . . . ") for specifying the n-ary and m-ary constructors drlh (n ~ 0) and tup
(m ~ 1) instead of reducing them to binary operators5 . (This formalization does not distinguish
the first tup element as the hyperarc label, but only requires the presence of m ~ 1 labelnodes, so
that labeled hyperarcs connecting a label and m - 1 nodes can be easily reinterpreted as unla
beled hyperarcs connecting m nodes, as illustrated in section 5.) Furthermore, the metavariables
C and P are employed as placeholders for several possible carrier sorts, including U. The con
structors can then be understood as generic operators abstracting from an infinity of concrete

{Two further carriers will be generated as auxiliaries. A possible self-representation of DRCHs could distinguish
the carrier U as the contact labelnode of a complex labelnode representing the DRCH algebra.

5 Also, we now rely on commutativity for preparing the application of other axioms, and axiomatize contact
labelnodes via binary cntct structures rather than unary tags.

12

operators for each fixed arity and argument sort . Object variables are written as (possibly in
dexed) small letters, e.g. 11, which are implicitly typed by the (meta)sort with the corresponding
capital letter , e.g. £ .

Definition 1 (The Constructor Algebra of DR£Hs)

Given a finite carrier

A: Atomic labe/nodes

three further carriers

1i: Hyperarcs
U: Uncontacted complex labe/nodes (the set of DR£Hs over A)
c: Contacted complex labe/nodes

are generated through mutually inductive application of three corresponding constructors
(£-'£abe/nodes'-standing for A or U or C, and P-"Pieces'-for £ or 1i):

m~l

~---""""--
tup : '.c x £ x ... X .c' -+ 1i
tUP(ll' 12 , ... , 1m) = tup[/l' 12 , . .. , 1m]

n~O
,---.--"'-----.

drlh : P X P X . . . X p' -+ U
drlh(pl' P2, . .. ,Pm) = drlh[pl, P2 , ... , Pm]

cntct : £ X U -+ C
cntct(l, u) = cntct[/, u]

The following axioms are postulated for the constructor terms:

drlh[.. . , p, pl , .. . J = drlh[. . . , p' , p, . . . J

drlh[. .. ,p, P, ...] = drlh[. .. , p, ...]

drlh[. .. , tup[... , I, .. . J, I, ...] = drlh[. . . , tup[. . . , I, ... J, . ..]
drlh[. .. , cntct[/, uJ, U, . . .] = drlh[. . . , cntct[/, ul, . . .]

cntct[/ , drlh[/, .. . J] = cntct[/ , drlh[. . .]]

(commutativity of drlh)

(idempotence of drlh)

(adsorption of labe/node by tup)

(similpotence of cntct and drlh)

(contaction of labe/node by cntct)

All equations except the term-size-preserving first one decrease term size if read from left to
right. Except for the last equation this term-size-decreasing orientation is also used for the
corresponding normal-form term-rewriting rules. The reason for the inverse (term-size-increasing)
use of contact ion is to have alllabelnodes of a DR£H represented within the drlh term, restricting
the role of the cntct term to the distinction of one of them.

Before proceeding to the RELFUN definitions of the DR£H constructors, let us see how sim
ple term-rewriting rules and their call patterns are specified in this language:

A rule Ihs ---+ rhs is written Ihs ; -,t rhs. Here ",t~' indicates that the rhs returns a value
(while the rhs of PROLOG's " ; -" generates bindings only).

A pattern.:F(al, .. . ,am ,Xl,X2, ...), with "al, . . . ,am " matching m ~ 0 fixed elements and
"Xl, X2, . .. " matching a 'rest' of zero or more further elements, is written .:F(al, ... , am I X).
Here "I" indicates that the variable X binds the entire 'rest' as a single list (hyperarc)
tup [Xl, X2 , .. .J . For m = 0, the often needed special form .:F(Xl' X2, ...) looks like .:F(1 X).
(Generalizing LISP's dot and PROLOG's vertical bar, RELFUN's "I" can (1) occur in lists,
arbitrary structures, or even calls and (2) follow directly after a bracket or a parenthesis.)

The definition for tup calls embodies the "identity" transformation of self-normalization:
tUP(Yl, Y2, .. .) ---+ tup[Yl, Y2, ...]. In RELFUN the lhs becomes a pattern tup(1 Y) . This uses the
functor tup and the 'rest' variable Y, matching its zero or more arbitrary arguments . Similarly, the

13

rhs becomes tup[IY] , splicing the 'rest' value back into a-now passive-tup term6 . Together,
this leads to the following RELFUN clause:

tup(IY) :-a tup[IY].

Thus, to construct an arc (three-element list) with-say-label 1, first node 2*1, and second
node 2+1, we can evaluate tup(l,2*l,2+1) , which returns tup[l,2,3] .

We will often need a LISP-eons-like DRCH constructor, which is defined to match arbitrary
drlh structures in its second argument. This eonsdrlh function only preserves normal forms if
its first argument is to simply extend the second argument by a new 'front' (head) element X:

eonsdrlh(X,drlh[IR]) :-a drlh[xIR].

For example, the call eonsdrlh(tup(1,2*l,2+1) ,drlh(b,e,b,a)) returns the normal form
drlh[tup[l,2,3] ,a,b,e]7.

The definition of the central drlh constructor is done here by a kind of insertion sort with two
merging functions: mergearrow for hyperarcs and merge box for labelnodes. As a special case
this includes set normalization, i.e. duplicate removal (relying on idempotence) and canonical
ordering (relying' on commutativity). For the general case of DRCH normalization hyperarcs
remove quasi-isolated label nodes (relying on "adsorption" [BoI84]): in mergearrow , the hyperarc
argument erases all occurrences of its labelnodes found in the top-level of the DRCH argument; in
mergebox, the labelnode argument is discarded if it is found in a hyperarc of the DRCH argument .
In the canonical ordering for DRCHs, hyperarcs are "less than" (to the left of) isolated labelnodes,
permitting one-pass (look-ahead-free) merging even for mergebox: only after having 'survived'
the prefix of tup [...] terms, need a labelnode be inserted into the suffix of isolated labelnodes.
Details are given in appendix B.

The main drlh function can now be defined as alternating insertions of its hyperarc and
isolated-labelnode argument fronts into its recursively normalized argument remainders. The
first two clauses use a PROLOG-like 'neck' (or 'initial') cut, "!", for 'committing' callers directly
after a successfullhs match8

; since no general cut operator will be needed here, "!" is not written
as the first rhs premise but is encoded into the neck operator, obtaining"! -.t" .

drlhO
drlh(tup[IY] IR)
drlh(BIR)

!-a drlh[].
!-.t mergearrow(tup[IY] ,drlh(IR)).
:-.t mergebox(B,drlh(IR)).

For instance, both the calls drlh(b,2,tup(l,2,3),drlh(a,b,b,e),l,tup(2,2),4) and
drlh(1,tup(1,2,3),4,drlh(c,a,b),3,tup(2,2),b,tup(l,2,3)) normalize to the structure
drlh[tup[l,2,3] ,tup[2,2] ,drlh[a,b,e] ,4,b]. This shows that keeping DRCHs in normal
form permits subsequent equality tests being performed in linear time (" [...] " -structures must
agree character by character), just as in the special case of sets.

The definition of entet uses the function merge box to add the contact-labelnode argument
B to the drlh argument if it is not there already (only the value of the conjunct after ".t" is
returned).

entet(B,drlh[IR]) :- 0 is mergebox(B,drlh[IR]) .t entet[B,D].

As an illustration, entet(a,drlh(a,b,e,a,b,e)) reduces to entet[a,drlh[a,b,e]] , while
entet(d,drlh(a, b, e, a, b,e)) rewrites to entet [d,drlh[a, b, e,d]] .

6 Since V's value must have the 'rest' form tup[Yl.Y2 •.. .], the rhs could be simplified: it always instantiates to
tup[l tup[Yl .Y2 • ...]], which is "I "-spliced to Y itself. In general, for any variable X = tup [Xl.X2 • ...] and any
functor :F, the equality :F[I X] = :F[XI .X2 •...] holds, which for :F = tup specializes to tup [I X] = X.

7 After call-by-value normalization of the arguments, consdrTh(tup[l.2 .3] .drlh[a.b .c]) is matched by the
ihs, binding R to the 'rest' tup[a.b.c]j the rhs "I "-splices drlh[tup[l.2.3] Itup[a.b.c]] to the result.

SEven in a declarative language this restricted cut use is beneficial for local detenninism specification: it just
prevents "shallow backtracking" to the remaining clauses within an operator definition.

14

Returning to the sample DR.CH, it should be noted that it is not completely normalized be
cause at the bottom line the eless predicate called in the mergearrow and mergebox definitions of
appendix B performs lexicographic comparison. For instance, because of eless (color. wired),
call-by-value evaluation of the terminal complex labelnode

cntct(screen.drlh(tup(wired.keyboard.screen).
wired.
color.
wired.
tup(color.screen).
wired.
tup(color.screen).
keyboard»

would return

cntct[screen.drlh[tup[color.screen].
tup[wired.keyboard.screen]]]

4 Labelnode Sharing

In the compact diagram forms of DRCHs , a single labelnode box need physically appear only
once but can participate in several hyper arc arrows; if it is complex, it may also have multiple
contact-labelnode views as well as overlaps with other complex-labelnode boxes. In symbolic
linearizations, however, ext ra copies are normally made necessary for each such use of a labelnode.
This is due to the fact that in the two (or three) dimensions of a diagram there are infinitely
many 'directions' from which to access a box, while in the single dimension of a string or term
there are only two. The general issue for semantic net formalisms here is how to represent such
sharing of entities.

Programming languages that allow copy-free representations often do this with non-declarative
constructs such as explicit pointers. For instance, in LISP, rplaca-like destructive operations
could be employed to mimic directed graphs. However, the cyclic pointer structures thus created
are hard to debug or even print. Similarly, LISP property lists can directly represent DLGs via
the hashing mechanism for LISP atoms (DLG nodes) . But most of the set:f-get-like operations
for their processing cause (global!) side-effects . Also, neither of these representations is easily
extended to all kinds of sharing possible in DR£Hs.

Therefore, we propose a DR£H use of logical variables, PROLOG's declarative substitute for
pointers, as combined with fu nctional value returning in RELFUN 9 : like mathematical variables,
these are names that can be transparently substituted with their values, in contrast to the
reassign able variables of procedural programming. For the sharing of fixed (complex) labelnodes
only part of the expressiveness of terms with logical variables (non-ground terms) is required;
we only touch on the more general non-ground DR£lIs and do not treat the issue of set (ACI)
unification enhancements for the characteristic DR£H properties such as adsorption .

Atomic labelnodes are not often worth a shared user-level representation with logical vari
ables (most languages implement symbol tables with hashing); still there should be the pos
sibility of writing down a long non-isolated atomic labelnode only once, subsequently using a
variable in the hyperarc positions in which it occurs. If we want to share a labelnode like
very-long-atom in this fashion, we bind a new (shorter) variable name V to it, calling the
RELFUN is-primitive by V is very-Iong-atom. All occurrences of very-Iong-atom in any
hyperarc structure tup [. ..• very-long-atom •...• very-long-atom •...] are then replaced by
V occurrences, thus obtaining tup [. ..• V •...• V •...] .

9 Since RELFUN's logical variables are implemented in LISP, there is an implicit system-level use of LISP's
shared pointer structures.

15

Complex labelnodes can be shared similarly. Even if a complex labelnode is used with several
different contact labelnodes, it is possible to share its common drlh subterm. For sharing the
complex labelnode drlh [...], a new variable name D is bound to it via D is drlh [...] .
If drlh[...] occurs with contact labelnodes bl, ... , bM, i.e. in cntct[bl,drlh[. ..]], ... ,
cntct[bM,drlh[. ..]], the cntct terms are replaced by cntct[bl,D], ... , cntct[bM,D] ; oc
currences of drlh [...] without contact labelnodes are replaced by D occurrences , like atoms.

As an example for atomic and complex labelnode sharing let us extract the atom preference
as well as the drlh sub terms of the doubly contacted scissors complex and the singly contacted
terminal complex from the RELFUN form, shown in section 3, of ou! sample DRL:H, depicted
in Fig. 9:

Scissors is drlh[tup[fixed,axle,bottomblade] ,tup[turn, axle ,topblade]],
Terminal is drlh[tup[wired,keyboard,screen] ,tup[color, screen]] ,
Pref is preference a
drlh [tup [sharpen, stone , cntct [axle ,Scissors]] ,

tup[cut,cntct[turn,Scissors] ,paper],
tup [wrap ,paper , stone] ,
tup[hang,nail,stone.paper],
tup[scroll,cntct[screen,Terminal]],
tup[Pref ,wrap, scroll] ,
tup[Pref,sharpen,wrap],
tup[Pref,cut,sharpen] ,
tup[Pref.hang.cut]].

Of course, in the above example the three cntct terms with variables as second arguments
could again be named by unique variables, and, finally, the top-level drlh term could become the
value of a logical variable for use in still higher structures! 0 .

Moreover, each is call which 'sharing-abstracts' an entity to a lqgical variable can be trans
parently conjoined not only to the left (like a functional let expression) but also to the right
(like a functional where expression) of the structure in which the entity occurs!!. For instance,
the (is-embedded) drlh structure

D is drlh[tup[l,2000000000,3],tup[2000000000,2000000000]].

can be shortened equivalently to the let-like conjunction

V is 2000000000, D is drlh[tup[l,V,3],tup[V,V]].

or to the where-like conjunction

D is drlh[tup[l,V,3],tup[V.V]], V is 2000000000.

laThe constructive character of DRl:Hs, obvious from both their diagram and symbolic forms (also captured
algebraically in definition 1), prevents the 'self-containment' of complex labelnodes: infinite descending mem
bership sequences of complex labelnodes cannot be expressed in the DRl:H formalism proper; DRl:Hs, like
Zermelo-Fraenkel sets, are well-Jo'Unded. This foundation axiom is preserved by DRl:H sharing with purely logical
variables because no such variable may be bound to a term-eventually-containing this same variable (OCC'UT
check property). However, like most PROLOG implementations, the present RELFUN implementation omits
the occur check for efficiency reasons. This could be sanctioned by reinterpreting circular bindings like Self is
drlh [tup [escape ,Self, aagination]] as "rational trees" [CoI83), and the corresponding complex labelnodes as
DRl:H-generalized "non-well-founded sets" [Acz88) . While these issues only arise in the RELFUN embedding of
DRl:Hs, names and the ensuing circularities are unavoidable in the so-called "hierarchical graphs" [Pra69) . Our
algebra similarly constructs only finite-length hyperarcs, but this could be abandoned toward finitely describable
hyperarcs like Togo is tup [long,vay I Togo]. On the other hand, well-founded infinite sets like {a, 1,2, ... } lead to
the well-founded DRl:H generalizations of infinite complex labelnodes like drlh[O ,1, 2, ...] and infinite hyperarcs
like tup [natural ,0 ,1,2, ... J.

11 Both let and vhere are syntactic variations of >.-a.pp/ica.tion as used in LISP; our sharing concept corresponds
to >'-a.b~tTa.ction.

16

The naming device expanded here is a 'transient' construct employed only in the symbolic
DRCH form, mirroring physically shared diagram parts by logically shared subterms. Thus,
logical variables used for the purpose of DRCH sharing can be eliminated by back substitution . A
quite different issue is the 'permanent' use of variable-like devices already in the diagram form . For
instance, if the V-assignment is omitted entirely from the above example, D denotes a non-ground
DRCH, whose free variable V would also appear as a labelnode in the corresponding diagram
form . Such non-ground DRCHs can be used for representing, e.g., quantified predicate-logic
formulas. Thus, the diagrammatic treatment of existential quantification on the basis of Peirce's
(unlabeled) "lines of identity" (see [Rob]), viewable as connected graphs composed of (undirected)
"coreference links" [Sow84], can be simulated with existentially interpreted labelnode variables.
For example, in [Rob] the sentence "Some pain is good" is diagrammed with a single coreference
link between the concepts for pain and good; its predicate-logic form , (3X) pain(X) /I. good(X),
leads to a non-ground DRCH with X as labelnode variable, drlh[tup[pain,X] ,tup[good,X]].
[Bol77] details an alternative approach toward the DRCH treatment of predicate logic.

While the previous kind of sharing was based on hierarchic paths (recursive levels) for ab
stracting entities , overlaps of complex labelnodes can be exploited for non-hierarchic abstraction :
the common pieces of two or more overlapping complexes can be shared even though they are
not generally forming a single complex. To do this , we pack them into a newly created complex
labelnode; but then we must enable the original labelnodes to unpack it, so they can use the
pieces again.

In general, the unpack operator, a declarative feature described in [Hew77], has a data col
lection as its single parameter. If it is called in a data collection of the same type (as encoded
in the functor), it takes the elements of its parameter data collection out to the top-level data
collection . Thus, unpack locally simulates associativity of a non-associative data type . Its REL
FUN definition has a trivial , tup-like, 'context-free' clause, just for permitting its call-by-value
evaluation in the collection in which it will be used :

unpack(Collection) :-~ unpack [Collection] .

It has also a schematizable, 'context-sensitive' clause extending the normalization definition of
every collection that is to be unpackable, where the lhs pattern contains the unpack as a struc
ture (as produced by the 'context-free' clause); for DRCHs the clause, to be positioned anywhere
before the final clause, calls uniondrlh (cf. appendix A) in its rhs to unite unpack's parameter
drlh with the remainder drlh (which can be used as a structure since uniondrlh works by nor
malization) :

drlh(unpack[drlh[ly]] IR) !-~ uniondrlh(drlh[IY],drlh[IR]).

As an application of complex label nodes and the sharing of their overlaps, let us group
(episodic) knowledge into individual "belief contexts". These separate the beliefs of two or
more persons from each other, but may also overlap for the "shared beliefs" of certain persons.
If beliefs are represented as hyperarcs of a DRCH database, the belief context of each person
becomes a complex labelnode or DRCH subdatabase. We will consider the (DRCH consisting of)
two overlapping complexes in Fig. 10, the first-rfamed JohnBeliefs-representing the beliefs
of john, the second- named MaryBelieis- those of mary :

17

house

Figure 10: Two overlapping DR.CRs or, a DR.CR with two overlapping isolated complexes

18

JohnBeliefs is
drlh[tup[bankrupt,john] ,

tup [buy, john,house ,linda] ,
tup[gang,drlh[tup[command,marco,paul,greg,fred]]],
tup[hire,john,house ,cntct [marco,

tup [like , j ohn ,mary] ,
tup [like ,mary , john] ,
tup[mother ,linda,mary],
car,
fido] ,

MaryBeliefs is
drlh[tup[buy,john,house,linda] ,

tup [economical ,mary] ,
tup[economical,peter] ,
tup[give ,linda, car ,mary] ,
tup[like,john,mary],

drlh[tup[command,marco,paul,greg,fred]]]],

tup[like ,mary, john] ,
tup[mother,linda,mary] ,
drlh[tup[command ,marco ,paul ,greg,fred]],
fido] .

In a more abstract and maintainable version, the DR.CH of shared beliefs of john and mary
is bound to a logical variable JohnMaryShared; this can then be united with their private belief
DR.CHs using two unpack calls.

JohnMaryShared is
drlh [tup [buy , john,house , linda] ,

tup[like, john,maryJ,
tup [like ,mary ,john] ,
tup [mother , linda ,mary] ,
drlh[tup[command,marco,paul,greg,fred]] ,
car,
fido] ,

JohnBeliefs is
drlh(tup[bankrupt,john] ,

tup[gang,drlh[tup[command,marco,paul,greg,fred]]] ,
tup[hire,john,house,cntct[marco,

drlh[tup[command,marco,paul,greg,fred]]]],
unpack(JohnMaryShared)),

MaryBeliefs is
drlh(tup[economical,mary] ,

tup [economical ,peter] ,
tup [give ,linda, car ,mary] ,
unpack(JohnMaryShared)).

If such a drlh call (with parentheses) containing an unpack call is rewritten to a drlh structure
[with square brackets], the unpack is not immediately expanded but 'frozen' until the drlh
structure becomes activated by an explicit metacall.

Both kinds of sharing can be combined, e.g. the above overlap-sharing example can be further
abstracted by hierarchical sharing: all (contacted and uncontacted) occurrences of the complex,
labelnode drlh[tup[command,marco,paul,greg,fred]] can be replaced by a variable MPGF
to be bound to this complex using another is call .

19

5 Structure-Reducing Operations

DRCHs may have a rich structure consisting of both (finite but) arbitrary-length hyperarcs
and arbitrary-depth labelnode nestings. For analytical purposes it is often necessary to reduce
part or all of this structure, retaining only (complex) labelnodes or hyperarcs, perhaps only in
a certain labelnode-nesting level. At the extreme, such reduction operations end up with the
atomic labelnodes of the carrier set from which a DRCH was built; this carrier itself constitutes
a (degenerated) DRCH . Here, we will focus on the erasure of a DRCH's hyperarcs from the top
level (boxes) and from the complex labelnodes of all levels (boxesrec), and on the additional
dissolution of these complex labelnodes (atomicboxes).

For exemplifying such operations, the larger DRCH in Fig. 11 will be used, which can be re
garded as a simplified representation of a city's public transportation system. Its three top-level
complex labelnodes represent major transportation zones (A, B, and C), which are themselves
interconnected by far-distance transportation lines, represented by the top-level hyperarcs (with
contact labelnodes representing, e.g., main stations). Within the zones, there is a similar struc
ture for shorter-and-shorter-distance transportation . Finally, the atomic labelnodes represent
stations (or bus stops etc.). Since hyperarcs need represent nothing but transportation lines
here, this use of DRCHs also exemplifies their reinterpretation as directed recursive unlabeled
hypergraphs: the first element 11 of tup[/1' 12 , ... ,1m] is not distinguished as the label of a hyper
arc with m - 1 nodes, but is just the first node of an unlabeled hyperarc of length m. Since most
complex labelnodes are used more than once, the symbolic form of Fig. 11 employs is calls for
hierarchical sharing:

A is drlh[tup[a1,a2,a3,a5,a4],tup[a4,a2,a3] ,tup[a7,a4],tup[a8,a7,a6]],
B is drlh[tup[b1,b2,b6],tup[b4,b2,b1,b3,b5,b6] ,tup[b6,cntct[b72,B7]]],
B7 is drlh[tup[b72,b71],tup[b73,b71,b72,b73]],
C is drlh[tup[c2,c1,c4,c7],

tup [c3, c2] ,
tup[cntct[c61,C6],c4,c2,c3],
tup[c7,cntct[c65,C6]],
c5] ,

C6 is drlh[tup[c61,c63,c62] ,tup[c62,c61] ,tup[c65,c63] ,C64] •
C64 is drlh[tup[c641,c642],tup[c642,c641]] t
drlh[tup[cntct[a3,A] ,cntct[b1,B] ,cntct[c3,C]] ,

tup[cntct[b6,B],d,cntct[c7,C]],
tup[cntct[c3,C],cntct[a7,A]]].

The boxes operation reduces a DRCH by deleting its top-level hyperarcs and keeping its
labelnodes. The first clause handles a contacted DRCH by recursion into its un contacted ver
sion, reusing the contact labelnode for the result. The second clause returns the empty DRCH
unchanged. The third clause erases a leading hyperarc using apptupdrlh, which merges all la
belnodes of the hyperarc into the recursion result that boxes obtains for the remainder DRCH 12.

The fourth clause merges a leading labelnode into such a result .

boxes(cntct[B,drlh[IR]]) :-t cntct(B,boxes(drlh[IR])).
boxes(drlh[]) !-t drlh[].
boxes(drlh[tup[IY]IR]) !-t apptupdrlh(tup[IY],boxes(drlh[IR])).
boxes(drlh[BIR]) :-t mergebox(B,boxes(drlh[IR])).

For instance, the boxes of the transportation DRCH, depicted in Fig. 12, consist of the con
tacted zone labelnodes A, B, and C, and the atomic station labelnode d, without the far-distance
connections:

drlh[cntct[a3,A] ,cntct[a7,A] ,cntct[b1,B] ,cntct[b6,B] , cntct[c3,C] ,cntct[c7,C] ,d]

12By applying uniondrTh of appendix A to the DRCH-'converted' hyperarc, apptupdrTh could be defined indi
rectly but compactly: apptupdrlh(tup[IY) ,drlh[la) :-1: uniondrTh(drTh(IY) ,drTh[la).

20

Figure 11 : A DR.CH interpreted as an unlabeled transportation net

21

Figure 12: The boxes DR.CH of the transportation DRCH

22

G G

G
G

G G

. 13' The boxesrec D Figure .

G

G

. n DRCH RCH of the transportatlO

23

G

The boxesrec operation reduces a DR.CH by deleting its hyperarcs in all levels, keeping the
labelnodes intact. The first clause handles a contacted DRCH by recursion into both its un
contacted version and its contact labelnode. The second clause calls boxes for an input drlh
and uses mapdrlh (LISP-mapcar-like) to recursively apply boxesrec to each element of boxes'
intermediate DRCH result. For terminating these recursions over labelnodes, the third clause
just returns the remaining possible atomic-labelnode arguments unchanged .

boxesrec(cntct[B,drlh[IR]]) !-~ cntct(boxesrec(B),boxesrec(drlh[IR])).
boxesrec(drlh[IR]) !-~ mapdrlh(boxesrec,boxes(drlh[IR])).
boxesrec(B) :-~ B.

For example, boxesrec of the transportation DRCH, depicted in Fig. 13, exhibits the nested
zone structure without any links:

drlh[cntct[a3,drlh[al,a2.a3.a4.a5.a6.a7.a8]].
cntct[a7,drlh[al,a2,a3,a4,a5,a6,a7.a8]],
cntct[bl.drlh[cntct[b72.drlh[b7l.b72.b73]].bl.b2.b3.b4.b5.b6]].
cntct[b6.drlh[cntct[b72,drlh[b7l,b72.b73]].bl.b2.b3.b4.b5.b6]].
cntct[c3.drlh[cntct[c6l,drlh[drlh[c64l.c642] .c6l.c62.c63.c65]].

cntct[c65.drlh[drlh[c64l.c642] .c6l.c62,c63,c65]].
cl,
c2.
c3.
c4.
c5.
c7]] •

cntct[c7.drlh[cntct[c6l.drlh[drlh[c641,c642],c6l,c62,c63,c65]],
cntct[c65,drlh[drlh[c64l,c642] ,c6l,c62,c63,c65]],
cl,
c2,
c3,
c4,
c5,
c7]] ,

d]

The atomicboxes operation reduces a DRCH by deleting its hyperarcs and complex label
nodes in all levels, keeping only the carrier DRCH of its atomic labelnodes; the operation fails
for DRCHs with a complex contact labelnode unless it has an ('ultimately') atomic contact la
belnode. Thus, the first clause recursively replaces a DRCH contact labelnode that is itself a
cntct structure by the contact labelnode found in this inner cntct. The second clause handles
a DRCH contacted by an atomic labelnode (the 'universal' drlh pattern must not have a most
general unifier with it) via recursion into its uncontacted version, calling cntct for the contact
labelnode and the result. Like the second clause of boxes, the third clause returns the empty
DRCH unchanged . The fourth clause again uses apptupdrlh to erase a leading hyperarc, but
now recurses into the entire intermediate DRCH result. Similarly, the fifth and sixth clauses
now dissolve a leading complex labelnode with and without contact labelnode, respectively. Like
boxes' fourth clause, the seventh clause merges a labelnode, which here must be atomic, into
atomicboxes'recursion result for the remainder DRCH.

24

atomicboxes(cntct[cntct[B,drlh[I_]],drlh[IR]]) !-t
atomicboxes(cntct[B,drlh[IR]]).

atomicboxes(cntct[B,drlh[IR]]) :- not(mgu(drlh[I_] ,B)) t
cntct (II, atomicboxes (drlh[I R])) .

atomicboxes(drlh[]) !-t drlh[].
atomicboxes(drlh[tup[IY] IR]) !-t atomicboxes(apptupdrlh(tup[IY],drlh[IR])).
atomicboxes(drlh[cntct[B,drlh[IY]] IR]) !-t atomicboxes(apptupdrlh(tup[IY],

drlh[IR])) .
atomicboxes(drlh[drlh[IY] IR]) !-t atomicboxes(apptupdrlh(tup[IY],drlh[IR])).
atomicboxes(drlh[BIR]) :-t mergebox(B,atomicboxes(drlh[IR])).

In the transportation example, atomicboxes returns the stations, without any structure left:

drlh[al,a2,a3,a4,a5,a6,a7,a8,bl,b2,b3,b4,b5,b6,b71,b72,b73,cl,c2,c3,c4,c5,
c61,c62,c63,c641,c642,c65,c7,d]

Two operations 'dual' to boxes and boxesrec perform the dissolution of a DRCH 's top-level
complex labelnodes (arrows) and of all complex label nodes (arrowsrec), altering incident hy
perarcs such that a contacted complex labelnode is replaced by its contact labelnode, whereas
an uncontacted one generates a failure (unlike in the earlier definitions [BolSO]) . For the trans
portation system, having only contacted hyperarc members, these operations would show the
underlying connection structure, with the (top-level) zones omitted.

The operation atomicboxes could then also be defined simply as the function composi
tion compose [arrowsrec, boxesrec] , applying arrowsrec to the result of boxesrec . For set
degenerated normalized DRCHs (e.g. drlh [drlh [drlh [a] ,a, b] ,drlh [] ,a, c]) boxesrec acts
like the identity, while arrowsrec hence atomicboxes (here returning drlh [a, b, c]) correspond
to LISP's flatten for lists .

6 Searching Paths via Hyperarc Transits and Level Shifts

Path-searching is a classical non-trivial operation in semantic networks. Using DRCHs instead
of DLGs as the graph-theoretical basis, two generalizations of legal steps in a (directed) path
suggest themselves:

• Hyperarc transits: Starting from its first node nl, a DLG arc tup[/, nl, n2) can step to the
node n2. Starting from any of its labelnodes aj with 13 i < m, a directed labeled hyperarc
tup[al, ... ,aj, aj+l, .. . , am) can step to each of the .labelnodes aj with i + 1 :S j .:S m .

• Level shifts: For these , there is no analogy in DLGs. Starting from its contact label
node a, a complex labelnode a = cntct[a, drlh[. .. , tup[... , a, ... J, .. ~)) can step to the inner
occurrence of a, shifting the path level down to the context of the drlh structure; vice versa,
starting from an inner labelnode b also used as its contact labelnode, a complex labelnode
(3 = cntct[b, drlh[.. . , tup[... , b, ... J, ...)) can s~ep to the outer contact labelnode occurrence
of b, shifting the path level up to the environment of the cntct structure.

A DR.cH path, then, is a nesting of repetitionless labelnode sequences, written here as tup
structures: tup[start, ... , a , tup[a, ... , aj , aj, ... , b), (3, .. . , tup[... , tup[... , goal) .. .)) . It begins at a
top-level start labelnode and ends at a goallabelnode in any nesting level. Adjacent labelnodes
aj, aj inside any sequence are connected by hyperarc transits. Embedded sequences are connected
with adjacent contacted complex labelnodes a or (3 by level shifts.

These generalizations can already be discussed for single-hyperarc DR.cHs such as the ideal
ized depiction of human-computer interaction in Fig. 14:

13Labelnodes acting as labels could be excluded from paths by adcling the condition 1 < i.

25

eval

think

Figure 14: A DRCH interpreted as an unlabeled read-eval-print loop

drlh[tup[cntct[type,drlh[tup[look,think,type]]],
read,
eval,
print,
cntct[look,drlh[tup[look,think,type]]]]]

Here, a path with one embedded sequence leads from print to read, both in the top-level:

tup[print,
cntct[look,drlh[tup[look,think,type]]],
tup[look,

type] ,
cntct[type,drlh[tup[look,think,type]]],
read]

This path uses the final two labelnodes of the top-level hyperarc to step from print to the com
plex labelnode. It then shifts down into its context via the contact labelnode look . There, it
uses the inner hyperarc to step to type, 'skipping' think . It again shifts up to the top-level
environment of the complex labelnode via its contact labelnode type . Finally, it uses the initial
two labelnodes of the top-level hyperarc to step from the complex labelnode to read.

Note that the directed top-level hyperarc must be used twice in this path, because we first
need a later segment, then an earlier one. Of course, DLG arcs would be just "too short" for such
segmentation. So, while repeated labelnodes are prohibited inside sequences of a DRCH path , a
hyperarc may participate as often as it can be divided into segments using disjoint labelnodes. A
related difference between DLG and DRCH paths arises from parallel arcs and 'transit-equivalent'
hyperarcs: adjacent labelnodes in a path may be transit ted by several hyperarcs that need not be
parallel (anyhow impossible because of duplicate elimination in merge arrow) but may even cross
through them via disjoint intermediate labelnodes. Thus, by specifying a DRCH path only as
labelnode sequences, we abstract from the transit-equivalent hyperarcs for each pair of adjacent
labelnodes. An operation finding all hyperarc transits between a given pair of labelnodes could
be used to proceed from our abstract DRCH paths to concrete ones.

26

While in general DR.CHs the tup structures representing a path are not considered as hy
perarcs themselves, such a reinterpretation is applicable to hypergraphs. In this special case a
DR.CH path consists only of one un-nested labelnode sequence, whose tup representation can
be viewed as a single hyperarc. (After further specialization to DLGs, such an incorporation of
an arbitrary path into the graph traversed becomes impossible because of its binary arcs.) For
example, in the hypergraph part of the DR.CH JohnBeliefs in Fig. 10 there is a path from
bankrupt to linda, whose tup representation tup[bankrupt,john,linda] can be reinterpreted
as a hyperarc. Similarly, in MaryBelief s the path tup [linda , car] is also viewable as a hyper
arc. For the DRCH union of JohnBeliefs and MaryBeliefs (cf. appendix A) these hyperarcs
provide a shortened, jOhn-less path from bankrupt to car, namely tup[bankrupt ,linda, car] .

The main path-searching function trav takes a (normalized) DRCH argument, Net, in which
to search from the Start to the Goal argument. (Since Start may itself be a contacted DRCH
in whose level can be shifted immediately, let may well be the empty DRCH.) This user inter
face just calls the workhorse function traverse with the first argument tup-embedded and the
second argument doubly tup-embedded: the main tups represent (length-one-initialized) stacks
of DRCHs (Hetstack) and paths (Pathstack), respectively, the inner tup, a length-one path.

trav(Het,Start,Goal) :-t traverse(tup[Het],tup[tup[Start]] ,Goal).

During the search traverse grows the top path from right to left, with the front element
always being the new Start labelnode from which to continue. On level-shifting down into
a contacted DRCH cntct[a , drlh[.. . J], its context drlh[... J is pushed onto Hetstack and the
length-one path of its contact labelnode tup[aJ is pushed onto Pathstack. Similarly, level-shifting
up from a contacted DRCH is realized by parallel pop operations on letstack and Pathstack.
The full implementation of traverse, including hyperarc transits, can be found in appendix C.

As a larger example, let us consider a path through the transportation system (Fig. 11) from
the top-level station d to the station b73 in subzone B7 of zone B:

tup[d,
cntct [c7 ,C] ,
tup[c7,

cntct[c65,C6],
tup[c65,c63,c62,c61],
cntct[c61,C6] ,
c3] ,

cntct [c3, C] ,
cntct[a7,A] ,
tup[a7,a4,a3],
cntct[a3,A] ,
cntct[bl,B] ,
tup[bl,

b6,
cntct [b72, B7] ,
tup[b72,b73]]]

That b73 lies two levels below the top-level can be seen at the path's ending with a nesting of
three tup sequences14 .

14This shortest path is not the first one found by the trn function: it is not generally optimal for the aelllbtupall
call in the second tranrae clause (appendix C) to choose shorter pieces of a given hyperarc before longer ones;
also, the tup order in normalized DR.CHs cannot be optimized for arbitrary searches. An instructive detour in
trn's first solution is the final subsequence tup[b72,b71,b73] found in B7. Since in this embedded DR.CH the
small hyperarc tup [b72, b71] is lexicographically sorted before the circular hyperarc tup [b73, b71 , b72, b73] , it
is transitted first by findarrov; starting from b71 in the next trnerae recursion, the circle provides the only
transits, which-since b72 already occurs in the path-causes a direct skip to the Goal labelnode. Such "virtual
repetitions" of labelnodes in a path could be prevented by extending trayerae's I).ot-aelllbtup checks to every
labelnode skipped by a transit .

27

I

I
I
I

I

-1-

_,
I

-1 -

I .

/, -1-
-',,\ ~
., I • •

'7 -',
I' ,

.!.;_'~
1\1' :
'/' '--..., -I--~

\
\

,

Figure 15: A 2D projection of a 'double-drum' workpiece

7 A Mechanical Engineering Application: Parts Lists

The application of DR.CHs for representing and processing real-world knowledge will be exem
plified in the domain of mechanical engineering15 . Aspects of the meaning an engineer 'sees' in
a CAD-like graphics of a workpiece (Fig. 15) can be captured by a DR.CH diagram (Fig. 16) :
individual subparts (drums and a disk) and connection devices (nuts and bolts) are represented
as instances of abstract concepts, and their (fastening and adjacency) relationships are expressed
explicitly.

Note that we use length-one hyperarcs for representing the application of unary predicates
like drum to individuals like dr1; most other formalisms for semantic networks would require some
auxiliary isa-like "3" -link here. Also, we exploit the variable lengths of hyperarcs to obtain an
'analogical' representation in which relations like fasten mirror with their arguments the natural
order of objects; the adjacent relation even has both binary and ternary occurrences, where,
however, the latter can be viewed as an abbreviation for a pair of binary ones16 .

Atomic boxes or labelnodes such as bolt could be recursively refined to complex ones for
describing objects' internal properties such as geometry, material, and function. Conversely, the
entire DR.CH could be used as a single complex box in a larger workpiece representation .

15The Acquisition, Representation, and Compilation of such TEChnical knowledge is studied in the CIM-oriented
project ARC-TEC at the Gennan Research Center for AI (DFKI).

16 An engineer could infer further adjacency relationships (e.g. between dr2 and nUl/nu3) with high plausibility.
In AI systems such inferences would require functional knowledge about typical mechanical constructions, whose
representation will not be discussed here.

28

Once the knowledge is diagrammed as the DR.CH in Fig. 16, its symbolic representation

DoubleDrum is drlh[tup[adjacent,dr2,dii,dri],
tup[adjacent,nui,nu2],
tup[adjacent,nu3,nu4],
tup[bolt,boi],
tup[bolt,bo2],
tup [disk, dil] ,
tup[drum,dri],
tup[drum,dr2],
tup[fasten,boi,dri,dii,dr2,nui,nu2],
tup[fasten,bo2,dri,dii,dr2,nu3,nu4],
tup[nut,nui] ,
tup[nut,nu2],
tup[nut,nu3] ,
tup[nut,nu4]]

can be employed for performing various operations. For example, if DoubleDrumV is bound to a
DoubleDrum variant with boi and bo2 exchanged throughout by bo3 and bo4, respectively, the
DRCH intersection (cf. appendix A) interdrlh(DoubleDrum,DoubleDrumV) returns a 'loosened'
version without bolt and fasten relationships: such a "maximal common subrepresentation" of
two workpiece representations can be regarded as a result of their "analogy matching", useful
for similarity planning. Alternatively, boxes or boxesrec (cf. section 5) show the incredient
labelnodes of DoubleDrum (here equivalent because there are no complex boxes): this is the
"domain vocabulary" to be understood when interpreting CAD graphics (a refined version is
the partslist operation below). Finally, tray (cf. section 6) finds a path from boi to nu4 by
changing the fasten hyperarc at drl, dil, or dr2: for designing or diagnosing a workpiece it is
important to know that and how mechanical force , thermic energy, or electric current might be
transmitted between two given points.

These library operations can easily be extended by further RELFUN definitions. For instance,
suppose we want to generate parts lists from workpiece nets such as DoubleDrum. Let each list
entry simply consist of the kind of part and the number of its occurrences. This information will
be represented as a binary second-order relation card between a concept (unary predicate) and
the cardinality of its extension (number of individuals) . So, in the "generalized parts list problem"
a given DRCH is to be transformed into a DLG of all arcs tup[card, concept, n], where concept
acted as the label of length-one hyperarcs tup[concept, ind] and n is the number of labelnodes
ind that concept was pointing to17 .

Our solution has the form of an operation definition -partslist, declaratively composed of
two suboperations, namely concount followed by redcard. While concount augments a DRCH
by isolated complex labelnodes each containing a card relationship, redcard deletes all DRCH
pieces except these card relationships. In concount we utilize the canonical ordering of DRCH
pieces, thus relying on the DRCH being normalized .

The operation concount ("concept counts") distinguishes through its clauses three forms of
its DRCH argument: it may start with a length-~ne hyperarc, with some other hyperarc, or
it may have any further form . In the firs t case concount hands the length-one hyperarc to a
corecursive operation incind for counting the individuals of its label concept (initializing the
counter with 1) . In the second case the non-length-one hyperarc is constructed to the result of
concount's recursion into the DRCH remainder. In the third case the DRCH, which may start
with a labelnode or may be empty, is returned unchanged.

The operation incind ("increment individuals") distinguishes two forms of its DRCH argument:

17 IT the DoubleDrua net also included subslUles relationships tup[subslUles, conce~t, ",ubconceptj between con
cepts and their subconcepts (e.g. tup rsubslUles ,cylinder ,disk] and tup rsubslUles, cylinder ,drUJll]), an ex
tended version could be defined to sum up the number of individuals pointed to by a concept, all its subconcepts,
subsubconcepts, etc. In heterarchies, an individual which is, e .g., both a disk and a drua should be counted only
as one cylinder.

29

Figure 16: A DRCR representation of the double drum

Figure 17: A DLG re-representation of the double drum

it may start with two length-one hyperarcs having the same Concept or with any length-one
hyperarc. In the first case the front length-one hyperarc is constructed to the result of an incind
recursion with a I-incremented counter and the remainder DRCR. In the second case the length
one hyperarc is constructed to the result of merging a complex box into the result of a concount
corecursion with the remainder DRCR: the complex box contains the hyperarc's label Concept

30

and its final counter state N as the nodes of a new card arc. (The canonical ordering prevent~
another hyperarc occurrence having the same label Concept, i.e. it is a symbolic analogue to the
"labelnode locality of information" in diagrams.)

,
concount(drlh[tup[Concept,Ind] IR]) !-~ incind(l,drlh[tup[Concept,Ind] IR]).
concount(drlh[tup[IY] IR]) !-~ consdrlh(tup[IY],concount(drlh[IR])).
concount(drlh[IR]) :-~ drlh[IR].

incind(N,drlh[tup[Concept,Indi],tup[Concept,Indii] IR]) !-~

consdrlh(tup[Concept,Indi],incind(l+H,drlh[tup[Concept, Indii] IR])).
incind(N,drlh[tup[Concept,Ind] IR]) :-~

consdrlh(tup[Concept,Ind],mergebox(drlh[tup[card,Concept,H]],
concount(drlh[IR]))).

For example, the is call DoubleDrumC is concount (DoubleDrum) is equivalent to

DoubleDrumC is drlh[tup[adjacent,dr2,dil,drl],

tup[nut,nu4],
drlh[tup[card,bolt,2]],
drlh[tup[card,disk,l]],
drlh[tup[card,drum,2]],
drlh[tup[card,nut,4]]]

The operation redcard ("reduce to cardinalities") uses three clause patterns for its DR.CH
argument: it may be the empty DRCH, start with a complex labelnode containing a card arc,
or start with anything else. In the first case redcard just returns the empty DRCH. In the
second case the complex-Iabelnode-extracted card arc is constructed to the result of redcard's
recursion into the DRCH remainder . In the third case the DRCH front is discarded and redcard
immediately recurses into the DRCH remainder .

redcard(drlhO) !-~ drlh[].
redcard(drlh[drlh[tup[card,Concept,H]] IR]) !-t

consdrlh(tup[card,Concept,N],redcard(drlh[IR])).
redcard(drlh[_IR]) :-~ redcard(drlh[IR]).

For example, the call redcard(DoubleDrumC) returns

drlh[tup[card,bolt,2],
tup[card,disk,l] ,
tup [card, drum, 2] ,
tup[card,nut,4]]

Now, the main operation partslist can be obtained simply as a compose of redcard and
concount .

partslist :-t compose [redcard, concount] .

For instance, the desired call partslist (DoubleDrum) is equivalent to the preceding call
redcard(DoubleDrumC).

Let us conclude these declarative DRCH operations by noting that many of them have mean
ingful DLG specializations. It was already mentioned that the DoubleDrum example has no
complex labelnodes and that its adjacent hyperarcs can be reduced to arcs. Its :fasten hyper
arcs could be simulated by introducing two "relationship nodes" :fasten' and :fasten I I with
six "role arcs" (here just ordinal numbers) pointing to the bolt, the nuts, and the parts to be
connected. Similarly, the unary hyperarcs could be re-represented as "inverse-isa arcs" (here
symbolized by heavy lines). The resulting (less succinct!) DLG in Fig. 17 is close to represen
tations in other semantic net systems such as KL-ONE. For it, the op'erations interdrlh and

31

boxes/boxesrec could be used directly, producing analogous results (the latter would however
also show the artificial relationship nodes). On the other hand, trav could not be used since
role arcs would have to be traversed in both directions (this loss of a meaningful concept of
directed paths in the standard DLG simulation of n-ary relationships is a main criticism of
standard semantic networks). Finally, partslist could be reformulated to produce the original
result (which already happened to be a DLG).

8 DR£H Database Storage and Retrieval

In the previous sections we have treated DR£Hs exclusively in the form of terms passed as
arguments, bound to logical variables, and returned as values. For large nets, however, some
more persistent DR£H form may also be necessary, e.g. for associative storage and retrieval. As
discussed in the introduction, we attempt to cleanly separate such imperative database aspects
from the declarative operations.

In this section a simple representation for asserting DR£Hs into associative RELFUN data
bases is given (the kind of database where operator definitions are stored) . Furthermore, a stan
dard interface b~tween this asserted representation and the declarative external representation is
sketched.

We will consider two possibilities: to assert a DR£H as a whole, and to assert its tup, cntct,
drIh, and atomic elements individually and regarding all these asserted DR£H pieces in the
database as implicitly constituting one DR£H. The latter method is more general because the
case of a single asserted drIh 'piece' corresponds to the former method.

For representing the unique normal forms of such pieces in assertions and queries, we just
embed them into calls of a new unary predicate, net.

By virtue of call-by-value evaluation, net arguments that are "(...)" -calls of tup, cntct, or
drIh are normalized to "[...]" -structures before they are seen by the main net call. Thus,

net(cntct(screen.drIh(tup(wired.keyboard.screen).wired)))

really means

net(cntct[screen.drIh[tup[wired.keyboard.screen]]])

In this way the user can ensure that DR£H pieces are always normalized before database storage
and retrieval.

The net predicate is defined by asserting facts only, one for the storage of each DR£H piece.
Retrieval is done by querying these facts using associative net patterns with named (e.g. "Who")
or anonymous ("_") variables.

For instance, the DR£H we called MaryBeliefs in section 4 (see Fig. 10) can be asserted by
the following sequence of net facts:

net(tup[buy.john.house.linda]).
net(tup[economical.mary]).
net(tup[economical.peter]).
net(tup[give.Iinda.car.mary]).
net(tup[like.john.mary]).
net(tup[like.mary.john]).
net(tup[mother.linda.mary]).
net(drIh[tup[command.marco.paul.greg.fred]]).
net(fido).

Now, the query

net(tup[economical.Who]).

32

non-deterministically binds Who to mary or peter, and

net(drlh[tup[Label,marcol_] 1_]).

succeeds once by binding Label to command.

If a second DR.CH, say JohnBeliefs, is to be asserted into the same database, "belief
interference"-after loss of the original DRCH boundaries-could be avoided by now storing
both belief contexts as isolated complex labelnodes:

net(drlh[tup[buy,john,house,linda] ,

fido]) .

net(drlh[tup[bankrupt.john],

fido]) .

However, in this representation the two previous queries would involve complicated patterns.
An alternative is to give the net predicate an extra argument, naming the 'module' in which
DRCH pieces are to be asserted , say mb for MaryBelie:fs and jb for JohnBelie:fs (this would
also permit separate storage of shared beliefs such as those in JohnMaryShared, mirroring our
declarative overlap sharing):

net(tup[buy,john,house.linda],mb).

net(fido,mb).
net (tup[bankrupt ,john] .jb).

net(fido,jb).

Since the module name is the second argument, an anonymous 'rest ' variable would still permit
a single call to retrieve not only from any module but also from module-less unary net facts .
Thus, while

net(tup[Rel,lindaIWhat],mb).

queries mary's module for all relationships in which linda participates as the first argument,

net (tup[Rel ,linda 1 What] 1_).

queries all unary and binary net facts for the linda relationships.

Instead of letting the user make piecemeal assertions · and queries , it is possible to define a
standard interface to net facts, which takes as argument and returns as value the entire global
DR£H (we will discuss a simple version without module'names). On globally asserting a DRCH,
a previously stored global DRCH will be overwritten. Thus, the global DR£H can be modified
by retrieving it, transforming it declaratively, and storing it again.

Besides the advantage of encapsulating procedural updates to a narrow interface, this method
also avoids another problem of piecemeal updates: keeping the global DRCH in normal form .
For instance, after asserting our previously normalized cntct structure by

net(cntct[screen,drlh[tup[vired,keyboard,screen]]]).

an attempt to assert its again normalized uncontacted drlh version by

net(drlh[tup[vired,keyboard,screen]]).

should add nothing to the global DRCH because the "similpotence" property (cf. section 3 and
appendix B) causes a cntct to swallow its drlh18. Our standard net interface need not deal

18 Although an assertion operation that performs such global DR.eH normalization could be defined, it would be

33

with such dependencies between assertions because it stores the global DRCH as a single self
normalizing term. Instead of the above pair of assertions we write

storedrlh(drlh(cntct[screen,drlh[tup[wired,keyboard,screen]]],
drlh[tup[wired,keyboard,screen]]».

whose argument becomes drlh [cntct [screen ,drlh [tup [wired ,keyboard, screen]]]], VIa
similpotence, before it is even 'seen' by storedrlh.

The storedrlh operation is defined to abolish the previous net and then using assertdrlh
to assertz each piece X of the given drlh structure as a net fact (as in PROLOG, abolish
retracts all clauses of a predicate, while assertz adds a new last clause):

storedrlh(drlh[IR]) :- abolish(net), assertdrlh(drlh[IR]).
assertdrlh(drlh[])!
assertdrlh(drlh[xIR]) :- assertz(net(X», assertdrlh(drlh[IR]).

The complementary, parameterless retrievedrlh operation calls a (PROLOGish) bagof, to
collect all X for which net (X) holds (i.e. all DRCH pieces) in tup [I S], and returns their drlh
normalization result drlh(I S):

retrievedrlh() :- bagof(X,net(X),tup[IS]) t drlh(IS).

The composition storedrlh(retrievedrlhO) replaces any database net by its globally nor
malized form. Also, with d being any normalized uncontacted DRCH, the valued conjunction
storedrlh(d) t retrievedrlhO replaces any database net by d's pieces and returns d itself.

As an example of the interplay between these standard interface operations and our declara
tive operations suppose that the transportation DRCH of section 5 (see Fig. 11) was stored in
the global database by a storedrlh call. Now, if we want to replace this global DRCH by its
labelnodes united with drlh[tup[d,e,f] ,tup[f,e,d]], it is first retrieved by retrievedrlh,
then transformed by the declarative boxes and uniondrlh operations, and finally stored back by
storedrlh:

storedrlh(uniondrlh(boxes(retrievedrlh(»,drlh[tup[d,e,f],tup[f,e,d]]».

It is also possible to extract a DR.CH without isolated labelnodes from a non-net REL
FUN sub database of relations, exploiting a simple correspondence between DRCH hyperarcs' and
RELFUN relationships (for functional clauses this would be not so easy) : tup[al , a2, . .. , am] +--+

a1(a2, ... , am).

An operation retrievedrlhlogic can be defined like retrievedrlh but with tup [I S] con
taining a hyperarc tup [F I R] for any relationship F(I R), where F is a relation variable.

retrievedrlhlogic() :- bagof(tup[FIR],F(IR),tup[IS]) t drlh(IS).

This definition can only return a finite DRCH for a database with a finite number of (deducible)
relationships, in the simplest case, a database of facts. For the well-known DATALOG database

likes(john,X) :- likes(X,wine).
likes(mary,wine).

retrievedrlhlogic 0 would return the drlh structure

drlh[tup[likes,john,mary],
tup[likes,mary,wine]]

complicated by various kinds of implicit retracts. For instance, if the above nat facts were asserted in reverse order,
similpotence would require the contacted version to retract the uncontacted one. More frequently, on asserting a
hyperarc, adsorption would enforce retracts for all its labelnodes.

34

The complementary operation storedrlhlogic could be defined to assert facts representing
the (hyper)arcs of simple DRCHs like the above (as opposed to DRCHs with isolated label
nodes and complex labelnodes, which would require special treatment). Thus, the composition
storedrlhlogic(retrievedrlhlogicO) would 'extensionalize f the original DATALOG rule to
the fact likes (john,mary) .

9 Conclusions

The goal of our DRCH work was the development of a compact, elegant, and modular combina
tion of three graph generalizations with interchangeable diagrammatic and symbolic notations:
(1) Directed hyperarcs are introduced for the natural representation of n-ary relations. (2) Com
plex nodes (with optional contact nodes) are permitted for providing nested depths of description.
(3) Labels are usable like nodes for obtaining higher-order capabilities. Generalizations (1)-(3)
can be employed individually or in any combination, tuning the expressive power of DRCHs to
the representation problems at hand . In our earlier DRCH papers these generalized graphs were
introduced, defined formally, implemented in FIT, applied to knowledge representation, and com
pared with alternative approaches. Based on the symbolic notation, the present article integrates
our DRCH work with our current RELFUN project, showing how 'logical' terms can be processed
as 'analogical' graphs.

Because of (2), DRCHs generalize not only directed labeled graphs but also nested sets. These
special cases constitute "pure structures" permitting a multitude of interpretations: set elements
as well as graph nodes and arcs have been used to stand for all conceivable things, from very
concrete ones to the most abstract. The study of purely structural set and graph properties
separately from their various interpretations-turned out to be rather fruitful, as it helped to
discover fundamental similarities and differences between superficially incomparable systems. We
have been following this same philosophy for the enriched pure structure of DRCHs, characterized
axiomatically in definition 1. As an example consider a path through a DLG, which can be
interpreted as a relational composition in a semantic net or as an activation chain in a neural
net, with similar notions of (semantic or neural) distance. However, DLGs are not rich enough to
refine naively drawn semantic and neural nets in order to represent their structural differences.
Thus, the differentiation is often made only on the basis of their different interpretations as
concepts or neurons. Using DRCHs, the internal structure of (assemblies of) concepts and neurons
can be differentiated with complex labelnodes, and their multiple connection structures can be
approximated with hyperarcs; then, the generalized path-searching and other DRCH algorithms
of this article would reveal further differences. Such finer structural tools can demonstrate why
1-to-l mappings must be replaced by m-to-n mappings wh~n 'implementing' concepts by neurons,
quite independently from the interpretation of neuron models as biological cells (which seem to
die more frequently than people forget learned concepts).

DRCH diagrams thus are not just an alternative, graphical representation of a well-known
symbolic formalism, but the formalism is itself constituting a generalized algebraic structure.
Many other diagram formalisms are defined by interpreting them as the surface form of a known
algebraic structure. Even semantic networks have often been formalized as a graphical version
of (a subset of (first-order)) predicate logic. For instance, recent KL-ONE versions are so much
viewed as subsets of predicate logic that symbolic special-purpose notations have almost sup
planted the original KL-ONE diagrams. Another example is Higraphs [Har88], whose nodes
always represent sets, with complex nodes representing the union of their embedded nodes, and
a node-partitioning line representing the unordered Cartesian product of the partitions. In our
opinion a diagram formalism should not provide overly special 'built-in' interpretations as id
iosyncrasies one has to live with, but should be used-like sets or graphs-as a general basis
on top of which more specialized constructs may be optionally defined. This article emphasizes
dynamic versions of such constructs on the basis of D RCHs and RELFUN, e.g. the binary func
tion uniondrlh for uniting complex label nodes (see appendix A). However, it is also possible
to introduce their static versions on the sole basis of DRCHs, e.g. a 'union-label for length-two

35

hyper arcs leading from a complex labelnode to a new atomic labelnode that represents the union
of its embedded labelnodes. For instance,

drlh[tup[larger,ul,drlh[drlh[a,b,c],drlh[d,e]]],
tup[union,drlh[drlh[a,b,c],drlh[d,e]],ul]]

expresses the fact that ul, the five-element union of the two sets in {{a, b, c}, {d, e}}, is larger
than this set itself.

Our original motivation for directed hyperarcs came from Berge's definition of hypergraphs,
now updated in [Ber89] . He introduced undirected hyperarcs (edges) as subsets of a set of nodes
(vertices), drawing them like Euler-Venn diagrams for cardinalities greater two. Seeking diagrams
for relational structures, we introduced our directed version of hyperarcs, which can cross com
mon nodes without ambiguity. While Berge's edges are sets (unordered, without repetitions), our
directed hyperarcs are tuples (ordered, with repetitions). Of course, it is possible to introduce
other structures within edges, but we feel that n-tuples provide the most simple and natural con
cept of directedness: it is the obvious generalization of ordered pairs, i.e. directed binary arcs. If
the total node ordering of our directed hyper arcs should not be desired for an application requir
ing a partial order, we can use complex nodes as unordered sets within ordered hyperarc tuples.
For example, binary-operator precedences for simple arithmetic (in)equations can be specified by
the single hyperarc tup[prec, ,-, ,drlh['*', 'I'] ,drlh['+', '-'] ,drlh['=', '>', '<']]. The
special case of a directed arc between two complex nodes could be used to connect source and
target places in Petri nets (without reifying transitions as nodes). An ('in-ordered', 'out-ordered')
variant with a source and a target tuple instead of sets was called "polyedge" in [Lan69], which
can be represented by introducing a hyperarc within both complex nodes. The further special
ization to a directed arc with a set/tuple in the source only has been used to visualize signatures
of many-sorted algebras [GTW78] . Later, ('in-unordered', 'out-unordered') polyedges were also
called "directed hyperedges" [Har88].

The fact that most of Berge's undirected hyperarcs do not look like arcs but like set diagrams
has occasionally lead to their confusion with complex nodes. However, complex nodes, unlike
undirected hyperarcs, can be nested recursively and can be connected by directed hyperarcs.
The most influential work with respect to recursive graphs was Pratt's definition of hierarchical
graphs [Pra69]. He marked nodes with names of entire graphs, thus introducing the hierarchy
(but also permitting circularities, as indicated in section 4). Wishing to avoid the necessity of
names for our recursive graph generalization, we permitted the direct embedding of graphs into
graphs, in both figures and formulas. The present article shows that the resulting recursive data
structure, like LISP lists, permits most processing being specified as declarative operations.·

Based on an algebraic view of DRCH normalization [BoI84] and our RELFUN program
ming system [BoI90], the article extends work on DRCH operations formulated as FIT programs
[BoI80]. FIT permits more powerful 'parallel' patterns, which are realized, however, by breadth
first search. In RELFUN, a DRCH pattern may contain at most one variable that matches
arbitrary-size 'rests', hence matching is deterministic (we do not perform general DRCH unifica
tion). RELFUN "rule conflicts" are handled by depth-first search, where backtracking can often
be cut off immediately after the successful match of a DRCH rule pattern. Thus, RELFUN can
more easily exploit PROLOG's compilation technology for DRCH processing (on sequential com
puters) than FIT. Although the RELFUN interpreter kernel is itself implemented declaratively by
pure LISP functions, its efficiency was sufficient for developing the declarative DRCH operations
and processing the sample DRCHs of this article. However, to improve performance for larger
knowledge bases, we are developing a PROLOG-WAM-like compiler for RELFUN; it currently
handles the first-order RELFUN subset, allowing a 'rest' variable in hyperarc (list) patterns,
which can also be used to represent such variables for drlh terms (arbitrary structures).

While the generality of DRCHs has proved to be a continuing challenge for the efficient
implementation of our AI languages, as pure structures these generalized graphs do not seem to
pose new complexity-theoretical problems not already arising in DLGs. Reductions of DRCHs
to representation ally equivalent DLGs produce 'larger' data structures composed of 'smaller'

36

parts (compare Fig. 16 with Fig. 17). The increased size of the elementary DR.CH pieces
thus appears to be fully compensated by the decreased total data size. For non-trivial processes '
such as path searching the richer domain-structuring abilities of DRCHs may even suggest more
efficient solutions than DLG representations, e.g. by localizing the s~arch to the relevant complex
labelnodes (a potential of graph "contexts" already stressed in [PF71]), and by keeping it on
mainline hyperarcs as long as possible.

The interactive construction and exploration of large DRCH-structured knowledge 'spaces',
supported by modern graphics tools, remains a task for future work. Our dual view of DRCHs
as diagrams and terms calls for a pair of (cursor) synchronized windows, with input to (and
navigation through) each updating both user presentations19 . Automatic translation between
DRCH diagrams and terms is obviously easiest for diagrams ("with extreme labelnode copies"
[Bol77]) that copy a labelnode for all its hyperarc uses, as terms do; it appears to be hardest for
DRCH diagrams "without labelnode copies" .

This work should be accompanied by the development of specialized vocabularies and lan
guages enhancing the basic DRCH/RELFUN formalism. Our experience with the many opera
tions defined in this article suggests that RELFUN's patterns and rules are the proper medium
for specifying such extensions. A COMMON LISP implementation of RELFUN, with a LISP-like
syntax, and the declarative DRCH package are available as freeware for experimental use.

References

[Acz88] Peter Aczel. Non- Well-Founded Sets. Number 14 in CSLI Lecture Notes. CSLI, 1988.

[Baa90] Franz Baader. Terminological cycles in KL-ONE-based knowledge representation lan
guages . In Proceedings Eigth National Conference on Artificial Intelligence, pages
621-626. AAAI, AAAI-Press / The MIT Press, 1990.

[Bac78] John Backus. Can programming be liberated from the von Neumann style? a func
tional style and its algebra of programs. CACM, 21(8):613-641, August 1978.

[Ber89] Claude Berge. Hypergraphs - Combinatorics of Finite Sets, volume 45 of North-Holland
Mathematical Library. North-Holland, 1989.

[Bol77] Harold Boley. Directed recursive labelnode hypergraphs: A new representation
language. Artificial Intelligence, 9(1):49-85, 1977.

[Bo180] Harold Boley. Processing directed recursive labelnode hypergraphs with FIT programs.
Technical Report IFI-HH-M-81/80, University of ~amburg, Department of Computer
Science, September 1980.

[Bo184] Harold Boley. A treatment of collection data as constructor algebraS. Technical Report
MEMO SEKI-84-06, University of Kaiserslautern, Department of Computer Science,
October 1984.

[BoI90] Harold Boley. A relational/functional language and its compilation into the WAM.
Technical Report SEKI SR-90-05, University of Kaiserslautern, Department of Com
puter Science, Apri l 1990.

[Co183] A. Colmerauer. Prolog in 10 figures. In Proc. 8th IJCAI-83, Karlsruhe, pages 487-499,
August 1983.

[EHK] Hartmut Ehrig, Annegret Habel, and H. J. Kreowski. this volume.

19 For instance, when typing in ASCII tenns the interactive tool should also extend or even restructure the
diagram, like an online previewer for 'lEX-like text fonnatters. Conversely, on graphical input it should 'coadjust'
the symbolic fonn, in analogy to what we expect from a WYSIWYG surface for (a subset of) :u.TEX. Synchronized
graphics-and-ASCII interfaces would be useful for many other purposes such as CAD .databases.

37

[GTW78]

[Har88]

[Hew77]

[Lan69]

[Neb89]

[PF71]

[Pra69]

[Rob]

[Sch89]

[Sow84j

J . Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the speci
fication, correctness, and implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Methodology. Vol. IV, pages 81-149. Prentice-Hall,
1978.

David Harel. On visual formalisms . CACM, 31(5):514-530, May 1988.

Carl Hewitt . Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8(3):323-364, 1977.

Peter J. Landin. A program machine symmetric automata theory. Machine Intelli
gence, 5:99- 120, 1969.

Bernhard Nebel. On terminological cycles. In Preprints Workshop on Formal Aspects
of Semantic Networks, 1989. Two Harbors, CA.

Terrence W. Pratt and Daniel P. Friedman. A language extension for graph processing
and its formal semantics. CACM, 14(7):460- 467, July 1971.

Terrence W . Pratt. A hierarchical graph model of the semantics of programs. In Spring
Joint Computer Conference, pages 813- 825. AFIPS Conference Proceedings, Vol. 34 ,
1969.

Don D. Roberts. this volume.

James G. Schmolze. Terminological knowledge representation systems supporting n
ary terms. In Brachman, Levesque, and Reiter, editors, Proc. First Int . Conference
on Principles of Knowledge Representation and Reasoning, Toronto , pages 432- 443 ,
1989.

John F . Sowa. Conceptual Structures: Information Processing in Mind and Machine .
Addison-Wesley Publishing Company, 1984.

A Generalizations of Standard Set Operations

Since we have derived DR.CHs from list sets, a natural question is how to generalize the usual set
operations to them (in the normalized term representation) .

Particularly important is DRCH union, which is employed as a function uniondrlh in the
definition of unpack (cf. section 4) . As in sets, the binary union operation is intimately con
nected with the definition of DR.CHs. Since our definition uses the variable-arity drlh operator
to directly construct DRCHs of arbitrary cardinality (cf. section 3), uniondrlh can be defined in
terms of drlh: in the fourth clause, the elements Rand S of the two input DRCHs are appended
as tuples , and the elements T of the concatenated tuple are simply given to a drlh call for nor
malization. The first three clauses just deal with the union of contacted DRCHs: since only one
contact labelnode is permitted in a cntct term, two contacted DRCHs can only be united if they
have identical (actually, unifying) contact labelnodes B (first clause); if only one of the DRCHs
is contacted, this C or B is used as the contact of the union DRCH produced by the recursive
uniondrlh call (second and third clause).

uniondrlh(cntct[B,drlh[IR]],cntct[B,drlh[IS]]) :-t

cntct(B,uniondrlh(drlh[IR] ,drlh[IS]».
uniondrlh(drlh[IR],cntct[C,drlh[IS]]) :-t

cntct(C,uniondrlh(drlh[IR],drlh[IS]».
uniondrlh(cntct[B,drlh[IR]],drlh[IS]) :-t

cntct(B,uniondrlh(drlh[IR],drlh[IS]».
uniondrlh(drlh[IR],drlh[IS]) :-

tup[IT] is apptup(tup[IR],tup[IS]) t
drlh(IT).

38

Continuing the overlap example in Fig. 10 (see section 4), we can form its "belief union" by the
call uniondrlh(JohnBeliefs , MaryBeliefs) :

drlh[tup[bankrupt,john],
tup[buy,john,house,linda],
tup[economical,mary],
tup[economical,peter],
tup[gang,drlh[tup[command,marco,paul,greg,fred]]] ,
tup[give,linda,car,mary],
tup[hire,john,house,cntct[marco,

drlh[tup[command,marco,paul,greg,fred]]]],
tup[like,john,mary],
tup[like,mary,john],
tup[mother,linda,mary],
fido]

The basic idea of DR.CH intersection is to keep not only identical elements (hyperarcs and
isolated labelnodes) occurring set-like in both input DR£Hs but also labelnodes 'producible' from
a hyperarc or a contacted complex in the input DR£Hs. For hyperarcs, 'producible' means in
verse application of adsorption, tup[al, ... , ai, . . . , aml --+ ai, for contacted complex labelnodes,
inverse application of "similpotence" (cf. section 3 and appendix B), cntct[b, drlh[xl, ... , xmll
--+ drlh[:z), . .. , xml. In the interdrlh definition, the first three clauses again handle the ob
vious cases of contacted input DR£Hs. The fourth clause returns the empty DR£H if the first
argument is empty. The fifth clause expects the first argument to begin with a hyperarc tup [I y] ,
testing whether it is a member of the elements S of the second argument, viewed as a tuple: if yes,
it is merged into the recursion resul t of int erdrlh with a shortened first argument; otherwise,
inverse adsorption is performed by merging the elements of tup [I y] into the first argument,
using the auxiliary apptupdrlh (cf. section 5), and calling interdrlh with the enlarged first
argument . The sixth clause must deal with any labelnode B in the front of the first argument,

checking whether it is a member of the second argument, in the sense of a predicate membdrlh
discussed later: if yes, B is simply merged into the interdrlh result using a B-less first DR£H;
if no, but if B has the form of a contacted complex cntct [_, drlh [I T]] , inverse similpotence is
applied by replacing B with its uncontacted version drlh [I T] in the next interdrlh call; other
wise, the interdrlh recursion omits B entirely.

interdrlh(cntct[B,drlh[IR]],cntct[C,drlh[IS]]) :-t
if mgu(B,C)
then cntct(B,interdrlh(drlh[IR] ,drlh[IS]))
else interdrlh(drlh[IR],drlh[IS]).

interdrlh(drlh[IR],cntct[C,drlh [IS]]) :-t
interdrlh(drlh [I R] ,drlh [I S]) .

interdrlh(cntct[B,drlh[IR]],drlh[IS]) :-t
interdrlh(drlh[IR],drlh[IS]).

interdrlh(drlh[] ,drlh[IS]) ;-t drlh[].
interdrlh(drlh[tup[IY] IR],drlh[IS]) !-t

if membtup(tup[IY] ,tup[IS])
then mergearrow(tup[IY] ,interdrlh(drlh[IR],drlh[IS]))
else interdrlh(apptupdrlh(tup [IY],drlh[IR]),drlh[IS]).

interdrlh(drlh[BIR],drlh[IS]) : -t
if membdrlh(B,drlh[IS])
then mergebox(B,interdrlh(drlh[IR],drlh[IS]))
else if mgu(cntct[_,drlh[IT]],B)

then interdrlh(drlh[drlh[IT] IR],drlh[IS])
else interdrlh(drlh[IR],drlh[IS]).

For example, the call interdrlh(JohnBeliefs,MaryBeliefs) returns exactly the "maximum

39

belief overlap" used as the variable JohnMaryShared in section 4:

drlh[tup [buy,john,house, linda] ,
tup[like,john,mary] ,
tup[like,mary,john] ,
tup [mother , linda , mary] ,
drlh[tup[command,marco,paul,greg,fred]],
car,
fido]

The operation of DR£H difference has a structurally very similar definition, hence is not
further discussed here.

The subDR£H predicate generalizes the usual subset predicate essentially by an obvious
treatment of contacted arguments (first three clauses) and by employing the labelnode member
ship predicate membdrlh, discussed below (sixth clause).

subdrlh(cntct[B,drlh[IR]],cntct[C,drlh[IS]]) :-t
if mgu(B,C) then subdrlh(drlh[IR],drlh[IS]) else false.

subdrlh(drlh[IR] ,cntct[C,drlh[IS]]) :-t subdrlh(drlh[IR],drlh[IS]).
subdrlh(cntct[B,drlh[IR]] ,drlh[IS]) :-t false.
subdrlh(drlhD ,drlh[IS]).
subdrlh(drlh[tup[IY] IR] ,drlh[IS]) !-t

if membtup(tup[IY] ,tup[IS])
then subdrlh(drlh[IR],drlh[IS])
else false.

subdrlh(drlh[BIR] ,drlh[IS]) :-t
if membdrlh(B,drlh[IS])
then subdrlh(drlh[IR],drlh[IS])
else false.

For example, the call subdrlh(JohnBeliefs,MaryBeliefs) returns false, whereas the call
subdrlh(JohnMaryShared,MaryBeliefs) returns true.

Generalizing set membership , the DR£H member predicate tests whether a labelnode occurs
in a DR£H. The first membdrlh clause reduces a contacted DR£H argument to an un contacted
one. The second clause expects a DR£H beginning with a hyperarc and returns true ifmembarrow
(see below) can find the labelnode in it; otherwise, membdrlh recurses into the DR£H remainder .
While the third clause requires equality between an arbitrary labelnode and the DR£H front,
the fourth clause is satisfied with a similpotence relationship between an uncontacted complex
labelnode and its contacted version at the DR£H front (for such facts, neck cut is indicated by a
"!"-suffix) . The fifth clause just recurses into the DR£H remainder , and the sixth clause returns
false if the empty DR£H is reached .

membdrlh(B,cntct[_,drlh[IR]]) :-t membdrlh(B,drlh[IR]).
membdrlh(B,drlh[tup[IY] IR]) !-t

if membarrow(B,tup[IY])
then true
else membdrlh(B,drlh[IR]).

membdrlh(B,drlh[BIR])!
membdrlh(drlh[IS] ,drlh[cntct[_,drlh[IS]] IR])!
membdrlh(B,drlh[_IR]) !-t membdrlh(B,drlh[IR]).
membdrlh(B,drlh[]) :-t false.

For example, the second clause causes both the call membdrlh(gang,JohnBeliefs) and the call
membdrlh(drlh[tup[command,marco,paul,greg,fred]] ,JohnBeliefs) to return true, using
the gang hyperarc; if this were removed from john's beliefs, membarrow would still cause the
latter call to return true, using the hire hyperarc.

The membarrow predicate tests such similpotence membership of an uncontacted complex

40

labelnode in a tup structure containing its contacted version (second clause). For all other ar
gument types, truth-value computation is done exactly as in membtup, the normal membership
predicate for tuples (remaining clauses).

membarrow(B,tup[BIY])!
membarrow(drlh[IS],tup[cntct[_,drlh[IS]] IY])!
membarrow(B,tup[_IY]) !-I; membarrow(B,tup[IY]).
membarrow(B,tup[]) :-1; false.

B The Hyperarc and Labelnode Merging Functions

The mergearrow function merges a hyperarc into a normalized DR.CH so as to produce an ex
tended normalized DR.cH. The first clause ends recursion for an empty DRCH argument drlh[],
inserting the hyperarc argument A. The second clause just returns a DR.CH argument drlh [A I R]
starting with A. The third clause compares A with an arbitrary first DR.cH element X: if A is less
than X, in the sense of the canonical DR.cH-element comparison function eless, A is constructed
to the front of the DR.cH argument with all labelnodes used in A 'adsorbed' by an auxiliary
eatboxes; otherwise, A must be greater than X (equality was tested by the previous clause), so X
is constructed to the recursion result of mergearrow applied to A and the DR.cH without x.

mergearrow(A,drlhD)
mergearrow(A,drlh[AIR])
mergearrow(A,drlh[XIR])

!-I; drlh[A] .
!-I; drlh[A IR].
:-1; if eless(A,X)

then consdrlh(A,eatboxes(A.drlh[XIR]))
else consdrlh(X,mergearrow(A,drlh[IR])).

The function eatboxes leaves hyperarcs, i.e. structures tup [I Z] , in its DR.cH argument un
changed (second clause), but removes label nodes, i.e . all other terms B, that are a membarrow
(see end of appendix A) of its hyperarc argument tup [I y] (third clause).

eatboxes(tup[IY],drlh[]) !-I; drlh[].
eatboxes(tup[IY] ,drlh[tup[IZ] IR]) !-I; consdrlh(tup[IZ],

eatboxes(tup[IY],drlh[IR])).
eatboxes(tup[IY],drlh[BIR]) :-1; if membarrow(B,tup[IY])

then eatboxes(tup[IY],drlh[IR])
else consdrlh(B,eatboxes(tup[IY] ,drlh[IR])).

For example, the call mergear row(tup[l,2,3] ,drlh[l,4]) returns drlh[tup[l,2,3] ,4].

The mergebox function merges an (isolated) labelnode into a normalized DR.cH, again pro
ducing an extended normalized DR.cH. As in mergearrow, the first two clauses handle emptiness
and idempotence. The third clause captures one case of "similpotence" [BoI84]: a complex la
bel node drlh [Is] without contact labelnode to be merged into a DR.cH starting with some
contacted version cntct [C, drlh [Is]] is no longer uncontacted, i.e . becomes swallowed by re
turning the DR.cH unchanged. The fourth clause deals with the "adsorption" of a labelnode B
by a hyperarc tup [I y] of the DR.cH: if membarrow finds a B occurrence in tup [I y] , B cannot
be an isolated labelnode of the DR.cH, which is thus returned unchanged; otherwise, consdrlh
puts tup [I y] into the recursive mergebox result for B and the DR.cH without tup [I y] . The fifth
clause mainly treats commutativity: if B is eless than the DR.cH element C, then B becomes the
front of the DR.cH; otherwise, C is constructed to the result of mergebox applied to B and the
DR.cH without C. Also, in the eless branch, another case of similpotence is treated, compara
ble to the adsorption treatment in mergearrow's third clause: if B has the form of a contacted
complex labelnode cntct [_ ,drlh [IS]] (i.e . has a most general unifier with it), any uncontacted
version drlh[I 5] is removed from the remainder DR.cH (removedrlh corresponds to eatboxes
called with a length-one tup); otherwise, the remainder is not changed.

41

mergebox(B,drlh[]) !-~ drlh[B].
mergebox(B,drlh[BIR]) !-~ drlh[BIR].
mergebox(drlh[IS] ,drlh[cntct[C,drlh[IS]] IR]) !-~ drlh[cntct[C,drlh[IS]] IR].
mergebox(B,drlh[tup[IY] IR]) !-~ if membarrow(B,tup[IY])

then drlh[tup[IY] IR]
else consdrlh(tup[IY],mergebox(B,drlh[IR])).

mergebox(B,drlh[CIR]) :-~ if eless(B,C)
then if mgu(cntct[_,drlh[IS]] ,B)

then consdrlh(B,removedrlh(drlh[IS],
drlh [C 1 R]))

else drlh[B,CIR]
else consdrlh(C,mergebox(B,drlh[IR])).

For example, the call mergebox(l,drlh[tup[l,2,3] ,4]) returns drlh[tup[l,2,3] ,4] .

C The Traversal Function

In its first clause, traverse finds a complete path if the front element of the top path equals
the Goal argument: it returns the neststacked Pathstack argument (see below) with the se
quences reversed in all levels by an auxiliary revtuprec. The second clause performs hyper
arc transits in the top DR.CH Net of Netstack, Starting from the front labelnode of the top
path. The "transition finder" findarrow binds Resttup to tup[ai+l, ... , am] for each hyperarc
tup[al, . . . , ai, ai+l , .. . , am] in Net with ai = Start. The non-deterministic membtup variant
membtupall binds Next to successive elements of Resttup. (membtup and membtupall corre
spond to PROLOG member versions with and without neck cut, respectively.) For avoiding
circles, membtup is used to make sure that Next is not yet in the top path. With its top path
extended by each Next labelnode found by these three premises, traverse is called recursively.
The third clause shifts down into the level of cntct [B, drlh [I R]] at the front of the top path :
if the top-path remainder tup [I Path] does not have the form tup [tup [B 1_] 1_] of an immedi
ately preceding shift-up done in the fourth clause, a shift-down is performed by recursively calling
traverse with drlh[IR] pushed onto Netstack and tup[B] pushed onto Pathstack. The fourth
clause shifts up to the level of Net2, the next-to-top DR.CH : if cntct [Start ,Netl] , i.e. the top
path front used as a contact labelnode of the top net, is not yet a membtup of tup [I Pathup] ,
the next-to-top path, a shift-up is performed by recursively calling traverse with Net1 popped
from Netstack and the top path tup [Start 1 Path] popped from Pathstack but tup [I Pathupl
extended to tup [cntct [Start, Net 1] ,tup [Start I Path] 1 Pathup] (the new top path thus con
tains the old top path as an embedded sequence).

42

traverse(letstack.tup[tup[Goal 1 Path] IPathstack].Goal) :-t
revtuprec(neststack(tup[tup[Goal IPath] IPathstack]».

traverse(tup[letlletstack].tup[tup[StartIPath] IPathstack].Goal)
findarrow(let.Start.Resttup) .
membtupall(lext.Resttup).
not(membtup(lext.tup[St artIPath]» t
traverse(tup[letlletstack].tup[tup[lext.StartIPath] IPathstack].Goal).

traverse(tup[lletstack].tup[tup[cntct[B.drlh[IR]] 1 Path] IPathstack].Goal)
not (mgu(tup [tup [B 1_] 1_].tup[IPath]» t
traverse(tup[drlh[IR] Iletstack].

tup[tup[B].tup [cntct[B.drlh[IR]] 1 Path] IPathstack].
Goal).

traverse(tup[letl.let21Ietstack].
tup [tup [Start 1 Path] .tup[IPathup] IPathstack].
Goal) :

not(membtup(cntct[Start.letl] .tup[IPathup]» t

traverse(tup[let21 letstack] •
tup[tup[cntct[Start . letl].tup[StartIPath] IPathup] IPathstack].
Goal) .

The transition finder f indarrow tries to partition successive hyperarcs tup [I y] of its DR.CH
argumen"t such that its labelnode argument Start precedes a non-empty hyperarc postfix to be
bound to its tup argument. For this relational partitioning an inverse use of the PROLOG
append-like tuple-concatenation relation appendtup is made on tup [I y] in the first clause. All
leading tup [I y] elements of the normalized DRCH are recursively stripped off in the second
clause.

findarrow(drlh[tup[IY] IR].Start.tup[Succllodes]) :
appendtup(tup[I_) .tup[Start,SuccINodes) ,tup[IY)).

findarrow(drlh[tup[IY] IR].Start.Resttup) .
findarrow(drlh[IR] .Start.Resttup).

The auxiliary function neststack recursively front-nests a tup-stack of tuples.

neststack(tup[tup[IY]]) : -t tup[IY] .
neststack(tup[tup[IY].tup [IZ] IRemtups]) :-t

neststack(tup[tup[tup[IY] Iz] IRemtups]).

43

Deutsches .
Forschungszentrum
fOr KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen
oder die aktuelle Liste von erhaltlichen
Publikationen konnen bezogen werden von
dec oben angegebenen Adresse.

DFKI Research Reports

RR-90-01
Franz Baader
Terminological Cycles in KL-ONE-based
Knowledge Representation Languages
33 pages

RR-90-02
Hans-Jiirgen Burckert
A Resolution Principle for Clauses with
Constraints
25 pages

RR-90-03
Andreas Dengel & Nelson M. Mattos
Integration of Document Representation,
Processing and Management
18 pages

RR-90-04
Bernhard Hol/under & Werner Nutt
Subsumption Algorithms for Concept
Languages
34 pages

RR-90-05
Franz Baader
A Formal Deftnition for the Expressive
Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard Hol/under
Hybrid Inferences in KL-ONE-based
Knowledge Representation Systems
21 pages

DFKI
-Bibliothek
Stuhlsatzenhausweg 3
6600 Saarbriicken 11
FRG

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

RR-90-07
Elisabeth Andre, Thomas Rist
Wissensbasierte Informationsprasentation:
Zwei Beitrage zorn Pachgesprach Graphik
undKI:

1. Ein planbasierter Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fUr
die automatische Erzeugung von 3D
Objektdarstellungen

24 pages

RR-90-08
Andreas Dengel
A Step Towards Understanding Paper
Documents
25 pages

RR-90-09
Susanne Biundo
Plan Generation Using a Method of
Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader, Hans-Jurgen Burckert,
Bernhard Hol/under, Werner Nutt, Jjjrg H.
Siekmann

Concept Logics
26 pages

RR-90-11
Elisabeth Andre, Thomas Rist
Towards a Plan-Based Synthesis of
illustrated Documents
14 pages

RR-90-12
Harold Boley
Declarative Operations on Nets
43 pages

DFKI Technical Memos

TM-89-01
Susan Holbach-Weber
Connectionist Models and Figurative
Speech
27 pages

TM-90-01
Som Bandyopadhyay
Towards an Understanding of Coherence in
Multirnodal Discourse
18 pages

TM-90-02
Jay C. Weber
The Myth of Domain-Independent
Persistence
18 pages

DFKI Documents

D-89-01
Michael H. Malburg & Rainer Bleisinger
HYPERBIS: ein betriebliches Hypermedia
Informationssystem
43 Seiten

D-90-01
DFKI Wissenschaftlich-Technischer
lahresbericht 1989
45 pages

D-90-02
Georg Seul
Logisches Programmieren mit Feature -
Typen
107 Seiten

D-90-03
Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner
AbschluBbericht des Arbeitspaketes PROD
36 Seiten

D-90-04
Ansgar Bernardi, Christoph Klauck, Ralf
Legleitf1#r
STEP: Uberblick tiber eine zukiinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

Declarative Operations on Nets

Harold Boley

RR-90-12
Research Report

