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Abstract 

We investigate algorithms for hybrid inferences in KL-oNE-based 
knowledge represent ation systems. Those systems employ two kinds 
of formalisms: the t erminological and the assertional formalism . The 

terminological formalism consists of a concept description language 
to define concepts and relations between concepts for describing a 
terminology. On the ot her hand, the assertional formalism allows to 
introduce objects, which are instances of concepts and relations of a 
terminology. We present algorithms for hybrid inferences such as 

• determining subsumption between concepts 

• checking the consistency of such a knowledge base 

• computing the most specialized concepts an object is instance of 

• computing all objects that are instances of a certain concept. 
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1 Introduction 

Knowledge representation systems of the KL-ONE family, for example [BS85, 
BPGL85, KBR86, MB87, NvL88, Pat84] employ two kinds of formalisms for 
the representation of knowledge. The terminological formalism consists of 
a concept description language for the definition of concepts and relations 
between concepts to describe a TBox (terminology). These concept descrip
tions are built out of two kinds of primitive symbols, concepts and roles. On 
the other hand, the assertional formalism allows to state that individuals 
are instances of concepts or roles for the description of an ABox. We give 
a unified declarative semantics in a Tarski style for the two formalisms that 
allows to conceive them as sublanguages of predicate logic [BL84]. An inter
pretation interprets (i) concepts as subsets of the domain, (ii) roles as binary 
relations over the domain, and (iii) individuals as elements of the domain. 

To give an example, assume that Person and Female are concepts, Child 
is a role, and Mary and Tom are individuals. If connectives like concept con
junction and complement are present in the concept description language, 
then one can describe "persons that are not female" by Person n ,Female. 
Since concepts are interpreted as sets, we interpret concept conjunction and 
complement as set intersection and complement. Almost all concept descrip
tion languages provide restrictions on roles. Value restrictions can be used 
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for instance to describe "all individuals for which all children are female" 
by the expression VChild.Female. Number restrictions allow for instance to 
describe "individuals having at least (most) two children" by the expressions 
(~ 2 Child) and (~ 2 Child), respectively. Furthermore, we can build more 
complex concept descriptions like Person n (~ 3 Child) nVChild.Female, which 
can be read as "all persons with at least three children and only female 
children" . 

The assertional formalism allows to state that individuals are instances 
of concepts or roles, for example, Mary is a Person and Tom is a child of Mary 
can be expressed by Mary: Person and (Mary, Tom): Child, respectively. 

We assume that a KL-ONE system consisting of a TBox and an ABox 
presents sound and complete algorithms for determining if a concept de
scription C is more general than a concept description D (in other words, 
whether C subsumes D), and for checking the consistency of the represented 
knowledge (knowledge base). Besides these decision problems, the system 
should offer algorithms for realization and retrieval. A realization algorithm 
computes for some individual occurring in an ABox the set of most special
ized concept descriptions of a TBox the individual is instance of. A retrieval 
algorithm computes for a given concept description all individuals which are 
instances of it. We will see, that the different services are not independent 
from each other; in fact, an algori thm for deciding the consistency of a knowl
edge base can be used to solve the other problems. 

Olle of the first systcms employing several formalisms to represent dif
ferent knowledge is the legendary KL-ONE [BS85]. More recently developed 
syst.ems pursuing this ph ilosophy-so-called hybrid systems- are for exam
ple J\ IlYPTON [I3PGLS5], KANDOR [Pat84], KL-TWO [ViI85], BACK [NvL88, 
NebS9], LOOM [MDS7]. As a drawback-to the best of my knowledge-all 
thesc systcms use incomplete reali zation algorithms. Such an incomplete al
gorithm sometimes fails in recognizing that an individual is instance of some 
cOllcept. description. Realization can be seen as abstraction- generating a 
COllccpt description (the most specific generalization) in terms of the TBox
followed by classification) of the description [NvL88, ViIS5]. In this classical 
approach illcompletelless arises for two reasons. First, it is not easy to com-

I Which IlIC<lnS the computation of subsumption relations between the most specific 
genl'r<llizat.ion <lnd ot.he r concep ts in the Tl3ox. 
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pute the most specific generalization, which is in some sense complete. Fur
thermore, complete classification needs complete subsumption algorithms, 
which were not known until 1988 (except for some rather trivial termino
logical languages). In this paper we describe a method, different from the 
abstraction/ classification approach, to perform realization. 

In [SS88, HN90, DHL*90J it is shown how to obtain sound and complete 
subsumption algorithms for a broad range of terminological languages. The 
technique underlying these algorithms is constraint propagation, which was 
firstly introduced by Schmidt-SchauB and Smolka to determine subsumption 
between concept descriptions. 

In this paper we show that this constraint propagation approach can be 
generalized such that hybrid inferences like realization can be computed. We 
exemplify this technique by taking a terminological language, which contains 
conjunction, disjunction, and negation of concepts, as well as value restric
tions and number restrictions [HN90J. Nevertheless, the advantage of this 
approach is , that changing the terminological language, i.e., allowing other 
concept- and role-forming constructs, causes only very small modifications in 
the presented algorithm2

. Moreover, we obtain a uniform method to design 
algorithms for hybrid inferences. Since hybrid inferences are more general 
than subsumption, lower complexity bounds for determining subsumption 
are also lower complexity bounds for hybrid inferences. 

This paper is organized as follows. In the next chapter we formally intro
duce the syntax and semantics of the terminological and assertionallanguage. 
In chapter 3 we discuss the inferences we will draw. We show that hybrid 
inferences can be reduced to checking the consistency of knowledge bases. 
Finally in chapter 4 we design a consistency checking algorithm using a con
straint propagation technique. 

2 The Hybrid Formalism 

In this chapter we formally introduce the hybrid formalism. In 2.1 we define 
the terminological formalism and TBoxes (terminologies). In 2.2 we single 
out special classes of concept descriptions and terminologies, respectively, as 

2Generally, if the algorithm is applied to problems of a restricted language, then it 
behaves better. 
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normal forms. The assertional formalism is presented in 2.3. 

2.1 The Terminological Formalism 

We assume two disjoint alphabets of symbols, called concepts and roles. The 
special concept symbols T and ~ are called top symbol and bottom symbol. 
The concept descriptions (denoted by C and D) are formed out of concepts 
(denoted by A and B) according to the abstract syntax rule 

C,D -? A I 
-,C I 
cnDlcUDI 
\fR.C 13R.C I 
(2:: n R) I (:::; n R) 

(atomic concept) 
(complement) 
(conjunction, disjunction) 
(value restrictions) 
(number restrictions), 

where n is a nonnegative integer. The abstract syntax rule can be read as, 
e.g., if A is a concept, then A is a concept description, or if R is a role and 
C is a concept description, then \f R.C is a concept description. 

An interpretation I = (DT, I[·]) of a concept description consists of a set 
DT (the domain of I) and a function I[ ·] (the interpretation function of I). 
This function 

• maps every concept description to a subset of DT and every role to a 
subset of DT X DT 

• interprets T as DT and ~ as the empty set, 

• interprets n as intersection, U as union, and -, as complement of sets, 
and 

• satisfies the following equat ions: 

I[\fR.C] 

I[3R.C] 

I[(:::; n R)] 

I[(2:: n R)] 

{a E DT I \f(a, b) E I[R] : bE I[C]} 

{a E DT 13(a, b) E I[R] : bE I[C]} 

{a EDT II{b EDT I (a,b) E I[R]} I :::; n} 

{a E DT II{b E DT I (a, b) E I[R]} I 2:: n}, 

where I . I denotes the cardinality of sets. 
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A concept description C is consistent if there exists an interpretation I 
such that I[C] is nonempty, and inconsistent otherwise. We say C subsumes 
D if I[C] 2 I[D] for every interpretation I, and C is equivalent to D if 
I[C] = I[D] for every interpretation T. 

Example 2.1 Let Person and Female be concepts and Child be a role. Person 
with at least two children can be expressed as Person n (~ 2 Child); person 
with at least three children and only female children can be expressed as 
Person n (~ 3 Child) nVChild.Female. Obviously, the former concept descrip
tion subsumes the latter. The concept description Person n (~ 2 Child) is 

equivalent to Person n -,(:s 1 Child) and the concept description Person n (~ 
2 Child) n (:s 1 Child) is inconsistent. 

Let A be a concept and C be a concept description. A terminological 

axiom has the form A ~ C (concept specialization) or A == C (concept defi
nition). We say A is the concept name for C. A terminology (TBox) T is a 
finite set of terminological axioms with the additional restriction that every 
concept symbol may appear at most once as the left hand side of a termino
logical axiom in T. The concept specialization ~ defines necessary conditions 

(partial definition) whereas the concept definition == defines necessary and 
sufficient conditions (complete definition). 

A TI30x T contains a cycle iff there exists a concept name A in T such that 
the concept symbol A occurs in the concept description, which is obtained 
from A's right hand side by iterated substitutions of some of the concept 
namcs by thcir right hand sides. In this paper we only consider terminologies 
without cycles. Almost all TI30x formalisms don't allow the use of cycles. 

SCC' [BaafJOa, Neb89] for a discussion of terminological cycles. 
All int.erpretation I satisfies a terminological axiom (7 iff 

I[ A] ~ I[ C] if (7 = A ~ C 

I[A] = I[C] if (7 = A == C. 

All illt.erpretation I is a model for a TBox T if I satisfies all terminological 
axiollls ill T. A Tnox T implies a terminological axiom (7, written T F (7, 

if (J is satisfied by all models of T. 

6 



Example 2.2 Consider the TBox T defined by 

Woman C Human 

Mother-of-daughters ...:.. Woman n (~ 1 Child) n VChild.Woman. 

That means a woman is a human (concept specialization) and a mother-of
daughters is a woman with at least one child and all her children are women 
(concept definition). Obviously, T F Mother-of-daughters ~ Woman. 

2.2 Normalization 

It is useful to have a certain normal form for concept descriptions and termi
nologies. In the following we single out a special class of concept descriptions 
as normal forms and describe how to compute them. 

k concept description is called simple if it contains only complements of 
the form -,A, where A is a concept symbol. 

Proposition 2.3 For every concept description one can compute in linear 
time an equivalent simple concept description. 

Proof We transform concept descriptions into simple concept descrip
tions by rewriting in top-down order with the following rules: 

-,VR.C --t 3R.-,C 

-,3R.C --t VR.-,C 

-,(C n D) --t -,C u-,D 

-,(C U D) --t -,C n-,D 

-,-,C --t C 

-,(~ n R) { ~:::; (n - 1) R) if n>O 
--t 

if n=O 

-,(:::; n R) --t (~ (n + 1) R). 

It is easy to see that applications of the rules preserve equivalence of concept 
descriptions . D 

We now define a normal form for cycle free TBoxes. A TBox T is expanded 
iff 
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1. T contains only terminological axioms of the form A == C 

2. every concept description on a right hand side in T contains only con
cepts that do not occur as a left hand side in T (so-called primitive 

concepts) 

3. every concept description in T is simple. 

The following proposition shows that every cycle free TBox T can be 
transformed into an "equivalent" expanded TBox T'; in other words, T 
can be expressed by T'. For a discussion of expressiveness of knowledge 
representation languages see [Baa90b]. 

Proposition 2.4 Every TBox T without cycles can be transformed into an 
expanded TBox T' such that for every model M for T there exists a model 

M' with the same domain for T' with M[A] = M'[A] for every concept A 
in T and M[R] = M'[R] for every role R in T J and vice versa.3 

Proof. The proof is disposed in four parts. First, we eliminate the spe
cialization operators. Then every concept description on the right hand side 
of a concept definition is expanded, that is, defined concepts are substituted 
by their definition until the concept description contains only primitive con
cepts. Third, each expanded concept description is transformed into a simple 
concept description. Hence we obtain an expanded TBox T' for a TBox T . 
Finally, we show that for every model M for T there exists a model M' with 
the same domain for T' such that M and M' are identical on the concepts 
and roles occurring in T, and vice versa. 

Elimination oj specializations. For every specialization A ~ C we in
troduce a new concept A* and substitute A ~ C by the concept definition 
A=CnA*. 

Rxpansion. For every concept description C on the right hand side of con
cept definitions we substitute each concept in C which is defined by another 
concept description by its definition, i.e., its right hand side. This process it 
iterated until there remain only primitive concepts on the right hand sides 
of the concept descriptions. This process stops if and only if T contains no 
cycle. 

3SCC also [N ch89] . 
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Simplification. Every concept description on the right hand side of con
cept definitions is transformed into an equivalent simple concept description. 
Thus we have obtained an expanded TBox T' for T. 

Model transformation. Let M be a model for T. We define a model M' 
for T' by putting 7JM' = 7JM, M'[A] = M[A] for every concept A in T and 
M'[R] = M[R] for every role R in T . Furthermore, for every new concept 
A* in T' with A == C n A* let M'[A*] = M[A]. It is easy to see that M' is a 
model for T'. Conversely, suppose M' is a model for T'. We obtain a model 
M for T by putting 7JM = 7JM', M[A] = M'[A] for every concept A in T 
and M[R] = M'[R] for every role R. Obviously, M is a model for T. 0 

Note that an expanded TBox is in the worst case exponential in the size of 
the input TBox. The elimination of the specializations and the simplification 
of concept descriptions is harmless whereas the expansion may enlarge the 
TBox significantly. For instance4

, the expansion of the TBox Tn 

Co VR.AnVR'.A 

Cl VR.Co n VR'.Co 

en V R.Cn - l n V R'.Cn - 1 

leads to a TBox, which is exponential in n and thus in the size of Tn. 

Corollary 2.5 Let T be a TBox and T' the expanded TBox of Proposition 
2.4. Then: 

T F C !;;;;; D iff T' F C !;;;;; D. 

Proof. Let T be a TBox and C, D concept descriptions in T. Assume 
that M[C] CZ M[D] for a model M for T. There exists a model M' for T' 
such that M'[C] = M[C] and M'[D] = M[D]. Hence M'[C] CZ M'[D]. The 
other direction can be shown in t he same way. o 

Example 2.6 For the TBox of Example 2.2 we obtain the following ex
panded TBox: 

Woman ....:... Human n Woman* 

4This example is taken from [NS89j. 
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Mother-of-daughters - Human n Woman* n (2: 1 Child) n 
VChild.(Human n Woman*) 

2.3 The Assertional Formalism 

The assertional formalism allows for the assertion of objects (individuals). 
We can describe a concrete world by stating that objects are instances of 

concepts and roles. 
We assume a further alphabet of symbols, called objects, disjoint from 

concepts and roles. Objects are denoted by a and b. An object description 
has the form a: A where a is an object and A a concept. A relation description 
has the form ( a, b): R where a and b are objects and R is a role. A description 
is either an object description or a relation description. A world description 
(ABox) is a finite set descriptions. 

We extend the interpretation function I[·] of an interpretation I to ob
jects by mapping them to elements of DI such that I[a] =j:. I[b] if a =j:. b. This 
restriction on the interpretation function ensures that different objects are 
assumed to denote different individuals in the world. This property is called 
unique name assumption, which is usually assumed in the database world. 

An interpretation I satisfies a description a iff 

I[a] E I[A] if a = a: A 

(I[a],I[b])EI[R] if a=(a,b):R. 

An interpretation I is a model for an ABox A if I satisfies all descriptions 
in A. 

Example 2.7 Consider the ABox that consists of the following descriptions: 

Mary:Woman 

(Mary, Tom): Child 

The AJ30x describes a world in which Mary is an instance of the concept 
Woman . Tom and Mary are related by the Child role, which means, that Tom 
is a Child of Mary. 

10 



3 Reasoning in the Hybrid Formalism 

In this chapter we consider what kind of information, which is implicitly 
represented by a TBox and an ABox, can be made explicitly. One kind of 
reasoning is the computation of the subsumptioll relation between concepts. 
An algorithm doing this work is called classifier. We will see, that subsump
tion between concepts only depends on the TBox. As a link between the 
different formalisms, object and relation descriptions in an ABox may refer 
to concepts and roles, which are defined in the TBox. This involves another 
kind of reasoning. We need an algorithm for deciding whether an ABox A 
with respect to a TBox T is consistent, e.g. does there exist an interpretation 
T such that T is a model for A and for T. Besides the consistency test we 
need more constructive inferences. For instance, the computation of the most 
specialized concepts of a TBox an object is instance of (so-called realization), 
and the computation of the set of all objects of an ABox that are instances 
of a given concept description (so-called retrieva0. 

An interpretation T is a model for an ABox A w.r.t. a TBox T, if T is 
a model for A and for T. An ABox w.r.t. a TBox is consistent if it has a 
model. An ABox A and a TBox T imply a description 0' if all models for A 
w.r.t. '( satisfy 0', written A FT 0'. 

Example 3.1 Consider the TBox T, which contains the axioms 

Woman c::: Human 

Mother-of-daughters ....:... Woman n (~ 1 Child) n'v'Child.Woman, 

and the ABox A = {Mary: Mother-of-daughters, (Mary, Susi): Child}. 
The fact, that Susi is a Woman is not mentioned explicitly but is implied 

by A and T. We assume, that in almost every case one can describe only a 
small part of the world. Thus, we have chosen an open world semantics as 
opposed to the closed world assumption. We cannot conlude, for instance, 
that Susi is the only child of Mary, since there may exist a world in which 
Mary has several children (which of course are women). 

As mentioned above , subsumption between concepts depends only on the 
TBox. Since the ABox formalism is very restricted, especially it doesn't allow 
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universally quantified assertions, no new subsumption relations hold between 
concepts5

• In other words, the ABox is a conservative extension of a TBox. 
We now formally describe what kind of inferences we will draw from the 

hybrid formalism. Therefore let T be a TBox and A be an ABox. 

Subsumption problem: Does a concept description C subsume a concept 
description D ? 

Consistency problem: Does there exist a model for A w.r.t. T ? 

Instance problem: Do A and T imply an object description6 a: A ? 

Realization problem: Let a be an object occurring in A. The set of most 
specialized concepts of which a is an instance is defined as 

MSCA,T(a):= {A I A FTa:A, ~B with A =I B, 

A FT a: Band T F B ~ A}, 

where A and B are concept names in T. The computation of the MSC 
set for some object is called realization. 

Retrieval problem: Let A be a concept name in T. The retrieval problem 
is to compute the set of all objects a occurring in A such that A FT 
a:A. 

In the following we will show that an algorithm for deciding the consis
tency problem can be used to solve the subsumption, instance, realization 
and retrieval problem. Proposition 3.2 shows a reduction from the subsump
tion problem to the instance problem, and Proposition 3.3 shows a reduction 
from the instance problem to the consistency problem. Finally we describe 
a method to obtain a realization and retrieval algorithm, respectively, using 
an algorithm that solves the instance problem. 

5 Actually, the claim holds if and only if the ABox w.r .t. the TBox is consistent. 
6Note that A FT (a, b) : R holds if and only if (a, b): REA, since every role in T is 

completely undefined and hence not related to any other role in T. The situation changes 
in the presence of role-forming constructs such as intersection of roles or inverse roles . 
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Proposition 3.2 The concept description C subsumes the concept descrip
tion D iff 

{a:B} FT a:A where T = {A == C, B == D} 

where A, B new concepts. 

Proposition 3.3 Let T be a TBox, A be an ABox, a: A an object descrip
tion, and A a new concept. Then: 

A FT a:A iff A u {a : A} has no model w.r.t. T U {A == -,A}. 

An algorithm that computes for a given object a the most specialized 
concepts of which a is an instance can be obtained as follows. Let T be 
a TBox, A an ABox, and let a be an object occurring in A. First, for 
every concept name A in T we decide whether A FT a: A holds. Thus we 
know all concepts object a is instance of. In a second step, we eliminate all 
those concepts, which subsume other concepts, to obtain the most specialized 
concepts. Hence we have solved the realization problem. 

Suppose we want to compute all instances of a concept description C. A 
very simple but not very smart algorithm 7, which solves the retrieval problem, 
proceeds as follows. First we add the new concept description A == C where 
A is a new concept name to T. Then we test for every object in A whether 
A FT a: A holds. Thus we get all objects occurring in A that are instances 
of C. 

4 The Consistency Problem 

We are going to devise a calculus for solving the consistency problem. The 
calculus will operate on constraints consisting of variables, concept descrip
tions and roles. 

We assume that there exists an alphabet of variable symbols, which will 
be denoted by the letters x, y and z and which is a superset of the objects. 
A constraint is a syntactic object of one of the forms 

x: C, xRy, 

7For implementations this algorithm might not be appropriate, but there are (worst 
case) examples for which the presented algorithm is in some sense optima\. 
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where C is a simple concept description and R is a role. Let I be an in
terpretation. An I-assignment is a function a that maps every variable to 
an element of DI. We say that a satisfies x: C if a( x) E I[ C], and a sat
isfies xRy if (a(x),a(y)) E I[R]. A constraint s is consistent if there is an 
interpretation I and an I-assignment a such that a satisfies s. A constraint 
system 5 is a finite, nonempty set of constraints. An I-assignment a satisfies 
a constraint system S if a satisfies every constraint in S. A constraint system 
S is consistent if there is an interpretation I and an I-assignment a such 
that a satisfies 5, and inconsistent otherwise. 

Let T be an expanded TBox and let A be an ABox such that every 
concept occurring in A is a concept name in T.8 The constraint system 5 is 
induced by T and A iff 

5 = {a: C I a: A E A and A == C E T} U {aRb I ( a, b) : REA}. 

The following proposition, which is easy to prove, shows the relationship 
between ABoxes/TBoxes and constraint systems. 

Proposition 4.1 Let 5 be a constraint system induced by T and A. Then 
A w. T. t. T has no model if and only if S is inconsistent. 

We now present a method to decide the consistency of constraint systems, 
and hence the consistency of an ABox w.r.t. a TBox. Our calculus starts with 
a constraint system 5 and adds in successive propagation steps constraints to 
S. This constraint propagation process is iterated until either a contradiction 
occurs or an interpretation, which is a model for A w.r.t. T, can be obtained 
from the resulting constraint system. 

Defore we formulate the rules we need some notation. Let 5 be a con
straint system. For a variable x we count the number of variables y with 
xRy for some role R. We therefore define nR.s{x) := I{y I xRy E 5}1. With 
[y / z] 5 we denote the constraint system that is obtained from 5 by replacing 
each occurrence of y by z . The propagation rules are: 

I. 5 -tn {x: Cl , x: C2 } U 5 

if x: C l n C2 is in 5, and x: Ct and x: C2 are not both in 5 

hThis is not a res triction since, if a : A E A and A is not a concept name in T, then 
the concept definition A == A' is inserted to T and each occurence of A in T is replaced 
by A'. 
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2. S ~u {x: D} uS 

if x: C1 U C2 is in S, neither x: C1 nor x: C2 is in S, 
and D = C1 or D = C2 

3. S ~v {y: C} U S 

if x: V R.C and xRy are in Sand y: C is not in S 

4. S ~3 {y: C, xRy} U S 

if x: 3R.C is in S, and there is no variable z 
such that xRz and z : C is in Sand y is a new variable 

5. S ~~ {xRy} uS 

if x: (2: n R) is in S, nR,s(x) = 0, and y is a new variable 

6. S ~~ [y/ z]S 

if x: (::; n R) , xRy , xRz are in S, nR,s(x) > n, 
and y is not an object 

7. S~.L {x:..l} 

if x: A and x: -,A are in S, or 
if x: (2: n R), x: (::; m R) are in Sand n > m, or 
if x: (::; 0 R), xRy are in S, or 
if x: (::; m R), xRal, ... , XRam+l are in S, 

and al, . .. , am+! are different objects. 

The ~n-, ~u- and ~v-rule are obvious. An application of the ~3-rule 
introduces two constraints to "satisfy" the constraint x : 3R.C. Suppose 
an "at least" -restriction is imposed on some variable x for some role R in 
a constraint system S. If nR,s(x) = 0, the ~~-rule forces to introduce the 
constraint xRy. Otherwise, if nR,s(x) > 0, the ~~-rule doesn't apply. In 
Proposition 4.3 we will see that this restricted version of the general rule 

• S ~~. {xRy} U S 

if x: (2: n R) is in S, nR,s(x) < n, and y is a new variable 

is sufficient to satisfy "at least" -restrictions. Note that applications of the 
~>.-rule insert at least 100 constraints of the form xRy for a constraint 
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x : (2: 100 R) whereas applications of the --+~-rule add at most one con
straint. Applications of the --+~-rule guarantee that "at most"-restrictions 
are satisfied. We ensure that no object is substituted by a variable or another 
object to maintain the unique name assumption on the objects. Finally, the 
--+ J.. -rule detects inconsistencies in constraint systems. 

Proposition 4.2 Let 5 and 5' be constraint systems. Then: 

1. If 5' is obtained from 5 by application of the {deterministic} --+w, 

--+"1-, --+3-, --+~- or --+ J.. -rule, then 5 is consistent if and only if 5' zs 

consistent. 

2. If 5' is obtained from 5 by application of the {nondeterministic} --+u
or --+~-rule, then 5 is consistent if 5' is consistent. Furthermore, if 

the --+u-rule or the --+~-rule applies, then there is a choice for 5' such 

that 5' is consistent if and only if 5 is consistent. 

Proof. Easy. o 

Let 5 be a constraint system. The canonical interpretation Is of 5 is 
obtained by taking for DIs all variables occurring in 5, for Is[A] all x such 
that x: A is in 5, where A is a concept symbol different from T and ~, for 
Is[R] all pairs (x, y) such that xRy is in 5, and by taking the set Is[e] for 
complex concept descriptions as required by the definition of an interpreta
tioll. The canonical assignment CiS of 5 is obtained by mapping variables to 
thelllselves. 

1\ constraint system is complete if no propagation rule applies to it. A 
clash is a constraillt of the form x: ~. 

Proposition 4.3 EVC1'Y clash free complete constraint system is consistent. 

Proof. Let 5 be a clash free, complete constraint system. We extend 5 
to a cOllst.raint system 5' sllch that the following properties hold: 

L. 5 ~ 5' 

2. 5' is clash free alld complete 

:L .r: (2: 11 H) E 8' implies nn.sl(x) 2: n. 
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The third property ensures that the ---t~.-rule is not applicable to S'. Such 
an extension S' can be obtained from S by constructing a sequence S = S1, 
S2, ... , Sk = S' where Sj is transformed into Sj+! using the following steps: 
select a variable x with {x : (2: n R),xRy} ~ Sj and nR,Sj(x) = m < n; 
let Y1, ... , Yn-m be new variables; let Sj+! be obtained from Sj by adding 
XRY1, ... , xRYn-m, by adding Y1 : C, . .. , Yn-m : C for every constraint in Sj 
of the form y: C, and by adding Y1Rz, ... ,Yn-mRz for every constraint in Sj 
of the form yRz. The process eventually halts when a constraint system with 
the required properties is reached. Since the newly introduced constraints 
are copies of constraints already occurring in S ·, there is no clash in S'. 
Furthermore, it is easy to prove that S' is a complete constraint system. 

Now we will show that t he constraint system S' is consistent. Let Is' 
be the canonical interpretation of S' and as, the canonical assignment of S'. 
We prove that as, satisfies every s E S'. If s has the form xRy, then as, 
satisfies· xRy by definition of Is' and as,. Otherwise, if s has the form x: C, 
we show by induction on the structure of C that as, (x) E Is' [C]. 

Base case: If C is a concept symbol different from T and ..1, then as, (x) E 
Is' [C] by defintion of Is' and as,. If C = T, then obviously as, (x) E Is' [T]. 
Since S' is clash free we have C # ..i. 

Induction step: If C = ---.A, the constraint x : A is not in S' since S' is 
clash free and complete. Then as'(x) rf- Is,[A] and as'(x) E DIs' - Is' [A]. 
Hence as, (x) E Is' [---.A]. If C = ?JR.D, then xRy and y: D are in S' since the 
---t3-rule doesn't apply to S'. Then as'(y) E Is,[D] holds by the induction 
hypothesis and hence as, (x) E Is' [?JR.D]. Similarly, it can be shown that 
constraints of the form 

x:CnD, x:CUD, x:VR.C 

are satisfied by as, and Is'. If C = (2: n R), then n R,S' (x) 2: n since the 
---t~.-rule doesn't apply to S'. Hence as'(x) E Is' [(2: n R)]. If C= (::; n R), 
then nR,s'(x) ::; n since the ---tS-rule doesn't apply to S'. Contradictory 
number restrictions constraints such as x : (2: n R), x: (::; m R), where 
n > m, lead to clashes. D 

Since obviously a constraint system containing a clash is inconsistent, the 
preceding proposition implies the following result. 
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Theorem 4.4 A complete constraint system is consistent if and only if it 
contains no clash. 

Now we will show that every constraint system, which is induced by a 
TBox and an ABox, can be extended to a complete constraint system. 

Theorem 4.5 If 5 is an induced constraint system, then in at most expo
nentially many propagation steps one can nondeterministically compute a 
complele constraint system 5' for 5 such that 5' is consistent if and only if 
5 is consistent. 

Proof. An induced constraint system 5 can be extended to a complete 
constraint system preserving consistency and inconsistency using the propa
gation rules. Every constraint system obtained from 5 using the propagation 
rules is at most exponential in the size of 5. Thus the -+~-rule can be ap
plied at most exponentially many times to a variable x. Since the other rules 
introduce new constraints, we conclude that it takes at most exponentially 
many steps to transform 5 into a complete constraint system. 9 0 

Thus we have shown that an expanded TBox T and an ABox A can be 
transformed into a constraint system 5, such that A w.r.t. T has no model 
if and only if 5 is inconsistent (Proposition 4.1) . Furthermore,5 can be ex
tended to a complete constraint system, which can be checked in polynomial 
time on consistency. Since it has been shown that the terminological lan
guage proposed in this paper has a PSPACE-complete subsumption problem 
[II N90], we conclude with following claim. 

Corollary 4.6 The consistency, instance, realization and retrieval problems 
(l1'e dcc£dable, P5PA CE-ha7'd problems. 

5 Conclusion 

In this paper we gave a uniform method for developing sound and complete 
algorithms for hybrid inferences in KL-ONE-based knowledge representation 
systems. We showed that the constraint propagation technique which was 

!) A complet.e est. imat.ion is given in [110189], 
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first introduced in [SS88] to determine subsumption between concepts can be 
generalized such that hybrid inferences can be computed. An advantage of 
this approach is, that changing the terminological language causes only slight 
modifications of the propagation rules in a straightforward way as shown in 
[8888, HN90, DHL*90]. Lower complexity bounds for subsumption in termi
nological languages are also lower complexity bounds for hybrid inferences. 
On the other hand , although the consistency problem is more general than 
the subsumption problem, we have a strong feeling that for almost all termi
nologicallanguages with respect to the proposed assertionallanguage upper 
complexity bounds for subsumption are also upper complexity bounds for 
hybrid inferences. 
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