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Abstract 

We investigate t he subsumption problem in logic-based knowledge 
representation languages of the KL-ONE family and give decision pro­
cedures. All our languages contain as a kernel the logical connectives 
conjunction, disjunction, and negation for concepts, as well as role 
quantification. The algorithms are rule-based and can be understood 
as variants of tableaux calculus with a special control strategy. 

In the first part of the paper, we add number restrictions and con­
junction of roles to the kernel language. We show that subsumption in 
this language is decidable, and we investigate sublanguages for which 
the problem of deciding subsumption is PSPACE-complete. 

In the second part, we amalgamate the kernel language with fea­
ture descriptions as used in computational linguistics. We show that 
feature descriptions do not increase the complexity of the subsumption 
problem. 
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1. Introduction 

Concept languages of the KL-ONE fami ly are a means of expressing taxo­
nomical knowledge by describing hierarchies of concepts [BL84, Pat84, BS85, 
BPGL85, KBR86, Vi185, MB87, NvL88, Neb89]. In contrast to earlier knowl­
edge representation formalisms like frames and semantic networks, KL-ONE 

languages have the advantage of a Tarski style declarative semantics that 
allows to conceive them as sublanguages of predicate logic [BL84] . Con­
cepts are intended to be descriptions of classes of objects. Essentially, such 
a description is given in terms of primitive classes and attributes of objects. 
A related family of formalisms emerged in computational linguistics with 
unification based grammars. Here, constituents of sentences are described 
in terms of attributes (so-called features) and their values [Sh86, Sm088]. 
Recently, concept langua.ges have been investigated as a means to describe 
object oriented data models [BBMR89] . 

A concept is built up of two kinds of primitive symbols, concepts and roles. 
An interpretation interprets them as subsets of a domain and binary relations 
over the domain. These primitives can be combined by various language 
constructs yielding complex concepts, which again are interpreted as subsets 
of the domain . Different languages are distinguished by the constructs they 
provide. 

Examples for primitive concepts may be person and female , examples for 
primitive roles ma.y be child and female _relative. If logical connectives like 
conjunction, disjunction, and negation are present as description constructs, 
one can describe the concept of "persons that are not female" by the expres­
sion 

person n ...,female . 

Conjunct ion, disjunction, and negation are interpreted as set intersection, 
ullion, and complement. l'vfost languages provide quantification over roles 
that. allows for instance to describe the concepts of "individuals having a 
fcma.lf' child" and "individuals for which all chi ldren are female" by the ex­
p r('ss 10 II S 

:3child .female and Vchild .female. 

N umber restrictions 011 roles denote sets of individuals having at least or at 
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most a certain number of fillers for a role. For instance, 

(~ 3 friend) n (::; 2 child) 

can be read as "all individuals having at least three friends and at most two 
children." We also provide a role-forming construct, namely conjunction of 
roles, that allows for instance to define the role 

child n female_relative, 

which intuitively yields the role "daughter." It is straightforward to give a 
formal semantics to role quantification, numbej~ restrictions and role conjunc­
tion that captures the intuitive meaning. 

Only recently, the close relation between KL-oNE-languages and feature 
formalisms has been pointed out [Sm088]. In this paper we introduce a lan­
guagethat en corp orates both I{L-ONE-one constructs and features. Features 
are functional roles, that is they are supposed to have at most one filler. 
Natural examples for features may be father and firsLname. The selection 
operator for features can be used to describe the concept of "all individuals 
whose father has at most one child" by the expression 

father.(::; 1 child). 

Agreement of feature chains allows to describe "all individuals whose father 
and grandfather have the same first name" by the expression 

father firsLname == father father firsLname . 

Interestingly, agreements of feature chains are computationally tractable, 
whereas agreements of arbitrary role chains C2.use undecidability [Sch89]. 

Concepts implicitly form a hierarchy: a concept C is subsumed by a 
concept D if in every interpretation the set denoted by C is a subset of 
the set denoted by D. The basic reasoning facility provided by a I<L-ONE 
system is a subsumption checker. For a long time, the I<L-ONE community 
was content with sound, but incomplete subsumption algorithms. Such an 
algorithm delivers a correct answer when given C and D such that C is 
not subsumed by D, but sometimes fails to recognize that one concept is 
subsumed by another one. 
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Until recently, a decision procedure was only known for the rather trivial 
language F C-, offering as constructs conjunction, V P .C, and :3P . T ,where 
P may be a primitive role and T is a concept denoting the entire domain of 
an interpretation [BL84]. Several complexity results showed that already for 
scemingly slight extensions of FC- the subsur:1Ption problem is co-NP-hard 
[L1387, Neb88]. Other work identified languages with undecidable subsump­
tion problem [Pat89, Sch89, Sch88] . 

The first nontrivial subsumption algorithm was given by Schmidt-SchauB 
and Smolka [SS88] for the language ACC, which extends FC- by allowing 
for arbitrary logical connectives and role quantification as constructs. The 
algorithm is even optimal, since it requires linear space and they show that 
subsumption checking in ACC is PSPACE-complete. 

In contrast to for mer subsumption algorithms, their algorithm is formu­
lated as a satisfiability checking algorithm. An interpretation I is a model of 
the concept C if C denotes a nonempty set in I. A concept is satisfiable if it 
has a model and unsatisfiable otherwise. A satisfiability checking algorithm 
also yields a subsumption checking algorithm, since C is subsumed by D if 
and only if C n -,D is unsat isfiable. 

The purpose of this paper is twofold. First, we give satisfiability-and 
tllcrefore sub:;umption- checking algorithms f0r substantial extensions of the 
language ACC. These extensions illclude number restrictions (ACCN), role 
conjunction (ACCR.), and features (ACCF). The algorithms for these three 
languages require polynomial space. Since the corresponding problems gen­
eralize til(' satisfiahil ity problem for ACC, which is known to be PSPACE­
cOl1lpkt.c , these algorithms can be considered optimal. Furthermore, we give 
a procedure t.o decide satisfiability for ACC.tVn, a language that contains 
both nllrllber restrictions and subroles. 

Secolld. we' wallt to show that there is a general technique of devising 
SUI)Slllllpt.ioll a.lgorithms for most of the languages that have been reported 
ill t 11(' literat.ure. The declarat ive semantics of concepts allows to view prim­
itive cOllcepts as una ry predicates and primitive roles and features as binary 
predicat.es. This identification can be extended to concepts by associating 
to ('\-cry cOllcept (.' a predicate logic formula <Pc( x) . For instance, to the 
('011 ('('pI. 

C = :3child.female n Vchild.person 
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corresponds the formula 

¢c(x) = 3y.(child(x,y) 1\ female(y)) 1\ Vz.(child(x,z) -+ person(z)). 

A model of the formula 3x. ¢c( x) is a model of the concept C and vice versa. 
In particular, C is unsatisfiable if and only if 3x .¢c( x) is unsatisfiable. 

A careful analysis shows that first order tableaux calculus [Sm68] always 
terminates for such formulas, and exhibits a model if the formula is satisfi­
able, or produces obvious contradictions if the formula is not satisfiable. In 
particular it follows that a formula 3x.¢c(:r) has a finite model if it has a 
model at all. Based on this observation one wuld devise a simple minded 
satisfiability checker that consists of two components: a refutation theorem 
prover and a procedure that for a given formula enumerates all finite inter­
pretations and tests whether they are model8. If both processes start with 
input 3x.¢c(x) and run in parallel, the theorem prover will eventually find 
ou t that that formula is unsatisfiable if it is, and the interpretation tester will 
eventually exhibit a model if there is one. The tableaux calculus combines 
the characteristics of both processes. 

The algorithmic technique which we propc'se basically consists in apply­
ing tableaux calculus with some control strategy to formulas obtained from 
concepts. The algorithms are described by tableaux calculus like rules oper­
ating on so-called constraints, which directly c0rrespond to logical formulae. 
The control is incorporated into the conditions that allow to apply the rules. 
The idea of a rule based calculus operation on constraints was already under­
lying tlte calculus ill [SS88], although its presentation obscured its intimate 
relation to tableaux calculus. 

We feci that this technique could be applied as well to other KL-ONE­

language constructs that have not been considered in this paper, like inverse 
roles or agreement of roles. Conversely, an algorithm for a very general lan­
guage, like A£cNn or A£CF, can be used as a starting point to devise 
algorithms for sublanguages. Finally, complexity results show that the al­
gorithms obtained using this technique are often optimal. For instance, the 
OI1<'S described in this pa.per require polynoITlial space and solve PSPACE­
complct.e problems. 

In the next chapter we formally introduce' syntax and semantics of the 
language A£CVn. In chapter 3 we give a satisfiability checking algorithm for 
the entire language. In chapter 4 we consider two sublanguages of A£CNn 
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and show that their satisfiability- and therefore subsumption-problems are 
PSPACE-complete. Finally in chapter 5 we amalgamate the language A£C 
with features and give a satisfiability checking algorithm for this language. 

2 Concept Languages 

In this section we int roduce syntax and semantics of the concept language 
A£CNR, which contains arbitrary logical connectives for concepts, role 
quantification, number rest rictions, and intersection of roles. 

'vVe assume that two alphabets of symbols, called primitive concepts and 
primitive 1'Oies, are given . The letter A will a.lwcys denote a primitive concept, 
and the letter P will always denote a primitive role. 

Arbitrary roles (denoted by the letters Q and R) are built out of primitive 
roles according to the syntax rule 

Q, R ---+ P I Q n R. 

The concepts (denoted by the letters C and D) of the language A£CNR 
are built out of primitive concepts and roles according to the syntax rule 

C,D ---+ A I 
TI 
...LI 
CnD I 
CUD I 
-,C I 
VR.C 13R.C I 
(:::; n R) I (~ n R) 

(primitive concept) 
(top concept) 
(bottom concept) 
(intersection) 
(union) 
(complement) 
(role quantification 
(number restriction), 

where n ranges over the nonnegative integers coded as binary strings. In the 
following we will refer to A£CNR-concepts simply as concepts. A subconcept 
of a concept C is a substring of C that is a concept. 

Concepts are interpreted as subsets of a domain and roles are inter­
preted as binary relations over a domain. More precisely, an interp1'e /al ion 
I = (6 I ,.I) consists of a set 6 I (the dom(l1°n of I) and a function .I (the 
interpretation function of I) that maps eVCi·y concept to a subset of 6 I 
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and every role to a subset of ~I X ~I such that the following equations are 
satisfied: 

TI 

..iI 

(C n D)I 

(C U D)I 

( -.C)I 

(Q n R)I 

(VR.cl 

(3R.C)I 

(2 nRf 

(::; n R)I 

,~.r 

o 
CInDI 

CIUDI 

~I \ cI 

QInRI 

{a E ~I I V(a,b) E RI.b E C I } 

{a E ~I 13(a,b) E RI.b E C I } 

{a E ~I I I {b E ~ I I ( a, b) E RI} I 2 n} 

{a E ~I II{b E ~I I (a,b) E RT}I ::; n}. 

Observe that an interpretation is uniquely determined by the values that it 
gives to primitive concepts and primitive roles. 

Intersection of roles can be used to model subroles. vVe say that Q is a 
sub1'ole of a R and write Q ~ R, if QI ~ RT for every interpretation I. If 
Q = PI n ... n Pk and R = P{ n ... n P{, then Q is a subrole of R, if and only 
if for every primitive role Pj occurring in R there is a role Pi occurring in Q 
such that Pi = Pj. 

An interpretation I is a model for a concept C if C I is nonempty. A 
concept is satisfiable if it has a model and unsatisfiable otherwise. We say C 
is subsumed by D if CI ~ DI for every interpretation ;£, and C is equivalent 
to D if CI = DI for every interpretation I. 

Since our language allows for general complements, satisfiability and sub­
sumption can be reduced to each other in linear time. Therefore the two 
problems are of equal complexity, and to decide them it suffices to devise a 
decision procedure for only one of them. 

Proposition 2.1 

• C is subsumed by D if and only if C n -,D is not satisfiable 

• C is satisfiable if and only if C is not s1tbsumed by ..i. 
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In the following chapters we give algorithm'> that decide the satisfiability 
of concepts. By the above proposition, these algorithms can be used as well 
for subsumption checking. 

To keep our algorithms simple, we do not allow arbitrary concepts as in­
put, but only concepts in a certain normal form . A concept is called simple 

if it contains only complements of the form -,;1, where A is a primitive con­
cept. Simple concepts are the analogue of logical formulae in negation normal 
form. Arbitrary concepts can be rewritten to equivalent simple concepts by 
the following rules: 

-,T ---+ J.-

-,J.- ---+ T 

-,(C n D) ---+ -,C u-,D 

-,(C U D) ---+ -,C n-,D 

-,-,C ---+ C 

-,("1 R.C) ---+ ~R. -,C 

-'(~R.C) ---+ VR.-,C 

-,(::=;nR) ---+ (2: n + 1 R) 

-,(2: nR) 
{ (::=;n-:lR) 

if n = 0 
---+ 

if n > O. 

Proposition 2. 2 For eVC1'y concept one can compute in linear time an equiv­

alent simple concept. 

III this paper we consider three sublanguages of ACcNn: 

ACCJV consists of concepts containing no intersections of roles . 

ACCR consists of concepts containing no number restrictions. 

ACC consists of cOllcepts containing no numb(~r restrictions and no intersec­
tions of roles. 

The lallguage ACC has been introduced by Schmidt-SchauB and Smolka 
[SS88]. They prow'd that subsumption and satisfiability in this language 
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are PSPACE-complete problems. The names of the other languages are cho­
sen in such a way as to indicate that they extend A.cC either by number 
restrictions or role intersection or both. 

In this paper we will prove that A.cCNR has a decidable satisfiability 
problem. For the sublanguages A.cCN and A£CR we will give satisfiahility 
checking algorithms, which need polynomial space. Since both languages 
generalize A.cC, we know that satisfiability and subsumption for A.cCN and 
A.cCR are PSPACE-complete problems. 

3 Checking Satisfiability 

We are going to devise a calculus for checking the satisfiability of concepts. 
The calculus will operate on constraints consisting of variables, concepts and 
roles. Concepts are supposed to be in normal form. 

vVe assume that there exists an alphabet of variable symbols, which will 
be denoted by the letters x, y, and z . A constraint is a syntactic object of 
one of the forms 

x: C, xPy , 

where C is a simple concept and P is a primitive role. Intuitively, x: C says 
that x is in the interpretation of C and xPy says that the pair (x, y) is in in 
the interpretation of P. 

Let I be an interpretation . An I -assignment is a function a that maps 
every variable to an element of /}. I. We say that a satisfies x: C if a( x) E CI , 

and a satisfies xPy if (a(l~ ),a(y)) E pI. A constraint c is satisfiable if 
there is an interpretation I and an I-assignment a .such that a satisfies 
c. A const'raint system S is a finite, nonempty set of constraints. An I­
assignment a satisfi es a constraint system S if a satisfies every constraint in 
S. A constraint system S is satisfiable if there is an interpretation I and an 
I-assignment a such that a satisfies S. 

Proposition 3.1 A simple concept C is satlsfiable if and only if the con­
stmint system {x : C} is satisfiable. 

Our calculus starts with a constraint system S = {x : C}. In successive 
steps it adds constraints to S until either a contradiction is generated or 
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an interpretation satisfying C can be obtained from the resulting system. 
The calculus relies on a set of rules, which closely resemble the rules of the 
tableaux calculus for first order logic. In fact if one translates concepts into 
predicate logic formulas, and applies to them the tableaux calculus with a 
suitable control strategy, one obtains essentially the calculus described here. 

Defore we formulate the rules we need some notation. Let S be a con­
straint system and R = Pl n ... n Pk be a role. We say that xRy holds in S 
if the constraints xP1y, ... , xPky are in S . 

In order to denote for a variable x the number of variables y such that 
xRy holds we define 

nR,s(x) := 1 {y 1 xRy holds in S} I· 

With [y / z]S we denote the constraiut system obtained from S by replac­
ing each occurrence of y by z . \Vc say that the replacement of y by z is safe 

in S if for every variable x and for every role R such that x : (2:: n R) is in S 
and :rRy and :rR::; holel in S, we have nR,s(x) > n. Intuitively, the replace­
ments of y by z is safe in 8, if every number r ~striction that is satisfied in 8 
r(,mains satisfied in [y / zlS. 

Th(' calculus is given by the following completion 1'ules: 

l. S ~n {:r: GI , x: C2 } uS 

if :1': C\ n C2 is in S, and :1': C] and :1': C2 are not both in S 

2. S' ~u {.r: D} U 5 

if :1': C I U C2 is in 5, neither x: CI nor x: C2 is in 5, 
and f) = C\ or ]) = C2 

:L .S' ~3 { .I'J>ly •... •. rPc//, y: C} uS 

if .1': 31(.(' is ill 5, R = P1 n ... n P;,;, there is no z such that 
.1' /? ::; Iioids in Sand ::;: C is in S. and y is a new variable 

I. ....... ~v {.II: ('} u S 

if .1':V1?C' is in S, :rRy holds in 5'. and y:C is not in 5 

:). S ~> { .I'J>ly . . .. ,.rPky} u 5 

if .1': ( ~ 11 R) is in S, R = PI n ... il Pk, l1R,s(:r) < n, and y is 
a 11('\\' \'a ria ble 
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6. S ~< [y/z]S 

if x: (::; nR) is in S, xRy and xRz holds in S, nR,s(x) > n, 
and the replacement of y by z is safe in S. 

Obviously, the ~n-, ~u-, ~3-, and ~"v'-rule imitate the tableaux rules 
for conjunctions, disjunctions, and existentially quantified formulas. 

The ~~- and the ~~-rule operate in a more complicated way to cope with 
equality, that comes in through number restrictions. For instance, translating 
the number restriction (~ 2 P) we obtain the the formula 

which contains equality. Applying the ~~-rule twice to a constraint 
x: (~ 2 P) yields two constraints XPYl , XPY2. Now, the ~~-rule is designed 
in such a way that after subsequent applications there will always be two 
constraints of the form xPy~, xPy~, since it is allowed to replace one variable 
by another one only if the replacement i's safe. 

vVe distinguish two kinds of completion rules, deterministic ones (~n , 

~3, ~"v', ~~) and nondeterministic ones (~u, ~~). The nondeterminis­
tic rules correspond to concept constructs that contain disjunction, when 
translated into logic. Obviously, the union of concepts is the analogue of the 
disjunction of formulae. Although less obvious, disjunction is also present in 
"atmost" restrictions. 

To see this, observe that for instance translating the concept (::; 2 P) into 
logic yields the formula 

<P(9 P )(x) = VYl,Y2 , Y3. P(x,Yd A P(:C,Y2) A P( X,Y3) 

-t Yl == Y2 V Yl == Y3 V Y2 == Y3· 

Consequently, when the ~~-rule applies, thert:~ is a choice as to which vari­
ables are to be identified. 

Proposition 3.2 (Invariance) Let S and Sf be co'nstmint systems. Th en: 

1. If Sf is obtained from S by application of a deterministic rule, th en S 
is satisfiable if and only if Sf is satisfiable. 
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2. If 5' is obtained from 5 by application of a nondeterministic 1'ule, then 
5 is satisfiable if 5' is satisfiable . Ji'u1,the1'more, if a nondeterministic 

rule applies to 5 J then it can be applied in such a way that it yields 
a constraint system 5' such that 5' is satisfiable if and only if 5 is 

satisfiable. 

Prop osition 3.3 (Termination) Let C be a simple concept. Then: 

1. There is no infinite chain of completion steps issuing from {x: C}. 

2. The lenght of a chain of completion steps issuing from {x: C} is bounded 
exponentially in the size of C. 

A constraint system is complete if no propagation rule applies to it. 
A clash is a constraint system having one of t~le following forms : 

• {:v:..l} 

• {x: A, x: -,A} 

• {x: (~ 0 R), xP1y, ... , xPky}, where R = Pi n .. . n Pk 

• {x: (~ m Q), x: (:S n R)} , where m > nand Q ~ R. 

Proposition 3.4 A complete constraint system is satisfiable if and only if 
it contains no clash. 

Proof. Obviously, a system containing a clash is unsatisfiable. Conversely, 
if 5 is a clash free complete system, then there is an interpretation I obtained 
by taking for 6. I all variables occurring in S, for AI all x such that x: A is 
in 5, for pI all pairs (;r,y) such that ;l.'Py is in 5, and by taking the sets 
CI for complex concepts C and RI for compiex roles R as required by the 
definition of an interpretation. The I-assignment mapping every variable to 
itself satisfies S . 0 

It is straightforward to turn the calculus into a decision procedure. To 
check a simple concept C for satisfiability, one has to generate all complete 
constraint systems derivable from {x: C}, which are, up to variable renaming, 
finitely many. If a.ll these systems contain a cla.sh, then C is unsatisfiable, 
otherwise it is satisfiable. 
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Theorem 3.5 Satisfiability and subsumption of A£CNR-concepts can be 
decided with nondete7'ministic exponential time. 

Corollary 3.6 An A£CNR-concept has a model if and only if it has a finite 
model. 

4 PSPACE-Complete Languages 

Satisfiability of ALC-concepts is a P SPACE-complete problem [SS88]. Since 
A£C is a sublanguage of A£CNR it follows that checking satisfiability of 
ALCNR-concepts is PSPACE-hard. This gives a lower complexity bound. 
An upper bound is furn ished by our calculus that requires nondeterministic 
exponential time. Better upper bounds exist for special cases. In Section 4.1 
we show that satisfiability of A£CN-concepts can be decided with quadratic 
space .. In Section 4.2 we give a linear space algorithm for checking satisfiabil­
ity of A£ CR -concepts. Since both problems are sti ll more general than the 
satisfiability of A£C-concepts, it follows that they are PSPACE-complete. 
The algorithms are inspired by a technique first applied in [SS88]. VYe con­
clude with a remark on the influence of binary and unary coding of number 
restrictions on the complexity of deciding satisfiabili ty of ALCJVR-concepts. 

4.1 Satisfiability of A.cCN-Concepts 

The reason why the general calculus is so cumbersome is in the -t~-rule. 
If a constraint system contains a constraint :1': (~ n R), the algorithm will 
apply the -t~-rule to add constraints until the extended system will contain 
n variables yl) . .. ,Yn such that xRy}, .. . , xRYn holds. Since n is assumed 
to be coded in binary, the number of addition?.! constraints is exponential in 
the length of the string representing n . 

When all roles in a constraint system are primitive roles, a satisfiability 
checking procedure has to do less work when it encounters the above situa­
tion. VYe will show that in this case the -t~-nde needs to be applied at most 
once, adding a single constraint of the form :rPy. 

A constraint system S is quasi-complete if 

1. 5 is obtained from {x: C}, for some simple concept C, by a.pplication 
of the completion rules; 
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2. the ---+n-, ---+'1-, ---+3-, ---+u- and ---+~-rules don't apply to S; 

:3. x: (~ n R) E S always implies nR,s(x) > O. 

Note that every complete constraint system is quasi-complete. A quasi­
.complete constraint system is complete if it doesn't contain a constraint 

.1:: (~nR) with nR,s(;r) < n. 
A clash free quasi-complete constraint system that contains role intersec­

tions Ileed not be satisfiable. 

Example 4.1 Consider the constraint system 

,S' = {.1:: (:::; 2 P), ::1.:: (~ 1 P n PI), x: (~ 2 P n P2), x: V Pl' A, x: V P2. --, A } . 

ThenS'=,S'U{TPYI , XHY1 , Yl: A , XPY2 , ::rP2Y2, Y2:--,A} is quasi-complete 
and clash free. But completing ,S" will yield a clash, because the number 
restriction on P n P2 forces us to introduce further constraints x Py~ and 
XP2Y~' and the number rest riction on P forces us to identify YI with Y2 or y~, 
thus producillg a variable constrained to A and --,A. 

If roles are primitive, number restrictions cannot interact via subroles. 

Theorem 4 .2 Lei S be a quasi-complete const taint system such that all roles 
O(O('luTing in S' are primilive. Th en S is salisJiable if and only if it contains 
no da:;/'. 

Proof. Suppose S' is a clash free CJuasi- complete constraint system such 
t.hat. all rolf'S occurrillg ill S arc primitive. Wf' show that there exists a clash 
free con I p kt.e cOllst.ra i III system S' such that. .S ~ 5'. 

Such all ('xtellsion 8' can be obtaincd from S constructing a sequence 
,.;.,' = ,';"'1.8.2 . . ..• SI.: = S' where' S'j is transformed into 5j +1 using the following 
st (' ps : 

• select a \·ari ahle .1' with {.r:(~ nP), ;rPy} ~ Sj and np,sJ( :r) = m < 11.; 

• let .1/1" ... YI/ -11I 1)(' new variables; 

• let S .i+1 1)(' obtained from 5.i by adding ,('PYI,'" ,xPYn-m, by adding 
.1/1 : (' ..... .1/ 1/ - ,,, : C for cw'ry constraint i!l 5j of the form y: C, and by 
addillg.1/1 e:: , ... ,!III-Hl P:: for every cOllstraillt in 5 j of the form yPz . 
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The process eventually halts when a complete constraint system is reached. 
Since the newly introduced constraints are copies of constraints already oc­

cUlTing in 5, there is no clash in 5'. D 

General Assumption. In the rest of this section, all concepts are A£CN­
concepts and all constraint systems contain only A£CN -concepts. 

A quasi-complete constraint system that originated from {x: C} may still 

be exponential in the size of C. For a polynomial space algorithm it is 
therefore crucial not to keep an entire quasi-complete constraint system in 
the memory but to store only small portions of it at a time. To make this 
idea more precise we need the following definitions. 

Let 5 be a constraint system, P a primitive role, and x a variable oc­
curring in 5. In order to denote the number of constraints in 5 of the form 
x: "3P.C we define 

e>.{ ( x) : = I {C I :t:: "3 P . C E 5} I . 

In order to denote the minimal "atmost" constraint imposed on x for P in 

5 we let N = {n I x: (:=:; nP) E 5} and define 

' p { minN a,tmost s (x) := 00 
if N =I- 0 
otherwise. 

Let X he a finite set and k a positive integer with k < IXI. A k-partition of X 
is a set. II containing /.: painvise disjoint subsets 7r of X such that U1rEn 7r = X. 

Now we give transformation rules that build up portions of quasi-complete 
cOllstraint systems. The trace 1'ules consist of the ~n-, ~'I- and the ~u-rule 
Logetllcr wit.h the following three rules: 

1. S -tT? {.r Py } u S' 

if .1': (2: 11 P) is in 5, ex~Cr) = 0, 
there is 110 constraint :t:P' z, and y is a new variable 

2. ,'" ~T3 {V: C, ;rPy} U S 

if .r: 3P.C is in S, aimosi~(:r) 2: ('x~(:r), 
t.here is no constraint :rP':;, and y is a new variable 
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3. 5 --+T3~ {xPy} U {y:C ICE 11'} U 5 

if e?s(x) = I, atmostf(x) = k, I > k, 
{x: :3P.Cl , ... , x: :3P.Cd ~ 5, 
11' E II where II is a k-partition of {Cl, ... ,Cd, 
there is no constraint xP' z, and y is a new variable. 

The trace rules are designed to produce for a variable x at most one 
variable y that is related to x by constraints of the form x Py. The only 
completion rules introducing such constraints are the --+~- and the --+3-rule. 
The trace rules prescribe a controlled application of these rules. The --+T~­
rule allows the --+~-rule to be applied only if no constraint x: ~P.C is present 
in 5 . The --+T3-rule allows the --+3-rule to be applied if there exist constraints 
of the form x: :3P.C in 5, and the number of such constraints doesn't exceed 
the minimal "atmost" restriction imposed on x . However, if I is the number 
of constraints in 5 having the form x : :3P.C, k is the minimal "atinost" 
restriction for x in 5, and I exceeds k, then applications of the --+3-rule would 
introduce variables YI, ... , YI satisfying constraints {xPYj, Yj: Cj}, where 1 :S 
j :S l. Subsequent applications of the --+~-rule would identify some of the new 
variables, thus creating a k-partit ion of the set {Cl , ... ,Cd. The --+T3~-rule 
models the combined application of the two rules. 

Let C be a simple concept and let T be a constraint system obtained 
from {x: C} by application of the trace rules. We call T a trace of {x: C}, if 
no trace rule applies to T. 

Proposition 4.3 Let C be a simple concept and 5 = {x: C} . Then: 

1. The length of a trace rule del'ivation issuing from 5 is bounded linearly 
in the size of C. 

2. Every trace of 5 zs contained 1.12 a quasi-complete constraint system 
extending 5. 

3. Every quasi-complete constraint system extending 5 can be obtained as 
the union of finitely many traces of 5. 

To detect clashes it suffices to inspect traces. 

Proposition 4.4 Let C be a simple concept, 5 a quasi-complete constraint 

system extending {x: C} J and T a finite set of traces such that 5 = UTET T. 
Then 5 contains a clash if and only if some T E T contains a clash. 
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satl: variable x constraint system -+ bool 

satl(x,S) = 
if S contains a clash 

then false 
elsif x: C n DES and x: C ~ S or x: D ~ S 

then satl(x,SU {x:C, x:D}) 
elsif x: CuD E S and x: C ~ S and x: D ~ S 

then satl(x, S U {x: C}) or satl(x, S U {x: D}) 
else let y be a new variable in: 

forall x: (~ n P) E S 
with e>!s'(x) = 0: 

satl(y, S U {y: C I x:VP .C E S}) 
and 
forall x: 3P.C E S 

with e>!s'(x) ~ atmost~(x) : 
satl(y,SU {y:C} U {y:D I x:VP.D E S}) 

and 
forall {x: 3P.C1 , ..• , x: 3P.Cd ~ S 

with 1 = e?s(x), k = atmost~(x), 1 > k: 
exists a k-partition II of {C1 , .•• , C1} such that: 
forall 7r E II: 

satl(y,SU {y:C ICE 7r} U {y:D! x:VP.D E S}) 

Figure 1: A functional algorithm deciding the satisfiability of 
A£CN-concepts. The call satl(x, {x: C}) returns true if and only if C is 
satisfiable. 

Suppose C is a simple concept, and the recursive function satl in Figure 1 
is called with arguments x and S = {x: C}. Then satl returns true if and 
only if there exists a clash free quasi-complete constraint system extending S. 

Nijenhuis and Wilf [NW75] give a linear space algorithm that enumerates 
all partitions of a finite set. We can use a slightly modified version of their 
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algorithm enumerating only k-partitions to find an appropriate k-partition of 
{CI , ... ,Cd. We assume that such an algorithm is called as a subprocedure 
by satl. 

The function sat1 can be executed such that at most one trace needs 
to be kept in memory. Furthermore, for every variable in such a trace we 
have to store information on the corresponding k-partition that is currently 
investigated, which can be achieved using linear space. Thus, satl can be 
executed using space quadratic in the size of C. 

Since satisfiabili ty of A£C-concepts is PSPACE-complete [SS88] and A£C 
is a sublanguage of A£CN, we have proven the main result of this section. 

Theorem 4.5 Satisfiability and subsumption of A£CN -concepts are 
PSPACE-complete problems) which can be decided with quadratic space. 

4.2 Satisfiability of A£CR-Concepts 

In this section we give an algorithm for checking the satisfiability of A£CR­
concepts. 

General Assumption. In this section) all concepts are A£CR-concepts 
and all constraint systems contain only A£CR-concepts. 

Since now concepts do not contain number restrictions, we can complete 
constraint systems without using the ---t~- and the ---t~-rule. 

Proposition 4.6 

1. A constraint system is complete if and only if the -tn-) -tv-) -t3 -) and 
the -tu-rule don't apply. 

2. A complete constraint system is satisfiable if and only if it contains no 
clash. 

Similarly as in the previous section, we first define a set of trace rules, 
then consider the traces that can be computed with them, and finally give a 
functional algorithm that checks for a. given simple concept C the satisfiability 
of {:r : C}. 

The trace 1'ules consist of the -tn-, -tu-, -~v-rule and the following rule: 
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sat2: variable x constraint system ~ bool 

sat2(x,5) = 
if 5 contains a clash 

tllen false 
elsif x: C n D E 5 and x: C tI. 5 or x: D tI. 5 

then sat2(x,5U {x:C, x:D}) 
elsif x: CUD E 5 and x: C tI. 5 and x: D tI. 5 

then sat2(x, 5 U {x: C}) or sat2(x, 5 U {x: D}) 
else let y be a new variable in: 

forall x: :JR.C E 5 
sat2(y,5 U {y: C} U {y: D I x: VQ.D E 5 and R ~ Q}) 

Figure 2: A functional algorithm deciding the satisfiability of 
A£CR-concepts. The call sat2(x, {x: C}) returns true if and only if C is 
satisfiable. 

5 ~T3 {xPIy, ... , xPky, y: C} U 5 

if x: :JR.C is in 5, R = PI n ... n Pk , there is no constraint 
of the form xpz in 5, and Y is a new variable. 

The ~T3-rule ensures that in a trace for a variable x at most one con­
straint of the form xPy is generated. 

Let C be a simple A£CR-concept and let T be a .constraint system ob­
tained from 5 = {x: C} by application of the trace rules. We call T a 
trace of 5, if no trace rule applies to T. The traces defined in this section 
have properties similar to those stated in the previous section. In particular, 
Propositions 4.3 and 4.4 hold again if quasi-complete constraint systems are 
replaced by complete constraint systems. 

The recursive function sa,t2 in Figure 2 returns true if and only if for the 
constraint system {x: C} given as argument there exists a clash free complete 
system extending {x: C}. The function can be executed such that at most one 
trace needs to be kept in memory. When implemented naively, the algorithm 
needs quadratic space to store a trace, since it creates constraints of the form 
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x: D where D is a subconcept of D. But if subconcepts are represented by 
pointers instead of copies, then a trace needs at most space linear in the size 
of C. Thus, sat2 needs at most space linear in the size of the input. 

Since deciding the satisfiability of A£C-concepts is a special case of decid­
ing the satisfiability of A£CR-concepts, we have proven the following result. 

Theorem 4.7 Satisfiability and subsumpti9n of A£CR-concepts are 
PSPA CE-complete problems, which can be decided with linear space. 

4.3 Numbers as a Source of Complexity 

We don't know if a PSPA CE-algori thm for checking the satisfiabili ty of 
A£CNR-concept descriptions exists. Here we give arguments why there 
is no straightforward way of applying the trace technique to the problem. 

It is possible to split a complete constraint system into traces, whenever 
it is sufficient to consider for a variable x only one variable y such that xPy 

holds. As seen in Example 4.1, this is not the case when number restrictions 
and role intersections toget her are present. Our method to cope with the 
interaction of number restrictions and role intersections required to introduce 
for every constraint of the form x: (~ n R) occurring in a constraint system 
at least 11. new constraints of the form xPy such that XRY1, ... , xPYn holds. 
If 11, is coded in binary, this method yields a nnmber of additional constraints 
that is exponential in the length of the string representing n. To store these 
constraints, one would need exponential space. 

However, if numbers are coded in unary- that is, the number 11, is repre­
sented by a string of 12 equal symbols- then linear space would suffice to store 
the new constraints. In this case one could ('mploy the trace technique to 
devise a quadratic spa.ce algorithm as follows: for a variable x in a constraint 
SystClll 5, thc a.lgorithm would 

1. int,roduc(' all constraints of the form xPy as required by the constraints 
of the form :1': (~ n R) and ;1:: 3R.C in S. 

2. ident.ify individual variables as required by the constraints of the form 
.1': (:::; 11 R) i 11 5, 

:3. proceed wit.h a variable y where xPy is in the updated constraint sys­
('(,111. 
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5 Combining Concepts and Feature Logic 

Feature descriptions emerged in computational linguistics as a device to de­
scribe constituents of sentences in terms of attributes, which are called fea­
tures in this context [Sh86]. Examples for such features may be gender, 
number, or voice. The main operation on feature descriptions is a test for 
consistency. 

In his paper on "Feature Logic", Smolka gave a Tarsky style semantics 
for feature descriptions and showed that they are closely related to concepts 
of KL-ONE-like languages [Sm088], the main difference being that in Feature 
Logic attributes (called features) are interpreted as partial functions while in 
I\:L-ONE attributes (called roles) are interpreted as arbitrary binary relations. 

Features come with the constructs selection, and agreement and disagree­
ment of feature chains. Selection corresponds to existential quantification of 
roles. · Agreement and disagreement are counterparts of KL-ONE's so-called 
"role value maps" [BS85]. Smolka shows that a feature ·language that con­
tains intersection, union and complement of feature descriptions, as well as 
selection, agreement and disagreement on features, has an NP-complete satis­
fiability problem and a co-NP-complete subsumption problem. Interestingly, 
if agreement is used with roles, then it causes undecidability [Sch89]. No­
tationally very similar, one minor difference in the semantics causes major 
computational differences. 

In this chapter we amalgamate the language ACC with feature logic by 
adding selection, agreement and disagreement operators for features and 
show that a tableaux like calculus is also applicable to this combination. 

5.1 Syntax and Semantics of A£CF-Concepts 

\Ve assume a further alphabet of symbols, called features, that is disjoint 
from the alphabets of primitive concepts and primitive roles. The letter f 
will always denote a feature. 

A path, denoted by the letter p or q, is a sequence II' .. In of features. 
The empty path is denoted by c. 

Concepts (denoted by C and D) of the language ACC;: are formed out 
of primitive concepts, primitive roles, and features according to the syntax 
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rule 

C,D -+ A I T I ~ I C n D I CUD I ,C I VP.C 13P.C I 
pi I (undefinedness) 

f·C I (selection) 

(agreement) 

(disagreement ). 

Thus, A£CF adds to A£C undefinedness, selection, agreement and disagree­
ment of features . 

A feature inte1'p1'etation I = ( ~I,.I) consists of a set ~I and a function .I 
mapping concepts to subsets of ~I, roles to binary relations on ~I, and 
features and paths to partial fun ctions from ~T to ~I such that the following 
equations are satisfied (by dom we denote the domain of partial functions): 

c;T(a) 

(fp)T(a) 

(pj)I 

(f.C)I 

(p == q)I 

(p -# q)I 

a for every a E ~T, i.e. c;T is the identity function on ~I 

pI (fI (a)) 

~I \ dompI 

{a E domfI I fI(a) E CI } 

{a E dompI n domll pI(a) = l(a)} 

{a E dompI n domll pI(a) =l-l(a)}. 

An interpretation that interprets features as binary relations is a feature 
iuterpretation if for every feature f it satisfies the axiom 

V;c, y, z .f(a;,y)l\f(x,z) -+ y==z. 

Observe that feature axioms contain equality. This will show up again in the 
rules of the calculus. 

The selection I.C denotes the set of all elements of the domain for which 
til(' feature I is defined and for which the application of I yields an element of 
the set denoted by C. The agreement p == q of two paths p and q denotes the 
scI, of all elements of the domain for which p and q are both defined and the 
application of p and q yields the same element as result. The disagreement 
]J -# q of ]J and q denotes the set of all elements of the domain for which p and 
q a.re both defined and the application of p and q yields different elements as 
result. 

23 



General Assumption. In the following concepts are always understood to 
be ALe:;: -concepts. 

A feature interpretation I is a feature model for C if C I is nonempty. Fur­
thermore, satisfiability, subsumption and equivalence of concepts are defined 
with respect to feature interpretations instead of arbitrary interpretations. 

Suppose f is a feature, P a primitive role, and I a feature interpretation 
with domain fj.I such that for all a, b E fj.I we have (a, b) E pI if and 
only if a E dom fI and fI (a) = b. That is, pI is the graph of the partial 
function fI. Then the following equations hold for all concepts C: 

(3P.C)I (J.C)I 

(Vp.C)I = (J.C U 'f.T)I. 

Thus, role quantification of P can be expresseJ in terms of the selection op­
erator, if P is interpreted as a partial function. Conversely, feature selection 
can be expressed by existential quantification . 

A new element comes into the language via agreements and disagreements 
of feature paths. The equations 

(p.T n q.T n ,(p # q))I 

(p.T n q.T n ,(p == q))I 

show, that the agreements can be expressed b) disagreements and vice versa. 
As in Chapter 2 we single out a special class of concepts as normal forms. 

A concept is called simple if it contains only complements of the form ,A, 
where A is a primitive concept, and no subconcepts of the form pi where p 
is not a feature. 

We transform concepts into simple concepts preserving equivalence by 
rewriting with the rules in Chapter 2 and the following rules: 

'f·e ----+ fi U f··C 

'p == q ---t pi u qi IJ p =# q 

.p # q ----+ pi U qi Up == q 

cj ----+ ..l 

(Jp)j ----+ fi U f·(pj) 

Proposition 5.1 For eve1'y concept one can compute in linea?' time an equiv­
alent simple concept. 

24 



5.2 Checking Satisfiability 

Next, we extend our calculus for checking the satisfiability of A£CNR­
concepts so that it can cope with features. First we introduce two new 
kinds of constraints . Constraints now have one of the following forms: 

x : C, xPy, xpy, x =J y, 

where C is a simple concept, P is a primitive role, and p is a path. Let I be a 
feature interpretation and let 0' be an I-assigllment. vVe say that 0' satisfies 

x:C, ifO'(X)ECI 

xPy, if (O'(x),O'(y)) E pI 

xpy, if 0'(:1') E dOillpI and pT(O'(x)) = O'(y) 

xf=y, ifO'( x) f=O'(V)· 

As before, constraint systems are nonempty l1nite sets of constraints. Sat­
i~fiability of constraints and constraint systems are now defined in terms of 
feature interpretations instead of interpretations as in Chapter 2. Again, a 
simple concept C is satisfiable if and only if the constraint system {x: C} is 
satisfiable. 

To deal with the new language constructs i.1VoIving features we define the 
fo llow ing f eature completion rules: 

l. S' -TseJection {xfv, v: C} u 5 

if :r: f .C is in 5, there is no variah le z such that 
.Tf z and z : C are in 5, and V is a new variable 

2. S' -T":" {:rpy, :rqy} U 5 

if :1": p == q is in 5, there is no va.riable z such that 
.r]):: and .rqz are in 5, and y is a new variable 

:3. ,s' -T-j:: {.rlJY, :rq:::, y f= z} uS 

if :1": p #- q are in 5, there are no variables y', z' such that 
:1"]1,1/, ;rq:::' and V' f= ::: ' are in 5, and y, z are new variables 
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4. S --+path {xf z, zpy} uS 

if xfpy is in S, p -:j:. c, there is no variable z' such that 
x f z' and z' py are in S, and z is a new variable 

5. S --+function [y / zlS 

if xfy and xf z are in S, and y -:j:. z. 

The --+selection-rule for features is the analogue of the --+3-rule for roles. 
The --+~- and --+;t-rule work on agreement and disagreement constraints. 
Path constraints like xpy, that are produced by application of these rules, are 
stepwise shortened by the --+path-rule by stripping off the first feature symbol. 
The --+ function-rule reflects the assumption that features are interpreted as 
partial functions. It corresponds to the feature axioms coming in implicitly 
with every feature symbol. 

The next proposition says that the feature rules are deterministic. 

Proposition 5.2 (Invariance) If the constraint system S' is obtained from 
the constraint system S by application of a feature completion 1'ule, then S' 
is consistent if and only if S is consistent. 

The A£CF-completion rules consist of --+n-, --+'1-, --+3-, and --+u-rule to­
gether with the feature completion rules. A constraint system is complete if 
no A£CF-completion rule applies to it. 

Proposition 5.3 (Termination) Let C be a simple concept. Then: 

1. The1'e is no infinite chain of A£CF -completion steps issuing from {x: C}. 

2. The lenght of a chain of A£CF -completion steps issuing from {x: C} 
is bounded exponentially in the size of C. 

A clash is a constraint system having one of the following forms: 

{x: ..i}, {x: A, x: ,A}, {x: fn, {x -:j:. x}. 

Proposition 5.4 A complete constraint system is satisfiable if and only if 
it contains no clash. 
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Proof. Let S be a constraint system. If S contains a clash, then it is 
obviously unsatisfiable. 

If S is complete, then for every variable x and every feature f there is at 
most one variable y such that xfy is in S . Now it is easy to see that there 
is an interpretation I obtained by taking for ~I all variables occurring in S, 
for A I all x such that x: A is in S, for pI all pairs (x, y) such that x Py is 
in S, for fI the partial function with 

domfI = {x I ::Jy. xfy E S} 

that is defined by fI (x) = y if x f y is in S. The I-assignment mapping every 
variable to itself satisfies S. 0 

If C is a simple concept, then, up to variable renaming, one can ob­
tain only finitely many complete constraint systems from {x: C} using the 
A.cCF-completion rules . With the preceding proposition it follows that C is 
satisfiable if and only if there is one system among these complete systems 
that contains no clash. 

Theorem 5.5 Satisfiability and subsumption of A.cCF -concepts are decid­

able. 

Corollary 5.6 An A.cCF-concept has a f eatw'e model if and only if it has 
a finit e f eature model. 

5.3 PSPACE-Completeness 

In this section we show that satisfiability of A.cCF-concepts is a PSPACE­
complete problem. Since sat isfiability of A.cC-concepts, which are contained 
in A.cCF, is known to PSPACE-complete, it is sufficient to give a polynomial 
space algorithm solving this problem. 

To this purpose, the trace technique applied in the previous chapter has 
to be modified. The crucial observation that led to traces was that to detect 
clashes it is sufficient to generate for a variable x at most one variable y that 
is related to x by a constraint of the form xPy at time. For the A.cCF­
algorithm however, it is important to make a distinction between roles and 
features . As before, the algorithm will introduce for a given x only one 
variable y and one constraint of the form .,Py. But it has to introduce 
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as many variables as required by the feature completion rules in order to 
compute all consequences of agreement and disagreement constraints. 

We first define feature trace rules, then we consider feature traces com­
puted with them, and finally we give a functional algorithm for checking the 
satisfiability of A£CF-concepts. 

The feature tmce rules consist of the --+n-, --+\1-, --+u-rule, the feature 
completion rules, and the following rule: 

5 --+T3 {y: C, xPy} U 5 

if x: :JP.C is in 5, there is no constraint of the form 
x p z in 5, and y is a new variable 

The --+T3-rule is a restriction of the --+3-rule designed such that for every 
variable x at most one constraint of the form xPy is produced. 

Let C be a simple concept and let T be a constraint system obta.ined from 
{x: C} by application of the feature trace rules . We call T a feature tmce of 
{x: C} if no feature trace rule applies to T. 

Feature traces have properties similar to those of traces stated in Sec­
tion 4.1. 

Proposition 5.7 Let C be a simple concept, 5 = {x: C}, and T a feature 
trace of 5. Then: 

1. If xPy and xP'y' are in T , then P = P' and y = y', and if xfy and 
xfy' are in T, then y = y'. 

2. The length of a featu1'e tmce rule de1'ivation tmnsforming 5 into T is 
bounded linearly in the size of 5. 

3. Every feature tmce of 5 is contained in a complete constraint system 
extending 5. 

4. Every complete constraint system extending 5 can be obtained as the 
union of finitely many feature traces of 5. 

Proposition 5.8 Let C be a concept, 5' be a complete constmint system 
extending {x: C}, and let T be a finite set of traces such that 5' = UTET T. 
Then 5' contains a clash if and only if some T E T contains a clash. 
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sat3: variable x constraint system -t bool 

sat3(x, S) = 
if S contains a clash 

then false 
elsif x: C n DES and x: C ~ S or x: D ~ S 

then sat3(x,SU {x:C,x:D}) 
elsif x: CUD E S and x: C ~ 5 and x: D ~ S 

then sat3(x, S U {x: C} ) or sat3(x, S U {x: D}) 
elsif a feature rule is applicable to 5 

then let S' be a feature completion of Sin: 
forall new variables y in 5': 
sat3(y, S') 

else let y be a new variable in: 
forall x: 3R.C E S : 
sat3(y, S U {y: C} U {y: D I x: VR.D E S}) 

Figure 3: A functional algorithm deciding the satisfiability of 
A.cCF-concepts. The call sa,t3(x, {x: C}) returns true if and only if C is 
satisfiable. 

Let Sand S' be constraint system. We say that S' is a feature completion 
of S, if S' is obtained from S by application of the feature completion rules, 
and the feature completion rules don't apply to S'. Observe that two feature 
completions of a constraint system S are equal up to variable renaming. 

Let C be a simple concept. The recursive function sat3 employs a strategy 
in generating feature traces of {x: C}. It applies all feature completion rule 
as long as possible and only then applies the --tT3-rule. The function checks 
whether {x: C} has a clash free A.cCF-compldion and can therefore be used 
to decide the satisfiability of C. Again, on o. can choose a suitable data 
structure to represent the subconcepts of C occurring in feature traces, that 
does not use copies of subconcepts but represents them by pointers. With 
such a data structure a trace of C can be stored using space linear in the size 
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of C. From this observation we conclude the main result of this chapter. 

Theorem 5 .9 Satisfiability and subsumpfion of A£CF-concepts are 
PSPACE-complete problems, which can be decided with linear space. 

6 Conclusion 

This paper is a contribution to exploring the frontier between concept lan­
guages with decidable and such with undecidable subsumption problem. For­
mer efforts concentrated on finding minimal languages with undecidable sub­
sumption problem [Pat89, Sch88, Sch89]. We complement this work by giv­
ingv satisfiability and subsumption checking algorithms for languages that 
are, to the best of our knowledge, the richest for which these problems are 
known to be decidable. Nevertheless, we feel that they can still be extended 
by further constructs, like inverse roles and agreement of arbitrary roles. For 
an extended algorithm one would have to introduce constraints and com­
pletion rules corresponding to the new constructs, and a control structure 
governing the rule application. 

A second contribution of this paper is that it exemplifies a method of 
designing subsumption algorithms. The method is based on the observation 
that subsumption can always be reduced to satisfiability. This problem can 
then be decided with a calculus based on inference rules that closely resemble 
those of the tableaux calculus for first order logic. Complexity results show 
that in most cases an algorithm based on these ideas is optimal. The algo­
rithms described in this paper require polynomial space and solve PSPACE­
complete problems. Similar results hold for sublanguages of A£CNR with 
respect to other complexity classes [DHL*90]. 

Finally, we showed that concept langua.ges of the KL-ONE-family and 
feature based description languages as developed in computational linguistics 
not only are intimately related as regards their semantics (d. [Sm088]) but 
also can be treated with similar algorithmic techniques. We presented the 
language A£CF that combines concepts and fe('l.ture terms, and showed that 
adding features did not increase the complexity of the satisfiability and the 
subsumption problem. 
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