
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Research
Report

RR-90-04

Subsumption Algorithms

for

Concept Languages

Bernhard Hollunder Werner Nutt

April 1990

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland
Director

Subsumption Algorithms for Concept Languages

Bernhard Hollunder, Werner Nutt

DFKl-RR-90-04

A short version of this paper will be published in the Proceedings of the 9th European
Conference on Artificial Intelligence, Pitman Publishing, 1990.

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1990

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying , reproducing , or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fur Kunstliche Intelligenz.

Subsumption Algorithms for Concept
Languages

Bernhard Hollunder Werner Nutt
German Research Center for Artificial Intelligence

Postfach 2080

D-6750 Kaiserslautern, West Germany

e-mail: {hollunde.nutt}@informatik.uni-kl.de

Abstract

We investigate t he subsumption problem in logic-based knowledge
representation languages of the KL-ONE family and give decision pro
cedures. All our languages contain as a kernel the logical connectives
conjunction, disjunction, and negation for concepts, as well as role
quantification. The algorithms are rule-based and can be understood
as variants of tableaux calculus with a special control strategy.

In the first part of the paper, we add number restrictions and con
junction of roles to the kernel language. We show that subsumption in
this language is decidable, and we investigate sublanguages for which
the problem of deciding subsumption is PSPACE-complete.

In the second part, we amalgamate the kernel language with fea
ture descriptions as used in computational linguistics. We show that
feature descriptions do not increase the complexity of the subsumption
problem.

Contents

1 Introduction 3

2 Concept Languages 7

3 Checking Satisfiability 10

4 PSPACE-Complete Languages 14
4.1 Satisfiability of A.cCN-Concepts 14
4.2 Satisfiability of A.cCR-Concepts . 19
4.3 Numbers as a Source of Complexity. 21

5 Combining Concepts and Feature Logic 22
5.1 Syntax and Semantics of A.cCF-Concepts 22
5.2 · Checking Satisfiability 25
5.3 PSPACE-Completeness . 27

6 Conclusion 30

2

1. Introduction

Concept languages of the KL-ONE fami ly are a means of expressing taxo
nomical knowledge by describing hierarchies of concepts [BL84, Pat84, BS85,
BPGL85, KBR86, Vi185, MB87, NvL88, Neb89]. In contrast to earlier knowl
edge representation formalisms like frames and semantic networks, KL-ONE

languages have the advantage of a Tarski style declarative semantics that
allows to conceive them as sublanguages of predicate logic [BL84] . Con
cepts are intended to be descriptions of classes of objects. Essentially, such
a description is given in terms of primitive classes and attributes of objects.
A related family of formalisms emerged in computational linguistics with
unification based grammars. Here, constituents of sentences are described
in terms of attributes (so-called features) and their values [Sh86, Sm088].
Recently, concept langua.ges have been investigated as a means to describe
object oriented data models [BBMR89] .

A concept is built up of two kinds of primitive symbols, concepts and roles.
An interpretation interprets them as subsets of a domain and binary relations
over the domain. These primitives can be combined by various language
constructs yielding complex concepts, which again are interpreted as subsets
of the domain . Different languages are distinguished by the constructs they
provide.

Examples for primitive concepts may be person and female , examples for
primitive roles ma.y be child and female _relative. If logical connectives like
conjunction, disjunction, and negation are present as description constructs,
one can describe the concept of "persons that are not female" by the expres
sion

person n ...,female .

Conjunct ion, disjunction, and negation are interpreted as set intersection,
ullion, and complement. l'vfost languages provide quantification over roles
that. allows for instance to describe the concepts of "individuals having a
fcma.lf' child" and "individuals for which all chi ldren are female" by the ex
p r('ss 10 II S

:3child .female and Vchild .female.

N umber restrictions 011 roles denote sets of individuals having at least or at

3

most a certain number of fillers for a role. For instance,

(~ 3 friend) n (::; 2 child)

can be read as "all individuals having at least three friends and at most two
children." We also provide a role-forming construct, namely conjunction of
roles, that allows for instance to define the role

child n female_relative,

which intuitively yields the role "daughter." It is straightforward to give a
formal semantics to role quantification, numbej~ restrictions and role conjunc
tion that captures the intuitive meaning.

Only recently, the close relation between KL-oNE-languages and feature
formalisms has been pointed out [Sm088]. In this paper we introduce a lan
guagethat en corp orates both I{L-ONE-one constructs and features. Features
are functional roles, that is they are supposed to have at most one filler.
Natural examples for features may be father and firsLname. The selection
operator for features can be used to describe the concept of "all individuals
whose father has at most one child" by the expression

father.(::; 1 child).

Agreement of feature chains allows to describe "all individuals whose father
and grandfather have the same first name" by the expression

father firsLname == father father firsLname .

Interestingly, agreements of feature chains are computationally tractable,
whereas agreements of arbitrary role chains C2.use undecidability [Sch89].

Concepts implicitly form a hierarchy: a concept C is subsumed by a
concept D if in every interpretation the set denoted by C is a subset of
the set denoted by D. The basic reasoning facility provided by a I<L-ONE
system is a subsumption checker. For a long time, the I<L-ONE community
was content with sound, but incomplete subsumption algorithms. Such an
algorithm delivers a correct answer when given C and D such that C is
not subsumed by D, but sometimes fails to recognize that one concept is
subsumed by another one.

4

Until recently, a decision procedure was only known for the rather trivial
language F C-, offering as constructs conjunction, V P .C, and :3P . T ,where
P may be a primitive role and T is a concept denoting the entire domain of
an interpretation [BL84]. Several complexity results showed that already for
scemingly slight extensions of FC- the subsur:1Ption problem is co-NP-hard
[L1387, Neb88]. Other work identified languages with undecidable subsump
tion problem [Pat89, Sch89, Sch88] .

The first nontrivial subsumption algorithm was given by Schmidt-SchauB
and Smolka [SS88] for the language ACC, which extends FC- by allowing
for arbitrary logical connectives and role quantification as constructs. The
algorithm is even optimal, since it requires linear space and they show that
subsumption checking in ACC is PSPACE-complete.

In contrast to for mer subsumption algorithms, their algorithm is formu
lated as a satisfiability checking algorithm. An interpretation I is a model of
the concept C if C denotes a nonempty set in I. A concept is satisfiable if it
has a model and unsatisfiable otherwise. A satisfiability checking algorithm
also yields a subsumption checking algorithm, since C is subsumed by D if
and only if C n -,D is unsat isfiable.

The purpose of this paper is twofold. First, we give satisfiability-and
tllcrefore sub:;umption- checking algorithms f0r substantial extensions of the
language ACC. These extensions illclude number restrictions (ACCN), role
conjunction (ACCR.), and features (ACCF). The algorithms for these three
languages require polynomial space. Since the corresponding problems gen
eralize til(' satisfiahil ity problem for ACC, which is known to be PSPACE
cOl1lpkt.c , these algorithms can be considered optimal. Furthermore, we give
a procedure t.o decide satisfiability for ACC.tVn, a language that contains
both nllrllber restrictions and subroles.

Secolld. we' wallt to show that there is a general technique of devising
SUI)Slllllpt.ioll a.lgorithms for most of the languages that have been reported
ill t 11(' literat.ure. The declarat ive semantics of concepts allows to view prim
itive cOllcepts as una ry predicates and primitive roles and features as binary
predicat.es. This identification can be extended to concepts by associating
to ('\-cry cOllcept (.' a predicate logic formula <Pc(x) . For instance, to the
('011 ('('pI.

C = :3child.female n Vchild.person

5

corresponds the formula

¢c(x) = 3y.(child(x,y) 1\ female(y)) 1\ Vz.(child(x,z) -+ person(z)).

A model of the formula 3x. ¢c(x) is a model of the concept C and vice versa.
In particular, C is unsatisfiable if and only if 3x .¢c(x) is unsatisfiable.

A careful analysis shows that first order tableaux calculus [Sm68] always
terminates for such formulas, and exhibits a model if the formula is satisfi
able, or produces obvious contradictions if the formula is not satisfiable. In
particular it follows that a formula 3x.¢c(:r) has a finite model if it has a
model at all. Based on this observation one wuld devise a simple minded
satisfiability checker that consists of two components: a refutation theorem
prover and a procedure that for a given formula enumerates all finite inter
pretations and tests whether they are model8. If both processes start with
input 3x.¢c(x) and run in parallel, the theorem prover will eventually find
ou t that that formula is unsatisfiable if it is, and the interpretation tester will
eventually exhibit a model if there is one. The tableaux calculus combines
the characteristics of both processes.

The algorithmic technique which we propc'se basically consists in apply
ing tableaux calculus with some control strategy to formulas obtained from
concepts. The algorithms are described by tableaux calculus like rules oper
ating on so-called constraints, which directly c0rrespond to logical formulae.
The control is incorporated into the conditions that allow to apply the rules.
The idea of a rule based calculus operation on constraints was already under
lying tlte calculus ill [SS88], although its presentation obscured its intimate
relation to tableaux calculus.

We feci that this technique could be applied as well to other KL-ONE

language constructs that have not been considered in this paper, like inverse
roles or agreement of roles. Conversely, an algorithm for a very general lan
guage, like A£cNn or A£CF, can be used as a starting point to devise
algorithms for sublanguages. Finally, complexity results show that the al
gorithms obtained using this technique are often optimal. For instance, the
OI1<'S described in this pa.per require polynoITlial space and solve PSPACE
complct.e problems.

In the next chapter we formally introduce' syntax and semantics of the
language A£CVn. In chapter 3 we give a satisfiability checking algorithm for
the entire language. In chapter 4 we consider two sublanguages of A£CNn

6

and show that their satisfiability- and therefore subsumption-problems are
PSPACE-complete. Finally in chapter 5 we amalgamate the language A£C
with features and give a satisfiability checking algorithm for this language.

2 Concept Languages

In this section we int roduce syntax and semantics of the concept language
A£CNR, which contains arbitrary logical connectives for concepts, role
quantification, number rest rictions, and intersection of roles.

'vVe assume that two alphabets of symbols, called primitive concepts and
primitive 1'Oies, are given . The letter A will a.lwcys denote a primitive concept,
and the letter P will always denote a primitive role.

Arbitrary roles (denoted by the letters Q and R) are built out of primitive
roles according to the syntax rule

Q, R ---+ P I Q n R.

The concepts (denoted by the letters C and D) of the language A£CNR
are built out of primitive concepts and roles according to the syntax rule

C,D ---+ A I
TI
...LI
CnD I
CUD I
-,C I
VR.C 13R.C I
(:::; n R) I (~ n R)

(primitive concept)
(top concept)
(bottom concept)
(intersection)
(union)
(complement)
(role quantification
(number restriction),

where n ranges over the nonnegative integers coded as binary strings. In the
following we will refer to A£CNR-concepts simply as concepts. A subconcept
of a concept C is a substring of C that is a concept.

Concepts are interpreted as subsets of a domain and roles are inter
preted as binary relations over a domain. More precisely, an interp1'e /al ion
I = (6 I ,.I) consists of a set 6 I (the dom(l1°n of I) and a function .I (the
interpretation function of I) that maps eVCi·y concept to a subset of 6 I

7

and every role to a subset of ~I X ~I such that the following equations are
satisfied:

TI

..iI

(C n D)I

(C U D)I

(-.C)I

(Q n R)I

(VR.cl

(3R.C)I

(2 nRf

(::; n R)I

,~.r

o
CInDI

CIUDI

~I \ cI

QInRI

{a E ~I I V(a,b) E RI.b E C I }

{a E ~I 13(a,b) E RI.b E C I }

{a E ~I I I {b E ~ I I (a, b) E RI} I 2 n}

{a E ~I II{b E ~I I (a,b) E RT}I ::; n}.

Observe that an interpretation is uniquely determined by the values that it
gives to primitive concepts and primitive roles.

Intersection of roles can be used to model subroles. vVe say that Q is a
sub1'ole of a R and write Q ~ R, if QI ~ RT for every interpretation I. If
Q = PI n ... n Pk and R = P{ n ... n P{, then Q is a subrole of R, if and only
if for every primitive role Pj occurring in R there is a role Pi occurring in Q
such that Pi = Pj.

An interpretation I is a model for a concept C if C I is nonempty. A
concept is satisfiable if it has a model and unsatisfiable otherwise. We say C
is subsumed by D if CI ~ DI for every interpretation ;£, and C is equivalent
to D if CI = DI for every interpretation I.

Since our language allows for general complements, satisfiability and sub
sumption can be reduced to each other in linear time. Therefore the two
problems are of equal complexity, and to decide them it suffices to devise a
decision procedure for only one of them.

Proposition 2.1

• C is subsumed by D if and only if C n -,D is not satisfiable

• C is satisfiable if and only if C is not s1tbsumed by ..i.

8

In the following chapters we give algorithm'> that decide the satisfiability
of concepts. By the above proposition, these algorithms can be used as well
for subsumption checking.

To keep our algorithms simple, we do not allow arbitrary concepts as in
put, but only concepts in a certain normal form . A concept is called simple

if it contains only complements of the form -,;1, where A is a primitive con
cept. Simple concepts are the analogue of logical formulae in negation normal
form. Arbitrary concepts can be rewritten to equivalent simple concepts by
the following rules:

-,T ---+ J.-

-,J.- ---+ T

-,(C n D) ---+ -,C u-,D

-,(C U D) ---+ -,C n-,D

-,-,C ---+ C

-,("1 R.C) ---+ ~R. -,C

-'(~R.C) ---+ VR.-,C

-,(::=;nR) ---+ (2: n + 1 R)

-,(2: nR)
{ (::=;n-:lR)

if n = 0
---+

if n > O.

Proposition 2. 2 For eVC1'y concept one can compute in linear time an equiv

alent simple concept.

III this paper we consider three sublanguages of ACcNn:

ACCJV consists of concepts containing no intersections of roles .

ACCR consists of concepts containing no number restrictions.

ACC consists of cOllcepts containing no numb(~r restrictions and no intersec
tions of roles.

The lallguage ACC has been introduced by Schmidt-SchauB and Smolka
[SS88]. They prow'd that subsumption and satisfiability in this language

9

are PSPACE-complete problems. The names of the other languages are cho
sen in such a way as to indicate that they extend A.cC either by number
restrictions or role intersection or both.

In this paper we will prove that A.cCNR has a decidable satisfiability
problem. For the sublanguages A.cCN and A£CR we will give satisfiahility
checking algorithms, which need polynomial space. Since both languages
generalize A.cC, we know that satisfiability and subsumption for A.cCN and
A.cCR are PSPACE-complete problems.

3 Checking Satisfiability

We are going to devise a calculus for checking the satisfiability of concepts.
The calculus will operate on constraints consisting of variables, concepts and
roles. Concepts are supposed to be in normal form.

vVe assume that there exists an alphabet of variable symbols, which will
be denoted by the letters x, y, and z . A constraint is a syntactic object of
one of the forms

x: C, xPy ,

where C is a simple concept and P is a primitive role. Intuitively, x: C says
that x is in the interpretation of C and xPy says that the pair (x, y) is in in
the interpretation of P.

Let I be an interpretation . An I -assignment is a function a that maps
every variable to an element of /}. I. We say that a satisfies x: C if a(x) E CI ,

and a satisfies xPy if (a(l~),a(y)) E pI. A constraint c is satisfiable if
there is an interpretation I and an I-assignment a .such that a satisfies
c. A const'raint system S is a finite, nonempty set of constraints. An I
assignment a satisfi es a constraint system S if a satisfies every constraint in
S. A constraint system S is satisfiable if there is an interpretation I and an
I-assignment a such that a satisfies S.

Proposition 3.1 A simple concept C is satlsfiable if and only if the con
stmint system {x : C} is satisfiable.

Our calculus starts with a constraint system S = {x : C}. In successive
steps it adds constraints to S until either a contradiction is generated or

10

an interpretation satisfying C can be obtained from the resulting system.
The calculus relies on a set of rules, which closely resemble the rules of the
tableaux calculus for first order logic. In fact if one translates concepts into
predicate logic formulas, and applies to them the tableaux calculus with a
suitable control strategy, one obtains essentially the calculus described here.

Defore we formulate the rules we need some notation. Let S be a con
straint system and R = Pl n ... n Pk be a role. We say that xRy holds in S
if the constraints xP1y, ... , xPky are in S .

In order to denote for a variable x the number of variables y such that
xRy holds we define

nR,s(x) := 1 {y 1 xRy holds in S} I·

With [y / z]S we denote the constraiut system obtained from S by replac
ing each occurrence of y by z . \Vc say that the replacement of y by z is safe

in S if for every variable x and for every role R such that x : (2:: n R) is in S
and :rRy and :rR::; holel in S, we have nR,s(x) > n. Intuitively, the replace
ments of y by z is safe in 8, if every number r ~striction that is satisfied in 8
r(,mains satisfied in [y / zlS.

Th(' calculus is given by the following completion 1'ules:

l. S ~n {:r: GI , x: C2 } uS

if :1': C\ n C2 is in S, and :1': C] and :1': C2 are not both in S

2. S' ~u {.r: D} U 5

if :1': C I U C2 is in 5, neither x: CI nor x: C2 is in 5,
and f) = C\ or]) = C2

:L .S' ~3 { .I'J>ly •... •. rPc//, y: C} uS

if .1': 31(.(' is ill 5, R = P1 n ... n P;,;, there is no z such that
.1' /? ::; Iioids in Sand ::;: C is in S. and y is a new variable

I. ~v {.II: ('} u S

if .1':V1?C' is in S, :rRy holds in 5'. and y:C is not in 5

:). S ~> { .I'J>ly ,.rPky} u 5

if .1': (~ 11 R) is in S, R = PI n ... il Pk, l1R,s(:r) < n, and y is
a 11('\\' \'a ria ble

11

6. S ~< [y/z]S

if x: (::; nR) is in S, xRy and xRz holds in S, nR,s(x) > n,
and the replacement of y by z is safe in S.

Obviously, the ~n-, ~u-, ~3-, and ~"v'-rule imitate the tableaux rules
for conjunctions, disjunctions, and existentially quantified formulas.

The ~~- and the ~~-rule operate in a more complicated way to cope with
equality, that comes in through number restrictions. For instance, translating
the number restriction (~ 2 P) we obtain the the formula

which contains equality. Applying the ~~-rule twice to a constraint
x: (~ 2 P) yields two constraints XPYl , XPY2. Now, the ~~-rule is designed
in such a way that after subsequent applications there will always be two
constraints of the form xPy~, xPy~, since it is allowed to replace one variable
by another one only if the replacement i's safe.

vVe distinguish two kinds of completion rules, deterministic ones (~n ,

~3, ~"v', ~~) and nondeterministic ones (~u, ~~). The nondeterminis
tic rules correspond to concept constructs that contain disjunction, when
translated into logic. Obviously, the union of concepts is the analogue of the
disjunction of formulae. Although less obvious, disjunction is also present in
"atmost" restrictions.

To see this, observe that for instance translating the concept (::; 2 P) into
logic yields the formula

<P(9 P)(x) = VYl,Y2 , Y3. P(x,Yd A P(:C,Y2) A P(X,Y3)

-t Yl == Y2 V Yl == Y3 V Y2 == Y3·

Consequently, when the ~~-rule applies, thert:~ is a choice as to which vari
ables are to be identified.

Proposition 3.2 (Invariance) Let S and Sf be co'nstmint systems. Th en:

1. If Sf is obtained from S by application of a deterministic rule, th en S
is satisfiable if and only if Sf is satisfiable.

12

2. If 5' is obtained from 5 by application of a nondeterministic 1'ule, then
5 is satisfiable if 5' is satisfiable . Ji'u1,the1'more, if a nondeterministic

rule applies to 5 J then it can be applied in such a way that it yields
a constraint system 5' such that 5' is satisfiable if and only if 5 is

satisfiable.

Prop osition 3.3 (Termination) Let C be a simple concept. Then:

1. There is no infinite chain of completion steps issuing from {x: C}.

2. The lenght of a chain of completion steps issuing from {x: C} is bounded
exponentially in the size of C.

A constraint system is complete if no propagation rule applies to it.
A clash is a constraint system having one of t~le following forms :

• {:v:..l}

• {x: A, x: -,A}

• {x: (~ 0 R), xP1y, ... , xPky}, where R = Pi n .. . n Pk

• {x: (~ m Q), x: (:S n R)} , where m > nand Q ~ R.

Proposition 3.4 A complete constraint system is satisfiable if and only if
it contains no clash.

Proof. Obviously, a system containing a clash is unsatisfiable. Conversely,
if 5 is a clash free complete system, then there is an interpretation I obtained
by taking for 6. I all variables occurring in S, for AI all x such that x: A is
in 5, for pI all pairs (;r,y) such that ;l.'Py is in 5, and by taking the sets
CI for complex concepts C and RI for compiex roles R as required by the
definition of an interpretation. The I-assignment mapping every variable to
itself satisfies S . 0

It is straightforward to turn the calculus into a decision procedure. To
check a simple concept C for satisfiability, one has to generate all complete
constraint systems derivable from {x: C}, which are, up to variable renaming,
finitely many. If a.ll these systems contain a cla.sh, then C is unsatisfiable,
otherwise it is satisfiable.

13

Theorem 3.5 Satisfiability and subsumption of A£CNR-concepts can be
decided with nondete7'ministic exponential time.

Corollary 3.6 An A£CNR-concept has a model if and only if it has a finite
model.

4 PSPACE-Complete Languages

Satisfiability of ALC-concepts is a P SPACE-complete problem [SS88]. Since
A£C is a sublanguage of A£CNR it follows that checking satisfiability of
ALCNR-concepts is PSPACE-hard. This gives a lower complexity bound.
An upper bound is furn ished by our calculus that requires nondeterministic
exponential time. Better upper bounds exist for special cases. In Section 4.1
we show that satisfiability of A£CN-concepts can be decided with quadratic
space .. In Section 4.2 we give a linear space algorithm for checking satisfiabil
ity of A£ CR -concepts. Since both problems are sti ll more general than the
satisfiability of A£C-concepts, it follows that they are PSPACE-complete.
The algorithms are inspired by a technique first applied in [SS88]. VYe con
clude with a remark on the influence of binary and unary coding of number
restrictions on the complexity of deciding satisfiabili ty of ALCJVR-concepts.

4.1 Satisfiability of A.cCN-Concepts

The reason why the general calculus is so cumbersome is in the -t~-rule.
If a constraint system contains a constraint :1': (~ n R), the algorithm will
apply the -t~-rule to add constraints until the extended system will contain
n variables yl) . .. ,Yn such that xRy}, .. . , xRYn holds. Since n is assumed
to be coded in binary, the number of addition?.! constraints is exponential in
the length of the string representing n .

When all roles in a constraint system are primitive roles, a satisfiability
checking procedure has to do less work when it encounters the above situa
tion. VYe will show that in this case the -t~-nde needs to be applied at most
once, adding a single constraint of the form :rPy.

A constraint system S is quasi-complete if

1. 5 is obtained from {x: C}, for some simple concept C, by a.pplication
of the completion rules;

14

2. the ---+n-, ---+'1-, ---+3-, ---+u- and ---+~-rules don't apply to S;

:3. x: (~ n R) E S always implies nR,s(x) > O.

Note that every complete constraint system is quasi-complete. A quasi
.complete constraint system is complete if it doesn't contain a constraint

.1:: (~nR) with nR,s(;r) < n.
A clash free quasi-complete constraint system that contains role intersec

tions Ileed not be satisfiable.

Example 4.1 Consider the constraint system

,S' = {.1:: (:::; 2 P), ::1.:: (~ 1 P n PI), x: (~ 2 P n P2), x: V Pl' A, x: V P2. --, A } .

ThenS'=,S'U{TPYI , XHY1 , Yl: A , XPY2 , ::rP2Y2, Y2:--,A} is quasi-complete
and clash free. But completing ,S" will yield a clash, because the number
restriction on P n P2 forces us to introduce further constraints x Py~ and
XP2Y~' and the number rest riction on P forces us to identify YI with Y2 or y~,
thus producillg a variable constrained to A and --,A.

If roles are primitive, number restrictions cannot interact via subroles.

Theorem 4 .2 Lei S be a quasi-complete const taint system such that all roles
O(O('luTing in S' are primilive. Th en S is salisJiable if and only if it contains
no da:;/'.

Proof. Suppose S' is a clash free CJuasi- complete constraint system such
t.hat. all rolf'S occurrillg ill S arc primitive. Wf' show that there exists a clash
free con I p kt.e cOllst.ra i III system S' such that. .S ~ 5'.

Such all ('xtellsion 8' can be obtaincd from S constructing a sequence
,.;.,' = ,';"'1.8.2• SI.: = S' where' S'j is transformed into 5j +1 using the following
st (' ps :

• select a \·ari ahle .1' with {.r:(~ nP), ;rPy} ~ Sj and np,sJ(:r) = m < 11.;

• let .1/1" ... YI/ -11I 1)(' new variables;

• let S .i+1 1)(' obtained from 5.i by adding ,('PYI,'" ,xPYn-m, by adding
.1/1 : ('1/ 1/ - ,,, : C for cw'ry constraint i!l 5j of the form y: C, and by
addillg.1/1 e:: , ... ,!III-Hl P:: for every cOllstraillt in 5 j of the form yPz .

15

The process eventually halts when a complete constraint system is reached.
Since the newly introduced constraints are copies of constraints already oc

cUlTing in 5, there is no clash in 5'. D

General Assumption. In the rest of this section, all concepts are A£CN
concepts and all constraint systems contain only A£CN -concepts.

A quasi-complete constraint system that originated from {x: C} may still

be exponential in the size of C. For a polynomial space algorithm it is
therefore crucial not to keep an entire quasi-complete constraint system in
the memory but to store only small portions of it at a time. To make this
idea more precise we need the following definitions.

Let 5 be a constraint system, P a primitive role, and x a variable oc
curring in 5. In order to denote the number of constraints in 5 of the form
x: "3P.C we define

e>.{ (x) : = I {C I :t:: "3 P . C E 5} I .

In order to denote the minimal "atmost" constraint imposed on x for P in

5 we let N = {n I x: (:=:; nP) E 5} and define

' p { minN a,tmost s (x) := 00
if N =I- 0
otherwise.

Let X he a finite set and k a positive integer with k < IXI. A k-partition of X
is a set. II containing /.: painvise disjoint subsets 7r of X such that U1rEn 7r = X.

Now we give transformation rules that build up portions of quasi-complete
cOllstraint systems. The trace 1'ules consist of the ~n-, ~'I- and the ~u-rule
Logetllcr wit.h the following three rules:

1. S -tT? {.r Py } u S'

if .1': (2: 11 P) is in 5, ex~Cr) = 0,
there is 110 constraint :t:P' z, and y is a new variable

2. ,'" ~T3 {V: C, ;rPy} U S

if .r: 3P.C is in S, aimosi~(:r) 2: ('x~(:r),
t.here is no constraint :rP':;, and y is a new variable

16

3. 5 --+T3~ {xPy} U {y:C ICE 11'} U 5

if e?s(x) = I, atmostf(x) = k, I > k,
{x: :3P.Cl , ... , x: :3P.Cd ~ 5,
11' E II where II is a k-partition of {Cl, ... ,Cd,
there is no constraint xP' z, and y is a new variable.

The trace rules are designed to produce for a variable x at most one
variable y that is related to x by constraints of the form x Py. The only
completion rules introducing such constraints are the --+~- and the --+3-rule.
The trace rules prescribe a controlled application of these rules. The --+T~
rule allows the --+~-rule to be applied only if no constraint x: ~P.C is present
in 5 . The --+T3-rule allows the --+3-rule to be applied if there exist constraints
of the form x: :3P.C in 5, and the number of such constraints doesn't exceed
the minimal "atmost" restriction imposed on x . However, if I is the number
of constraints in 5 having the form x : :3P.C, k is the minimal "atinost"
restriction for x in 5, and I exceeds k, then applications of the --+3-rule would
introduce variables YI, ... , YI satisfying constraints {xPYj, Yj: Cj}, where 1 :S
j :S l. Subsequent applications of the --+~-rule would identify some of the new
variables, thus creating a k-partit ion of the set {Cl , ... ,Cd. The --+T3~-rule
models the combined application of the two rules.

Let C be a simple concept and let T be a constraint system obtained
from {x: C} by application of the trace rules. We call T a trace of {x: C}, if
no trace rule applies to T.

Proposition 4.3 Let C be a simple concept and 5 = {x: C} . Then:

1. The length of a trace rule del'ivation issuing from 5 is bounded linearly
in the size of C.

2. Every trace of 5 zs contained 1.12 a quasi-complete constraint system
extending 5.

3. Every quasi-complete constraint system extending 5 can be obtained as
the union of finitely many traces of 5.

To detect clashes it suffices to inspect traces.

Proposition 4.4 Let C be a simple concept, 5 a quasi-complete constraint

system extending {x: C} J and T a finite set of traces such that 5 = UTET T.
Then 5 contains a clash if and only if some T E T contains a clash.

17

satl: variable x constraint system -+ bool

satl(x,S) =
if S contains a clash

then false
elsif x: C n DES and x: C ~ S or x: D ~ S

then satl(x,SU {x:C, x:D})
elsif x: CuD E S and x: C ~ S and x: D ~ S

then satl(x, S U {x: C}) or satl(x, S U {x: D})
else let y be a new variable in:

forall x: (~ n P) E S
with e>!s'(x) = 0:

satl(y, S U {y: C I x:VP .C E S})
and
forall x: 3P.C E S

with e>!s'(x) ~ atmost~(x) :
satl(y,SU {y:C} U {y:D I x:VP.D E S})

and
forall {x: 3P.C1 , ..• , x: 3P.Cd ~ S

with 1 = e?s(x), k = atmost~(x), 1 > k:
exists a k-partition II of {C1 , .•• , C1} such that:
forall 7r E II:

satl(y,SU {y:C ICE 7r} U {y:D! x:VP.D E S})

Figure 1: A functional algorithm deciding the satisfiability of
A£CN-concepts. The call satl(x, {x: C}) returns true if and only if C is
satisfiable.

Suppose C is a simple concept, and the recursive function satl in Figure 1
is called with arguments x and S = {x: C}. Then satl returns true if and
only if there exists a clash free quasi-complete constraint system extending S.

Nijenhuis and Wilf [NW75] give a linear space algorithm that enumerates
all partitions of a finite set. We can use a slightly modified version of their

18

algorithm enumerating only k-partitions to find an appropriate k-partition of
{CI , ... ,Cd. We assume that such an algorithm is called as a subprocedure
by satl.

The function sat1 can be executed such that at most one trace needs
to be kept in memory. Furthermore, for every variable in such a trace we
have to store information on the corresponding k-partition that is currently
investigated, which can be achieved using linear space. Thus, satl can be
executed using space quadratic in the size of C.

Since satisfiabili ty of A£C-concepts is PSPACE-complete [SS88] and A£C
is a sublanguage of A£CN, we have proven the main result of this section.

Theorem 4.5 Satisfiability and subsumption of A£CN -concepts are
PSPACE-complete problems) which can be decided with quadratic space.

4.2 Satisfiability of A£CR-Concepts

In this section we give an algorithm for checking the satisfiability of A£CR
concepts.

General Assumption. In this section) all concepts are A£CR-concepts
and all constraint systems contain only A£CR-concepts.

Since now concepts do not contain number restrictions, we can complete
constraint systems without using the ---t~- and the ---t~-rule.

Proposition 4.6

1. A constraint system is complete if and only if the -tn-) -tv-) -t3 -) and
the -tu-rule don't apply.

2. A complete constraint system is satisfiable if and only if it contains no
clash.

Similarly as in the previous section, we first define a set of trace rules,
then consider the traces that can be computed with them, and finally give a
functional algorithm that checks for a. given simple concept C the satisfiability
of {:r : C}.

The trace 1'ules consist of the -tn-, -tu-, -~v-rule and the following rule:

19

sat2: variable x constraint system ~ bool

sat2(x,5) =
if 5 contains a clash

tllen false
elsif x: C n D E 5 and x: C tI. 5 or x: D tI. 5

then sat2(x,5U {x:C, x:D})
elsif x: CUD E 5 and x: C tI. 5 and x: D tI. 5

then sat2(x, 5 U {x: C}) or sat2(x, 5 U {x: D})
else let y be a new variable in:

forall x: :JR.C E 5
sat2(y,5 U {y: C} U {y: D I x: VQ.D E 5 and R ~ Q})

Figure 2: A functional algorithm deciding the satisfiability of
A£CR-concepts. The call sat2(x, {x: C}) returns true if and only if C is
satisfiable.

5 ~T3 {xPIy, ... , xPky, y: C} U 5

if x: :JR.C is in 5, R = PI n ... n Pk , there is no constraint
of the form xpz in 5, and Y is a new variable.

The ~T3-rule ensures that in a trace for a variable x at most one con
straint of the form xPy is generated.

Let C be a simple A£CR-concept and let T be a .constraint system ob
tained from 5 = {x: C} by application of the trace rules. We call T a
trace of 5, if no trace rule applies to T. The traces defined in this section
have properties similar to those stated in the previous section. In particular,
Propositions 4.3 and 4.4 hold again if quasi-complete constraint systems are
replaced by complete constraint systems.

The recursive function sa,t2 in Figure 2 returns true if and only if for the
constraint system {x: C} given as argument there exists a clash free complete
system extending {x: C}. The function can be executed such that at most one
trace needs to be kept in memory. When implemented naively, the algorithm
needs quadratic space to store a trace, since it creates constraints of the form

20

x: D where D is a subconcept of D. But if subconcepts are represented by
pointers instead of copies, then a trace needs at most space linear in the size
of C. Thus, sat2 needs at most space linear in the size of the input.

Since deciding the satisfiability of A£C-concepts is a special case of decid
ing the satisfiability of A£CR-concepts, we have proven the following result.

Theorem 4.7 Satisfiability and subsumpti9n of A£CR-concepts are
PSPA CE-complete problems, which can be decided with linear space.

4.3 Numbers as a Source of Complexity

We don't know if a PSPA CE-algori thm for checking the satisfiabili ty of
A£CNR-concept descriptions exists. Here we give arguments why there
is no straightforward way of applying the trace technique to the problem.

It is possible to split a complete constraint system into traces, whenever
it is sufficient to consider for a variable x only one variable y such that xPy

holds. As seen in Example 4.1, this is not the case when number restrictions
and role intersections toget her are present. Our method to cope with the
interaction of number restrictions and role intersections required to introduce
for every constraint of the form x: (~ n R) occurring in a constraint system
at least 11. new constraints of the form xPy such that XRY1, ... , xPYn holds.
If 11, is coded in binary, this method yields a nnmber of additional constraints
that is exponential in the length of the string representing n. To store these
constraints, one would need exponential space.

However, if numbers are coded in unary- that is, the number 11, is repre
sented by a string of 12 equal symbols- then linear space would suffice to store
the new constraints. In this case one could ('mploy the trace technique to
devise a quadratic spa.ce algorithm as follows: for a variable x in a constraint
SystClll 5, thc a.lgorithm would

1. int,roduc(' all constraints of the form xPy as required by the constraints
of the form :1': (~ n R) and ;1:: 3R.C in S.

2. ident.ify individual variables as required by the constraints of the form
.1': (:::; 11 R) i 11 5,

:3. proceed wit.h a variable y where xPy is in the updated constraint sys
('(,111.

21

5 Combining Concepts and Feature Logic

Feature descriptions emerged in computational linguistics as a device to de
scribe constituents of sentences in terms of attributes, which are called fea
tures in this context [Sh86]. Examples for such features may be gender,
number, or voice. The main operation on feature descriptions is a test for
consistency.

In his paper on "Feature Logic", Smolka gave a Tarsky style semantics
for feature descriptions and showed that they are closely related to concepts
of KL-ONE-like languages [Sm088], the main difference being that in Feature
Logic attributes (called features) are interpreted as partial functions while in
I\:L-ONE attributes (called roles) are interpreted as arbitrary binary relations.

Features come with the constructs selection, and agreement and disagree
ment of feature chains. Selection corresponds to existential quantification of
roles. · Agreement and disagreement are counterparts of KL-ONE's so-called
"role value maps" [BS85]. Smolka shows that a feature ·language that con
tains intersection, union and complement of feature descriptions, as well as
selection, agreement and disagreement on features, has an NP-complete satis
fiability problem and a co-NP-complete subsumption problem. Interestingly,
if agreement is used with roles, then it causes undecidability [Sch89]. No
tationally very similar, one minor difference in the semantics causes major
computational differences.

In this chapter we amalgamate the language ACC with feature logic by
adding selection, agreement and disagreement operators for features and
show that a tableaux like calculus is also applicable to this combination.

5.1 Syntax and Semantics of A£CF-Concepts

\Ve assume a further alphabet of symbols, called features, that is disjoint
from the alphabets of primitive concepts and primitive roles. The letter f
will always denote a feature.

A path, denoted by the letter p or q, is a sequence II' .. In of features.
The empty path is denoted by c.

Concepts (denoted by C and D) of the language ACC;: are formed out
of primitive concepts, primitive roles, and features according to the syntax

22

rule

C,D -+ A I T I ~ I C n D I CUD I ,C I VP.C 13P.C I
pi I (undefinedness)

f·C I (selection)

(agreement)

(disagreement).

Thus, A£CF adds to A£C undefinedness, selection, agreement and disagree
ment of features .

A feature inte1'p1'etation I = (~I,.I) consists of a set ~I and a function .I
mapping concepts to subsets of ~I, roles to binary relations on ~I, and
features and paths to partial fun ctions from ~T to ~I such that the following
equations are satisfied (by dom we denote the domain of partial functions):

c;T(a)

(fp)T(a)

(pj)I

(f.C)I

(p == q)I

(p -# q)I

a for every a E ~T, i.e. c;T is the identity function on ~I

pI (fI (a))

~I \ dompI

{a E domfI I fI(a) E CI }

{a E dompI n domll pI(a) = l(a)}

{a E dompI n domll pI(a) =l-l(a)}.

An interpretation that interprets features as binary relations is a feature
iuterpretation if for every feature f it satisfies the axiom

V;c, y, z .f(a;,y)l\f(x,z) -+ y==z.

Observe that feature axioms contain equality. This will show up again in the
rules of the calculus.

The selection I.C denotes the set of all elements of the domain for which
til(' feature I is defined and for which the application of I yields an element of
the set denoted by C. The agreement p == q of two paths p and q denotes the
scI, of all elements of the domain for which p and q are both defined and the
application of p and q yields the same element as result. The disagreement
]J -# q of]J and q denotes the set of all elements of the domain for which p and
q a.re both defined and the application of p and q yields different elements as
result.

23

General Assumption. In the following concepts are always understood to
be ALe:;: -concepts.

A feature interpretation I is a feature model for C if C I is nonempty. Fur
thermore, satisfiability, subsumption and equivalence of concepts are defined
with respect to feature interpretations instead of arbitrary interpretations.

Suppose f is a feature, P a primitive role, and I a feature interpretation
with domain fj.I such that for all a, b E fj.I we have (a, b) E pI if and
only if a E dom fI and fI (a) = b. That is, pI is the graph of the partial
function fI. Then the following equations hold for all concepts C:

(3P.C)I (J.C)I

(Vp.C)I = (J.C U 'f.T)I.

Thus, role quantification of P can be expresseJ in terms of the selection op
erator, if P is interpreted as a partial function. Conversely, feature selection
can be expressed by existential quantification .

A new element comes into the language via agreements and disagreements
of feature paths. The equations

(p.T n q.T n ,(p # q))I

(p.T n q.T n ,(p == q))I

show, that the agreements can be expressed b) disagreements and vice versa.
As in Chapter 2 we single out a special class of concepts as normal forms.

A concept is called simple if it contains only complements of the form ,A,
where A is a primitive concept, and no subconcepts of the form pi where p
is not a feature.

We transform concepts into simple concepts preserving equivalence by
rewriting with the rules in Chapter 2 and the following rules:

'f·e ----+ fi U f··C

'p == q ---t pi u qi IJ p =# q

.p # q ----+ pi U qi Up == q

cj ----+ ..l

(Jp)j ----+ fi U f·(pj)

Proposition 5.1 For eve1'y concept one can compute in linea?' time an equiv
alent simple concept.

24

5.2 Checking Satisfiability

Next, we extend our calculus for checking the satisfiability of A£CNR
concepts so that it can cope with features. First we introduce two new
kinds of constraints . Constraints now have one of the following forms:

x : C, xPy, xpy, x =J y,

where C is a simple concept, P is a primitive role, and p is a path. Let I be a
feature interpretation and let 0' be an I-assigllment. vVe say that 0' satisfies

x:C, ifO'(X)ECI

xPy, if (O'(x),O'(y)) E pI

xpy, if 0'(:1') E dOillpI and pT(O'(x)) = O'(y)

xf=y, ifO'(x) f=O'(V)·

As before, constraint systems are nonempty l1nite sets of constraints. Sat
i~fiability of constraints and constraint systems are now defined in terms of
feature interpretations instead of interpretations as in Chapter 2. Again, a
simple concept C is satisfiable if and only if the constraint system {x: C} is
satisfiable.

To deal with the new language constructs i.1VoIving features we define the
fo llow ing f eature completion rules:

l. S' -TseJection {xfv, v: C} u 5

if :r: f .C is in 5, there is no variah le z such that
.Tf z and z : C are in 5, and V is a new variable

2. S' -T":" {:rpy, :rqy} U 5

if :1": p == q is in 5, there is no va.riable z such that
.r]):: and .rqz are in 5, and y is a new variable

:3. ,s' -T-j:: {.rlJY, :rq:::, y f= z} uS

if :1": p #- q are in 5, there are no variables y', z' such that
:1"]1,1/, ;rq:::' and V' f= ::: ' are in 5, and y, z are new variables

25

4. S --+path {xf z, zpy} uS

if xfpy is in S, p -:j:. c, there is no variable z' such that
x f z' and z' py are in S, and z is a new variable

5. S --+function [y / zlS

if xfy and xf z are in S, and y -:j:. z.

The --+selection-rule for features is the analogue of the --+3-rule for roles.
The --+~- and --+;t-rule work on agreement and disagreement constraints.
Path constraints like xpy, that are produced by application of these rules, are
stepwise shortened by the --+path-rule by stripping off the first feature symbol.
The --+ function-rule reflects the assumption that features are interpreted as
partial functions. It corresponds to the feature axioms coming in implicitly
with every feature symbol.

The next proposition says that the feature rules are deterministic.

Proposition 5.2 (Invariance) If the constraint system S' is obtained from
the constraint system S by application of a feature completion 1'ule, then S'
is consistent if and only if S is consistent.

The A£CF-completion rules consist of --+n-, --+'1-, --+3-, and --+u-rule to
gether with the feature completion rules. A constraint system is complete if
no A£CF-completion rule applies to it.

Proposition 5.3 (Termination) Let C be a simple concept. Then:

1. The1'e is no infinite chain of A£CF -completion steps issuing from {x: C}.

2. The lenght of a chain of A£CF -completion steps issuing from {x: C}
is bounded exponentially in the size of C.

A clash is a constraint system having one of the following forms:

{x: ..i}, {x: A, x: ,A}, {x: fn, {x -:j:. x}.

Proposition 5.4 A complete constraint system is satisfiable if and only if
it contains no clash.

26

Proof. Let S be a constraint system. If S contains a clash, then it is
obviously unsatisfiable.

If S is complete, then for every variable x and every feature f there is at
most one variable y such that xfy is in S . Now it is easy to see that there
is an interpretation I obtained by taking for ~I all variables occurring in S,
for A I all x such that x: A is in S, for pI all pairs (x, y) such that x Py is
in S, for fI the partial function with

domfI = {x I ::Jy. xfy E S}

that is defined by fI (x) = y if x f y is in S. The I-assignment mapping every
variable to itself satisfies S. 0

If C is a simple concept, then, up to variable renaming, one can ob
tain only finitely many complete constraint systems from {x: C} using the
A.cCF-completion rules . With the preceding proposition it follows that C is
satisfiable if and only if there is one system among these complete systems
that contains no clash.

Theorem 5.5 Satisfiability and subsumption of A.cCF -concepts are decid

able.

Corollary 5.6 An A.cCF-concept has a f eatw'e model if and only if it has
a finit e f eature model.

5.3 PSPACE-Completeness

In this section we show that satisfiability of A.cCF-concepts is a PSPACE
complete problem. Since sat isfiability of A.cC-concepts, which are contained
in A.cCF, is known to PSPACE-complete, it is sufficient to give a polynomial
space algorithm solving this problem.

To this purpose, the trace technique applied in the previous chapter has
to be modified. The crucial observation that led to traces was that to detect
clashes it is sufficient to generate for a variable x at most one variable y that
is related to x by a constraint of the form xPy at time. For the A.cCF
algorithm however, it is important to make a distinction between roles and
features . As before, the algorithm will introduce for a given x only one
variable y and one constraint of the form .,Py. But it has to introduce

27

as many variables as required by the feature completion rules in order to
compute all consequences of agreement and disagreement constraints.

We first define feature trace rules, then we consider feature traces com
puted with them, and finally we give a functional algorithm for checking the
satisfiability of A£CF-concepts.

The feature tmce rules consist of the --+n-, --+\1-, --+u-rule, the feature
completion rules, and the following rule:

5 --+T3 {y: C, xPy} U 5

if x: :JP.C is in 5, there is no constraint of the form
x p z in 5, and y is a new variable

The --+T3-rule is a restriction of the --+3-rule designed such that for every
variable x at most one constraint of the form xPy is produced.

Let C be a simple concept and let T be a constraint system obta.ined from
{x: C} by application of the feature trace rules . We call T a feature tmce of
{x: C} if no feature trace rule applies to T.

Feature traces have properties similar to those of traces stated in Sec
tion 4.1.

Proposition 5.7 Let C be a simple concept, 5 = {x: C}, and T a feature
trace of 5. Then:

1. If xPy and xP'y' are in T , then P = P' and y = y', and if xfy and
xfy' are in T, then y = y'.

2. The length of a featu1'e tmce rule de1'ivation tmnsforming 5 into T is
bounded linearly in the size of 5.

3. Every feature tmce of 5 is contained in a complete constraint system
extending 5.

4. Every complete constraint system extending 5 can be obtained as the
union of finitely many feature traces of 5.

Proposition 5.8 Let C be a concept, 5' be a complete constmint system
extending {x: C}, and let T be a finite set of traces such that 5' = UTET T.
Then 5' contains a clash if and only if some T E T contains a clash.

28

sat3: variable x constraint system -t bool

sat3(x, S) =
if S contains a clash

then false
elsif x: C n DES and x: C ~ S or x: D ~ S

then sat3(x,SU {x:C,x:D})
elsif x: CUD E S and x: C ~ 5 and x: D ~ S

then sat3(x, S U {x: C}) or sat3(x, S U {x: D})
elsif a feature rule is applicable to 5

then let S' be a feature completion of Sin:
forall new variables y in 5':
sat3(y, S')

else let y be a new variable in:
forall x: 3R.C E S :
sat3(y, S U {y: C} U {y: D I x: VR.D E S})

Figure 3: A functional algorithm deciding the satisfiability of
A.cCF-concepts. The call sa,t3(x, {x: C}) returns true if and only if C is
satisfiable.

Let Sand S' be constraint system. We say that S' is a feature completion
of S, if S' is obtained from S by application of the feature completion rules,
and the feature completion rules don't apply to S'. Observe that two feature
completions of a constraint system S are equal up to variable renaming.

Let C be a simple concept. The recursive function sat3 employs a strategy
in generating feature traces of {x: C}. It applies all feature completion rule
as long as possible and only then applies the --tT3-rule. The function checks
whether {x: C} has a clash free A.cCF-compldion and can therefore be used
to decide the satisfiability of C. Again, on o. can choose a suitable data
structure to represent the subconcepts of C occurring in feature traces, that
does not use copies of subconcepts but represents them by pointers. With
such a data structure a trace of C can be stored using space linear in the size

29

of C. From this observation we conclude the main result of this chapter.

Theorem 5 .9 Satisfiability and subsumpfion of A£CF-concepts are
PSPACE-complete problems, which can be decided with linear space.

6 Conclusion

This paper is a contribution to exploring the frontier between concept lan
guages with decidable and such with undecidable subsumption problem. For
mer efforts concentrated on finding minimal languages with undecidable sub
sumption problem [Pat89, Sch88, Sch89]. We complement this work by giv
ingv satisfiability and subsumption checking algorithms for languages that
are, to the best of our knowledge, the richest for which these problems are
known to be decidable. Nevertheless, we feel that they can still be extended
by further constructs, like inverse roles and agreement of arbitrary roles. For
an extended algorithm one would have to introduce constraints and com
pletion rules corresponding to the new constructs, and a control structure
governing the rule application.

A second contribution of this paper is that it exemplifies a method of
designing subsumption algorithms. The method is based on the observation
that subsumption can always be reduced to satisfiability. This problem can
then be decided with a calculus based on inference rules that closely resemble
those of the tableaux calculus for first order logic. Complexity results show
that in most cases an algorithm based on these ideas is optimal. The algo
rithms described in this paper require polynomial space and solve PSPACE
complete problems. Similar results hold for sublanguages of A£CNR with
respect to other complexity classes [DHL*90].

Finally, we showed that concept langua.ges of the KL-ONE-family and
feature based description languages as developed in computational linguistics
not only are intimately related as regards their semantics (d. [Sm088]) but
also can be treated with similar algorithmic techniques. We presented the
language A£CF that combines concepts and fe('l.ture terms, and showed that
adding features did not increase the complexity of the satisfiability and the
subsumption problem.

30

Acknowledgements

We are grateful to Manfred Schmidt-SchauB, Francesco M. Donini, Maurizio
Lenzerini, and Daniele Nardi for many discussions on the topics of this paper.
Francesco's idea to apply tableaux calculus to subsumption problems made
us aware that the rule based algorithm developed by Schmidt-SchauB and
Smolka was in fact a disguised tableaux calculus.

31

References

[BBMR89] A. Borgida, R. J. Brachmann, D. L. McGuinness, L. A. Resnick.

[BL84]

"CLASSIC: A Structural Data Model for Objects." In Proceed
ings of the International Conference on Management of Data,
Portland, Oregon, 1989.

R. J. Brachmann, H. J. Levesque. "The tractability of subsump
tion in frame based description languages." In Proceedings of the
4th National Conference of the AAAI, pp. 34- 37, Austin, Tex.,
1984.

[BPGL85] R. J. Brachman, V. Pigman Gilbert, H. J. Levesque. "An es
sential hybrid reasoning system: knowledge and symbol level ac
counts in KRYPTON." In Proceedings of the 9th IJCAI, pp.
532- 539, Los Angeles , Cal., 1985.

[BS85] R. J. Brachman, J. G. Schmolze. "An Overview of the K.L-ONE
Knowledge Representation System." Cognitive Science 9(2), pp.
171- 216, 1985.

[DHL*90] F. Donini, B. Hollunder, M. Lenzerini, A. Marchetti Spaccamela,
Daniele Nardi, W. Nutt. A Source of Complexity in Termino
logical Reasoning. DFKI-Report, DFKI, Postfach 2080, D-6750
Kaiserslautern, West Germany. Forthcoming.

[Hol89] B. Hollunder. Subsumption Algorithms for Some Attributive
Concept Description Languages. SEKI Report SR-89-16, FB
Informatik, Universitat Kaiserslautern, D-6750, Kaiserslautern,
West Germany, 1988.

[KBR86] T. S Kaczmarek, R. Bates, G. Robins. "Recent developments in
NIKL." In Proceedings of the 5th National Conference of the
AAAI, pp. 578- 587, Philadelphia, Pa. , 1986.

[LB87] H. J. Levesque, R. J. Brachman. "Expressiveness and tractabil
ity in knowledge representation and reasoning." Computationa!
Intelligence, 3:78- 93, 1987.

32

[MB87]

[Neb88]

[Neb89]

[NvL88]

[NW7.5]

[Pat84]

[Pat89]

[Sch88]

[Sch89]

[SSS8]

R. MacGregor, R. Bates. The Loom Knowledge Representation
Language. Technical Report ISIjRS-87-188, University of South
ern California, Information Science Institute, Marina del Rey,
Cal., 1987.

B. Nebel. "Computational complexity of terminological reasoning
in BACK." Artificial Intelligence, 34(3) :371-383, 1988.

B. Nebel. Reasoning and Revision in Hybrid Representation Sys
tems, PhD thesis, Universitiit des Saarlandes, Saarbriicken, West
Germany, 1989. To appear in Lecture Notes in Artificial Intelli
gence, Springer Verlag.

B. Nebel, K. von Luck. "Hybrid reasoning in BACK." In Z. W.
Ras, 1. Saitta (edi tors), Methodologies for Intelligent Systems,
pp. 260- 269, North Holland, Amsterdam, Netherlands, 1988.

A. Nijenhuis, I-I.Wilf. Combinatorial Algorithms. Academic
Press, 197.5.

P. Patel-Schneider. "Small can be beautiful in knowledge repre
sentation." In Proceedings of the IEEE Workshop on Principles
of Knowledge-Based Systems, pp. 11- 16, Denver, Colo., 1984.

P . Patel-Schneider. "Undecidability of subsurnption in NIKL."
Artificial Intelligence, 1989.

K . Schild. "Undecidability of U." KIT Report 67, TU Berlin,
D-1000 Berlin, West Germany, 1988.

1\1. Schmidt-SchauB. "Subsumption in KL-ONE is undecidable."
In R. J . Bachmann, H. J. Levesque, R. Reiter (editors), Proceed
ings of the 1st International Conference on Principles of Knowl
edge Representation and Reasoning, pp. 421-431, Toronto, Ont.,
1989.

:r\'1. Schmidt-SchauB, G. Smolka. Attributive Concept Descrip
tions with Unions and Complements. SEKI Report SR-88-21, FB
Infol'matik, Universitiit Kaiserslautern , D-6750, Kaiserslautern,
West Gcrmany,1988. To appear in Artificial Intelligence.

33

[Sh86]

[Sm088]

[Sm68]

[Vil85]

S. M. Shieber, An Introduction to Unification-Based Approaches
to Gramma.r. CSLI Lecture Notes 4, Center for the Study of
Language and Information, Stanford University, 1986.

G. Smolka. A Feature Logic with Subsorts. LILOG Report 33,
IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80,
West Germany, May 1988. To appear in the Journal of Auto
mated Reasoning.

R. M. Smullyan. First-Order Logic. Springer Verlag, Berlin 1968.

M. B. Vilain. "The restricted language architecture of a hybrid

representation system." In R. J. Bachmann, H. J. Levesque, R.
Reiter (editors), Proceedings of th~ 9th IJ CA I, pp. 547- 551, Los
Angeles, Cal., 198,5.

34

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen
oder die aktuelle Liste von erhaltlichen
Publikationen konnen bezogen werden von
der oben angegebenen Adresse.

DFKI Research Reports

RR-90-01
Franz Baader

DFKI
-Bibliothek
Postfach 2080
6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

Terminological Cycles in KL-ONE-based Knowledge Representation
Languages
33 pages

Abstract: Cyclic definitions are often prohibited in terminological knowledge representation languages,
because, from a theoretical point of view, their semantics is not clear and, from a practical point of view,
existing inference algorithms may go astray in the presence of cycles. In thi s paper we consider terminological
cycles in a very small KL-ONE-based language. For this language, the effect of the three types of semantics
introduced by Nebel (1987, 1989, 1989a) can be completely described with the help of finite automata. These
descriptions provide a rather intuitive understanding of terminologies with cyclic definitions and give insight into
the essential features of the respective semantics. In addition, one obtains algorithms and complexity results for
subsumption determination. The results of this pape r may help to decide what kind of semantics is most
appropriate for cyclic definitions, not only for this small language, but also for extended languages. As it stands,
the greatGst fixed-point semantics comes off best. The characterization of this semantics is easy and has an
obvious intuitive interpretation. Furthermore, important constructs - such as value-restriction with respect to the
transitive or rellex ive-transitive closure of a role - can easily be expressed.

RR-90-02
Hans-.Ijjr~en Biircke rt

A Resolution Principle for Clauses with Constraints
25 pages

Abstract: W~ introduce a general scheme for handling clauses whose variables are constrained by an underlying
constraint th~()ry. In gG nnal , constraints can be seen as quantifier restrictions as they filter out the values that
can h~ assign~d to thG variables of a clause (or an arbitrary formulae with restricted universal or existential
4uantifier) in any of the models of the constraint theory . We present a resolution principle for clauses with
constraints, whGre unification is replaced by testing constraints for satisfiability over the constraint theory . We
show that this construined resolution is sound and complete in that a set of clauses with constraints is
unsatisfiable over the constraint theory iff we can deduce a constrained empty clause for each model of the
constraint theo ry , such that the empty clauses constraint is satisfiable in that model. We show also that we
cannot rC4uirL' a bL'll~r result in general, but we discuss certain tractable cases, where we need at most finitely
man y such L'mpty claus~s or cven better only olle of them as it is known in class ical resolution, sorted
resolution or rGsolution with theory unification.

RR-90-03
Andreas DengeL & NeLson M. Mattos

Integration of Document Representation, Processing and Management
18 pages

Abstract: This paper describes a way for document representation and proposes an approach towards an
integrated document processing and management system. The approach has the intention to capture essentially
freely structured documents, like those typically used in the office domain. The document analysis system
ANAST ASIL is capable to reveal the structure of complex paper documents, as well as logical objects within it,
like receiver, footnote, date. Moreover, it facilitates the handling of the containing information. Analyzed
documents are stored by the management system KRISYS that is connected to several different subsequent
services. The described integrated system can be considered as an ideal extension of the human clerk, making his
tasks in information processing easier. The symbolic representation of the analysis results allow an easy
transformation in a given international standard, e.g., ODNODIF or SGML, and to interchange it via global
network.

RR-90-04
Bernhard HoLlunder & Werner Nutt
Subsumption Algorithms for Concept Languages
34 pages

Abstract: We investigate the subsumption problem in logic-based knowledge representation languages of the
KL-ONE family and give decision procedures. All our languages contain as a kernel the logical connectives
conjunction, disjunction, and negation for concepts, as well as role quantification. The algorithms are rule-based
and can be understood as variants of tableaux calculus with a special control strategy. In the first part of the
paper, we add number restrictions and conjunction of roles to the kernel language. We show that subsumption in
this language is decidable, and we investigate sub languages for which the problem of deciding subsumption is
PSPACE-complete. In the second part, we amalgamate the kernel language with feature descriptions as used in
computational linguistics. We show that feature descriptions do not increase the complexity of the subsumption
problem.

RR-90-05
Franz Baader

A Formal Definition for the Expressive Power of Knowledge Representation
Languages
22 pages

Abstract: The notions "expressive power" or "expressiveness" of knowledge representation languages (KR
languages) can be found in most papers on knowledge representation; but these terms are usually just used in an
intuitive sense. The papers contain only informal descriptions of what is meant by expressiveness. There are
several reasons which speak in favour of a formal definition of expressiveness: For example, if we want to show
that certain expressions in one language cannot be expressed in another language, we need a strict formalism
which can be used in mathematical proofs. Though we shall only consider KL-ONE-based KR-Ianguage in our
motivation and in the examples, the definition of expressive power which will be given in this paper can be used
for all KR-languages with model-theoretic semantics. This definition will shed a new light on the tradeoff
between expressiveness of a representation language and its computational tractability. There are KR-languages
with identical expressive power, but different complexity results for reasoning. Sometimes, the tradeoff lies
between convenience and computational tractability. The paper contains severaJ examples which demonstrate
how the definition of expressive power can be used in positive proofs - that is, proofs where it is shown that
one language can be expressed by another language - as well as for negative proofs - which show that a given
language cannot be expressed by the other language.

DFKI Technical Memos

TM-89-01
Susan Holba ch- Weber

Connectionist Models and Figurative Speech
27 pages

Abstract: This paper contains an introduction to connectionist models. Then we focus on the question of how
novel figurative usages of descriptive adjectives may be interpreted in a structured connectionist model of
conceptual combination. The suggestion is that inferences drawn from an adjective's use in familiar contexts
form the basis for all possible interpretations of the adjective in a novel context. The more plausible of the
possibilities, it is speculated, are reinforced by some form of one-shot learning, rendering the interpretative
process obsolete after only one (memorable) encounter with a novel figure of speech.

TM-90-01
Som Bandyopadhyay
Towards an Understanding of Coherence in Multimodal Discourse
18 pages

Abstract: An understanding of coherence is attempted in a multimodal framework where the presentation of
information is composed of both tex t and picture segments (or, audio-visuals in general). Coherence is
characteri sed at three levels: coherence at the syntactic level which concerns the linking mechanism of the
adjacent discourse segments at the surface level in order to make the presentation valid; coherence at the semantic
level which concerns the linking of discourse segments through some semantic ties in order to generate a
wellformcd thematic organisation; and, coherence at the pragmatic level which concerns effective presentation
through the linking of the discourse with the addressees' preex isting conceptual framework by making it
compatible with the addressees' interpretive ability, and linking the discourse with the purpose and situation by
selecting a proper discourse typology. A set of generalised coherence relations are defined and explained in the
contex t of picture-sequence and multimodal presentation of information.

Subsumption Algorithms for Concept Languages

Bernhard Hollunder, Werner Nutt
RR-90-04

Research Report

