
Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

Research
Report

RR-91-03

Qualifying Number Restrictions

.
10

Concept Languages

Bernhard Hollunder Franz Baader

February 1991

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaisersiautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrticken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarnrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Qualifying Number Restrictions in Concept Languages

Bernhard Hollunder, Franz Baader

DFKI-RR-91-03

A short version of this paper will be published in the Proceedings
of the Second International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann, 1991.

© Deutsches Forschungszentrum fur Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following : a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern , Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a li~ence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Qualifying Number Restrictions
Concept Languages

.
In

Bernhard Hollunder and Franz Baader
German Research Center for Artificial Intelligence (DFKI)

Projectgroup WINO

Postfach 2080, W-6750 Kaiserslautern, Germany

E-mail: {hollunde.baader}@dfki.uni-kl.de

Abstract

We investigate the subsumption problem in logic-based knowledge
representation languages of the KL-ONE family. The language pre­
sented in this paper provides t he constructs for conjunction, disjunc­
tion, and negation of concepts, as well as qualifying number restric­
tions. The latter ones generalize the well-known role quantifications
(such as value restrictions) and ordinary number restrictions, which
are present in almost all KL-ONE based systems. Until now, only little
attemps were made to integrate qualifying number restrictions into
concept languages. It turns out that all known subsumption algo­
rithms which try to handle these constructs are incomplete, and thus
detecting only few subsumption relations between concepts.

We present a subsumption algorithm for our language which is
sound and complete. Subsequently we discuss why the subsumption
problem in this language is rather hard from a computational point of
view. This leads to an idea of how to recognize concepts which cause
tractable problems.

Contents

1 Introduction 2

2 The Language 5

3 Checking Satisfiability 7

4 Implementation 22

5 Remarks on the Complexi'ty of Qualifying Number Restric-
tions 27

6 Conclusion 30

1

1 Introduction

Knowledge representation ~ystems of the KL-ONE family such as KL-ONE

[Brachman and Schmolze, 1985], BACK [Nebel, 1990], CLASSIC [Borgida et
al., 1989], KANDOR [Patel-Schneider, 1984], KL-TWO [Vilain, 1985], ~RYP­
TON [Brachman et al. , 1985], LOOM [MacGregor and Bates, 1987], provide
so-called concept languages for expressing taxonomical knowledge. Concept
languages allow the definition of concepts which are built out of primitive con­
cepts and roles. The primitive concepts are interpreted as sets of individuals
and the roles are interpreted as binary relations between individuals. Start­
ing with primitive concepts and roles one can build concepts using various
language constructs. Concepts are again interpreted as sets of individuals.

To give an example, assume that person, male, and shy are primitive con­
cepts, and child is a role. If constructs such as conjunction, disjunction, and
negation of concepts are available in the concept language, one can express
"persons that are male or not shy" by person n (male u ,shy). Since concepts
are interpreted as sets, conj unction of concepts (n) can be interpreted as
set intersection, disjunction of concepts (u) as set union, and negation of
concepts (,) as set complement . .

Qualifying number restrictions provide restrictions on roles which for in­
stance allow to describe "individuals with at least two children who are shy"
by

(~ 2 child shy),

and "individuals with at most three children who are male and not shy" by

(:S 3 child (male n ,shy)).

It turns out that the well-known role quantifications and ordinary number
restrictions, which are available in almost all concept languages, are special
cases of qualifying number restrictions.

Role quantifications are of the form :lchild.male and Vchild.shy (or (SOME
child male) and (ALL child shy) in a Lisp-like notation). These expressions can
be read as "individuals having (at least) one male child" and "individuals for
whom all children are shy", respectively. Obviously, :lchild.male means the
same as (~ 1 child male), and Vchild.shy means the same as (:S 0.. child ,shy).

OrdinarY number restrictions are of the form (~ n R T) and (:S n R T),
where the special concept symbol T denotes the set of all individuals (of
the interpretation). Qualifying number restrictions generalize these ordinary

2

number restrictions as follows: a specified number of role fillers for a role can
be restricted to arbitrary concepts rather than only to T.

The main reasoning facilities concerning the taxonomical knowledge in
the above mentioned systems are the

• determination whether a concept is satisfiable, i.e., whether a concept
denotes a nonempty set in some interpretation, and the

• computation of the subsumption relation between concepts.

A concept C subsumes (is more general than) a concept D iff in every inter­
pretation the set denoted by C is a superset of the set denoted by D. For
example,

(:::; 1 child (male n ,shy))

subsumes
(~ 2 child (male n shy)) n (:::; 3 child male),

since every individual with at least two male and shy children and at most
three male children has at most one child which is male and not shy. This
example demonstrates that, in contrast to other concept languages, already
for small concepts it is not that apparent whether there exists a subsumption
relation between them.

The subsumption problem can be reduced to the satisfiability problem
if the concept language provides conjunction and negation of concepts. In
fact, a concept C subsumes a concept D if and only if the concept ,C n D
is not satisfiable. Thus, an algorithm which checks satisfiability of concepts
also yields an algorithm which checks subsumption between concepts.

If one considers the subsumption algorithms used in the above mentioned
KL-ONE systems, then it turns out that these algorithms are incomplete.
A reason for this fact is that until recently only incomplete subsumption
algorithms were known for nontrivial concept languages. An incomplete sub­
sumption algorithm has the property that it sometimes fails to recognize
that a concept subsumes another one. [Schmidt-SchauB and Smolka, 1988]
were the first who gave a sound and complete subsumption algorithm for the
concept language ACe which provides conjunction, disjunction, and nega­
tion of concepts, as well as role quantifications. Actually, they presented
an algorithm for checking satisfiability of concepts. Given a concept C the
algorithm tries to generate a finite interpretation such that the set denoted
by C is nonempty. If this process fails, i.e., if a contradiction occurs, such an
interpretation cannot exist and C is not satisfiable, otherwise C is satisfiable.

3

[Hollunder, Nutt, and Schmidt-SchauB, 1990] demonstrate that the ideas
underlying the algorithm which checks satisfiability for the language A£e
can be applied to languages using also other constructs such as ordinary
number restrictions and cOhjunction of roles. Moreover, they argue that
these ideas yield a general methodology for devising satisfiability (and hence
subsumption) algorithms for concept languages.

The present paper pursues several goals. Firstly, it describes a sound and
complete algorithm for checking satisfiability for a very expressive concept
language containing not only conjunction, disjunction, and negation of con­
cepts, but also qualifying number restrictions. Qualifying number restrictions
are not just artificial constructs, but they are partly available in some sys­
tems. For example, the concept language used in KANDOR allows qualifying
number restrictions in the restricted form (~ nRC) and (:::; n R T). Re­
cently, qualifying number restrictions have been included into the assertional
part ("A-Box") of the system MESON [Owsnicki-Klewe, 1990].

Secondly, the paper exemplifies the claim that there is in fact a gen­
eral methodology for devising satisfiability algorithms for concept languages.
However, devising a satisfiability algorithm for concept languages with qual­
ifying number restrict ions is of a .rather different quality. The reason is that
qualifying number restrictions allow to generate inherently complex term
structures causing subtle combinatorial problems.

Finally, the paper in;vestigates what kind of language constructs, and in
what kind of combination may lead to long computations of the presented
algorithm. This leads to an idea of how to single out concepts which can be
checked fast on satisfiability.

The paper is organized as follows. In the next section we formally in­
troduce the syntax and semantics of our concept language. In Section 3 we
present a calculus for deciding satisfiability of concepts of this language. A
functional algorithm which is extracted from the calculus is given in Sec­
tion 4. In Section 5 we give ideas of how to recognize concepts which cause
tractable problems. Finally, in Section 6 we discuss the claim that there is
a general methodology for devising satisfiability (and hence subsumption)
algorithms for concept languages.

4

2 The Language

We assume two disjoint alphabets of symbols, called primitive concepts and
roles. We usually denote primitive concepts by the letter A and roles by the
letter R. The special primitive concepts T and .1 are called top and bottom.
The set of concepts is inductively defined as follows. Every primitive concept
is a concept. Now letC and D be concepts already defined, let R be a role,
and let n be a nonnegative integer. Then

CnD
CUD
:..,c
(~n R C)
(:::; nRC)

(conj unction)
(disjunction)
(negation)
(at-least restriction)
(at-most restriction)

-
are concepts. The at-least and at-most restrictions are also called qualifying
number restrictions.

An interpretation T = (6 I ,.I) of our language consists of a set 6 I (the
domain of T) and a function .I (the interpretation function of T). The in­
terpretation function maps every primitive concept A to a subset AI of 6 I ,
and every role R to a subset RI of 6 I x 6 I . The special concepts T and
.1 are interpreted as 6 I and the empty set, respectively. The interpretation
function-which gives an interpretation for primitive concepts and roles­
can be extended to arbitrary concepts as follows. Let C and D be concepts,
let R be a role, and let n be a nonnegative integer. Assume that CI and DI
are already defined. Then

(C n D)I .­

(C U D)I

(-'C)I .-

(~n R C)I

cInDI

CIUDI

6 I
\ CI

{a E 6 I IlaRI n CII~ n}

.- {a E 6 I IlaRI nCII:::; n}

where aRI := {b E 6 I I (a, b) E RI }, and IXI denotes the cardinality of the
set X.

Our language allows to express the well-known role quantifications (see
e.g. [Nebel and Smolka, 1990]), which are present in almost all concept lan­
guages, as follows:

VR.C

3R.C

.- (:::; 0 R -,C)

(~ 1 R C).

5

The construct V R.C is usually called value restriction, and the construct
3R.C is e.g. called c-some in [Nebel, 1990]. Note that the concept (~ 0 R .C)
denotes the set of all elements for which every role filler for R is in C. This
shows that the definition for the construct V R.C we have given above coin­
cides with the semantics usually given for this construct.

Now we are able to define the language ACC of [Schmidt-SchauB and
Smolka, 1988] as sublanguage of our language. This concept language allows
conjunction, disjunction, and negation of concepts, as well as role quantifi­
cations.

As already mentioned in the introduction, a concept C is called satisfiable
iff there exists an interpretation I such that CI is nonempty. We say C
subsumes D iff CI ;2 DI for every interpretation I, and C is equivalent to D
iff CI = DI for every interpretation I.

Since our language allows conjunction and negation of concepts, satisfi­
ability and subsumption of concepts can be reduced in linear time to each
other.

Proposition 2.1 Let C and D be concepts. Then:

1. C subsumes D if and only if .C n D is not satisfiable.

2. C is satisfiable if and only if ..1 does not subsume C.

Thus an algorithm for checking satisfiability of concepts can also be used
for deciding subsumption of concepts and vice versa.

In the following section we present an algorithm that decides satisfiability
of concepts. To keep this algorithm simple it is convenient to transform
concepts into normal forms . We say a concept C is in negation normal form
if negation signs in C appear only immediately in front of primitive concepts
different from T and ..i. Negation normal forms can be computed using the
following simplification rules:

.T -----t ..1

• .1 -----t T
.(C n D) -----t .C u.D

.(CUD) -----t .C n.D

•• C -----t C

6

-,(~ nRC) (~ (n + 1) R C)

-,(~ nRC)
{ (~ (n -~) R C)

if n = 0
if n > O.

Let C be a concept. By NNF(C) we denote the concept which is obtained
from C by applying the simplification rules in top-down, left to right order
as long as possible. For example,

NNF(-,(A u (~3 R B))) = (-,A n (~2 R B)).

The following result can be proved easily.

Proposition 2.2 Let C be a concept. Then NNF(C)

1. is in negation normal form,

2. is equivalent to C, and

3. can be computed in linear time.

3 Checking Satisfiability

In this section we describe an algorithm for deciding satisfiability in our
concept language. The algorithm uses so-called constraints, which are built
out of variables, concepts, and roles. Sets of constraints will be modified with
the help of completion rules. The notions constraints and completion rules
have already been used in [Schmidt-SchauB and Smolka, 1988, Hollunder,
Nutt, and Schmidt-SchauB, 1990].

We assume that there exists an alphabet of variable symbols, which will
be denoted by the letters x, y, z, and u. A constraint has one of the following
forms

x: C, xRy,

where C is a concept in negation normal form and R is a role. For xRy we
say that y is an R-successor of x. If R is clear from the context or irrelevant,
we simply say that y is a successor of x.

The interpretation of constraints is defined as follows. Let I be an in­
terpretation of the concept language. An I -assignment is a function a that
maps every variable to an element of !:l,I. We say that a satisfies x: C iff

a(x) ECI
,

7

and a satisfies xRy iff
(a(x),a(y)) E RI.

A constraint s is satisfiabl6 iff there exists an interpretation I and an I­
assignment a such that a satisfies s. A constraint system S is a -finite,
nonempty set of constraints. An I-assignment a satisfies a constraint system
S iff a satisfies every constraint in S. A constraint system S is satisfiable iff
there exists an interpretation I and an I-assignment a such that a satisfies S.

Proposition 3.1 A concept C in negation normal form is satisfiable if and
only if the constraint system {x: C} is satisfiable.

Proof. Follows immediately from the definitions. o

Given a concept C in negation normal form which has to be checked for
satisfiability, our calculus starts with the constraint system {x: C}. Then,
by applications of completion rules, it adds constraints to this system until
a contradiction occurs, or an interpretation I such that CT is nonempty can
be immediately obtained from the actual constraint system.

Before we formulate the rules we need some more definitions.

• For a variable x in a constraint system S we want to count the R­
successors which are in a certain concept C. We therefore define

nR,c,s(X) := I{y I {xRy, y: C} ~ S}I·

• By [y / z 1 S we denote the constraint system that is obtained from S by
replacing each occurrence of y by z.

We have the following rules:

1. S----+n {x:C1 , x:C2 }US

if x: C1 n C2 is in S, x: C1 and x: C2 are not both in S

2. S ----+u {x: D} U S

if x: C1 U C2 is in S, neither x: C1 nor x: C2 is in S,
and D = C1 or D = C2

3. S ----+ choose {y: D} U S

if x: (~ nRC) is in S , xRy is in S,
neither y: C nor y: NNF(-,C) is in S,
and D = C or D = NNF(-,C)

8

4. S -+~ {xRy, y: C} uS

if x: (2:: nRC) is in S, nR,G,s(x) < n, and y is a new variable

5. S -+~ [y/z]S

if x: (~n R C) is in S, xRy, y: C, xRz, z: C are in S,
y =f z, nR,c,s(X) > n,
for every u with xRu either u: C or u: NNF(.C) is in S.

Note that to every language construct--except negation of concepts­
there corresponds a rule. Since concepts are assumed to be in negation
normal form, we do not need rules which handle concepts with negation as
outermost symbol such as x: .(C n D), x: .(C U D) etc. Negation applied
to primitive concepts will be treated by the definition of "clash" given below.

The rules are used to decide whether a given constraint system is satisfi­
able as follows. We apply the rules until we obtain a constraint system such
that no rule is applicable to it (a so-called complete constraint system). For
such a constraint system it is easy to decide whether it is satisfiable.

Now let us discuss the rules. Obviously, the -+n- and -+u-rules are decom­
posing constraints having the form x: CnD and x: CUD, respectively. Both
rules are defined as in [Schmidt-SchauB and Smolka, 1988]. The rules which
treat qualifying number restrictions are similar to the rules for ordinary num­
ber restrictions used in [Hollunder, Nutt, and Schmidt-SchauB, 1990]. How­
ever, in the case of ordinary number restrictions one only has to know for a
given variable x all its R-successors for some role R; whereas in the case of
qualifying number restrictions one has to know for a given variable x all its
R-successors which are in a certain concept C. This fact leads to the defini­
tion of nR,c,s(X) given above. However, the number nR,c,s(X) is only useful
if the -+ choose-rule does not apply to constraints containing the variable x.
To see this assume that S is a constraint system such that x: (~ nRC)
and xRy are in S, but neither y: C nor y: NNF(.C) is in S. Then nR,c,s(X)
would not count the variable y since y : C is not in S. Nevertheless there
may exist an interpretation I and an I-assignment cr such that cr(y) E CI .
That means that in this interpretation x may have more R-successors in C
than are indicated by nR,c,s(X), i.e., we may have

nR,G,s(x) < I{y I xRy is in Sand cr(y) E CI}I;

Thus n 2:: nR,C,S(X) need not imply

n 2:: I{y I xRy is in Sand cr(y) E CI}I·

9

This means that the constraint x: (~ nRC) can be violated in spite of
the fact that n ~ nR,c,s{x). To overcome this problem we use the -+choose­
rule which is based on the following idea. We know that for every I and a
we have a(y) E CI or a{y) E (-,C)I. An application of the -+ choose-rule
nondeterministically adds the correct constraint y: C or y: NNF(-,C) to 5.

Now suppose that for every R-successor u of x either u: Cor u: NNF(-,C)
is in 5. If x: (~ nRC) is in 5 and nR,c,s(X) > n, then there are too many
R-successors of x in C. An application of the -+$-rule reduces their number
by identifying two previously different R-successors.

For constraints of the form x: (~ nRC) it is not necessary to apply
the -+ choose-rule to all successors y of x. In fact, assume that xRy is in 5,
but neither y: C nor y: NNF(-,C) is in 5. In this case is does not lead to
problems if the -+~-rule introduces a new variable because y was not counted
for n R,C,S(x). If I is an interpretation and a is an I-assignment such that
a(y) E CI , we may now have

nR,c,s(X) < I{y I xRy is in 5 and a(y) E C~}I·

But then n ~ nR,c,s(X) also implies

n ~ I{y I xRy is in 5 and a(y) E CI}I ·

If x: (~n R C) is in 5 and nR,C.S(X) < n, then there may not be enough R­
successors of x in C. An application of the -+~-rule generates a new variable
y and adds the constraints xRy and y: C to 5. Thus, the number nR,c,s(X)
is increased by one.

The rules as described above have the disadvantage that they allow infi­
nite chains of rule applications.

Example 3.2 Consider the constraint system

5 = {x: (~ 2 R A) n (~ 1 R A)}.

We obtain the following constraint systems by applications of the rules:

5 -+n 5 U {x: (~ 2 R A), x: (~ 1 R A)} =: 51

-+> 51 U {xRy, y: A} =: 52
-+> 52 U{xRz, z:A}=:53

-+$ [z/y]53 = 52.

Thus we have the infinite chain 5 -+n 51 -+~ 52 -+~ 53 -+$ 52 -+~ 53 ...

10 .

The example demonstrates that alternating applications of the -+~- and
-+$-rule are responsible for infinite chains. The idea to avoid such infinite
chains is as follows. We only apply the -+$-rule to a constraint system S
(yielding the constraint system S') if every constraint of the form x : (~
nRC) that is satisfied in S, i.e., nR,G,s(x) ~ n, remains satisfied in S'.
Note that this condition is violated in the above example since S3 -+$ S2,
nR,A,s3(x) = 2 and nR,A,s2(x) = l.

Before we can formulate the modified -+$-rule we need the following
definition. Let S be a constraint system. We say that the replacement of y

by z is safe in S if for all x, R, C, n

{xRy, y: C, xRz, z: C, x: (~n R C)} ~ S

implies nR,C,S(X) > n.

We reformulate the -+<-rule as follows. Let S be a constraint system.

5*. S -+*$ [y/z]S

if x: (~n R C) is in S, xRy, y: C, xRz, z: C are in S,

y =I- z, nR,c,s(X) > n,
for every u with xRu either u: C or u: NNF(-,C) is in S,
and the replacement of y by z is safe in S.

We will see that the additional condition ensures that there is no infinite
chain of rule applications.

The completion rules consist of the -+n-, -+u-, -+ choose-' -+~ - , and -+*$­
rule. The following proposition, which one can prove easily, shows that the
completion rules are defined in an appropriate manner.

Proposition 3.3 Let Sand S' be constraint systems. Then:

1. If S' is obtained from S by application of the (deterministic) -+n- or
-+~ -rule, then S is satisfiable if and only if S' is satisfiable.

2. If S' is obtained from S by application of the (nondeterministic) -+u-,
-+ choose-, or -+*$ -rule, then S is satisfiable if S' is satisfiable. Further­
more, if a nondeterministic rule applies to S, then it can be applied in
such a way that it yields a constraint system S' such that S' is satisfiable
if and only if S is satisfiable.

11

Thus we know that the completion rules are locally sound and complete.
However, to prove the overall soundness and completeness of the calcalus it
will not be necessary to use Proposition 3.3.

The proof of termination of the completion rules-which is less obvious­
will employ techniques which have been developed for proving termination
of term rewriting systems (see [Dershowitz and Manna, 1979]).

Proposition 3.4 Let Co be a concept in negation normal form. Then there
is no infinite chain of applications of completion rules issuing from {xo: Co}.

A constraint system S which can be obtained from {xo: Co} by a finite
number of applications of completion rules will be called derived system in
the following. In order to prove the proposition, any derived system Swill
be mapped on an element W(S) of a set Q which is equipped with a well­
founded strict partial ordering~. Since the ordering is well-founded, i.e.,
has no infinitely decreasing chains, termination will follow immediately as
soon as one has established the following property. Whenever S' is obtained
from the derived system S by application of a rule, one has W (S) ~ W (S').

The elements of the set Q wili have a rather complex structure. They are
finite multisets of 5-tuples. Each component of the tuples is either a finite
mUltiset of nonnegative integers (for the second, third, and fifth component)
or a nonnegative integer (for the fi rst and fourth component). Multisets are
like sets, but allow multiple occurrences of identical elements. For example,
{2, 2, 2} is a multiset ~hich is distinct from the multiset {2}. A given ordering
on a set T can be extended to form an ordering on the finite multisets over
T. In this ordering, a finite multiset M is larger than a finite rnultiset M'
iff M' can be obtained from M by replacing one or more elements in M by
any finite number of elements taken from T, each of which is smaller than
one of the replaced elements. For example, {2, 2, 2} is larger than {2} and
{2, 2,1,1, O}. [Dershowitz and Manna, 1979] show that the induced ordering
on finite multisets over T is well-founded if the original ordering on T is so.

The nonnegative integer components of our 5-tuples are compared with
respect to the usual ordering on integers, and the finite multiset components
by the multiset ordering induced by this ordering. The whole tuples are
ordered lexicographically from left to right, i.e., (Cl, ... ,cs) is larger than
(c~, ... , c~) iff there exists i, 1 ~ i ~ 5, such that Cl = c~, ... , Ci-l = C~_l' and Ci

is larger than c~. Since the orderings on the components are well-founded, the
lexicographical ordering on the tuples is also well-founded. Finite multisets of
these tuples are now compared with respect to the multiset ordering induced

12

by this lexicographical ordering. This is the well-founded ordering ~ on Q
mentioned above.

Before we can define the mapping 'lI from derived systems to elements
of Q, we need two more definitions. For two nonnegative integers n, m
we denote by n ~ m the asymmetrical difference between nand m, i.e.,
n ~ m := n - m if n ~ m, and n ~ m := ° if n < m. For a concept C the
size ICI is inductively defined as

• IAI = 1 for all primitive concepts A,

• I-,CI = ICI, ·

• I(~ n R G)I = I(~ n R C)I = 1 + IGI,

• IC n DI = IC U DI = ICI + IDI·

Definition 3.5 Let S be a constraint system. Then 'lI(S) is the multiset
which contains for each variable x occurring in S the following 5-tuple 1/Js(x):

1. The first component of1/Js(x) is the nonnegative integer max{ICII x:
C is in S}.

2. The second component of 1/Js(x) is a multiset which contains, for each

constraint x : C n D (resp. x: CUD) in S for which the --+n-rule
(resp. --+u-rule) is applicable, the nonnegative integer IC n DI (resp .

ICUDI)·

3. The third component of 1/Js(x) is a multiset which contains, for each
constraint x: (~n R C) in S , the nonnegative integer n -=- nR,c,s(X).

4- The fourth component of 1/Js(x) is the number of all successors of x
in S.

5. The fifth component of 1/Js(x) is a multiset which contains, for each
constraint x : (~ nRC) in S, the number of all R-successors y of x
such that neither y: C nor y: NNF(-,C) is in S.

For the constraint systems of Example 3.2 we have

_ \lI(S)

'lI(St)

'lI(S2)

'lI(S3)

{(4,{4},0,0,0)},

{(4,0, {2}, 0, {O})},

{(4, 0, {I}, 1, {O}), (1, 0, 0,0, 0)},

{(4, 0, {O}, 2, {O}), (1, 0, 0,0,0), (1,0,0,0, 0)}.

13

Thus the chain of rule applications S -+n S1 -+~ S2 -+~ S3 corresponds to
the decreasing chain W(S) ~ w(St} ~ W(S2) ~ W(S3) in Q. However, the
unsafe application of the -+$-rule transforms S3 into the system S2 which
has a larger w-image.

The following facts will be important in the termination proof.

Lemma 3.6

1. For any concept C we have ICI ~ INNF('C)I.

2. For any variable y in a derived system S there exists at most one pair
(x, R) consisting of a variable x and a role R such that xRy is a con­
straint in S. That means that y has at most one predecessor in S.

3. Let x Ry be a constraint in the derived system S. Then we have

max{ICII x: C is in S} > max{IDII y: D is in S}.

Proof. The first fact can easily be proved by induction on the number of
applications of simplification rules needed to compute the negation normal
form. The reason why we do not always have ICI = INNF(.C) I is that a
concept of the form .(~ 0 R C) is replaced by the usually much smaller
concept ...L.

To see the second fact, note that if a variable y is newly introduced, then
it is introduced as R-successor of exactly one variable x. In addition, if two
different variables are identified by the -+*$-rule, then they must have been
R-successor of the same variable, and for the same role R.

The third fact can be shown as follows. By the second fact we know that
x is the only predecessor of y. If a new constraint y: D is imposed on y, then
it either comes from a larger constraint on y itself (for the -+n- or -+u-rule),
or from a larger constraint on x (for the -+choose- or -+~-rule). If y gets
additional constraints because it replaces a variable z (in an application of
the -+*$-rule) then y and z have been successors of the same variable x. For
that reason, all the constraints on z have also been smaller than the maximal
constraint on x. 0

Proposition 3.4 is now an immediate consequence of the next lemma.

Lemma 3.7 If S' is obtained from the derived system S by application of a
completion rule, then W(S) ~ w(S').

14 .

Proof. (1) Assume that S' is obtained from S by applying the -n-rule to
the constraint x: enD.
First, we consider how the tuple tPs(x) is changed. The first component
remains the same. In the multiset of the second component, the number
Ie n DI is removed. If e or D have conjunction or disjunction as uppermost
symbol, then we may have to include the numbers lei or IDI, which are how­
ever smaller than the removed one. This shows that the second component
of tPs,(x) is smaller than the second component of tPs(x). Since the tuples are
compared with respect to the lexicographical ordering, we thus have shown
that the whole tuple becomes smaller, independently of what happens for
the other components.
Now we consider a tuple 1/Js(Y) for a variable y =f x. By the definition of the
tuples, the change in the constraints for x can only influence the tuple for y
if x is an R-successor of y for some role R. In this case it may affect the third
and fifth component of tPs(Y). However, by adding constraints to a successor
of y these components may at the most become smaller in tPs'(y).
This shows that \lI(S') can be obtained from \lI(S) by replacing some (but at
least one) of the tuples by smaller ones.

(2) The -u-rule can be treated in a similar way.

(3) Assume that S' is obta,ined from S by applying the - choose-rule to
an R-successor y of x because of the constraint x: (:S n R e).
First, we consider how the tuple tPs(x) is changed. The first and the second
component remain the same. By adding constraints to a successor of x the
third component may at the most become smaller. The fourth component
remains unchanged. The fifth component becomes smaller because y is no
longer counted for the constraint x: (:S n R e). This shows that the whole
tuple tPs'(x) is smaller than tPs(x).
Now let us consider the tuple tPs(y). Since y is a successor of x, the third
of the facts stated in Lemma 3.6 implies that the first component of tPs'(Y)
is smaller than the first component of tPs'(x), which is the same as the first
component of tPs(x).
Assume that u is a variable different from x and y. A change in the con­
straints for y can only influence the tuple for u if y is a successor of u. But
~y the second fact of Lemma 3.6, x is the only predecessor of y.

Thus \lI(S') can be obtained from \lI(S) as follows. The tuple tPs(y) is re­
moved, and the tuple tPs(x) is replaced by two smaller tuples, namely the
tuples tPs'(x) and tPs'(Y).

(4) Assume that S' is obtained from S by applying the -~-rule to the
constraint x: (~ n R e).

15 -

First, we consider how the tuple tPs(x) is changed. The first and .the second
component remain the same. Since the ~~-rule introduces a new R-successor
y of x and adds the constraint y: C, we have nR.c.s'(X) > nR.c.s(x). In
addition, we know that n > nR.c.s(x) because otherwise the rule would
not have been applicable. These two facts imply that n ...!... nR,G.s'(X) < n ...!...

nR.c.s(x). If S also contains a constraint x: (~ m R C) for some nonnegative
integer m =f n then we obviously have m ...!... nR.c.s'(x) ~ m ...!... nR.c.s(X)
(equality holds for m ...!... nR.c.s(X) = 0). The contributions of constraints of
the form x: (~ m R' C') for R' =f R or D =f C to the third component are
not changed. To sum up, we have thus shown that there third component
of tPs,(x) is smaller than the third component of tPs(x). For this reason,
changes in the fourth and fifth component are irrelevant.
Now let us consider the tuple tPs,(y). Since y is newly introduced, there is
no corresponding tuple in W (S). But the first component of tPs' (y) is smaller
than the first component of tPs(x).
As before, the tuples for variables u different from x and yare not changed.
Thus W(S') can be obtained from W(S) by replacing tPs(x) by the two smaller
tuples tPs,(x) and tPs,(y).

(5) Finally, assume that S' is obtained from S by applying the ~.~-rule
to the constraint x: (~ nRC), and thereby replacing the variable y by z.
First, we consider how the tuple tPs(x) is changed. The first and the second
component remain the same. Let us now turn to the the third component.
Assume that Assume that one of the numbers in the multiset of the third
component increases. That means that there exist m, R', C' such that x :
(~ m R' C') is in S, and m ...!... nR',c',S'(x) > m ...!... nR',G',s(x). Obviously, this
can only be the case if R = R', and y: C' and z: C' are in S. Since the
replacement of y by z is safe, we have nR.c'.s(x) > m, and thus nR.c'.s'(x) ~
m. This shows that m ...!... nR,G'.s'(X) = 0 = m ...!... nR.c'.s(x), which contradicts
our assumption. Thus we have shown that the third component also remains
the same. Obviously, the fourth component, i.e., the number of successors of
x, is decreased by one.
Now let us consider the tuple tPs,(z). In S', the variable z has both its
original constraints and the constraints y had in S. However, since y and
z are successors of x we know that the size of each of these constraints is
smaller than the first component of tPs(x).
The variable y does not occur in S'.
Finally, consider a variable u in S' which is different from x, y, z. The
changes for y and z can only affect the tuple ·of u if u is a predecessor of y
or z. But this would mean that u = x.
Thus W(S') can be obtained from W(S) by removing the tuples tPs(y) and

16

'ljJS(Z) , and by replacing the tuple 'ljJs(x) by two smaller tuples 'ljJSI(X) and
'ljJSI(Z). 0

Thus we have shown that for every constraint system {x: C}, where C is
a concept in negation normal form, we obtain after finitely many applications
of completion rules a constraint system to which no completion rule applies.

A constraint system is called complete iff no completion rule applies to it.
A constraint system S contains a clash iff

• {x:.l} ~ S. for some variable x, or

• {x: A, x: -,A} ~ S for some variable x and some primitive concept A,
or

• {x: (:S nRC)} ~ Sand nR,c,s(X) > n for some variable x, role R,
concept C, and nonnegative integer n.

In the remainder of this section we assume that Co is a concept in negation
normal form. The satisfiability of a constraint system So = {xo: Co}, and
thus of a concept Co, can be characterized by using the completion rules and
the notion of clash.

Proposition 3.8 A constraint system So = {xo: Co} is satisfiable if and
only if there exists a clash free complete constraint system which can be de­
rived from So by applying the completion rules.

In the case of ordinary number restrictions this proposition is proved as
follows. One shows that a complete constraint system is satisfiable if and only
if it is clash free [Hollunder, Nutt, and Schmidt-SchauB, 1990]. The proposi­
tion is then an immediate consequence of local soundness and completeness
and the termination of the completion rules. To see why this simple method
cannot be used in the case of qualifying number restrictions consider the
constraint system

S = {x: (~ 1 R (A n B)) n (~ 1 R (B n A)) n
(:S 1 R (A n B)) n (~ 2 R A)}.

We can obtain the complete constraint system

S' = S U {xRy, y: (A n B), y: A, y: B,

xRz, z: (B n A), z: (A n B), z: A, z: B},

17

if we first apply the -t~-rule to x: (~ 1 R (A n B)) and x: (~ 1 R (B n A)),
and then apply the -tn-rule to y: (A n B) and z: (B n A). Note that the
replacement of y by z and of z by y is not safe in S'. Since (::; 1 R (A n B))
is in S' and nR,AnB,s'(X) = 2, S' contains a clash. Nevertheless it is easy
to see that S' is satisfiable. By using an appropriate control strategy, the
following clash free complete constraint system

SIt = Su{xRy, y:(AnB), y:(BnA), y:A, y:B,

xRu, u: A, xRv, v: A}

can be derived from S. This strategy is described in the proof of the next
lemma, which shows one direction of Proposition 3.8.

Lemma 3.9 If a constraint system So = {xo: Co} is satisfiable, then there
exist constraint systems S}, S2, ... ,SI such that

• Si+l is obtained from Si by application of a completion rule,

• every Si is satisfiable, and

• SI is complete and does not contain a clash.

Proof. If So = {xo: Co} is satisfiable, then there exist an interpretation
I and an I-assignment ao such that ao satisfies So. We use I and ao to
guide the construction of a sequence S}, S2, ... ,SI of constraint systems which
satisfy the requirements of the lemma. For the construction of the sequence
we need auxiliary sets To, Tl , ... , TI which consist of tuples of the form (x, y).
We say that an I-assignment ai satisfies Ti iff for all (x, y) E Ti we have
ai(x) =f ai(Y)· The sets Ti will be called inequality constraints. The inital
set To will be the empty set which obviously is satisfied by any I-assignment.

In the first step of the construction we inductively define a sequence
SI, S2, ... ,Sl l of constraint systems satisfied by ao as follows. Assume that
Si (i ~ 0) is a constraint system already obtained. If the -tn-rule is applicable
to Si, we apply it, and thus get Si+l. Obviously, ao also satisfies Si+1 since by
induction it satisfies Si. Otherwise, assume that the -tu-rule is applicable to
a constraint of the form Xo: Cl uC2 • Since ao satisfies Si we have ao(xo) E Cf
or ao(xo) E Cr If ao(xo) E Cf, then we choose Si+1 := Si U {xo : Cd;
otherwise we take Si+1 := Si U {xo: C2}. If neither -tn- nor -tu-rules apply
to Si, then we are done with the first step, and define 11 := i. We also define
ah := ah-l := ... := ao and Til := Tll-l := ... := To :~ 0. Obviously we

18 .

have for all 0 ~ i ~ It, that ai satisfies Si and Ti. In addition, Sit is obtained
from So by applications of the -+n- and -+u-rules.

N ow let us define the constraint system SI2 and the set T12 . For every
pair R, C such that Xo: (~ nRC) is in Sh for some n we add

• the constraints XORYl' ... ,xORYnR,c' Yl : C, . .. ,YnR,c : C to Sh, where
nR,G := max{n I Xo: (~n R C) E Sit} and the Yi are new variables for
each pair R, C, and

The systems thus obtained are SI2 and 1/2' Obviously, SI2 can be obtained
from Sit by finitely many applications of the -+~-rule. In fact, for every pair
R, C such that Xo: (~ nRC) is in Si l for some n we apply the -+~-rule nR,G
times. Each application adds the constraints xoRy and y: C where Y is a new
variable. We still have to show that there exists an I-assignment al2 which
satisfies SI2 and T12 . Consider a constraint Xo: (~ nR,G R C) occurring in Sil •

Since all satisfies Sil we have all (Xo) E (~ nR,C R C)I. Thus there exist nR,G
pairwise different d1, ... , dnR c E ~I such that (all (Xo), di) E RI and di E CI.
For the variables x already in Sll , we define al2 (x) := all (X). Let Yl, ... , YnR c
be the variables introduced for the pair R, C. We define aI2 (Yi) := di . It is
easy to see that al2 satisfies S12' Since al2 (Yi) = di =I dj = ah (Yj) for i =I j
we conclude that al2 satisfies 1/2 ' Thus al2 satisfies SI2 and T12 .

In the next step, the constraint system SI3 is defined as follows. For every
pair Xo: (~ nRC), xoRy in SI2 such that neither y: C nor y: NNF(-,C) is in
S12' we add y: C if al2 (y) E CI; otherwise we add y: NNF(-,C). Obviously,
SI3 can be obtained from SI2 by finitely many applications of the -+ choose­

rule. We set ab := ah, and 1/3 := T12 . It is easy to see that al3 satisfies SI3

and 1/3 '

Now we define a sequence SI3+1, SI3+2, . .. , SI4 such that

• Si+l is obtained from Si by applying the -+*$-rule to a constraint of
the form Xo: (~ nRC) occurring in Si , and

• for every Xo: (::; nRC) in S/4 we have nR,c,sI4 (xo) ::; n.

For the first step, suppose Xo: (~ nRC), XORYl,"" XoRYk' Yl: C, ... , Yk: C
are in Sb where k > n. Since al3 satisfies Sb there exist Yi and Yj, i =I j
such that ab(yd = aI3(Yj). We replace Yi by Yj, i.e., Sb+l := [y;JYj]SI3'

19

Furthermore, we set a13+! := al3 and T13+! := [YdYj]Th , i.e., 113+! is obtained
from 113 by replacing each occurrence of Y; by Yj. We now prove the following
facts:

1. a13+! satisfies SI3+!.
We know that ah satisfies S13 ' and al3 (y;) = ala (y j). Thus ala + 1 satisfies

S13+1 = [ydYj]SI3'

2. ah+! satisfies 113+1'

Suppose (y;,u) or (U,Yi) is in TI3 for some u. Since aI3(Yj) = aI3(Yi) 1-
aI3(u) we have aI3(Yj) 1- aI3(u). Thus a13+! satisfies 113+1'

3. For every constraint Xo : (~ nRC) occurring in S13+1 there exist
variables UI," . , Un such that xoRuI, . .. , xoRun, U1 : C, ... , Un: Care
in Sid!' and (Ui , Uj) is in T13+1 for 1 ::; i,j ::; n, i 1- j.
By construction of Sla we know that for every Xo: (~ nRC) in SI3 there
exist variables ZI, . .. , Zn such that xoRzI, . .. , XORzn, Zl : C, ... , Zn : C
are in S13, and (z;, Zj) is in TI3 for 1 ::; i,j ::; n, i 1- j. If (y;, z) E TI3 or
(z, yJ E 113 for some z, then we have (Yj, z) E Th+1 or (z, Yj) E 113+1'
If in addition XoRYi E TiJ and Yi : C E lIa' then xoRYj E T/a+1 and
Yj: C E 1Ia+1' Thus 5 1a+1 contains for every Xo: (~ nRC) at least n
variables U1, ... , Un such that

Since we have already seen that a/a+! satisfies T/3+I, the variables
U1, . .. , Un are pairwise distinct.

4. The replacement of Yi by Yj is safe in S/3' This shows that S/d1 is
really obtained by the ---t.$-rule from S/3'
Suppose the replacement of Yi by Y j is not safe in S/3' Then there
exists Xo: (~ m R D) in S/3 such that nR,D,SI3 (xo) = m, and XoRYi,
xoRYj, XORZ3, ... ,xoRzm,Yi: D,yj: D,Z3: D,,,,,zm: D are in S/3' By
construction of S/3 we know that (Yi, Yj) E 113, Thus ala (Yi) 1- al3 (Yj)
which contradicts to ala (Yi) = ala (Yj)·

We can now continue this process with Sh+1 in place of Sia until we obtain
a constraint system-which is called Sl4 -such that for every Xo: (::; nRC)
occurring in it we have nR,G,sI4 (xo) ::; n. By induction one can proof that the
four properties hold for every i, 13 ::; i ::; 14 , Since Sia contains only finitely
many variables we obt ain after finitely many applications of the ---t.<-rule

20

a constraint system SI. such that the -+*~-rule does not apply to Xo : (::;
nRC) in SI •. Note that nR,G,s,. (xo) ::; n for every Xo: (::; nRC) in SI •.
Furthermore, it is easy to see that the -+n-, -+u-, -+;::-, and -+choose-rules do
not apply to constraints which contain the variable Xo.

This shows that all constraints imposed on Xo are explicitly present in SI •.

We can now apply the strategy of rule applications as performed for the
variable Xo to all successors of Xo, then to all successors of these successors,
and so on. With Proposition 3.4 we know that after finitely many applications
of the completion rules a complete constraint system SI is obtained. Since
SI is satisfiable, it does not contain constraints of the form x: 1.. or x : A,
x: --,A. Furthermore, we know that for every x: (:S nRC) in SI we have
nR,C,S, (x) ::; n by construction of the sequence So, S1, . .. ,SI. Thus SI is clash
free. 0

Now we show the other direction of Proposition 3.8.

Lemma 3.10 If there exists a clash free complete constraint system issuing
from So = {xo: Co} I then So is satisfiable.

Proof. We first show that a clash free complete constraint system S is
satisfiable. To prove this claim we construct an interpretation I and an
I-assignment a which satisfies S as follows. The domain /:lI of I consists
of all variables occurring in S. For all primitive concepts A different from
T and 1.. we define AI := {x I x : A E S}, and for all roles R we define
RI := {(x, y) I xRy E S}. The I-assignment a is defined by mapping
variables to themselves, i.e. a(x) := x. We now prove that a satisfies every
constraint s in S. If s has the form xRy, then a satisfies xRy by definition
of I and a. If s has the form x: C, we show by induction on the structure of
C that a(x) E CI.

Base case: If C is a primitive concept different from T and 1.., then
a(x) E AI by definition of I and a. If C = T, then obviously a(x) E TI.
Since S is clash free we have C =f 1...

Induction step: If C = --,A for a primitive concept A, the constraint x: A
is not in S since S is clash free. Then a(x) ¢ AI and a(x) E /:l I \ AI. Hence
a(x) E (--,A)I.

If C = C1 n C2 , then the constraints x : C1 and x: C2 are in S since
S is complete. By the induction hypothesis we know that a(x) E Cf and
a(x) E Cf, which implies a(x) E Cf n Cf, and hence a(x) E (C1 n C2)I.

21

Similarly, it can be shown that constraints of the form x: C1 U C2 are satisfied
by I and a.

Suppose C = (~ n R D).. Since the -+choose-rule is not applicable to S,
for every y with xRy either y: D or y: NNF(.D) is in S. By the induction
hypothesis we know that a(y) E DI if y : D is in S, or a(y) E (.D f if
y: NNF(.D) is in S. Since S is complete and does not contain a clash, we
have nR,D,s(X) ~ n. Hence a(x) E (~ n R D)I. Similarly, it can be shown
that constraints of the form x : (~ n R D) are satisfied by I and a.

Thus we have shown that every clash free complete constraint system
is satisfiable. To complete the proof of the lemma let S be a clash free
complete constraint system issuing from So = {xo: Co} by applications of the
completion rules. With the above observation we know that S is satisfiable.
Since So ~ S we also know that So is satisfiable. 0

Now we can formulate and prove the main result of this section.

Theorem 3.11 Satisfiab ility and subsumption of concepts are decidable.

Proof. We obtain a decision procedure for the satisfiability problem of
concepts as follows. Let C be a concept. First we transform C into its
negation normal form Co, which can be done in linear time. Then we generate
the finitely many complete constraint systems issuing from {xo: Co}. If one

of these constraint systems is clash free, then Co (and hence C) is satisfiable
(Lemma 3.10); otherwise C is not satisfiable (Lemma 3.9).

Since our concept language allows negation of concepts the subsumption
problem can be reduced to the satisfiability problem. 0

Our concept language generalizes the concept language A£C III which
deciding satisfiability and subsumption of concepts are PSPACE-complete
problems [Schmidt-SchauB and Smolka, 1988]. Thus we have

Proposition 3.12 Satisfiability and subsumption of concepts are PSPACE­
hard problems.

4 Implementation

The algorithm for deciding satisfiability of concepts given in the previous sec­
tion has the nice property that soundness and completeness can be proved

22

in a relatively simple manner. However, the rule-based algorithm as de­
scribed is not convenient for implementation purposes. The reasons will
be discussed in the first part of this section. One can obtain an algorithm
which is more suitable for an actual implementation by imposing an appro­
priate control on the applications of completion rules. Based on the idea of
[Schmidt-SchauB and Smolka, 1988] who gave an optimized algorithm for the
language ACC we will present in the second part of this section an optimized
algorithm for our language.

The following considerations show how the above presented algorithm
may be optimized.

(1) Contradictions may occur early in the completion process. If a con­
straint system S contains clashes of the form {x: .l} or {x: A, x: -,A}, then
every complete constraint system extending S also contains a clash. Thus,
the completion process can be stopped since S is not satisfiable.

(2) In general, constraint systems contain redundant constraints. For
example, suppose that a constraint system S contains x: enD. If x: C and
x: D are also in S, then obviously no completion rule will apply to x: C n D
in the further completion process. Hence it is not necessary to keep x: C n D
in S if x : C and x : D are in S. Similar arguments hold for x : CUD.
Constraints of the form x: (~ nRC) or x: (::; nRC) can be removed from
S under the following circumstances:

• No constraints having the form x: C n D or x: CuD are in S .

• The --+choose-, --+~-, and --+ .. S;-rules do not apply to x: (~ nRC) or
x: (::; nRC). That means, every successor of x in the final complete
system is already contained in S.

Both conditions guarantee that all constraints which are implicitly imposed
on x by the system S are already explicitly present in S. Since all variables
which are introduced in the further completion process are new and hence
different from x, we will not get new unsatisfied constraints on x later on.

(3) Only small portions of a constraint system need to be kept in memory
at a time. The idea for this comes from the following observation. Suppose
x is a variable in S and no completion rule applies to constraints of the form
x: C. Consequently, there will be no more replacements between successors
of x. Suppose y and z are different successors of x. Since neither y will be
replaced by z nor z will be replaced by y in the further completion process ,
there does not exist a variable u in the final constraint system such that u

23

can be reached both from y and z by role chains. This means that we can
inspect the constraints which will be introduced by restrictions imposed on
y independently from those introduced by restrictions imposed on z without
loosing possible clashes. This is so because clashes are defined w.r.t. a single
variable.

(4) To detect clashes of the form x: (~ nRC) in S, where nR,c,s(X) > n,
we have to consider only the R-successors of x. Thus an actual implementa­
tion may store for a variable x only its R-successors at a time. Furthermore,
there is no need for explicitly storing constraints of the form xRy.

Taking these optimizations into account we will formulate a functional al­
gorithm that decides the satisfiability of concepts. This algorithm is obtained
from our rule-based calculus by imposing some control on the application of
the completion rules.

The algorithm described in Figure 1 uses the functions or and find. We
assume that the binary function or behaves as the LISP-or, i.e., the second
argument is evaluated if and only if the first argument does not evaluate to
true. Let L be a list and let f be a function. The call find I in L such
that f(I) iteratively takes an element I of L until the function f applied to I
evaluates to true. In this case find immediately returns true. Otherwise, if
there does no exist an element I in L such that f applied to I evaluates to
true, find returns false.

Let C be a concept in negation normal form. Suppose the function satisfi­
able in Figure 1 is called with arguments x and S = {x: C}. Then satisfiable
proceeds as follows. First, it checks whether S contains a clash. This check
is restricted to constraints containing the variable x. If S is clash free, the
-+n- and -+u-rules are applied until all constraints of the form x: C n D or
x : CUD are decomposed. If no at-least restriction is imposed on x, i.e.,
there is no constraint x : (~ nRC) with n > 0 in S, we are done, and
satisfiable returns true. (Note that in this case every at-most restriction im­
posed on x is trivially satisfied since we have not yet introduced successors
of x.) Otherwise we generate for every role R which occurs in a constraint
x : (~ nRC) with n > 0 R-successors for x. This is done by the call
generate-successors(x, R, S). Note that successors of x which are related by
different roles to x can be inspected independently from each other without
loosing possible clashes.

Suppose that generate-successors is called with arguments x, R, and S.
Then R-successors for the variable x are generated, which will be constrained
according to the constraints imposed on x. The functions satisfiable and

24

satisfiable(x,5) =

if {x:.l} ~ 5 or {x: A,x: ...,A} ~ 5 for some primitive concept A
then false

elsif x: C n D E 5 and (x: C rt 5 or x: D rt 5)
then satisfiable(x, 5 U {x: C, x: D} \ {x: C n D})

elsif x: CuD E S and x: C rt S and x: D rt S
then satisfiable(x, 5 U {x: C} \ {x: CUD}) or

satisfiable(x, 5 U {x: D} \ {x: CUD})

else let R = {R I x: (2: nRC) E 5 for n > O}
for all R E R do:

generate-successors(x, R, 5)

generate-successors(x, R, 5) =
ifx: (::; nRC) E 5, I{z I z is a variable in 5,z =f x}1 > n,

y: C rt 5, y: NNF(...,C) rt 5, and x =f y
then if n = 0

then generate-successors(x, R, 5 U {y: NNF(...,C)})
else generate-successors(x, R, 5 U {y: C}) or

generate-successors(x, R, 5 U {y: NNF(...,C)})

elsifx: (2: nRC) E 5, I{z I z:C E 5,z =f x}1 = m and m < n
then let Ym+l, . .. , Yn new variables:

generate-successors(x, R, 5 U {Ym+1: C, . .. ,Yn: C})
elsifx: (::; nRC) E 5, I{z I z: C E 5,z =f x}1 > n

then let L be a list of all pairs (y, z) such that

y: C E 5, z: C E 5, y =f x, z =f x, y =f z, and
the replacement of y by z is safe in 5

find (y,z) in L such that:
generate-successors(x, R, [y / z]5)

elsifx: (::; nRC) E 5 and I{z I z: C E 5,z =f x}1 > n
then false
else for all variables y =f x in 5:

satisfiable(y, {y: C I y: C E 5})

Figure 1: A functional algorithm which decides satisfiability of concepts.
The call satisfiabi,e(x, {x: C}) returns true if and only if the concept C in
negation normal form is satisfiable.

25

generate-successors are defined in such a way that every variable · occurring
in S which is not equal to x is an R-successor of x. Suppose x: (~ nRC)
is in S. If the number of R-successors of x is not greater than n, then
x : (~ nRC) is obviously satisfied in S. Thus, it is checked whether
1 {z 1 z is a variable in S, z =f x} 1 (i.e., the number of R-successors of x) is
greater than n. If this is the case, it is tested whether every R-successor of
x is either in C or in NNF(.C). Suppose y is a variable in S not equal to
x. Thus y is an R-successor of x. Suppose further that neither y: C nor
y: NNF(.C) is in S. If x : (~ 0 R C) is in S, we add y: NNF(.C) to S.
Obviously, adding y: C to S would lead to a clash. Otherwise, if n > 0, we
cannot exclude one of the two possibilities. We only know that y is either in
C or in .C. This nondeterminism is solved by generating two recursive calls
of generate-successors covering both cases.

Next it is checked whether the --+~-rule is applicable to S. We therefore
have to consider the R-successors of x which are in C. Since every variable
in S which is not equal to x is an R-successor of x, we compute the number
1 {z 1 z: C E S, z =f x} I. If this number is not less than the number n in
x: (~ nRC), we are done since x has enough R-successors which are in C.
Otherwise, constraints of the form Yi : C are added to S, where Yi is a new
variable.!

Now assume that every constraint of the form x: (~ nRC) is satisfied.
Thus all possible R-successors of x are already in S. Next we consider con­
straints of the form x: (~ nRC). If there are too many R-successors for x
which are in C, we reduce them by replacing a variable by another one. Safe
replacements of variables guarantee that every at-least restriction imposed
on x remains satisfied. Obviously, we are confronted with another nondeter­
minism since we do not know which replacements may lead to a clash free
complete constraint system. Thus all possibilities are tested (in the worst
case) with the use of find.

Now assume that no more safe replacements are possible in S. Obviously,
we have now reached a configuration where the --+n-, --+u-, --+ choose-' --+~-,
and --+*~-rule are not applicable to constraints containing the variable x. We
now have to check whether an at-most constraint imposed on x is violated.
If x: (~ nRC) E Sand 1 {z 1 z: C E S, z =f x} 1 > n, then there are too

1 At this point one could further optimize the algorithm. Suppose x : (~ nl R C1),

... , x : (~ nl R CI) are all the at-least constraints imposed on x . If there is no at-most
constraint imposed on x, or if each number occurring in an at-most constraint imposed
on x is not less than nl + ... + nl, there is no need to really introduce ni R-successors of
x which are in Ci for a constraint x : (~ ni R Ci) . In this case it is sufficient to generate
exactly one R-successor as specimen.

26

many R-successors of x in C, and hence S contains a clash. Otherwise S is
clash free w.r.t. x and our algorithm proceeds with inspecting the constraints
imposed on the R-successors of x. Thus generate-successors calls, for every
R-successor y of x, the function satisfiable with arguments y and Sf, where
Sf contains all the constraints imposed on y.

Theorem 4.1 A concept C in negation normal form is satisfiable if and only
if the call satisfiable(x, {x: C}) returns true.

The complexity of satisfiable strongly depends on how the numbers oc­
curring in at-least restrictions are coded. If we assume that these numbers
are written in the decimal system as usual, the function may need space
which is exponential in the size of the input concept for the following rea­
son. Given a constraint x : (~ nRC) the function adds the constraints
Yl: C, . .. ,Yn: C, which obviously needs exponential space in the size of the
decimal representation of n. However, if we assume that the numbers are
coded unary, i.e., a number n is represented by a string of the length n, then
we strongly conjecture that satisfiable needs only polynomial space in the
size of the input concept.

5 Remarks on the Complexity of Qualifying
Number Restrictions

In this section we will first show that already some very small concepts of the
presented language may cause long computations of the function satisfiable.
Then we will discuss under which circumstances qualifying number restric­
tions behave better with respect to the computation time, and may thus be
used in applications.

Since the satisfiability problem in our language is PSPACE-hard, one may
ask whether a concept language providirg qualifying number restrictions can
be used in applications. To discuss this question let us reconsider why the
satisfiability (and hence the subsumption) problem in the presented language
has such a high complexity.

To decide whether a concept C is satisfiable our algorithm starts with
the constraint system S = {x: C} and computes (in the worst case) all
complete constraint systems issuing from S using the completion rules. One
can distinguish two forms of complexities:

27

• Complete constraint systems issuing from S may contain exponentially
many constraints. In this case, the computation of such complete con­
straint systems needs exponential time w.r.t. the size of C.

• There may be exponentially many different complete constraint systems
issuing from S.

In [Donini et al., 1991a] it has been pointed out that both forms of complex­
ity are present in the concept language ACC. Intuitively, one can say that
the first form of complexity is responsible for NP-hardness and the second
form for co-NP-hardness of the subsumption problem; if both forms come
together they cause PSPACE-hardness. Though the satisfiability problem
in ACC is PSPACE-complete, experience with an implemented system (see
[Baader and Hollunder, 1990]) has revealed the following result. If an ACC­
concept which should be checked for satisfiability is not very long (i.e., if it
contains less than 20 to 30 symbols of the form n, U, :3, or V), the imple­
mented algorithm for checking sat isfiability is rather fast. 2

In spite of the fact that ACC and our language are similar w.r.t. worst
case complexity, our language does not show the nice behaviour of ACC for
small concepts. It turns out that there exist concepts containing only a few
symbols of the form n, ~, or ~, and small numbers for which the function
satisfiable already needs a rather long time for computation. The reason for
this difference seems to be that the second of the above mentioned sources

of complexity has more influence for our language. This comes from the
presence of the highly nondeterministic - choose- and -*~-rules. In contrast
to constraints of the form x: CUD, where an application of the nondeter­
ministic -u-rule produces exactly two alternatives, constraints containing
at-most restrictions in general are responsible for a lot more alternatives.

Example 5.1 Suppose that satisfiable(x, {x: C}) is called with the concept

C = (~2 R (A n B)) n (~ 2 R (A n C)) n
(~ 2 R A) n (~ 2 R B) n (~ 2 R C).

After applying the -n-rule the function generate-successors is called with
arguments x, R, and

S = {x: (~2 R (AnB)),x: (~2 R (AnC)),

x: (~2 R A),x: (~2 R B),x: (~2 R C)}.

2It is however not yet clear how the algorithm behaves for longer concepts which may
occur in practical applications.

28

Then the constraints Yl: (AnB), Y2: (AnB), and Y3: (AnC), Y4: (AnC) are
added to S to satisfy the at-least restrictions. Afterwards generate-successors
checks whether the at-most restrictions imposed on x can be satisfied. Thus,
by application of the -+ choose-rule for each Yi, 1 ~ i ~ 4, Yi: A or Yi: -.A,
Yi: B or Yi: -.B, and Yi: C or Yi: -.C are added. Obviously, since there are
4 such successors of x, 84 = 4096 alternatives are tested (in the worst case)
in order to find a clash free complete constraint system.
Applications of the -+*:::;-rule create additional alternatives. Assume that
for each i, 1 ~ i ~ 4, Yi : A is added by the -+choose-rule. Since there
are 4 successors of x in the concept A, generate-successors has to replace 2

variables to satisfy x: (~ 2 R A). In this case there are (~) * (~) = 6 * 3

possible replacements, which however need not all be safe.
Note that the overall number of alternatives caused by applications of the
-+ choose- and -+*:::;-rule is determined by the number of R-successors of x
(which depends on the at-least restrictions imposed on x), the number of
at-most restrictions imposed on x, and the numbers occurring in the at-most
restrictions.

This example demonstrates that-in contrast to concepts of the ACC­
language-already small concepts containing qualifying number restrictions
cause intractable problems. This fact is not necessarily an argument in favour
of excluding qualifying number restrictions from concept languages. If it
turns out that in applications subsumption relations can often be computed
fast with the presented algorithm, this algorithm should be employed. Nev­
ertheless, one cannot simply rely on the fact that the input concepts are
"well-behaved" .

To avoid long computations we propose the following modification of the
functions satisfiable and generate-successors given in the previous section.
The idea is to precompute the number of alternatives which have to be in­
spected in the worst case in order to find a clash free complete constraint
system. The number of alternatives caused by applications of the -+ choose­
and -+*:::;-rule to a variable can be estimated as demonstrated in Example
5.1. If there are too many such alternatives, then satisfiable stops the com­
putation and returns fail. Otherwise, satisfiable proceeds as described in the
previous section.

Thus the modified algorithm behaves as follows. If it is confronted with
concepts where only few alternatives have to be inspected, then it behaves
similarly to the algorithm for ACC. In this case it hopefully returns the
correct answer in short time. Otherwise, if there arise too many alternatives

29

in the computation, then it would probably take a long time to compute the
correct answer. In this case the algorithm stops and returns fail.

Using such a modified algorithm instead of an incomplete algorithm-as
used in almost all implemented KL-ONE systems-has the following advan­
tage. If a fast but incomplete algorithm cannot detect a subsumption relation
between two concepts, we do not know anything. A subsumption relation
mayor may not exist. Consequently, we do not really know whether there
is no subsumption relation between concepts, or whether the computation of
this relationship would just take too long.

On the other hand, assume that we have a subsumption algorithm as
proposed above. If the algorithm returns yes (no), then we really know
that there exists (does not exist) a subsumption relation. That means, both
positive and negative answers are correct. Otherwise the algorithm returns
the answer fail. However, in this case the computation of the correct answer
is a hard problem, and hence fast incomplete algorithms would probably fail
too.

Summing up, we have argued -that one may use qualifying number re­
strictions although the satisfiability and subsumption problem in a concept
language providing these constructs is rather hard from a computational
point of view. The proposed method uses a sound and complete algorithm
which in advance recognizes concepts probably causing long computations.
In this case fail is returned. However, if the algorithm returns yes or no, then
we know that this answer is correct.

6 Conclusion

The present paper is a contribution to clarifying the subsumption problem
in concept languages. A sound and complete satisfiability and hence sub­
sumption algorithm has been presented for a language providing qualifying
number restrictions. We have seen that qualifying number restrictions are
very expressive language constructs; they generalize role quantifications and
ordinary number restrictions. Nevertheless, the presented algorithm has a
very simple structure. In the following we will discuss the methodology for
devising subsumption algorithms for concept languages which led to this al­
gorithm.

The completion technique as used in the present paper was first described
in [Schmidt-SchauB and Smolka, 1988] for devising a subsumption algorithm

30

for the language ACe, and then extended to other concept languages (see
e.g. [Hollunder, Nutt, and Schmidt-SchauB, 1990, Donini et al., 1991b]).
The ideas underlying these algorithms are as follows. Since the subsumption
problem can be reduced to the satisfiability problem3

, it is sufficient to devise
algorithms which check satisfiability of concepts, i.e., which check whether
a given concept denotes a nonempty set in some interpretation. If C is a
concept which should be checked for satisfiability, the algorithms start with
the constraint system {x: C}. Then constraints are added by applications
of completion rules until either a contradiction occurs, or an interpretation
I such that CT is nonempty can be immediately obtained from the actual
constraint system.

Each language construct gives rise to a particular completion rule. In
general, it is relatively easy to determine for a given language construct a
"corresponding" completion rule. This rule should satisfy two properties. On
the one hand, it should be sound, i.e., it should satisfy one of the two proper­
ties stated in Proposition 3.3, depending on whether it is a deterministic or
nondeterministic rule. On the other hand, it should be complete, i.e., if it is
no longer applicable, the constraints containing the construct as uppermost
operator should be "satisfied".

Now suppose that for each language construct of the concept language
we have a "corresponding" sound and complete rule. We have seen that
a concept C is not satisfiable if and only if every complete constraint sys­
tem (i.e., a constraint system such that no completion rule is applicable)
issuing from {x : C} contains a clash4

• Thus, to get a decision procedure
for the satisfiability problem one has to guarantee that there is no infinite
chain of applications of completion rules issuing from {x: C}. In general,
it is more complicated to prove termination of the completion rules than to
prove soundness and completeness of these rules (see Section 3). In fact, it
would be relatively easy to generate sound and complete rules for constructs
which cause undecidability such as role value maps [Schmidt-SchauB, 1989] .
However, it is clear that in this case termination cannot be guaranteed in
general.

For implementation purposes one should not be content with the rule­
based algorithm obtained by applying this methodology. Practical experience
has shown that- for the sake of efficiency~it is important to impose an

3Recall that C subsumes D if and only if -,C n D is not satisfiable . In
[Donini et al., 1991a] it is shown how the reduction works if negation of concepts is not
available in the conc~pt language .

4Recall that clashes are obvious contradictions in constraint systems such as x : A,
x : -,A or x: .i.

31

appropriate control on the rule applications. In the best case one may obtain
a functional algorithm as demonstrated in Section 4.

We have pointed out th~t deciding satisfiability in our language has a
high complexity. To avoid long computations we have modified a sound and
complete satisfiability algorithm such that concepts probably causing long
computations are recognized. In this case fail is returned. Otherwise, if the
algorithm returns yes or no, then we know that-in both cases-this answer
is correct.

Concept languages are used in KL-ONE systems to represent terminologi­
cal knowledge. However, almost all of these systems have, in addition to the
terminological component ("T -Box"), an assertional component ("A-Box")
which allows to describe knowledge concerning particular individuals. To rea­
son with both the T-Box and A-Box one may need algorithms for inferences
such as consistency checking of the represented knowledge and "realization".
It has been demonstrated in [Hollunder, 1990] that the completion technique
can also be used to devise sound and complete algorithms for these inferences.

Acknowledgements

We are grateful to our colleagues Hans-Jiirgen Biirckert and Werner Nutt for
reading earlier drafts of the present paper. This research has been supported
by the German Bundesministerium fur Forschung und Technologie under
grant ITW 8903 O.

References

[Baader and Hollunder, 1990] F. Baader, B. Hollunder. KRIS : Knowledge
Representation and Inference System-System Description. DFKI Tech­
nical Memo TM-90-03, DFKI Kaiserslautern.

[Borgida et al., 1989] A. Borgida, R. J. Brachman, D. L. McGuinness,
1. A. Resnick. "CLASSIC: A Structural Data Model for Objects." In Pro­
ceedings of the International Conference on Management of Data, Port­
land, Oregon, 1989.

[Brachman et al., 1985] R. J. Brachman, V. Pigman Gilbert, H. J. Levesque.
"An essential hybrid reasoning system: knowledge and symbol level ac­
counts in KRYPTON." In Proceedings of the 9th IJCAI, pp. 532-539, Los
Angeles, Cal., 1985.

32

[Brachman and Schmolze, 1985] R. J. Brachman, J. G. Schmolze. "An
Overview of the KL-ONE knowledge representation system." Cognitive Sci­
ence, 9(2):171-216, 1985.

[Dershowitz and Manna, 1979] N. Dershowitz, Z. Manna. "Proving Termi­
nation with Multiset Orderings." C. ACM, 22(8):465-476, 1979.

[Donini et aI., 1991a] F. Donini, B. Hollunder, M. Lenzerini, A. Marchetti
Spaccamela, D. Nardi, W. Nutt. The Complexity of Existential Quantifi­
cation in Concept Languages. DFKI Research Report RR-91-02, DFKI
Kaiserslautern.

[Donini et aI., 1991b] F. Donini, M. Lenzerini, D. Nardi, W. Nutt. "Com­
plexities in Terminological Reasoning." In Proceedings of the Second In­
ternational Conference on Principles of Knowledge Representation and
Reasoning, Cambridge, Mas., 1991.

[Hollunder, Nutt, and Schmidt-SchauB, 1990] B. Hollunder, W. Nutt, M.
Schmidt-SchauB. "Subsumption Algorithms for Concept Description Lan­
guages." In Proceedings of the 9th ECAI, pp. 348- 353, Stockholm, Sweden,
1990.

[Hollunder, 1990] B. Hollunder. "Hybrid Inferences in KL-ONE-based Knowl­
edge Representation Systems." In Proceedings of the 14th German Work­
shop on Artificial Intelligence, pp. 38-47, Eringerfeld, Germany, 1990.

[MacGregor and Bates , 1987] R.MacGregor, R.Bates. The LOOM Knowledge
Representation Language. Technical Report ISI/RS-87-188, University of
Southern California, Information Science Institute, Marina del Rey, Cal. ,
1987.

[Nebel, 1990] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems, Lecture Notes in AI, LNAI 422, Springer Verlag, 1990.

[Nebel and Smolka, 1990] B. Nebel, G. Smolka. "Representation and Rea­
soning with Attributive Descriptions." In K. H. Blasius, U. Hedtstiick and
C.-R. Rollinger (editors .), Sorts and Types for Artificial Intelligence, Lec­
ture Notes in AI, LNAI 418, Springer-Verlag, 1990.

[Owsnicki-Klewe, 1990] B. Owsnicki-Klewe. "A Cardinality-Based Approach
to Incomplete Knowledge." In Proceedings of the 9th ECAI, pp. 491-496,
Stockholm, Sweden, 1990.

33

[Patel-Schneider, 1984] P. Patel-Schneider. "Small can be beautiful in knowl­
edge representation." In Proceedings of the IEEE Workshop on Principles
of Knowledge-Based Systems, pp. 11-16, Denver, Colo., 1984.

[Schmidt-SchauB, 1989] M. Schmidt-SchauB. "Subsumption in KL-ONE is
undecidable." In Proceedings of the First International Conference on Prin­
ciples of Knowledge Representation and Reasoning, pp. 421-431, Toronto,
Ont., 1989.

[Schmidt-SchauB and Smolka, 1988] M. Schmidt-SchauB, G. Smolka. At­
tributive Concept Descriptions with Complements. SEKI Report SR-88-21,
FB Informatik, Universitat Kaiserslautern, 1988. To appear in Artificial
Intelligence, 47, 1991.

[Vilain, 1985] M. B. Vilain. "The restricted language architecture of a hybrid
representation system." In Proceedings of the 9th IJCAI, pp. 547-551, Los
Angeles, Cal., 1985.

34

Deutsches
Forschungszentrum
fUr KClnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen
oder die aktuelle Liste von erhliltlichen
Publikationen konnen bezogen werden von
der oben angegebenen Adresse.

DFKI Research Reports

RR-90-01
Franz Baader: Tenninological Cycles in KL-ONE­
based Knowledge Representation Languages
33 pages

RR-90-02
Hans-Jurgen Burckert: A Resolution Principle for
Clauses with Constraints
25 pages

RR-90-03
Andreas Dengel, Nelson M . Mattos: Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard HoI/under. Werner Nutt: SUbsumption
Algorithms for Concept Languages
34 pages

RR-90-05
Franz Baader: A Fonnal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard HoI/under: Hybrid Inferences in KL-ONE­
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre. Thomas Rist': Wissensbasierte
Infonnationsprasentation:
Zwei Beitrage zum Fachgesprach Graphik und KI:

I . Ein planbasierter Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fur die
automatische Erzeugung von 3D­
Objektdarstellungen

24 pages

DFKI
-Bibliothek­
Stuhlsatzenhausweg 3
6600 Saarbrticken 11
FRG

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR-90-09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader. Halls-Jurgen Biircker/, Bernhard
HoI/under. Werner NUll, Jorg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andre. Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR-90-14
Franz Schmalhojer. Otto Kuhn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text ,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-15
Harald Trost : The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR·90·16
Franz Baader, Werner Nutt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR·91·01
Franz Baader, Hans-liirgen Burckert, Bernhard
Nebel, Werner Null, and Gert Smolka:
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR·91·02
Francesco Donini, Bernhard Hollunder, Maurizio
Lenzerini, Alberto Marchetti Spaccamela, Daniele
Nardi, Werner Nutt:
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
BHollunder, Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR·91·0S
Wolfgang Wahlster, Elisabeth Andre, Win/ried
Gra/. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation.
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
lIIustrated Documents
A Plan-Based Approach
11 pages

RR·91·07
Gunter Neumann, Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91·08
Wolfgang Wahlster. Elisabeth Andre . Som
Bandyopadhyay. Win/ried Gra/. Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

DFKI Technical Memos

TM·89·01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay: Toward~ an Understanding of
Coherence in Multimodal Discourse
18 pages

TM·90·02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM·90-03
Franz Baader, Bernhard Hol/under: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-lurgen Burckert. lochen
Heinsohn. Bernhard Hollunder . lurgen Muller.
Bernhard Nebel. Werner NUll. Hans-lurgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM-91-01
lana Kohler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmafll1
Bidirectional Reasoning of Hom Clause Programs:
Transformation and Compilation
20 pages

TM-91-03
Otto Kuhn. Marc Lil1ster. Gabriele Schmidt
Clamping, COKAM, KADS, and aMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

DFKI Documents

D-89-01
Michael H. Malburg. Rainer Bieisinger:
HYPERBIS: ein betriebliches Hypermedia­
Informationssystem
43 Seiten

D-90-01
DFKI Wissenschaftlich-Technischer lahresbericht
1989
45 pages

D-90-02
·Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

D-90-03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD
36 Seiten

D-90-04
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: STEP: Oberblick tiber eine zuktinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D-90-05
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Formalismus zur Reprasentation von
Geo-metrie- und Technologieinformationcn als Teil
eines Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becker: The Window Tool Kit
66 Seiten

m
CD ...
:::l
~
II) ...
Q.

::I:
0

c:
:::l
Q.
CD
~ ...
" ...
II)
:::l
N

m
II)
Q)

Q.
CD ...

JJ
co
en

(

~
= -'<

= -(.C

~
C
~

0
<t

:::J
<t
Ii
~

~
Ci

S
;;

(
0

C':
<t

"tJ ...
r;
S

c.c:
C
Q

(.C
C1
Ii

COJl
~ .
g.S
JJ co •
-oC o
;::l.

