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Abstract 

We investigate the subsumption problem in logic-based knowledge 
representation languages of the KL-ONE family. The language pre­
sented in this paper provides t he constructs for conjunction, disjunc­
tion, and negation of concepts, as well as qualifying number restric­
tions. The latter ones generalize the well-known role quantifications 
(such as value restrictions) and ordinary number restrictions, which 
are present in almost all KL-ONE based systems. Until now, only little 
attemps were made to integrate qualifying number restrictions into 
concept languages. It turns out that all known subsumption algo­
rithms which try to handle these constructs are incomplete, and thus 
detecting only few subsumption relations between concepts. 

We present a subsumption algorithm for our language which is 
sound and complete. Subsequently we discuss why the subsumption 
problem in this language is rather hard from a computational point of 
view. This leads to an idea of how to recognize concepts which cause 
tractable problems. 
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1 Introduction 

Knowledge representation ~ystems of the KL-ONE family such as KL-ONE 

[Brachman and Schmolze, 1985], BACK [Nebel, 1990], CLASSIC [Borgida et 
al., 1989], KANDOR [Patel-Schneider, 1984], KL-TWO [Vilain, 1985], ~RYP­
TON [Brachman et al. , 1985], LOOM [MacGregor and Bates, 1987], provide 
so-called concept languages for expressing taxonomical knowledge. Concept 
languages allow the definition of concepts which are built out of primitive con­
cepts and roles. The primitive concepts are interpreted as sets of individuals 
and the roles are interpreted as binary relations between individuals. Start­
ing with primitive concepts and roles one can build concepts using various 
language constructs. Concepts are again interpreted as sets of individuals. 

To give an example, assume that person, male, and shy are primitive con­
cepts, and child is a role. If constructs such as conjunction, disjunction, and 
negation of concepts are available in the concept language, one can express 
"persons that are male or not shy" by person n (male u ,shy). Since concepts 
are interpreted as sets, conj unction of concepts (n) can be interpreted as 
set intersection, disjunction of concepts (u) as set union, and negation of 
concepts (,) as set complement . . 

Qualifying number restrictions provide restrictions on roles which for in­
stance allow to describe "individuals with at least two children who are shy" 
by 

(~ 2 child shy), 

and "individuals with at most three children who are male and not shy" by 

(:S 3 child (male n ,shy)). 

It turns out that the well-known role quantifications and ordinary number 
restrictions, which are available in almost all concept languages, are special 
cases of qualifying number restrictions. 

Role quantifications are of the form :lchild.male and Vchild.shy (or (SOME 
child male) and (ALL child shy) in a Lisp-like notation). These expressions can 
be read as "individuals having (at least) one male child" and "individuals for 
whom all children are shy", respectively. Obviously, :lchild.male means the 
same as (~ 1 child male), and Vchild.shy means the same as (:S 0.. child ,shy). 

OrdinarY number restrictions are of the form (~ n R T) and (:S n R T), 
where the special concept symbol T denotes the set of all individuals (of 
the interpretation). Qualifying number restrictions generalize these ordinary 
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number restrictions as follows: a specified number of role fillers for a role can 
be restricted to arbitrary concepts rather than only to T. 

The main reasoning facilities concerning the taxonomical knowledge in 
the above mentioned systems are the 

• determination whether a concept is satisfiable, i.e., whether a concept 
denotes a nonempty set in some interpretation, and the 

• computation of the subsumption relation between concepts. 

A concept C subsumes (is more general than) a concept D iff in every inter­
pretation the set denoted by C is a superset of the set denoted by D. For 
example, 

(:::; 1 child (male n ,shy)) 

subsumes 
(~ 2 child (male n shy)) n (:::; 3 child male), 

since every individual with at least two male and shy children and at most 
three male children has at most one child which is male and not shy. This 
example demonstrates that, in contrast to other concept languages, already 
for small concepts it is not that apparent whether there exists a subsumption 
relation between them. 

The subsumption problem can be reduced to the satisfiability problem 
if the concept language provides conjunction and negation of concepts. In 
fact, a concept C subsumes a concept D if and only if the concept ,C n D 
is not satisfiable. Thus, an algorithm which checks satisfiability of concepts 
also yields an algorithm which checks subsumption between concepts. 

If one considers the subsumption algorithms used in the above mentioned 
KL-ONE systems, then it turns out that these algorithms are incomplete. 
A reason for this fact is that until recently only incomplete subsumption 
algorithms were known for nontrivial concept languages. An incomplete sub­
sumption algorithm has the property that it sometimes fails to recognize 
that a concept subsumes another one. [Schmidt-SchauB and Smolka, 1988] 
were the first who gave a sound and complete subsumption algorithm for the 
concept language ACe which provides conjunction, disjunction, and nega­
tion of concepts, as well as role quantifications. Actually, they presented 
an algorithm for checking satisfiability of concepts. Given a concept C the 
algorithm tries to generate a finite interpretation such that the set denoted 
by C is nonempty. If this process fails, i.e., if a contradiction occurs, such an 
interpretation cannot exist and C is not satisfiable, otherwise C is satisfiable. 
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[Hollunder, Nutt, and Schmidt-SchauB, 1990] demonstrate that the ideas 
underlying the algorithm which checks satisfiability for the language A£e 
can be applied to languages using also other constructs such as ordinary 
number restrictions and cOhjunction of roles. Moreover, they argue that 
these ideas yield a general methodology for devising satisfiability (and hence 
subsumption) algorithms for concept languages. 

The present paper pursues several goals. Firstly, it describes a sound and 
complete algorithm for checking satisfiability for a very expressive concept 
language containing not only conjunction, disjunction, and negation of con­
cepts, but also qualifying number restrictions. Qualifying number restrictions 
are not just artificial constructs, but they are partly available in some sys­
tems. For example, the concept language used in KANDOR allows qualifying 
number restrictions in the restricted form (~ nRC) and (:::; n R T). Re­
cently, qualifying number restrictions have been included into the assertional 
part ("A-Box") of the system MESON [Owsnicki-Klewe, 1990]. 

Secondly, the paper exemplifies the claim that there is in fact a gen­
eral methodology for devising satisfiability algorithms for concept languages. 
However, devising a satisfiability algorithm for concept languages with qual­
ifying number restrict ions is of a .rather different quality. The reason is that 
qualifying number restrictions allow to generate inherently complex term 
structures causing subtle combinatorial problems. 

Finally, the paper in;vestigates what kind of language constructs, and in 
what kind of combination may lead to long computations of the presented 
algorithm. This leads to an idea of how to single out concepts which can be 
checked fast on satisfiability. 

The paper is organized as follows. In the next section we formally in­
troduce the syntax and semantics of our concept language. In Section 3 we 
present a calculus for deciding satisfiability of concepts of this language. A 
functional algorithm which is extracted from the calculus is given in Sec­
tion 4. In Section 5 we give ideas of how to recognize concepts which cause 
tractable problems. Finally, in Section 6 we discuss the claim that there is 
a general methodology for devising satisfiability (and hence subsumption) 
algorithms for concept languages. 
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2 The Language 

We assume two disjoint alphabets of symbols, called primitive concepts and 
roles. We usually denote primitive concepts by the letter A and roles by the 
letter R. The special primitive concepts T and .1 are called top and bottom. 
The set of concepts is inductively defined as follows. Every primitive concept 
is a concept. Now letC and D be concepts already defined, let R be a role, 
and let n be a nonnegative integer. Then 

CnD 
CUD 
:..,c 
(~n R C) 
(:::; nRC) 

( conj unction) 
(disjunction) 
(negation) 
(at-least restriction) 
(at-most restriction) 

-
are concepts. The at-least and at-most restrictions are also called qualifying 
number restrictions. 

An interpretation T = (6 I ,.I) of our language consists of a set 6 I (the 
domain of T) and a function .I (the interpretation function of T). The in­
terpretation function maps every primitive concept A to a subset AI of 6 I , 
and every role R to a subset RI of 6 I x 6 I . The special concepts T and 
.1 are interpreted as 6 I and the empty set, respectively. The interpretation 
function-which gives an interpretation for primitive concepts and roles­
can be extended to arbitrary concepts as follows. Let C and D be concepts, 
let R be a role, and let n be a nonnegative integer. Assume that CI and DI 
are already defined. Then 

(C n D)I .­

(C U D)I 

(-'C)I .-

(~n R C)I 

cInDI 

CIUDI 

6 I 
\ CI 

{a E 6 I IlaRI n CII~ n} 

.- {a E 6 I IlaRI nCII:::; n} 

where aRI := {b E 6 I I (a, b) E RI }, and IXI denotes the cardinality of the 
set X. 

Our language allows to express the well-known role quantifications (see 
e.g. [Nebel and Smolka, 1990]), which are present in almost all concept lan­
guages, as follows: 

VR.C 

3R.C 

.- (:::; 0 R -,C) 

(~ 1 R C). 
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The construct V R.C is usually called value restriction, and the construct 
3R.C is e.g. called c-some in [Nebel, 1990]. Note that the concept (~ 0 R .C) 
denotes the set of all elements for which every role filler for R is in C. This 
shows that the definition for the construct V R.C we have given above coin­
cides with the semantics usually given for this construct. 

Now we are able to define the language ACC of [Schmidt-SchauB and 
Smolka, 1988] as sublanguage of our language. This concept language allows 
conjunction, disjunction, and negation of concepts, as well as role quantifi­
cations. 

As already mentioned in the introduction, a concept C is called satisfiable 
iff there exists an interpretation I such that CI is nonempty. We say C 
subsumes D iff CI ;2 DI for every interpretation I, and C is equivalent to D 
iff CI = DI for every interpretation I. 

Since our language allows conjunction and negation of concepts, satisfi­
ability and subsumption of concepts can be reduced in linear time to each 
other. 

Proposition 2.1 Let C and D be concepts. Then: 

1. C subsumes D if and only if .C n D is not satisfiable. 

2. C is satisfiable if and only if ..1 does not subsume C. 

Thus an algorithm for checking satisfiability of concepts can also be used 
for deciding subsumption of concepts and vice versa. 

In the following section we present an algorithm that decides satisfiability 
of concepts. To keep this algorithm simple it is convenient to transform 
concepts into normal forms . We say a concept C is in negation normal form 
if negation signs in C appear only immediately in front of primitive concepts 
different from T and ..i. Negation normal forms can be computed using the 
following simplification rules: 

.T -----t ..1 

• .1 -----t T 
.(C n D) -----t .C u.D 

.(CUD) -----t .C n.D 

•• C -----t C 
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-,(~ nRC) (~ (n + 1) R C) 

-,(~ nRC) 
{ (~ (n -~) R C) 

if n = 0 
if n > O. 

Let C be a concept. By NNF( C) we denote the concept which is obtained 
from C by applying the simplification rules in top-down, left to right order 
as long as possible. For example, 

NNF(-,(A u (~3 R B))) = (-,A n (~2 R B)). 

The following result can be proved easily. 

Proposition 2.2 Let C be a concept. Then NNF( C) 

1. is in negation normal form, 

2. is equivalent to C, and 

3. can be computed in linear time. 

3 Checking Satisfiability 

In this section we describe an algorithm for deciding satisfiability in our 
concept language. The algorithm uses so-called constraints, which are built 
out of variables, concepts, and roles. Sets of constraints will be modified with 
the help of completion rules. The notions constraints and completion rules 
have already been used in [Schmidt-SchauB and Smolka, 1988, Hollunder, 
Nutt, and Schmidt-SchauB, 1990]. 

We assume that there exists an alphabet of variable symbols, which will 
be denoted by the letters x, y, z, and u. A constraint has one of the following 
forms 

x: C, xRy, 

where C is a concept in negation normal form and R is a role. For xRy we 
say that y is an R-successor of x. If R is clear from the context or irrelevant, 
we simply say that y is a successor of x. 

The interpretation of constraints is defined as follows. Let I be an in­
terpretation of the concept language. An I -assignment is a function a that 
maps every variable to an element of !:l,I. We say that a satisfies x: C iff 

a(x) ECI
, 
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and a satisfies xRy iff 
(a(x),a(y)) E RI. 

A constraint s is satisfiabl6 iff there exists an interpretation I and an I­
assignment a such that a satisfies s. A constraint system S is a -finite, 
nonempty set of constraints. An I-assignment a satisfies a constraint system 
S iff a satisfies every constraint in S. A constraint system S is satisfiable iff 
there exists an interpretation I and an I-assignment a such that a satisfies S. 

Proposition 3.1 A concept C in negation normal form is satisfiable if and 
only if the constraint system {x: C} is satisfiable. 

Proof. Follows immediately from the definitions. o 

Given a concept C in negation normal form which has to be checked for 
satisfiability, our calculus starts with the constraint system {x: C}. Then, 
by applications of completion rules, it adds constraints to this system until 
a contradiction occurs, or an interpretation I such that CT is nonempty can 
be immediately obtained from the actual constraint system. 

Before we formulate the rules we need some more definitions. 

• For a variable x in a constraint system S we want to count the R­
successors which are in a certain concept C. We therefore define 

nR,c,s(X) := I{y I {xRy, y: C} ~ S}I· 

• By [y / z 1 S we denote the constraint system that is obtained from S by 
replacing each occurrence of y by z. 

We have the following rules: 

1. S----+n {x:C1 , x:C2 }US 

if x: C1 n C2 is in S, x: C1 and x: C2 are not both in S 

2. S ----+u {x: D} U S 

if x: C1 U C2 is in S, neither x: C1 nor x: C2 is in S, 
and D = C1 or D = C2 

3. S ----+ choose {y: D} U S 

if x: (~ nRC) is in S , xRy is in S, 
neither y: C nor y: NNF( -,C) is in S, 
and D = C or D = NNF(-,C) 
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4. S -+~ {xRy, y: C} uS 

if x: (2:: nRC) is in S, nR,G,s(x) < n, and y is a new variable 

5. S -+~ [y/z]S 

if x: (~n R C) is in S, xRy, y: C, xRz, z: C are in S, 
y =f z, nR,c,s(X) > n, 
for every u with xRu either u: C or u: NNF(.C) is in S. 

Note that to every language construct--except negation of concepts­
there corresponds a rule. Since concepts are assumed to be in negation 
normal form, we do not need rules which handle concepts with negation as 
outermost symbol such as x: .(C n D), x: .(C U D) etc. Negation applied 
to primitive concepts will be treated by the definition of "clash" given below. 

The rules are used to decide whether a given constraint system is satisfi­
able as follows. We apply the rules until we obtain a constraint system such 
that no rule is applicable to it (a so-called complete constraint system). For 
such a constraint system it is easy to decide whether it is satisfiable. 

Now let us discuss the rules. Obviously, the -+n- and -+u-rules are decom­
posing constraints having the form x: CnD and x: CUD, respectively. Both 
rules are defined as in [Schmidt-SchauB and Smolka, 1988]. The rules which 
treat qualifying number restrictions are similar to the rules for ordinary num­
ber restrictions used in [Hollunder, Nutt, and Schmidt-SchauB, 1990]. How­
ever, in the case of ordinary number restrictions one only has to know for a 
given variable x all its R-successors for some role R; whereas in the case of 
qualifying number restrictions one has to know for a given variable x all its 
R-successors which are in a certain concept C. This fact leads to the defini­
tion of nR,c,s(X) given above. However, the number nR,c,s(X) is only useful 
if the -+ choose-rule does not apply to constraints containing the variable x. 
To see this assume that S is a constraint system such that x: (~ nRC) 
and xRy are in S, but neither y: C nor y: NNF(.C) is in S. Then nR,c,s(X) 
would not count the variable y since y : C is not in S. Nevertheless there 
may exist an interpretation I and an I-assignment cr such that cr(y) E CI . 
That means that in this interpretation x may have more R-successors in C 
than are indicated by nR,c,s(X), i.e., we may have 

nR,G,s(x) < I{y I xRy is in Sand cr(y) E CI}I; 

Thus n 2:: nR,C,S(X) need not imply 

n 2:: I{y I xRy is in Sand cr(y) E CI}I· 
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This means that the constraint x: (~ nRC) can be violated in spite of 
the fact that n ~ nR,c,s{x). To overcome this problem we use the -+choose­
rule which is based on the following idea. We know that for every I and a 
we have a(y) E CI or a{y) E (-,C)I. An application of the -+ choose-rule 
nondeterministically adds the correct constraint y: C or y: NNF( -,C) to 5. 

Now suppose that for every R-successor u of x either u: Cor u: NNF( -,C) 
is in 5. If x: (~ nRC) is in 5 and nR,c,s(X) > n, then there are too many 
R-successors of x in C. An application of the -+$-rule reduces their number 
by identifying two previously different R-successors. 

For constraints of the form x: (~ nRC) it is not necessary to apply 
the -+ choose-rule to all successors y of x. In fact, assume that xRy is in 5, 
but neither y: C nor y: NNF( -,C) is in 5. In this case is does not lead to 
problems if the -+~-rule introduces a new variable because y was not counted 
for n R,C,S( x). If I is an interpretation and a is an I-assignment such that 
a(y) E CI , we may now have 

nR,c,s(X) < I{y I xRy is in 5 and a(y) E C~}I· 

But then n ~ nR,c,s(X) also implies 

n ~ I{y I xRy is in 5 and a(y) E CI}I · 

If x: (~n R C) is in 5 and nR,C.S(X) < n, then there may not be enough R­
successors of x in C. An application of the -+~-rule generates a new variable 
y and adds the constraints xRy and y: C to 5. Thus, the number nR,c,s(X) 
is increased by one. 

The rules as described above have the disadvantage that they allow infi­
nite chains of rule applications. 

Example 3.2 Consider the constraint system 

5 = {x: (~ 2 R A) n (~ 1 R A)}. 

We obtain the following constraint systems by applications of the rules: 

5 -+n 5 U {x: (~ 2 R A), x: (~ 1 R A)} =: 51 

-+> 51 U {xRy, y: A} =: 52 
-+> 52 U{xRz, z:A}=:53 

-+$ [z/y]53 = 52. 

Thus we have the infinite chain 5 -+n 51 -+~ 52 -+~ 53 -+$ 52 -+~ 53 ... 
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The example demonstrates that alternating applications of the -+~- and 
-+$-rule are responsible for infinite chains. The idea to avoid such infinite 
chains is as follows. We only apply the -+$-rule to a constraint system S 
(yielding the constraint system S') if every constraint of the form x : (~ 
nRC) that is satisfied in S, i.e., nR,G,s(x) ~ n, remains satisfied in S'. 
Note that this condition is violated in the above example since S3 -+$ S2, 
nR,A,s3(x) = 2 and nR,A,s2(x) = l. 

Before we can formulate the modified -+$-rule we need the following 
definition. Let S be a constraint system. We say that the replacement of y 

by z is safe in S if for all x, R, C, n 

{xRy, y: C, xRz, z: C, x: (~n R C)} ~ S 

implies nR,C,S(X) > n. 

We reformulate the -+<-rule as follows. Let S be a constraint system. 

5*. S -+*$ [y/z]S 

if x: (~n R C) is in S, xRy, y: C, xRz, z: C are in S, 

y =I- z, nR,c,s(X) > n, 
for every u with xRu either u: C or u: NNF(-,C) is in S, 
and the replacement of y by z is safe in S. 

We will see that the additional condition ensures that there is no infinite 
chain of rule applications. 

The completion rules consist of the -+n-, -+u-, -+ choose-' -+~ - , and -+*$­
rule. The following proposition, which one can prove easily, shows that the 
completion rules are defined in an appropriate manner. 

Proposition 3.3 Let Sand S' be constraint systems. Then: 

1. If S' is obtained from S by application of the (deterministic) -+n- or 
-+~ -rule, then S is satisfiable if and only if S' is satisfiable. 

2. If S' is obtained from S by application of the (nondeterministic) -+u-, 
-+ choose-, or -+*$ -rule, then S is satisfiable if S' is satisfiable. Further­
more, if a nondeterministic rule applies to S, then it can be applied in 
such a way that it yields a constraint system S' such that S' is satisfiable 
if and only if S is satisfiable. 
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Thus we know that the completion rules are locally sound and complete. 
However, to prove the overall soundness and completeness of the calcalus it 
will not be necessary to use Proposition 3.3. 

The proof of termination of the completion rules-which is less obvious­
will employ techniques which have been developed for proving termination 
of term rewriting systems (see [Dershowitz and Manna, 1979]). 

Proposition 3.4 Let Co be a concept in negation normal form. Then there 
is no infinite chain of applications of completion rules issuing from {xo: Co}. 

A constraint system S which can be obtained from {xo: Co} by a finite 
number of applications of completion rules will be called derived system in 
the following. In order to prove the proposition, any derived system Swill 
be mapped on an element W(S) of a set Q which is equipped with a well­
founded strict partial ordering~. Since the ordering is well-founded, i.e., 
has no infinitely decreasing chains, termination will follow immediately as 
soon as one has established the following property. Whenever S' is obtained 
from the derived system S by application of a rule, one has W (S) ~ W (S'). 

The elements of the set Q wili have a rather complex structure. They are 
finite multisets of 5-tuples. Each component of the tuples is either a finite 
mUltiset of nonnegative integers (for the second, third, and fifth component) 
or a nonnegative integer (for the fi rst and fourth component). Multisets are 
like sets, but allow multiple occurrences of identical elements. For example, 
{2, 2, 2} is a multiset ~hich is distinct from the multiset {2}. A given ordering 
on a set T can be extended to form an ordering on the finite multisets over 
T. In this ordering, a finite multiset M is larger than a finite rnultiset M' 
iff M' can be obtained from M by replacing one or more elements in M by 
any finite number of elements taken from T, each of which is smaller than 
one of the replaced elements. For example, {2, 2, 2} is larger than {2} and 
{2, 2,1,1, O}. [Dershowitz and Manna, 1979] show that the induced ordering 
on finite multisets over T is well-founded if the original ordering on T is so. 

The nonnegative integer components of our 5-tuples are compared with 
respect to the usual ordering on integers, and the finite multiset components 
by the multiset ordering induced by this ordering. The whole tuples are 
ordered lexicographically from left to right, i.e., (Cl, ... ,cs) is larger than 
(c~, ... , c~) iff there exists i, 1 ~ i ~ 5, such that Cl = c~, ... , Ci-l = C~_l' and Ci 

is larger than c~. Since the orderings on the components are well-founded, the 
lexicographical ordering on the tuples is also well-founded. Finite multisets of 
these tuples are now compared with respect to the multiset ordering induced 
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by this lexicographical ordering. This is the well-founded ordering ~ on Q 
mentioned above. 

Before we can define the mapping 'lI from derived systems to elements 
of Q, we need two more definitions. For two nonnegative integers n, m 
we denote by n ~ m the asymmetrical difference between nand m, i.e., 
n ~ m := n - m if n ~ m, and n ~ m := ° if n < m. For a concept C the 
size ICI is inductively defined as 

• IAI = 1 for all primitive concepts A, 

• I-,CI = ICI, · 

• I(~ n R G)I = I(~ n R C)I = 1 + IGI, 

• IC n DI = IC U DI = ICI + IDI· 

Definition 3.5 Let S be a constraint system. Then 'lI(S) is the multiset 
which contains for each variable x occurring in S the following 5-tuple 1/Js( x): 

1. The first component of1/Js(x) is the nonnegative integer max{ICII x: 
C is in S}. 

2. The second component of 1/Js(x) is a multiset which contains, for each 

constraint x : C n D (resp. x: CUD) in S for which the --+n-rule 
(resp. --+u-rule) is applicable, the nonnegative integer IC n DI (resp . 

ICUDI)· 

3. The third component of 1/Js( x) is a multiset which contains, for each 
constraint x: (~n R C) in S , the nonnegative integer n -=- nR,c,s(X). 

4- The fourth component of 1/Js(x) is the number of all successors of x 
in S. 

5. The fifth component of 1/Js(x) is a multiset which contains, for each 
constraint x : (~ nRC) in S, the number of all R-successors y of x 
such that neither y: C nor y: NNF( -,C) is in S. 

For the constraint systems of Example 3.2 we have 

_ \lI(S) 

'lI(St) 

'lI(S2) 

'lI(S3) 

{(4,{4},0,0,0)}, 

{( 4,0, {2}, 0, {O})}, 

{(4, 0, {I}, 1, {O}), (1, 0, 0,0, 0)}, 

{(4, 0, {O}, 2, {O}), (1, 0, 0,0,0), (1,0,0,0, 0)}. 
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Thus the chain of rule applications S -+n S1 -+~ S2 -+~ S3 corresponds to 
the decreasing chain W(S) ~ w(St} ~ W(S2) ~ W(S3) in Q. However, the 
unsafe application of the -+$-rule transforms S3 into the system S2 which 
has a larger w-image. 

The following facts will be important in the termination proof. 

Lemma 3.6 

1. For any concept C we have ICI ~ INNF('C)I. 

2. For any variable y in a derived system S there exists at most one pair 
(x, R) consisting of a variable x and a role R such that xRy is a con­
straint in S. That means that y has at most one predecessor in S. 

3. Let x Ry be a constraint in the derived system S. Then we have 

max{ICII x: C is in S} > max{IDII y: D is in S}. 

Proof. The first fact can easily be proved by induction on the number of 
applications of simplification rules needed to compute the negation normal 
form. The reason why we do not always have ICI = INNF(.C) I is that a 
concept of the form .(~ 0 R C) is replaced by the usually much smaller 
concept ...L. 

To see the second fact, note that if a variable y is newly introduced, then 
it is introduced as R-successor of exactly one variable x. In addition, if two 
different variables are identified by the -+*$-rule, then they must have been 
R-successor of the same variable, and for the same role R. 

The third fact can be shown as follows. By the second fact we know that 
x is the only predecessor of y. If a new constraint y: D is imposed on y, then 
it either comes from a larger constraint on y itself (for the -+n- or -+u-rule), 
or from a larger constraint on x (for the -+choose- or -+~-rule). If y gets 
additional constraints because it replaces a variable z (in an application of 
the -+*$-rule) then y and z have been successors of the same variable x. For 
that reason, all the constraints on z have also been smaller than the maximal 
constraint on x. 0 

Proposition 3.4 is now an immediate consequence of the next lemma. 

Lemma 3.7 If S' is obtained from the derived system S by application of a 
completion rule, then W(S) ~ w(S'). 
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Proof. (1) Assume that S' is obtained from S by applying the -n-rule to 
the constraint x: enD. 
First, we consider how the tuple tPs(x) is changed. The first component 
remains the same. In the multiset of the second component, the number 
Ie n DI is removed. If e or D have conjunction or disjunction as uppermost 
symbol, then we may have to include the numbers lei or IDI, which are how­
ever smaller than the removed one. This shows that the second component 
of tPs,(x) is smaller than the second component of tPs(x). Since the tuples are 
compared with respect to the lexicographical ordering, we thus have shown 
that the whole tuple becomes smaller, independently of what happens for 
the other components. 
Now we consider a tuple 1/Js(Y) for a variable y =f x. By the definition of the 
tuples, the change in the constraints for x can only influence the tuple for y 
if x is an R-successor of y for some role R. In this case it may affect the third 
and fifth component of tPs(Y). However, by adding constraints to a successor 
of y these components may at the most become smaller in tPs'(y). 
This shows that \lI(S') can be obtained from \lI(S) by replacing some (but at 
least one) of the tuples by smaller ones. 

(2) The -u-rule can be treated in a similar way. 

(3) Assume that S' is obta,ined from S by applying the - choose-rule to 
an R-successor y of x because of the constraint x: (:S n R e). 
First, we consider how the tuple tPs(x) is changed. The first and the second 
component remain the same. By adding constraints to a successor of x the 
third component may at the most become smaller. The fourth component 
remains unchanged. The fifth component becomes smaller because y is no 
longer counted for the constraint x: (:S n R e). This shows that the whole 
tuple tPs'(x) is smaller than tPs(x). 
Now let us consider the tuple tPs(y). Since y is a successor of x, the third 
of the facts stated in Lemma 3.6 implies that the first component of tPs'(Y) 
is smaller than the first component of tPs'(x), which is the same as the first 
component of tPs( x). 
Assume that u is a variable different from x and y. A change in the con­
straints for y can only influence the tuple for u if y is a successor of u. But 
~y the second fact of Lemma 3.6, x is the only predecessor of y. 

Thus \lI(S') can be obtained from \lI(S) as follows. The tuple tPs(y) is re­
moved, and the tuple tPs(x) is replaced by two smaller tuples, namely the 
tuples tPs'(x) and tPs'(Y). 

(4) Assume that S' is obtained from S by applying the -~-rule to the 
constraint x: (~ n R e). 
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First, we consider how the tuple tPs( x) is changed. The first and .the second 
component remain the same. Since the ~~-rule introduces a new R-successor 
y of x and adds the constraint y: C, we have nR.c.s'(X) > nR.c.s(x). In 
addition, we know that n > nR.c.s(x) because otherwise the rule would 
not have been applicable. These two facts imply that n ...!... nR,G.s'(X) < n ...!... 

nR.c.s( x). If S also contains a constraint x: (~ m R C) for some nonnegative 
integer m =f n then we obviously have m ...!... nR.c.s'(x) ~ m ...!... nR.c.s(X) 
(equality holds for m ...!... nR.c.s(X) = 0). The contributions of constraints of 
the form x: (~ m R' C') for R' =f R or D =f C to the third component are 
not changed. To sum up, we have thus shown that there third component 
of tPs,(x) is smaller than the third component of tPs(x). For this reason, 
changes in the fourth and fifth component are irrelevant. 
Now let us consider the tuple tPs,(y). Since y is newly introduced, there is 
no corresponding tuple in W (S). But the first component of tPs' (y) is smaller 
than the first component of tPs(x ). 
As before, the tuples for variables u different from x and yare not changed. 
Thus W(S') can be obtained from W(S) by replacing tPs(x) by the two smaller 
tuples tPs,(x) and tPs,(y). 

(5) Finally, assume that S' is obtained from S by applying the ~.~-rule 
to the constraint x: (~ nRC), and thereby replacing the variable y by z. 
First, we consider how the tuple tPs(x) is changed. The first and the second 
component remain the same. Let us now turn to the the third component. 
Assume that Assume that one of the numbers in the multiset of the third 
component increases. That means that there exist m, R', C' such that x : 
(~ m R' C') is in S, and m ...!... nR',c',S'(x) > m ...!... nR',G',s(x). Obviously, this 
can only be the case if R = R', and y: C' and z: C' are in S. Since the 
replacement of y by z is safe, we have nR.c'.s(x) > m, and thus nR.c'.s'(x) ~ 
m. This shows that m ...!... nR,G'.s'(X) = 0 = m ...!... nR.c'.s(x), which contradicts 
our assumption. Thus we have shown that the third component also remains 
the same. Obviously, the fourth component, i.e., the number of successors of 
x, is decreased by one. 
Now let us consider the tuple tPs,(z). In S', the variable z has both its 
original constraints and the constraints y had in S. However, since y and 
z are successors of x we know that the size of each of these constraints is 
smaller than the first component of tPs(x). 
The variable y does not occur in S'. 
Finally, consider a variable u in S' which is different from x, y, z. The 
changes for y and z can only affect the tuple ·of u if u is a predecessor of y 
or z. But this would mean that u = x. 
Thus W(S') can be obtained from W(S) by removing the tuples tPs(y) and 
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'ljJS(Z) , and by replacing the tuple 'ljJs(x) by two smaller tuples 'ljJSI(X) and 
'ljJSI(Z). 0 

Thus we have shown that for every constraint system {x: C}, where C is 
a concept in negation normal form, we obtain after finitely many applications 
of completion rules a constraint system to which no completion rule applies. 

A constraint system is called complete iff no completion rule applies to it. 
A constraint system S contains a clash iff 

• {x:.l} ~ S. for some variable x, or 

• {x: A, x: -,A} ~ S for some variable x and some primitive concept A, 
or 

• {x: (:S nRC)} ~ Sand nR,c,s(X) > n for some variable x, role R, 
concept C, and nonnegative integer n. 

In the remainder of this section we assume that Co is a concept in negation 
normal form. The satisfiability of a constraint system So = {xo: Co}, and 
thus of a concept Co, can be characterized by using the completion rules and 
the notion of clash. 

Proposition 3.8 A constraint system So = {xo: Co} is satisfiable if and 
only if there exists a clash free complete constraint system which can be de­
rived from So by applying the completion rules. 

In the case of ordinary number restrictions this proposition is proved as 
follows. One shows that a complete constraint system is satisfiable if and only 
if it is clash free [Hollunder, Nutt, and Schmidt-SchauB, 1990]. The proposi­
tion is then an immediate consequence of local soundness and completeness 
and the termination of the completion rules. To see why this simple method 
cannot be used in the case of qualifying number restrictions consider the 
constraint system 

S = {x: (~ 1 R (A n B)) n (~ 1 R (B n A)) n 
(:S 1 R (A n B)) n (~ 2 R A)}. 

We can obtain the complete constraint system 

S' = S U {xRy, y: (A n B), y: A, y: B, 

xRz, z: (B n A), z: (A n B), z: A, z: B}, 
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if we first apply the -t~-rule to x: (~ 1 R (A n B)) and x: (~ 1 R (B n A)), 
and then apply the -tn-rule to y: (A n B) and z: (B n A). Note that the 
replacement of y by z and of z by y is not safe in S'. Since (::; 1 R (A n B)) 
is in S' and nR,AnB,s'(X) = 2, S' contains a clash. Nevertheless it is easy 
to see that S' is satisfiable. By using an appropriate control strategy, the 
following clash free complete constraint system 

SIt = Su{xRy, y:(AnB), y:(BnA), y:A, y:B, 

xRu, u: A, xRv, v: A} 

can be derived from S. This strategy is described in the proof of the next 
lemma, which shows one direction of Proposition 3.8. 

Lemma 3.9 If a constraint system So = {xo: Co} is satisfiable, then there 
exist constraint systems S}, S2, ... ,SI such that 

• Si+l is obtained from Si by application of a completion rule, 

• every Si is satisfiable, and 

• SI is complete and does not contain a clash. 

Proof. If So = {xo: Co} is satisfiable, then there exist an interpretation 
I and an I-assignment ao such that ao satisfies So. We use I and ao to 
guide the construction of a sequence S}, S2, ... ,SI of constraint systems which 
satisfy the requirements of the lemma. For the construction of the sequence 
we need auxiliary sets To, Tl , ... , TI which consist of tuples of the form (x, y). 
We say that an I-assignment ai satisfies Ti iff for all (x, y) E Ti we have 
ai(x) =f ai(Y)· The sets Ti will be called inequality constraints. The inital 
set To will be the empty set which obviously is satisfied by any I-assignment. 

In the first step of the construction we inductively define a sequence 
SI, S2, ... ,Sl l of constraint systems satisfied by ao as follows. Assume that 
Si (i ~ 0) is a constraint system already obtained. If the -tn-rule is applicable 
to Si, we apply it, and thus get Si+l. Obviously, ao also satisfies Si+1 since by 
induction it satisfies Si. Otherwise, assume that the -tu-rule is applicable to 
a constraint of the form Xo: Cl uC2 • Since ao satisfies Si we have ao(xo) E Cf 
or ao(xo) E Cr If ao(xo) E Cf, then we choose Si+1 := Si U {xo : Cd; 
otherwise we take Si+1 := Si U {xo: C2}. If neither -tn- nor -tu-rules apply 
to Si, then we are done with the first step, and define 11 := i. We also define 
ah := ah-l := ... := ao and Til := Tll-l := ... := To :~ 0. Obviously we 
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have for all 0 ~ i ~ It, that ai satisfies Si and Ti. In addition, Sit is obtained 
from So by applications of the -+n- and -+u-rules. 

N ow let us define the constraint system SI2 and the set T12 . For every 
pair R, C such that Xo: (~ nRC) is in Sh for some n we add 

• the constraints XORYl' ... ,xORYnR,c' Yl : C, . .. ,YnR,c : C to Sh, where 
nR,G := max{n I Xo: (~n R C) E Sit} and the Yi are new variables for 
each pair R, C, and 

The systems thus obtained are SI2 and 1/2' Obviously, SI2 can be obtained 
from Sit by finitely many applications of the -+~-rule. In fact, for every pair 
R, C such that Xo: (~ nRC) is in Si l for some n we apply the -+~-rule nR,G 
times. Each application adds the constraints xoRy and y: C where Y is a new 
variable. We still have to show that there exists an I-assignment al2 which 
satisfies SI2 and T12 . Consider a constraint Xo: (~ nR,G R C) occurring in Sil • 

Since all satisfies Sil we have all (Xo) E (~ nR,C R C)I. Thus there exist nR,G 
pairwise different d1, ... , dnR c E ~I such that (all (Xo), di ) E RI and di E CI. 
For the variables x already in Sll , we define al2 (x) := all (X). Let Yl, ... , YnR c 
be the variables introduced for the pair R, C. We define aI2 (Yi) := di . It is 
easy to see that al2 satisfies S12' Since al2 (Yi) = di =I dj = ah (Yj) for i =I j 
we conclude that al2 satisfies 1/2 ' Thus al2 satisfies SI2 and T12 . 

In the next step, the constraint system SI3 is defined as follows. For every 
pair Xo: (~ nRC), xoRy in SI2 such that neither y: C nor y: NNF( -,C) is in 
S12' we add y: C if al2 (y) E CI; otherwise we add y: NNF( -,C). Obviously, 
SI3 can be obtained from SI2 by finitely many applications of the -+ choose­

rule. We set ab := ah, and 1/3 := T12 . It is easy to see that al3 satisfies SI3 

and 1/3 ' 

Now we define a sequence SI3+1, SI3+2, . .. , SI4 such that 

• Si+l is obtained from Si by applying the -+*$-rule to a constraint of 
the form Xo: (~ nRC) occurring in Si , and 

• for every Xo: (::; nRC) in S/4 we have nR,c,sI4 (xo) ::; n. 

For the first step, suppose Xo: (~ nRC), XORYl,"" XoRYk' Yl: C, ... , Yk: C 
are in Sb where k > n. Since al3 satisfies Sb there exist Yi and Yj, i =I j 
such that ab(yd = aI3(Yj). We replace Yi by Yj, i.e., Sb+l := [y;JYj]SI3' 
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Furthermore, we set a13+! := al3 and T13+! := [YdYj]Th , i.e., 113+! is obtained 
from 113 by replacing each occurrence of Y; by Yj. We now prove the following 
facts: 

1. a13+! satisfies SI3+!. 
We know that ah satisfies S13 ' and al3 (y;) = ala (y j ). Thus ala + 1 satisfies 

S13+1 = [ydYj]SI3' 

2. ah+! satisfies 113+1' 

Suppose (y;,u) or (U,Yi) is in TI3 for some u. Since aI3(Yj) = aI3(Yi) 1-
aI3(u) we have aI3(Yj) 1- aI3(u). Thus a13+! satisfies 113+1' 

3. For every constraint Xo : (~ nRC) occurring in S13+1 there exist 
variables UI," . , Un such that xoRuI, . .. , xoRun, U1 : C, ... , Un: Care 
in Sid!' and (Ui , Uj) is in T13+1 for 1 ::; i,j ::; n, i 1- j. 
By construction of Sla we know that for every Xo: (~ nRC) in SI3 there 
exist variables ZI, . .. , Zn such that xoRzI, . .. , XORzn, Zl : C, ... , Zn : C 
are in S13, and (z;, Zj) is in TI3 for 1 ::; i,j ::; n, i 1- j. If (y;, z) E TI3 or 
(z, yJ E 113 for some z, then we have (Yj, z) E Th+1 or (z, Yj) E 113+1' 
If in addition XoRYi E TiJ and Yi : C E lIa' then xoRYj E T/a+1 and 
Yj: C E 1Ia+1' Thus 5 1a+1 contains for every Xo: (~ nRC) at least n 
variables U1, ... , Un such that 

Since we have already seen that a/a+! satisfies T/3+I, the variables 
U1, . .. , Un are pairwise distinct. 

4. The replacement of Yi by Yj is safe in S/3' This shows that S/d1 is 
really obtained by the ---t.$-rule from S/3' 
Suppose the replacement of Yi by Y j is not safe in S/3' Then there 
exists Xo: (~ m R D) in S/3 such that nR,D,SI3 (xo) = m, and XoRYi, 
xoRYj, XORZ3, ... ,xoRzm,Yi: D,yj: D,Z3: D,,,,,zm: D are in S/3' By 
construction of S/3 we know that (Yi, Yj) E 113, Thus ala (Yi) 1- al3 (Yj) 
which contradicts to ala (Yi) = ala (Yj)· 

We can now continue this process with Sh+1 in place of Sia until we obtain 
a constraint system-which is called Sl4 -such that for every Xo: (::; nRC) 
occurring in it we have nR,G,sI4 (xo) ::; n. By induction one can proof that the 
four properties hold for every i, 13 ::; i ::; 14 , Since Sia contains only finitely 
many variables we obt ain after finitely many applications of the ---t.<-rule 
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a constraint system SI. such that the -+*~-rule does not apply to Xo : (::; 
nRC) in SI •. Note that nR,G,s,. (xo) ::; n for every Xo: (::; nRC) in SI •. 
Furthermore, it is easy to see that the -+n-, -+u-, -+;::-, and -+choose-rules do 
not apply to constraints which contain the variable Xo. 

This shows that all constraints imposed on Xo are explicitly present in SI •. 

We can now apply the strategy of rule applications as performed for the 
variable Xo to all successors of Xo, then to all successors of these successors, 
and so on. With Proposition 3.4 we know that after finitely many applications 
of the completion rules a complete constraint system SI is obtained. Since 
SI is satisfiable, it does not contain constraints of the form x: 1.. or x : A, 
x: --,A. Furthermore, we know that for every x: (:S nRC) in SI we have 
nR,C,S, (x) ::; n by construction of the sequence So, S1, . .. ,SI. Thus SI is clash 
free. 0 

Now we show the other direction of Proposition 3.8. 

Lemma 3.10 If there exists a clash free complete constraint system issuing 
from So = {xo: Co} I then So is satisfiable. 

Proof. We first show that a clash free complete constraint system S is 
satisfiable. To prove this claim we construct an interpretation I and an 
I-assignment a which satisfies S as follows. The domain /:lI of I consists 
of all variables occurring in S. For all primitive concepts A different from 
T and 1.. we define AI := {x I x : A E S}, and for all roles R we define 
RI := {(x, y) I xRy E S}. The I-assignment a is defined by mapping 
variables to themselves, i.e. a(x) := x. We now prove that a satisfies every 
constraint s in S. If s has the form xRy, then a satisfies xRy by definition 
of I and a. If s has the form x: C, we show by induction on the structure of 
C that a(x) E CI. 

Base case: If C is a primitive concept different from T and 1.., then 
a(x) E AI by definition of I and a. If C = T, then obviously a(x) E TI. 
Since S is clash free we have C =f 1... 

Induction step: If C = --,A for a primitive concept A, the constraint x: A 
is not in S since S is clash free. Then a( x) ¢ AI and a( x) E /:l I \ AI. Hence 
a(x) E (--,A)I. 

If C = C1 n C2 , then the constraints x : C1 and x: C2 are in S since 
S is complete. By the induction hypothesis we know that a(x) E Cf and 
a(x) E Cf, which implies a(x) E Cf n Cf, and hence a(x) E (C1 n C2 )I. 
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Similarly, it can be shown that constraints of the form x: C1 U C2 are satisfied 
by I and a. 

Suppose C = (~ n R D).. Since the -+choose-rule is not applicable to S, 
for every y with xRy either y: D or y: NNF( .D) is in S. By the induction 
hypothesis we know that a(y) E DI if y : D is in S, or a(y) E (.D f if 
y: NNF( .D) is in S. Since ..... S is complete and does not contain a clash, we 
have nR,D,s(X) ~ n. Hence a(x) E (~ n R D)I. Similarly, it can be shown 
that constraints of the form x : (~ n R D) are satisfied by I and a. 

Thus we have shown that every clash free complete constraint system 
is satisfiable. To complete the proof of the lemma let S be a clash free 
complete constraint system issuing from So = {xo: Co} by applications of the 
completion rules. With the above observation we know that S is satisfiable. 
Since So ~ S we also know that So is satisfiable. 0 

Now we can formulate and prove the main result of this section. 

Theorem 3.11 Satisfiab ility and subsumption of concepts are decidable. 

Proof. We obtain a decision procedure for the satisfiability problem of 
concepts as follows. Let C be a concept. First we transform C into its 
negation normal form Co, which can be done in linear time. Then we generate 
the finitely many complete constraint systems issuing from {xo: Co}. If one 

of these constraint systems is clash free, then Co (and hence C) is satisfiable 
(Lemma 3.10); otherwise C is not satisfiable (Lemma 3.9). 

Since our concept language allows negation of concepts the subsumption 
problem can be reduced to the satisfiability problem. 0 

Our concept language generalizes the concept language A£C III which 
deciding satisfiability and subsumption of concepts are PSPACE-complete 
problems [Schmidt-SchauB and Smolka, 1988]. Thus we have 

Proposition 3.12 Satisfiability and subsumption of concepts are PSPACE­
hard problems. 

4 Implementation 

The algorithm for deciding satisfiability of concepts given in the previous sec­
tion has the nice property that soundness and completeness can be proved 
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in a relatively simple manner. However, the rule-based algorithm as de­
scribed is not convenient for implementation purposes. The reasons will 
be discussed in the first part of this section. One can obtain an algorithm 
which is more suitable for an actual implementation by imposing an appro­
priate control on the applications of completion rules. Based on the idea of 
[Schmidt-SchauB and Smolka, 1988] who gave an optimized algorithm for the 
language ACC we will present in the second part of this section an optimized 
algorithm for our language. 

The following considerations show how the above presented algorithm 
may be optimized. 

(1) Contradictions may occur early in the completion process. If a con­
straint system S contains clashes of the form {x: .l} or {x: A, x: -,A}, then 
every complete constraint system extending S also contains a clash. Thus, 
the completion process can be stopped since S is not satisfiable. 

(2) In general, constraint systems contain redundant constraints. For 
example, suppose that a constraint system S contains x: enD. If x: C and 
x: D are also in S, then obviously no completion rule will apply to x: C n D 
in the further completion process. Hence it is not necessary to keep x: C n D 
in S if x : C and x : D are in S. Similar arguments hold for x : CUD. 
Constraints of the form x: (~ nRC) or x: (::; nRC) can be removed from 
S under the following circumstances: 

• No constraints having the form x: C n D or x: CuD are in S . 

• The --+choose-, --+~-, and --+ .. S;-rules do not apply to x: (~ nRC) or 
x: (::; nRC). That means, every successor of x in the final complete 
system is already contained in S. 

Both conditions guarantee that all constraints which are implicitly imposed 
on x by the system S are already explicitly present in S. Since all variables 
which are introduced in the further completion process are new and hence 
different from x, we will not get new unsatisfied constraints on x later on. 

(3) Only small portions of a constraint system need to be kept in memory 
at a time. The idea for this comes from the following observation. Suppose 
x is a variable in S and no completion rule applies to constraints of the form 
x: C. Consequently, there will be no more replacements between successors 
of x. Suppose y and z are different successors of x. Since neither y will be 
replaced by z nor z will be replaced by y in the further completion process , 
there does not exist a variable u in the final constraint system such that u 
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can be reached both from y and z by role chains. This means that we can 
inspect the constraints which will be introduced by restrictions imposed on 
y independently from those introduced by restrictions imposed on z without 
loosing possible clashes. This is so because clashes are defined w.r.t. a single 
variable. 

(4) To detect clashes of the form x: (~ nRC) in S, where nR,c,s(X) > n, 
we have to consider only the R-successors of x. Thus an actual implementa­
tion may store for a variable x only its R-successors at a time. Furthermore, 
there is no need for explicitly storing constraints of the form xRy. 

Taking these optimizations into account we will formulate a functional al­
gorithm that decides the satisfiability of concepts. This algorithm is obtained 
from our rule-based calculus by imposing some control on the application of 
the completion rules. 

The algorithm described in Figure 1 uses the functions or and find. We 
assume that the binary function or behaves as the LISP-or, i.e., the second 
argument is evaluated if and only if the first argument does not evaluate to 
true. Let L be a list and let f be a function. The call find I in L such 
that f( I) iteratively takes an element I of L until the function f applied to I 
evaluates to true. In this case find immediately returns true. Otherwise, if 
there does no exist an element I in L such that f applied to I evaluates to 
true, find returns false. 

Let C be a concept in negation normal form. Suppose the function satisfi­
able in Figure 1 is called with arguments x and S = {x: C}. Then satisfiable 
proceeds as follows. First, it checks whether S contains a clash. This check 
is restricted to constraints containing the variable x. If S is clash free, the 
-+n- and -+u-rules are applied until all constraints of the form x: C n D or 
x : CUD are decomposed. If no at-least restriction is imposed on x, i.e., 
there is no constraint x : (~ nRC) with n > 0 in S, we are done, and 
satisfiable returns true. (Note that in this case every at-most restriction im­
posed on x is trivially satisfied since we have not yet introduced successors 
of x.) Otherwise we generate for every role R which occurs in a constraint 
x : (~ nRC) with n > 0 R-successors for x. This is done by the call 
generate-successors(x, R, S). Note that successors of x which are related by 
different roles to x can be inspected independently from each other without 
loosing possible clashes. 

Suppose that generate-successors is called with arguments x, R, and S. 
Then R-successors for the variable x are generated, which will be constrained 
according to the constraints imposed on x. The functions satisfiable and 
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satisfiable(x,5) = 

if {x:.l} ~ 5 or {x: A,x: ...,A} ~ 5 for some primitive concept A 
then false 

elsif x: C n D E 5 and (x: C rt 5 or x: D rt 5) 
then satisfiable(x, 5 U {x: C, x: D} \ {x: C n D}) 

elsif x: CuD E S and x: C rt S and x: D rt S 
then satisfiable(x, 5 U {x: C} \ {x: CUD}) or 

satisfiable( x, 5 U {x: D} \ {x: CUD}) 

else let R = {R I x: (2: nRC) E 5 for n > O} 
for all R E R do: 

generate-successors( x, R, 5) 

generate-successors( x, R, 5) = 
ifx: (::; nRC) E 5, I{z I z is a variable in 5,z =f x}1 > n, 

y: C rt 5, y: NNF(...,C) rt 5, and x =f y 
then if n = 0 

then generate-successors(x, R, 5 U {y: NNF( ...,C)}) 
else generate-successors(x, R, 5 U {y: C}) or 

generate-successors(x, R, 5 U {y: NNF( ...,C)}) 

elsifx: (2: nRC) E 5, I{z I z:C E 5,z =f x}1 = m and m < n 
then let Ym+l, . .. , Yn new variables: 

generate-successors(x, R, 5 U {Ym+1: C, . .. ,Yn: C}) 
elsifx: (::; nRC) E 5, I{z I z: C E 5,z =f x}1 > n 

then let L be a list of all pairs (y, z) such that 

y: C E 5, z: C E 5, y =f x, z =f x, y =f z, and 
the replacement of y by z is safe in 5 

find (y,z) in L such that: 
generate-successors(x, R, [y / z]5) 

elsifx: (::; nRC) E 5 and I{z I z: C E 5,z =f x}1 > n 
then false 
else for all variables y =f x in 5: 

satisfiable(y, {y: C I y: C E 5}) 

Figure 1: A functional algorithm which decides satisfiability of concepts. 
The call satisfiabi,e(x, {x: C}) returns true if and only if the concept C in 
negation normal form is satisfiable. 
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generate-successors are defined in such a way that every variable · occurring 
in S which is not equal to x is an R-successor of x. Suppose x: (~ nRC) 
is in S. If the number of R-successors of x is not greater than n, then 
x : (~ nRC) is obviously satisfied in S. Thus, it is checked whether 
1 {z 1 z is a variable in S, z =f x} 1 (i.e., the number of R-successors of x) is 
greater than n. If this is the case, it is tested whether every R-successor of 
x is either in C or in NNF( .C). Suppose y is a variable in S not equal to 
x. Thus y is an R-successor of x. Suppose further that neither y: C nor 
y: NNF( .C) is in S. If x : (~ 0 R C) is in S, we add y: NNF( .C) to S. 
Obviously, adding y: C to S would lead to a clash. Otherwise, if n > 0, we 
cannot exclude one of the two possibilities. We only know that y is either in 
C or in .C. This nondeterminism is solved by generating two recursive calls 
of generate-successors covering both cases. 

Next it is checked whether the --+~-rule is applicable to S. We therefore 
have to consider the R-successors of x which are in C. Since every variable 
in S which is not equal to x is an R-successor of x, we compute the number 
1 {z 1 z: C E S, z =f x} I. If this number is not less than the number n in 
x: (~ nRC), we are done since x has enough R-successors which are in C. 
Otherwise, constraints of the form Yi : C are added to S, where Yi is a new 
variable.! 

Now assume that every constraint of the form x: (~ nRC) is satisfied. 
Thus all possible R-successors of x are already in S. Next we consider con­
straints of the form x: (~ nRC). If there are too many R-successors for x 
which are in C, we reduce them by replacing a variable by another one. Safe 
replacements of variables guarantee that every at-least restriction imposed 
on x remains satisfied. Obviously, we are confronted with another nondeter­
minism since we do not know which replacements may lead to a clash free 
complete constraint system. Thus all possibilities are tested (in the worst 
case) with the use of find. 

Now assume that no more safe replacements are possible in S. Obviously, 
we have now reached a configuration where the --+n-, --+u-, --+ choose-' --+~-, 
and --+*~-rule are not applicable to constraints containing the variable x. We 
now have to check whether an at-most constraint imposed on x is violated. 
If x: (~ nRC) E Sand 1 {z 1 z: C E S, z =f x} 1 > n, then there are too 

1 At this point one could further optimize the algorithm. Suppose x : (~ nl R C1), 

... , x : (~ nl R CI ) are all the at-least constraints imposed on x . If there is no at-most 
constraint imposed on x, or if each number occurring in an at-most constraint imposed 
on x is not less than nl + ... + nl, there is no need to really introduce ni R-successors of 
x which are in Ci for a constraint x : (~ ni R Ci) . In this case it is sufficient to generate 
exactly one R-successor as specimen. 
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many R-successors of x in C, and hence S contains a clash. Otherwise S is 
clash free w.r.t. x and our algorithm proceeds with inspecting the constraints 
imposed on the R-successors of x. Thus generate-successors calls, for every 
R-successor y of x, the function satisfiable with arguments y and Sf, where 
Sf contains all the constraints imposed on y. 

Theorem 4.1 A concept C in negation normal form is satisfiable if and only 
if the call satisfiable(x, {x: C}) returns true. 

The complexity of satisfiable strongly depends on how the numbers oc­
curring in at-least restrictions are coded. If we assume that these numbers 
are written in the decimal system as usual, the function may need space 
which is exponential in the size of the input concept for the following rea­
son. Given a constraint x : (~ nRC) the function adds the constraints 
Yl: C, . .. ,Yn: C, which obviously needs exponential space in the size of the 
decimal representation of n. However, if we assume that the numbers are 
coded unary, i.e., a number n is represented by a string of the length n, then 
we strongly conjecture that satisfiable needs only polynomial space in the 
size of the input concept. 

5 Remarks on the Complexity of Qualifying 
Number Restrictions 

In this section we will first show that already some very small concepts of the 
presented language may cause long computations of the function satisfiable. 
Then we will discuss under which circumstances qualifying number restric­
tions behave better with respect to the computation time, and may thus be 
used in applications. 

Since the satisfiability problem in our language is PSPACE-hard, one may 
ask whether a concept language providirg qualifying number restrictions can 
be used in applications. To discuss this question let us reconsider why the 
satisfiability (and hence the subsumption) problem in the presented language 
has such a high complexity. 

To decide whether a concept C is satisfiable our algorithm starts with 
the constraint system S = {x: C} and computes (in the worst case) all 
complete constraint systems issuing from S using the completion rules. One 
can distinguish two forms of complexities: 
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• Complete constraint systems issuing from S may contain exponentially 
many constraints. In this case, the computation of such complete con­
straint systems needs exponential time w.r.t. the size of C. 

• There may be exponentially many different complete constraint systems 
issuing from S. 

In [Donini et al., 1991a] it has been pointed out that both forms of complex­
ity are present in the concept language ACC. Intuitively, one can say that 
the first form of complexity is responsible for NP-hardness and the second 
form for co-NP-hardness of the subsumption problem; if both forms come 
together they cause PSPACE-hardness. Though the satisfiability problem 
in ACC is PSPACE-complete, experience with an implemented system (see 
[Baader and Hollunder, 1990]) has revealed the following result. If an ACC­
concept which should be checked for satisfiability is not very long (i.e., if it 
contains less than 20 to 30 symbols of the form n, U, :3, or V), the imple­
mented algorithm for checking sat isfiability is rather fast. 2 

In spite of the fact that ACC and our language are similar w.r.t. worst 
case complexity, our language does not show the nice behaviour of ACC for 
small concepts. It turns out that there exist concepts containing only a few 
symbols of the form n, ~, or ~, and small numbers for which the function 
satisfiable already needs a rather long time for computation. The reason for 
this difference seems to be that the second of the above mentioned sources 

of complexity has more influence for our language. This comes from the 
presence of the highly nondeterministic - choose- and -*~-rules. In contrast 
to constraints of the form x: CUD, where an application of the nondeter­
ministic -u-rule produces exactly two alternatives, constraints containing 
at-most restrictions in general are responsible for a lot more alternatives. 

Example 5.1 Suppose that satisfiable(x, {x: C}) is called with the concept 

C = (~2 R (A n B)) n (~ 2 R (A n C)) n 
(~ 2 R A) n (~ 2 R B) n (~ 2 R C). 

After applying the -n-rule the function generate-successors is called with 
arguments x, R, and 

S = {x: ( ~2 R (AnB)),x: (~2 R (AnC)), 

x: ( ~2 R A),x: (~2 R B),x: (~2 R C)}. 

2It is however not yet clear how the algorithm behaves for longer concepts which may 
occur in practical applications. 
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Then the constraints Yl: (AnB), Y2: (AnB), and Y3: (AnC), Y4: (AnC) are 
added to S to satisfy the at-least restrictions. Afterwards generate-successors 
checks whether the at-most restrictions imposed on x can be satisfied. Thus, 
by application of the -+ choose-rule for each Yi, 1 ~ i ~ 4, Yi: A or Yi: -.A, 
Yi: B or Yi: -.B, and Yi: C or Yi: -.C are added. Obviously, since there are 
4 such successors of x, 84 = 4096 alternatives are tested (in the worst case) 
in order to find a clash free complete constraint system. 
Applications of the -+*:::;-rule create additional alternatives. Assume that 
for each i, 1 ~ i ~ 4, Yi : A is added by the -+choose-rule. Since there 
are 4 successors of x in the concept A, generate-successors has to replace 2 

variables to satisfy x: (~ 2 R A). In this case there are ( ~ ) * ( ~ ) = 6 * 3 

possible replacements, which however need not all be safe. 
Note that the overall number of alternatives caused by applications of the 
-+ choose- and -+*:::;-rule is determined by the number of R-successors of x 
(which depends on the at-least restrictions imposed on x), the number of 
at-most restrictions imposed on x, and the numbers occurring in the at-most 
restrictions. 

This example demonstrates that-in contrast to concepts of the ACC­
language-already small concepts containing qualifying number restrictions 
cause intractable problems. This fact is not necessarily an argument in favour 
of excluding qualifying number restrictions from concept languages. If it 
turns out that in applications subsumption relations can often be computed 
fast with the presented algorithm, this algorithm should be employed. Nev­
ertheless, one cannot simply rely on the fact that the input concepts are 
"well-behaved" . 

To avoid long computations we propose the following modification of the 
functions satisfiable and generate-successors given in the previous section. 
The idea is to precompute the number of alternatives which have to be in­
spected in the worst case in order to find a clash free complete constraint 
system. The number of alternatives caused by applications of the -+ choose­
and -+*:::;-rule to a variable can be estimated as demonstrated in Example 
5.1. If there are too many such alternatives, then satisfiable stops the com­
putation and returns fail. Otherwise, satisfiable proceeds as described in the 
previous section. 

Thus the modified algorithm behaves as follows. If it is confronted with 
concepts where only few alternatives have to be inspected, then it behaves 
similarly to the algorithm for ACC. In this case it hopefully returns the 
correct answer in short time. Otherwise, if there arise too many alternatives 
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in the computation, then it would probably take a long time to compute the 
correct answer. In this case the algorithm stops and returns fail. 

Using such a modified algorithm instead of an incomplete algorithm-as 
used in almost all implemented KL-ONE systems-has the following advan­
tage. If a fast but incomplete algorithm cannot detect a subsumption relation 
between two concepts, we do not know anything. A subsumption relation 
mayor may not exist. Consequently, we do not really know whether there 
is no subsumption relation between concepts, or whether the computation of 
this relationship would just take too long. 

On the other hand, assume that we have a subsumption algorithm as 
proposed above. If the algorithm returns yes (no), then we really know 
that there exists (does not exist) a subsumption relation. That means, both 
positive and negative answers are correct. Otherwise the algorithm returns 
the answer fail. However, in this case the computation of the correct answer 
is a hard problem, and hence fast incomplete algorithms would probably fail 
too. 

Summing up, we have argued -that one may use qualifying number re­
strictions although the satisfiability and subsumption problem in a concept 
language providing these constructs is rather hard from a computational 
point of view. The proposed method uses a sound and complete algorithm 
which in advance recognizes concepts probably causing long computations. 
In this case fail is returned. However, if the algorithm returns yes or no, then 
we know that this answer is correct. 

6 Conclusion 

The present paper is a contribution to clarifying the subsumption problem 
in concept languages. A sound and complete satisfiability and hence sub­
sumption algorithm has been presented for a language providing qualifying 
number restrictions. We have seen that qualifying number restrictions are 
very expressive language constructs; they generalize role quantifications and 
ordinary number restrictions. Nevertheless, the presented algorithm has a 
very simple structure. In the following we will discuss the methodology for 
devising subsumption algorithms for concept languages which led to this al­
gorithm. 

The completion technique as used in the present paper was first described 
in [Schmidt-SchauB and Smolka, 1988] for devising a subsumption algorithm 
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for the language ACe, and then extended to other concept languages (see 
e.g. [Hollunder, Nutt, and Schmidt-SchauB, 1990, Donini et al., 1991b]). 
The ideas underlying these algorithms are as follows. Since the subsumption 
problem can be reduced to the satisfiability problem3

, it is sufficient to devise 
algorithms which check satisfiability of concepts, i.e., which check whether 
a given concept denotes a nonempty set in some interpretation. If C is a 
concept which should be checked for satisfiability, the algorithms start with 
the constraint system {x: C}. Then constraints are added by applications 
of completion rules until either a contradiction occurs, or an interpretation 
I such that CT is nonempty can be immediately obtained from the actual 
constraint system. 

Each language construct gives rise to a particular completion rule. In 
general, it is relatively easy to determine for a given language construct a 
"corresponding" completion rule. This rule should satisfy two properties. On 
the one hand, it should be sound, i.e., it should satisfy one of the two proper­
ties stated in Proposition 3.3, depending on whether it is a deterministic or 
nondeterministic rule. On the other hand, it should be complete, i.e., if it is 
no longer applicable, the constraints containing the construct as uppermost 
operator should be "satisfied". 

Now suppose that for each language construct of the concept language 
we have a "corresponding" sound and complete rule. We have seen that 
a concept C is not satisfiable if and only if every complete constraint sys­
tem (i.e., a constraint system such that no completion rule is applicable) 
issuing from {x : C} contains a clash4

• Thus, to get a decision procedure 
for the satisfiability problem one has to guarantee that there is no infinite 
chain of applications of completion rules issuing from {x: C}. In general, 
it is more complicated to prove termination of the completion rules than to 
prove soundness and completeness of these rules (see Section 3). In fact, it 
would be relatively easy to generate sound and complete rules for constructs 
which cause undecidability such as role value maps [Schmidt-SchauB, 1989] . 
However, it is clear that in this case termination cannot be guaranteed in 
general. 

For implementation purposes one should not be content with the rule­
based algorithm obtained by applying this methodology. Practical experience 
has shown that- for the sake of efficiency~it is important to impose an 

3Recall that C subsumes D if and only if -,C n D is not satisfiable . In 
[Donini et al., 1991a] it is shown how the reduction works if negation of concepts is not 
available in the conc~pt language . 

4Recall that clashes are obvious contradictions in constraint systems such as x : A, 
x : -,A or x: .i. 
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appropriate control on the rule applications. In the best case one may obtain 
a functional algorithm as demonstrated in Section 4. 

We have pointed out th~t deciding satisfiability in our language has a 
high complexity. To avoid long computations we have modified a sound and 
complete satisfiability algorithm such that concepts probably causing long 
computations are recognized. In this case fail is returned. Otherwise, if the 
algorithm returns yes or no, then we know that-in both cases-this answer 
is correct. 

Concept languages are used in KL-ONE systems to represent terminologi­
cal knowledge. However, almost all of these systems have, in addition to the 
terminological component ("T -Box"), an assertional component ("A-Box") 
which allows to describe knowledge concerning particular individuals. To rea­
son with both the T-Box and A-Box one may need algorithms for inferences 
such as consistency checking of the represented knowledge and "realization". 
It has been demonstrated in [Hollunder, 1990] that the completion technique 
can also be used to devise sound and complete algorithms for these inferences. 
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