along the film owing to different concentrations of vapor in the vicinity of the film's surface. The transport of solvent vapor away from the film in the gas phase controls this factor.

OBSERVATIONS AND CONCLUSIONS

Aggregated soils produce highly porous films that are typically twice as thick as those derived from stable soils. During their formation, we have observed a slowly collapsing area near the drying front. This extended sponge-like region is probably the result of small capillary forces in the large pores created between the large aggregates. It is also likely that these silica aggregates are stiff structures that do not yield readily to the pressures generated by the final capillary collapse of the film.

We have described here a method of imaging through an ellipsometer that can be used to study drying films. The method might be applied, with a little imagination, to unsteady films, as well. Our preliminary analysis of the thickness profile of a drying film implies that curvature or van der Waals effects are significant.

3. L.E. Scriven, this volume.
11. H.L. Tardy, personal communication. For further information, contact Dr. Tardy at Sandia National Laboratories, Albuquerque, NM 87125.

FILM PREPARATION BY INORGANIC-ORGANIC SOL-GEL SYNTHESIS

H. SCHMIDT, G. RINN, R. NA€, AND D. SPORN
Fraunhofer-Institut für Silicateforschung, Neuenplatz 2,
D-8700 Würzburg, Federal Republic of Germany

ABSTRACT

Film formation by sol-gel techniques is an advantageous method to obtain inorganic coatings. The sol-gel process allows the preparation of prepolymers with suitable viscosity to be used for various coating techniques like dipping, spraying and spin-on coating. The main disadvantage is the shrinkage of the gel layer during drying or sintering which leads to cracks with layer thicknesses more than some micrometers.

The introduction of organics, causing a decrease of the network connectivity and increasing relaxation ability can help to overcome densification problems. Moreover, in some cases, hardness or abrasion resistance are not too much affected by organics. In these cases, the organics can be left within the inorganic network. The possibilities of inorganic-organic processing techniques will be discussed and examples for film formations will be given.

INTRODUCTION AND GENERAL ASPECTS

Coatings are important for many technical applications. Numerous substrates show surface qualities which have to be improved by coatings for many reasons. Examples are anti- corrosive coatings, mainly applied on metals like steel or aluminum but also on chemically less durable glasses, and decorative coatings which are used on all type of substrates and which play an important role in the daily life. Other coatings are used to add special functions to the substrate: improvement of hardness of soft materials, optical functions like reduction or increase of reflectivity, electrochromic effects, light absorption (filters), sensitive coatings, heat insulation and others.

To apply a coating, some basic requirements have to be fulfilled. The adhesion to the surface has to be high enough for the desired application. The adhesion depends on the interaction between the coating and the substrate along the boundary layer and can be reduced by shear stresses e.g. due to a mismatch of thermal expansion coefficients or mechanical loads (bending). The intensity of the shear stresses depend on the moduli of elasticity of the substrate and the coating. Elastic coatings develop lower shear stresses than brittle ones. Therefore, with inorganic coatings (glasses or ceramics), especially with increasing thicknesses, a has to be adjusted very thoroughly to the substrate.

Common coating techniques are vapor deposition methods (e.g. CVD or PVD), liquid coating and laminating techniques (e.g. laminating thin sheets on top of solid substrates). Liquid phase techniques are characterized by the fact that, with a few exceptions, solutions, emulsions or dispersions are used including solvents. Since the solvent has to be removed, a shrinkage takes place. The solid content of lacquers based on organic polymers is in the range of about 20 to 30 wt.-%, high
solid systems may have solid contents of about 50 to 70%. Shrinkage, in general, is not a problem with organic polymers, due to the possibility of adjusting their relaxation behaviour very easily to the requirements of application. If the polymers are only weakly crosslinked, the chain mobility is high enough to follow the volume reduction caused by evaporating of solvents (figure 1).

![Figure 1. Shrinkage of a solvent containing polymer film.](image)

Figure 1. Shrinkage of a solvent containing polymer film.

Liquid coating techniques are widely used in practice and are the most important method for coatings including organic polymers. The most common methods are spraying, dipping, electrophoresis, and spin-on techniques. Powder coating is a variation where a liquid phase (mainly solvent-free) is applied after coating to obtain a closed film on the substrate.

For coatings based on inorganic materials, deposition techniques can be preferably used for thin films. Thicker films require long deposition times, therefore the practical use is limited. Vacuum deposited films, in general, very often show distinct microstructures with pinholes and high performance optical coatings are difficult to obtain in some cases.

SOL-GEL COATINGS

Sol-gel coatings generally have to be applied from a liquid phase (with a few exceptions, e. g. "pyrosole" deposited on hot substrates). There are numerous publications concerning the preparation of sols for coatings [1-7]. The important step is to control the degree of polymerisation in a way that suitable viscosities can be obtained. For film formation, viscosity and surface tension are important parameters which control thickness and surface quality of the film. Sakka has shown that with SiO₂ sol [8] it is possible to obtain mainly linear prepolymers suitable for fiber drawing. More difficulties exist with other systems like TiO₂, Al₂O₃ or IrO₂.

For coatings, it does not seem to be absolutely necessary to prepare chains like prepolymers. Colloidal gel structures basically should exhibit reasonable coating properties, too. Only with increasing particle size, problems with gel density can appear. Of more importance are the solid contents of the coating system and the densification mechanism of the film (figure 2).

Figure 2. Densification behavior of two different gels (monolithic with a highly crosslinked polymeric network and colloidal; viscous sintering is assumed).

Figures 3a and 3b show monozized SiO₂ powders, synthesized by the sol-gel process in our lab, at room temperature and heat-treated at 1200 °C for several minutes and the effect of temperature treatment.

The film layer (thickness 2 - 3 μm) does not crack during drying at room temperature but cracks during sintering at higher temperatures. Since the shrinkage of the micropellets between room temperature and 1200 °C is extremely low, one can conclude that the solid content of the gel particles is very high after synthesis. The pellets exhibit a very low specific surface area, which is in the range of the geometric surface area of the balls [9].

This system shows a good drying behavior (crackfree drying) which might be due to the low interaction forces between the pellet surfaces. In the wet stage, they seem to be able to
move into a dense packing of spheres. This low interaction between the particles might be either due to absorbed species on the surface (e.g., organic solvent) or due to unhydrolysed organic radicals (HSiOR). On the other hand, the interfacial tension, caused by the interfacial angle between the pore liquid (e.g., water) and the pore walls, prevents the desaggregation of the balls during drying. The "relaxation" of the system is obtained by the mobility of the pellets. Thus, the mechanical strength of the layer cannot be exceeded during the drying process. In the case of a worse relaxation behavior, interfacial tensions may be able to lead to cracks, as shown by [10].

The capillary pressure \(p \) depends on the surface tension \(\gamma \) and the pore diameter (figure 4).

\[
\begin{align*}
\sigma_z & = \frac{2}{r} (\gamma_{s,l} + \gamma_{g,l}) = \frac{2\gamma}{r} \\
\sigma_r & = \frac{2}{r} (\gamma_{s,g} + \gamma_{g,l} - \gamma_{s,l}) = \frac{2\gamma}{r}
\end{align*}
\]

\(s \) defines the height to which a liquid can rise against gravity,

\[
\varepsilon = \frac{2}{r} \gamma_{s,l} \sin \theta; \quad \rho = \frac{2\gamma}{r}
\]

\(\sigma_z \) causes local tensions in the form of a ring around a pore (figure 5) and tries to narrow the pore. As long as the material can follow the tension, a plastic deformation and crackfree shrinking can take place. Since, in general, in gels neither pore shape nor pore diameters are constant, a tension zone will be formed during the drying process moving slowly through the material (figure 6).

\(s \) = solid, \(l \) = liquid, \(g \) = gaseous, \(r \) = radius of the pore

Figure 4. Capillary forces in pores.

Figure 5. Effect of interfacial tensions on pore deformation.

Figure 6. Development of a tension zone during drying.

The tension depends on the pore radius and the interaction between the liquid and the pore wall. For a glass surface (good wetting, contact angle \(10^\circ \)) and an assumed pore radius \(r = 5 \times 10^{-4} \) m, \(\rho = 5.05 \) MPa. For \(r = 10^{-3} \) m, \(\rho = 2.57 \) MPa.

In comparison to that the practical strength of glass is in the range of 50 to 150 MPa. A SiO gel with Si-O-Si bonds and a porosity of 90 \% in analogy to practical glass strengths should exhibit a "practical" strength in the range of 5 to 15 MPa. That means, capillary forces should be able to cause cracks at.
weak points of the gel, if relaxation cannot reduce the tensi-
ons.
This consideration is basically valid for films, too, since the
substrate plays the role of the wet unshrinked center of a
monolith (figure 7).

Figure 7. Comparison of a film and a monolith during drying.

If relaxation or strength are high enough, monolithic gels
may be prepared. In the case of the "monolithic" film, an addi-
tional prerequisite appears: The tension acts along the sur-
face, whereas the densification has to go perpendicular to it.
That means, that the material has to undergo a unidirectional
shrinking process and one has to look for mechanisms to increase
the plastic deformation behavior of gels in order get perfect
layers, especially, if thicker layers are required. Means are:
- to reduce interaction between gel particles
- to reduce the network connectivity in order to reduce the
three-dimensional crosslinking
- to establish high temperature densification mechanisms
which allow plastic deformation (e.g. viscous flow).

ORGANIC PROCESSING

As indicated above, plastic deformation should be able to
enhance the film formation ability of a system. The addition of
organic "thinner" to an inorganic network does not necessarily
decrease viscosity, but if this leads to a reduction of covalent
or other bonds, plasticity can be increased. Two basically dif-
f erent paths are possible: to block a reaction site of an inor-
ganic unit by reaction (e.g. adsorption) with an organic mole-
cule or to substitute an Me-X bond (e.g. -OR) by an organic
radical. For the first reaction, complex formation like reactions
with a chelating ligand can be taken into consideration, for
the second one, especially for Si-O-, Si-O bonds are suitable.
Reaction principles for Si-C-containing compounds in con-
nection with sol-gel techniques are described elsewhere [11-14].
Different possibilities for an inorganic network modification
exist:

a) The role of organic groupings as network formers. Examples
are:
\[\text{R-Si-R} \] (with R = \text{CH}_3, \text{C}_2\text{H}_5, \text{organofunctional groupings});
\[\text{Me-L} \] (with L = complex ligand, blocking reactive sites
and thus acting as modifiers or as flexible connections be-
 tween inorganic units.

b) The role of organic groupings as network formers. Examples
are:
\[\text{Si-R} \] (with R = polymerizable or polycondensable groupings
to be reacted with themselves or organic monomers);
\[\text{Me-L} \] (with L = polymerizable or polycondensable li-
gands).

If the model of a network relaxation is valid for an improve-
ment of the densification behaviour, one should be able to ob-
tain crack-free films after drying. Therefore, a material was
prepared with the composition SiO,Al,Na,O with the molar
ratio of Si:Al:Na = 82:9:9 by sol-gel technique. The Si was
completely added as 0, Si(OH), thus leading to a twofold cross-
linking Si unit (1), which can be transformed into a [SiO,]$^4-
tetrahedron by oxidant.

\[
\begin{align*}
\text{C}_6\text{H}_5\text{Si(OH)}_3 + \text{HO-Si-OH} + \text{HO-Na} & \rightarrow \\
\text{C}_6\text{H}_5\text{Si}-\text{Al-OR} + \text{HO-Si-OH} + \text{HO-Na} & \rightarrow \\
\text{C}_6\text{H}_5\text{Si}-\text{Al-OR} + \text{HO-Si-OH} & \rightarrow.
\end{align*}
\]

For preparation, \(\text{C}_6\text{H}_5\text{Si(OH)}_3 \) was dissolved in a mixture of
toluene and ethanol. A solution of NaOH in ethanol was added
and the solvents were evaporated. To the remaining solid a solu-
tion of Al(o-butoxide) in a mixture of toluene and propanol was
added. The suspension clears up to a transparent solution, which,
after removal of the solvent and addition of toluene, can be
directly used for coating. The infrared spectra of the room
temperature dried material shows a surprisingly low OH content
(figure 8), compared to the unreacted \(\text{C}_6\text{H}_5\text{Si(OH)}_3 \), indicating
that 90 to 95 % of the \(\text{SiOH} \) groups has been reacted.

Figure 8. IR spectra of the room temperature dried film of the
system Na,Al,SiO/O,Al,SO/SiO(\text{C}_6\text{H}_5)_2
Figure 9 shows a microscopic photograph of a film (about 20 \(\mu \text{m} \) thickness). The drying leads to a crack-free coating. After burning out the organics at 600 °C cracks appear, but there are relatively large areas of continuously thick crystallized films (figure 10).

An ideal random distribution of the organics in the coating should lead to an uniform pore size and random pore distribution. The material should exhibit a perfect sintering behavior (viscous flow). The crack formation can be explained by inhomogeneities due to phase separating effects or related phenomena, as shown in figure 11. The TEM micrograph shows a microstructure with inhomogeneities in the range of 5 nm in the one and 20 to 30 nm in the other dimension (arrow).

The preparation of \(\text{Al}_2\text{O}_3 \) coatings from sols leads to very poor (figure 12a) coating qualities, if a sol obtained from pure Al(1-prop) is used [15]. The addition of glycerol (25 vol.-\% \(\Delta \) leads to an increased viscosity after several hours at room temperature (40 mPa·s). Coatings with this sol lead to 2 – 3 \(\mu \text{m} \) thick coatings with only a few cracks (probably due to the non-optimized coating techniques, figure 12b).

TEM shows a microstructure with inhomogeneities only in the range of some (1 – 2) nm. In the TGA/DTA scan, the burn out of organics can be observed between 300 and 500 °C, and crystallization peaks appear at 700 and 1 200 °C (\(\gamma \) and \(\alpha \) phases). It can be concluded that organic processing in combination with high homogeneity leads to a good film formation behavior. Another example is the \(\text{Al}_2\text{O}_3 \) formation of sol with complex ligand blocked reaction sites. As a complex ligand, acetylacetone (acac) was used. Therefore, aluminumbutoxide was dissolved in propanol and acetylacetone was added (Al: acac = 2:1). During this reaction, the substitution of one OR-grouping against one acac grouping takes place (2).

\[
\text{Al}_{10}\text{R} + \text{CH}_3\text{CO-CH}_2\text{-CO-CH}_3 \rightarrow \text{Al}_2\text{O}_3\text{CH} + \text{HOR}
\]

The subsequent hydrolysis (water diluted in propanol) at \(\text{pH} \simeq 4.5 \) leads to a clear, slightly viscous sol which can be used for coatings. Figure 13 shows a crackfree coating, densified at 1 200 °C.
Figure 13. Al₂O₃ coating on a silica substrate (thickness: ≈ 1 μm).

Without complex former, no continuous coating can be achieved. DTA/TGA shows again burnout of organics at 300 - 500 °C and crystallization peaks at 750 and 1 150 °C. The improved film formation behavior is attributed to the fact that the complex former blocks sites for condensation (3) and thus leads to "flexible" gels.

\[
\text{Na[OR]}_3 + \underset{\text{acac}}{\text{O}} \rightarrow \text{Al-O-Al-O-Al-O-Al-O-Al-} \quad (3)
\]

COATINGS CONTAINING ORGANICS

In some cases it is advantageous to have organics present in the final coating. On soft substrates, like organic polymers, inorganic coatings have a poor adherence due to a mismatch and differences in moduli of elasticity. Inorganic organic polymers based on Si, Al, Ti, Ir, Sn, and other oxides, crosslinked with Si-epoxy components or Si-methacryl components show excellent abrasion resistance and can be densely applied at temperatures of 70 - 150 °C [16]. These types of coatings can be applied with thicknesses up to 100 μm. In connection with diffusion barrier pigments, like mica or glass flakes, coatings have been developed for corrosion protection [17] and for electronic substrates [18]. With special organofunctional groupings, the coatings can be applied for sensors [19].

CONCLUSIONS

Theoretical considerations and practical experiments show that sol-gel coating techniques can be improved by use of organics during processing. The main effect seems to be based on a better relaxation behavior during the indispensable shrinking process. Since the field of organic additives is very wide, an interesting potential for further work exists.

ACKNOWLEDGEMENT

The authors want to thank Mr. Grond and Mr. Storch for their helpful discussion, the Bundesminister für Forschung und Technologie of the Bundesrepublik Deutschland and various industrial companies for their financial support.

REFERENCES

16. H. Schmidt, B. Seiferling, G. Philipp and K. Deichmann, presented at the Third International Conference on Ultra-
17. G. Tünker, H. Patzelt, H. Schmidt and H. Scholze, Glas-
2nd International Meeting on Chemical Sensors, edited by
J. L. Aucouturier et al., Bordeaux, 1986, p. 4

POLY [BENZOBIS THIAZOLE] (PBT)/SOL-GEI MICROCOMPOSITES

R. ROSS HAGHIGHTI*, ROBERT F. KOVAR, AND RICHARD W. LUSIGNEA
*Foster-Miller, Inc., 350 Second Avenue, Waltham, MA 02254

INTRODUCTION

The objective of this Small Business Innovative Research (SBIR) effort
is to expand on work reported previously [1] and further develop a new
class of microcomposite materials which combine the outstanding properties
of ordered polymers and the excellent compressive strength of glass. In
Phase I we demonstrated adverse property changes in poly(p-phenylene
benzobisthiazole) (PBT) ordered polymer films by infiltrating sol-gel glass
reagents. During Phase II we have addressed the following areas: sol-gel
infiltration process; effect of sol-gel glass composition; tensile strength
characterization, microcomposite UV resistance, lamination process, com-
pressive strength determination. The following subsections present the
work conducted to date.

Ordered Polymers

An ordered polymer such as PBT, is characterized by a rigid rod-like
molecular structure which gives it extraordinary mechanical properties.
Figure 1 illustrates the molecular structure of PBT fibers with extremely
high strength and stiffness, low weight, and excellent thermal resistance as
shown by comparison with other fiber properties in Table I, [2-4].

PBT films having biaxial strength are produced for the first time by
Foster-Miller, Inc., under an ongoing U.S. Air Force contract
F33615-83-C-5120.

Figure 1. PBT - Poly(P-Phenylene Benzobisthiazole)

The film form has advantages over fiber because it can be more readily
processed into sheets, beams, stiffeners, tubes and other structural
shapes. In order to gain strength in more than one direction, fibers must
be woven or unidirectional plies laid up at various angles. Biaxial
strength films already have multidirectional strength. A laminated com-
posite made from high strength, high modulus PBT film can provide better
strength-to-weight performance and be simpler to fabricate than graphite
Kevlar® fiber composites. Although the tensile strength and modulus are
lower for the film than the fiber, the composite properties of the film can
be superior because of higher volume fraction of film, reduced interlaminar
shear stress from ply mismatch, and no degradation of properties due to
weave geometry. PBT films can be used to build high strength, thin-walled
structures without the limitations imposed by yarn diameter and wave
thickness [5].