Untersuchungen zur Vermindernung der Fluoremission beim Brand einer Steingutmasse

G. Tönker, H. Schmidt, Würzburg

Untersuchungen zur Vermindernung der Fluoremission beim Brand einer Steingutmasse

Keram. Z. 35 (1983) 7 347

1 Einleitung

* Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, 8700 Würzburg

La réduction des émissions de fluor pendant la cuisson d'une pâte de faïence
Pendant une série d'essais de laboratoire, réalisés avec une argile cuirassée rouge à des températures vers 1040°C, l'effet de la cuisson et de l'émaillage sur les émissions de fluor fut étudié. Aucune réduction des émissions ne fut observée pendant la vitrification. La vitesse d'émission ne commença à décroître que pendant le refroidissement, et ce grâce à la porosité ouverte de la pâte. Une réduction des émissions de fluor résulte de la réduction de la durée de cuisson et de la température de cuisson. La vitesse d'émission peut être ralentie en introduisant du chaux. L'émaillage peut exercer le même effet lorsqu'il représente une barrière à l'émission du fluor.

Investigations Concerning the Reduction of Fluorine Emission during the Firing of an Earthenware Body
The influence of the firing conduct and of glazes on the behaviour of fluorine emission was investigated in laboratory experiments on an earthenware clay of red firing colour around 1040°C. Release of fluorine was not hindered by firing the body to complete density. The speed of fluorine emission, because of the residual open porosity, is reduced only during cooling. A reduction in the expulsion of fluorine from the clay examined resulted from a decrease in the firing time and a reduction of the firing temperature. A delayed fluorine emission could be observed with additions of lime. Glazes also react favourably if they form a diffusion barrier for the transport of fluorine from the body.

Im Gegensatz dazu sollten bei Steingutsherben solche Maßnahmen nicht wirksam sein, da die verbleibende Porosität für flüchtige Fluoride keine wesentliche Transportbehinderung darstellt. Ziel der Untersuchungen war daher, zu klären, welche prinzipiellen Möglichkeiten bei dieser Gruppe von tonkeramischen Produkten bestehen. Frühere Messungen an Steingutsherben haben nämlich ergeben, daß auch hier in

2 Untersuchungsmethoden
Voraussetzung zur Beurteilung des Fluoremissionsverhaltens einer keramischen Masse ist die genaue Kenntnis des Verlaufs der Fluorabgabe als Funktion der Brennführung (Fluoremissionsprofil). Derartige Messungen lassen sich im keramischen Betrieb kaum durchführen. Daher wurden die Messungen an einer Laborbrennanlage durchgeführt.

Als Rohstoff diente ein rotbrennender Steingutton mit einem Fluorgehalt von 0,044% Massenanteilen, der für Töpferwaren mit und ohne Glasur verwendet wird. Der bei 1040°C gebrannte Scherben zeigte eine lineare Schwindung von 2,7% und eine offene Porosität von 35%. Der Ton wurde wegen der hohen Porosität ausgewählt, um Einflüsse durch eine zu starke Erniedrigung der Porosität auszuschließen.

Für die Untersuchung des Einflusses von Kalkzuschlägen wurde eine Töncharge aufgeschlüsselt und intensiv mit gefälltem, fluorfreiem CaCO₃ vermischt. Alle Versuchsbrände erfolgten an zylindrischen Proben von 10 cm Länge und 2 cm Durchmesser, die aus dem Batzen plastisch geformt wurden.

3 Ergebnisse
3.1 Bestimmung des Fluoremissionsprofils
Der Ton wurde zunächst gemäß der durchgezogenen Kurve in Bild 1, die der betrieblichen Brennkurve des Tons entspricht, gebrannt und dabei das Fluoremissionsprofil bestimmt. Die Brennatsmophäre besteht in diesem sowie allen später beschriebenen Versuchen aus Stickstoff mit 10% Volumenanteilen H₂O. Wie das Emissionsprofil zeigt, steigt die Fluoremissionsrate bei 880°C bis 1000°C an und erreicht schon bei etwa 1000°C das Maximum. Nach dem Brand hat der Scherben praktisch seinen gesamten Fluorgehalt abgegeben. Diese hohe Austreibungsrate ist durch den hohen H₂O-Gehalt der Brennatsmophäre mit bedingt; in trockenem Stickstoff wurden nur 72% des Fluorgehaltes abgegeben. Wie das Profil weiter zeigt, wird der Hauptanteil des Fluors im Bereich der höchsten Brenn温度（>900°C）freigesetzt. Es war von Interesse, wie sich eine Verkürzung dieses Intervalls quantitativ auf die Fluoremission auswirkt. Die entsprechende Brennkurve mit dem gemessenen Emissionsprofil in Bild 1 gestrichelt eingezeichnet. Es fällt auf, daß die maximale Fluoremissionsrate gegenüber den ursprünglichen Brennbedingungen sich nur unwesentlich ändert; die Gesamtfluoremission ist jedoch aufgrund des um 60% gekürzten Brennintervalls überhalb 900°C um 50% gesunken. Im Gegensatz zu Steinzeug sinkt hier die Emissionsrate erst während des Abkühlprozesses ab, so daß nur durch ein Durchlaufen des gesamten Gebietes hoher Temperatur und nicht wie bei Steinzeug durch ein rasches Durchlaufen des Bereiches hoher Porosität eine Reduktion der Gesamtfluoremission zu erzielen ist.

Eine solche Verkürzung des Brennintervalls kann natürlich Veränderungen der Produkt eigenschaften nach sich ziehen, die durch entsprechende Gegenmaßnahmen korrigiert werden müssen. Verlangsame Aufheizkurven für Entwässerung und Ausbrand flächiger Bestandteile aus dem Scherben unterhalb 900°C erhöhen die Fluoremission nur unwesentlich, wie ebenfalls aus Bild 1 geschlossen werden kann.

3.2 Einfluß von CaCO₃-Zuschlägen
Bei Zuschlägen von Erdalkaliverbindungen, die in der Praxis aus Kalk oder Dolomit bestehen, wird bei manchen keramischen Massen eine verminderte Fluoremission beobachtet. Als
Ursache hierfür kann, wie eingangs schon erwähnt, die Bildung stabiler Fluoride angenommen werden. Da jedoch bei höheren Temperaturen gemäß Gleichung
\[\text{CaF}_2 + \text{H}_2\text{O} \rightleftharpoons \text{CaO} + 2\text{HF} \]

3.3 Einfluß von Glasurgem

3.4 Optimierung der Brennbedingungen

Bild 3 Brennkurve, Fluoremissionsprofile und Gesamtmission (FE) einer rotbrennenden Steingutmasse ohne und mit Glasur in Stickstoffatmosphäre mit 10\% Volumanteilen H\textsubscript{2}O. Die Gesamtfuoremission ist bezogen auf den Ausgangsgehalt an Fluss.

günstigen Wirkungen sich auch in der Kombination ergänzen, so daß unter diesen experimentellen Brennbedingungen durch alle drei genannten Maßnahmen im Labor eine Reduzierung der Gesamttemperatur gegenüber der unglasierten Vergleichsprobe von 100% auf 15% erreicht wurde.

4 Schlußfolgerungen

Die Autoren danken Herrn Prof. Dr. H. Scholze für wertvolle Anregungen und Diskussionen bei den Untersuchungen. Ebenfalls sei für die finanzielle Förderung der Arbeiten durch den Bundesminister für Forschung und Technologie gedankt.

Literatur

Veranstaltungsankündigung

Donnerstag, den 6. Oktober 1983
H. Zeller (Heidelberg, Deutschland), Entwicklung der Brenntechnik in der Zementindustrie und Anforderungen an die feuerfeste Auskleidung.
A. A. Wodowicz, R. Musci, P. Ornelas, L. Machado, S. B. Lana, H. Nogueira, G. E. Gonçalves (Montes Claros, Brasilien), General wear mechanisms of basic refractories near the burning zone and the transition zone of rotary cement kilns.
W. Zednicek, W. Polesiang (Radenstein, Österreich), Verhalten feuerfester basisher Auskleidungsmaterialien in öl- und kohlebeheizten Rotieröfen der Zementindustrie.
M. Künnecke, H. Naef, M. Naziri (Wiesbaden, Deutschland), Die magnetische Sinterzonauskleidung unter veränderten Beanspruchungen.
I. Costa, R. Vastelle (Bukarest, Rumänien), L‘influence du type de l‘équipement et du comportement des briques dolomitiques dans les tours de cuisson du ciment de ciment portland.
W. Münstérberg, D. Opitz, I. Strawmann (Würzburg, Deutschland), Das Verhalten von Dolomitsteinen in Zementdrehsöhnen.