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Antiresonance effect is studied in a system composed of two-impurity centers in a crys- 
tal; one has a broad absorption band while the other has sharp phonon-line structure in 
its absorption spectrum when no interaction occurs between the two defects. A general 
expression of the change in the absorption spectrum due to  interaction between them is 
given. The antiresonance effect on a sharp zero-phonon line is investigated in detail and 
the favourable conditions for the observation of such an effect are also discussed. 

Nous avons ktudik des phBnomhes d’antirksonance apparaissant dans des cristaux con- 
tenant deux centres d’impuretks diffkrentes. Le premier posskde une large bande d’absorp- 
tion optique tandis que le second prBsente une structure de raies phononiques ktroites, 
lorsqu’il n’existe aucune interaction entre les dkfauts. Nous donnons une expression gknB- 
rale pour les changements apparaissant dans les spectres d’absorption causes par une inter- 
action entre ces dkfauts e t  discutons plus particulihrement l’effet d’interfkrence entre la 
bande large et  la raie ktroite sans phonon. Les conditions favorables pour l’observation 
d’un te  leffet sont Bgalement discutkes. 

1. Introduction 
The optical absorption spectra of rare gases have very characteristic “anti- 

resonance” lineshapes. They come from interference effects between discrete 
autoionized states and ionized continua. The theoretical investigation of this 
effect has been done by Pano [l]. 

Optical spectra having similar characteristics have also been found in solid 
state physics. Well-known examples of this effect can be observed in the absorp- 
tion spectra of excitonic transitions overlapped by the continuum of band-to- 
band transitions [ 2  to 41 or in the case of a sharp transition of an impurity 
center overlapped by band-to-band transitions of the host crystal [5, 61. The 
theory of the latter effect has been studied by Shibatani and Toyozawa [ 5 ] .  
They have reformulated Fano’s theory with a method useful for the application 
to problems in solid state physics and have obtained more general formula 
than that given by Fano. We shall use the same method in this paper. 

The interference effect between a sharp transition and a broad vibronic band 
has been first investigated by Sturge et al. [7] in the case of the absorption 
spectrum of an impurity center in a crystal. I n  this paper we present a more 
general and detailed study of a similar effect in a system composed of two- 
impurity centers in a crystal. We assume that, in the absence of interaction 
between two centers, a center “A” has a broad absorption band due to rather 
strong electron-phonon interaction, while for the other center “B”, the elec- 

1) On leave from Osaka City University, Osaka, Japan. 
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tron-phonon interaction is so weak that a sharp zero-phonon line and its asso- 
ciated many-phonon lines can be observed. The interference effect on the zero- 
phonon line will be d immed in detail for two illustrative cases where the broad- 
ening of the absorption band of center A is attributed to the interaction with 
either acoustic or optical phonons. 

Two parameters are introduced to discuss the favorable conditions for the 
ohservation of the sharp antiresonance. One is the ratio of the dipole matrix ele- 
ment of center B to that of center A. The other is, in the first case, the ratio of 
the strength of the interaction between the two centers to the half-width of the 
absorption band of center A, and in the second case, it is the ratio of the strength 
of the interaction between the two centers to an optical phonon energy. 

Examples of sharp antiresonance spectra are calculated for various values 
of these parameters. 

Sharp antiresonances have been observed by Taylor [8] in the absorption 
spectra of X-rayed calcium fluoride crystals doped with rare-earth ions. He pro- 
posed that the antiresonances come probably from the interaction between the 
rare-earth ion and a neighboring color center. The rare-earth ions have very 
weak sharp absorption lines which are superimposed on the broad absorption 
band of the color center. This system, therefore, appears as a typical example 
for the model discussed in this paper. However, a direct comparison between 
theory and experimental results will not be carried out in this paper. 

I n  Section 2 we discuss how to describe a two-center vibronic system and 
derive a general expression of the absorption lineshape. In  Section 3 we apply 
the general formula to simple cases and discuss the favorable conditions for the 
observation of sharp antiresonance. Several examples of calculated lineshapes 
are also presented. 

2. Formulation 
2.1 Vibronic states of a two-impurity system 

Let us consider the vibronic states of two-impurity centers A and B inter- 
acting with each other in a crystal. The Hamiltonian of the system is assumed 
to have the form 

X == ha(&) + hb(Q) + 2, + p-ab 9 (1) 
where h,(Q) and hb(&) are respectively the electronic Hamiltonians of centers A 
and B which depend on vibrational normal coordinates Qr, 2, is the Hamiltonian 
of the lattice, Vab an interaction between the electrons of the two centers. 

We expand h,(&) (n = a, b) in a Taylor series about a suitable equilibrium 
configuration of the lattice. By retaining linear terms only, we can rewrite the 
Hamilt onian as 

( 2 )  

where h, is the &-independent zero-th order term of ha(&). We shall treat Vab 
as a perturbation to Xo. For simplicity, the eigenstates of h, are assumed to be 
non-degenerate. We denote the ground state of ha + hb by a real function @,,, 
and the two lower excited states with energy hco, and f i q ,  by real functions Qa 
and Qb; @a (or Qb) corresponds to center A (or B) in its lowest excited state and 
center B (or A) in its ground state. Having assumed the non-degeneracy of the 

1 2 = xo + v a b  > 

xo = '2 (hn- 2 ~ n , Q j ) + . 3 % ,  > 
n=a,  b 3 
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electronic states, we can use the Born-Oppenheimer approximation and then 
the vibrational states of the lattice are determined within the first approxima- 
tion by the following equations 

for the ground state and 
~ l X O P ( Q )  = EOPXOP(Q)  

(xi + hmn - 2 %7&7 X n p ( Q )  = E n p ~ n p ( Q ) ;  n = a , b  
3 ) 

for the excited states, where Ulll = ung I@%) ; the equilibrium configuration 
of the lattice for the ground state is chosen as the origin in Q-space. Then the 
eigenfunctions and eigenvalues of X o  can be written as 

E o p  = +'p$uj y o p  = @ o ~ o p ( Q )  = @o LT x ~ p , ( Q j )  (3 a) 
3 

and 
En, = ,L' (P? - Hn3) hwj + hwn ) } (3b) 

7 

y n p  = @ l a ~ n p ( Q )  = @ , n ~ + t p ~ ( Q j ) ;  n = a, b , 
i 

where the zero-point energy is eliminated. S ,  = (i i i7/2w;)/ha~j and 2 Sn3hm, is 

the lattice relaxation energy, xoPj is a harmonic oscillator wave function, and 
xnp, is a displaced one whose equilibrium position is given by i&/Lo;. 

7 

2.2 Absorption lineshape 

The optical absorption lineshape can be expressed at  zero temperature as [5] 
1 

I ( w )  = - Im (Yool DGD IYoo> (4) n 
apart from the unimportant constant factor ; h o  is the photon energy and G is 
the Green function defined as 

(5 )  

where hy is a sufficiently small positive number. The operator H is the Haniil- 
tonian corresponding to  the excited state: 

H = Ho -t H ' ,  

Ho = ,L' E a p P a p  + ,L' E b p l P b p j  

H' = 2 ( p a p T / , b p b p '  + P b p ' v a b P a p )  2 

P 8' 

P,P' 

where Pa, and Pbp, are projection operators on the spaces of ydP and y b p ' ,  respec- 
tively. The operator D is the relevant electric dipole moment given by 

D = 2 Pa8dP, + 2 PbpdPoo + (hermitian conjugate) , (6) 
P P' 

where Po, is the projection operator on the state y, and d the electric dipole 
moment operator. After some algebra the absorption lineshape (4) is given by 

1 1 
Z P  

~ ( w )  = - ~ m ~ d i  i < X a p l X m ) l 1 ( W a p  1 z-- Ho 1y.p) + (LT + ~ M T )  Gb(L + i ~ )  7 

(7) 
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where d, (n = a, b) is the dipole matrix element and stands for the transpose 
of real vectors L and M providing Pa,, is a real operator. The p-th elements of 
these vectors are written explicitly as 

and 

The matrix G, satisfies the relation 

G, = GL2 + GLo)(A + iI‘) Gb 

and pp’ elements of GLO), A ,  and I’ are given as 

with 

(9) 

The first term of (7) represents the direct transitions from the ground state to 
the states in which center A is in its unperturbed excited state. The inter- 
ference effect is included in the second term. 

We have assumed the validity of the Born-Oppenheimer approximation and 
retained only harmonic terms in the vibrational potential. Within these approx- 
imations, the vibronic levels are stationary states. Real crystals, however, can- 
not be accurately described within these approximations. We therefore assume 
that in  the expressions (8) and (11) y is a finite small positive number instead 
of an infinitesimally small number. 

If the electron-phonon interaction of center B is weak enough so that Xbj 
can be regarded as practically negligible, the electric dipole moment given in (6) 
reduces to 

D = 2 P,,dP,, + PbOdP,, + (hermitian conjugate) (12) 
P 

since (xbp1~,,,,) = 0 for y =j= 0. This will be a reasonable approximation to cal- 
culate the change of the shape of the sharp zero-phonon line of center B. In  
this case, equation (9) has a diagonal form which can be solved exactly with 
respect to G,. Furthermore the very sharp line means that the zero-phonon 
state of center B is relatively well defined. Then we have 

where A,  = A,,,, and r, 3 I‘, are respectively t,he energy shift and the broaden- 
ing of the zero-phonon line of center B due to  the interaction with the many- 
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phonon states of center A. Substituting (13) into (7), we obtain 
1 M2, q2 - 1 + 2 q ~  

I ( w )  =-ImF(w)  +-- 
32 r, E2 + 1 , a 

where 

and 

q = -  LO 
MO ' 

If the interaction between the two centers (and therefore To) is sufficiently 
small, the linewidth of the function (q2 - 1 + 2 q E ) / ( E 2  + 1) will be so small 
that Lo, M,, A,, and To may be regarded as independent of (0 within the inter- 
esting region. Then the second term of (14) gives a set of asymmetric Lorentzian 
shapes corresponding to various values of y. From (8), (11), and (15), we have 
the following useful relations : 

Lo = d, + da(hV)  Re F ( o )  , (17a) 

A ,  = (hV)2  Re F ( w )  , and I', = ( P L V ) ~  Im F ( w )  . (17b) 

M ,  = d,(RV\ Im F ( w )  , 

With these relations (14) becomes much simpler 

with 
Q=--+-!! dbhV A 

d a  To To 
The expression (18) has the same form 
as those given in [1, 5, 71. The factor 
( E  + q ) 2 / ( ~ 2  + 1) gives a characretistic 
lineshape superimposed on the broad ab- 
sorption band of center A. This factor is 
plotted in Fig. 1 for different constant 
values of q [l]. 

Let us briefly discuss the more general 
case where the vibrational states xoo and 
xb! are centered a t  different origins. I n  
this case, equation (9) may be formally 
solved with respect to G,  as discussed 
by Toyozawa [2]. Introducing a trans- 

Fig. 1. Lineshapes of (E  + p)2 / (~2  + 1) given 
by Fano [l] for various values of p (reverse 

the scale of abcissas for negative p) 
E- 
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formation matrix A which diagonalizes the matrix [(GP))-l - d - ir], we 
may write the p-th diagonal element as 

{ ~ [ ( ~ p ) - 1  - A - ir] A - ~ J ~ ~  = tzw - ~ l ; ~  - 0,: - ir; , 
where the p-th element is numbered such that ELp becomes Ebp when P + 0. 
Since the quantities with primes are all renormalized ones, all orders of the inter- 
action are taken into account. Using the result of the diagonalization, equation 
(7) can be written in the following form after straightforward calculation: 

where y; = Lb/M; and ip = (Rco - Elkp - A k ) / r k ;  Li and B; are the p-th 
elements of AL and AM, respectively. If the quantities yi, Mk, A;,  and can 
be regarded as independent of co over a sufficient region near co = (ELp + A ; ) / h ,  
the second term shows that the absorption spectrum can be decomposed into 
a number of asymmetric Lorentzian lines each one corresponding to the p-th 
phonon line of center B. 

3. Calculation and Discussion 

Let us carry out more detailed calculations of the lineshape (18) for the two 
particular cases where the broadening of the absorption band of center A is 
caused by interaction with either acoustic phonons or optical phonons, and then 
discuss what are the favorable conditions for the observation of the sharp anti- 
resonance. What we must do now is to calculate the function F ( w )  given by (15). 
This can be readily done following Davidov [9] i f  true localized modes are not 
considered. In  this case, the overlap integral of the two harmonic oscillator wave 
functions with different equilibrium positions can be approximated as follows : 

When pf is larger than unity the integral tends to zero more rapidly than N-l. 
Since N is the total number of degrees of freedom of the lattice, it is sufficient 
t o  only retain terms up to the order N-I .  Within this approximation, the func- 
tion F can be transformed into 

m 

J’ i 
tl 

F ( o )  = -eVs exp 

0 

where S = 2 S,j and S( t )  = 
i 

the interaction with acoustic 

2 Saj eiwjt. In  the first case we take into account 
i 
phonons for which of 5 coo. If (2 Sajo?)/2 > 

\ I  I /  

is also satisfied, the integral can be approximately calculated : 
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S a p ;  ll2, z = [ y  - i (w ,  - ~ ) ] / ( 2 ) ' ' ~  W ,  and p'(z) is the Gaussian where W = 
( i  ) . .  

error function 

0 

Near the frequency co, or Iz/ < 1, q ( z )  can be approximated as y ( z )  = 2 z / i G ,  
then we have 

assuming W > y .  Inserting the imaginary part of (22) into (18), we obtain the 
absorption spectrum 

& e-(l/z)h* (4  + & ) 2  
I (6)  = _- -__ -___ ( 2 3 )  

hW )/2n c2 + 1 ' 
where 6 = (w - w,)/W and exp [-(1/2)5 '2] / (27~)~/~ is a normalized Gaussian 
curve with a peak at  6 = 0 (w = wa) and a half-width of 1. From (17b) and ( 2 2 ) ,  
we obtain 

and 

Here A :  and 
versus E .  The quantities q and E are written as 

represent respectively the energy shift and the broadening 

and 

1 0  

where n = (db/d,)  ( W j V )  and [,, = (wb - w,)/W. 

(26) 

Fig. 2. Behavior of the parameter g given by 
(25) for various values of a 
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On the basis of the above calculations let us discuss the favorable conditions 
for the observation of sharp antiresonance within the half-width, 161 < 1, of 
the absorption band of center A. The &-dependence of the function ( E  + q)2/(s2+ 1) 
given in Fig. 1 shows that each line consists of an asymmetric curve with a peak 
and a dip, i.e., an antiresonance. The dip area gets larger with decreasing 141- 
values and in the range of 141 < 1 the dip area becomes larger than that of the 
peak; the complete antiresonance occurs for q = 0. As Shihatani and Toyozawa 
[5], we regard the condition IqI < 1 as the criterion for sharp antiresonance. 
The behavior of q given by (25) is shown in Fig. 2 for different values of a and 
can be roughly summarized as follows: the criterion is satisfied in the range 
la/ s 1.5, that is, 0 a s 1.5 for the low-energy side with respect to the center 
of the absorption band and -1.5 

I n  the vicinity of the center of the broad absorption band, the (ql-value 
decreases with la1 and /a1 e 0 gives the smallest value for IyI. For higher or 
lower energies but within the half-width, In1 e 0.5 gives smaller values for Iql 
than a N 0. 

I n  order to have the value of IqI sufficiently close to zero, Idb/da( or I W /  VI must 
be small enough. The small value of 1 W /  'VI leads to an increase of the broadening 
T$  as shown by (24b). Too large broadening will make the observation of the 
antiresonance very difficult and is unfavorable for the assumption that q ,  A : ,  
and r,* can be regarded as constant in the interesting energy range. Therefore, 
Id,/dal should be ~0 in order to  realize the condition In1 N 0;  this means that 
the electric dipole transition of center B should be quite weak or forbidden in 
the absence of the interaction with center A. 

There is another restriction on the magnitudes of r; which gives a lower 
limit to it. The broadening r,"RW must be at  least as large as the experimental 
resolution, which is of the order of eV in usual case. If we tentatively assume 
a linewidth RW of the order of 10-1 eV, we may put a lower limit of r,* as 

in the rangeof 161 < 1 (half-width), since the order of magnitude of (n/2)ll2 x 
x exp (-6212) is unity in this range. This means that an interaction much 

iy 0 for the high-energy side. 

2 10-3. Then, from (24b), the lower limit of ( V /  W ) z  is given as ( V /  W ) 2  

" u  

\ 

I 
05 

I I  

"5 U 

---l 

2 

\ 

3 

L 
05 

b 

Fig. 3. a) Calculated antiresonance lineshapes given by (23) providing ( V / W ) z  = for 

b) Same as Fig. 3a, for a = -0.5, (\db/da1 N 0.016). (1) Eb = 0, q = -0.399; (2) &, = 0.4, 
a = 0, (ldb/dal = 0). (1) Eb = 0, 4 = 0 ;  (2) t b  = 0.4, q = 0.319; (3) [b = 0.8, 4 = 0.638. 

q = -0.113; (3) t b  10.8, q +O.OSU 
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smaller than the half-width will be unfavorable for the observation of antireso- 
nance. From the definition of a and under the above condition, the ratio Id,/d,l 
should be larger than -10-2, in order to  realize the situation la1 

We can then conclude that the favorable condition for the observation of the 
antiresonance is that the interaction between two centers should not be too 
small compared with the half-width of the broad band; moreover Id,/d,l should 
be sufficiently srnall in the vicinity of the center of absorption band while 
for higher or lower energies but within the half-width this ratio should not be 
too small. 

Typical examples of absorption spectra are shown in Pig. 3, which are cal- 
culated for l,, = 0, 0.4, and 0.8 in the cases of a) a = 0 and b) a. = -0.5, pro- 
viding ( V / W ) z  = 0.001. We can observe that for &,, = 0, iy = 0 gives sharper 
antiresonace than iy = -0.5 and for 6, = 0.4 and 0.8, a = -0.5 gives sharper 
antiresonances than a = 0. 

In  the range far away from the center of absorption band of center A, 
1 0  - LO,[ 3 W > y ,  the integral (20) becomes 

0.5. 

i y - i ( w  - 0,) 
h (w - W,)2+ y2' 

F(W) = - ~ 

Substituting the real and imaginary parts of this expression into (19), we obtain 

+ 1). u = ( y ) ( x 7  0 - w ,  d , w - 0 ,  

This shows that 141 is much larger than unity except when (d,/d,) is infinitely 
close to V / ( w ,  - w )  so that [(d,/d,) (w - wa)/V + 11 < 1. Such an exceptional 
case could seldom be expected and sharp antiresonances will scarcely occur in 
this range. 

I n  the second case, we take into account the interaction with phonons which 
belong to  one of optical branches. Usually the dispersion of the optical phonon 
frequencies is very small, so that we may put approximately w1 = 0,. In  this 
case the integral (24) is easily calculated: 

where q = (w - coa)/coo and S = y/wo. Substituting real and imaginary parts of 
(27) into (17) and (18), we have 

and 

where f,(q) and f i (q)  are the real and imaginary parts of hw,F(q). In  this case the 
energy shift and the broadening are proportional to  the square of the ratio of 
the two-center interaction to the optical phonon energy. Other important 
quantities are given as 

(30) 
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t, t I  

Fig. 4. a) Behavior of the parameter p given by (30) for various values of B in the case of 
S = 5. b) Same as Fig. 4a, in the case of S = 15 

and 

& =  7 - V b - s  , (31) r,. 
where B = (db/da) (w,/ v) and rb = (cob - w,)/w,. In  (28), the function (d,/ho,) f i (q )  
is the absorption spectrim of center A in the absence of the interaction with 
center B ; it is composed of a set of Lorentzian phonon lines with a half-width 6. 
The dashed lines in Fig. 5 and 6 show the absorption spectrum for 6 = 1, where 
the intensities have been normalized by (~:/z~cIJ,). 

The energy dependence of q given by (30) is plotted in Fig. 4 for various 
values of B in the cases of a)  X = 5 and b) S = 15; too small values of S rrijght 

t 

7 -- 

I 0 5 7  

2 4  
b 

Fig. 5. a) Calculated antiresonance lineshapes given by (28) providing ( V / W , ) ~  = 0.05 for 

= 3, p = 1.078. b) Same as Fig. 5a, for S = 5 ,  @ = -0.2, (ld,,/dal = 0.045). (1) qb  = 0, 
= 5, @ = 0, (ldb/dal = 0). (1) q b  = 0, 

= -0.419; (2) q b  1.5, 

=: +0.074; (2) 71, = 1.5, q = +0.488; (3) qb = 

-0.133; (3) vb = 3, p = +0.107 
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t 0 3 7  

5 70 
9- 

b 03- 

hib 5 I0 

77-  
Fig. 6. a )  Calculated antiresonance lineshapes given by (28) providing ( V/w0)* = 0.1, for 

= 5, p = +1.153; (4) qb = 7.5,  q = 2.203. b) Same as Fig. 6 a  for S = 15, @ = -0.1, 
8 = 15, = 0, (Idh/d,l 0). (1) q b  = 0, q = +0.052; (2) qb = 2.5, q = +0.535; (3) q b  = 

((db/d,( 0.032). (1)  q b  = 0, q = -0.323; (2) v b  = 2.5, q = +0.066; (3) qb = 5, 
p = +0.390; (4) qb = 7.5, 4 = 0.643 

be unfavorable for the observation of antiresonance because they give narrow 
linewidths. It can be seen from Fig. 4 that the criterion 141 < 1 is satisfied in the 
range of & 0.3 for S = 15, i.e., in more detailed, 
0 ,!I p 5 0.3 for the low-energy side with respect to the center 
of the broad band and -0.5 /3 0 and -0.3 /? 0 for the high-energy 
side. In  the vicinity of the center of the absorption band, 141 decreases with 
decreasing I,!? ; a favorable condition for the sharp antiresonance is then 1/31 = 0. 
For higher or lower energies but within the half-width, 181 z 0.2 and 161 = 0.1 
give smaller values of lql in the cases of X = 5 and 15, respectively. 

As in the first case, owing to the existence of an upper limit of rt, the situation 
[PI z 0 is realized when Id,/d,l 0, that is, when the electronic dipole transition 
of center B is very weak or forbidden in the absence of the interation with center 
A. 

eV and therefore r,* the lower limit of 
( V / W , ) ~  is given by substituting the values of fi(q) in Fig. 5 and 6 into (29b) ; 
except in the vicinity of the center of absorption band we have ( V / U J ~ ) ~  2 
for X = 5 and ( V/CO,)~  2 10-1 for X = 15. Under these conditions Id,/d,l 2 
must he satisfied in both cases in order to realize the situations IpI z 0.2 for 
A .  = 5 and 

The above discussion leads us to the same conclusion as in the first case con- 
cerning the favorable condition for the observation of sharp antiresonance 
except that in this case the interaction of two centers is compared with the opti- 
cal phonon energy instead of the half-width. 

Typical examples of the sharp antiresonance spectra are calculated for 
q,, = 0, 1.5, and 3 in the case of 8 = 5 providing ( V / W ~ ) ~  = 0.05 and for rb = 
= 0, 2.5, 5, and 7.5 in the case of X = 15 providing (V /CO, )~  = 0.1. They are 
plotted in Fig. 5 and 6. We see that in both figures the sharp antiresonances 
for q,, = 0 occur when IpI = 0, while those for qb = 1.5 and 3 in the case of S = 5 
and those for rb = 2.5, 5, and 7.5 in the case of S = 15 occur when p =--0.2 
and p = -0.1, respectively. This is consistent with the above discussion. 

Taylor [8] has measured the absorption spectra of rare-earth ions in calcium 
fluoride irradiated with X-rays and has observed sharp antiresonance lines 

0.5 for S = 5 and 
0.5 and 0 

If we assume h o ~ ,  Y 

=: 0.1 for X = 15. 

35 physica (b) 69/2 
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superimposed upon a broad background absorption due to  a color center. The 
positions of these lines coincide with those of very weak absorption lines of 
the rare-earth ions; for example, in X-irradiated CaP,:Dy3+ the line is observed 
a t  2.76 eV, which corresponds to  the t,ransition 8H151e -+ 4115p of Dy3+ a t  

2.77 eV. Although these sharp antiresonances have been observed a t  rather 
high temperatures, they may be still regarded as good examples of the antireso- 
nances discussed above. 
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