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of the Luminescence from F Centre Pairs in Alkali Halides
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Whenever a member of a F centre pair is excited optically at low temperature, it can
return to the ground state either radiatively or by formation of a F’ centre, the excited
electron being transferred by a fast tunnel effect to the neighbouring centre. This process
is dependent on the spin symmetry of the pair, whichisin turn determined by the competitive
influence of the different local hyperfine fields and of an applied magnetic field. The latter
causes a decrease of the tunnelling probability, i.e. an increase of the luminescent yield in
two steps; the first critical value is given by the hyperfine field and the second one by the
temperature according to the Boltzmann factor. The quantum yield is found to have an
exponential dependence of the concentration, of the volume in which tunnelling is possible,
and of the average tunnelling frequency. Spin-lattice relaxation and EPR, by mixing
between the spin state populations, reduce the effect. Application of the theory to experi-
mental values obtained for the luminescence intensity as a function of the applied field in
KI, KCl, and KBr yields the average tunnelling frequency (about ten times the radiative
probability), the effective range (85 A), and the absolute value of the luminescent quantum
yield. :

Lorsqu’un membre d’une paire de centres F est excité optiquement a basse température,
il peut retourner a I'état fondamental soit radiativement, soit en formant un centre F’,
I’électron excité étant transféré par un effet tunnel rapide au centre voisin. Ce processus
est dépendant de la symétrie de spin de la paire qui est & son tour déterminée par I’influence
concurrentielle des différents champs hyperfins et d’'un champ magnétique appliqué. Ce
dernier cause une diminution de la probabilité de tunnel, c¢’est-a-dire une augmentation
du rendement luminescent en deux étapes, la premiére valeur critique étant donnée par
le champ hyperfin et la seconde par la température (selon le facteur de Boltzmann). On
trouve que le rendement quantique est une fonction exponentielle de la concentration, du
volume dans lequel ’effet tunnel est possible, ainsi que de la fréquence moyenne de transfert.
La relaxation spin-réseau et la RPE, en redistribuant les spins entre leurs divers états,
réduisent cet effet. Cette théorie est appliquée a des mesures faites dans KJ, KCl et KBr de
Pintensité de la luminescence en fonction du champ magnétique. On en tire la fréquence de
tunnel moyenne (environ dix fois la probabilité radiative), la distance efficace (85 A) et la
valeur absolue du rendement quantique luminescent.

1. Introduction

F centres are among the simplest defects in ionic crystals: an electron located
in an anion vacancy. Although they have been discovered fourty years ago
and studied quite intensively in the last two decades, the phenomena following
a photon absorption still present interesting problems. F centres spend only
about 10-12 s in the excited state F*. The lattice responds to the change of the
electron distribution by a local relaxation, dissipating part of the energy and

leading to a relaxed excited state F*. At low temperature, an isolated centre
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remains in this state for a relatively long time (between 1 and 0.1 ps in most of
alkali halides) before it emits a photon and returns to the ground state [1].
In this case, the luminescent quantum yield, defined as the ratio ‘“‘number of
emitted photons to number absorbed of photons’, is unity. At higher temper-
ature (above 100 °K), the electron has the possibility to be thermally activated
into the conduction band, from which it decays to the ground state by non-
radiative processes. This produces a decrease of both the quantum yield and
the average lifetime, as it has been observed by Bosi et al. [2]. If the F centre
concentration is high enough, there is a finite probability that two centres form
a pair within a certain critical distance. Markham et al. [3] suggested for this
case a third disexcitation path: the electron of the excited centre is transferred
by tunnel effect to its neighbour, thereby forming a ¥’ centre and an anion
vacancy, and the pair returns then to its ground state F* + F° by some non-
radiative mechanism. The existence of this process has been demonstrated by
Porret and Lity [4]: at 1.7 °K a magnetic field of 80 kG polarizes the spins
completely. Since the two electrons of the F’ centre in its ground state must
have antiparallel spins, the transfer is no longer possible. This produces an
increase of the radiative quantum yield because the radiative process is the only
way left for the disexcitation. Such a pair effect confers also to the lumines-
cent yield a strong dependence of the F concentration, as it has been discovered
by Miehlich [6]. This mechanism is also supported by experiments performed
in our laboratory by Ruedin and co-workers [5] who detected optically the
paramagnetic resonance of the F centre in its ground and excited state.

A closer investigation of the variation of the luminescence intensity induced
by a magnetic field has revealed a first stage of this effect, occurring at low
fields of the order of the measured EPR linewidth. Typically a quantum yield
increase of some ten percent is observed in crystals having 1017 F centres per
cm?. This can be explained by a competing influence on the pairs of the applied
field and of the local hyperfine fields, which changes the character of the wave
functions and therefore strongly modify the tunnel probability.

This paper attempts to calculate the spin state of a two-electron pair F* + F
and its implication for tunnelling by taking into account the centre concen-
tration. The effects of the spin-lattice relaxation and of a microwave field are
considered, as well as effects of second order such as the centre correlation and
the exciting light intensity. In the last section, experiments performed on KCl,
K3Br, and KI are compared with the theory and the tunnelling parameters are
determined.

2. Pair States and Tunnelling

We consider first a F* 4 F pair at liquid helium temperature. In this range,
the Boltzmann factor for the nuclear spins is very near unity, so that the
nuclear orientations can be assumed to be distributed at random. Moreover,
the nuclear spin—lattice relaxation time is certainly longer than the characteristic
times we are dealing with, i.e. 1 us, so that the nuclear field is quasi-stationary.
We assume also that the interval between the pair members is small enough
to ensure a finite tunnelling probability, but large enough to make the two local
nuclear fields Hy and H¥ different. If H, is the applied field, the centres are
subjected to H = Hy, + Hy and H* = H, -+ H§ = H + H', with the field
difference H' = Hf — Hy (Fig. 1).
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=

Fig. 1. Magnetic fields acting on F centres: H, is the applied field, Hy and H*
are the local hyperfine fields

V'

At zero local field H = H* = 0, the two-electron system of the pair can be
described by a symmetric and an antisymmetric combination of the single-
centre orbital wave functions ¢ and ¢*:

1
D, = 2 lp*(1) @(2) £ @(1) *(2)]

to be multiplied by spin functions of the opposite symmetry
o1 =|££>,
1
g =—=(+—> +1—42).
V2
The products should be eigenfunctions of an orbital Hamiltonian in which the
spin-orbit coupling is accounted for.

The interaction between the spins and the magnetic fields can be described
by the following Hamiltonian:

Hy=9*bH¥.-S, +-gFH-S,.

1
@ =k =)

Since the fields are space-dependent, S; should act on the first electron for
the part of the wave function containing ¢*(1) and S, for the part of the wave
function containing ¢(1). A corresponding condition applies to the second
electron.

The exact diagonalization of the Hamiltonian operator yields the four eigen-
states, in which the angle p between H and H* governs the amount of mixing:

le/ism( )(@ & + D, 0y) +cos(%)@ i1

y2
v, = %c (;’i)(@ a + D, g,) —Sln(}éi)@aa+17
Y, = —l_—_cos(%)(d)s -, Uo)—Sln<g)¢aU—1’
1
(g
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The corresponding energies are
1 1 1 1
e14 = & EQ*ﬁH*-}-EQﬂH), &23 = % §g*ﬂH*“‘2‘gﬁﬂ>-

This procedure is correct if ¢ and @* are orthogonal. But since we deal with
a tunnel effect, we have to assume some overlap, and therefore to consider the
system above as a first approximation.

For magnetic fields smaller than 5 kG (at LHeT), the occupation probability
for each of the four states is equal to 1/4. At higher fields, the Boltzmann factor
has to be considered. However, as long as the spin-lattice relaxation time is
longer than the radiative lifetime [5], an electronin the relaxed excited state has
no time to thermalize, so that the occupation probabilities are determined by
those of the ground state. The occupation probabilities are then

_cosh (g 8 H,[kT)
" 5 skt (g BH,2 kT

1
Bt =y cosh? (g B Hy/2 kT)

if we assume

|Hy| > |Hy| and |HE.

In the final state of the tunnelling process, both electrons form a F’ centre and
have the same orbital wave function but an antisymmetric spin function.
For each of the initial states the tunnelling frequency has therefore the following
form:

1 . 1
W1 = W4 = wtO(R) ESIH (—g—) , Wiz = W3 = Wio( ) I/? cos <1§)

The function we(R) depends only upon the orbital parts of the wave functions
and varies strongly with the pair interval R [7, 8].

If we define W(R) = wyo(R)/w, by taking the radiative transition probability
for the F* centre w, as a unit, the tunnelling probability for one pair becomes
at low field (H, < 5 kG)

1[ (Wly2) sin (p/2)  (Wly2) cos (y[2) }

P, = Py(R, Hy) = = = _ ) cosyja)
v = Pl ) =3 1+ (W/y2)sin(yp/2) 1 --(W/[)2) cos (v/2)

and at high field (H, > 5 kG)

P, = Py(R, Hy|T) = : Al/yz [COSh (»92%0-)]—2.

The number of pairs can be evaluated from the centre concentration # if one
assumes a random spatial distribution of the centres. A single excited centre
can have several neighbours within a tunnelling distance and this can be ac-
counted for by the following consideration. Each excited centre is placed at the
origin of a coordinate system, and the volume around it is divided in small
elements AV, numbered with an index j. The probability of having 0,1,2, ...
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neighbours in such volumes is then given by Poisson’s law:
p(0) =exp(—nAV) =1 —n AV,
p(1) =nAVexp (—nAV) =n AV,
p2)~ pB)~ .- =0.
The luminescence probability is given by
Py=p0)1+p1)(1 —P)=1—nAV P,.

The radiative quantum yield of each F* centre is just the probability that its
electron does not tunnel toward any neighbour situated in any volume element :

n=II[1 —nAV Pyr)] =1 —n 5 AV Py(r) +
j i
g 8 5 5 OV Pry) Pr — gt 5 5 5 (AVF Pylr) Pr Py -
i j

The total luminescent quantum yield is the average of this expression for all
combinations of Py(r), i.e. for all the combinations of the nuclear fields Hy
and H¥.

Let us assume first that these fields are not correlated. Then we have

{Py(1y) Py(ry) - - - Py(1g)> = (Py(1ry)) (Py(13)) - - - (Py(14)) = (Py(r))7 .

Having introduced this relation into the previous formula the developement of
the exponential function appears and in the limit AV — 0 it is

n=-=exp (— n [dV {P(r})).

The quantum yield is an exponential function of the concentration and of the
space integral of the average tunnelling probability, in agreement with Mieh-
lich’s observations [6].

This last formula can be calculated exactly only for two special cases. At
zero field Hy = 0, the angle p lies directly between Hy and H¥ and the average
of P,(r) for an isotropic space distributions of both of them gives

2yY2 4 —
(P(Hy=0)> = 1 _"VVT 3ln (14 WHE).

At very high field, above 5 kG, the angle ¢ tends toward zero and

H
(Py(IHy| > Hyl, [HE)> = Pzt(R, 70) ~

1| w2 W x <(H") g8 Hy\l™*
~‘z‘[1—m72—‘+ y2 3 H, *'“][""Sh(éﬁ)] '

These two quantities as functions of W are not very different numerically.
We can then define a single critical distance R, for the tunnelling and the cor-
responding critical volume ¥V, by

4 w2
V = — 132 = dV—————_-
P f 1+(W)y2)
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The quantum yield can then be written as
n=exp (—n Vi Pp).

For intermediate values of H the averaging has to be taken over all pairs of
Hy and H% and must be computed.

3. Spin-Lattice Relaxation and EPR

At temperature higher than 10 °K, the spin-lattice relaxation time in the
excited state decreases and mixes up the population of the different pair states
within the radiative lifetime [5], changing thereby the average tunnelling
probability. The four pair states can be reduced to two species with regard to
the tunnelling probability.

If 7 is the spin-lattice relaxation frequency divided by w, and

W, = W sin (%) /y’_ W, = W cos (%) /V§

we obtain
P, — Wl Wz + (W1 + W2) (1/2 +7)
W Wk (W, W) (L) 12y

At zero applied field, both W, and W, are large within ¥, and the relaxation
has no effect on P;. At high fields (¥T/g 8> Hy> Hy), W, = 0 and

1w, W,

= o f 1 =t .
714 W, or r&£1, P, W, 12 for r > 1

Py

The average tunnelling probability varies then between 1/2 at low temperature
(i.e. small r) and 1 at high temperature (i.e. large ). In this case, the field effect
disappears.

If a microwave field of suitable frequency is present, its effect is to enhance
the transfer between the spin states and to reinforce the effect of the spin—lattice
relaxation. One can then account for it formally by replacing r by r + m.
This last quantity, normalized with respect to w,, involves the microwave
power, geometrical factors, ete., as well as the resonant frequency dependence.
If the EPR is detected optically by monitoring the luminescence intensity

(proportional to the quantum yield 5) as a function of the applied field, the
signal is defined by

Foor — [mm=0)—ym=0)]
EPR = Am = T T UAT A
n (m = 0)
=exp {—n V;[{(Pi(m=+0)) —(Py(m=0)]} —1=0.
As the EPR is performed at 3 kG, we are in the high-field case with W, = 0.

As only the centres for which W, >> 1 are effective, the change of the tunnelling
probability can be simplified to

m/2
T+nd+r+m

AP, =~
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The EPR signal obeys then the relation

1 m

ln(l—Iprnl'l):”Vtg(l +r)14r4m’

It reveals the resonance in the ground state and in the excited state, because the
flip of a single spin suffices to switch a pair into another state. The observed
resonances are not sharp because of the unresolved hyperfine splitting. They
are Gaussian peaks and their width is directly related to the distribution of the
nuclear fields. Assuming for them an isotropic Gaussian distribution of the form

P(Hy;) dHy; = %GXP (—a®*Hyj)dHyj, (J=1,9,2)

44

it can be shown that the field difference H’ has the same distribution with
a'~%2 = q~? 4 a*-2, The average field difference can be determined experi-
mentally from the EPR by

(H"> = 0.677 (AH};s + AHsz)Uz )

where AH,; is the full width at half height of the resonance curve. The width
of the elementary homogeneous line 7';! is equal to the inverse of the average
lifetime before tunnelling, i.e. W w,.

4, Second-Order Effects

In the calculation of the luminescent quantum yield, we have assumed that
the tunnelling probabilities for different centres are independent, so that the
average of the products factorizes. This is true for well-separated centres, but
as we require a minimum of proximity to ensure a tunnel effect, we have to
examine how a correlation can change the results. The contribution of a single
nucleus to the hyperfine field can be expressed by its spin multiplied by a matrix
A containing the Fermi contact term and the dipole—dipole interaction:

(—-—- 5”; + 3 ik rk) d37'] .

r2

(A)ir =y Bu [_8?7;@(0) Oir + [Q(:;)
The pairs that we consider contain always a centre with an electron in its
ground state. Its spin distribution around each nucleus is spherically symmetric
(s-state), so that the interaction integral vanishes identically and the matrix 4
is reduced to a multiple of the unit matrix U. For the excited centre, only the
trace of the integral vanishes, because it is not in a pure s-state.
The correlation function for the hyperfine fields on two centres separated by
R is proportional to

(Hyx1(0) Hyo(R)) = 3/ 3 <, Ay, Ay, L
v on

both sums extending over all the surrounding nuclei. As their spins are not
correlated (kT > fiy H)
1

<I,uj(A2,u ¢ Alv)}'k Ivk> = 61” 67'1: <Il?k> (A2v * Alv)kk = 3

I3 0py 65x(dzy A1) )ik

13 physica (b) 50/1
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and the sum simplifies to

(Hx1(0) - Hyo(R)) = 3 3 I3 Tr (4, - 4,,) =

- 5Ly prm {%nm) U[%’f 0.r) U + f .. d3r]}=

1 64 22
= 35 0 Bn L o) lr)

The spin densities g4(1,) include only the s-component of the wave functions.
After replacing the terms (fx, I,)? by some adequate average value, the nor-
malized correlation function can be written:

0 ¥k
ray — Ho(©) - o)y _ 2em) et R ey 5 e R)

T (Hyq(0) - Hy2(0)) X l(r,) 0%(r,) [ ol(r)g%(r)dér

The centre wave functions, asymptotically of hydrogenic type, are of the
form exp (r/ry), and the densities exp (—2 r/ry). The tunnelling distance R, is
determined by the overlap of the wave functions and is a certain function of r,.
The critical correlation distance R, is therefore almost the same function but
of 7,/2, so that it should be roughly R;/2. The volume ¥ in which the factori-
zation is not possible is therefore smaller than V,, i.e. about V,/8. The correc-
tion to be brought to the expression of the quantum yield takes then the form

n=e"<Pl + S B, + 3 S B, B+ 35 5B, BB +1,
y =2 ra > =2 Vyry > =2

where

(_nVc)v 1 v v
5= O [av icen —cron.

At high field, the tunnelling probability is quasi-independent of the nuclear
configuration, so that the B’s vanish. At zero field, the inside of the tunnelling
volume ¥V, does not contribute to the integrals, because the parameter W is
there much larger than unity and the value of the brackets is very small. The
integrals are determined only by a thin surface shell (E; — 3R, < R < Ry),
in which W = 1, and since their value is small, the correction can be limited to
the first term

Ingt=nVL,PO>Q—nV,K+--), K =%de[<P%> — (Pp?].
t

The integrand is of the order of 10-2, the relative shell thickness is at most of
the order of 0.2 (because of the steepness of the function W(r)) and V, = V/8;
the correction is not larger than 10-3% V,. Since n V, << 1 for randomly
distributed F centres at concentrations of 1017 em~32 this means that correlation
effects can be neglected in the practical concentration range.

Another correction has to be introduced when the light absorption is high
enough to depopulate appreciably the ground state. If N is the incident flux
of photons (cm~2 s-1), o the F centre cross section for absorption of these pho-
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tons, and 7, the average time required for a cycle F* — F* — F°, the relative
populations p, and p, in the ground and the excited states are given by

&:NO’TC, Po+ P.=1.
Do

The probability P; has then to be corrected, because an excited centre has
a finite probability that its neighbours are also in the excited state:

Pp=p(0)-1+4p1)[py (1 — Py) +p. 1] =1 —nAV Pyp,.

The local quantum yield becomes

n = exp (—n [ dV<Py) po) -
The light absorption being a function of the penetration distance z inside a
crystal of thickness /, the average quantum yield is given by
!
f dz e-on P.,(z)po(x) e — " Vipy(e)
—_ 0
n=- 7 s
[ da e=on P py(a)
0

where
x

Py(x) = Of Pole’) da’ .

The ground state population is related to the local number of photons and to its
derivative by
oN

pt—1=g01,Nx), —a—x—:——No'npo.

It is completely determined by the number of photons N, incident on the
crystal surface (x = 0) and

N N x Nyt
. =] — = X =20
Tty =l-x

3

If N, is small, the average quantum yield can be approximated by
7 =e ntill-Nor) = Noogr,<L1.

At high flux in a crystal which does not absorb too much, p, is small and
nearly constant:

n Vt
Nyo,

ﬁ:e—anz<1_ ), Nyot,>1.

The absorption cross section amounts to some A2 (e.g. 3 A? for KCl). With
a cycle time of 10-%s, the critical flux takes a value around 3 x 102 photons/cm?s,
i.e. 1 kW/em?2. This level can be reached only with a laser, but if the tunnelling
is followed by a slow process, the cycle time can be much larger than the radiative
lifetime and saturation effects can be expected at a lower illumination power.

Other effects such as F* — F* interaction are known to play an important
role [9], but are not considered here.

13*
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5. Comparison with Experiments

The luminescent intensity has been measured below 10 °K, as a function of
a magnetic field between zero and 4 kG in KBr, KCl, and KI. Table 1 gives
the critical parameters for these substances. The quantum yield is proportional

Table 1
Nuclear magnetic field parameters on F centres (in G)
ground state relaxed
excited state <H"»
AHqpo AHyp
KCl 65 79 69
KBr 148 265 210
KI 263 570 425

to the intensity, but it is obtained only up to a multiplicative constant con-
taining geometrical factors and the excitation intensity. However, its logarithm
must be a linear function of the average tunnelling probability {P,>. This
property allows to determine the parameter W and consequently the unknown
average tunnelling frequency, by the following procedure: (P> is computed
with a Monte-Carlo program, in which the nuclear field parameters @ and a*
(obtained from EPR measurements [5]), the known applied field H, and a guessed
value of W are introduced. The logarithm of the luminescent intensity is then
plotted as a function of the computed (P,> and a new value of W is chosen

Ts
&
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Yig. 2. Experimental radiative quantum yield vs.

¥ig. 3.
computed average tunnelling probability in KI at

magnetic field in KCl at 6.8 °K.

Radiative quantum yield of ¥ centres vs.
Experimental

5.6 °K, for two concentrations. W (average tunnel fre-
quency x radiative lifetime) = 14 + 2

( ) and computed values (O) at low fields.
ogftrr =W =8 4+ 1;n Vi = 0.80; n = 3x107 ecm™%;
Ry =854
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~H, (k6)
Fig. 4. Measured radiative quantum yield of F centres vs. magnetic field £
in KCl at 1.6 °K (from Porret and Liity [4]) 5040 310 2|0 n_0

in 7}-,—>

so as to give the best alignment of the three
points corresponding to {Py(0))>, (P4 kG)), and ;
(1/2) [{P(0)> 4 (P4 kG)>]. This is enough to n=110"em”
bring all the other points on a straight line, as
it can be seen on Fig. 2, which shows the results
obtained with KI at 5.6 °’K. The slope yields
the value of the product n V,, which in turn ps-
allows to determine the absolute value of the
quantum yield. It has to be pointed out that in
this case the concentration n is different from
the average concentration measured by optical

n=15x10"emr”

|

absorption : the F centres have been produced by 7 ' I; 7
X-rays and their distribution is very inhomogene- cash X (gBHI2KT)—
ous.

The same procedure has been applied to results obtained with KCl at 6.8 °K,
with an homogeneous F-concentration of 3x10'7 cm~2. The best fit is for
W =8 4+ 1, with n ¥V, = 0.80. The effective radius for tunnelling R, is there-
fore about 85 A, in agreement with a theoretical estimate by Liity and Ferreira
[7]. In Fig. 3 we have plotted for the same crystal the calculated and the ex-
perimental values of the logarithm of the quantum yield as a function of the
applied field. The horizontal scale is not the field itself, but Hy/(H, 4 240 G)
in order to show more clearly the behaviour at high and at low field. In the
former case, the variation of log # is porportional to the inverse field H;! and
in the latter case, both calculation and experiment reveal a slight minimum
of the quantum yield at 20 G. In KBr at 6.3 °K, the result is the same, but with
W = 11.5 4+ 1. In all these substances, the average tunnelling probability lies
between 10 and 100 ns, in agreement with Ruedin’s determination of the homo-
geneous line width T';! from EPR saturation.

High-field experiments are also adequately described by this theory. In Fig. 4
we have plotted the logarithm of the inverse of the luminescent quantum yield
obtained by Porret and Liity [4] as a function of [cosh (g 8 Hy/2 kT)]~2. The
experimental points lie very near a straight line passing through the origin,
as expected from the formula derived in Section 2. The fit is better if we choose
a temperature of 1.6 °K instead of the 1.7 °K given by the authors. The fact
that the slope is not proportional to the concentration might indicate some
clustering of the centres.

6. Conclusions

The simple model developed in this paper accounts for the enhancement of
the luminescent intensity for all the values of the magnetic field. From optical
measurements only, it allows to derive the two main parameters of the tun-
nelling transfer between neighbouring centres: its average frequency and the
effective critical pair separation. The analysis of the temperature behaviour,
as performed by Ruedin and co-workers [5] can give information on the spin-
lattice relaxation by a non-resonant method. Although the large critical pair
separation can be explained by the extension of the wave functions, the zero-
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point optical longitudinal vibrations of the lattice must significantly influence
the tunnelling process. They produce random electric fields to which the elec-
tronic wave functions have plenty of time to adjust. The r.m.s. potential
difference between two points at the critical distance can be estimated to lie
between 0.1 and 1 V. Since the separation between the conduction band and
the F centre relaxed excited state is at most 0.15 eV (value for KCl), the random
field should assist the electron transfer. A refined theory should therefore con-
sider also the lattice vibrations and the phonons.
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