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Whenever a member of a F centre pair is excited optically a t  low temperature, it  can 
return to  the ground state either radiatively or by formation of a F‘ centre, the excited 
electron being transferred by a fast tunnel effect t o  the neighbouring centre. This process 
is dependent on the spin symmetry of the pair, whichisin turndetermined by the competitive 
influence of the different local hyperfine fields and of an applied magnetic field. The latter 
causes a decrease of the tunnelling probability, i.e. an increase of the luminescent yield in 
two steps; the first critical value is given by the hyperfine field and the second one by the 
temperature according t o  the Boltzmann factor. The quantum yield is found to  have an 
exponential dependence of the concentration, of the volume in which tunnelling is possible, 
and of the average tunnelling frequency. Spin-lattice relaxation and EPR, by mixing 
between the spin state populations, reduce the effect. Application of the theory t o  experi- 
mental values obtained for the luminescence intensity as a function of the applied field in 
KI, KCl, and KBr yields the average tunnelling frequency (about ten times the radiative 
probability), the effective range (85 A), and the absolute value of the luminescent quantum 
yield. 

Lorsqu’un membre d’une paire de centres F est excite optiquement a basse tempbrature, 
il peut retourner a 1’Btat fondamental soit radiativement, soit en formant un  centre F’, 
1’6lectron excitk &ant transfBr6 par un effet tunnel rapide au centre voisin. Ce processus 
est ddpendant de la symktrie de spin de la paire qui est a son tour dBtermin6e par l’influence 
concurrentielle des diffhrents champs hyperfins e t  d’un champ magn6tique appliquk. Ce 
dernier cause une diminution de la probabilite de tunnel, c’est-8-dire une augmentation 
du rendement luminescent en deux Btapes, la premi+re valeur critique Btant donnee par 
le champ hyperfin e t  la seconde par la temphature (selon le factenr de Boltzmann). On 
trouve que 1e rendement quantique est une fonction exponentielle de la concentration, du 
volume dans lequel I’effet tunnel est possible, ainsi que de la Wquence moyenne de transfert. 
La relaxation spin-r6seau et  la RPE, en redistribuant les spins entre leurs divers &tats, 
rkduisent cet effet. Cette thborie est appliquke It des mesures faites dans K J ,  KCI et  KBr de 
I’intensitB de la luminescence en fonction du champ magnktique. On en tire la frhquence de 
tunnel moyenne (environ dix fois la probabilite radiative), la distance efficace (85 A) e t  la 
valeur absolue du rendement quantique luminescent. 

1. Introduction 

F centres are among the simplest defects in ionic crystals : an electron located 
in an anion vacancy. Although they have been discovered fourty years ago 
and studied quite intensively in the last two decades, the phenomena following 
a photon absorption still present interesting problems. F centres spend only 
about 10-l2 s in the excited state F*. The lattice responds to  the change of the 
electron distribution by a local relaxation, dissipating part of the energy and 
leading to  a relaxed excited state F*. At low temperature, an isolated centre 
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remains in this state for a relatively long time (between 1 and 0.1 ps in most of 
alkali halides) before it emits a photon and returns to  the ground state [l]. 
I n  this case, the luminescent quantum yield, defined as the ratio “number of 
emitted photons to  number absorbed of photons”, is unity. At higher temper- 
ature (above 100 OK), the electron has the possibility t o  be thermally activated 
into the conduction band, from which it decays to  the ground state by non- 
radiative processes. This produces a decrease of both the quantum yield and 
the average lifetime, as it has been observed by Bosi et al. [2]. If the F centre 
concentration is high enough, there is a finite probability that two centres form 
a pair within a certain critical distance. Markham et  al. [3] suggested for this 
case a third disexcitation path : the electron of the excited centre is transferred 
by tunnel effect to  its neighbour, thereby forming a F’ centre and an anion 
vacancy, and the pair returns then to  its ground state Fn + Fo by some non- 
radiative mechanism. The existence of this process has been demonstrated by 
Porret and Liity [4]: a t  1.7 OK a magnetic field of 80 kG polarizes the spins 
completely. Since the two electrons of the F’ centre in its ground state must 
have antiparallel spins, the transfer is no longer possible. This produces an 
increase of the radiative quantum yield because the radiative process is the only 
way left for the disexcitation. Such a pair effect confers also to the lumines- 
cent yield a strong dependence of the F concentration, as it has been discovered 
by Miehlich [6]. This mechanism is also supported by experiments performed 
in our laboratory by Ruedin and co-workers [5 ]  who detected optically the 
paramagnetic resonance of the F centre in its ground and excited state. 

A closer investigation of the variation of the luminescence intensity induced 
by a magnetic field has revealed a first stage of this effect, occurring a t  low 
fields of the order of the measured EPR linewidth. Typically a quantum yield 
increase of some ten percent is observed in crystals having F centres per 
cm3. This can be explained by a competing influence on the pairs of the applied 
field and of the local hyperfine fields, which changes the character of the wave 
functions and therefore strongly modify the tunnel probability. 

This paper attempts to  calculate the spin state of a two-electron pair @* + F 
and its implication for tunnelling by taking into account the centre concen- 
tration. The effects of the spin-lattice relaxation and of a microwave field are 
considered, as well as effects of second order such as the centre correlation and 
the exciting light intensity. I n  the last section, experiments performed on KC1, 
KBr, and K I  are compared with the theory and the tunnelling parameters are 
determined. 

2. Pair States and Tunnelling 

We consider first a @* + F pair a t  liquid helium temperature. In  this range, 
the Boltzmann factor for the nuclear spins is very near unity, so that the 
nuclear orientations can be assumed to  be distributed a t  random. Moreover, 
the nuclear spin-lattice relaxation time is certainly longer than the characteristic 
times we are dealing with, i.e. 1 ps, so that  the nuclear field is quasi-stationary. 
We assume also that  the interval between the pair members is small enough 
to ensure a finite tunnelling probability, but large enough to make the two local 
nuclear fields H ,  and HZ different. If €fn is the applied field, the centres are 
subjected to €I = H,, + €i, and H* = H, + H$ = H + H’, with the field 
difference H’ = H;S - HN (Fig. 1). 
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Fig. 1. Magnetic fields acting on F centres: Ho is thc applied field, H N  and H E  
are the local hyperfine fields 

H 

At zero local field H = H* = 0, the two-electron system of the pair can be 
described by a symmetric and an antisymmetric combination of the single- 
centre osbital wave functions ip and cp* : 

t o  be multiplied by spin functions of the opposite symmetry 

The products should be eigenfunctions of an orbital Hamiltonian in which the 
spin-orbit coupling is accounted for. 

The interaction between the spins and the magnetic fields can be described 
by the following Hamiltonian : 

Since the fields are space-dependent, Si should act on the first electron for 
the part of the wave function containing c p * ( l )  and S, for the part of the wave 
function containing v( 1). A corresponding condition applies to the second 
electron. 

The exact diagonalization of the Hamiltonian operator yields the four eigen- 
states, in which the angle y between H and H* governs the amount of mixing: 
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The corresponding energies are 

82,s  = f (p* 1 B H* - I g p H ) .  2 

This procedure is correct i f 9  and q* are orthogonal. But since we deal with 
a tunnel effect, we have to  assume some overlap, and therefore to consider the 
system above as a first approximation. 

For magnetic fields smaller than 5 kG (a t  LHeT), the occupation probability 
for each of the four states is equal to  114. At higher fields, the Boltzmann factor 
has to  be considered. However, as  long as the spin-lattice relaxation time is 
longer than the radiative lifetime [ 5 ] ,  an electronin the relaxed excited state has 
no time to  thermalize, so that  the occupation probabilities are determined by 
those of the ground state. The occupation probabilities are then 

cash (9 B HoIkT) 
" + " = 2 cosh2 (g Ho/2  k T )  ' 

1 
2 cosh2 (9 B Ho/2 k T )  

+ yg = ~~~ 

if we assume 
l ~ o l > l ~ s l  and l%l. 

In  the final state of the tunnelling process, both electrons form a F' centre and 
have the same orbital wave function but an antisymmetric spin function. 
For each of the initial states the tunnelling frequency has therefore the following 
form : 

The function wto(R) depends only upon the orbital parts of the wave functions 
and varies strongly with the pair interval R [7, 81. 

If we define W ( R )  = wto(R)/w, by taking the radiative transition probability 
for the g* centre w, as a unit, the tunnelling probability for one pair becomes 
a t  low field ( H ,  < 5 kG) 

and a t  high field (Ho  > 5 kG) 

The number of pairs can be evaluated from the centre concentration n if one 
assumes a random spatial distribution of the centres. A single excited centre 
can have several neighbours within a tunnelling distance and this can be ac- 
counted for by the following consideration. Each excited centre is placed a t  the 
origin of a coordinate system, and the volume around it is divided in small 
elements AV, numbered with an index j. The probability of having 0, 1 ,2 ,  . . . 
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neighbours in such volumes is then given by Poisson's law : 

p ( 0 )  = exp (- n A V )  = 1 - n A V  , 
p ( 1 )  = n A V  exp ( -  n A V )  = n AT', 

p ( 2 )  m p ( 3 )  m * . = 0 .  

The luminescence probability is given by 

P, = ~ ( 0 )  1 + ~ ( 1 )  (1  - Pt) = 1 - TL A V  Pt . 
The radiative quantum yield of each g* centre is just the probability that  its 
electron does not tunnel toward any neighbour situated in any volume element : 

7 = 17 [1 - n A V  Pt(rj)] = 1 - n 2 A V  Pt(r,) + 
1 1 

i i 

+2 f ~ k l  

The total luminescent quantum yield is the average of this expression for all 
combinations of Pt(r , ) ,  i.e. for all the combinations of the nuclear fields Hx 
and Hg. 

n2 c c ( A V  Pt(r,) - -g n3 z c c ( A V 3  Pt(r,) Pt(rd Pt(r,)+. * +  . 

Let us assume first that  these fields are not correlated. Then we have 

(Pt(r,) P t ( r 2 )  * * . PAY,)> = (Pt(T1)) (Pt(rz)> * * * <Pt(r,)> = (Pt(r)>j * 

Having introduced this relation into the previous formula the developement of 
the exponential function appears and in the limit A V  --f 0 i t  is 

7 = exp ( -  n IdV <Pt(r)>) . 
The quantum yield is an exponential function of the concentration and of the 
space integral of the average tunnelling probability, in agreement with Mieh- 
lich's observations [S]. 

This last formula can be calculated exactly only for two special cases. At 
zero field Ho = 0, the angle lies directly between HN and Hg and the average 
of Pt(r) for an isotropic space distributions of both of them gives 

21/2 4 (P,(H, = 0)) = I - -+y In (1 + ~/(/2). w w  
At very high field, above 5 kG, the angle y tends toward zero and 

< P t ( W O l  > IHNI, IfGI)) = P z t  (R $!) = 

These two quantities as functions of W are not very different numerically. 
We can then define a single critical distance R t  for the tunnelling and the cor- 
responding critical volume V ,  by 



192 C. JACCARD, Y. RUEDIN, M. AEGERTER, and P.-A. SCHNEUG 

The quantum yield can then be written as 

7 = exp (- V, (PJ )  . 

For intermediate values of H,, the averaging has to  be taken over all pairs of 
HN and H-5 and must be computed. 

3. Spin-Lattice Relaxation and EPR 

A t  temperature higher than 10 OK, the spin-lattice relaxation time in the 
excited state decreases and mixes up the population of the different pair states 
within the radiative lifetime [ti], changing thereby the average tunnelling 
probability. The four pair states can be reduced to  two species with regard to  
the tunnelling probability. 

If r is the spin-lattice relaxation frequency divided by w, and 

At zero applied field, both W,  and W ,  are large within V ,  and the relaxation 
has no effect on P,. At high fields ( k T / g  p > H,, > H N ) ,  W,  = 0 and 

The average tunnelling probability varies then between 1/2 a t  low temperature 
(i.e. small r )  and 1 a t  high temperature (i.e. large r ) .  I n  this case, the field effect 
disappears. 

If a microwave field of suitable frequency is present, its effect is to  enhance 
the transfer between the spin states and to  reinforce the effect of the spin-lattice 
relaxation. One can then account for it formally by replacing r by r + m. 
This last quantity, normalized with respect t o  wr, involves the microwave 
power, geometrical factors, etc., as well as the resonant frequency dependence. 
If the EPR is detected optically by monitoring the luminescence intensity 
(proportional to  the quantum yield 7 )  as a function of the applied field, the 
signal is defined by 

- - [r (m 4 0) - 7 (nz = 0)l - 
7 (m = 0) 

S"spn = 

= exp { - n Vt [(Pt  (m $; 0)) - ( P t  (m = O))]} - 1 5 0 .  

As the EPR is performed a t  3 kG, we are in the high-field case with W, = 0. 
As only the centres for which W ,  > 1 are effective, the change of the tunnelling 
probability can be simplified to  
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The EPR signal obeys then the relation 

It reveals the resonance in the ground state and in the excited state, because the 
flip of a single spin suffices to  switch a pair into another state. The observed 
resonances are not sharp because of the unresolved hyperfine splitting. They 
are Gaussian peaks and their width is directly related to  the distribution of the 
nuclear fields. Assuming for them an isotropic Gaussian distribution of the form 

it can be shown that the field difference H‘ has the same distribution with 
a’-2 = a-2 + a*-2. The average field difference can be determined experi- 
mentally from the EPR by 

(H’) = 0.677 (AH212 + AH$Z)~/~ ) 

where AH,,, is the full width a t  half height of the resonance curve. The width 
of the elementary homogeneous line T;l is equal to  the inverse of the average 
lifetime before tunnelling, i.e. W w,. 

4. Second-Order Effects 

In  the calculation of the luminescent quantum yield, we have assumed that  
the tunnelling probabilities for different centres are independent, so that the 
average of the products factorizes. This is true for well-separated centres, but 
as we require a minimum of proximity to  ensure a tunnel effect, we have to  
examine how a correlation can change the results. The contribution of a single 
nucleus to  the hyperfine field can be expressed by its spin multiplied by a matrix 
A containing the Fermi contact term and the dipole4ipole interaction: 

The pairs that  we consider contain always a centre with an electron in its 
ground state. I t s  spin distribution around each nucleus is spherically symmetric 
(s-state), so that  the interaction integral vanishes identically and the matrix A 
is reduced to  a multiple of the unit matrix U .  For the excited centre, only the 
trace of the integral vanishes, because it is not in a pure s-state. 

The correlation function for the hyperfine fields on two centres separated by 
R is proportional to  

(mVl(0) fZNZ(R)> = 2 2 (4l A Z P  Alv 1”) 
V P  

both sums extending over all the surrounding nuclei. As their spins 
correlated (kT > PN H) 

are not 

A l v ) k k  

13 physica (b) 50/1 
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and the sum simplifies to  

The spin densities e,(rv) include only the s-component of the wave functions. 
After replacing the terms ( P N v  I,)2 by some adequate average value, the nor- 
malized correlation function can be written : 

The centre wave functions, asymptotically of hydrogenic type, are of the 
form exp (rlr,,), and the densities exp ( - 2  r / ro) .  The tunnelling distance R, is 
determined by the overlap of the wave functions and is a certain function of r,,. 
The critical correlation distance R, is therefore almost the same function but 
of r0/2, so that it should be roughly Rt/2. The volume V ,  in which the factori- 
zation is not possible is therefore smaller than V, ,  i.e. about V, /8 .  The correc- 
tion to be brought to  the expression of the quantum yield takes then the form 

where 

B,  = (-  “)” L S d V  [ ( P i )  - (P,)”] . 
Y !  vt 

At high field, the tunnelling probability is quasi-independent of the nuclear 
configuration, so that  the B‘s vanish. At zero field, the inside of the tunnelling 
volume V, does not contribute to  the integrals, because the parameter W is 
there much larger than unity and the value of the brackets is very small. The 
integrals are determined only by a thin surface shell (R, - BR, < R < R,), 
in which W = 1, and since their value is small, the correction can be limited to  
the first term 

l n q - l x n V t ( P t ) ( l  - n V , K + - - - ) ,  K = -  S d V  Wt) - ( P , ) 2 ] .  

The integrand is of the order of the relative shell thickness is a t  most of 
the order of 0.2 (because of the steepness of the function W ( r ) )  and VTc x V,/8 ; 
the correction is not larger than 10-3 n V,. Since n Vt 5 1 for randomly 
distributed F centres a t  concentrations of 1017 0111-3 this means that correlation 
effects can be neglected in the practical concentration range. 

Another correction has to  be introduced when the light absorption is high 
enough to  depopulate appreciably the ground state. If N is the incident flux 
of photons s-l), (T the F centre cross section for absorption of these pho- 

2 vt 
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tons, and t, the average time required for a cycle FO - e* - FO, the relative 
populations po and pe in the ground and the excited states are given by 

The probability PL has then to  be corrected, because an excited centre has 
a finite probability that its neighbours are also in the excited state : 

PI, = P ( 0 )  * 1 + 241) [Po (1 - Pt) + P, 11 = 1 - n A v  pt P o .  

q = exp ( -  n J dV<Pt) P o ) .  

The local quantum yield becomes 

The light absorption being a function of the penetration distance x inside a 
crystal of thickness I ,  the average quantum yield is given by 

I 
j dx e-o"Po(")po(x) e-nVtPo(d 
0 - ql = ..__._ ~~ 

1 
j dx e-onpo(z) po(x)  

0 

where 
X 

Po(%) = J p0(x') d d  . 
0 

The ground state population is related to  the local number of photons and to  its 
derivative by 

- N a n p a .  - aN 
p0-l - 1 = 0. t, N ( x )  , -- - 

ax 

It is completely determined by the number of photons No incident on the  
crystal surface (z = 0) and 

If No is small, the average quantum yield can be approximated by 
- ql = e - n v t ( l -  S,OS, )  , N , a t , < l .  

At high flux in a crystal which does not absorb too much, po is small and 
nearly constant : 

The absorption cross section amounts to some Az (e.g. 3 Az for KC1). With 
a cycle time of 10-6s, the critical flux takes a value around 3 x loz1 photons/cm2s, 
i.e. 1 kW/cm2. This level can be reached only with a laser, but if the tunnelling 
is followed by a slow process, the cycle time can be much larger than the radiative 
lifetime and saturation effects can be expected a t  a lower illumination power. 

Other effects such aa @* - F* interaction are known t o  play an important 
role [9], but are not considered here. 

13' 
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relaxed 
excited state 

AH112 

5. Comparison with Experiments 

The luminescent intensity has been measured below 10 OK, as a function of 
a magnetic field between zero and 4 kG in KBr, KC1, and KI. Table 1 gives 
the critical parameters for these substances. The quantum yield is proportional 

Table 1 

Nuclear magnetic field parameters on F centres (in G) 

( H ' )  

KCI 
KBr 
KI 

79 
265 
570 

ground state 

69 
210 
425 

65 
148 
263 

to the intensity, but it is obtained only up to  a multiplicative constant con- 
taining geometrical factors and the excitation intensity. However, its logarithm 
must be a linear function of the average tunnelling probability <Pt) .  This 
property allows to  determine the parameter W and consequently the unknown 
average tunnelling frequency, by the following procedure : ( Pt> is computed 
with a Monte-Carlo program, in which the nuclear field parameters a and a* 
(obtained from EPR measurements [5]), the known applied fieldH, and a guessed 
value of W are introduced. The logarithm of the luminescent intensity is then 
plotted as a function of the computed (Pt> and a new value of W is chosen 

0.91 
b 

2 090 

089 

0 88 
0.72 

06 0.7 08 
4 -  

Big. 2. Experimental radiative quantum yield vs. 
computed average tunnelling probability in XI at 
5.6 OK, for two concentrations. W (average tunnelfre- 

quency x radiative lifetime) = 14 & 2 

I I  I I l l  I I 
0 25 50 100 ZOO 300 500 1000 IoM 

H (61 - 
Fig. 3. Radiative quantum yield of Y rentres vs. 
magnetic field in KC1 at 6.8 OK. Experimental 
(-) and computed values (0) at low fields. 
oh/wr = TI' = 8 1; n Vt = 0.80; n = 3 x 10" cm-a; 

Rt = 85 A 
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Fig. 4. Yeasured radiative quantum yield of F centres vs. magnetic field 
in RC1 at 1.6 'K (from Porret and Luty [4]) 

so as to  give the best alignment of the three 
points corresponding to (Pt(0)), (Pt(4 kG)), and 
(1/2) [(PJO)) + <P,(4  kG))] . This is enough to  
bring all the other points on a straight line, as 
it can be seen on Fig. 2 ,  which shows the results 
obtained with KI at 5.6 OK. The slope yields 
the value of the product n V t ,  which in turn 
allows to  determine the absolute value of the 
quantum yield. It has to  be pointed out that  in 
this case the concentration n is different from 
the average concentration measured by optical 
absorption : the F centres have been produced by 
X-rays and their distribution is very inhomogene- 
ous . 

The same procedure has been applied to  results obtained with KC1 at 6.8 OK, 

with an homogeneous F-concentration of 3 x lo1' The best fit is for 
W = 8 & 1,  with n Vt = 0.80. The effective radius for tunnelling Rt is there- 
fore about 85 A, in agreement with a theoretical estimate by Luty and Ferreira 
[7]. I n  Fig. 3 we have plotted for the same crystal the calculated and the ex- 
perimental values of the logarithm of the quantum yield as a function of the 
applied field. The horizontal scale is not the field itself, but Ho/(Ho + 240 G) 
in order to  show more clearly the behaviour a t  high and a t  low field. I n  the 
former case, the variation of log 7 is porportional to  the inverse field H c l  and 
in the latter case, both calculation and experiment reveal a slight minimum 
of the quantum yield a t  20 G .  In  KBr a t  6.3 OK, the result is the same, but with 
W = 11.5 & 1. I n  all these substances, the average tunnelling probability lies 
between 10 and 100 ns, in agreement with Ruedin's determination of the homo- 
geneous line width T;l from EPR saturation. 

High-field experiments are also adequately described by this theory. I n  Fig. 4 
we have plotted the logarithm of the inverse of the luminescent quantum yield 
obtained by Porret and Luty [4] as a function of [cosh ( g p  H0/2  k2')]-2. The 
experimental points lie very near a straight line passing through the origin, 
as expected from the formula derived in Section 2. The fit is better if we choose 
a temperature of 1.6 O K  instead of the 1.7 OK given by the authors. The fact 
that  the slope is not proportional to the concentration might indicate some 
clustering of the centres. 

6. Conclusions 

The simple model developed in this paper accounts for the enhancement of 
the luminescent intensity for all the values of the magnetic field. From optical 
measurements only, it allows to  derive the two main parameters of the tun- 
nelling transfer between neighbouring centres : its average frequency and the 
effective critical pair separation. The analysis of the temperature behaviour, 
as performed by Ruedin and co-workers [5] can give information on the spin- 
lattice relaxation by a non-resonant method. Although the large critical pair 
separation can be explained by the extension of the wave functions, the zero- 
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point optical longitudinal vibrations of the lattice must significantly influence 
the tunnelling process. They produce random electric fields to  which the elec- 
tronic wave functions have plenty of time to  adjust. The r.m.s. potential 
difference between two points a t  the critical distance can be estimated to lie 
between 0.1 and 1 V.  Since the separation between the conduction band and 
the F centre relaxed excited state is a t  most 0.15 eV (value for KCl), the random 
field should assist the electron transfer. A refined theory should therefore con- 
sider also the lattice vibrations and the phonons. 
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