КРИСТАЛЛОГРАФИЯ, 1994, том 39, № 3, с. 558 - 560

КРАТКИЕ СООБЩЕНИЯ

УДК 548.737

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ЭФИРА ПОЛИКРЕМНИЕВОЙ КИСЛОТЫ [Si(CH₃)₃]₆Si₆O₁₅

© 1994 г. Ю. И. Смолин, Ю. Ф. Шепелев, Д. Хоббель*

Институт химии силикатов РАН
*Университет, Саарбрюкен, Германия
Поступила в редакцию 21.12.93 г.

Силикатный аног в виде сдвоенного тройного кольца из кремнекислородных тетраздров был впервые обнаружен при определении структуры дисиликата этилендиамина [1]. Далее нами была определена кристаллическая структура силиката тетразтиламмония [N(C₂H₅)₄]₀Si₆O₁₅ · 57H₂O [2], где также реализуется кремнекислородный радикал в виде сдвоенного кольца. Ниже описывается структура эфира полицремниевой кислоты, полученного реакцией триметилсиллирования силиката тетразтиламмония [3]. Прозрачные бесцветные кристаллы эфира были выращены

Таблица 1. Координаты атомов и эквивалентные температурные факторы

<table>
<thead>
<tr>
<th>Атом</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B₁₁₁, Å²</th>
<th>Атом</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B₁₁₁, Å²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(1)</td>
<td>0.3472(3)</td>
<td>0.2150(2)</td>
<td>0.8670(5)</td>
<td>4.94</td>
<td>O(12)</td>
<td>0.4794(7)</td>
<td>0.2151(6)</td>
<td>0.693(1)</td>
<td>8.6</td>
</tr>
<tr>
<td>Si(2)</td>
<td>0.7718(2)</td>
<td>0.2413(3)</td>
<td>0.5795(5)</td>
<td>3.99</td>
<td>O(13)</td>
<td>0.8598(8)</td>
<td>0.1439(6)</td>
<td>0.115(1)</td>
<td>3.07</td>
</tr>
<tr>
<td>Si(3)</td>
<td>0.9291(3)</td>
<td>0.2502(3)</td>
<td>0.7316(5)</td>
<td>6.24</td>
<td>O(14)</td>
<td>0.7324(7)</td>
<td>0.0710(6)</td>
<td>0.626(1)</td>
<td>8.7</td>
</tr>
<tr>
<td>Si(4)</td>
<td>0.8579(3)</td>
<td>0.1673(3)</td>
<td>0.9789(5)</td>
<td>5.28</td>
<td>O(15)</td>
<td>0.9995(7)</td>
<td>0.0850(6)</td>
<td>0.885(1)</td>
<td>7.5</td>
</tr>
<tr>
<td>Si(5)</td>
<td>0.7837(3)</td>
<td>0.1235(3)</td>
<td>0.6908(5)</td>
<td>4.45</td>
<td>C(1)</td>
<td>0.292(2)</td>
<td>0.050(2)</td>
<td>0.924(5)</td>
<td>20.2</td>
</tr>
<tr>
<td>Si(6)</td>
<td>0.9401(2)</td>
<td>0.1321(2)</td>
<td>0.8424(5)</td>
<td>4.35</td>
<td>C(2)</td>
<td>0.416(3)</td>
<td>0.112(2)</td>
<td>0.184(5)</td>
<td>23.0</td>
</tr>
<tr>
<td>Si(7)</td>
<td>0.3652(4)</td>
<td>0.0977(3)</td>
<td>0.0098(6)</td>
<td>10.21</td>
<td>C(3)</td>
<td>0.438(2)</td>
<td>0.067(2)</td>
<td>0.968(5)</td>
<td>19.5</td>
</tr>
<tr>
<td>Si(8)</td>
<td>0.1391(3)</td>
<td>0.2074(3)</td>
<td>0.3175(6)</td>
<td>7.26</td>
<td>C(4)</td>
<td>0.150(2)</td>
<td>0.166(2)</td>
<td>0.193(3)</td>
<td>12.0</td>
</tr>
<tr>
<td>Si(9)</td>
<td>0.5528(4)</td>
<td>0.1837(3)</td>
<td>0.7223(7)</td>
<td>8.49</td>
<td>C(5)</td>
<td>0.102(2)</td>
<td>0.162(1)</td>
<td>0.405(4)</td>
<td>14.4</td>
</tr>
<tr>
<td>Si(10)</td>
<td>0.8456(3)</td>
<td>0.1549(3)</td>
<td>0.2426(6)</td>
<td>5.31</td>
<td>C(6)</td>
<td>0.577(2)</td>
<td>0.230(1)</td>
<td>0.235(3)</td>
<td>13.6</td>
</tr>
<tr>
<td>Si(11)</td>
<td>0.6879(3)</td>
<td>0.0228(3)</td>
<td>0.5157(7)</td>
<td>8.47</td>
<td>C(7)</td>
<td>0.545(2)</td>
<td>0.165(2)</td>
<td>0.559(4)</td>
<td>16.6</td>
</tr>
<tr>
<td>Si(12)</td>
<td>0.0452(3)</td>
<td>0.0416(3)</td>
<td>0.8418(6)</td>
<td>6.31</td>
<td>C(8)</td>
<td>0.623(1)</td>
<td>0.237(2)</td>
<td>0.800(4)</td>
<td>14.4</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.2770(5)</td>
<td>0.2256(5)</td>
<td>0.713(1)</td>
<td>4.79</td>
<td>C(9)</td>
<td>0.567(3)</td>
<td>0.126(1)</td>
<td>0.823(6)</td>
<td>21.5</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.4174(5)</td>
<td>0.2169(5)</td>
<td>0.849(1)</td>
<td>4.89</td>
<td>C(10)</td>
<td>0.863(2)</td>
<td>0.089(2)</td>
<td>0.343(4)</td>
<td>18.1</td>
</tr>
<tr>
<td>O(3)</td>
<td>0.8504(6)</td>
<td>0.2345(5)</td>
<td>0.969(1)</td>
<td>2.84</td>
<td>C(11)</td>
<td>0.928(1)</td>
<td>0.186(1)</td>
<td>0.389(3)</td>
<td>15.8</td>
</tr>
<tr>
<td>O(4)</td>
<td>0.8509(5)</td>
<td>0.2440(5)</td>
<td>0.593(1)</td>
<td>4.63</td>
<td>C(12)</td>
<td>0.772(2)</td>
<td>0.196(2)</td>
<td>0.205(3)</td>
<td>17.1</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.7519(5)</td>
<td>0.1758(5)</td>
<td>0.587(1)</td>
<td>4.51</td>
<td>C(13)</td>
<td>0.633(2)</td>
<td>0.059(1)</td>
<td>0.339(3)</td>
<td>14.3</td>
</tr>
<tr>
<td>O(6)</td>
<td>0.9626(5)</td>
<td>0.1886(5)</td>
<td>0.789(1)</td>
<td>5.36</td>
<td>C(14)</td>
<td>0.254(2)</td>
<td>0.028(2)</td>
<td>0.498(5)</td>
<td>18.5</td>
</tr>
<tr>
<td>O(7)</td>
<td>0.8614(5)</td>
<td>0.1108(5)</td>
<td>0.719(1)</td>
<td>4.36</td>
<td>C(15)</td>
<td>0.373(3)</td>
<td>0.009(2)</td>
<td>0.440(6)</td>
<td>19.5</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.7909(5)</td>
<td>0.1409(5)</td>
<td>0.837(1)</td>
<td>5.10</td>
<td>C(16)</td>
<td>0.082(2)</td>
<td>0.085(1)</td>
<td>0.751(3)</td>
<td>12.4</td>
</tr>
<tr>
<td>O(9)</td>
<td>0.9287(6)</td>
<td>0.1475(5)</td>
<td>0.973(1)</td>
<td>2.77</td>
<td>C(17)</td>
<td>0.121(1)</td>
<td>0.014(1)</td>
<td>0.009(2)</td>
<td>9.0</td>
</tr>
<tr>
<td>O(10)</td>
<td>0.3413(8)</td>
<td>0.1561(6)</td>
<td>0.927(2)</td>
<td>10.1</td>
<td>C(18)</td>
<td>0.019(1)</td>
<td>0.015(1)</td>
<td>0.261(3)</td>
<td>13.0</td>
</tr>
<tr>
<td>O(11)</td>
<td>0.2143(6)</td>
<td>0.2306(6)</td>
<td>0.435(1)</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

558
Рис. 1. Молекула \([\text{Si(CH}_3\text{)}_3]_3\text{Si}_9\text{O}_{15}\).

Рис. 2. Кремнекислородный радикал \([\text{Si}_5\text{O}_{13}]^{6-}\) в структуре силиката тетраэтиламмония.
<table>
<thead>
<tr>
<th>Си(1)–О(1)</th>
<th>1.63(1)</th>
<th>Си(2)–О(1)</th>
<th>1.61(1)</th>
<th>Си(3)–О(2)</th>
<th>1.63(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–О(2)</td>
<td>1.60(2)</td>
<td>–О(4)</td>
<td>1.62(1)</td>
<td>–О(4)</td>
<td>1.61(1)</td>
</tr>
<tr>
<td>–О(3)</td>
<td>1.62(1)</td>
<td>–О(5)</td>
<td>1.61(1)</td>
<td>–О(6)</td>
<td>1.60(1)</td>
</tr>
<tr>
<td>–О(10)</td>
<td>1.57(2)</td>
<td>–О(11)</td>
<td>1.59(1)</td>
<td>–О(12)</td>
<td>1.57(2)</td>
</tr>
<tr>
<td>Си(4)–О(3)</td>
<td>1.58(1)</td>
<td>Си(5)–О(5)</td>
<td>1.58(1)</td>
<td>Си(6)–О(6)</td>
<td>1.62(1)</td>
</tr>
<tr>
<td>–О(8)</td>
<td>1.63(1)</td>
<td>–О(7)</td>
<td>1.56(1)</td>
<td>–О(7)</td>
<td>1.63(1)</td>
</tr>
<tr>
<td>–О(9)</td>
<td>1.61(1)</td>
<td>–О(8)</td>
<td>1.58(1)</td>
<td>–О(9)</td>
<td>1.61(1)</td>
</tr>
<tr>
<td>–О(13)</td>
<td>1.58(2)</td>
<td>–О(14)</td>
<td>1.57(1)</td>
<td>–О(15)</td>
<td>1.57(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Си(7)–О(10)</th>
<th>1.58(2)</th>
<th>Си(8)–О(11)</th>
<th>1.58(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–С(1)</td>
<td>1.77(4) (1.85)</td>
<td>–С(4)</td>
<td>1.78(4) (1.86)</td>
</tr>
<tr>
<td>–С(2)</td>
<td>1.69(4) (1.87)</td>
<td>–С(5)</td>
<td>1.85(4) (1.94)</td>
</tr>
<tr>
<td>–С(3)</td>
<td>1.84(5) (2.00)</td>
<td>–С(6)</td>
<td>1.89(3) (1.98)</td>
</tr>
<tr>
<td>Си(9)–О(12)</td>
<td>1.62(2)</td>
<td>Си(10)–О(13)</td>
<td>1.59(2)</td>
</tr>
<tr>
<td>–С(7)</td>
<td>1.77(5) (1.89)</td>
<td>–С(10)</td>
<td>1.82(4) (1.94)</td>
</tr>
<tr>
<td>–С(8)</td>
<td>1.82(3) (1.90)</td>
<td>–С(11)</td>
<td>1.84(2) (1.94)</td>
</tr>
<tr>
<td>–С(9)</td>
<td>1.68(5) (1.85)</td>
<td>–С(12)</td>
<td>1.71(4) (1.82)</td>
</tr>
<tr>
<td>Си(11)–О(14)</td>
<td>1.58(1)</td>
<td>Си(12)–О(15)</td>
<td>1.63(2)</td>
</tr>
<tr>
<td>–С(13)</td>
<td>1.89(3) (1.97)</td>
<td>–С(16)</td>
<td>1.84(4) (1.91)</td>
</tr>
<tr>
<td>–С(14)</td>
<td>1.78(5) (2.01)</td>
<td>–С(17)</td>
<td>1.87(2) (1.90)</td>
</tr>
<tr>
<td>–С(15)</td>
<td>1.76(7) (2.01)</td>
<td>–С(18)</td>
<td>1.84(3) (1.92)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Си(1)–О(1)–Си(2)</th>
<th>128.9(8)</th>
<th>Си(1)–О(2)–Си(3)</th>
<th>129.0(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Си(1)–О(3)–Си(4)</td>
<td>138.4(9)</td>
<td>Си(2)–О(4)–Си(3)</td>
<td>129.4(9)</td>
</tr>
<tr>
<td>Си(2)–О(5)–Си(5)</td>
<td>138.6(6)</td>
<td>Си(3)–О(6)–Си(6)</td>
<td>136.8(8)</td>
</tr>
<tr>
<td>Си(5)–О(7)–Си(6)</td>
<td>131.7(9)</td>
<td>Си(4)–О(8)–Си(4)</td>
<td>131.6(6)</td>
</tr>
<tr>
<td>Си(4)–О(9)–Си(6)</td>
<td>131.1(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

изотермическим испарением раствора эфира в ацетоне. Кристаллы монохлорные со следующими параметрами элементарной ячейки: a = 21.39(1), b = 23.51(1), c = 10.96(1) Å, β = 119.75(5)°; Z = 4, пр. гр. P21/c. Измерение интенсивностей рентгеновских отражений выполнено на автоматическом трехкружном дифрактометре, работающем по схеме перпендикулярного пучка. Использовалось монохроматическое MoKα-излучение. Всего измерено 1578 ненулевых независимых отражений. Измеренные отражения исправлялись на LP фактор, поправка на поглощение ввиду ее малости не вводилась. Определение структуры выполнено с использованием функции Патерсона. Серий последовательных разностных синтезов электронной плотности с промежуточным уточнением МНК определены положения атомов, не локализованных из анализа межатомной функции.

Уточнение структуры МНК [4] с использованием анизотропных температурных факторов привело к окончательному значению R-фактора 0.07 по всем измеренным рефлексам. Результаты уточнения приведены в табл. 1. В ячейке кристалла молекула [Si(CH3)3]4Si6O16 занимает общее положение. На рис. 1 эта молекула представлена в виде эллипсоидов тепловых колебаний атомов.

В табл. 2 приведены межатомные расстояния и углы. Как и в других структурах, температурные факторы атомов триметилсилильных групп весьма велики, поэтому в таблице наряду с расстояниями, вычисленными по координатам, полученными из МНК, приводятся в скобках и расстояния, вычисленные с учетом поправки на тепловые колебания (атом C колеблется в фазе с атомом Si). Ядро молекулы представляет собой единое тройное кольцо Si6O15, к концевым атомам О которого присоединены триметилсилильные группы Si(CH3)3. Сопоставление полученных данных с межатомными и углами и расстояниями в исходном ангионе [Si6O15]6− [2] (рис. 2) показывает, что в ходе реакции триметилсилилирования строение силикатного ангиона не претерпевает заметных изменений.

СПИСОК ЛITERATУРУ