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Abstract—The strongly stress-sensitive and temperature-dependent creep behaviour of dispersion

strengthencd materials cannot be
equation is developed which conside

of dislocalions from disperseid particies exerting an at

TEM observations nnd theoretical culeulations which strongly suggest that the

described satisfoctorily by current crecp lnws. In this paper a new ereep
t5 as Lhe rate-controlling cvent the thermally activated detachment

tractive force. The approoch is motivated by recent
*“classical"” view, according

to which particles merely force dislacations to climb npround them, is inadequate. The creep equation is

applied to a dispersion

Practical conclusions, regarding the optimum dispers

-strengthened superalloy, two aluminium alloys and bubble:

-strengthened tunpsten.
oid size und alloy development, are drawn,

Résumé—Le funge dépendant fortement de ta contrainte et de In température sur des matérinux renforces
pir dipetsion ne peut étre décrit d'une maniére satisfaisante por les lois classiques du fluage. Dans cet

article une nouvelle équation de
de fluage est le détlachement thermique
exercent une force attractive. L'approche est motivée p

théoriques qui suggérent fortement que Pidée “classique
les dislocations & monter autour d'elles est inndaptée. L'équa

renforcé par dispersion, 4 deux allinges daluminium

conclusions pratiques, relatives d la taille optimale du dispersoide et au dévelop

Zusammenfassupg—Das sehr spannungsempfindliche und temperaturabh

flunge est développée: elle considére que I'événement qui contrdle la vitesse
ment activé des dislocations i partir des purticules dispersées qui

ar des observations récentes par MET et des calculs
" selon laquelle les particules forcent simplement
squation de fluage est appliquée & un superallinge
et au tungsténe renforcé par bulles. On donne des
pement de I'alliage.

dngige Kriechverhalten von

dispersionsgehirteten Werkstoffen kann mit den gingigen Kriechpesetzen nicht befriedigend beschrieben
werden. In dicser Arbeit wird eine neue Gleichung fir das Kriechen entwickelt. Diese geht qus von dem
thermisch nktivierten Losreifien der Versetzungen von den dispergierten Teilchen, die eine attraktive Kralt

nusiiben, als dem geschwindigkeitsbestim

tersuchungen und theorctische Berechnungen nahegelegt; danac
Teilchen durch Klettern der Versetzungen iiberwunden werden,
zwei Aluminiumlegierungen und porengehiirietes Wollram
den im Hinblick nuf die optimale TeilchengrdBe und die

eine dispersionsgehiirtete Superlegierung,
ungewendel, Praktische Folgerungen wer
Legierungsentwicklung gezogen.

1. INTRODUCTION

Dispersion-strengthened alloys have a creep be-
haviour which in the light of current theoretical
concepts can be characterized as “‘unusual”: Lhe stress
sensitivity of the creep rate is almost always found to
be extremely high, with stress exponents n well above
20 and sometimes as high as 100 extending over
several decades in sirain rate [1-8]—as opposed to
dispersoid-free alloys for which usually n < 10. Also
the activation energies for creep deformation of
dispersion-strengthened materials are generally found
to be “1o0” high, in some cases up to a [actor of
ibout three above the expected value (i.e. the activa-
lion energy for volume diffusion). While the exact
reasons for this behaviour are not well understood,

tPresent address: Materials Department, University of Cali-
: fornia, Santa Barbara, CA 93106, U.S.A.
‘{Present oddress: Deparlment of Materials Science and
ﬁ‘lginecring, Stanford University, Stanford, CA 94305,
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menden Schritt. Dieses Vorgehen wird durch nevere TEM-Un-

h ist die “klassische” Sicht, daB die
nicht richtig. Die Gleichung wird auf

a formal representation of the creep data can be
obtained with the following semi-empirical creep

equation [9, 10]
g—dy\
G

,_,.D,Gb
S X

where € is the creep rate, o the applied stress, D, the
diffusivity, G the shear modulus, & the Burgers vector,
ky Boltzmann's constant, T the absolute temperature,
A 0 dimensionless constant and » the stress exponent.
Compared to the conventional “power-law creep”
equation [11], equation (1) contains a “threshold
stress” a,, below which creep deformation is assumed
to be negligible. This assumption leads to an arbi-
trarily high apparent stress exponent on logé — loga
plots in the vicinity of o,,. By curve fitting, consistent
sels of values for a,, 4 and » can usually be found
which enable equation (1) to describe the creep data
within a certain range of experimental conditions.

The inadequacies of this parametric approach are
however quite evident; the parameter oy, is nol a
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pood malerial constant as it often varies with both
672temperature and applied stress; this adds consid-
crable uncertainty to extrapolations of creep rates
into ranges where experimental data are not avail-
able. In view of the great potential of dispersion-
strengthened alloys as high-performance materials
this is a serious practical limitation of equation ().

The inadequacy of this equatien is accentuated by
the lact that the physical foundation lor a “thresheld
stress” @y, is questionable from a scientific point-of-
view (for a recent review see [8]). While it is well
established that hard, non-shearable dispersoid parti-
cles impede room-temperature deformation below a
well-defined yield stress (the Orowan stress [12]), the
extension of the Orowan concept to higher tempera-
tures (e.g. [13]) has not been successful. The reason
lies in the ability of dislocations to circumvent obsta-
cles, at high temperatures, by climb. Early models of
this process [14, 15] have shown that such a mech-
anism leads merely to a retardation of creep by
introducing “wailing times™ [or dislocations at the
particles, without changing the stress dependence of
the creep rate significantly. A “threshold stress” for
dislocation climb was predicted by Brown and Ham
[16] and Shewfelt and Brown [17], who note that the
dislocation has to increase its line length in order to
surmount the particle. The theoretical threshold
stress, which would support the approach taken in
equalion (1), scales with the Orowan stress and is a
function of particle shape. However, the peculiar
dislocation peometry postulated by the authors
(“local climb™) has been criticized [I8] and recent
model calculations by the present authors [19] have
shown that climb of dislocations with an “equi-
libriurn shape™ is rapid at high temperatures and does
nol lead Lo high stress exponents, nor to significant
*“threshold stresses”. Thus dislocation climb alone
appears to be insufficient as an explanation for the
creep behaviour of dispersion-strengthened alloys.

An alternative possibility for the process con-
trolling the creep rate of dispersion-strengthened
materials lies in the existence of an attractive particle-
dislocation interaction, as suggested by TEM
studies of dislocation structures in crept specimens
[20,21,6]. A typical micrograph from a detailed
study by Schréder and Arzt [21] is reproduced in
Fig. 1(a), where the dislocation is seen to be captured
at the detachment side of the particle after climb has
been completed. New resulls along similar lines have
been reported in a recent, more quantitative study by
Herrick ef al. [22].

Support for the validity of these observations
comes [rom theoretical studies by Srolovitz er al.
[23,24], who show that an attractive interaction
between dislocations and incoherent particles would
in fact be expected at high temperatures because the
incoherent interface can relax parts ol the disloca-
tion's stress field by slipping and rapid diffusion.
Furthermore, Arzt and Wilkinson [25] have calcu-
lated the energetics of dislocation climb over an
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Tuble 1. Nomenclature

2 T
¢ creep rale
G shear modulus
h Burpers vector
D, volume difTusivity
0. nctivation energy lor volume dilfusion
nbsolute 1emperature
ky Boltzmann's constant

oy, “threshold stress™

T stress

ghear stress .

Orowan stress in tension and shear, respectively

arthermal detachment steess in tension and shear,
respectively [equation (10))

n stress cxponenl

My “nppurent’ stress exponent [equation (21)]

[ “npparent” activation enerpy for creep [equation 23))

E, energy for dislocution detnchment [equation {14)]

To. Ty dislocation line energy at the particle and in the matriy
respeclively y

relaxution purameter [equation {3)]

characteristic particle dimension

particle spacing

density of mobile dislocations

Ty Ty
Gy, Ty

R~ B |
T

attractive particle and found that dislocation detach-
ment requires higher stresses than the even unlikely
process of “local™ climb, provided that the line
energy of the dislocation is only moderately relaxed
by the incoherent interface, From this energetic con-
sideration one would expect a well-defined threshold
stress caused by the detachmenl process, which would
justify the use of equation (1). However, because of
the special shape of the [orce—distance profile, dislo-
cation detachment may be thermally activated, as
suggested by Résler and Arzt [6, 26]. Thus dislocation
creep well below the athermal “threshold stress™ may
be possible under certain circumstances.

In this paper we give a kinetic analysis ol the
detachment process which takes the effect of thermal
activation into account. Depending upon the strength
of the particle-dislocation inleraction, significant
devialions from a threshold-like behaviour [equation
(1] are predicted. Based on these calculations, a new
creeh equation of the form

_ Ey
€ = Eg " EXP ﬁ
B

is proposed, where E| is the activalion energy for the
detachmenl process, and £, a relerence strain rate.
The equation is derived in Sections 2 and 3, and ils
implications are then considered (Section ). The
model calculations are compared with experimental
creep data in Section 5. The paper concludes with
consequences for the optimum design of dispersion:
strengthened materials. The symbols used are listed in
Table 1. ;

@

2. THE ACTIVATION ENERGY FOR
DISLOCATION DETACHMENT

The first step is to analyze the energetics of dislocd-
tion detachment from an attractive dispersoid partt-
cle in order to arrive at an analytical expression for
the detachment activation energy E,. We consider the
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Jssage of a dislocation through a uniform array of
¢pherical particles of radius r and spacing 24 and
pcus the previous line-tension analysis by Arzt and
wilkinson [25] (A-W) on the detachmenl process. As
coposed by A-W, the altractive interaction is mod-
oed by assuming that the line energy of the disloca-
jion is lowered ot the particle interface to o value

piven by
To=lTy 3

where Ty is the line energy of the dislocation in the
matrix, given to a reasonable approximation by
Tu=Gb*[2. The parameter k(0<k<) can be
thought of as a relaxation parameter. For k=1, no
atraction between particle and dislocation exisls; for
f <1, an attractive interaction results, which be-
comes stronger with diminishing k.

The process of dislocation detachment is illusLrated
schematically in Fig. 1(b). When, under the action of
a shear stress 1, the dislocation moves an increment
dx in the glide direction, two contributions to the
change in internal energy have to be considered. The
first energy term dU is due lo the exchange of
dislocation line length at the particle (with line energy
k-Ty) by line length in the maltrix (with higher
energy Ty ). It amounts to (see A=)

2k - TM 2TM

. (g)z J1=(t/w)
t
where a is given, as in the A-1# analysis, by

g g T )

i.c. hall the distance between the two points at which
the dislocation contacts the particle [Fig. 1(b)]. /i is
the height-of-intersection of the glide plane above the
equator of the particle and 1, can at low volume
[ractions of dispersoid be identified with the Orowan
siress. Note the da is nepative when moving the
dislocation an increment dx in the forward direction.
It is also emphasized that use of the A-W formalism
implies the assumption of “local” climb; in view of
the analysis by Arzt and Résler [26], who show that
local climb can in fact be stabilized by an atlractive
interaction, this assumption is not unreasonable.
The second energy term d# is due to the work
done by the applicd shear stress. It amounis to

{d-1")
T a /7y
AW =2Ty — | —————=t+ —=]dd
M tu( /‘.2_,,2_“.! /I _(.EI,'TD)Z) (6)

which is always negative. Thus the net encrgy change
dE =dU +di¥ is given by

dU = da — da (4

dE =2TM[—i—,— J1=(t/n)
e
I
e :: :|dn )
TSP — = a?
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(b)

Fig. |. (n) TEM micrograph showing a dislocation captured

at the “detdchment” side of a dispersoid particle: dispersion-

strenthened supernlloy MA 6000 aflter slow creep deforma-

tion, weak beam micrograph from Schréder and Arzl [21.

{b) Schematic illustration of the dislocation geometry during

climb (1) and detachment (2, 3) after Arzt and Wilkinson
25].

By sctting d£ = 0 one obtains an implicit equation
for the equilibrium position a,, (or X, respectively) at
a given stress T /1. The numerical solutions presented
by -1 have a simple analytical form for h =0

;‘;f_ﬂ=ff-,/1_(z/zn)1+rl,/1—k1 ®)
0
Tey = &/ - -\'sq- (9)

These equations, which are strictly valid only for
/i =0, will be used further as an approximation in

and
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T/ T

Xogf T
Fig. 2. Plot of the normalized shear stress t/r, vs the
equilibrivm dislocation position x_ /r-for different values of
the relaxation parameter &, in lheniimiling case of the glide
plane interseeting a spherical particle at its equator (h =0),
Shaded area is proportionul 1o the activation cnergy for
dislocation detachment ol a stress ¢ which is below the
athermal detachment threshold (for & = 0.8).

order to retain analytic tractability. Equation (8) is
plotted in Fig. 2 for different values of the relaxalion
purameler k. The maximum stress is always obtained
at the point of dislocation detachment from the
particle {x,, = r) and is equal Lo

=Ty 1 = k7

as was already found by A-IV. 1, will henceforth be
referred to as the “athermal detachment stress” be-
cause al this stress level thermal activation is not
necessary to detach the dislocation from the particle.
When however the applied stress is smaller than 1,
the dislocation will reach an equilibrium position at
the particle back defined by equation (R), e.g. the
point marked “P" in Fig. 2 (for £ =0.8). A finite
aclivation energy E, (corresponding (o the shaded
area in Fig. 2) has then to be supplied to enable
dislocation delachment. b
E, is calculated by integrating equation (7)

1]
oe da = ?_TM-r[. /1= (t/5)

uey 080

([T
F T r
— k -arcsin (%5‘-‘[‘

1The uctivation energy derived here lor spherical particles
is significantly smuller than that for cuboidal particles
oriented with the sidefaces parallel (o the direction of
dislocation motion (26]. It is an arlefact of the luiler
peomelry that 2a,, equals the particle size independent of
k and t/r,, which leads to a gross overestimation of the
aelivation energy, especially at hiph values of & and t/z,.

]

(10)

E,=

(11)
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0.5
. — equation 11
- o fit equation 52
0.3
=
[ 5
o~ 0.2
—
o
[
01
00
00 0.2 0.4 0.6 0.8 10

T/ Ty

Fig. 3. The normalized nclivation energy Ey /2T, r vs 1/t for
different values of k. The analytical solution [equation {1y
is compared with the fit equation 12,

Note that £, scales with the parlicle radius r since
the terms in the square brackets are independent
of r.

A convenient approximation for equation (11) was
obtained in the following way. In Fig. 3 the normal-
ized activation enerpy £,/2rT), is plotled vs t/t, for
different relaxation parameters k. As required, E,
become zero for 1 —+ 1,. The stress dependence of (he
aclivation energy turns out Lo be well approximaled
by

Ey=2Tyr-A-(1 —tfr, )" (12)
for k& = 0.4 (Fig. 3); as will be shown later, k-values
in real systems are typically greater than 0.7.
The lactor 4 is a function of & and is well fitted by
(Fig. 4)

A=(1=ky? (13)

With T, = Gb*2 one finally obtains the following
cxpression for the detachmenl activalion energy

Ey=Gbor [(1 — k) (1 —t/r )P (14

Note that this equation differs in form from the
expression derived previously ([26], equation A5) for
detachment from cuboidal particlest. 1t is similar lo
the activation energy of the Orowan process [13], wilh
the exception that the particle radius r appears here
instead of the particle spacing in the Orowan cnsc.
This difference, which can be large at low volume
fractions, explains why thermal activation of the
Orowan process [ails to give the correct temperature
dependence of the creep strength in dispersion hard-
ened materials. The detachment process, by contrasl.
is associated with such low activation energies thal
consideration of thermal activation does become.
important. This is also qualitatively clear from the
shape of the stress—-distance profiles in Fig. 2. The
steep slopes near the points of detachment lead o
considerable reductions of the detachment stress
when thermal energy (proportional to the shaded
area under the curve) is supplied. As will be shown



~ pquation 11
o fit equation 13

L‘[‘hc normalized activation energy Eyf2Tyrat 1 =0
ireluxation parameter k. The analytical solution
Aiibn (11)] is compared with the fit equation (13).

i si—:_cjiﬂﬂ 5, this concept can quantitatively explain
“treep strengths of several dispersion strengthened

i

<hinism in dispersion strengthened alloys and that
| 1,nli1‘ri_b process can be regarded as sufficiently
widiillic rate equation [or creep can now be written

(15)

a reference strain rate. The reference strain
ay be estimated by applying nucleation
]: the probability that the dislocation has
c critical configuration (i.e. the point of
L x, in Fig. 5) is given by the exponential
s the frequency v with which a dislocation
ed {rom the particle, by moving from x; to
der absorption of a vacancy, is

E,
V=1V 41 CXP “m

‘14 i5 the [requency of vacancy absorption

7 n Qm
+ =’—,;-1-‘,‘exp(—%)-exp(— ﬁ) (n
: = a1 i

5 the atomic frequency and # the number
nearest neighbour sites in the matrix lattice,
.0, are the activation energies [or vacancy
on. and migration, respectively. The factor
—Q,./kyT) is equal to the probability
of the next-nearest neighbour sites is
by a vacancy, and vyexp(—OnfkaT)
5. the [requency of successful jumps.
_‘_E= that the difiusion coefficient is given by

(16)
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Fig. 5. Schematic energy barrier for detachment of a

climbing dislocation from on attractive particle. (Ey; detach-

ment cnergy due lo attractive particle-dislocation inter-
action, @,,: uctivalion energy for vacancy migralion).

D, =1/6nb* v exp{—(0,+ 0k T) [28], one

obtains
- B
e WY 8

Assuming that the time it takes to move a dislocation
between the particles is negligible, the strain rate is
connected with the detachment frequency » by

(18)

E=p-22-vb (19)

where p is the density of mobile dislocations and 24
is taken as the mean [ree path between the obslacles.
Combining the last two equations gives the final

result
372
, Ghr-|lu-p)1-=
é _ﬁ-l'p‘ex Oy
B, & T

(20)

Thus the reference strain rate defined in equation (15)
may be identified as é, = 6D, 1-p/b. The normalized
shear stress 7 /7y has been replaced by the normalized
engineering stress o/fo,; oy is given by o= M 1y
where M is the appropriate Taylor [actor (or recipro-
eal of the Schmid factor for single crystals). For
further analysis we use an “average™ radius in equa-
tion (20), c.g. (n/4) times the radius of spherical
particles (/4 accounts approximately for the statisti-
cal distribution of the intersect height), or a charac-
teristic dimension for non-spherical particles.

As opposed to the empirical equation (1), this creep
equation does not contain a “true” threshold stress.
It is also important to note that equation (20) ceases
to be applicable at very small stresses; fluctuations
of the dislocation in the reverse direction would
have to be taken into account in order to rule out the
prediction of a finite strain rate at zero stress. This
case however never becomes important in the analysis
of dispersion strengthened materials (see section 5).
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4, FORMAL ASPECTS OF THE
CREEP EQUATION

Equation (20) represents a new constitulive equa-
tion for creep in dispersion strengthened muterials.
Like any equation (reating dislocation creep, it
can apply strictly only in the absence of additional
deformation mechanisms, such as diffusional creep,
damage accumulation etc., which can change the
stress and the temperalure dependence of the creep
rale. A rigorous description of the creep behaviour
can therefore be expected only [or single-erystal or
coarse-grained materials (see Section 5). In fine-
grained alloys the discrepancy between experimental
and theoratical creep rates can shed light on the
relative coniribution of grain boundary processes;
one such example will also be analyzed below. But
before turning to practical applications of the creep
equation, we will discuss some general [eatures and
theoretical implications of equation (20).

4.1, The significance of the relaxation facior k for the
creep strength

The exponential term reflecis the fact that dis-
location detachment is thermally activated, with an
activation energy which is both dependent on the
Orowan stress and the strength of the attractive
interaction between dislocation and dispersoid
particle, which in turn is measured by k. Thus the
creep strength should not only be determined by
the parameters of the particle distribution (particle
diameter, volume fraction) as in Orowan-Lype models
but also by the interfacial properties of a given
particle—matrix combination. The relaxation factor &
appears as a new important material parameter. Its
magnitude can be expected to depend upon some
interfacial properties but cannot yet be derived from
first principles. Low volues of 4, which signify a
strong particle-dislocation altraction [see equation
(3)] are essential to the attainment of good creep
properties. Note that the influence of the &-factor in
equation (20) is in fact two-fold since the athermal
detachment stress o, is by itsell a function of &
[equation (10)].

The effect of k is illustrated in Fig. 6 where the
normalized strain rale €/é, is plotted against the
normalized stress oo, for different values of k. Tt
appears that &£ = 0.9 is a critical value: below this
value the creep behaviour is “threshold"-like in the
sense that the stress exponent is very high and a high
creep strength is retained down to insignificantly
small strain rates. The apparenl stress exponent is
obtained by differentiation of equation (20). Neglecl-
ing the stress dependence of the dislocation density in
the pre-exponential [actor, we get

dilné

e = TTn o

=3@ (1 =Ky =gla) P ola,.

25, T 2N
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log(&le,)

log (6/64)
Fig. 6, Calculated normalized strain rale € /e, as a {unction
of the normalized siress oo, [or various values of the
relaxation factor & [equation (20)).

This stress exponent is almost independeni of siress
since (1 — ¢ /oy )"*- 0 /o, varies only slowly with stresy
for 0.2 € 0 /oy < 0.9. Equation (20) is then equivalent
to the usual power-law creep equation [11] with a very
high stress exponent. The ability 1o predicl a stress
exponent which is approximately constant aver sev-
eral orders of magnitude in strain rale is a particular
formal advantage of equation (20) aver equation (1)
when fitting actval creep data.

The creep characlerislics change drastically when
the interaction strength decreases. For & >0.9 the
creep strength degrades significantly with decreasing
strain rate, which results in low values of the stress
exponent # (Fig. 6). Normally one would tend (o
attribute such a creep behaviour, which is totally at
variance with a “threshold"-like behaviour, to the
onsct of allernalive creep processes such as diffu-
sional creep or to microstructural instabilities, Fig, 6
illustrdtes that this need not necessarily be the case,
but thermal activation of the dislocation detach:
ment can in itsell produce such a behaviour. As an
example, the creep behaviour of a rapidly solidified
slloy (Fig. 11 below) will be discussed in Section 5.

When the attractive interaction vanishes (k - 1),
the detachment barrier disappears too. Then the:
strengthening mechanism is reduced 1o the “climb
eflect”, which at low volume fractions is much less
efficient: the particles simply exert a back stress a,, on
moving dislocations and the creep kinetics is similar
to that of the particle [ree material under an effective
stress o.p = ¢ — oy, [29-31). The back stress is propor-
tional to the applied stress and can be associated with:
Lthe increase of line length necessary for dislocation
climb to occur [I18]. At higher volume f[ractions;
the climb process itself becomes rate-controlling
as recently analysed by Résler and Arzt [19]. I
both cases low stress exponents of about 4-6 nre
predicted, which is in qualitative agrcement with
experimental creep data for precipitation hardencd
alloys [29-31].
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4.2 A method for determining the relaxation factor k
Jront creep data

. For the development of high temperature alloys the
gbility to predict the value of k on theoretical grounds
would be highly desirable. Apart from the qualitative
satements above this does not seem Lo be possible at
present since too little is known about the nature of
(he particle-matrix interfaces in different systems.

‘Thus time-consuming creep tests have lo be con-
gucted over a wide range of stresses and lemperatures
pefore the creep properties of a given system can be
assessed.

A method for estimating & with little experimental
expense can now be developed with the aid of equa-
tion (20). The following relationship is obtained by
differentiation with respect Lo lemperature

g _ 3(Qaprr—" 0,) 49 =) 22)

oy 3G T
e 2RT~anp-(l —-5;--@)

where @, is the activation energy

diffusion and
0, = dné RT?
Bpp T aT SiE

is the apparent activation energy evaluated at con-
stant o/E. [When the apparent activation energy
has been obtained at constant g, instead, the term
{nopp RT?{G)-(dG/dT) has to be subtracted belore
insertion in equation (22).]

An expression for k is obtained from equation (21)

2 2i3
o Lo (""“T - ) .4

3Ghr (1 —afoy)'*-alsy
‘In_serling equation (22) in (24) now leads lo an
txpression for & which depends upon two experi-
i ~mentally accessible quantities, i.e. the apparent stress
exponent 11,,, and the apparent activation energy
@uppe About 3 creep tests for at least two tempera-
tures and stresses are necessary to get access to both
quantities by simple graphical evaluation; in practice,
. the scatter can of course be greatly reduced by
running more tests. Only the mean particle radius has
1o be known in addition. The evaluation of % in this
way will be exemplified in Section 5.

for vacancy

(23)

- 4.3. The optimum particle size

A consequence of equation (20) which is of practi-
cal importarnce lies in the prediction of an optimum
particle size at a given volume fraction f,. The reason
is that the activation energy E, for detachmenl goes
through a maximum as a function of r; physically this
tomes about because (i) the probability of thermally
 activated detachment is raised at small dispersoid
- particles, and (ii) larger particles are associated, at

:ﬁxed volume fraction, with a lower Orowan stress
. and hence a smaller athermal detachment stress d.

1

107

[a/G)/ Y -kl

107

10 -
0 4

log (r/b)
Fig. 7. The optimum particle size deduced from a plot
of creep strength (for achieving é = 10~*s~') vs particle
radins according to equation (25) for different values
of k; T=673K, M =13, f,=005 €&=20s" (setting
D,=1.62x 10-%m¥s, 2i=120onm, p=10"m"?),
b =286x10"""m, G=20GPa (data for aluminium from
[50]). (The wenk dependence of In €; on 4 is neglected in this

plat.)

The creep strength ¢ as a lunction of r is obtained
by inverting equation (20), using the identities
1,=0.84 Gb/(24) and 1 = (=/6/ )" r

g b Infég e Vkp T B\
o a2 - (2T

1 TN e
xI_k:‘(E) (1 —k3)" (25)

This functional dependence is displayed graphically
in Fig. 7 for three different values of k, using material
parameters of aluminium. It is interesting to note that
not only is the creep strength predicted to rise with
decreasing k, as expected, but also the optimum
particle radius is shifted to smaller values, Below the
oplimum, a relatively sharp drop in creep strength
occurs. Very small particles should therefore be ineffi-
cient barriers to the motion of dislocations at high
temperatures and detachment will no longer be the
rate-controlling step. Analytically, the oplimum par-
ticle size is given by

Ty [ 5 TR[nGleks
(). [l [

It is predicted to increase with rising temperature (at
fixed é/¢,) and, less sensitively, with decreasing strain
rale.

The creep strength maximum in the detachment
model leads to a reduced sensitivity of the creep rate
to particle coarsening. From an Orowan-lype ap-
proach, the following particle size dependence results

dlng gy

an

dinr a

which is approximately —1 at stresses near the
“threshold stress”. Thus the creep strength is pre-
dicled to double when the particle size is halved
independent of current particle size.
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By contrast, equation (25) leads 1o a weaker
particle size dependence of the creep rate near the
optimum (see also Fig. 7).

dlng_2 B
dinr 3 (r/b)"—B

with B ={In(é/é)ky T/GH3 (1 = k).

As an example, consider a dispersion-strengthened
nickel-based superalloy (MA 6000) with particle
radius r = 16.5 nm [32] and & = 0.93 (see Section 3).
Setting ¢ =107%s~!, ¢ =10s"!, T=1273K, and
G =61 GPa, equation (25} would predict a loss in
creep strength by only about 28% on coarsening of
the particles to twice their original size. Although
such an effect has not been experimentally studied in
detail, it seems to have been observed: Benjamin [33]
reports that after doubling the interparticle spacing of
the dispersoids in two nickel-base alloys, a loss of
strength was found which was however “no where
near 50%". Further supporl for the concept of an
oplimum particle size comes from detailed TEM
observations [32, 34] which showed that dislocations
did not adhere to dispersoids smaller than a critical
size.

et} (28)

5. APPLICATION TO EXPERIMENTAL
CREEP DATA

We will now proceed to compare the theoretical
predictions of equation (20) with experimental data,
In all cases, the unknown relaxation factor k is fitted
lo give oplimum agreement with experiment. For a
demonstration of the method, three different alloys
are chosen: coarse-grained tungsten strengthened by
a dispersion of bubbles, a coarse-grained, dispersion-
strengthened superalloy and two fine-grained, disper-
sion-strengthened aluminium alloys.

J.1. Bubble-strengthened tungsten

The creep strength of tungsten wire filaments is
commonly improved by doping with potassium,
which forms a dispersion of vapor-filled bubbles at
service temperatures. Creep data for such a material
containing 0.3 vol.-% bubbles with mean diameter
2r ~9nm are plotted in Fig. 8 (from Wright [35]).
While the bubble dispersion also stabilizes a coarse
elongated grain structure and thus prevents grain
boundary sliding, it was shown by Wright that the
creep properties are controlled by the bubble-
dislocation interaction. He assumed that the bubbles
are cul by dislocations, which increases the surface
energy. Since the climb process itsell is fast [19]
we consider dislocation climb over the bubble
more likely because the additional surface energy is
then avoided. Thus the above analysis should be
applicable. ;

By linear regression one obtains an apparent stress
exponent n,, =45 at T =2B00K and an apparent
activation energy Q,,,= 1089 kJ/mol (at o/E=
58 x 107*), which is about twice the activation
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Fig. B. Stress dependence of the normalized creep rafe /b
for coarse-grained polassium doped lungsten (datn frun{
Wright [35]). The lines show the ereep rale predicted by the
model calculations (k =0.79, o,=107MPa at 2800 K).
Materials parameters used: G = 160[1-0.38(T-300)/3683)

GPa, Dy =5.6 x 10~ m¥s, 0, = 585 kljmol,
b=274x107""m [50], p=10"m~%  21=05um
3 =9 nm [35).

energy for volume difTusion (Q, = 585 kI/mol). Wity
the aid of equations (22) and (24) and using typical
malerial parameters (see caption of Fig. B), the
relaxation parameter and the athermal detachmen
stress can be evaluated: £ =0.79 and o, = 107 MPa
{at 2800 K}. By inserting these values in equation
(20), the creep rate was calculated; it is compared
with the experimental data in Fig. 8. A very satist
factory agreement, both in absolute magnitude and in
the stress dependence, is found.

An a priori estimate of the Orowan stress is also
consistent with the analysis above. Following Wright
[35], the average nearest neighbour spacing is aboul
0.5 um, which takes the longitudinal alignment of the
bubbles into account. Using the simplest expression
for the Orowan stress gy = 0.84 M Gb/(24) we oblain
oy =~ 164 MPa (at 280 K). Inserting o, = 107 MPu and
k =0.79 in equation (10) we obtain a,= 175 MPs,
which compares well with the above result.

The value of & obtained in the analysis also makes
physical sense. The elastic interaction energy of a
straight edge dislocation with a void of radius r is
given by [36]

E - 5Gh? 1
i 2 {7—5v)(1 —v)

x ;.(|_M.5inle) (29)
r= 5

where (r’, @) are cylindrical coordinates and v the
Poisson ralio. Setting @ =0 and assuming that the
bubble is surmounted by climb (i.e. ' =r) one ob-
lains E,/2r = —0.23 T,y with T, = Gb%2. Thus'd
23% line lension relaxation corresponding to a &-
value of 0.77 is expected at the bubble, inc‘lepm‘id’ﬂl'_lt
of its diameter. This estimate, which of course ignores
the core contribution, is in good agreement with
k =0.79 obtained from the crecp data analysis.
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! Fig. 9. Stress dependence of the normalized creep rate £/D,

|' for conrse-grained MA 6000 (data from Arzt and Timmins
138D The creep rates calcuinted with equation (1) (dashed
|ine) and equation (20) (solid line), with &k =0.93 and
{6,313 MPa ot 1323 K, nre compared with the experimen-
|-l data. Further materials parameters wsed: £ = 170 GPa
{0 1223K and 155GPa at 323K [37], v=0.34,
1, =19%107*m¥s, @, =284 kl/mal, b =249 % 10""°m
{ [50], 2r =33 nm [32].

152, Nickel base superalloys

| Dispersion strengthened superalloys, which com-
L%.hine dispersion with precipitation hardening, are
{i among the most promising metallic high temperature
materials [37). The alloy which has been studied in
most detail is Inconel MA 6000, a Ni base superalloy
i-_s‘l’re_nglhened in addition by yttria dispersoids. The
 reep properties availnble for this material are shown
\in Fig. 9 (data from [38]). Because of the highly
!iglongated, coarse grain struclure, the contribution of
|'prain boundary processes to high temperature defor-
1 mation is negligible in this alloy [38]. The apparent
{yiress exponent is found to be n,,=23, and the
| spparent activation energy of @, = 546 kJ/mol
it a/E =1.16 x 107%) is again significantly higher
{lhan the activation energy for volume diffusion
{0, = 284 kJ/mol for Ni in Ni).

i Applying our analysis with the material data given
{in the caption of Fig. 9, we obtain k =0.93 and
"1';'_!41: 313 MPa at 1323 X. The creep rate calculated
{¥ith, equation (20) is also shown in Fig. 9. Best fit
\was obtained by setting Lhe pre-exponential factor
{6ip /b =3.5-10" m~? which differs by three orders
(0 magnitude from the value calculated with
#2:x [00nm and p =~ 10" m~% This is no serious
p}fliigcrepancy because p is not well known and the
" pre:exponential varies sensitively with slight changes
1 Ofig, owing Lo the high stress sensitivity of the creep
e,
_g’ As might have been expected, the relaxation factor

h'{k!i.s's_igniﬁcanlly higher compared Lo doped tungsten,
“Mdicating that only about 7% of the dislocation line
‘E«‘za{:‘rgy is relaxed at the dispersoids instead of aboul

2% at the bubbles in tungsten. As a consequence the
Wiparent stress exponent is relatively low and the
“teep behaviour is less threshold-like. This is also
;i}!‘“Struled in Fig. 9 where the creep rate calculated

i)
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from equation | is included. As a “threshold stress”,
on/E =0.76-10"* was obtained from linear back
extrapolation (Lagneborg-Bergman plot [29] with
n = 4.6) of the data points at 1323 K. The consiant
A was adjusted to fit one of the data points. The
convex curvaiure resulting from the assumption of
the simple threshold stress law equation (1) does not
fit the data. In particular, it is evident that one would
seriously overestimale the creep strength at low strain
rates from that concept.

5.3. Aluminium alloys

Dispersion-strengthening has great potential for
increasing the temperature capabilily of aluminium
alloys, Promising fabrication routes for such alloys
are mechanical alloying and rapid solidification. The
creep properties of two Lypical representatives, both
of which are fine-grained, are shown in Figs 10 and
11. Further results of a detailed study can be lound
elsewhere [6, 7,40, 41).

A feature of the mechanically alloyed material
Al-2.16 wi% C-0.80 wt% O, which contains both
Al,O, and Al,C, as dispersoids, is the extremely high
stress sensitivity (n,,, ~200) at intermediate strain
rates, which seems to be typical of carbide dispersion
strengthened Al alloys (compare e.g. [4]). TEM in-
vestigations by Rasler [6] showed that creep in this
regime is indeed controlled by the interaction of
single dislocations with the dispersoids. At high strain
rates €/D, = 10" m~? the formation of dislocation
networks is observed, indicating that the creep mech-
anism approaches that ol the dispersoid-free matrix
and is no longer directly determined by the particle

0%
ac
B, 573K
1" A E1K
®,0 TIK
5
P L
5 ke QT4
Gy=115HPa ol 673K
y
o W
=
%! 4
-]
K ehx K
‘ﬂs T —T—TT 7T L T T
112 a6 08 10 20 10 L0

G/E-10?

Fig. 10. Stress dependence of the normalized creep rate é/D,
for fine-grained Al-2.16 wt% C0.80 wt% O (datn from
Résler [6]). Solid symbols signify the region where particle-
dislocation interaction controls the strength. The lines
show the optimum predictions of the model (k =0.74,
gy=115MPa at 673K). Fnilure of the model to give
the correct temperature dependence points lo substantial
contributions of prain boundary processes (see text).
Materials parnmeters used: E = 72.2, 61.5, 56.4, 50.0 GPa al
room lemperature, 573, 673 and 773 K, respectively [51],
G =254 [1-0.5T-300)/933] GPa, Dy=1.7x 107" m%fs
g, =142kljmol [50], 22=101nm, 2r=43nm [6f],
p=10"m=2%
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It can be seen that while (b

10 N-sFe-ite | dependence is greatly underestimalcdrbyletgggm!u'm.
5 o5 o 1 the stress semsitivity is correctly feProduceénqq""-’
g% 28y Fnllowing arguments support the conteﬁti‘a)[;. Th
the remaining lemperature dependence i caus thag
o gt s i grain boundary effects: the model by Cross}im'c d by
E , 0, 437HPa o T23K Ashby [42] confirms that crfu:p-ac:t:ommudm‘;l Fff.d‘.
s boundary sliding accclerates the ereep rate i flfmn
2 @ which leaves the stress sensitivity unaltereg ande
duces a parallel off-set in creep Strength; ﬂndlpro"
05 creep tests of recrystallized materials indici{e.mﬁﬁ“ ;
, am” 5K i sirong lemperature dependence is greatly redyg d!he
W e+ T rrrh,  coarse-grained specimens [41], S
' ) As a final example the creep daty of b,
G/E-10° i a rapidy
Fig. 11. Stress dependence of the normalized creep rate /D, wolidified, AkFe-Le iallay strengthened by inleg i

for Al-8Fe—4Ce (data from Yaney and Nix [43]). The creep metallic prCCIPILates are shown in Fig. 11 (dﬂin'l'fﬁm
rates calculated with equation (20) are compared with the ~ Yaney and Nix [43]). In this alloy the creep sireng(ls
experimentul data. Material parameters used: G, Dy, 0, as and the stress sensitivity decline strongly with incmi's':‘
in Fig. 10, 2r =50 nm, é,= 1.2 x 10%s~!, g, = 577 MPa at ing temperature. The authors have showi thit i :
room lemperature. effect can probably not be explained by a f_hcma:.
instability of the microstructure bul have in#o’kc‘d i
dispersion. The rapid degradation of the creep loss of particle strength instead. As is also seeq n
strength at the highest lemperature and lowest creep  Fig. 11, both the complicated stress and temperature
rates occurs only in the fine-grained condition and dependence of the creep behaviour can in r;_;}:t:b{; well
may be attributed o the onset of grain boundary described within the framework ol our creepequation:
processes [6]. Thus the creep equation should be by seiting & =0.95, independent of temperaturo,
applied to the intermediate region, which extends This k factor points to a weak particle-dislocatipy,.’
over al least \wo orders of magnitude in strain rate  interaction which allows considerable dclﬂc}imnnv'hy.
(full symbols in Fig. 10). thermal activation at higher temperatures gi_vin‘g;ﬁse
Because this alloy has n submicron grain size, it is  lo the loss in creep strength. If the alloy is: strengllis
particularly instructive lo apply equation (20) to the ened by addilional oxide and carbide' dispersolds
data. With the usual numerical analysis, one obtains  introduced by mechanical alloying [44], this weak-
from n,,, = 200 and Q,,, = 1200 kJ/mol a relaxation ened effect is counteracted. A significantly reduced'k
faclor of &k =0.75. Agreement between theoretical value (k = 0.90) is obtained in this case. ' '~/
and experimental data, however, can only be
achieved by assigning a prohibitively high value to
the pre-exponential factor (¢,/D, = 10"m™* instead

of 1.1 x 10%m~2, which would be abtained with 6. DISCUSSION AND PRACTICAL |

24 =101 nm, g = 10" m~?). This discrepancy points  ” ERNERESINS _ :

to the fact that the strong temperature dependence of In this paper we have presented a creep cquation
the creep rate cannot be explained on the basis of which is based on the mechanism of the: particle-
dislocation detachment. dislocation bypass process at high temperatires The

Instead it is plausible that the rapid fall in cregp  underlying assumpltion, which is supported by, TEM!
strength with increasing temperature may be caused and theoretical studies, is that incoherent jparticlet;
by an increasing contribution of prain boundary in dispersion strengthened alloys exert an -ut_lraclﬁw
processes, which in conjunction with the steep stress  interaction on dislocations. In order to fﬁ'ﬂkl_?ﬁl.!l"'- |
dependence can give rise to the abnormally high problem (ractable, only the detachment '_éi'ép.."_”h.k,’h'
activation energy. To remedy this situation, the value is assumed to be rate-controlling, iS"CC'J.M!d%b'
of k can insiead be determined iteratively from The resulting equation has been shu{vnrln'bﬂf_b'-'
equation (24) alonc using the room temperature to explain the creep behaviour of cciai.ﬁ'{?gr_u;lﬂo.d i
Orowan stress o, = 219 MPa [6]. This procedure gives materials well, provided the intcraclibﬁ-’féclﬂf'l_‘;_;“_ }
practically the same value as above: £ =0.74. With  adjusted to give good agreement. A particfl_lgif‘f%‘m i
this value, and the known temperature dependence is that the stress as well as the lcmpcm‘:‘"}?"‘»{-‘n@ Ll
of the modulus, an athermal detachment stress of  dence of the creep rates, both of which ==!F°.",‘ff!-: : ‘;'
g,=115MPa at 673K is obtained from equation ‘“abnormally” strong in the light of preyiolsmt TS o)
(10). The pre-exponential faclor which gives agree- can be reproduced. :
ment with the creep data at 673 K is determined to be The new variable, k, is nol merely A
€/D,=3.3 x 10" m~*—in reasonable agreement with  has a well-defined physical meaning #
the value estimated above. The predictions with this reasonable values. As summarized in TB2% = 0
consistent set of variables are plotted in Fig, 10. ranges from below 0.8 for doped tungsteni==

fit faclor B
and! ossime
Tiible! 2
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Table 2. Paramelers for alloys analysed

Alloy o {nm) k a7 (MPu) lop(éy/D,, m™)
K-Tungslen ) 0.79 145 16.7
MA 6000 33 093 a1 13.5
Al-(C, O) 43 0.74 147 18.5
Al-8Fe-4Ce ~350 0.95 593 231

Al-(AL,C,, AlLO,) Lo above 0.9 for a superalloy and
a rapidly solidified aluminium alloy. In all of these
cases (except the fine-grained Al alloys) good agree-
ment between theory and experiment could be ob-
wined by keeping & fived lor all temperatures, This
fact is consistent wilh calculations [6] which show
that the characteristic relaxation limes of shear and

. hydrostatic stresses on incoherent particles are short

compared to the “waiting™ time of a dislocation al a
dispersoid.
In general it appears that precipitation hardened

.a]loys behave like materials without attractive inter-

action whereas dispersion strengthened alloys, pro-
duced c.g. by mechanical alloying, behave like

_materials with a strong atiraclive particle-dislocation

interaction. An important difference between the twa
particle types is that precipilates, unlike particles
dispersed by mechanical means, have to overcome a
‘miclealion barrier and are thus forced to form low
energy (i.e. sirongly bonded) phase boundaries.
Weakly bonded interfaces are however needed to
allow for the relaxution of the dislocation stress field
by atomic rearrangements and fast diffusion along
the interface. This may be the reason why small

- precipitates appear to be less capable of rclaxing

the line encrgy than small dispersoids. In addition
incoherency ncross the interface can lead to some
degrec of core spreading once the dislocation has

i reached the particle. This would not be possible at
L, slrongly bonded coherent interface where crystal

: pcrmdmuy has to be maintained. While the detailed

A S T T LA T S T

lilling of the theory lo experimental dala is per-
. [ovmed; because the creep strength and its tempera-
1

r3

inderstanding of the particle-dislocation interactions
aL high temperature is certainly not far advanced, it
Ahius appears that on the basis of a varying degrec of

| “interfacial bond strength and of particle coherency
|/ the creep behaviour of the whole class of particle
“strengthened materials may be consistently under-

“ood. This in itself may constitute a possibly impor-

lant advance over climb theories for which the type

of:interface daes not play a role.
~Despile these achievements some qualifications are

«/inorder: first, it must be remembered that in deriving

lhe activation energy for dislocation detachment

. some simplifications were made {c.g. sphericals parti-
i itles with equatorial glide planes) and second-order
effects (e.g. selfinteraction of dislocation arms, statis-
“llits of particle distribution) were neglecled; special
'.-Ddrtu:lc shapes with re-entrant corners may well lead

o different results as climb may then become rate-

- 1E EUljl_lrl:illmg (e.g. [43]).

The second qualification concerns the way in which

ture dependence vary sensilivity with k, the value of
k extracted from the creep data, conversely, does
not depend critically on /g, and Q,,, [equations (22
and (24)}. The important quantity is m,., /r, which can
be subject o considerable error, especially when the
creep data are highly stress-sensitive and exhibit
experimental scatter; also the mean particle dimen-
sion r is not always well defined. Obviously, in view
of these possible inaccuracies, the relaxation factors
k evaluated in this way should never be taken at face
value, but regarded as a relative figure-of-merit for a
particular alloy.

Because of the high stress dependences involved, a
slight error in oo, will however shift the creep rate
values drastically, and therefore a slight variance of
the pre-exponential facior should not be considered
as failure of the model. Critical examination of
numerical consistency of &, o, and &, is however,
absolutely necessary, because an equation of the form
of equation (20) with “free” parameters would have
great flexibility. The fact that such consistency could
be obtnined in the above examples suggest strongly
that creep is in these cases (with exception of the
fine-grained Al variant, Fig. 10) controlled by a
dislocation detachment process.

The practical conclusions that can be drawn [rom
our concepts are still vague but enticing. Given a
certain useable volume fraction of dispersoid (which
is limited by minimum ductility requirements), the
creep equalion predicts an oplimum particle size
(Section 4.3). The concept of an optimum particle size
hinges on the assumplion of dislocation detachment
and cannol be derived from Orowan-type threshold
stress models, In the latter case, the creep strength
would be predicled to increase indefinitely for finer
particle dispersions (at least so long as the particles
do fiot become shearable, which can occur when
they reach the size of a few atomic spacings). Equa-
tion (23) and Fip. 7 show clearly that, compared
to increasing the volume fraction (which enters only
as the square root), aiming al the oplimum particle
size is a more efficient way of improving the creep
strength. Opltimizing the particle size may therefore
pose a worthwhile challenge to processing techniques
such as mechanical alloying.

In developing new alloys, particular attention
should be paid to the properties of the particle-
matrix inlerface. As pointed oul above, il stands to
reason that a high degree of dislocation relaxation
can only be achieved at an incoherent interface with
a high specific encrgy. Along these lines it is lo be
expected that thermally stable bubbles should be the
most effective barriers for the motion of dislocations
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al high temperatures since the line energy relaxation
should be maximal in this case. Thus the & value
estimaled in Section 5.1 as & = 0.77 seems to be the
Jowest attainable relaxation factor; this implies thal
the high temperature strength imparted by any
particle dispersion cannol exceed about 60% of the
Orowan stress [equation (10)].

It is interesting Lo note thal according to our
analysis carbide dispersoids in Al alloys are about
equally efficient as pores. Circumstantial cvidence
seems Lo suggest that the ability of interfaces Lo
altract dislocations at high lemperatures may be
related to poor bonding across that interface: carbide-
strengthened Al alloys exhibil a strong asymmelry ol
the flow stress [46] and the creep strength [6, 41] with
respect to the loading direction; al high temperature
the strength is reduced considerably under tension
compared lo compression (whereas no asymmetry
is observed at room temperature). This asymmetry
has been atiributed to carbide decohesion from the
matrix under tension and thus points (o poor inter-
facial bonding. This is consistent with our finding
that carbides are more beneficial for creep strength
than oxides, the latter of which do not give rise to this
asymmetry effect.

Weakening of the interfacial bonding, which may
seem a paradoxical objective at first sight, might be
possible by segregation alloying or by pre-treatment
of the dispersoid material, much like fibres are
coated Lo oplimize the interfacial properties in fibre-
reinforced materials. It is, for example, known
that Ni additions weaken the interfucial bonding
of AlLO, particles in Fe whereas Cr and Mo
have the opposile effect [47, 48]. The chemical com-
positions of an alloy may therefore well influence
the cAecliveness of dispersoid particles al high
lemperatures.

A further possibilily to influence interfacial bond-
ing may lic in the processing route itsell’ Preliminary
creep cxperiments on Fe-base alloys seem to indicate
that internally oxidized materials are less creep-
resistant than their mechanically alloyed counterparts
with similar composition and microstructure [49].
This may be expecled from our model, since
nucleation requirements and seclusion [rom atmos-
pheric environment should lead to strong inter-
facial bonding in the case of internal oxidation. It
remains to be seen whether these qualitalive conclu-
sions will hold and can eventually be put to technical
use.

Finally, an important consequence concerns use of
our creep equation for extrapolating creep dala inlo
regions where experimentul data are not available.
The shape of the curves in Fig. 6 suggests that only
materials with highly attractive dispersoids (¢ < 0.9)
show *threshold-like™ behaviour. In general, uncriti-
cal use of a “threshold stress™ concept may result in
serious overestimates of Lhe creep strength ot low
strain rates. This danpger may be averted by using our
model-based creep equation.
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7. SUMMARY

1. A new creep equation has been developed which
considers thermal activation of dislocation detach-
ment from allractive dispersoid particles. This equa-
tion, which does not predict a “true” threshold stress,
is shown to give good agreement with the hitherlo
“anomalous” creep behaviour of some dispersion-
strengthened alloys in a coarse-grained condition. In
contrast with earlier models, both the strong stress
and temperature dependence of the creep rate can be
explained.

2. The only fit parameter is the strength of (he
attraclive particle-dislocation interaction {parameler
k), which for incoherent dispersoids turns oul to be
superior over that of coherent precipitates. Optimum
dispersion hardening would be expected from an
array of stable pores.

3, The creep equation predicts the existence of
an optimum particle size and suggests thal there
is room (or obtaining stronger particle-dislocation
interactions with new matrix—dispersoid combina-
tions. It thus appears that there may be considerable
scope for further alloy developmenl.

4. Because it does nol rest on a “threshold stress”
assumption, the new creep equation can be used for
“safer” extrapolations of the creep behaviour of
dispersion-strengthened materials to low strain rates
and high temperatures.
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