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Abstract--The internal friction (mechanical loss) behavior of dislocations is studied in a model which, for 
the first time, considers the substitutional solute mobility in the dislocation core to be higher than in the 
bulk around it. The parameters investigated include the external stress trxy, the solute concentration Co, 
the pinning length of the dislocation and the temperature. It is shown that, at low Co and high tr~y, the 
kinetics of the dislocation motion is determined by the fast diffusion of the solute atoms in the core, while 
for high c o and low crxy the diffusion of the atoms far away from the dislocation is rate-limiting. The results 
are compared with the analytical model of Schoeck and are applied to the alloy system AI-Si. New 
experimental results supporting the model are described in a companion paper (Part II). 

1. INTRODUCTION the solute, i.e. along the dislocation, and transverse 
movement, i.e. normal  to the dislocation, are con- 

Dislocations are of great importance in the interpret- sidered [13, 14]. The motivation for this study origi- 
ation of  many internal friction (mechanical loss) nated in some internal friction results for A1-Si single 
experiments. The kinetics of the dislocation move- 

crystals [15, 16], where a loss maximum was obtained 
ment  may be controlled by different mechanisms which was caused by dislocations but  had a lower 
[1-4]. Generally, intrinsic dislocation mechanisms, activation enthalpy than that for volume diffusion. 
such as the non-conservative movement  of  jogs on As longitudinal movement  and breakaway from the 
screw dislocations [5], can be distinguished from solute cloud could be excluded, this behavior was in 
extrinsic mechanisms, which involve the interaction principle explained by a transverse movement  of the 
with other defects, such as solute atoms [6-8]. For  solute atoms and by the main assumption of  a higher 
describing the movement  of a dislocation in internal 

mobility (lower activation enthalpy) for solute diffu- 
friction experiments two different model levels are sion in the dislocation core. It remained unclear 
common:  The first is based on the Koehler-  however under which conditions these solute atoms 
Granato-Li icke  [9, 10] string model, which considers 

in the core region determine the activation enthalpy 
only the line tension and the stress field of a dis- of  the internal friction process. 
location. On the other level, also the atomistic While a higher longitudinal mobility of the solute 
structure, the periodicity of  the lattice and the Peierls in the dislocation core is well established for inter- 
potential are taken into account [2]. In materials nal friction[4, 13, 17], the possibility of a lower 
which are not  very pure the following effects can activation enthalpy for transverse diffusion in the 

occur: dislocation core has not  been considered in the 

(i) breakaway from the solute atom literature up to now. The following numerical model 
cloud [8, 11, 12]; studies the consequences of such an effect as a 

(ii) concurrent  mot ion of dislocation and so- function of the parameters external shear stress trxy, 
lute atom cloud [2, 6, 13]. solute atom concentration co, length l of the dis- 

location between the pinning points and temperature 
Which case dominates is determined by material T. The calculations are conducted for the quasi- 
parameters (e.g. solute atom concentration) and the static case, in which a constant  stress trxy acts on 
testing parameters external stress and temperature, the dislocation. The bowing of the dislocation and 

In this paper only the parameter  range in which the the resulting anelastic strain are computed as a 
dislocation cannot  move without the solute atoms is function of time. From this response function, the 
investigated. For  this case, longitudinal movement  of strain as a function of time and the relaxation 

parameter for dynamic internal friction are deduced. 
tPresent address: VOEST ALPINE Stahl Linz GmbH, The symbols used are listed in the Nomenclature at 

Linz, Austria. the end. 
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2. THE MODEL c = c ( x , y ) .  This function can be interpreted as 
the probability of finding a solute atom in an infini- 

2.1. Assumptions and approximations tesimal volume element. The movement and the 

Consider an edge dislocation in a material, pinned effects of single atoms are not considered in the 
at distances l by dislocation nodes or particles and model. 
surrounded by a Cottrell cloud of substitutional (v) The field around the dislocation is divided into 
solute atoms. An external stress now attempts to bow two regions (Fig. 2): core diffusion is assumed to 
out the dislocation between the pinning points. Only dominate in a square interior region with an edge 
the case in which the concurrent movement of the length of 2b ("core region"), outside this region 
Cottrell cloud determines the kinetics is considered, only bulk diffusion operates ("bulk region"). Diffu- 
Dislocation movement stops once the force on the sion of the solute atoms is described by a jump rate 
dislocation is balanced by the line tension, equation. 

In order to arrive at a tractable model the following 

approximations are made: 2.2. Model calculations 

(i) The dislocation is treated as a flexible The calculation procedure can be summarized as 
string [3, 18]. This is admissible if the deviation follows. First, a finite-difference mesh is constructed 
between the Peierls valley and the dislocation line is around the dislocation as shown in Fig. 2. (The nodes 
large enough (for f.c.c, metals larger than ~ 4  ° [1]) for of this mesh are of course not atomic positions.) Then 
the kinks to overlap. The line tension TL is given to the equilibrium distribution of a given concentration 
a reasonable approximation by Gb2/2, where G is the of solute atoms in the vicinity of the dislocation is 
shear modulus and b the Burgers vector. The discrete calculated and the corresponding values are allocated 
nature of the lattice and of the Peierls relief are not to the nodes. At time t = 0 an external stress is 
considered. Therefore a contribution from the kink applied, which bows the dislocation until the forces 
pair generation to the activation energy (~  0.1 eV for due to external stress, line tension and solute atoms 
A1) is neglected for dislocations parallel to the Peierls balance to zero. Next the solute cloud, which is now 
valley; this important local mechanism should not not in equilibrium with the dislocation, has to be 
greatly influence the overall behavior of the solute adjusted: in a time step At the solute atoms move by 
cloud, diffusion toward a new equilibrium distribution. 

(ii) The dislocation field is described by the elastic After this diffusion step the force exerted on the 
field of a Peierls-Nabarro-dislocation[19], an dislocation by the solute atoms is lower and the 
assumption which avoids the stress singularity at the dislocation can bow further. By a combination of 
dislocation core. these two steps the bowing of the dislocation is 

(iii) During bowing of the dislocation, the el- calculated as a function of time. The dislocation 
ements ds along the line (Fig. 1) have different motion finally stops when the force due to the line 
velocities. To circumvent a time-consuming three- tension is equal to the force due to the external stress; 
dimensional problem, a rigid dislocation with a the solute atoms, now in equilibrium, do no longer 
constant velocity is assumed. The influence of the exert any stress. 
bowing-out is simulated by subtracting from the For the initial solute distribution around the 
external stress a back stress of the following form (for straight dislocation an ideal segregation obeying the 
derivation see Appendix A1) Fermi-Dirac distribution [20] is assumed 

Gb 
a L = 4 7 - x  d (1) y 

where xa is the bowing-out distance of the dislocation 
between the pinning points. 

(iv) The distribution of the solute atoms around 
the dislocation is described by a concentration field ~ - - -  

- " Y ¥ 1  Y " ' ~  c, ore region x 
F o ~il, 

III 

IIII 
I_ :b LI 

Fig. 1. Configuration for describing the movement of a Fig. 2. Schematic of the mesh for solving the diffusion 
pinned edge dislocation under an external stress trxy. F, problem and for calculating the forces exerted on the 
denotes the force due to the external stress and FL the force dislocation by the solute atoms. For the core and bulk 

due to the back stress arising from the l]ne tension, regions different solute diffusivities are assumed. 
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1 
c(x,y)= l - - c 0  (2) A G j _ D  ~ fE i j -E i j  l'~ 

1 - - - . e x p ( E / k T )  At h 2 [_ci'j(1-cij-1)'exp~ ' 2k-T 
Co 

where Co is the number  concentrat ion far away from /Eli_ ~ - Eif~ 
the dislocation, E the interaction energy between - cij ,(1 - c,j). exp~ ' 2 ~  ' ) + ' " A  (6) 
dislocation and solute atom, k Boltzmann's  constant, 
and T the absolute temperature, where cij is the concentration at node (i,j), Ei, i the 

For  this interaction energy the elastic solution for potential energy and Acgj/At the change in concen- 
a misfitting sphere is used [21] tration in a time step, and h is the distance between 

adjacent nodes. The appropriate diffusion coefficient 
Y -+ ~ D is selected by insertion of the corresponding value 

E = A (3) 
(x - xd)2 + (.v + ~)2 of  Q. 

After each diffusion step a new equilibrium pos- 
where ition xd, at which the sum of the forces Fs + F~ - FL 

1 + v G" b is zero, has to calculated, where F, = a~y. b is the 
A = l - v  ~z • E • f~ external force per unit  length. Therefore the implicit 

equation 
and ~ is the atomic volume of the matrix, E the elastic 
misfit of  a solute atom, v Poisson's ratio, and ~ the trxy.b_4 .G'b2 f+o:f+~ 
dislocation half width. In equation (3) the + sign is ~ T - "  xd + 2A _ ~ 

used for y 1> 0 and the - sign for y < 0. A compu- (x d - x).  (y ++_ ~) c(x, y) 
tation for Si in AI with the material parameters in × - - - d x - d y  = 0 (7) 
Table 1 gives the realistic energy of 0.23 eV for the [(x - -  Xd) 2 "4- (y  -{- ~)212 

interaction between a solute atom in the dislocation has to be solved. The equilibrium value xd is calcu- 
core and the dislocation, lated by regula falsi. To get a sufficiently exact 

The force exerted by a misfitting solute atom at x, y solution for equations (6) and (7), a finer mesh is 
on a dislocation bowed out to x~ is calculated accord- chosen in the core region than in the bulk region; this 
ing to is achieved by transforming the problem to a u, v 

t~E ( x d -  x ) . ( y  _+ ~) space according to James and Barnett [24]. 
F . . . .  2A • (4) In order to extract relaxation times z and relax- 

~xd [ ( x - x d ) 2 + ( y  + ~)212" ation strengths A from the calculated data, the 

For  computing the force due to the whole Cottrell bowing-out distance as a function of time is fitted by 
cloud, equation (4) is multiplied by the probability c xd = ga" [1 - e x p ( -  t/z)] (8) 
of  finding a solute atom at x, y in the volume d V and 
integrated over the volume. Because of the straight where £d is the saturation value of the bowing-out 
dislocation assumption we integrate over the plane distance. As will be seen, the bowing-out distance 
x, y to get the force per unit  length along z often saturates below the maximum possible value 

because of the line tension. It is therefore useful to 
f ~ ' f ~  ( x a - x ) ' ( y + ~ )  d e f i n e a n o r m a l i z e d r e l a x a t i o n s t r e n g t h  

F s = 2A ~ o0 [(x ~xxd~--~ ~ ~_ -~212 
Xd 

e (x, y)  A = - -  (9) 
× ~ ' d x ' d y .  (5) xd . . . .  

where xd . . . .  is the maximum bowing-out distance 
For  computing the force it is immaterial whether limited by the line tension. 
the dislocation moves by xa in the Cottrell cloud 
or the Cottrell cloud moves by xj in the opposite 
direction. For  computat ional  simplicity, the dis- 3. RESULTS 

location position is fixed and the solute cloud is In this paper all relaxations were calculated for 

moved. Si solute atoms in an A1 matrix (see data in Table 1). 
Finally, to readjust the Cottrell cloud, a jump rate As diffusion constants for Si in A1, especially for 

equation of the following form must  be solved [22, 23] diffusion in the core, are not known, the values for 

A1 selfdiffusion were used. The "standard par- 
Table 1. Material parameters used in the calculations, with a m e t e r s " ,  which were selected for all calculations 

references (unless stated otherwise), were T = 4 0 0 K ,  l = 
b Esi(nm)i~ AI - 0.2860'045 [25][21] 500 nm, and Cr~y = 10- 5. G. 

(nm) 0.1 [21] 
G (GPa) 26.5 [21] 3.1. A computing example and its evaluation 

v 0.347 [21] 
f~(m 3) 1.66× 102, [21] In the following example the consequences of 

Da(m2.s  ') 1.7x 10 '.exp(--142,000/RT) [ 2 6 ]  assuming regions with different diffusivities are 
Oc(m2.s  ~) 1.7× lO-4.exp(-82,000/RT) [ 2 6 ]  demonstrated. The calculation was executed for 
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Co = 6 x 10 -5. To avoid instabilities in the numerical 1.a5 . . . .  , . . . . .  . . . . , . . . .  , . . . .  
kl. © 

solution of equation (6) the time steps At were ~. F 
adapted to the faster core diffusion process 1.00 ~ . . . . . . . . . . . . . . . . . . . . .  -~ . . . . . . . . . . . . . . . . . .  
(At = At c = 5 × 10 -9 s). 0.75 " ~ ~ ° -  

Figure 3 shows the bowing-out distance x d calcu- FL 
lated in this way as a function of time. After a fast 0.50 F s,s__ - 

initial movement the dislocation slows down and Xd 0 . 2 5  / ' /  "-o 

converges to a saturation value. This final limit is i'_ 
determined by the driving force ( F , - E L )  and the 0.00 , , ,  
force exerted by the "bulk solute" (i.e. solute atoms 0 5 10 15 2o 25 
in the bulk region), which has not moved in the short x~ [A] 
time step. By comparison, the "core solute" (i.e. Fig. 4. The forces acting on the dislocation during the 
solute atoms in the core region) has moved with the movement shown in Fig. 3 as a function of the bowing-out 

distance. The velocity in Fig. 3 falls as the net driving force 
dislocation and exerts only a negligible force. For (F¢-FL) approaches the back-driving force due to the 
simplicity, we will denote this regime of relaxation "bulk solute" (Fs.B). The bowing-out distance is determined 
due to diffusion of solute in the core region as "core by the force of the "bulk solute", which does not move 
relaxation", within the time steps characteristic for diffusion in the 

dislocation core. The balance of forces is illustrated in Fig. 4: the 
force F, due to the external stress is constant, while 
the net driving force F o -  FL decreases linearly with 
increasing bowing-out distance. The back-driving solute atom distribution in the core region was taken 
force, which is exerted by the "bulk solute", is shown into equilibrium, without diffusion steps following 
as the curved line (Fs.B); after going through a equation (6)[15]. 
maximum, Fs.B approaches the driving force such that From these results the following conclusion con- 
the velocity converges to zero and the bowing-out cerning the role of the two solute regions, as shown 
distance reaches a saturation value, as seen in Fig. 3. schematically in Fig. 5, can be drawn: the kinetics of 
Because of the asymptotic behavior, the calculation the first step (the "core relaxation regime") is con- 
was stopped at trolled by the "core solute" [Fig. 5(a-c)]. However the 

maximum bowing-out distance, which is pro- 
0.975. Fo - F L + Fs, a < 0. (10) portional to the relaxation strength, is determined by 

the "bulk solute". In the second step (the "bulk 
relaxation regime"), both the kinetics and the relax- This corresponds to the end points marked in Figs 3 

and 4. ation strength are determined by the diffusion of the 
"bulk solute" [Fig. 5(d, e)]. From the bowing-out As the bowing-out due to "core relaxation" satu- 
distance in the "core and bulk relaxation" regimes as rates, further dislcoation motion requires diffusion of 
a function of time, the relaxation times and normal- the "bulk solute". In this regime of "bulk relaxation" 
ized strengths were calculated according to equations the time steps Ate were chosen to be larger by about 

a factor of 106 (=DB/Dc) than Atc. To avoid insta- (8) and (9). 

bilities in the core region the fact was used that after 3.2. The shape of the Cottrell cloud 
the first part of the calculation the solute atom 
distribution in the core region is nearly in equi- The shape of the Cottrell cloud, which is shown 
librium. Therefore, in the following calculation the schematically in Fig. 5, was now calculated in the 

regimes of "core relaxation" and of "bulk relax- 
ation". In the former case, axy= 10 -5. G, Co= 
3 x 10 -5, I = 500 nm, and T = 400 K were chosen. 16 

<Z . . . . . . . . .  ' . . . . . . . . .  ' . . . . . . . . .  The resulting Cottrell clouds for Xd.c = 0, 3 and 11/~ 
are shown in Fig. 6(a-c), where the concentrations 

1 2 are plotted in the transformed u, v space. The bowing- 
out of the dislocation as a function of the time is 

8 plotted in Fig. 6(d). Figure 6(a-c) correspond to the 
schematic sketch in Fig. 5(a-c). The first plot 

4 [Figs 6(a) and 5(a)] shows the symmetric equilibrium 
distribution at the beginning. At an intermediate 

0 . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  stage [Figs 6(b) and 5(b)] the distributions of the 
0 2 4 6 "core solute" and of the "bulk solute" have become 

t [10 "4 s] asymmetric. The strong forces from the "core solute" 

Fig. 3. The first stage of the bowing-out (xd,c) of a dislo- are reflected in the asymmetry of the Cottrell cloud 
cation as a function of time. The kinetics of the movement near the dislocation. In the third plot [Figs 6(c) and 
is determined by fast diffusion of the "gore solute". The 5(c)] the asymmetry of the core region has decreased, 
calculation is interrupted at the end point of the curve, while the bulk region is heavily distorted. The conse- 
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Fo 

c) t = t  c d) t c <  t <  t s  

Fo Fo 

e) t = t s > > t  c 

F L 

v !  

Fo 
Fig. 5. Schem_atic of the sequence of events treated in the model: the shape of the Cottrell cloud in the 
core region (= small circle) and the bulk region (= large circle) is indicated for five different bowing-out 
distances, The forces on the dislocation (as in Fig. 4) are depicted for each stage, where F~ is the force 
due to the external stress, F L the back driving force due to the line tension, Fs,B the force exerted by the 
"bulk solute", and Fs.c the force exerted by the "core solute". (a) Initial configuration: The solute clouds 
within the core and bulk region are symmetric. (b) Intermediate stage for "core relaxation": The "core 
solute" diffuses with the dislocation in contrast to the "bulk solute" which does not. The action of the 
forces Fs.B and Fs.c which balance the net driving force (F, - FL) is reflected in the asymmetry of the solute 
cloud. (c) "End point" configuration for the "core relaxation" and start configuration for the "bulk 
relaxation": at the end of the core relaxation the "core solute" distribution is nearly in equilibrium and 
the net driving force is balanced by the bulk solute. (d) Intermediate stage for "bulk relaxation": The "core 
solute" is in equilibrium while the bulk solute is still asymmetrically distributed. The external force is 
balanced by the force exerted by the bulk solute and the line tension. (e) "End-point" configuration for 
the "bulk relaxation": The solute distributions of the "core" and "bulk solute" are now in equilibrium. 

The external force is balanced only by the line tension. 

quence is a lower force of  the "core  solute" and a 3 x 10 -4 was chosen. As a starting configuration, 
higher force of  the "bulk  solute" acting on the the "end-poin t"  situation of  the "core relaxation" 
dislocation, was assumed. The evolution of  the solute distribution 

For  calculating the solute distribution during "bulk in Fig. 7(a-c) can be compared with the schematic 
relaxation",  a higher solute concentrat ion Co = in Fig. 5(c-e). It is seen that the asymmetry of  
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the Cottrell  cloud, and therefore the force Fs,a, 3.3. The influence o f  the parameters Crxy, Co, l and T 
decreases during the bowing-out.  At  the end of  the To study the effect of  the solute concentration and 
calculation the solute distribution is nearly in equi- of  the external stress, parameters for which the 
librium and the external force is balanced only by the dominating mechanism changes from "core"  to 
line tension. The generally less-pronounced asymme- "bulk relaxation" were selected. For  studying the 
try in Fig. 7(a-c) when compared to Fig. 6(a-c) is due influence of  l and T, parameters were used for which 
to the higher solute concentration, one mechanism clearly dominates. 

(a) 

x v = O  

: > 2 . 3 3 E - 0 3  !!! !! !! !!! ~ 6 . 6 0 E - 0 4  'i'."i':'i'."i'."i"' :~1 . g 7 E - 0 4  > 5 . 2 9 E - 0 5  > 1 . 5 0 E - 0 5  

.° °o oo o. . . . .  
e . '~Z | | | | .~ | |  • * • • • . 

;; 'o'~,~'¢;;;,V > 1 . 2 8 E - 0 6  "z:ZZ::-'-'::" : ~ 3 . 7 " ~ E - 0 7  ; < 3 . 7 2 E - ( Y ' /  
> 4 . 3 8 E - 0 6  .,:-,.¢&-,.0-~-¢,- z: z: s: zz z-": i 

Fig. 6a 

Fig. 6. Actual solute distributions as calculated with the model for "core relaxation". The shading 
corresponds to local solute concentrations. The calculation was carried out for o ' x y = G "  1 0  - 5 ,  

c o = 3 × l0 -5, ! = 500 nm, T = 400 K and the material parameters in Table 1. The Cottrell clouds are 
plotted for the bowing-out distance Xdc = 0, 3, 11 .~ for a positive edge dislocation in a transformed u, 
v space [24]: (a) xd, c = 0 ~ (start configuration); (b) Xd, c = 3 ~k~ (C) Xd, c = l ] ~lk~ ( d )  Bowing-out distance as 

a function of the time. 
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Fig. 6b. (Caption on previous page) 
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(c) 

xv=l 1 

| |  | |  ~ =-Z | l  | |  * • " ° 
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Fig. 6c. (Caption on p. 3790). 
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(d) 

x ° 1 5  ~' 
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6 ~ i g .  6b 

0 , , , I . . . .  I . . . .  I . . . .  I , , , i 

0 0.5 1 1.5 2 2.5 

t [10"4 s] 

Fig. 6d. (Caption on p. 3790). 
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3.3.1. The influence of the solute concentration. In the "bulk solute" grows and the driving force 
this investigation the solute concentration Co was ( F ~ -  FL) is therefore balanced at a shorter bowing- 
varied between 2 x 10 -5 and 5 × 10 -4. In Fig. 8 the out distance (see dash-dotted line in Fig. 4). The 
normalized relaxation strength and the relaxation maximum bowing-out distance of the dislocation, 
time for the "core relaxation" are plotted as a which is the sum of the bowing-out in the "core" and 
function of the solute atom concentration. In Fig. 9 "bulk relaxation" regime, is determined only by the 
the same is plotted for the "bulk relaxation". For line tension. Therefore a smaller bowing-out during 
increasing concentration the relaxation strength for "core relaxation" allows a larger bowing-out during 
"core relaxation" decreases, whereas that for the "bulk relaxation" (and vice versa). It should be noted 
"bulk relaxation" increases. This can be explained as that, because of fitting errors in obtaining the relax- 
follows: With rising concentration, the force due to ation strengths, the sum of Ac + AB is not exactly 1. 

(a)  

m 
xv=2 

m IB >2.20E-02 i;; ii ii ii >6.32E-03 ' >1.82E-03 >5.22E-04 >1.50E-04 

~.?:.~,?;.:.??;.;. :: . . . .  : . .  : :  . :  . . . . . .  

"¢¢';~'¢¢',; ' ,W," : :  : :  : :  : :  : :  : :  
>4.38E-05 .¢;.,.,-;;.¢;.¢¢.;~ >1.28E-05 :::::::::::: >3.72E-06 <3.72E-06 

"~;%;°.'.%*g'.'.%;" g : | ~ ; * . ; g g g  . . . . . .  

Fig. 7a 

Fig. 7. Solute distr ibution as in Fig. 6, but  for "bu lk  relaxation" (co= 3 x I0 4). The additional 
bowing-out  distances after complet ion of  the core relaxation are: (a) xa ,  a = 2 ~ ;  (b) Xa. a = 9 ,~; (c) 

xa, B = 19 ~ ;  (d) Bowing-out  distance as a function of  the time. 
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Fig. 7b. (Caption on p. 3793). 
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0 . ,, 0" s Fig. 10. The relaxation strength A c and the relaxation time 
1 O s 1 O" 4 O a Tc for "core relaxation" as a function of the external stress 

C 0 for T = 4 0 0 K ,  c 0 = 3 x  10 -5 and l=500nm.  

Fig. 8. The relaxation strength Ac and the relaxation time 
z c for "core relaxation" as a function of the solute atom 
concentration (Si) in the matrix (AI) for T = 400 K, higher values because of  the normalization with F, ;  
axe=G. 10 -5 and l=500nm.  The arrows correspond to additionally, the line for the net driving force 
the hypothetical alloys discussed with reference to Fig. 13. 

( F , - - F L )  acquires a larger slope. Therefore, the 
bowing-out distance becomes shorter as in the case of  

The maximum in the "core  relaxation" time can be increasing concentration in which only the curve FsB 

explained by two opposite contributions. With rising is shifted to higher values. 
solute concentration, the viscosity of  the Cottrell  3.3.3. The influence o f  the pinning length o f  the 
cloud grows and an increasing relaxation time is dislocation. The parameters Co = 5 × 10 -5 for the 
expected. However,  at higher concentrations the "core  relaxation" and Co = 5 x 10 -4 for the "bulk 
bowing distance decreases dramatically, which re- relaxation" were kept constant. The pinning length l 
suits, for the same velocity, in a shorter relaxation o f  the dislocation was varied between 200 and 
time. In the region of  the maximum the viscosity of  500 nm. The dependencies of  the relaxation strength 
the cloud increases faster than the bowing-out  and the relaxation time on 1 turned out to follow 
distance falls. "Bulk relaxation",  for which the power laws of  the form z ~ l" and A ~ l m, where 
bowing-out  distance increases with co, does not  show within the "core"  and "bulk  relaxation" regimes the 
this effect and the relaxation time increases continu- exponents n and m are approx. 2. If  the bowing-out 
ously, of  the dislocation is determined only by the line 

3.3.2. The influence o f  the external stress. In Figs I0 tension, the exponent is exactly 2, as shown e.g. by 

and I1 the normalized relaxation strength and the Schoeck [18]. 
relaxation time for "core  relaxation" and "bulk 3.3.4. The influence o f  the temperature. The con- 
relaxat ion" are plotted as a function of  the external centrations Co = 5 × 10 -5 for the "core relaxation" 
stress. The concentrations were fixed at co = 3 × 10 -5 and c o = 5 × 10 -4 for the "bulk relaxation" were kept 
(in the "core  relaxation" regime) and Co = 3 × 10 -4 constant. F rom the calculated dependence of  the 
(in the "bulk  relaxat ion" regime). These figures reflect relaxation time on the temperature the activation 
the fact that a falling external stress has the same enthalpy can be determined according to 
influence on the relaxation strength as an increasing r = z o • exp(H/kT) ,  where z 0 is the inverse at tempt 
solute concentration. This can be explained with frequency and H the activation enthalpy of  the 

Fig. 4: a falling external stress shifts the curve Fs,a to 

1 . . . . . . . . .  , . . . . . . . . .  ~ . . . . . . . . .  1 0  5 
¢I:1 tlO 
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0 . 2  " ZB 0 2 1 2 3 4 

0 , ~ . . . . . .  I , . . . . . .  
10  .5 10 .4 0 "3 (3 /G [ 1 0  "s ]  

C xy 

0 Fig. 11. Same as Fig. I0, but for "bulk relaxation" and 
Fig. 9. Same as in Fig. 8 for "bulk relaxation". Co = 3 x 10 -4. 
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relaxation process. For "core relaxation" we find In the case of "bulk relaxation", A1 is identified 
with the mean distance between the solute atoms in 

z0 = 3.7 × 10 17 s H = 98 kJ a hollow cylinder with cut-off radii ri and r a. The 
result is (Appendix 2) 

and for "bulk relaxation" 
I 2 kT  rc .A 2 c o 1 ln/'r~] 

z 0 = l . Z x l O - 1 5 s  H = 1 4 7 . 8 k J .  r s . , - 5 . G b  2 ~ -  ~ : ~ - f . f i . ~ .  \ ~ } .  (13) 

It is remarkable that the values for the activation Forri=b,  ra=lOb, l=5OOnm, co=5 x 10 4andthe 
enthalpy turn out to be close to, but higher than, the parameters in Table 1 we find 
activation enthalpies for diffusion (QD,c = 82 kJ and 
QD,B = 142 kJ). This additional temperature depen- -Cs. n = 3.2 × 10 ~4. exp(142,000/RT) s 
dence can be explained as follows: with increasing 
temperature the Cottrell cloud "evaporates" and the in comparison to 
lower viscosity results in shorter relaxation times. The 
difference between the measured activation enthalpy % = 1.2 x 10 15. exp(147,400/RT) s 
and the one for diffusion is thus a mean binding 
energy for solute atoms, for our model. The differences in the inverse attempt 

frequency and activation enthalpy arise from the fact 
that a binding energy was not considered in the 

4. DISCUSSION approximation in Appendix 2. 
In Schoeck's model the relaxation time is pro- 

4. I. Comparison with analytical expressions on the portional to the solute atom concentration. As shown 

basis of  Schoeck's model in Section 3.3, this is only correct for large concen- 

To allow an easier comparison between experimen- trations, at which only "bulk relaxation" is possible. 
tal data and the proposed model, analytical relations For "core relaxation" there are always deviations 
were derived on the basis of Schoeck's model because the maximum bowing-out is influenced by 
[6, 18, 27] and compared with the solutions of our the force of the "bulk solute". In spite of this 
numerical model. In Schoeck's model the relaxation discrepancy the analytical equation may be used for 
time is expressed as comparison with the experimental results if the domi- 

nant mechanism is known. 
12 kT  

Z s = 5 .  Gb 2 D .  Al (11) 4.2. A mechanism map and consequences for the 
internal friction spectrum 

where D is the solute diffusivity and Al the mean The new feature in the present numerical model for 
distance between solute atoms along the dislocation, internal friction due to solute drag by dislocations is 

In the case of "core relaxation", the appropriate the consideration of a region near the dislocation core 
value for Al is the mean distance between the solute with a higher solute mobility normal to the dislo- 
atoms in the dislocation core. The concentration is cation. This model has yielded two relaxation steps: 
estimated by the Boltzmann distribution Cc = the kinetics of the first one is determined by fast 
Co" exp(UB/kT), where for the binding energy U~ the diffusion of the solute atoms near the dislocation 
value of the interaction energy [equation (3)] at core, whereas the kinetics of the second one is 
x, y = 0 is used. Therefore, the relaxation time can be controlled by the solute far away from the dislocation 

expressed as core. The relaxation strengths of the two processes 
depend strongly on the solute concentration, the 

I 2 k T  Co 
Zs'c = 5 .  Gb 2 - D ' b  "exp(UB/kT)" (12) external stress and the elastic misfit of the solute 

atoms. The parameters l and T by contrast, have only 

A calculation of the relaxation time yields (for a slight influence and are not considered in the 
l = 500 nm, c o = 5 x 10 -s, U8 = 0.23 eV) following. Therefore, for a given alloy a "map" with 

the axes external stress and solute concentration can 

rs.c = 1.6 × 10  - 1 6 .  exp(lO4,2OO/RT) s be calculated in which the domains for the "core" and 
"bulk relaxation" are delineated. At the boundary 

in comparison to between the domains the relaxation strengths for the 
two mechanism are equal. Such a map is shown for 

• c -= 4 x 10 17. exp(98,000/RT) s AI with Si solute atoms in Fig. 12. The values for this 
map originate from evaluations of Figs 8-11 and 

for our model. The discrepancy in the activation similar calculations, and an approximate method 
enthalpy can probably be explained by the constant [15]. 
binding energy assumed in Schoeck's model as The position of a given alloy on this map will 
opposed to the variable binding energy E = E(x, y) determine its internal friction spectrum in the follow- 
in our model, ing way. An alloy with a very low solute concen- 
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t 0 a maximum, due to "bulk relaxation", the kinetics is 
o ° . . . . . . . . . . . . . .  ' ' ' "  ' ~ . ~  determined by the diffusion of the "bulk solute" and 

~ l a ~  the activation enthalpy for the relaxation process 
'~ ] bulk ~ . contains mainly this term. If  the solute concentration 

10. 4 is raised from alloy 1 to alloy 5 (Fig. 13), "bulk 
o = relaxation" is expected to dominate increasingly. 
o Therefore the high temperature maximum in the 
o J /  ]core relaxation] internal friction spectrum will be enlarged at the 
"6 expense of the low temperature maximum. If the 
=n 10  s e~,f  . . . . . . .  ~ . . . . . . . .  1 0 6 1 0" s 0 4 external stress is varied f rom high to low values, a 

similar sequence o f  internal f r ict ion spectra wi l l  
normalized external stress (Oxy/G) 

result. 
It is encouraging that several experimental studies 

Fig. 12. Mechanism map for A1-Si, which shows the domi- seem to be in agreement with these predictions of our 
nant relaxation mechanism as a function of the external 
stress oxy and the solute concentration c o for T = 400 K and model. For example, early results on Cu-Si and 
1 = 500 nm. The boundaries are calculated with the model Cu-A1 alloys with different solute concentrations [28] 
described in Section 2 (heavy line) and the approximation follow the sequence as schematically shown in 

method in [15]. Fig. 13(b). The calculated crossover from "core" to 
"bulk relaxation" is even in the same order of 
magnitude as in the experimental [29]. Our own 

tration (hypothetical alloy 1 in Fig. 13)clearly lies in damping studies on a single crystal A1-Si alloy 
the "core relaxation" domain, which implies that the revealed a maximum at 450 K (f  ~ 4 Hz), which had 
anelastic bowing is controlled by diffusion of the to be attributed to dislocation motion [15,16]. 
"core solute" (compare also Fig. 8). Therefore a large By contrast, the maximum occurs at a significantly 
low temperature maximum and a negligible high higher temperature in an A1-Mg [30] alloy with 
temperature maximum would be expected. The acti- a higher solubility. Again, a change from "core" 
vation enthalpy will be the sum of the activation to "bulk relaxation" is a likely explanation for 
enthalpy for diffusion and the binding energy be- the displacement of the maximum. A detailed 
tween solute atoms and the dislocation. For  the small discussion of new and published results in the light 

of our model will be given in the companion paper 
(a) [29]. 

o bulk relaxation ..i 

alloy 5 5. CONCLUSION 

i ~  alloy 4 A model for explaining internal friction (mechan- 
~ l  ical loss) due to dislocations which interact with 
-~ substitutional solute atoms is proposed. It is assumed / 

[ ~ alloy 2 that the solute atoms near the dislocation core 
'4 ,I / alloy 1 have a higher mobility and therefore contribute to 

l eore relaxation mechanical loss in a different way than the solute 
. ,  ~ I atoms in the bulk material. The relaxation times and 

increasing external stress strengths were calculated as a function of pinning 
length, solute concentration, temperature, and exter- 
nal stress. 

(b) ' The following essential results arise: at low solute 
concentration and high external stress the kinetics of 
the relaxation is determined by the mobility of the 

• ' ,'.~ / /  - v/,/",!.' solute atoms near the core. Under these conditions, 
• ~. alloy2 .'," ' , .  the solute atoms far away from the dislocation core 
E do not play a significant role. Conversely, at high ,, .. 
-o alloy3 ' / /  \ \"J/ i ,  ./ ...." solute concentration and low external stress the 

i i  , ~ _ . ~ ' : ~ o y "  4 .... 

, / ~:" . - kinetics is determined by the solute atoms which are 
far away from the dislocation core. These two relax- 

/ ~ . / - - - - . / /  alloy5 ation processes, which can be viewed as separate 
- ~ , ~ / ~  mechanism with different activation enthalpies, 

should give rise to two maxima in the internal friction 
temperature spectrum. The strong dependence of some experimen- 

Fig. 13. (a) Schematic mechanism map and (b) the internal tal damping spectra on the solute atom concentration 
frictionspectra expected for five hypothetical alloys with is in apparent agreement with the prediction of this 

increasing solute concentration, model. 
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Zs, Zc relaxation time for the "bulk relaxation" and relaxation", resp. 

"core relaxation", resp. fl atomic volume. 


