
TopX

Efficient and Versatile
Top-k Query Processing for

Text, Structured, and Semistructured Data

Martin Theobald
Max-Planck-Institut für Informatik

Saarbrücken
April 2006

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Dekan der Naturwissenschaftlich-Technischen Fakultät I Prof. Dr. Thorsten Herfet

Vorsitzender der Prüfungskommission Prof. Dr. Christoph Koch
Erstgutachter Prof. Dr. Gerhard Weikum
Zweitgutachter Prof. Dr. Norbert Fuhr
Zweitgutachter Prof. Dr. Michalis Vazirgiannis
Wissenschaftlicher Begleiter Dr. Ralf Schenkel

Tag des Promotionskolloquiums 16. Mai 2006

Kurzfassung

TopX ist eine Top-k Suchmaschine für Text und XML Daten. Im Gegensatz
zu Boole’ schen Suchmaschinen terminiert TopX die Anfragebearbeitung,
sobald die k besten Ergebnisobjekte im Hinblick auf eine mehrdimensionale
Anfrage gefunden wurden. Die Hauptbeiträge dieser Arbeit teilen sich in
vier Schwerpunkte basierend auf vorherigen Veröffentlichungen bei interna-
tionalen Konferenzen oder Workshops:

• Top-k Anfragebearbeitung mit probabilistischen Garantien.

• Zugriffsoptimierte Top-k Anfragebearbeitung.

• Dynamische und selbstoptimierende, inkrementelle Anfrageexpansion
für Top-k Anfragebearbeitung.

• Effiziente Unterstützung für XML-Anfragen und Volltextsuche.

Unsere Experimente bestätigen die Vielseitigkeit und gesteigerte Effizienz un-
serer Verfahren gegenüber existierenden, führenden Ansätzen für eine weite
Bandbreite von Anwendungen in der Informationssuche.

Abstract

TopX is a top-k retrieval engine for text and XML data. Unlike Boolean
engines, it stops query processing as soon as it can safely determine the
k top-ranked result objects according to a monotonous score aggregation
function with respect to a multidimensional query. The main contributions
of the thesis unfold into four main points, confirmed by previous publications
at international conferences or workshops:

• Top-k query processing with probabilistic guarantees.

• Index-access optimized top-k query processing.

• Dynamic and self-tuning, incremental query expansion for top-k query
processing.

• Efficient support for ranked XML retrieval and full-text search.

Our experiments demonstrate the viability and improved efficiency of our
approach compared to existing related work for a broad variety of retrieval
scenarios.

Zusammenfassung
Top-k Anfragen basierend auf dem Erstellen von nach Relevanz sortierten
Ergebnislisten für mehrdimensionale Datensätze sind ein fundamentaler Bau-
stein für viele Arten der Informationssuche, wobei die Anwendungen von Text
und Datenintegration bis zur verteilten Aggregation von Netzwerkprotokollen
und Sensordaten reichen. The Top-k-Anfrageszenarien, die in dieser Arbeit
untersucht werden, arbeiten auf vorausberechneten, invertierten Indexlis-
ten für die elementaren Bedingungen einer Anfrage und aggregieren die ele-
mentaren Relevanzwerte der Ergebniskandidaten zu einem Gesamtrelevanz-
wert. Eine der effizientesten und vielseitigsten Implementierungsmethoden
in diesem Kontext ist Fagin’s Familie der Schwellwertalgorithmen, die darauf
zielen, die Indexzugriffe so früh wie möglich zu terminieren, basierend auf un-
teren und oberen Schranken für den schließlichen Gesamtwert eines Kandi-
daten. Im Gegensatz zu Boole’schen Auswertungsmodellen profitieren diese
fortgeschrittenen Verfahren von einer nicht-konjunktiven Auswertungsstrate-
gie, bei der ein Ergebniskandidat schwache Übereinstimmungen einiger An-
fragebedingungen (einschließlich keiner Übereinstimmung) durch starke Tref-
fer für andere Anfragebedingungen ausgleichen kann. Diese Arbeit präsen-
tiert eine neuartige Suchmaschine, genannt TopX, für die effiziente Anfrage-
evaluation von Text, strukturierten und semistrukturierten (XML) Daten.
Der Kern des TopX Anfragebearbeiters integriert und erweitert unterschied-
liche, existierende Verfahren auf signifikante Art zur kostenbewussten In-
dexzugriffssteuerung in einer flexiblen Mehrprozessarchitektur.

Da das Ziel eines Benutzers beim Stellen einer Top-k-Anfrage typischer-
weise darin liegt, eine oder mehrere neue Informationseinheiten zu entdecken,
besteht eine faszinierende Idee darin, approximative Top-k-Verfahren zu ent-
wickeln, um die Ausführungskosten einer solchen Anfrage weiter zu senken.
TopX stellt daher eine Reihe von approximativen Algorithmen basierend
auf probabilistischen Argumenten vor und ermöglicht dadurch großartige
Laufzeitgewinne mit einem geringen und kontrollierbaren Verlust an Ergeb-
nispräzision. Beim Einlesen der Indexlisten des zugrunde liegenden Daten-
raumes in absteigender Reihenfolge der lokalen Ränge werden verschiedene
Arten von Verteilungsfaltungen und daraus abgeleiteten Schranken unter-
sucht, um vorherzusagen, wann es mit hoher Wahrscheinlichkeit sicher ist,

2

Ergebniskandidaten zu löschen und den Einlesevorgang frühzeitig abzubre-
chen. Unser Ansatz umfasst effizient berechenbare, geschlossene Formen
von Verteilungsfaltungen für parametrisierte Verteilungen wie Poission, viel-
seitige probabilistische Garantien mit momentgenerierenden Funktionen und
Chernoff-Hoeffding-Schranken, sowie flexible Histogramme, die dazu benutzt
werden können, beliebige Verteilungen zu approximieren.

Die grundlegende Anfrageauswertung führt effiziente sequentielle Indexzu-
griffe aus, hat aber auch die Option, gezielte randomisierte Zugriffe für aus-
gewählte Kandidatenobjekte auszulösen, um deren schließlichen Gesamtrele-
vanzwert direkt zu ermitteln. Diese Auswertungsstrategie beinhaltet also die
zielgesteuerte Planung von zwei Arten von Indexzugriffen, nämlich 1) die un-
terschiedliche Priorisierung der Indexlisten in den sequentiellen Zugriffen und
2) die Entscheidung, wann und für welche Kandidaten ein randomisierter Zu-
griff ausgelöst werden soll. In der bisher existierenden Literatur wurden diese
beiden Aspekte nur einzeln und für spezialisierte Umgebungen untersucht.
Diese Arbeit vermittelt eine integrierte Untersuchung dieser Zugriffsstrate-
gien und entwickelt neue Methoden, die die bisherigen Verfahren deutlich
verbessern. Unsere Hauptbeiträge in diesem Zusammenhang sind grundle-
gend neue Ansätze basierend auf einer dem Rucksack-Problem abgeleiteten
Optimierung von sequentiellen Zugriffen und ein probabilistisches Kosten-
modell für die Steuerung randomisierter Zugriffe. Unsere Verfahren können
durch die Einbeziehung unseres probabilistischen Schätzers, unterschiedlicher
Selektivitäten, sowie Korrelationen von Indexlisten weiter verfeinert werden.

Desweiteren präsentiert diese Arbeit ein neues Verfahren zur dynami-
schen und selbstoptimierenden Anfrageexpansion, das ebenfalls in unsere
Top-k-Auswertungsstrategie eingebettet ist. Traditionelle Expansionstech-
niken wählen Expansionsterme deren thematische Ähnlichkeit zu dem ur-
sprünglichen Term über einem bestimmten Schwellwert liegt und generie-
ren dadurch eine disjunktive Anfrage von deutlich höherer Dimensionalität.
Dies führt häufig zu den folgenden drei Problemen: 1) der Schwellwert muss
manuell eingestellt werden, 2) die Gefahr, dass das ursprüngliche Thema
der Anfrage durch zu aggressive Expansion zunehmend verwischt wird, und
3) die drastisch erhöhten Ausführungskosten einer hochdimensionalen An-
frage. Unsere Methoden adressieren diese drei Schwerpunkte, indem die
invertierten Indexlisten zu einer Menge von Expansionstermen dynamisch
und inkrementell Verschmolzen werden. Eine Prioritätsschlange wird zur
effizienten Verwaltung der Kandidaten verwendet, und das frühzeitige Eli-
minieren von schwachen Kandidaten basiert entweder auf dem konservativen
Schwellwertverfahren der ursprünglichen Top-k-Algorithmen oder wiederum
auf probabilistischen Argumenten. Die vorgestellten Algorithmen werden
eingebettet in zwei neuartige, spezialisierte Anfrageoperatoren.

3

Für die effiziente Erstellung von Ergebnisranglisten von XML Dokumenten
über semistrukturierten aber nicht-schematischen Datensammlungen ist TopX
in der Lage, die effiziente Form der Indexzugriffssteuerung mit einem Großteil
an effizienten sequentiellen Zugriffen und nur einigen wenigen, kontrollierten
randomisierten Zugriffen beizubehalten und um ein XML-spezifisches Kosten-
modell zu erweitern, was eine einzigartige Charakteristik im Bereich der Top-
k-Anfragebearbeitung für XML Daten ist. Die Schwierigkeiten, die beste-
henden Top-k-Verfahren auf XML Daten zu übertragen bestehen darin, 1)
Relevanzwerte für einzelne XML Elemente zu betrachten, diese aber auf der
Dokumentebene zu aggregieren, 2) eine vage Interpretation der XML In-
halte mit strukturellen Bedingungen zu kombinieren, 3) einzelne Anfragebe-
dingungen dynamisch zu lockern, falls zu wenige Ergebnisse alle Bedingun-
gen erfüllen, sowie 4) die Anpassung der Selektivitätsschätzung sowohl für
textuelle als auch strukturelle Inhalte und deren Einfluss auf die Auswer-
tungsstrategien. TopX adressiert diese Anforderungen durch die gezielte Vo-
rausberechnung von elementaren Relevanzwerten und Pfadinformationen in
einer spezialisierten Indexstruktur, durch die weitgehende Vermeidung oder
Hinauszögerung der Auswertung von teuren Pfadbedingungen, um das se-
quentielle Zugriffsmuster auf die Indexlisten beizubehalten, und durch das
selektive Ausführen von randomisierten Zugriffen zu einem kostengünstigen
Zeitpunkt.

Ausführliche Experimente mit verschiedenen, realistischen Datensamm-
lungen sowie offiziellen Benchmarks wie TREC oder INEX sowohl für Text
als auch semistrukturierte Daten bestätigen die verbesserte Effizienz, Effek-
tivität und Skalierbarkeit unserer Verfahren.

4

Summary
Top-k queries based on ranking elements of multidimensional datasets are a
fundamental building block for many kinds of information discovery, with ap-
plications ranging from text and data integration to distributed aggregation
of network logs and sensor data. The top-k retrieval scenarios we investi-
gate operate on precomputed, inverted index lists for a query’s elementary
conditions and aggregate scores for result candidates. One of the most ef-
ficient and versatile methods in this setting is Fagin’s family of threshold
algorithms (TA), which aim to terminate the index scans as early as possible
based on lower and upper bounds for the final scores of result candidates.
As opposed to Boolean retrieval models, these advanced retrieval techniques
greatly benefit from a non-conjunctive evaluation strategy, where a result
object can compensate weak matches for some query conditions (including 0
scores) through high scores at other query conditions. This thesis presents a
novel engine, coined TopX, for efficient, ranked retrieval of text, structured,
and semistructured data (XML). The TopX core query processor seamlessly
integrates existing approaches for cost-aware index access scheduling and
substantially extends these in a multithreaded architecture.

Since the user’s goal behind top-k queries is to identify one or a few
relevant and novel data items, it is intriguing to use approximate variants
of TA to reduce runtime costs. TopX introduces a family of approximate
top-k algorithms based on probabilistic arguments, thus greatly speeding up
queries with a small and controllable loss in retrieval precision. When scan-
ning index lists of the underlying multidimensional data space in descending
order of local scores, various forms of convolutions and derived bounds are
employed to predict when it is safe, with high probability, to drop candidate
items and to prune the index scans. Our approach investigates efficiently
evaluable closed-form convolutions for parameterized score distributions such
as Poisson, versatile probabilistic guarantees employing moment-generating
functions and Chernoff-Hoeffding bounds, as well as flexible histograms that
can be employed to approximate arbitrary distributions.

The basic query processing performs sequential disk accesses for sorted
index scans, but also has the option of performing random accesses for se-
lected data objects to resolve score uncertainty. This entails scheduling for

5

the two kinds of accesses, namely 1) the prioritization of different index lists
in the sequential accesses, and 2) the decision on when to perform random
accesses and for which candidate objects. The prior literature has studied
some of these scheduling issues, but only for each of the two access types in
isolation. The thesis takes an integrated view of these scheduling issues and
develops novel strategies that outperform prior proposals by a large margin.
Our main contributions are new, principled scheduling methods based on
a Knapsack-related optimization for sequential accesses and a probabilistic
cost model for random accesses. The methods can be further boosted by
harnessing our probabilistic estimators for scores, different selectivities, and
index list correlations.

We present a novel approach for dynamic and self-tuning query expansion
that is natively embedded into our top-k query processor with early candidate
pruning. Traditional query expansion methods select expansion terms whose
thematic similarity to the original query terms is above some specified thresh-
old, thus generating a disjunctive query with much higher dimensionality.
This poses three major problems: 1) the need for hand-tuning the expansion
threshold, 2) the potential topic dilution through overly aggressive expan-
sion, and 3) the drastically increased execution cost of a high-dimensional
query. The methods developed here addresses all three problems by dynami-
cally and incrementally merging the inverted lists for the potential expansion
terms with the lists for the original query terms. A priority queue is used
for maintaining result candidates, and the pruning of candidates is either
based on the conservative threshold condition of the TA-style algorithms or
on probabilistic arguments. The proposed algorithms are encapsulated into
two novel types of pipelined and non-blocking query operators, namely the
Incremental Merge and nested top-k operators.

For efficient ranked retrieval of XML documents over semistructured but
non-schematic data collections, TopX is able to retain the paradigm of thresh-
old algorithms for top-k query processing, with a focus on inexpensive se-
quential accesses to index lists and only a few judiciously scheduled random
accesses which is a unique characteristic among the XML engines we are
aware of. The difficulties in applying the existing top-k algorithms to XML
data lie in 1) the need to consider scores for XML elements while aggregating
them at the document level, 2) the combination of vague content conditions
with XML path conditions, 3) the need to relax query conditions if too few
results satisfy all conditions, and 4) the selectivity estimation for both con-
tent and structure conditions and their impact on the evaluation strategies.
TopX addresses these issues by precomputing score and path information in
an appropriately designed index structure, by largely avoiding or postponing
the evaluation of expensive path conditions so as to preserve the sequential

6

access pattern on index lists, and by selectively scheduling random accesses
when they are cost-beneficial.

Extensive experiments on various real-world data collections, as well as
official benchmark settings such as the TREC and INEX benchmarks for
both text and semistructured data demonstrate the increased efficiency, ef-
fectiveness, and scalability of our approach.

7

Contents

1 Introduction 13
1.1 Top-k Applications . 13
1.2 Classification of Top-k Algorithms 14

1.2.1 Sequential vs. Random Access 14
1.2.2 Top-k Selection vs. Top-k Join Queries 15

1.3 TopX System Overview . 15
1.3.1 TopX Components . 16
1.3.2 Basic Top-k Query Processing 19

1.4 Related Work . 22
1.4.1 Top-k Query Processing 22
1.4.2 Approximative Top-k and Efficient IR 27
1.4.3 Rank-Join Optimization 29
1.4.4 Query Expansion . 31
1.4.5 XML IR . 32

1.5 Contributions . 35
1.5.1 Top-k Query Processing with Probabilistic Guarantees 35
1.5.2 Index Access Scheduling 35
1.5.3 Dynamic & Self-tuning Incremental Query Expansions 36
1.5.4 Efficient XML Full-Text Search 37
1.5.5 Selected Publications 39

1.6 Overview of the Thesis . 40

2 Data & Query Model 41
2.1 Data Model . 41

2.1.1 Text . 42
2.1.2 Structured Data . 44
2.1.3 Extensible Markup Language (XML) 1.0 44
2.1.4 Full-Content Text Model 48

2.2 Query Language . 50
2.2.1 XPath 1.0 . 50
2.2.2 XPath 2.0 – Full-Text Extension 55

8

CONTENTS

2.2.3 Narrowed Extended XPath I (NEXI) 55
2.3 Relational Schemata for Text and Semistructured Data 58

2.3.1 Text Schema . 58
2.3.2 Structural Indexes for XML 58
2.3.3 Combined Inverted Block-Index for XML 62

3 Relevance Scoring Model 66
3.1 Vector Space Model . 68

3.1.1 TF·IDF Family of Scoring Functions 69
3.1.2 Vector Space Aggregations 71

3.2 Probabilistic Scoring Models 73
3.2.1 Probabilistic IR . 73
3.2.2 Okapi BM25 . 76

3.3 Combined Scoring Models – Web IR 78
3.3.1 Multiple Weighted Fields 78
3.3.2 Link Structure & Anchor Texts 79
3.3.3 Global Document Weights 80

3.4 Scoring Models for Semistructured Data 83
3.4.1 Content Scores . 83
3.4.2 Structural Scores . 86
3.4.3 Common Framework 87

3.5 Query Term Weights & Boosting Factors 88
3.5.1 Relevance Feedback . 89
3.5.2 Negative Query Weights 90

4 TopX Core Query Processor 91
4.1 Conjunctive vs. Andish Query Evaluations 92

4.1.1 Mixed Mandatory & Optional Query Conditions 92
4.1.2 Adaptive Min-k Thresholds 93

4.2 Expensive Predicates . 94
4.2.1 Random Access Scheduling for Expensive Predicates . 94
4.2.2 Negation . 96
4.2.3 Phrase Matching . 97
4.2.4 Frequent Terms . 98

4.3 Multi-threaded Top-k Query Processing 99
4.3.1 Main Thread . 102
4.3.2 Scan Threads . 104
4.3.3 Buffer Threads . 105
4.3.4 Threshold & Continuous Queries 106

9

CONTENTS

5 Probabilistic Candidate Pruning 111
5.1 Top-k Query Processing with Probabilistic Guarantees 112

5.1.1 Convolutions . 114
5.2 Predictors for Aggregated Scores 117

5.2.1 Chernoff-Hoeffding Bounds for Uniform Distributions . 117
5.2.2 Poisson Estimators . 120
5.2.3 Histograms . 121
5.2.4 Extensions and Generalizations 124

5.3 Efficient Queue Management 126
5.3.1 Conservative Algorithm 127
5.3.2 Aggressive Algorithm 128
5.3.3 Progressive Algorithm 129
5.3.4 Common Framework 130

5.4 Top-k Guarantees for Probabilistic Candidate Pruning 132

6 Index Access Scheduling 135
6.1 Index-Optimized Top-k Query Processing 136

6.1.1 Adaptive Index Access Scheduling 136
6.1.2 Extended Classification of Threshold Algorithms 137

6.2 Probabilistic Extensions . 139
6.2.1 Selectivity Estimator 139
6.2.2 Combined Score Predictor & Selectivity Estimator . . . 140
6.2.3 Feature Correlations 141

6.3 Sorted Access Scheduling . 142
6.3.1 Knapsack Scheduling for Score Reduction 143
6.3.2 Knapsack Scheduling for Benefit Aggregation 145

6.4 Random Access Scheduling . 147
6.4.1 Last-Probing . 147
6.4.2 Ben-Probing . 150

7 Dynamic & Self-tuning Query Expansion 154
7.1 Static vs. Dynamic Query Expansion 155

7.1.1 Static Expansions & Topic Drifts 155
7.1.2 Dynamic & Incremental Query Expansion 157

7.2 Thesaurus-based Query Expansion 158
7.2.1 Word Sense Disambiguation 159
7.2.2 Similarity Joins . 163

7.3 Unified Ontology Service . 165
7.4 Incremental Merge Operator 166

7.4.1 Max-Score Aggregation 167
7.4.2 Incremental Merge Algorithm 168

10

CONTENTS

7.4.3 Sorted Access for Dynamic Expansions 169
7.4.4 Random Access for Dynamic Expansions 170

7.5 Nested Top-k Operator . 171
7.5.1 Dynamic Index Lists 172
7.5.2 Phrase Matching . 173
7.5.3 Nested Top-k Algorithm 174

7.6 Probabilistic Extensions . 178
7.6.1 Selectivity Estimator for Incremental Merge 179
7.6.2 Meta Histograms for Incremental Merge 180

8 Top-k Query Processing for XML 183
8.1 Challenges in Efficient XML IR 184

8.1.1 An XML IR Example Scenario 184
8.1.2 Requirements & Solutions Overview 186
8.1.3 Boolean XPath vs. XML IR 190

8.2 Query Decomposition & Index Block-Scans 191
8.2.1 Query Decomposition & Rewriting 191
8.2.2 Schema Mapping & Index Structures 194
8.2.3 Sorted Access for Element Blocks 196
8.2.4 Random Access for Element Blocks 198

8.3 Structure-aware Top-k Query Processing 199
8.3.1 TopX Query Processing by Example 200
8.3.2 In-Memory Structural Joins 202
8.3.3 Incremental Path Tests 204
8.3.4 Virtual Navigational Elements 209
8.3.5 Complexity . 211
8.3.6 Element Retrieval . 213

8.4 Random Access Scheduling for Structural Conditions 214
8.4.1 Min-Probing . 215
8.4.2 Ben-Probing . 216

8.5 Dynamic Query Expansion for Content & Structure 222
8.5.1 Incremental Merge & Structural Joins 222
8.5.2 Hybrid Index Structures 225

9 Experimental Evaluation 230
9.1 Hardware & Software Setup 230
9.2 TREC - Text REtrieval Conference 230

9.2.1 TREC Data Collections 231
9.2.2 Topic Format . 233

9.3 INEX – INitiative for the Evaluation of XML Retrieval 234
9.3.1 INEX Collection . 234

11

CONTENTS

9.4 Highly Structured Collections 235
9.4.1 IMDB Collection – Relational 235
9.4.2 IMDB Collection – Semistructured 236
9.4.3 WorldCup HTTP Logs – Relational 236

9.5 Collections Summary . 236
9.5.1 INEX Evaluation Strategies 237

9.6 Evaluation Metrics . 240
9.7 Text IR . 243

9.7.1 Probabilistic Candidate Pruning 243
9.7.2 Index Access Scheduling 253
9.7.3 Query Expansion . 261
9.7.4 TREC 2004 . 268
9.7.5 TREC 2005 . 273

9.8 XML IR . 274
9.8.1 Setup & Competitors 274
9.8.2 Strict Content & Structure Queries 279
9.8.3 Strict Content & Structure with Probabilistic Pruning 283
9.8.4 INEX 2005 . 285

10 Conclusions 290
10.1 Open Issues & Future Work 291
10.2 Concluding Remarks . 293

A APPENDIX 294
A.1 Database Tables & Index Structures (DDL) 294

A.1.1 Text Schema . 294
A.1.2 XML Schema . 294

A.2 OpenMaple Scripts for Chernoff-Hoeffding Bounds 295
A.2.1 Chernoff-Hoeffding Bounds 295
A.2.2 Generalized Chernoff-Hoeffding Bounds 295

A.3 Index Access Scheduling . 296
A.3.1 NP-hardness of the Sorted-Access Scheduling Problem 296
A.3.2 Lower Bound for the Index Access Scheduling Problem 298

A.4 Customized Queries . 300
A.4.1 IMDB Relational Queries 300
A.4.2 IMDB NEXI Queries 301
A.4.3 Extended GOV (XGOV) Queries 302

12

Chapter 1

Introduction

1.1 Top-k Applications
Top-k queries based on ranking elements of multidimensional datasets are
a fundamental building block for many kinds of information discovery. The
best-known general-purpose algorithm for evaluating top-k queries is Fagin’s
threshold algorithm (TA) [FLN01], which has been independently proposed
also by Nepal et al. [NR99] and Güntzer et al. [GBK00], whereas early,
approximative variants of these algorithms have been proposed by Buck-
ley [BL85] and Pfeifer et al. [PF95].

Top-k queries on multidimensional datasets compute the k most relevant
or interesting results to a partial-match query, based on similarity scores of
attribute values with regard to elementary query conditions and a monotonic
score aggregation function such as weighted summation. This fundamental
building block for information discovery arises in many important application
classes such as

1) Web, intranet, or desktop search with scores based on word-occurrence
statistics and possibly combining criteria like text-based relevance, link-
based authority, and recency,

2) multimedia similarity search on high-dimensional feature vectors of im-
ages, music, or video, or

3) preference queries over structured and semistructured data such as
product catalogs or customer support data (the latter having a ma-
jor text component as well).

TA assumes that each attribute of the multidimensional data space has a
precomputed index list by which one can access the data items in descending

13

1.2. Classification of Top-k Algorithms

order of the “local” score for the given attribute with regard to an elemen-
tary query condition, for example, the TF·IDF-based score for a text keyword
condition “Trumpet”, a thesaurus-based or feedback-driven similarity for cat-
egorical attribute conditions such as Genre = Jazz, or the absolute distance
for numerical attribute conditions such as Y ear = 1970. In contrast to classic
database management systems (DBMS), that first join all input tuples and
then sort the output according to some aggregation function, top-k query
processors aim at optimizing query executions when only a small subset of
the top-scored result objects with respect to the aggregated scores (referred to
as top-k) is required. Typically, these algorithms maintain and continuously
update a set of the intermediate top-ranked results during query processing
and try to derive a score threshold to determine when it is safe to terminate
index scans and return the best objects based on what has been seen “so far”,
i.e., without having to completely scan all input sources, thus significantly
reducing query execution costs and runtimes.

1.2 Classification of Top-k Algorithms

1.2.1 Sequential vs. Random Access

In general, the top-k or so-called rank aggregation algorithms proposed in
the literature can be classified according to two orthogonal criteria. The first
classification is based on the type of access available on the input lists. Each
ranked input can support sequential and/or random access. Sequential access
enables object retrieval in a descending order of their scores and is typically
required to provide at least one ranked input source that helps to derive an
upper score bound (and, hence, a threshold) for all candidate objects yet
unseen in the sequential scans. Therefore, this mode is also often referred to
as sorted access.

Random access enables probing or querying an input to retrieve a score
of a given object directly. For example, the No-Random-Access (NRA) algo-
rithm, originally introduced by Fagin [Fag99] and refined in [FLN01, FLN03],
assumes only sorted access on the ranked inputs, while the TA algorithm, also
initially introduced in [Fag99], assumes the availability of both random access
and sorted access on all inputs. On the other hand, the algorithms introduced
by Bruno et al. [BCG02, MBG04] and Chang and Hwang [CwH02] assume
that at least one source has sorted access capability while other sources may
have only random access (probing) available.

14

1. Introduction

1.2.2 Top-k Selection vs. Top-k Join Queries

The second classification of rank aggregation algorithms is based on the as-
sumptions on the underlying ranked objects. In the first category, all input
sources share information about the same set of objects ranked according to
different criteria. Hence, all the inputs can be viewed as one list of objects,
where each object has a set of score attributes. The output is the same set
of objects ranked on a combination (aggregation) of these score attributes.
We refer to this problem as top-k selection. Most of the proposed algorithms
belong to this category, e.g., Fagin’s work [FLN01, FLN03], Nepal and Ra-
makrishna [NR99], and Güntzer et al. [GBK00].

In the second category of algorithms, e.g., Natsev et al. [NCS+01] and
Ilyas et al. [IAE03, LCIS05], each input source potentially contains a different
set of objects. A “join” condition among objects in different inputs joins them
into one output join result. Each join result has a combined score that is
computed from the scores of the participating objects. The goal is to produce
the top-k join results. We refer to this problem as top-k join.

1.3 TopX System Overview

Following the aforementioned classification of top-k algorithms, this thesis
investigates a combined sorted and random access model for top-k selection
queries, thus following and substantially extending Fagin’s predominant work
on threshold algorithms. Our efforts led to a prototype system which we
coined TopX.

With its seamless integration of efficient query evaluation and versatile
scoring models for ranked result output, TopX resides at the very synapse
of database (DB) engineering and information retrieval (IR). As for the DB
viewpoint, we aim at providing an efficient algorithmic basis for scalable,
top-k-style processing of large amounts of data. Our focus therein lies on
adaptive, disk-oriented cost models for accessing large, disk-resident index
structures, with highly developed solutions for storing and efficiently querying
large document collections (possibly in the order of Terabytes). We leverage
the observation that sequential disk I/O largely benefits from asynchronous
prefetching and high locality in the hardware’s and processor’s cache hier-
archy; so it has much lower amortized costs than random disk access that
is inevitably requiring additional index structures and key lookups for indi-
vidual object identifiers. Thus, our query processing methods focus on these
inexpensive sequential disk IO, but with a controlled amount of random ac-
cesses that are crucial for resolving the final score of particularly promising

15

1.3. TopX System Overview

candidate objects and to resolve unclarity among the final result ranks.
As for the IR point-of-view, TopX provides a complete framework for

indexing and efficiently searching text, semistructured, and structured data.
The TopX query processor comes with support for mixed conjunctive and
non-conjunctive, IR-style retrieval options, as well as expensive text predi-
cates such as phrases, mandatory terms, or term and phrase negations. It is
a self-contained query engine with support for advanced IR techniques and
various scoring models for all sorts of IR applications. It provides a whole
bunch of partly novel, effective scoring approaches for Web IR, structured
attributes, and ranked XML retrieval including XML full-text search.

Our approach assumes that all values for all individual attributes are fully
precomputed and stored on disk in an appropriate schema, either in a rela-
tional database system or in a more object-oriented way using inverted files,
including optional index list meta data such as score histograms, correlation
statistics, and quantified attribute similarities, e.g., a large thesaurus cap-
turing term relations and their similarities. Then, at query processing time,
score aggregations and result ranking for multi-attribute queries takes place
on top of the database systems and is exclusively part of the TopX engine.
Note that top-k query processing for single-dimensional queries simply re-
solves in fetching the first k entries from the respective inverted list in this
setting.

The TopX framework comprises a full-fledged solution for desktop, in-
tranet, and Web search. It is a comprehensive framework for indexing and
querying large data collections and has been extensively studied in our exper-
iments on various real-world data collections, including our participation at
the two major benchmark series in IR, namely the Text REtrieval Conference
(TREC) on text IR and the Initiative for the Evaluation of XML Retrieval
(INEX) focusing on XML IR. It comes with different, general-purpose Web
and file crawlers for indexing text and XML data in a generalized relational
schema and further includes specialized indexers for the various benchmark-
specific TREC and INEX collections with collection-specific metadata ex-
traction.

1.3.1 TopX Components

Figure 1.1 depicts the TopX main components. The TopX core query pro-
cessor is in charge of the bookkeeping of intermediate results and coordinates
the sequential and random index lists accesses in a multi-threaded architec-
ture. It provides the algorithmic basis for exact and efficient top-k query
evaluations with early threshold termination, with the option of gradually
plugging in specialized components:

16

1. Introduction

Large Corpus
Correlation Statistics

Large Corpus
Correlation StatisticsThesaurus with

Statistically
Quantified Concept

Similarities

Thesaurus with
Statistically

Quantified Concept
Similarities Index List Meta Data

(e.g., Histograms)
Index List Meta Data

(e.g., Histograms)

DBMS / Inverted Lists
Text & XML Schema

DBMS / Inverted Lists
Text & XML Schema

R
andom

 A
ccess

Probabilistic
Index Access
Scheduling

Probabilistic
Index Access
Scheduling

Probabilistic
Candidate Pruning

& Garbage Collection

Probabilistic
Candidate Pruning

& Garbage Collection

Dynamic
Query Expansion

Dynamic
Query Expansion

Incremental Path
Evaluation for

Content & Structure

Incremental Path
Evaluation for

Content & Structure

Top-k
Queue
Top-k
Queue

Scan threads
Sorted Access
in descending
order of scores

Auxiliary
Predicate Probing

Auxiliary
Predicate Probing

Candidate
Cache

Candidate
Queue

TopX Core Query Processor
• Cost-Based Random Access Scheduling
• Expensive Predicate Probing
• Early Threshold Termination

TopX Core Query Processor
• Cost-Based Random Access Scheduling
• Expensive Predicate Probing
• Early Threshold Termination

Pr
ec

om
pu

ta
tio

n
Ti

m
e

Q
ue

ry
 P

rc
ce

ss
in

g
Ti

m
e

Figure 1.1: TopX components.

• Probabilistic score predictors for early candidate pruning.

• Probabilistically derived sorted and random access scheduling deci-
sions.

• Dynamic query expansion using specialized query operators.

• Efficient support for XML full-text search.

When available, different probabilistic extensions can be incorporated for
the probabilistic pruning components and the cost estimators for index access
scheduling:

• Basic selectivity estimators.

• Index list histograms or parameterized score estimators with convolu-
tions for aggregated scores.

• Index list correlations.

• Structural selectivities for basic structural XML patterns.

17

1.3. TopX System Overview

In the simplest case, the index list metadata merely consist of the infor-
mation about the list length, i.e., the term selectivity or so-called document
frequency (DF) in IR. Then we can compare this information with the cur-
rent scan positions in the inverted lists to derive an initial probability of
seeing a particular candidate in one or more of these lists. With the pres-
ence of fine-grained score histograms or a parameterized score estimator such
as a compact Poisson-estimator, we can also estimate how many items will
be able to exceed some required score threshold. With explicit information
about feature correlations, e.g., in the form of term co-occurrence statistics,
we can even refine these predictions and estimate the probability that a can-
didate object might exceed a certain score threshold given that it has been
seen in one or more (potentially highly correlated) lists already, and so on.
These extensions can be plugged in gradually and independently, e.g., using
histograms only or selectivities only, thus yielding a powerful query engine
for text, structured, and semistructured data.

Probabilistic Candidate Pruning

Since the user’s goal behind top-k queries is to identify one or a few (hence,
k) relevant and novel data items, it is intriguing to allow IR-style approxi-
mate variants of the threshold family of algorithms to reduce runtime costs.
The thesis introduces a family of approximate top-k algorithms based on
probabilistic arguments. When scanning index lists of the underlying mul-
tidimensional data space in descending order of local scores, various forms
of convolutions and derived bounds are employed to predict when it is safe,
with high probability, to drop candidate items and to prune the index scans
for early algorithm termination. We show that these probabilistic candidate
pruning techniques provide up to two orders of magnitude performance gains
with a controllable loss in result quality and a very good quality/runtime ra-
tio.

Index Access Scheduling

The basic top-k query processor performs sequential disk accesses for sorted
index scans, but also has the option of performing random accesses to directly
resolve score uncertainty of data objects. This entails scheduling for the two
kinds of accesses: 1) the prioritization of different index lists in the sequential
accesses, and 2) the decision on when to perform random accesses and for
which candidates. Both types involve highly specialized probabilistic cost
models, thus leading to individual index access scheduling decisions for result
candidates and – as opposed to the probabilistic pruning component – can

18

1. Introduction

substantially improve the performance of the retrieval engine with no loss in
result quality.

Dynamic Query Expansion

For numerical or categorical attribute-value conditions that are not perfectly
matched, the query processor could consider “alternative” values in ascend-
ing order of some notion of similarity to the original value of the query. For
example, when searching for Y ear = 1999, after exhausting the index list
for the value 1999, the next best lists are those for 1998, 2000, 1997, 2001,
and so on. Although this relaxation involves additional index lists capturing
the alternative value, we can treat this procedure as if it were a single index
scan (for one of the m query dimensions), where the list for 1999 is concep-
tually extended by “neighboring” lists. In a static precomputation, this is
easily done by adhering entries to the original index list. For truly dynamic
expansions of text terms or categorical values, more sophisticated incremen-
tal merging techniques for these inverted lists are required that dynamically
create the output list for such an expansion.

XML Full-Text Search

All the previous work finally finds its way into a structure-aware query pro-
cessor for XML data and IR-style full-text search. Our XML-specific solu-
tions comprise basic extensions for the storage of semistructured data in a
relational schema and a true top-k query processor for the retrieval at both
document and element granularity. Since the algorithmic paradigm we pursue
focuses on inexpensive sequential disk I/O, our algorithms have to efficiently
deal with uncertainty in both the structural and content-related conditions
of multidimensional, hierarchical path queries. We thus present a novel ap-
proach for incremental path evaluations in a full-fledged path engine with
support for all XPath axes. Our XML-specific solutions include the support
for probabilistic candidate pruning and extensions for the structure-aware
random access scheduling for XML data.

1.3.2 Basic Top-k Query Processing

In order to find the top-k matches for multidimensional queries, scoring, and
ranking them, TopX scans all relevant index lists in an interleaved manner.
In each scan step, when the engine sees the score for a data item in one list,
it is hash-joined with the partial scores for the same data item previously
seen in other index lists and aggregated into a global score. The basic query

19

1.3. TopX System Overview

processing model is based on the NRA and CA variants of the TA family of
algorithms (see Section 1.4.1). Note that the way we focus on inexpensive
sequential scans leaves uncertainty about the final scores of candidates and
therefore implies some form of bookkeeping or queuing not only for the in-
termediate top-k results, but for all candidates that may still qualify for the
final top-k.

To retrieve the top-k ranked results of an m-dimensional query, TA scans
all query-relevant input lists Li in an interleaved manner. Without loss of
generality, we assume that these are the index lists numbered L1 through Lm.
When scanning the m index lists, the query processor collects candidates for
the query result and maintains them in two priority queues, one for the
current top-k items and another one for all other candidates that could still
make it into the final top-k. For simpler presentation, we assume that the
score aggregation function is simple summation (but it is easy to extend
this to other monotonic functions). Then the query processor maintains the
following state information:

• the score values highi at the current cursor positions, which serve as
upper bounds for the unknown scores in the lists’ tails,

• a set of current top-k items, d1 through dk (renumbered to reflect their
current ranks) and a set of data items dj for j = k + 1..k + q in the
current candidate queue Q, following a basic data structure containing

– a set of evaluated query dimensions (or index lists) E(d) in which
d has already been seen during the sequential scans or by random
lookups,

– a set of remainder query dimensions Ē(d) for which the score of d
is still unknown,

– a lower bound worstscore(d) for the total score of d which is the
sum of the scores si(d) for i ∈ E(d),

worstscore(d) :=
∑

i∈E(d)

si(d) (1.1)

– an upper bound bestscore(d) for the total score of d which is equal
to

bestscore(d) := worstscore(d) +
∑

ν∈Ē(d)

highν (1.2)

(and not actually stored but rather computed from worstscore(d)
and the current highν values whenever needed).

20

1. Introduction

In addition, the following information is derived at each step:

• the minimum worstscore min-k of the current top-k docs, which serves
as the stopping threshold,

• and for each candidate, a score deficit δ(d) = min-k − worstscore(d)
that d would have to reach in order to qualify for the current top-k.

The invariant that separates the top-k list from the remaining candidates
is that the rank-k worstscore of the top-k queue is at least as high as the
best worstscore in the candidate queue. The algorithm can safely terminate,
yielding the correct top-k results, when the maximum bestscore of the can-
didate queue is not larger than the rank-k worstscore of the current top-k,
i.e., when

min
d∈top-k

{worstscore(d)} =: min-k ≥ max
c∈Q

{bestscore(c)} (1.3)

We will refer to Equation 1.3 as the min-k threshold test. More generally,
whenever a candidate in the queue Q has a bestscore that is not higher than
min-k, this candidate can be pruned from the queue. Early termination
(i.e., the point when the queue becomes empty) is one goal of efficient top-k
processing, but early pruning to keep the queue and its memory consump-
tion small is an equally important goal (and is not necessarily implied by
early termination). Figure 1.2 shows the corresponding bookkeeping for the
intermediate top-k result queue and the candidate queue.

sc
or

e

current top-k

min-k

candidates in Q

worstscore(d)

bestscore(d)

(d)

Figure 1.2: Top-k and candidate bookkeeping.

Conceptually, we maintain two priority queues in-memory to implement
the threshold test: one for the current top-k results with items prioritized in
ascending order of worstscores, and one for the currently best candidates with

21

1.4. Related Work

items prioritized in descending order of bestscores. The first queue contains
only items whose worstscore(d) ≥ min-k and the latter has items whose
worstscore(d) ≤ mink but whose bestscore(d) > min-k. Then testing the
top-prioritized items from the two queues as denoted by the above threshold
test equation yields a safe stopping condition at any time of the query pro-
cessing. Ties among scores may be broken by using the concatenation of the
attributes (score, docid) for candidate ordering.

Note that in particular keeping a large priority queue in memory at any
time of the query processing may be expensive. Efficient implementations
of the basic TA algorithm may diverge from the strict notion of constantly
sorted queues. Alternative approaches may also use a bounded queue or
merely keep all valid candidates in a single unsorted pool and iterate over that
pool periodically, e.g., after large batches of sorted access steps or whenever
needed to test the stopping condition.

Throughout the thesis, we will primarily use the IR-oriented terminology
of documents and terms, but the proposed methods and results can be carried
over to settings with numerical or categorical attributes of structured records
or domain specific concept similarities in a very straightforward way.

1.4 Related Work

1.4.1 Top-k Query Processing

The state of the art on top-k queries over large disk-resident (inverted) in-
dex structures has been defined by the seminal work on threshold algorithms
(TA) [Fag99, FLN01, FLN03, GBK00, GBK01, NR99]. TA scans all query-
relevant index lists in an interleaved manner and aims to compute “global”
scores for the encountered data items by means of a monotonic score aggre-
gation function such as (weighted) sum, or maximum, etc. The algorithm
maintains the worstscore among the current top-k results and the best possi-
ble score for all other candidates and items not yet encountered. The latter
serves as a threshold for stopping the index scans when no candidate can
exceed the score of the currently kth ranked result. The algorithm comes in
three variants: The original TA-random approach eagerly looks up all local
scores of each encountered item and thus knows the full score immediately
when it first encounters the item. Since random accesses may be expen-
sive and, depending on the application setting, sometimes infeasible, the
alternative TA-sorted method (coined NRA in [FLN01, FLN03] and Stream-
Combine in [GBK01]) maintains worstscore and bestscore bounds for data
items based on partially computed global scores, and its stopping test com-

22

1. Introduction

pares the worstscore of the kth ranked result (typically coined min-k) with
the bestscore of all other candidates. Hybrid approaches, such as the Com-
bined Algorithm (CA) [Fag02], extend TA-sorted by a cost-model for a few
carefully scheduled random accesses for the final scores of the most promising
candidate items.

Obviously, TA-random is more effective in pruning the index scans and,
thus, typically stops after a lower amount of overall index accesses than
TA-sorted, but TA-sorted completely avoids expensive random accesses, and
therefore, potentially can achieve better runtimes. TA-combined aims at
minimizing the overall query cost with regard to a environment-specific cost
ratio cR/cS of random versus sorted accesses and therefore is the most ver-
satile approach for a wide range of system setups.

Numerous variants of TA have been studied for multimedia similarity
search [dVMNK02, CGM04, NCS+01], ranking query results from struc-
tured databases [ACDG03], and distributed preference queries over hetero-
geneous Internet sources such as digital libraries, restaurant reviews, street
finders, etc. [CwH02, MBG04, YSMQ01]. Marian et al. [MBG04] have par-
ticularly investigated how to deal with restrictive sources that do not al-
low sorted access to their index lists and with widely varying access costs.
To this end, heuristic scheduling approaches have been developed, but the
threshold condition for stopping the algorithm is a conservative TA-style
test. Other top-k query algorithms in the literature include nearest-neighbor
search methods based on an R-tree-like multidimensional index [ARSZ03,
BBK01, CP00, HS99, HS03] and mapping techniques onto multidimensional
range queries [BCG02] evaluated on traditional database indexes. In this con-
text, probabilistic estimators for selecting “cutoff” values have been developed
by [CP00, DR99, TFP03] and applied to multidimensional nearest-neighbor
queries.

Most of the above TA-centric work has studied the original TA algorithm
with eager random accesses. NRA and CA, on the other hand, with their
overhead for the candidate bookkeeping have been regarded as the less at-
tractive variant to which one would resort only under specific circumstances.
However, with a large number of potentially very long index lists, NRA
should actually be the method of choice; and with its cost-aware support for
random access, CA offers the potential for the highest cost savings, but also
the highest demand for an efficient implementation and cost estimation.

Threshold Algorithm

Algorithm 1 shows pseudo code for the original Threshold Algorithm (TA)
[Fag99]. TA uses a basic round-robin heuristic for sorted access schedu-

23

1.4. Related Work

Algorithm 1 Threshold Algorithm (TA).

1: TA(Index Lists Li, Query ti,. . .,tm)
2: top-k := ∅;
3: candidates := ∅;
4: min-k := 0;
5: for all Index Lists Li (i=1..m) do
6: // Perform next sorted access to Li in round-robin mode
7: <d, si(d)> := Li.getNext();
8: score(d) := si(d);
9: highi := si(d);
10: threshold := 0;
11: for all ν=1..m do
12: if ν �= i then
13: // Perform random access for d’s score sν(d) in Lν

14: score(d) += sν(d);
15: end if
16: threshold += highν ;
17: end for
18: if score(d) > min-k then
19: top-k.removeMinkItem();
20: top-k.insert(d);
21: min-k := top-k.getMink();
22: else if threshold ≤ min-k then
23: return top-k;
24: end if
25: end for

ling over m input sources L1, . . . , Lm. The TA algorithm pursues a so
called document-at-a-time model, i.e., each candidate object that is detected
through a sorted access is eagerly looked up for its final score in all the re-
maining input lists for the query, and a final aggregated score is obtained
directly. This way, no score uncertainty is induced by the algorithm, and no
candidate queuing besides the intermediate top-k result objects is required.
Then an initial threshold denotes the sum of the highi scores at the current
scan position of each list Li, which is an upper bound for all yet unseen
candidates. If this threshold falls below the worstscore among all the top-k
items, i.e., the score of the currently kth ranked result, the algorithm may
safely terminate, because no yet unseen candidate can exceed this threshold
any more.

No-Random-Access Algorithm & Combined Algorithm

Algorithm 2 shows pseudo code for the No-Random-Access Algorithm (NRA)
[Fag99] and the Combined Algorithm (CA) [FLN01]. NRA assumes only
sorted access to the input sources and does not require all candidates to
be fully evaluated at all query dimensions. In contrast to the TA algo-
rithm, NRA pursues a so-called term-at-a-time model, i.e., it evaluates docu-
ments for each query condition separately and remembers partial results in

24

1. Introduction

an intermediate data structure. Thus, it merely provides worstscore(d) and
bestscore(d) guarantees for each candidate d based on where d has already
been seen during the sequential scans, plus the local highi values at each of
the candidate remainder dimensions in Ē(d), respectively. It therefore ex-
tends the TA algorithm by some notion of candidate bookkeeping (or queu-
ing) and introduces the min-k threshold test as described beforehand.

To this end, [FLN01, GBK01] already proposed the NRA variant of TA,
but occasional, carefully scheduled RAs can still be useful when they can
contribute to major pruning of candidates. Therefore, [Fag02] also introduced
the Combined Algorithm (CA) framework but did neither discuss any data-
or scoring-specific scheduling strategies, nor experiments. CA, finally, is a
hybrid algorithm and extends NRA by a rather inconspicuous but effective
option of performing a limited amount of random accesses to look up the final
scores for the currently best candidates according to a simple cost model, thus
cautiously pruning the best candidates from the queue after each round of
sorted accesses, using the invariant cR ·#RA ≤ cS ·#SA, where #RA denotes
the number of random lookups for data items d at individual index lists
Li, and #SA is the number of sorted accesses to inverted index structures.
However, the sorted access scheduling between lists remains standard round-
robin for the TA, NRA, and CA baseline algorithms.

Throughout the thesis, we will mostly adopt Fagin’s notion of abstract
query costs, i.e., the cR/cS ratio will drive our cost assumptions analogously
to [Fag02]. Then the overall execution cost of a query is computed as #SA+
cR/cS ·#RA. This cost model decides on the amount of iteratively scheduled
random IOs.

In Chapter 6, we show that the basic CA scheduling approach can be
improved three ways: 1) the ordering of candidates for which RAs are sched-
uled, 2) when they the RAs are scheduled, and 3) how to optimize the SA
scheduling beyond the simple round-robing heuristic.

Index Access Optimality

The family of threshold algorithms have been proven to be instance optimal
for any monotonous score aggregation function and under the assumption
that the parameters m, i.e., the query dimensionality, and k, the number
of retrieved items, are considered as constants. In particular, CA has been
proven to be cost-optimal within a constant factor of 4m + k per query,
regardless of the cost ratio cR/cS. In practice, however, the actual runtime
optimality of TA and NRA strongly depends on the underlying assumption
of index list access type supported. For realistic disk-based access models,
CA clearly outperforms NRA, whereas TA is typically out of the question

25

1.4. Related Work

Algorithm 2 No-Random-Access Algorithm (NRA) and Combined Algo-
rithm (CA).

1: NRA/CA(Index Lists Li, Query ti,. . .,tm)
2: top-k := ∅;
3: candidates := ∅;
4: min-k := 0;
5: for all Index Lists Li (i=1..m) do
6: // Perform next sorted access to Li in round-robin mode
7: <d, si(d)> := Li.getNext();
8: worstscore(d) += si(d);
9: E(d) := E(d) ∪ {i};
10: highi := si(d);
11: CA: Consider RA on Lν for ν ∈ Ē(d) according to cost model
12: for all ν ∈ Ē(d) do
13: worstscore(d) += sν(d); //perform RA for d in Lν

14: E(d) := E(d) ∪ {ν};
15: end for
16: bestscore(d) := worstscore(d) +

∑
ν∈Ē(d) highi;

17: if worstscore(d) > min-k then
18: d’ := top-k.removeMinkItem();
19: top-k.insert(d);
20: candidates.remove(d);
21: min-k := top-k.getMink();
22: if bestscore(d’) > min-k then
23: candidates.insert(d’);
24: end if
25: else if bestscore(d) > min-k then
26: candidates.update(d);
27: else
28: candidates.remove(d);
29: end if
30: if topk.size() = k & bestscore(candidates.top()) ≤ min-k then
31: return top-k;
32: end if
33: end for

because of its random accesses overhead. Note that 4m+ k can in fact mean
a huge gap for typical IR queries already, with m = 5 keywords and k = 20
retrieved results.

Other Variants: MPro, Upper, and Pick

[CwH02] and [BGM02, MBG04] developed the strategies MPro, Upper, and
Pick for scheduling RAs on “expensive predicates”. They considered restricted
attribute sources, such as non-indexed attributes or Internet sites that do not
support sorted access at all (e.g., a streetfinder site that computes driving dis-
tances and times), and showed how to integrate these sources into a threshold
algorithm. [MBG04] also considered sources with widely different RA costs
or widely different SA costs, e.g., because of different network bandwidth or
server load. Our computational model differs from these settings in that we
assume that all attributes stored in the inverted lists (but not necessarily

26

1. Introduction

auxiliary data structures such as phrase offsets) are indexed with support for
both SA and RA and that all index lists are on the same server and thus
have identical access costs. For our setting, MPro [CwH02] is essentially the
same as the Upper method developed in [BGM02, MBG04].

Upper alternates between RA and SA steps. For RA scheduling, Upper
selects the data item with the highest upper bound for its final score and per-
forms a single RA on the attribute (source) with the highest expected score,
with additional considerations to source-specific RA costs and eliminating
“redundant” sources. This is repeated until no data item remains that has a
higher upper bound than any yet unseen document could have; then SA are
scheduled in a round-robin way until such a data item appears again.

[BGM02] also developed the Pick method that runs in two phases. In
the first phase, it makes only SA until all potential result documents have
been read, i.e., as soon as the bestscore that a yet unseen document could
have is not larger as the current kth largest partial score of an already seen
document (which corresponds to min-k in our terminology). In the second
phase, it makes RA for the missing dimensions of candidates that are chosen
similarly to Upper taking the (source specific) costs of RAs and the expected
score gain into account.

1.4.2 Approximative Top-k and Efficient IR

The idea of approximate top-k queries has been around both in the IR and
DB literature (see, e.g., [BL85, PF95, DR99, CP00, AdKM01, ARSZ03]) for
a noticeable time. The initial work on approximate inverted vector searches
as proposed in [BL85] already implements a threshold algorithm for combin-
ing multiple inverted lists with an early stopping condition that is in fact
very close to the NRA algorithm. This stopping condition has a heuristic
nature, since it does not have a notion of candidate bookkeeping for partially
evaluated candidates that may still qualify for the exact top-k results and
is thus deemed to return approximative results only. [PF95] were among
the first to consider vague queries over multiple streamed input sources, tak-
ing assumptions on the score distributions in the individual input streams
and even correlations among scores into account in order to estimate input
cardinalities and query costs.

However, in terms of analyzing how much is lost in result quality by
the relaxation, the prior work either introduced control parameters that are
difficult to tune or they are based on homogeneity assumptions for multidi-
mensional data distributions. The main focus of the earlier work was image
similarity search over color, texture, and contour feature spaces, where the
assumptions may indeed be justified. Furthermore, the relaxation control

27

1.4. Related Work

parameters (e.g., a distance slack factor) of these models were difficult to
translate into user-perceived guarantees. In contrast, this thesis presents a
principled approach to approximate top-k queries with probabilistic guaran-
tees about the error relative to the “exactly top-k” queries, translatable into
guarantees about query result precision and recall. Our approach can cope
with heterogeneous distributions where the score variability may radically
differ among different text terms or attributes of a semistructured dataset.
In this scenario, we concentrate on algorithms that process index lists by
sorted access only, as we are aiming at high-dimensional data spaces such
as Web or XML documents where queries need to access a potentially large
number of very long index lists and random accesses would be very expensive.
Our approach allows much more aggressive index list pruning, compared to
the original NRA method with sorted access only.

A small number of papers have considered how to minimize random ac-
cess costs in TA when data sources vary in speed and selectivity [YSMQ01,
CwH02, MBG04]. To this end, simple, histogram-based probabilistic esti-
mators have been developed for making scheduling decisions (i.e., deciding
on which source (i.e., dimension) the next random access should be made).
None of this prior work has attempted a principled approach to probabilistic
score prediction and result guarantees.

Efficient processing of index lists for ranked retrieval is an old topic in IR
research [BL85, MZ96]. In this context, sorted-access-only is the rule of the
game. The pruning techniques considered here (see also [AdKM01, SCC+01])
are heuristic in nature in that they trade off some loss in result quality
(effectiveness in IR jargon) for speed without being able to predict and control
the resulting effects (other than by experimentation). For the special but
important case where the global score is a weighted sum of TF·IDF-based text
relevance and link-based, and thus query-independent, authority, additional
pruning heuristics have been developed in [BP98, LS03].

Quit & Continue

One of the most famous, approximate IR-style algorithms for combining in-
verted lists is the strategy known as Quit & Continue [MZ96]. The algorithm
is amazingly similar to the later NRA algorithm and also sequentially scans
a set of inverted lists in an interleaved manner, thus keeping a set of the cur-
rently best score accumulators – which are nothing else but partly evaluated
candidate items in our notation – in-memory. To limit the amount of memory
consumed by the accumulators, the algorithm comes in two separated phases:
1) the Quit strategy would simply quit query processing after a designated
amount of K » k accumulators has reached a non-zero score (at the possible

28

1. Introduction

expense of poor retrieval results); and 2) the Continue phase may then decide
to continue query processing to gain more information about the currently
active accumulators but allows no new accumulators to be added into the
memory. Both phases yield approximative results only, the result quality of
the continue strategy depends on the exact scan depth until the algorithm
terminates. In the extreme case, the Continue strategy could degenerate to
a full merge algorithm and might still return approximative results only.

1.4.3 Rank-Join Optimization

When scanning multiple index lists (over attributes from one or more rela-
tions or document collections), top-k query processing faces an optimization
problem: combining each pair of indexes is essentially an equi-join (via equal-
ity of the tuple or document ids in matching index entries), and we thus need
to solve a join ordering problem [CK97, IAE04, LCIS05]. As top-k queries
are eventually interested only in the highest-score results, the problem is
not just standard join ordering but has additional complexity. [IAE04] have
called this issue the problem of finding optimal rank-join execution plans.
Their approach is based on a DBMS-oriented compile-time view: they con-
sider only binary rank joins and a join tree to combine the index lists for all
attributes or keywords of the query, and they generate the execution plan
before query execution starts. An alternative, run-time-oriented approach
follows the Eddies-style notion of adaptive join orders on a per tuple ba-
sis [AH00] rather than fixing join orders at compile-time. Then the query
optimization for top-k queries with threshold-driven evaluation becomes a
scheduling problem. This is the approach that we also pursue here.

The original scheduling strategy for TA-style algorithms is round-robin
over all lists (mostly to ensure certain theoretical properties). Early variants
also made intensive use of random access (RA) to index entries to resolve
missing score values of result candidates, but for very large index lists with
millions of entries that span multiple disk tracks, the resulting random ac-
cess is about 20–20,000 times slower than sequential accesses that would be
ensured if TA processed index lists only by sorted access (SA) in descending
score order per list. This cost discrepancy results from the differences in
sequential versus random disk I/O, additional CPU time for random access
to appropriate data structures in memory, and the CPU overhead of crossing
of file-system or DBMS interfaces.

The strategies developed in [CwH02, MBG04] for scheduling RAs on ex-
pensive predicates mostly concentrate on the issue of when to perform RAs
but leave the schedule for SAs relatively straightforward. None of this prior
work used any advanced score statistics; they merely built on information

29

1.4. Related Work

about the scores they have seen during the scans (especially the score of the
current scan position and the score gradient up to this point [GBK01]) and
the average score in an index list.

RankSQL

The rank-aggregation framework [IAE03, ISA+04] and its latest outcome,
RankSQL [LCIS05, LSCI05], provide a complete framework for the inte-
gration of rank-aggregation operators into relational database management
systems (RDBMS), including query optimization, as well as adaptive plan
costing. The rank-aggregation framework estimates the score-aware selectiv-
ity for binary top-k join queries, in order to compute and propagate a number
of k′ values for the subordinate top-k operators along a hierarchical tree of
rank-aggregation operators for m-dimensional joins. In doing so, it merely
assumes uniformly distributed scores for the basic input lists, but it provides
an elegant approach that utilizes the Central Limit Theorem to estimate the
top-level join-selectivity over a hierarchically arranged tree of binary top-k
operators for processing conjunctive, m-dimensional queries.

Scrambling & Eddies

There have been two principal proposals in the literature that break the
traditional design of query optimization and execution, namely Scrambling
[AFTU96, UFA98] and Eddies [AH00, RDH03, DH04]. In Scrambling, sche-
duling the execution of query operators activates different parts of the query
plan to adapt to the high latency incurred by remote data sources, for ex-
ample, a wide area network. In general, the scrambling framework consists
of two phases: a scheduling phase and an operator synthesis phase. The
scheduling phase does not change the query plan structure; rather, it allows
for different operators to be executed independently in their own execution
threads. If an operator cannot proceed or experiences long execution delays,
other operators in the plan are scheduled to execute. In the second phase,
new query operators are formed when the original plan structure stalls or
cannot produce any useful work.

The Eddies architecture and its variants continuously optimize a running
query by routing individual tuples to the different query processing opera-
tors, thus eliminating the traditional query planning altogether. In contrast
to traditional database engines, all the ranking information for a candidate
object is encapsulated into an Eddy; no local rankings are kept among in-
puts. All the recently proposed extensions [RDH03, DH04] can be applied to
minimize the runtime overheads of tuple routing. Principally, our cost-based

30

1. Introduction

scheduling approaches can be cast into the notion of an Eddy, thus optimiz-
ing query executions for each potential top-k result candidate individually,
taking both sorted and random access costs into account for scheduling.

In contrast to [AH00, IAE04], we do not restrict ourselves to trees of
binary, conjunctive joins but consider index lists to be equally relevant to
the query and are able to process m-dimensional, non-conjunctive queries in
a single top-k-join operator.

1.4.4 Query Expansion

There is a rich body of literature on query expansion (see, e.g., [BSWZ03,
BSA94, XC96, CTZC04, HCO03, Kwo04, LLYM04, MSB98, QF93, BSWZ03,
Voo94, XC96]). All methods aim to generate additional query terms that are
“semantically” or statistically related to the original query terms, often pro-
ducing queries with more than 50 or 100 terms and appropriately chosen
weights such as Rocchio [Roc71] or probabilistic Roberston & Sparck-Jones
relevance weights [RJ76] (see also Section 3.2.1). Given the additional uncer-
tainty induced by the expansion terms, such queries are usually considered
as disjunctive queries and incur very high execution costs for a DBMS-style
query processing [BZ04b, BZ04a]. The various methods differ in the sources
that they exploit for inferring correlated terms: explicit relationships in the-
sauri, explicit relevance feedback, pseudo relevance feedback, query associa-
tions derived from query logs and click streams, summary snippets of Web
search engine results, extended topic descriptions (available in benchmarks),
or combinations of various techniques. In all cases, some similarity, correla-
tion, or entropy measure between the original query terms and the possible
expansion terms should be quantified (usually in some statistical manner),
and a carefully tuned threshold needs to be determined to eliminate ex-
pansion candidates that are only weakly related to the original query. While
such manual tuning is standard in benchmarks like TREC [TRE], it is almost
black art to find robust parameter settings for real applications with highly
dynamic corpora and continuously evolving query profiles [BZ04a] (e.g., in
intranets, Web forums, etc.). This calls for automatic and self-adaptive query
tuning.

Among the most successful expansion methods (at least in the TREC
benchmark series) are probably the ones presented in [Kwo04] and [LLYM04].
[Kwo04] generate Google queries from the original query and use the sum-
mary snippets on the top-10 result page to generate alternative query formu-
lations and performed very successful in recent TREC benchmarks. The final
query expansion is a weighted combination of the original and the alterna-
tive queries. [LLYM04] uses a suite of techniques for extracting phrases and

31

1.4. Related Work

word sense disambiguation (WSD), with WordNet [Fel98] as a background
thesaurus and source of expansion candidates. Both of these techniques seem
to require substantial hand-tuning for achieving their outstandingly high per-
formance in result precision and recall.

1.4.5 XML IR

Efficient evaluation and ranking of XML path conditions is a very fruit-
ful research area. Solutions include structural joins [AKJP+02], the multi-
predicate merge join [ZND+01], the Staircase join based on index structures
with pre- and postorder encodings of elements within document trees [Gru02]
and Holistic Twig Joins [BKS02, JWLY03]; the latter, aka. path stack al-
gorithm, is probably the most efficient method [CMW03] for twig queries
using sequential scans of index lists and linked stacks in memory. However,
it does not deal with uncertain structure and does not support top-k-style
threshold-based early termination.

Vagena et al. [VMT04] apply structural summaries to efficiently evaluate
twig queries on graph-structured data, and Polyzotis et al. [PGI04] present an
efficient algorithm for computing (structurally) approximate answers for twig
queries. [LYJ04] extends XQuery to support partial knowledge of the schema.
None of these papers considers result ranking and query optimization for
retrieving the top-k results, only.

Information retrieval on XML data has become popular in recent years.
Some approaches extend traditional keyword-style querying to XML data
[CMKS03, GSBS03, HPB03]. [FG01, CK01, TW00] introduced full-fledged
XML query languages with rich IR models for ranked retrieval. [CMM+03]
and [GS03] developed extensions of the vector space model for keyword
search on XML documents. [SM02] addressed vague structural conditions,
and [AYLP04] combined this theme with full-text conditions. More recently,
various groups have started adding IR-style keyword conditions to existing
XML query languages. TeXQuery [AYBS04] is the foundation for the W3C’s
official Full-Text extension to XPath 2.0 and XQuery [W3Ca]. [Feg04] ex-
tends XQuery with relevance ranking for keyword conditions and presents
a pipelined architecture for evaluating queries but does not consider finding
only the best results. [AKYJ03] introduced a query algebra for XML queries
that integrates IR-style query processing.

TIX [AKYJ03] and TAX [JLST01] are query algebras for XML that in-
tegrate IR-style query processing into a pipelined query evaluation engine.
TAX comes with an efficient algorithm for computing structural joins. The
results of a query are scored subtrees of the data; TAX provides a thresh-
old operator that drops candidate results with low scores from the result set.

32

1. Introduction

TOSS [HDS04] is an extension of TAX that integrates ontological similarities
into the TAX algebra.

Recent work on making XML ranked retrieval more efficient has been
carried out by [KKNR04] and [MAYKS05]. [KKNR04] uses path index op-
erations as basic steps; these are invoked within a TA-style top-k algorithm
with eager random access to inverted index structures. The scoring model can
incorporate distance-based scores, but the experiments in the paper are lim-
ited to DB-style queries rather than XML IR in the style of the INEX bench-
mark [INE], using a large annotated collection of IEEE Computer Society
publications. [MAYKS05] focuses on the efficient evaluation of approximate
structural matches along the lines of [AYBS04]. It provides different query
plans and can switch the current query plan at runtime (i.e., the join order
of individual tuples following ideas of [AH00]) to speed up the computation
of the top-k results. The paper considers primarily structural similarity by
means of outer joins, and disregards optimizations for content term search.

TopX also uses sorted index lists, but keeps a candidate queue in-memory
and therefore is able to focus on sequential disk access and on minimiz-
ing random disk access through sophisticated index structures and judicious
scheduling decisions. The prior work that is closest to the TopX engine
is [KKNR04]; our performance studies in Section 9.8 compare TopX against
this work.

XRANK

Among the most prominent IR approaches for ranked retrieval of XML data
is XRANK [GSBS03]. It generalizes traditional link analysis algorithms such
as PageRank [BP98] for authority ranking of linked HTML collections and
conceptually treats each XML element as an interlinked node in a large ele-
ment graph. Then the element rank of an XML element corresponds to the
PageRank value computed over a mixture of containment edges, obtained
from the XML tree structure, and hyperlink edges, obtained from the inter-
document link structure similar to the HTML case. XRANK may indeed re-
turn deeply nested elements but merely supports conjunctive keyword search;
it does not support structured query languages such as XPath [W3Cc]. For
efficient retrieval of multi-keyword queries, it also uses inverted lists sorted
in descending order of element ranks and sketches the usage of standard
threshold algorithms such as TA [Fag99] for pruning the search space.

33

1.4. Related Work

FleXPath

FlexPath [AYLP04] integrates structure and keyword queries and regards the
query structure as templates for the context of a full-text keyword search.
The query structure (as well as the content conditions) can be dynamically
relaxed for ranked result output according to predefined tree editing oper-
ations when matched against the structure of the XML input documents.
The FlexPath query processor already comprises the usage of top-k-style
query evaluations for a slightly modified, XPath-like query language that
later evolved as part of the W3C Full-Text extensions to XPath 2.0 and
XQuery 1.0 [W3Ca]. Like [KKNR04], it uses separate index structures for
storing and retrieving the structural and content conditions of a path query;
it thus requires eager random access to disk-resident index structures for
resolving the final structure of a result candidate.

XIRQL

XIRQL [FG01], a pioneer in the area of ranked XML retrieval, presents a
path algebra based on XQL, an early ancestor of W3C’s XQuery [W3Cd],
for processing and optimizing structured queries. It combines Boolean query
operators with probabilistically derived weights for ranked result output, thus
transferring the probabilistic IR paradigm to the XML case. It defines data-
type-specific vague predicates for vague search over differently typed XML
elements such as person names or numbers, and introduces a notion of in-
dex objects that serve as an anchor from which the probabilistic weights are
derived from (in the classic IR notion of a document). Using index objects
follows the idea that only nodes of specific type and granularity in the docu-
ment hierarchy should be presented as results to the end-user. Defining these
objects, however, may be strongly schema-dependent and assumes substan-
tial knowledge about the general document structure, e.g., derived from a
preferably compact document type definition (DTD).

XXL

Finally, our group’s prior work on XXL [TW00, TW02], specifies a full-
fledged, SQL-oriented query language for ranked XML IR with a high seman-
tic expressiveness that makes it stand way apart from the predominant XQL
and XPath language standards. For ranked result output, XXL leverages
both a standard IR vector space model and an ontology-oriented similarity
search for the dynamic relaxation of structure and term conditions. The
principal structure of the query, however, is evaluated in a strictly Boolean
manner. For query processing, XXL does not use a top-k algorithm; TopX,

34

1. Introduction

on the other hand, focuses on a small, XPath-like subset of the XXL query
language which allows for a radically different query processing architecture
that outperforms XXL in terms of efficiency by a large margin.

1.5 Contributions

1.5.1 Top-k Query Processing with Probabilistic Guar-
antees

The original TA method is conservative in that it stops scanning index lists
only when it is certain that no more top-k results can be found. We believe
that this is overly conservative given that the concept of a top-k query –
especially in IR – has a heuristic nature anyway. Hardly any end-user would
be interested in looking at exactly the k best matches to a similarity query.
Rather, the rationale of top-k ranking is that users typically find one or a
few relevant and novel data items among the top 10 or 20 results. So there
is an inherent and unavoidable risk of missing the truly best results (in the
subjective judgment of the user) anyway. This in turn justifies relaxing the
concept of a top-k query into an approximate notion such that the query
processor can occasionally tolerate errors: false positives or false negatives
with regard to the top-k.

In this thesis, we develop various score predictors and show how to apply
the derived predictors for a probabilistically relaxed and robust family of
top-k algorithms, coined Prob-k. We provide probabilistic guarantees for the
approximate top-k results in terms of (expected) precision and recall. Our
experiments confirm that the probabilistically derived bounds are amazingly
close to the empirically observed behavior.

To this end, we explore a variety of techniques including aggregate score
predictors using histograms, efficiently evaluable Poisson estimations, and
convolutions based on moment-generating functions with generalized Cher-
noff-Hoeffding bounds for the resulting tail probabilities. As the overhead
of these techniques is crucial, the details of our bookkeeping and candidate
testing strategies are all but straightforward; we explore a wide range of
strategies within the paradigm of threshold algorithms based on different
setups of priority queues.

1.5.2 Index Access Scheduling

Approximation may be a viable choice for a broad range of IR applications;
for a database applications, however, this may not always be acceptable.

35

1.5. Contributions

We show that similar probabilistic models as used for the Prob-k family of
algorithms can in fact be used to improve index access scheduling decisions
and, thus, greatly accelerate top-k queries with no loss in result precision.

The NRA and CA variants of Fagin’s family of threshold algorithms per-
form sequential disk accesses for sorted index scans; CA also has the option of
performing random accesses to resolve score uncertainty for a limited amount
of promising candidates. The baseline SA scheduling in this work, however,
is a simple round-robin heuristic and the RA scheduling follows a very basic
cost model. This calls for a more elaborated investigation of the scheduling
problem for these two kinds of accesses.

Improvements over Fagin’s baseline algorithms have been sparsely studied
in the literature, and only for each of the two access types in isolation. We
take an integrated view of the scheduling issues and develop novel strategies
that have the potential to outperform prior proposals. Our main contribution
are new, principled scheduling methods based on a Knapsack-related opti-
mization for sequential accesses and a probabilistic cost model for random
accesses. The methods can be further boosted by harnessing probabilistic
estimators for scores, selectivities, and index list correlations. We provide an
integrated strategy that combines SA and RA scheduling in TA-style top-k
query processing.

Our best combined scheduling strategies methods achieve significant per-
formance gains compared to the best previously known method, namely Fa-
gin’s Combined Algorithm (CA). We also show that our best techniques are
very close to an empirically computed lower bound for the execution cost of
this class of threshold algorithms. The proposed scheduling decisions can be
seamlessly integrated with the probabilistic pruning methods as mentioned
before.

1.5.3 Dynamic & Self-tuning Incremental Query Ex-
pansions

We present a novel approach for efficient and self-tuning query expansion that
is natively embedded into a top-k query processor with optional probabilistic
candidate pruning and index access scheduling support. Traditional query
expansion methods select expansion terms whose thematic similarity to the
original query terms is above some specified threshold, thus generating a
disjunctive query with much higher dimensionality. This poses three major
problems:

1) the need for hand-tuning the expansion threshold,

2) the potential topic dilution with overly aggressive expansion, and

36

1. Introduction

3) the drastically increased execution cost of a high-dimensional query.

Our key techniques for making query expansion efficient, scalable, and self-
tuning are to avoid aggregating scores for multiple expansion terms of the
same original query term and to avoid scanning the index lists for all expan-
sion terms. For example, when the term “disaster” in the query “transporta-
tion tunnel disaster” is expanded into “fire”, “earthquake”, “flood”, etc., we
do not count occurrences of several of these terms as additional evidence of
relevance. Rather, we use a modified best-match score aggregation function
that counts only the maximum score of a document for all expansion terms
of the same original query term, optionally weighted by the similarity (or
correlation) of the expansion term to the original term. Furthermore and
most importantly for efficiency, we open scans on the index lists for expan-
sion terms as late as possible, namely, only when the best possible candidate
document from a list can achieve a score contribution that is higher than the
score contributions from the original term’s list at the current scan position
or any list of expansion terms with ongoing scans at their current positions.

Our novel Incremental Merge algorithm conceptually merges the index
lists of the expansion terms with the list of the original query term in an
incremental, on-demand manner during the runtime of the query. For phrase
matching (i.e., adjacent or nearby words such as composite nouns), a novel
technique for nesting top-k computations is used. For further speed-up, prob-
abilistic score estimation can be used, considering score distributions and
term selectivities.

We also investigate on various approaches for Word Sense Disambiguation
(WSD) that can be carried over to the thesaurus-based query expansion
methods we propose.

1.5.4 Efficient XML Full-Text Search

The thesis presents a novel engine for efficient ranked retrieval of XML docu-
ments over semistructured but non-schematic data collections. The algorithm
follows the paradigm of threshold algorithms for top-k query processing with
a focus on inexpensive sequential accesses to disk-resident index lists with
only a few judiciously scheduled random accesses. We provide a prototype
search engine for ranked XML retrieval, supporting the most important W3C
XPath 2.0 Full-Text extensions as well as the complete NEXI specification
used in the INEX benchmark series [INE], thus supporting search along all
XPath axes with IR-style search conditions and optional thesaurus-based
query expansion.

A typical example query could be phrased in the NEXI syntax as follows:

37

1.5. Contributions

//book[about(.//, "Information Retrieval XML")
]//[
about(.//affiliation, "Stanford")
and

about(.//reference, "PageRank")
]

This twig query should find the best matches for books that contain the
terms “Information Retrieval XML” and have descendants tagged as affil-
iation and a reference with content terms “Stanford” and “PageRank”, re-
spectively. It should also find books about “statistical language models for
semistructured data”, and if no author from Stanford qualifies, it may pro-
vide books from someone at Berkeley as an approximate, but still relevant
result. In addition, we may consider relaxing tag names such that, for exam-
ple, monographies or even survey articles are found, however, with a lower
score.

A viable solution must reconcile local scoring for content search condi-
tions, score aggregation, and path conditions for joining the matches. As
a key factor for efficient performance, it must be careful about random ac-
cesses to index structures. It should exploit precomputations as much as
possible and may utilize the technology trend of fast growing disk space ca-
pacity (whereas disk latency and transfer rates are improving only slowly).
The latter makes redundant data structures attractive, if they are selectively
accessed at query run-time. It should be self-throttling and self-tuning with
regard to thesaurus-based query expansion and expansion thresholds.

Prior work has addressed individual aspects of the above desiderata to
some extent, but we are not aware of any comprehensive solution. The salient
properties of TopX and our novel contributions for ranked XML retrieval are
the following:

1) It efficiently processes XML IR queries with support for all XPath
axes, carefully designed index structures, efficient priority queue man-
agement, and judicious scheduling of expensive random accesses to test
both content-related and structural query conditions. It carries over our
previous work for estimating aggregated scores of candidates as well as
selectivities of both content conditions and structural path conditions
to the XML case that drive our scheduling decisions.

2) It optionally supports probabilistic candidate pruning but considerably
extends these prior techniques to an XML setting, in order to gain
additional speed at the expense of a small loss in precision of the top-k
results.

38

1. Introduction

3) It is a highly versatile building block for a wide range of query models.
It can be configured to support either strict conjunctions of search
conditions or an “andish” retrieval mode, where it is allowed that some
content or path conditions are not satisfied and merely result in lower
scores. The result list can be either individual XML elements or entire
documents. The scoring model takes into consideration both statistics
about tag-term combinations in the underlying XML corpus and the
compactness of subtrees that satisfy search conditions. It can easily
be customized to specific kinds of scoring models depending on the
application needs.

4) Finally, for thesaurus-based similarity search, it integrates our Incre-
mental Merge technique that significantly improves prior work in terms
of efficiency and query result precision. It efficiently supports “virtual”
index lists that are not materialized but computed on demand using
nested top-k operators for phrase expansions within XML elements.

The scoring model and query evaluation strategies applied in TopX achieved
very promising results in the INEX benchmark 2005 [TS05].

1.5.5 Selected Publications

Selected aspects of this thesis have been published in several international
conferences and workshops, namely:

• WebDB ’03: Exploiting Structure, Annotation, and Ontological Knowl-
edge for Automatic Classification of XML Data. Martin Theobald,
Ralf Schenkel, and Gerhard Weikum. 6th International Workshop on
the Web and Databases, San Diego, CA, 2003.

• VLDB ’04: Top-k Query Processing with Probabilistic Guarantees. Mar-
tin Theobald, Ralf Schenkel, and Gerhard Weikum. 30th International
Conference on Very Large Data Bases, Toronto, Canada, 2004.

• ER ’04: Towards a Statistically Semantic Web. Gerhard Weikum, Jens
Graupmann, Ralf Schenkel, and Martin Theobald. 23rd International
Conference on Conceptual Modeling, Shanghai, China, 2004.

• SIGIR ’05: Efficient and Self-Tuning Incremental Query Expansion for
Top-k Query Processing. Martin Theobald, Ralf Schenkel, and Ger-
hard Weikum. 28th Annual International Conference on Research and
Development in Information Retrieval, Salvador, Brasil, 2005.

39

1.6. Overview of the Thesis

• VLDB ’05: An Efficient and Versatile Query Engine for TopX Search.
Martin Theobald, Ralf Schenkel, and Gerhard Weikum. 31st Interna-
tional Conference on Very Large Databases, Trondheim, Norway, 2005.

• PKDD ’05: Word Sense Disambiguation for Exploiting Hierarchical
Thesauri in Text Classification. Dimitrios Mavroeidis, George Tsatsa-
ronis, Michalis Vazirgiannis, Martin Theobald, and Gerhard Weikum.
9th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases, Porto, Portugal, 2005.

• VLDB ’06: IO-Top-k: Index-optimized Top-k Query Processing. Hol-
ger Bast, Debapriyo Majumdar, Martin Theobald, Ralf Schenkel, and
Gerhard Weikum. 32nd International Conference on Very Large Data-
bases, Seoul, Korea, 2006.

1.6 Overview of the Thesis
The rest of the thesis closely follows the structure denoted by the main build-
ing blocks described in the introductory sections. Chapter 2 defines our data
model and the query language for text and semistructured data. It also
defines our specific full-text extensions for ranked XML retrieval and the re-
lational schemata used to store the various data formats. Chapter 3 defines
our computational and scoring model with novel extensions for Web IR and
XML IR. We also discuss common indexing versus query time trade-offs of
dynamic retrieval environments. Chapter 4 presents the core TopX query
processor. The implementation uses the same multi-threaded algorithmic
skeleton for index scans, top-k bookkeeping, and candidate pruning for both
text and semistructured data. Chapter 5 develops the probabilistic founda-
tions for aggregated score predictors and convolutions, as well as different
strategies for efficient candidate queuing and probabilistic candidate prun-
ing. Chapter 6 extends this probabilistic machinery by selectivity estimators
and feature correlations and integrates these advanced statistics into different
cost models for sorted and random access scheduling. Chapter 7 discusses
our novel Incremental Merge technique for dynamic and self-tuning query
expansions. Chapter 8 extends the given infrastructure by a structure-aware
top-k query processor, with efficient support for vague path query evalua-
tions, XML-specific random accesses scheduling, and dynamic query expan-
sion for content and structure. Chapter 9 presents a detailed experimental
evaluation of the algorithms proposed. Chapter 10 concludes the thesis.

40

Chapter 2

Data & Query Model

2.1 Data Model

Libraries were among the first institutions to adopt and pursue the usage
of IR systems. The first generation information systems were developed by
academic institutions and later often replaced or taken over by commercial
vendors. Among the first research-oriented library management systems that
were developed for academic libraries and which are still in use today were
Okapi (at City University London), MELVYL (University of California Li-
braries), and Cheshire II (at UC Berkeley).

In the early days of IR, these systems were mostly aiming to automate the
functionality of card catalogs. They were largely restricted to searching for
authors and titles, or using a small set of so-called index terms that had to be
manually assigned to documents by a human expert. We will refer to these
representative keywords also as the logical view of the document that ab-
stracts from its physical structure and provides a compact representation of
the document’s entities and their relationships. With the increased capacity
and performance of evolving computing systems, the second generation of IR
systems came up with greatly advanced search functionality over an extended
and automatically extracted set of index terms or even taking the full set of
terms into account. We will refer to this extended logical view as the full-
text representation of documents. The third generation of IR systems, that
is currently evolving, increasingly abandons the classic notion of documents
as primary retrieval units. They focus on advanced graphical interfaces and
user guidance to support the search process, on question answering or mul-
timedia retrieval, and on the adoption of tagged or semantically annotated
text passages with multiple weighted fields or even hierarchically structured
text contents in the form of XML data [W3Cb].

41

2.1. Data Model

XML documents may contain highly-structured data (e.g., numbers, dates,
etc.), unstructured data (untagged free-flowing text), and semistructured
data (text with embedded tags). When a document contains unstructured
or semistructured data, it is important to apply basic IR techniques such as
scoring and weighting for concise retrieval. Recent standardized IR exten-
sions to structured query languages such as the W3C XPath 2.0 Full-Text
extension and the NEXI [TS04a, TS04b] query language, that is basically an
outcome of the INEX [INE] benchmark series, reflect the increasing interest
in ranked retrieval of semistructured data.

2.1.1 Text

In order to provide a compact representation of the logical view of a docu-
ment, multiple occurrences of terms across a document are aggregated into
an initial term score that aims to model the relevance of a term for the given
document, thus ignoring the original ordering of terms in the document which
is typically referred to as bag-of-words model in IR. Similarly, we may want to
consider the frequency of a term across the whole corpus in order to capture
its specificity. In this retrieval model, text passages are either considered to
be unstructured, i.e., of equal importance, or they may be tagged with multi-
ple weighted fields that influence the credit a term is payed for the document.
For example, it might make a difference if a term occurs in the title or in the
body of a document in order to determine its final score.

Typically, the index terms are extracted from the physical document
structure automatically by tokenizing the text passages according to a set
of white space delimiters (e.g., blanks, commas, line breaks, etc.), aggre-
gated into term-score pairs (often called document features), and stored in
the inverted index lists. In order to decrease the dimensionality of documents
and queries and to support a simple form of content abstraction for vague
search, standard IR techniques such as stemming and stopword removal are
often applied in the initial tokenization step [BYRN99, MS99a, GF05].

Bag-of-Words Model

For determining the relevance of a query term ti for a particular document
dj and the specificity of ti across the collection, we keep basic statistics like

• the term frequency tfij of term ti in document dj, i.e., the number of
occurrences of ti in dj, and

• the document frequency dfi of term ti in the whole corpus, i.e., the
number of documents that contain ti.

42

2. Data & Query Model

Rather than the actual document frequency dfi, term specificity is often
referred to as inverse document frequency idfi = log(N/dfi), because most
commonly in IR, the importance of a query keyword ti for a given document
dj is considered to be proportional to the term frequency tfij and inversely
proportional to the (logarithmically dampened) document frequency dfi with
respect to the scoring model applied (see Section 3.1.1).

Term Proximity & Phrases

For more sophisticated queries, namely phrase matching and proximity-based
scoring functions, the bag-of-words model is not sufficient. For matching
phrases, the precomputed local scores (typically using the default per-term
scoring model, thus ignoring offsets) are combined with an additional scoring
component for the phrase proximity that also takes individual term positions
and their distances in the document into account, either as a binary filter
or in a true combined scoring approach, the latter inherently making the
scoring function non-monotonous with regard to the precomputed per-term
scores (see Section 3.1.2).

For top-k-style query processing, the term offsets may principally either
be encoded directly into the inverted lists in addition to the local scores,
with an individual entry for each term occurrence per document, or they
may be stored in an auxiliary data structure that is accessed solely through
random accesses. Note that the first option would make the sequential scans
(and the main memory consumption) about an order of magnitude more
expensive for any type of query, no matter if phrases are used in the query or
not; the second option, however, would require a clever scheduling strategy to
minimize to amount of expensive random accesses to perform the phrase and
proximity tests. In order not to pay a blanket increase of sequential query
costs, we decided to adopt the notion of expensive predicates for these phrase
tests in combination with the random access scheduling option as described
in Section 4.2.

TopX also implements additional full-text operators such as negation (−),
mandatory query terms (+), and thesaurus-based query expansion (∼). Effi-
cient support for phrase tests, negation, and mandatory query terms is part
of the TopX core query processor as described in Chapter 4; in Chapter 7,
we present a novel and efficient approach for similarity search with dynamic
query expansion, including high-dimensional phrase expansions.

43

2.1. Data Model

2.1.2 Structured Data

Preference queries over multi-attribute search tasks, e.g., booking a hotel
with multiple options for prize, location, quality, etc., or product catalogs
with multiple product features often impose the search over categorical at-
tributes, where good query results call for some kind of similarity search over
near matches.

As opposed to text data, the fields for these categorical attributes, mul-
timedia features, or named entities, such as Y ear, Genre, Date, etc., do not
naturally impose a simple ranking (e.g., varying term frequencies as in the
text case) that helps to distinguish or rank these fields. Even with global,
IDF-like document statistics, score entries for the attributes basically degen-
erate to constants.

These relations can be stored as multi-attribute database-style flat ta-
bles or in some canonical schema using the concatenation of each individual
attribute-value pairs as key (e.g., Genre = Action) for the inverted lists, all
with the same perfect static score (e.g., tij = 1 ∀ dj).

Similarity Scores for Categorical Attributes

Vague search for categorical attributes is strongly application dependent,
with approaches for similarity scores ranging from absolute differences, e.g.,
for prices, date and time entities, over geographical distances for locations,
or to some notion of correlation-driven corpus statistics. These similarities
may be either precomputed and directly materialized in the inverted lists for
a small number of similar conditions, or be merged incrementally and on-
demand in the sense of a potentially large query expansion (see Chapter 7),
the latter with the advantage of selecting context-aware expansion terms and
similarity weights for each search context individually.

Note that through the option of defining mutually nested structured ob-
jects (as given by the XML syntax introduced in the next subsection), the
structure may become hierarchical, thus forming trees of structured objects,
or even arbitrary graphs when links between objects are also taken into ac-
count. This poses a large variety of challenges for efficient indexing and
retrieval and calls for the efficient support for new path query languages.

2.1.3 Extensible Markup Language (XML) 1.0

With the Web and digital libraries, the demand for more structured retrieval
emerged. With the specification of the Extensible Markup Language (XML)
1.0 standard by the World Wide Web Consortium (W3C), a new way of merg-

44

2. Data & Query Model

ing text contents with structured attributes, or even a hierarchical arrange-
ment of document contents and interlinked document graphs was smoothed.
Although the XML specification originally aimed at providing a versatile for-
mat for data exchange, XML meanwhile has emerged as the default standard
for semantically annotated and hierarchically structured, mutually depen-
dent information contents.

Unfortunately – at least from an IR point-of-view – the amount of seman-
tically meaningful, richly annotated XML data remains vanishingly small
compared to the huge amount of poorly structured text data found on the
Web today, or highly structured data hidden in the so called Deep Web. In
the following, we merely report the most important syntactical concepts of
XML that yield the foundations for our retrieval model over semistructured
data, for a full specification of the XML syntax, see [W3Cb].

Each XML document has both a logical and a physical structure. Physi-
cally, the document is composed of units called entities, i.e., tags (or markup)
and character data (CDATA). An entity may refer to other entities to cause
their inclusion in the document. A document begins in a “root” or docu-
ment entity. Logically, the document is composed of declarations, elements,
comments, character references, and processing instructions, all of which are
indicated in the document by explicit markup.

Physical Structure

XML documents consist of intermingled markup and CDATA (i.e., start-tags,
text, and end-tags). Tags have a name and are delimited by opening (<) and
closing angle brackets (>). Start-tags may include a white-space-separated
list of attribute-value declarations.

• Markup takes the form of start-tags, end-tags, or empty-element tags.

• All text that is not markup constitutes the character data (CDATA) of
the document.

The document structure may be validated against an optional schema
specification, the so-called document type definition (DTD), that provides a
grammar for a certain class of XML documents and defines the way XML
elements and CDATA sections may be nested. In addition, data types for the
CDATA entities may be specified using the XML Schema language. We call a
document well-formed, if its logical and physical structures nest properly. In
addition, a document may be well-formed, if it has an associated document
type declaration (DTD) or XML schema declaration, and if the document
complies with the constraints expressed in it.

45

2.1. Data Model

Note that XML markup also includes comments, document type declara-
tions, processing instructions, XML declarations, or text declarations; none
of these markup extensions is relevant for the data model applied in this the-
sis. We merely consider DTD or XML schema validations as an elementary
functionality of the given parsing infrastructure; our indexing and querying
model aims at a schema-oblivious view of the data and efficient support for
a possibly diverse structure.

Logical Structure

• A data object is an XML document, if it is well-formed according to
the above definition.

• Each XML document contains one or more XML elements, the bound-
aries of which are either delimited by start-tags and end-tags, or, for
empty elements, by an empty-element tag. Each element has a type,
identified by name, and may have a set of attribute specifications. Each
attribute specification has a name and a value. The name in an ele-
ment’s end-tag must match the element type in the start-tag and is
prefixed by “/”.

• Element Type Declarations

– An element type has element content when elements of that type
must contain only child elements (no CDATA), optionally sepa-
rated by white space.

– An element type has mixed content when elements of that type
may contain character data, optionally interspersed with child el-
ements.
In this case, the types of the child elements may be constrained
by a DTD, but not their order or their number of occurrences.

• Attribute Type Declarations

– Attribute declarations are used to associate name-value pairs with
elements. Attribute specifications must not appear outside of
start-tags and empty-element tags.

– Attribute list declarations specify the name, data type, and default
value (if any) of each attribute associated with a given element
type. An attribute name must not appear more than once per
element start-tag.

46

2. Data & Query Model

XML does not only provide interspersed markup and text data, but may
provide a hierarchically nested element structure and thus arrange elements
in the form of a tree. That is why elements are often referred to as ele-
ment nodes and CDATA sections as text nodes. Text nodes are always
leaf nodes. The usage of specific idref and XLink/XPointer [XPO] at-
tributes that explicitly provide inner-document element references and intra-
document links, respectively, thus providing basic facilities to connect arbi-
trary element nodes, may break this strict notion of a tree structure and in
fact turn the XML data into an element graph, including cycles.

<article id=“conference/vldb05/theobald”>
<title>

An efficient and versatile
engine for TopX Search.

</title>
<abs>

We present a novel engine,
coined TopX, for ranked
retrieval of XML documents.

</abs>
<sec st=“Introduction”>

<par>
Non-schematic XML data…

</par>
</sec>
<sec st=“Related Work”>

<par>
Efficient evaluation of XML
path conditions…

</par>

</sec>
</article>

Figure 2.1: An XML example document.

Note that an XML document must start with a leading tag or root el-
ement, so each XML document confirms to its top-level element and vice
versa. Hence, each XML document is also an XML element (ignoring docu-
ment type declarations and processing instructions).

Document Order

There is an ordering defined on all the nodes in the document, called docu-
ment order, corresponding to the order in which the first character of the
XML representation of each node occurs in the XML representation of the

47

2.1. Data Model

document. Document order corresponds to a left-to-right, depth-first traver-
sal of the document’s node structure. Thus, the root node will be the first
node in document order. Reverse document order is the reverse of document
order. Note that document order corresponds to a simple preorder traversal
of the document tree (see Section 2.3.2).

Simplified XML Data Model

Throughout the thesis, we will consider a simplified XML data model where
idref/XLink/XPointer links are disregarded. Thus, every document forms a
tree of nodes, each with a tag and a content. We treat attributes as children
of the corresponding node. The content of a node is either a text string or it
is empty; typically (but not necessarily) non-leaf nodes have element content
and empty text content. The text content of mixed content elements is de-
fined as the concatenation of the elements’ CDATA sections including white
spaces as-they-are. Name space declarations (i.e., domain-specific prefixes of
element names) are treated as extended tag names. In the next subsection,
we introduce a new notion of element full-contents that constitutes a central
issue for our logical view of element contents and the IR techniques applied
for the XML case for the rest of the thesis.

2.1.4 Full-Content Text Model

With each element node we can additionally associate its full-content, which
is defined as follows:

Definition 2.1.1 (Element Full-Content) The full-content of an XML
element is the concatenation of all the element’s descendants’ text nodes in
document order, including element whitespace separators for mixed content
elements.

Note that the concatenation of text nodes according to a document-
order enumeration preserves the element ordering in the resulting full-content
strings and allows also for phrase matching across element boundaries. Strict
whitespace treatment across element boundaries may be crucial for some ap-
plications and collections, in particular with mixed content elements. For
example, a common (merely squiggling) pattern in the INEX data like

<st>I<scp>ntroduction</scp></st>

would otherwise lead to strange effects for retrieval. IR-style scoring models
may in turn break this ordering of terms and turn the full-content text nodes
again into a bag-of-words.

48

2. Data & Query Model

Hence, in analogy to the text case, we make use of basic IR statistics that
view the content or full-content of a node or entire document as a bag-of-
words, and define measures like the following:

• The term frequency, tf(ti, n), of term ti in node n, i.e., the absolute
number of occurrences of ti in the text content of n,

• the full term frequency, ftf(ti, n), of term ti in node n, i.e., the absolute
number of occurrences of ti in the full-content of n, and

• the element frequency, efA(ti), of term ti with regard to tag name A,
i.e., the number of nodes with tag name A that contain t in their full-
contents across the whole corpus.

Optionally, we may apply stemming and stopword removal to the XML
text contents which may in turn affect the tf , ftf , and ef values. This way,
we conceptually treat each XML element as an eligible retrieval unit (i.e., in
the classic IR notion of a document), with its expanded full-text nodes as
content.

articlearticle

titletitle absabs secsec

“conference vldb 05 theobald efficient versatile engine topx search
present novel engine coin topx rank retrieve xml document

introduction non schema xml data relate work efficient evaluation xml
path condition“

“present novel engine
coin topx rank retrieve

xml document“

stst parpar

1 10

3 2 4 3 5 6

6 4 7 5

ftf(“xml”,article1) = 3ftf(“xml”,article1) = 3

idid
2 1

“efficient versatile
engine topx search“

“introduction“ “non schema
xml data“

“conference vldb
05 theobald“

“relate work“ “efficient evaluation
xml path condition”

“introduction
non schema
xml data“

“relate work
efficient
evaluation xml
path condition“

secsec

stst parpar

8 9

9 7 10 8

Figure 2.2: Redundant full-content text nodes for elements.

Figure 2.2 shows the ftf value of the term “xml” for the top-level arti-
cle element as ftf(”xml”, article1) = 3, whereas the plain text tf(”xml”,
article1) value would be 0, because there is no text node connected to the

49

2.2. Query Language

article as a direct child node. Nethertheless, the ftf value of 3 indicates
some form of relevance that this particular article should be credited when
searched for the term “xml”. However, the whole article element might
indeed be more exhaustive but less compact than one of the respective de-
scendant elements like sec or par which should be reflected by the final
scoring model that we apply for ranked retrieval.

2.2 Query Language

2.2.1 XPath 1.0

As for specifying the syntax of structured queries, we focus on the W3C core
XPath 1.0 specification (see [W3Cc] for a full specification). The primary
purpose of XPath is to address and select parts of an XML document. In
support of this primary purpose, it also provides basic facilities for the ma-
nipulation of strings, numbers and Booleans in the form of predicates and
functions. XPath uses a compact, non-XML syntax to facilitate the use of
XPath within Unified Resource Identifiers (URIs) and XML attribute val-
ues. It operates on the abstract logical structure of an XML document,
rather than on the surface syntax.

In addition to its use for addressing, XPath is also designed such that
it has a natural subset that can be used for matching (i.e., testing whether
or not a node matches a pattern). XPath models an XML document as a
tree of nodes with various axes to support different types of nodes, including
element nodes, attribute nodes, and text nodes.

Location Steps

XPath expressions are constituted of so-called location steps. The syntax for
a location step is the axis name and node test separated by a double colon,
followed by zero or more predicate expressions each in square brackets. For
example, in

descendant::par[position()=3] ,

descendant:: is the name of the axis, par is the node test, and [position()
=3] is a predicate. The node set selected by the location step is the node set
that results from generating an initial node set from the axis and node test,
and then filtering that node set by each of the predicates in turn.

The initial node set consists of the nodes having the relationship to the
context node specified by the axis, and having the node type and name

50

2. Data & Query Model

specified by the node test. For example, a location step descendant::par
selects the par element descendants of the context node. descendant::
specifies that each node in the initial node set must be a descendant of the
context node; par specifies that each node in the initial node set must be an
element named par.

Location Paths

There are two kinds of location paths that form an XPath expression: relative
location paths and absolute location paths. A relative location path consists
of a sequence of one or more location steps separated by “/”. The steps in
a relative location path are composed together from left to right. Each step
in turn selects a set of nodes relative to a context node. The sets of nodes
identified by each step are unioned together.

An absolute location path consists of “/” optionally followed by a relative
location path. A “/” by itself selects the root node of the document containing
the context node. If it is followed by a relative location path, then the location
path selects the set of nodes that would be selected by the relative location
path relative to the root node of the document containing the context node.

Every location path can be expressed using a straightforward but rather
verbose syntax. Besides the full syntax specification, there are a number
of syntactic abbreviations that allow common query formulations to be ex-
pressed more concisely. This subsection will explain the semantics of the
most important XPath axes using the unabbreviated syntax and giving ab-
breviation examples.

Navigational Axes

There are thirteen distinct XPath axes specified in XPath 1.0, with partly
overlapping constraints on the structure. An axis is either a forward axis or
a reverse axis. An axis that contains only the context node or nodes that
are after the context node in document order is a forward axis. An axis that
contains only the context node or nodes that are before the context node in
document order is a reverse axis. Forward and reverse axes can be rewritten
symmetrically by exchanging the source and target node tests.

Combining symmetric cases, we identify the following primary (non-redun-
dant and indispensable) axes for path navigation, namely the child, self, de-
scendant, descendant-or-self, following, following-sibling, and attribute axis
(ignoring namespace declarations at this point). These seven axes do not
overlap, and altogether they capture the full expressiveness of XPath:

• The child axis (child::) contains the children of the context node.

51

2.2. Query Language

• The self axis (self::) contains just the context node itself.

• The descendant axis (descendant::) contains the descendants of the
context node; a descendant is a child or a child of a child and so on;
thus the descendant axis never contains attribute or namespace nodes.

• The descendant-or-self axis (descendant-or-self::) contains the con-
text node and the descendants of the context node.

• The following axis (following::) contains all nodes in the same docu-
ment as the context node that are after the context node in document
order, excluding any descendants and excluding attribute nodes and
namespace nodes.

• The following-sibling axis (following-sibling::) contains all the fol-
lowing siblings of the context node; if the context node is an attribute
node or namespace node, the following-sibling axis is empty.

• The attribute axis (attribute::) contains the attributes of the context
node; the axis will be empty unless the context node is an element.

The location path attribute::idref selects all attributes with the name
idref for the context node; it is abbreviated as @idref. The most important
abbreviation is that child:: can be omitted from a location step. In effect,
child is the default axis. For example, a location path

sec/par

is short for child::sec/child::par; and the widely known, mnemonic ab-
breviation for the descendant-or-self axis is //.

Node Tests

The initial node-set is filtered by the first predicate to generate a new node-
set; this new node-set is then filtered using the second predicate, and so
on. The final node-set is the node-set selected by the location step. The
meaning of some node tests is dependent on the axis. The axis affects how the
expression in each predicate is evaluated and so the semantics of a predicate
is defined with respect to an axis.

A qualified name in the node test is expanded into an expanded-name
using the namespace declarations from the expression context. A node test
that refers to a qualified name is true if and only if the type of the node is the
principal node type and has an expanded-name equal to the expanded-name
specified by the qualified name. For example, /par selects the par element

52

2. Data & Query Model

children of the context node; if the context node has no par children, it
will select an empty set of nodes. @idref selects the idref attribute of the
context node; if the context node has no idref attribute, it will select an
empty set of nodes.

A node test using the wildcard expression * is true for any node of the
principal node type (referring to an element or attribute node). For example,

//*

will select all element descendants of the context node, and @* will select all
attributes of the context node. The node test text() is true for any text
node. For example, /text() will select the text node children of the context
node.

Predicates & Functions

Note that expressions of any complexity can be specified in square brackets
which must be satisfied before the preceding node will be matched by an
XPath. Among the most common predicates that are used in square brackets
to restrain the node test in an expression is the position function. The
proximity position of a member of a node set with respect to an axis is defined
to be the position of the node in the node-set ordered in document order, if
the axis is a forward axis, and ordered in reverse document order, if the axis is
a reverse axis. The first position is 1. The most commonly used abbreviation
in XPath is used for position tests of the form //par[position()=3] as

//par[3]

which selects the third par descendant of the context node in document order.
A predicate filters a node-set with respect to an axis to produce a new node-
set. For each node in the node-set to be filtered, the predicate expression is
evaluated with that node as the context node, with the number of nodes in the
node-set as the context size, and with the proximity position of the node in
the node-set with respect to the axis as the context position. Note that XPath
already defines a large variety of string manipulating functions (e.g., the
contains function); these are non-IR functions and merely provide a basic
string matching facility without any ranking or similarity search designated.

Support & Target Elements

For simplicity, we only consider XPath expressions that form query trees at
this point, although it is possible to formulate graphs and even cycles in
XPath. Then, evaluating an XPath expression against an XML document

53

2.2. Query Language

tree becomes a tree matching problem, thus finding a valid embedding of the
XPath tree in a given document tree with the known polynomial complexity
of O(|D|5 |Q|2) [GKP02, GKP03] (see also Section 8.3.5). Note that there
does not necessarily have to be a unique embedding of the query tree into
the document tree.

For IR-style evaluations of these path expressions, we distinguish two
classes of node tests for retrieval, namely the query target element and the
support element(s), in order to define the result of an XPath query:

Definition 2.2.1 (Target Element) The rightmost, top-level node test in
a location path is called the target element of that path query.

Definition 2.2.2 (Support Element) All elements denoted by a path query
that are not the query’s target element are called the support elements.

Definition 2.2.3 (Query Result) Valid results of a path query are those
XML elements that match the query’s target element.

For example, the XPath query

/article[/abs[contains(text(), "XML")] and
//par[contains(text(), "path")]
]/title[1]

selects the first title element that is a child node of an article element
that has a child node of type abs that contains the term “XML” and with
article having an arbitrary descendant node of type par containing the term
“path”. Here, title[1] is the target element of the XPath query, and only
this element should be returned by the XPath engine. Note that omitting
the node predicate [1] may select more than one title element from an
XML document if these are present in the document’s structure. In doing
so, the above XPath query would successfully return the (only) title node
of the example document of Figure 2.1.

According to the above definition, a path query denotes exactly one node
test as the target element of the query, although a document instance may
yield more than one element that matches the path expression and, thus,
more than one element that matches the query’s target element. Note that
the tag list syntax //(A|B) allowed in the XPath (and NEXI, see Subsec-
tion 2.2.3) language is an exception to this uniqueness constraint of the target
element in the query, since it means “either the A or the B element” and, thus,
provides a means to specify multiple target elements in a path expression,
although this is hardly used in practice.

54

2. Data & Query Model

2.2.2 XPath 2.0 – Full-Text Extension

The W3C XPath 2.0 and XQuery 1.0 Full-Text extension [W3Ca] is probably
the best-known effort to provide a standardized syntax for IR extensions in
structured query languages. The full-text extensions are the W3C’s reaction
to the rising demand for a standardized way to support full-text search as
well as structured search against XML documents. Note that a similar re-
quirement for full-text search led ISO to define the SQL/MM-FT standard.
SQL/MM-FT defines extensions to SQL to express full-text searches provid-
ing similar functionality as does the full-text language extension to XQuery
1.0 and XPath 2.0.

“FTContains” Operator

The central language construct for full-text search is the new ftcontains
full-text operator whose semantics reaches way beyond the simple string ma-
nipulation functions provided in XPath 1.0. Beneath some “syntactical sugar”
like phonetic similarities, the W3C full-text extension explicitly specifies the
usage of case sensitivity, stemming, and stopword removal. Moreover, it is
already designed to support user defined query weights and a notion of result
scoring. For example, the XPath query

/article[
./title ftcontains ("xml" with stemming weight 0.8)

&& ("java" weight 0.2)
]/author

returns the author of an article with a title containing a word with the
same root as “xml” and the word “java”, with “xml” weighted four times
higher than “java”. ftcontains also allows for the specification of a maxi-
mum distance for words in phrases and even thesaurus lookups for related
terms. Recall that valid results for an XPath-like location path are only
those element instances that match the query’s target element; in a strict
evaluation of the query’s structure, these will be the only elements that may
be assigned a positive score.

2.2.3 Narrowed Extended XPath I (NEXI)

TopX currently supports the full NEXI specification as defined in [TS04a,
TS04b] which is intended to provide a compact and yet extended IR search
functionality to XPath 1.0. In particular, the navigational axes have been
truncated down to the descendant-axis alone, whereas a new about operator

55

2.2. Query Language

for ranked element retrieval was added. Note that unlike in XPath, the most
common axis abbreviation // in NEXI refers to the descendant axis, only.

“About” Operator

Similarly to the ftcontains operator in XPath 2.0 Full-Text, NEXI specifies
an about full-text operator, but otherwise retains only a strongly reduced
subset of the original XPath syntax. For example,

//article[about(.//title, +xml java)]//author

is probably the nearest match for the aforementioned XPath 2.0 Full-Text
query in the NEXI syntax. While most of the explicit syntactic options
that ftcontains provides are missing in NEXI, the semantics of the about
operator by default denotes text contents to be interpreted as vague, i.e.,
they may be dynamically relaxed in an “andish” manner or at the same time
be expanded through similar terms. The exact interpretation of the about
function is left for each specific implementation. Moreover, NEXI specifies
the usage of a + operator for mandatory terms, a − operator for excluded
terms, and the usage of phrases denoted by quotation marks (“”).

We extend NEXI to explicitly support an additional ∼ operator for the
expansion of tags and content terms into similar expressions (according to
semantic similarities, e.g., from a common-sense or user-defined thesaurus)
for selected tags and terms, only. TopX implements a query rewriter that
translates the NEXI syntax into the internal DAG-based representation of the
query processor (see Subsection 8.2.1) and supports dynamic query expansion
and similarity search using thesaurus lookups for these explicitly marked
expansions.

In the following, we will often abbreviate the syntax of the about opera-
tor, e.g., using title[“xml java”] as short for //title[about(.//, “xml
java”)], thus referring to a vague interpretation of the text contents “xml”
and “java”. Similarly, we focus on the descendant axis (i.e., the full-content
case) as the much more important case for XML IR with vague search, thus
following the NEXI specification; the case for the child axis follows analo-
gously.

Note that, if the target element of the query is interpreted as vague or even
skipped completely as it is the case in a pure keyword or so-called content-
only (CO) query, a good scoring model should tend to automatically apply
a higher score for the more compact retrieval unit. Moreover, these local
scores should be aggregated in such a way, that the most suitable retrieval
unit for a multi-dimensional query is automatically returned at a higher rank
than a less specific top-level element. Ideally, there should no benchmark- or

56

2. Data & Query Model

collection-specific tuning be necessary, thus making the manual preselection
of commonly retrieved elements (such as sections or paragraphs in INEX) or
the use of predefined retrieval units obsolete. These advanced considerations
will become manifest in the scoring model described in Section 3.4.

Content-only Queries (CO)

Content-only (CO) queries correspond to traditional keyword queries in IR,
containing only words and phrases; no structural constraints are allowed. CO
queries can be rewritten into a valid XPath or NEXI expression using the
wildcard node test //*. This way, any element in the corpus containing one
or more of the keywords specified in the query is a potential match. This
kind of query is often used when the user is unfamiliar with the structure of
the XML collection, or does not know where exactly a relevant match could
be found.

Content & Structure Queries (CAS)

Content and structure (CAS) queries contain explicit structural require-
ments. They arise if the user is aware of the structure and wants to specify
either the granularity of the result element (e.g., whole articles versus com-
pact paragraphs), or wants to explicitly constrain the way the query structure
is matched against the XML collection.

In a strict interpretation (SCAS) of the target structure, the information
is assumed to be exactly deducible from the query structure and only those
elements are returned that exactly match all the support and target elements
specified by the query. In a vague interpretation of the query structure,
however, this strict notion of query results may be relaxed. Variations of
this scheme include the interpretation of the support elements as vague and
the target element as strict (SVCAS), or the interpretation of the support
elements as strict and the target element as vague (VSCAS), and vice versa.

Specifying an information need by an exact structure is not an easy task,
especially for a heterogeneous collection or a federation of XML documents
from different sources. Often, it is more beneficial to dynamically relax the
structural constraints if important content conditions cannot be matched
otherwise, and to define a ranking for the structure, too. Then the score
aggregation decides about the final result ranking of different element types.
Therefore, TopX provides also structural scores for tag sequences or branch-
ing path queries and ranks results according to the combined score for both
content and structure. Then the user can specify a preference for matching
the structural or rather the content-related parts.

57

2.3. Relational Schemata for Text and Semistructured Data

2.3 Relational Schemata for Text and Semistruc-
tured Data

Many path index structures for XML have been proposed in the literature
(see, for example, [MS99b, LM01, CSF+01]). We believe that the XPath
Accelerator [Gru02] and DataGuides [GW97] are among the simplest, most
compact, and yet most effective approaches. Therefore, we adopt these two
data structures for the TopX database schema, thus taking advantage of their
(partly complementary) salient properties.

2.3.1 Text Schema

Transferring the bag-of-words model into a relational schema and, thus,
storing text data in a relational database system is very straightforward.
For each document, term, and score, we create triplets of the basic form
(docid, term, score), where the pair (docid, term) is primary key. Efficient
sorted and random access on top of the DBMS is supported by two B+-trees
on the attributes concatenated in (term, docid, score) for SA and in the or-
der (docid, term, score) for RA (see Appendix A.1.1 for table definitions).
We refer to this base table as TextFeaturesRA. Section 8.2.2 discusses some
tuning tricks for storing these index structures space-efficiently in Oracle.

Note that an additional offset index TermsRA is required for phrase match-
ing with a B+-tree index over attributes concatenated in the order (docid,
term, pos), which is solely accessed through random lookups; see also Sec-
tion 4.2 for an efficient scheduling approach of these phrase tests.

2.3.2 Structural Indexes for XML

XPath Accelerator

The default TopX method for testing path constraints and matching ele-
ment regions is leveraging the pre-/postorder tree labeling scheme of Grust’s
XPath accelerator [Gru02, GvKT03], which is one of the simplest and yet
most effective tree index structures for mapping XML data onto a relational
schema. The XPath accelerator is specifically designed to support all 13
XPath axes and to run on top of a relational backend to leverage its stability
and scalability.

In order to find a unique labeling scheme for the nodes of an XML doc-
ument tree, we provide the following definitions:

Definition 2.3.1 (Preorder Traversal) In a preorder traversal, a tree node

58

2. Data & Query Model

v is visited and assigned its preorder rank pre(v) before its children are re-
cursively traversed from left to right.

Definition 2.3.2 (Postorder Traversal) In a postorder traversal, a tree
node v is visited and assigned its postorder rank post(v) after all its children
have been traversed from left to right.

XPath-like location paths are split into single node tests for each tag con-
dition individually, with pre/postporder comparisons for the path structure.
Testing two nodes v and v′ for their descendant relation then simply resolves
in comparing their pre- and postorder ranges:

v′ is a descendant of v (2.1)
⇔

pre(v) < pre(v′) ∧ post(v′) < post(v)

These range tests for the pre- and postorder attributes naturally map to
DBMS-style range scans for the (pre, post) attribute pairs, coined Staircase
joins in [GvKT03]; the initial paper also sketches an efficient R-tree [Gut84,
KF93] support for the triplets of the form (pre, post, level), thus implement-
ing the full range of XPath axes.

Figure 2.3 depicts the pre/postorder coordinates of elements for the ex-
ample document of Figure 2.1. The light-gray shaded area denotes the
pre/postorder range for all descendants of node sec5 which are nodes st6
and par7, respectively. The dark-gray area in turn depicts all descendants of
node st5 which is empty in this case.

TopX performs a variant of these Staircase joins for each candidate docu-
ment in-memory, whenever additional elements have been detected through
a sequential or random access for that candidate, and the path query is eval-
uated against the updated element structure of the candidate document (see
Section 8.3 for details on the XML query processing). Using tag sequences
instead of whole location paths has several advantages for our query evalua-
tions. It provides the basis for flexible scorings for both content and structure
and offers the possibility to dynamically relax structural query conditions
similar to content conditions in the text retrieval case. Hence, it allows us
to compensate some weak structural matches, if some node tests fail, for
good matches in other query conditions, thus translating the advantage of
non-conjunctive score aggregations to XML IR. And it inherently supports
the NEXI-style usage of the descendant axis well.

Unfortunately, splitting a location path into its tag sequences also reveals
some drawbacks for path expressions with very low selectivity, namely when

59

2.3. Relational Schemata for Text and Semistructured Data

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

8

9 10 pre

post
article
[1,10]

id
[2,1]

title
[3,2]

abs
[4,3]

sec
[5,6]

st
[6,4]

par
[7,5]

sec
[8,9]

st
[9,7]

par
[10,8]

Figure 2.3: Pre/postorder ranges for all elements of the example document
of Figure 2.1.

the structure is not matched for most candidates and many node tests fail
which will incur an increased amount of node tests and typically increased
random disk I/O. Optimizing path queries with a low selectivity is addressed
by the next index structure, the DataGuide.

DataGuides

DataGuides [GW97] are another way to map structural information about
XML data onto a relational schema. This index structure benefits from
the observation that XML collections often exhibit regular patterns in the
structure or follow a comprehensive schema definition, for example in the
form of a compact DTD. DataGuides aim at providing concise summaries
for the structure of a semistructured database. The key idea is that the
schema can be represented as a deterministic finite automaton (DFA), the
DataGuide, that accepts all distinct labeled path instances of the source
database. The resulting DFA then provides an in-memory summary of the
path structure of the source database. For a tree database, the conversion to
the DFA takes linear time; for a graph, however, space and time consumption
may become exponential.

The work initially presented in [GW97] uses path-to-bucketid mappings
by enumerating all distinct root-to-leaf paths as captured by the DFA. Then

60

2. Data & Query Model

articlearticle

titletitle absabs secsec

stst parpar
7

idid

6

5

1

2 3 4

Figure 2.4: DataGuide for the ex-
ample document of Figure 2.1.

Path b-id
/article 1
/article/id 2
/article/title 3
/article/abs 4
/article/sec 5
/article/sec/st 6
/article/sec/par 7

Figure 2.5: DataGuide-like path-
to-bucketid mappings for all
paths of the example document
of Figure 2.1.

each resulting bucket id represents a whole location path and can be matched
against a path query. Table 2.5 shows a respective DataGuide structure for
the XML example document of Figure 2.1, together with the resulting path-
to-bucketid mappings. A simple extension is to assign distinct bucket ids for
all the path prefixes, too.

DataGuides are generally the method of choice for indexing collections
with a hierarchical, deeply nested element structure and a generally low se-
lectivity of path queries. Unfortunately, using path summaries inherently
supports only the child axis efficiently. Although it is principally feasible
to support the descendant axis for DataGuides as well, this might render
the original DataGuide automaton non-deterministic, with potentially high
conversion and storage cost for the respective DFA.

Moreover, DataGuides do not provide information about the actual data
instances, but rather serve as a structural filter. Joining individual elements
on the basis of bucket ids only (e.g., for branching path queries) would cause
the danger of returning false positives. Some kind of unique element identifier
is required in this case, e.g., using the well-known preorder labels as described
in the previous subsection that help us to unambiguously identify an XML
element. We will revisit this issue in Section 8.5.2 when the efficient usage
of hybrid index structures is discussed.

61

2.3. Relational Schemata for Text and Semistructured Data

2.3.3 Combined Inverted Block-Index for XML

State-of-the-art systems for ranked retrieval based on these structural in-
dexes typically conduct query processing on a combination of inverted lists
for XML contents and structural indexes for the path evaluation separately
(see, e.g., [KKNR04, AYLP04]), often with an eager policy for using ran-
dom accesses to validate the structural part. An intriguing idea would be
to trade off some inexpensive disk space to implement a combined schema
for content and structure that helps to safe or at least drastically reduce the
amount of random accesses necessary to resolve a candidate’s structure. The
latter approach, as pursued by TopX, offers great potential cost savings and
increased retrieval efficiency, but also calls for novel solutions that can dy-
namically switch between the most suitable index structure and even employ
hybrid indexes whenever cost beneficial. The basic TopX schema, which is
one of our key approaches for efficient query evaluations on XML data, is
described in this subsection.

Inverted index lists are stored as database tables; Figure 2.6 shows the
corresponding schema definitions with some example data for three tag-term
pairs. The current implementation uses Oracle 10g as a backbone, mainly for
easy maintenance of the required index structures, whereas the actual query
processing takes place on top of the DBMS exclusively in the TopX query
engine, such that the DBMS itself remains easily exchangeable.

Nodes in XML documents are identified by the combination of document
identifier (docid) and their preorder (pre) label. Navigation along all XPath
axes is supported by both the pre and post attributes following the XPath
accelerator technique of [Gru02]. Additionally, the level information may
be stored to support the child axis as well, but it may be omitted for the
NEXI-style exclusive usage of the descendant axis.

Content Index

The base table contains the actual node contents indexed as one row per
tag-term pair per document, together with their local scores (referring either
to the simple content or the full-content scores) and their pre- and postorder
numbers. For each tag-term pair, we also provide the maximum score among
all the rows grouped by tag, term, and document identifier to extend the
previous notion of single-line sorted accesses to a notion of sorted block-
scans. The actual index lists are processed by the top-k algorithm using two
B+-tree indexes that are created on this base table: one index for sorted
access support in descending order of the (maxscore, docid, score) attributes
for each tag-term pair, and another index for random access support using

62

2. Data & Query Model

(docid, tag, term) as key.
Each sequential block scan prefetches all tag-term pairs for the same

document id in one shot and keeps that block of elements in memory for
further processing which we refer to as sorted block-scans. Random accesses
to content-related scores for a given document, tag, and term are performed
through small range scans on the respective B+ tree index using the triplet
(did, tag, term) as key. Note that grouping tag-term pairs by their document
ids keeps the range of the pre/postorder-based in-memory structural joins
small and efficient. All scores in the database tables are precomputed when
the index tables are built.

12
20
8
15

post

0.1
0.85
0.9
0.9

max-
score

10.1384
10.855171
100.529
20.9246

prescoredocideid
sec[xml] st[introduction] par[schema]

0.423120.431671
0.51240.5251
0.88100.8372
0.91520.917216

max-
score

postprescoredocideid

0.75460.75496
0.75730.755182
0.81480.8228
1.02111.013

max-
score

postprescoredocideid

Figure 2.6: Inverted block-index with precomputed full-content text scores
for tag-term pairs.

Figure 2.6 depicts some example data of the inverted block index for the
three tag-term pairs sec[xml], st[introduction], and par[schema]. The
gray shaded cells denote the element blocks for the document with id 2; the
two gray marked rows for sec[xml] indicate that document d2 has two sec
elements that contain the term “xml”: one with a local score of 0.9, and one
with a local score of 0.5. Then the maxscore attribute of d2 for the tag-term
pair sec[xml] has a value of 0.9.

Note that a unique element identifier eid does not actually have to be ma-
terialized and may be generated on-demand as a linear combination of a bit-
shift for the docid and the pre attribute, e.g., using eid = (docid << 8)+pre,
whenever needed. Further note that keeping the document identifier docid
in the inverted index helps us to limit the range of the in-memory structural
joins for query processing which keeps the pre- and postorder comparisons
efficient and enables us to dynamically switch between documents and ele-
ments as result granularity. Details for the query processing over this block
structure will be given in Section 8.3.

For search conditions of the form A[.//"t1 t2"] referring to the descen-
dant axis, we refer to the full-content text scores, based on ftf(t1, A) and
ftf(t2, A) values of entire document subtrees; these are read off the precom-
puted base tables in a single efficient sequential disk fetch for each document
until the min-k threshold condition is reached and the algorithm terminates.

63

2.3. Relational Schemata for Text and Semistructured Data

We fully precompute and materialize this inverted block index to efficiently
support the descendant axis between tag-terms pairs for typical NEXI query
patterns of the type A[.//"a"]. With this specialized setup, parsing and
indexing the INEX collection of about 17,000 large documents takes about
80 minutes on an average server machine including our XML-specific scoring
model and the materialization of the inverted block-index view.

We propagate, for every term t that occurs in a node n with tag A, its
local tf value “upwards” to all ancestors of n and compute the ftf values of
these nodes for t. For search conditions of the form A[.//"a1 a2"], referring
to the descendant axis between the A tag and the term conditions a1 and a2,
we can efficiently precompute these full-contents scores, based on ftf values
of entire subtrees which greatly helps accelerating query processing for these
basic patterns.

The redundant full-content indexing introduces a factor of redundancy for
the textual contents that approximately corresponds to the average nesting
depth of text nodes of documents in the corpus (which corresponds to factor
of 4-5 for the INEX collection); it is our intention to trade off a moderate
increase in inexpensive disk space for faster query response times. Note
that by using tag-term pairs for the inverted index lookups, we immediately
benefit from more selective, combined tag-term features and shorter index
lists for the textual contents, whereas the hypothetical combinatorial bound
of #tags·#terms entries has by far not been reached for any of the collections
we investigated, since only actual data instances are kept in the index which
typically leads to a large increase of distinct index keys but merely to a
modest increase of actual records.

Navigational Index

To efficiently process more complex queries, where not all content-related
query conditions can be directly connected to a single preceding tag, we
need an additional element-only directory to test the structural matches for
tag sequences or branching path queries as shown in Figure 2.7. Lookups to

12
20
8
15

post

1384
15171
1029
2246

predocideid
sec

Figure 2.7: Navigational index for XML elements.

64

2. Data & Query Model

this additional, more compact and non-redundant navigational index yield
the basis for the structural scores that a candidate may achieve for each
matched tag-only condition in addition to the content scores.

As an illustration of the query processing, consider the example twig query
//A[.//B[.//"b"] and .//C[.//"c"]]. A candidate that contains valid
matches for the two extracted tag-term pairs B:b and C:c fetched through a
series of block-scans on the inverted lists for B:b and C:c, may only obtain an
additional static score mass c, if there is a common A ancestor that satisfies
both the content-related conditions based on their already known pre- and
postorder labels. Since structural conditions are defined to yield this static
score mass c, the navigational index is exclusively accessed through random
lookups using an additional B+-tree on this table. Section 8.4 investigates
on different approaches to judiciously schedule these random accesses for the
most promising candidates according to the structural selectivities and their
already known content-related scores.

65

Chapter 3

Relevance Scoring Model

In this chapter, we define our computational model for top-k rank aggre-
gations and provide the theoretical justification for the scoring models we
apply throughout the thesis and in particular in the experiments section.
The chapter also underpins the algorithmic prerequisites for a correct top-k
query processing assuming monotonous score aggregations. We focus on the
two prevalent ranking paradigms that evolved over the past 30 years in IR
history, namely the traditional Vector Space Model (VSM) with its whole
family of the so-called TF·IDF ranking functions versus more distinguished
probabilistic IR approaches with the classic Robertson and Sparck-Jones rel-
evance weights and the state-of-the-art Okapi BM25 model being the most
prominent representatives. We select two particular instances of these models
and present them in full detail for their (complementary) salient properties:

1) The TF·IDF model in its most commonly used form with a linear in-
fluence of the term frequency (TF) and a logarithmically dampened
influence of the inverse document frequency (IDF) for the resulting per-
term document scores. This model typically yields highly skewed score
distributions as the TF component may grow unboundedly, but also
provides more efficient retrieval for non-conjunctive, top-k-style query
evaluations, however, at the expense of a restrained retrieval quality.

2) The Okapi BM25 model as a well-established representative of the prob-
abilistic scoring models with a smoothed, non-linear influence of all
ranking components in the resulting scores. It typically yields less
skewed score distributions and superior retrieval quality, however, at
the expense of slightly increased retrieval costs.

For more convenient handling of local scores, for example for extracting
and comparing compact score distribution histograms (see Section 5.2.3),

66

3. Relevance Scoring Model

we usually normalize these values to the interval [0, 1] either through an
additional post-processing step or directly at document indexing time. As
most of the proposed scoring models in IR require some kind of corpus-wide
term statistics as a basic ingredient, the efficient indexing and normalization
of these scores and incremental index updates pose specific challenges to the
indexing strategies applied. We discuss various aspects in indexing time
versus query time trade-offs for static and dynamic retrieval systems. We
present various extensions for Web IR and XML IR and provide a detailed
discussion of BM25 and its efficient usage for indexing, because it also serves
as the our (probabilistic) scoring extension for XML data.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

fr
eq

TF log(IDF)

Figure 3.1: Score histogram
for the term ’darpa’ using a
TF·IDF model.

0.00

0.05

0.10

0.15

0.20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

score

fr
eq

BM25

Figure 3.2: Score histogram
for the term ’darpa’ using a
BM25 model.

Figures 3.1 and 3.2 show two score distribution histograms of the inverted
list for the rather infrequent term ’darpa’ (acronym for Defense Advanced
Research Projects Agency) with dfdarpa = 809 for the TREC GOV collection
with a total of N = 1, 250, 000 documents using a TF·IDF and a BM25
model, respectively, both normalized to the score interval [0,1]. We see that
BM25 creates a much more homogeneous distribution than TF·IDF. When
combining multiple lists with such a high skew in a non-conjunctive manner,
TF·IDF is much more likely to return documents at the top ranks that only
qualify through a single match in one list having a high local score that
dominates all the remaining query conditions.

Note that we do not examine Statistical Language Models (see, e.g.,
[LC01, ZL04]) for top-k query processing at this point, although we could
principally support these as well, as long as they fall into the common
scheme of precomputing local scores and combining these scores using some
kind of monotonous score aggregation (e.g., using summation over (log-
transformed) basic relevance probabilities). In fact, the 2-Poisson term rele-
vance model and the BM25 weighting function derived thereof (described in
Subsection 3.2.1) were formulated before the language modeling idea came

67

3.1. Vector Space Model

along. However, they may be recast as an elementary form of language model.

3.1 Vector Space Model

Consider a Cartesian product space D1× . . .×Dm over domains D1, . . . , Dm,
and a dataset D ⊆ D1 × . . . × Dm of m-dimensional data points. The
data points could be records over structured domains (e.g., product catalog
entries) or text documents when the domains capture weights of text terms
in a high-dimensional IR feature space. In the latter case, D ⊆ 	m or
D ⊆ [0, 1]m.

Unlike conjunctive queries in a classic DBMS setup, queries on such a
dataset are partial-match queries in the form of m-tuples (q1, . . . , qm), where
qi ∈ Di or qi = ∗ meaning that we do not care about the ith dimension
value. In the text-document IR case, usually a few qi values are set to 1
(the query keywords) and all others set to 0 (but there are other approaches
as well). The results d ∈ D to a query q = (q1, . . . qm) do not necessarily
have to match all non-zero qi values or have non-zero components di; rather
we would like to retrieve approximate matches to this condition according
to some similarity measure. We assume that for each domain Di there is a
similarity function si : Di ×Di → [0, 1]. For numerical domains such as year
or price, the similarity function could simply be the absolute difference; for
structured domains with categorical values such as Model (of cars) or Genre
(of movies or books) the similarity function needs to be explicitly defined for
all value pairs (recall Section 2.1.2).

For a query q = (q1, . . . qm) and a data instance d = (d1, . . . , dm), the
local, domain-specific similarity functions are aggregated into a global sim-
ilarity function score : (D1 × . . . × Dm) × (D1 × . . . × Dm) → 	, with
score(d, q) = aggr{si(di, qi) | i = 1..m}, where aggr is a monotonic aggre-
gation function from [0, 1]m to 	. A widely used aggregation function for
this purpose would be summation, thus yielding score(d, q) =

∑m
i=1 si(di, qi);

popular alternatives include weighted summation, product (with a proba-
bilistic interpretation), or maximum. The result of a top-k query q then is
given by the k data points d for which score(d, q) is among the k highest
values of all similarities between q and any other data point d.

Our framework for processing top-k queries is based on sorted access to
the data in descending order of similarity scores for each dimension. Es-
pecially for processing IR-style index lists, where the lists for frequent text
terms may be very long, random lookups into these lists would incur extra
disk IOs which are orders of magnitudes more expensive than a sorted access
step (with occasional asynchronous and sequential disk reads). The TA fam-

68

3. Relevance Scoring Model

ily of threshold algorithms operate on lists Li, for i = 1..m, which, for a given
query value qi, return data points dj in descending order of si(di, qi), or si(d)
for short (assuming qi = 1). The implementation uses B+-tree indexes and
scans the inverted index lists in sorted order of scores for individual keys, or
looks up keys that exactly match a condition and then merges the results of a
forward and a backward scan for neighboring keys (e.g., numerical attribute
values with small absolute distance to the query value). When given a query
q with specified conditions q1, . . . , qm, we assume, without loss of generality,
that all dimensions are specified or, equivalently, consider only the subspace
of dimensions for which the query specifies values.

3.1.1 TF·IDF Family of Scoring Functions

Table 3.1 shows the family of most commonly used weighting schemes in
classic IR [BYRN99]. Recall from Section 2.1.1 that tfij denotes the term
frequency of term ti in document dj, i.e., the absolute number of occurrences
of ti in dj; and dfi denotes the document frequency of term ti across the
entire corpus, i.e., the absolute number of documents containing ti. Depend-
ing on the specific retrieval application, one may choose between a natural,
logarithmically dampened, or augmented and smoothed influence of the TF
and IDF components with different effects on retrieval efficiency and result
performance. Furthermore, to prevent the score values from growing un-
boundedly, different normalization approaches can be applied to the resulting
document score vectors, such as the L1 or L2 norm, as well as more sophis-
ticated normalization steps that would already incorporate an aggregation
step for a given document and query vector such as the Cosine measure (see
Section 3.1.2).

Note that the TF·IDF approach in general has often been criticized for
being too “ad-doc” and lacking proper mathematical or statistical justifi-
cation, because it has not explicitly been derived to approximate a specific
(postulated) term distribution or a more sophisticated probabilistic relevancy
model. However, in practice, these schemes have a long tradition in IR and
proved to be effective and work robustly throughout a broad range of IR
applications, and some of the smoothed variants indeed are strikingly similar
to the well-justified, probabilistic retrieval models (see Section 3.2).

We refer to Equation 3.1 as the most commonly used instance of TF·IDF
scoring models that has a natural influence of the TF component and a
logarithmically dampened influence of the IDF component and generates
non-normalized, potentially unbounded and pseudo-continuous score values.

si(dj) = tfij · log2(idfi)

69

3.1. Vector Space Model

TF IDF Normalization

Natural tfij
N
dfi

L1-norm:
1∑
i sij

Logarithmic 1 + log(tfij) log(N
dfi

)

L2-norm/Cosine:
Augmented 0.5 + 0.5

tfij

maxtij∈dj
{tfij} log(N+0.5

dfi+0.5
) 1√∑

i si(d)2

Table 3.1: Typical variations of TF and IDF components used in IR appli-
cations.

= tfij · log2(
N

dfi
) (3.1)

Indexing vs. Query Time Trade-offs

We now refine the basic TF·IDF Formula 3.1 and introduce a simple extension
that allows for an efficient online normalization of scores at indexing time.

si(dj) =
tfij

maxti∈dj
{tfij} · log2(

N
dfi

)

log2(N)

=
tfij

maxti∈dj
{tfij} · logN (

N

dfi
) (3.2)

In the experimental setups, we will refer to the above normalized TF·IDF
Formula 3.2 as our default TF·IDF model with a natural (but per-document
normalized) TF component and the logarithmically dampened (and globally
normalized) influence of the IDF component. This slight modification is
especially interesting for our top-k framework in two ways:

1) The local TF component including the normalization step can be effi-
ciently precomputed in-memory at indexing time whenever a document
has been completely parsed and is about to be stored in the inverted
lists.

2) Due to the linear influence of the TF component, which is preserved
even after the per-document normalization step, this scoring function
generates highly skewed, Zipf-like score distributions when applied to
the whole collection.

The first issue makes the scoring function attractive for indexing very
large collections, where indexing performance becomes crucial. With the

70

3. Relevance Scoring Model

above formulation, we can treat the IDF component as a constant for each
term during query execution time that does not affect the order of index list
entries for a given query term according to the TF component and allows us
to provide the combined TF·IDF scores in a dynamic view. This view can
be generated on demand using order-preserving nested-loop joins, where the
inverted lists are sorted in descending order scores for the TF component and
the IDF component is dynamically joined by the outer loop for each of the
query terms individually. This prevents us from having to rebuild the entire
inverted index whenever new documents are added and enables the engine
to perform continuous indexing and querying with iterative (lazy) updates of
the IDF statistics and cheap incremental updates in the inverted lists.

The second issue also depicts a performance factor for query execution
times, since a highly skewed distribution already yields the top ranked doc-
uments for a multi-keyword query among the top ranks of at least one of
the index lists with a high probability, whereas the scores for the major
amount of candidates at the remaining ranks of each list quickly converge
to 0. Note that by normalizing the IDF part with the global maximum IDF
value log2(N), we in fact utilize a huge base for the logarithm – namely the
collection size N – which makes the TF component the dominating part of
this scoring model. We will review this issue in the experiments section and
examine these efficiency versus effectiveness trade-offs between different scor-
ing approaches such as TF·IDF and the probabilistic variants; see also [BC05]
for a very recent study of indexing versus query time trade-offs in dynamic
information retrieval systems.

3.1.2 Vector Space Aggregations

While the precomputation of local scores and the materialization of the in-
verted index structure is part of the indexer, the efficient aggregation of these
local scores for multi-dimensional queries is part of the query processing.

Recall from Section 1.3.2 that for the basic top-k query processing, we
maintain for each index list Li the following information: a current scan
position posi and the respective current score highi := si(d) for the document
d at the current scan position posi in Li. We maintain for each record or
document d that was already encountered in at least one of the Li: a set E(d)
of dimensions for which we already computed a score si(d), and a partial
score worstscore(d) :=

∑
i∈E(d) si(d) and bestscore(d) := worstscore(d) +∑

i/∈E(d) highi (e.g., using summation as aggr). Then way can safely stop
query executions and return the top-k documents as soon as

min{worstscore(d) | d ∈ top-k} ≤ max {bestscore(d) | d /∈ top-k} .

71

3.1. Vector Space Model

In order to provide a correct algorithm, we need to provide monotonous up-
dates on both the lower and upper bounds for each candidate item seen so far,
that is in particular, we may never decrease the lower bound worstscore(d) or
increase the upper bound bestscore(d) for any candidate at a later time of the
index scans, because that would make the worstscore(d) and bestscore(d)
bounds useless and prevent the algorithm from finding the correct point of
termination.

Monotonous Score Aggregations

With a few algebraic tricks, we can in fact incorporate most of the score
aggregation functions commonly used in IR to support a wide range of IR
applications. These include

• summation as mentioned already, i.e.,

score(d, q) =
m∑

i=1

si(d) , (3.3)

• minimum and maximum, i.e.,

score(d, q) = min |max i {si(d)} , (3.4)

• the product with a summation over log-transformed scores, i.e.,

score(d, q) =
m∏

i=1

si(d) = exp

(
m∑

i=1

log si(d)

)
, or (3.5)

• the Cosine measure with L2-normalized document and query vectors,
i.e.,

score(d, q) =

∑m
i=1 si(d) · qi√∑m

i=1 si(d)2
∑m

i=1 q
2
i

(3.6)

=
m∑

i=1

si(d) · qi for

{ √∑m
i=1 si(d)2 = 1√∑m
i=1 q

2
i = 1

(3.7)

One thing that all of these aggregation functions have in common is that
they can compensate weak matches (or even local scores of 0) for some query
conditions by higher scores at other query dimensions, which is an excellent
property for IR and the reason why they are often referred to as compensation
functions [GBK01]. We will review this issue for non-conjunctive (aka. “an-
dish”) query evaluations for text and XML data (see Sections 4.1 and 8.1.3).

72

3. Relevance Scoring Model

Non-Monotonous Score Aggregations

Semantically richer scoring models in IR could also incorporate non-mono-
tonous facets for ranking that would take evidence from the query “as a
whole” into account. Note that the underlying scoring function itself does not
necessarily have to be monotonous; we merely have to provide monotonous
[worstscore, bestscore] bounds in order to guarantee a correct algorithm, i.e.,
we could decide to keep more generous bounds for partially evaluated candi-
dates which would in turn render the candidate pruning less effective. Par-
ticularly interesting, non-monotonous score aggregation include

• the Cosine measure with non-normalized document and query vectors,

• proximity-based phrase scores with combined local term weights and
phrase distances, or

• element compactness for ranking XML subtrees with regard to the
amount of nodes spanned by the result element.

While it is immediately evident that most of the current major search
engines such as Google or Yahoo apply proximity-aware ranking functions,
there are hardly any publications on this issue for text IR [HT95, NO00] or
XML IR [AYFSX03]. Most of the existing approaches merely provide an ad-
hoc combination of local scores with some notion of minimal phrase distance
which is either integrated as part of the result post-processing, or it is even
applied during query query executions for early candidate pruning, but in the
form of a non-monotonous aggregation which is not suitable for a viable top-k
approach. None of the existing work pursues a top-k algorithm as skeleton.
The integration of monotonic and non-monotonic scoring issues and their
efficient implementation for efficient top-k ranking is an open research issue.
We leave this particularly interesting issue for future work.

3.2 Probabilistic Scoring Models

3.2.1 Probabilistic IR

As opposed to the rather ad-hoc TF·IDF family of scoring models, proba-
bilistic IR approaches aim at establishing probabilistically derived scoring
models. The TF component is referred to as a relevance weight that re-
flects the importance of a term in a document; and the IDF component is a
specificity weight that refers to the selectivity of a term across the collection.
The probabilistic model initially proposed by Robertson and Sparck-Jones

73

3.2. Probabilistic Scoring Models

is the beginning of a long series of evolutionary refinements that finally led
to the Okapi BM25 model that has meanwhile become prevalent in current
benchmark settings such as TREC.

Robertson & Sparck-Jones Weights

The original relevance weighting model [RJ76, Rob81, IDF], referred to as
RSJ in the following subsection, aims at a compact and simple approximation
of the basic probabilistic relevance model shown in Equations 3.8 and 3.9.
Given a corpus for N document out of which R documents are explicitly
marked as relevant, the RSJ approach aims to model the probability pi of a
document d containing a term ti given that d is relevant versus the probability
qi of d containing ti given that d is not relevant. Robertson and Sparck-Jones
show in their initial work from 1976 that under some simple assumptions, the
goal of relevance ordering according to those probabilities can be achieved
by assigning weights to query terms and scoring a document by aggregating
those weights using plain summation.

pi = P (d contains ti | d is relevant) (3.8)
qi = P (d contains ti | d is not relevant) (3.9)

Then the RSJ weight is

wi = log
pi (1 − qi)

(1 − pi) qi
(3.10)

With a total of ni documents containing the term ti and ri out of the R
documents being relevant, this becomes

pi ≈ ri

R
and qi ≈ ni − ri

N −R
(3.11)

and with smoothed parameter estimation using traditional Lidstone smooth-
ing [Lid20], this yields the classic Robertson and Sparck-Jones formula for
relevance weighting:

wi = log
(ri + 0.5)(N − R− ni + ri + 0.5)

(R− ri + 0.5)(ni − ri + 0.5)
(3.12)

With very little or no relevance information at all (i.e., R = r = 0, see
also [RW97]), this is just

wi = log
N − ni + 0.5

ni + 0.5
for R = 0 (3.13)

(3.14)

74

3. Relevance Scoring Model

and with ni being much smaller than N , we have can approximate these
weights as

wi ≈ log
N + 0.5

ni + 0.5
for ni « N (3.15)

which already exhibits roughly the same form as the IDF component in cur-
rent probabilistic models such as BM25 and shows that the ad-hoc notation
of the smoothed IDF component in many TF·IDF models is in fact an RSJ
weight.

Retrieval with IDF weights alone might work well for relatively small
corpora (e.g., a handcrafted digital library system where IR actually origi-
nates from) and precise multi-keyword queries, but it would be infeasible for
a Google-like 8 billion pages Web corpus and the typical two-term keyword
queries, because it does not discriminate documents that indeed contain the
same combination of keywords but with different term frequencies.

So far, a profound justification for using IDF values in relevance rank-
ing was given; what has still been lacking at that point was a probabilistic
justification for the TF component.

Term Eliteness & 2-Poisson Model

As for the TF component, another probabilistic model is utilized. The central
assumption of the so-called term eliteness model [RW94] is that each term
(or word) represents a concept; and that a given document is either “about”
the concept or not, i.e., the term is elite in the document or not. The original
terminology, as well as the statistical model described below, has been taken
from Bookstein and Swanson (1974) and Harter (1975). Here, eliteness is a
latent property that cannot be observed directly. However, if we assume that
the text of the document is generated by a simple unigram language model,
then the probability of any term being in any given position depends on the
eliteness of this term in that document.

If we take all the documents for which this particular term is elite, then
we can infer the distribution of within-document frequencies we should ob-
serve. If all documents are the same length, then the distribution would
be approximately Poisson. If we take instead all the documents for which
this term is not elite, we will again see a Poisson distribution (presumably
with a smaller mean). As this observation of term eliteness is much more
subtle than counting simple term occurrences, eliteness cannot be computed
in advance, unless all documents in the corpus would be judged manually
for a given query word (or concept); so if we consider the collection as a

75

3.2. Probabilistic Scoring Models

whole, we rather assume that we will observe a mixture of two Poisson dis-
tributions. This 2-Poisson mixture is the basic Bookstein/Swanson/Harter
model [HAR75] for within-document term frequencies.

As for specificity weights, the RSJ relevance weighting model is then
reused, thus applying it to query-term eliteness rather than to mere query-
term presence or absence.

3.2.2 Okapi BM25

The weighting function today known as Okapi BM25 [RW94] was derived
from the previous probabilistic models as an approximation of the 2-Poisson
model for term relevance weighting and the RSJ model [RJ76] for term speci-
ficity weighting. The final BM25 model was developed as part of the Okapi
experimental system out of a series of so-called best match (BM) functions
and is probably the best-known and most widely used such extension. It
was first applied under its official name at the third TREC benchmark con-
ference [RWHB+95] in 1994 and has meanwhile become the predominant
scoring method in the TREC benchmark series.

BM25 first estimates the full eliteness weight from the usual presence-
only RSJ weight for the term, then approximates the TF behavior with
a single global parameter k1 that controls the rate of growth for the TF
component. Hence, the TF value provides probabilistic evidence of term
eliteness and should give partial credit to the document. This credit should
rise monotonically from zero if tfij = 0 and approaches the full eliteness
weight asymptotically as tfij increases. In general, the first occurrence of the
term gives highest evidence; successive occurrences give successively smaller
increases.

Finally, BM25 makes a correction for the document length length(dj) =∑m
i=1 tfij , thus relaxing the equi-document-length assumption of the origi-

nal 2-Poisson model. On the assumption that one reason for a document to
be long is verbosity on the part of the author (which would suggest simple
document-length normalization by the TF component), but that a second
reason is the topic coverage of the document (which would suggest no nor-
malization), BM25 does partial normalization. The degree of this normal-
ization is controlled by a second global parameter b. In order to make the
normalization relatively independent of the units in which document length
is measured, it is defined in terms of the average length avg(length(d)) of do-
cuments in the collection. The resulting combined weights can be expressed
as

si(d) =
(k1 + 1) tfi

K + tfi
· wi , (3.16)

76

3. Relevance Scoring Model

where wi is the usual RSJ weight and

K = k1

(
(1 − b) + b

length(d)

avg(length(d))

)
. (3.17)

Then the aggregated score score(dj, q) of a documuent dj for a query q =
(qtf1, . . . , qtfm) is

score(dj, q) =
m∑

i=1

(k1 + 1) tfij

K + tfij

· qtfi

k2 + qtfi

· log

(
N − dfi + 0.5

dfi + 0.5

)
(3.18)

The combined BM25 model provides a smoothed, non-linear influence
of the TF and IDF components. Again, the IDF part is a constant for a
given term in a corpus. Note that the original definition of BM25 utilizes
an additional ranking component, namely the query term frequency (QTF),
that aims to model the relevance of a query term in a given query and is
smoothed in a similar way as the TF component, where qtfi now denotes
the frequency of the term ti in the query. The QTF component is often
omitted (i.e., assuming qtfi = 1 and k2 = 0), since most short keyword
queries do not exhibit any redundant keywords, anyway. However, it is a
corpus-independent constant at query execution time as well, and as such, it
does not affect the indexing part.

On-the-fly Normalization for BM25

The resulting per-term BM25 scores themselves are not naturally normal-
ized, but they can easily be normalized online (i.e., at document indexing
time without an additional post-processing step) using an upper bound score
estimation, thus taking advantage of the strong saturation effect used for the
TF, QTF and IDF components. A simple limit analysis for the TF compo-
nent yields:

lim
tfij→∞

(k1 + 1) tfij

K + tfij
= 1 (3.19)

That is, this expression quickly converges to 1 largely independently ofK and
k1 for a reasonable scale of k1, K and tfij values and, hence, provides normal-
ized output scores already (with a similar result for the QTF component).
Now, for the IDF component, we can perform the following analysis:

lim
dfi→1

log

(
N − dfi + 0.5

dfi + 0.5

)
= log

(
N − 0.5

1.5

)
≈ log

(
2

3
N

)
(3.20)

77

3.3. Combined Scoring Models – Web IR

Using the above limits indeed yields global (i.e., term independent) max-
ima for the TF, QTF and IDF components. Using these maxima prevents
us from performing an additional post-processing step for global score nor-
malization without crushing a major amount of local scores into very small
score intervals, since the overall skew is not too high. The above limit for
the IDF component can be further improved by allowing only terms with a
minimum dfi value of 10 or more which is a reasonable fit for many large
real-world collections and eliminates very rare keywords which mostly occur
due to typing mistakes, thus yielding an even tighter upper bound. Very
frequent terms (i.e., stop words), on the other hand, are eliminated from
indexing as well. Assuming that the most frequent remaining terms have a
document frequency of at most dfi = N/2, we get a lower bound for the IDF
component of

lim
dfi→N

2

log

(
N − dfi + 0.5

dfi + 0.5

)
= log

(
N − N

2
+ 0.5

N
2

+ 0.5

)
(3.21)

= log(1) = 0 . (3.22)

Note that the IDF component is defined in BM25 with the default smoothing
parameter of 0.5, such that terms with dfi > N/2 are assigned a negative
value which is typically adjusted by using a small static and positive score
in the inverted lists or by not indexing those terms at all.

3.3 Combined Scoring Models – Web IR
Basic extensions for Web IR incorporate the boosting of term weights accord-
ing to the HTML tag they occur in, the extraction of anchor texts from ex-
ternal pages, and authority ranking based on link analysis. These techniques
are commonly used in Web benchmarks such as the TREC Web track [CH04]
and provide some particularly interesting challenges for efficient top-k query
processing and indexing. Subsection 3.3.3 provides a novel approach for
combining BM25 with these highly skewed authority scores. The result-
ing combined BM25·PageRank scoring model has been successfully applied
at the TREC 2004 Web track and Terabyte track, and the 2005 Terabyte
Track Efficiency task [CCS05], respectively (see the TREC experiments in
Sections 9.7.4 and 9.7.5).

3.3.1 Multiple Weighted Fields

The exploitation of the HTML structure for term weight adjustment can be
considered as the first step toward handling semistructured data. Thus, we

78

3. Relevance Scoring Model

take advantage of the explicit markup (tags) and the structural emphases as
given in semistructured – tagged or loosely annotated – documents and yet
use a simple text model (bag-of-words) and unstructured queries for retrieval.

Tag Boost Factor
<URL> ×4
<TITLE> ×4
<H1> ×3
<H2-H6> ×2.5
<TH> ×2
<BOLD> ×2
<A> ×1.5
Other Emph. ×1.5

Table 3.2: Boosting factors for various HTML tags used.

We count each individual occurrence of ti in dj with regard to the weighted
field or enclosing tag that the term occurs in, e.g., a term is counted twice
when it occurs in a BOLD tag, see Table 3.2.There is no gold standard for these
weights, and they in fact incur a substantial amount of hand-tuning. Note
that as we change the individual TF values, we also have to adjust the docu-
ment length length(dj) =

∑
i tfij and the resulting document weight vector,

e.g., for using the BM25 formula over the modified corpus statistics [RZT04].

3.3.2 Link Structure & Anchor Texts

Another common technique from Web IR is the usage of link anchor texts, i.e.,
text contents contained within an HTML A tag from external Web pages, to
adjust the term frequencies of the actual page that is referenced to by such
a link. In particular, anchor text has been found to provide a significant
boost to the quality of results for named page finding or home page finding
tasks [EM03] as specified, for example, in the TREC 2003 Web track [CH04]
that aims to simulate these types of query tasks on a closed Web corpus. This
technique even allows to identify relevant documents, that do not actually
contain the query term themselves, but might have been “annotated” by the
author of another page with a few keywords that the author most probably
has intentionally picked as good descriptors of the link’s target page. Thus,
these annotations inherently exhibit a high similarity to actual user queries
looking for a particular home page or known site.

Then the term frequency is the sum of the local term frequencies plus the
number of occurrences of that term in an external link anchor, either counted

79

3.3. Combined Scoring Models – Web IR

as the plain number of occurrences or weighted by a respective boost factor
for the A tag, see Table 3.2. Note that this technique obviously is very
sustainable to link-spam, but investigating on this issue would go beyond
the scope of the present work, also because the Web corpora used in the
experiments in fact depict a “clean” and widely trustworthy excerpt of the
real Web.

3.3.3 Global Document Weights

Link analysis and authority ranking algorithms such as PageRank [BP98]
and HITS [Kle99] have become an indispensable technique for ranking Web
documents that provide a query-independent relevance criterion based on
the authority of a Web page in the link graph. A common problem is that
these algorithms typically generate very skewed score distributions with very
low average values compared to the basic BM25 scores. PageRank even
models a probability distribution over visitation probabilities over all nodes
in the link graph, where all PageRank values add up to 1; and HITS uses an
iterative L2 normalization step over authority and hub vectors, with a similar
effect on the resulting scores. Moreover, multiplying scores from two skewed
distributions (for example BM25 and the original PageRank values) would
yield a distribution with an even higher skew which would not be beneficial
for retrieval quality. In particular, the highly skewed PageRank component
would dominate the resulting scoring model.

Combining PageRank and BM25

Taking these considerations into account, we can actively design a new scor-
ing model with precisely the desired properties. We therefore take a closer
look at the smoothing functionality of the BM25 components as shown in
Figure 3.3.

It turns out that we can emulate a similarly concavely shaped and nor-
malized curve for the otherwise very small PageRank values over the interval
[0, 1] using a composition of reciprocal values and logarithmic smoothing for
the PageRank values r(dj) with a large logarithmic base p as denoted in Fig-
ure 3.4. Then this log-smoothed PageRank component can be directly multi-
plied into the per-term BM25 scoring model simply by exploiting the distribu-
tive law. The resulting combined scores can then be query-independently
stored in the inverted lists. This way, all precomputed per-term scores si(dj)
for a document dj are adjusted equally according to its global PageRank
r(dj). Conceptually, the new PageRank component is treated like one of the
original BM25 components of similar scale whose influence in the ranking

80

3. Relevance Scoring Model

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TF

(k
1+

1)
 T

F
/ (

k 1+
T

F)

k1=1.2

k1=12

k1=120

scoreBM25(dj, ti) ∼= (k1+1) tfij

K+tfij

Figure 3.3: BM25-style smoothing
of the TF component.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PageRank

1
/ l

og
p(p

 +
 1

 /
Pa

ge
R

an
k)

p=1

p=2

p=10

scorePR(dj) = 1

logp

(
p+ 1

r(dj)

)

Figure 3.4: Log-smoothing of the
extended PageRank component.

can be further tuned by the new p parameter:

score(dj, q) = scorePR(dj) · scoreBM25(dj, q)

=
m∑

i=1

1

logp

(
p+ 1

r(dj)

) · (k1 + 1) tfij

K + tfij

· log

(
N − dfi + 0.5

dfi + 0.5

)
(3.23)

The Effect of Concavity for Scoring

Figure 3.5 displays the resulting combined BM25·PageRank model as a func-
tion of the TF and PageRank values for some fixed DF and QTF and the
tuning parameters k1, k2, b, and p being set to 1.2, 1.2, 0.75, and 12, respec-
tively. The new scoring function is concave in all input parameters, namely
in the TF and DF components, the query term frequency QTF (which is
not displayed here due to the lack of plotting dimensions), as well as the
smoothed PageRank values. The model quickly saturates for large values
of TF, QTF, DF and PageRank. Small differences at low input values, for
example a jump from a TF value of 2 to 3, yield a stronger effect on the
resulting document score than larger differences at higher input values, for
example compared to a jump from 10 to 15 or more, and, thus, the BM25
model yields significantly less skewed score distributions in the inverted lists
and is less sustainable to synthetically created spam pages with some huge
TF values than a non-smoothed TF·IDF model could be. In fact, concavity
and fast saturation seems to be an axiomatic demand for successful IR sco-

81

3.3. Combined Scoring Models – Web IR

ring models [FZ05], with the potential to model user-perceived relevance in
much better way.

0
5

10
15

20
25

0

0.2

0.4

0.6

0.8

1
0.2

0.4

0.6

0.8

1

TF

PageRank

Sc
or

e

Figure 3.5: Combined scoring model using BM25 per-term scores and global
PageRank values.

Our approach diverges from (partly very recent) related work [CRZT05]
using a weighted sum of BM25 scores and logarithmically smoothed and
(smallest-to-1) normalized PageRank values. We believe that this novel ap-
proach is superior to the existing techniques for top-k query processing in
two ways:

1) Top-k query processing is further performed on fully precomputed and
materialized inverted term lists, where each list directly corresponds to
the combined relevance ranking score for a local content-related term
score, i.e., a TF·IDF or BM25 model, and authority scores derived
from PageRank or HITS. By multiplying the global document scores
directly into the inverted term lists, we avoid separate sequential scans
or random accesses to an additional, highly selective inverted list for
the global document scores. The p parameter that now controls the
base of the logarithm adopts the role of the weights in a weighted sum
and determines the influence of the PageRank value onto the combined
scores.

2) Conceptually, our approach is equivalent to first normalizing the PageR-
ank such that the smallest value is mapped to 1, then multiplying the

82

3. Relevance Scoring Model

local term scores with the log-smoothed global document scores, and af-
terwards renormalizing the resulting combined scores back to 1. Given
the above formalization 3.23, we merge these three steps into a single
iteration over the inverted lists. This way, the required indexing time
and space is significantly improved, since the proposed combined scor-
ing model directly creates normalized scores as output and essentially
saves two rounds of normalization iterations (the latter for the whole
inverted index) which makes indexing a factor of two more efficient and
does not require any additional temporary index structures.

Note that in contrast to the IDF and QTF components, PageRank values
have to be combined with the local TF components of BM25 and be mate-
rialized upon index creation to support efficient sorted access, because they
are not a constant at query runtime and certainly do affect not only the final
document ranking but also the order of all the local index list entries.

3.4 Scoring Models for Semistructured Data

Good scoring models in XML IR are an active research issue. In [TSW05b],
we introduced a novel and comprehensive framework for scoring and com-
bining structural and content-related query conditions for XML data with
efficient top-k-style query processing.

Content term conditions in structured queries can be evaluated both in
conjunctive mode or in “andish” mode. In the first case, all terms must
be found, but nethertheless different matches yield different scores. In the
second case, a node matches a content condition of the form /"t1 t2 ...", if
its content contains at least one occurrence of at least one of the terms t1, t2,
etc. It matches the full-content condition .//"t1 t2 ...", if its full-content
contains at least one occurrence of at least one of the search terms. In the
first case, the significance (e.g., derived from frequencies) of a matched term
influences the score and the final ranking, but documents (or subtrees) that
do not contain a specified term at all are dismissed.

3.4.1 Content Scores

For content scoring we make use of statistical measures that view the content
or full-content of a node n with tag A as a bag of words:

1) the full-content term frequency, ftf(t, n), of term t in node n which is
the number of occurrences of t in the full-content of n;

83

3.4. Scoring Models for Semistructured Data

2) the tag frequency, NA, of tag A which is the number of nodes with tag
A in the entire corpus;

3) the element frequency, efA(t), of term t with regard to tag A which
is the number of nodes with tag name A that contain t in their full-
contents in the entire corpus.

Now consider a content condition of the form A//"t1 . . . tm", where A is a
tag name and t1 through tm are terms that should occur in the full-contents
of a subtree. The score of node n with tag A for such a content condition
should reflect:

• a monotonic aggregation of the ftf values of the terms t1 through tm
(or tf values if we use the child rather than the descendant axis), thus
reflecting the relevance of the terms for the node’s content,

• the specificity of the search terms, with regard to efA(ti) and NA statis-
tics for all node tags, and

• the compactness of the subtree rooted at n that contains the search
terms in its full-content.

In the following, we will focus on the NEXI-style descendant axis (i.e., the
full-content case) as the much more important case for XML IR with vague
search; the case for the child axis follows analogously. Our scoring of node n
with regard to condition A//"t1 ...tm" uses formulas of the following type:

score(n, //A[t1 . . . tm]) =

∑m
i=1 relevancei · specificityi

compactness(n)
,

where relevancei reflects ftf values, specificityi is derived from NA and
efA(ti) values, and compactness considers the subtree or element size for
length normalization. Note that specificity is made XML-specific by consi-
dering combined tag-term frequency statistics rather than global term statis-
tics, only. It serves to assign different weights to the individual tag-term pairs
with regard to the specificity of a term for a given element type which trans-
lates the role of the IDF component – a common technique from probabilistic
IR – to the XML case.

We could now specialize this formula into a simple TF·IDF-style mea-
sure, but an important lesson from text IR is that the influence of the term
frequency and element frequency values should be sublinearly dampened to
avoid a bias for short elements with a high term frequency of a few rare terms.
Likewise, the instantiation of compactness in the above formula should also
use a dampened form of element size. To address these considerations, we

84

3. Relevance Scoring Model

have adopted the popular and empirically usually much superior Okapi BM25
scoring model (originating in probabilistic IR for text documents [RW94], see
also Section 3.2.2) to our XML setting, thus leading to the following scoring
function:

score(n, //A[t1 . . . tm]) = (3.24)

=
m∑

i=1

(k1 + 1) ftf(ti, n)

K + ftf(ti, n)
· log

(
NA − efA(ti) + 0.5

efA(ti) + 0.5

)
(3.25)

with

K = k1

(
(1 − b) + b

∑
t∈ full content of n ftf(t, n)

avg{∑t′ ftf(t′, n′) | n′ with tag A}
)

(3.26)

Note that the function includes the tunable parameters k1 and b just like
the original BM25 model. The modified Okapi function provides a dampened
influence of the ftf and ef parts, as well as a compactness-based normaliza-
tion that takes the average compactness of each element type into account.
Figure 3.6 shows a simple hill-climbing optimization of the k1 parameter for
the modified BM25 formula using the INEX 2004 benchmark setting which
shows a significant increase of the Mean-Average-Precision (MAP) value (see
Section 9.6) from 0.171 to 0.187 for k1 ≈ 10.5 compared to the Okapi default
value of 1.2. Contrariwise, a variation of the of the b parameter did not
exhibit any improvement compared to the default value of b = 0.75.

0.160

0.165

0.170

0.175

0.180

0.185

0.190

1.2 2.5 5 10 15 25 k1

MAP

Figure 3.6: Hill-climbing optimization of the k1 parameter of the extended
BM25 model.

This leads to the final element-specific parameterization of the extended
BM25 model as indicated in Figure 3.3 for the element types article, sec,

85

3.4. Scoring Models for Semistructured Data

par, and fig for the INEX collection [INE]. It was applied similarly to
all XML collections in the experiments section with the parameters k1 and
b set to 10.5 and 0.75, respectively, for all element types. With regard to
overall retrieval quality, the above formula would also allow a more elaborated
parameter optimization for individual element types which would go beyond
the scope of this thesis.

Tag N avg(length(n)) k1 b
article 12,223 2,903 10.5 0.75
sec 96,709 413 10.5 0.75
par 1,024,907 32 10.5 0.75
fig 109,230 13 10.5 0.75

Table 3.3: Element-specific parameterization of the extended BM25 model.

3.4.2 Structural Scores

In non-conjunctive retrieval, a result document (or subtree) should still sat-
isfy most structural constraints, but we may tolerate that some tag names
or path conditions are not matched. This is useful when queries are posed
without much information about the possible and typical tags and paths,
e.g., when the XML corpus is a federation of datasets with highly diverse
schemas. In the INEX benchmark, a collection of IEEE CS conference and
journal publications, the situation arises because of the large number of dif-
ferent tags and the user’s a-priori ignorance about certain content terms
occurring in sections or subsections or paragraphs or captions, etc.

Our scoring model essentially counts the number of navigational condi-
tions (or tag-only conditions) oj that are still to be satisfied by a result candi-
date d and assigns a small and constant score mass c for every condition that
is matched. This structural score mass is combined with the content scores
and aggregated with each candidate’s [worstscore(d), bestscore(d)] interval.
In our setup we have set c = 1, whereas content scores were normalized to
[0, 1], i.e., we emphasize the structural parts. Note that it is still important
to identify non-satisfiable conditions as early and efficiently as possible, be-
cause this can reduce the bestscore of a result candidate and make it eligible
for pruning.

The overall score of a document or subtree for a content-and-structure
(CAS) query is the sum of its local scores at all the matched structural and
navigational query conditions. For content-only (CO) queries, i.e., mere key-
word queries, the document score is the sum, over all terms, of the maximum

86

3. Relevance Scoring Model

per-term element scores for the same document. If TopX is configured to
return entire documents as query results, the score of a document is the
maximal score of any subgraph in the document.

3.4.3 Common Framework

Note that the way we precompute the content scores for each tag-term pair,
with regard to individual corpus statistics for each element type that is iden-
tified by the tag name, treats each of these element types as a separate col-
lection of elements with their full-contents. Thus, evaluating a query pattern
of the type A["a"] in a strict notion, i.e., with a separate inverted list for
each of these tag-term patterns, corresponds to the original, document-based
BM25 model over the collection of all elements of type A.

In particular, we do not mix local scores originating from different BM25
models for different element types for the final result ranking. Multidimen-
sional content conditions that refer to the same element type, e.g., for the
target element of type A in the query A["a1, . . ., am"], are evaluated for
each element of type A individually, and all result elements are ranked after
their aggregated scores, thus referring to the very same type of score aggrega-
tion that the original BM25 formula would perform. For multi-element path
queries, we simply aggregate the partial scores for different query subcon-
ditions that refer to different element types, e.g., for the support element A
and the target element B in the query A["a1,. . .,am1"]//B["b1,. . .,bm2"],
where A and B address two distinct BM25 models. Then all the previous
assumptions for probabilistic IR and BM25 (see Sections 3.2.1 and 3.2.2)
remain valid for the XML case, too.

Also, TopX could easily support other scoring models as long as they are
monotonous and fall into the framework for relevance, specificity, and com-
pactness. Furthermore, our extended BM25 approach may also be combined
with other scoring components such as global document weights, e.g., using
PageRank values also for linked XML collections. Good XML scoring func-
tions, e.g., based on statistical language models, are an active research issue,
in particular in the INEX benchmark series [INE]; our BM25-based scoring
model achieved a very good result quality on the INEX benchmark 2005 (see
Section 9.8.4), where our runs for the strict content-and-structure (SSCAS)
task ranked at positions 1 and 2 among all submissions [TS05].

XML Scoring Example

As an example, consider the three documents shown in Figure 3.7, and the
following twig query:

87

3.5. Query Term Weights & Boosting Factors

//A[.//"a" and .//B[.//"b"] and .//C[.//"c"]]

The query uses the self-or-descendant axis, so the scoring refers to the full-
contents of elements. Within document d1 the twig pattern is matched only
once by the elements (2, 4, 5); in document d2 there are three matches (1, 6, 7),
(1, 3, 5), (1, 4, 5); document d3 contains matches for the individual conditions
but does not satisfy all path conditions (there is no B element among the
descendants of either one of the two A elements). Assume that the ef values
of all three tag-term pairs A:a, B:b, and C:c are the same. Then the best
one among all matching triplets is (1, 4, 5) within document d2, which has a
global score of 2/9 + 2/3 + 1, thus making d2 the top result.

2:A

1:R

6:B

3:X 7:X

4:B 5:C

aaccab

8:B 9:C

bbb cccxy

2:X

1:A

6:B

3:B 7:C

4:B 5:C

cccabb

abc

2:B

1:Z

3:X

4:C 5:A

aaaabb

6:B 8:X

7:C

acc

9:B 10:A

bb 11:C 12:C

aabbc xyz

d1 d2 d3

Figure 3.7: XML example documents.

3.5 Query Term Weights & Boosting Factors

The dynamic weighting of query terms, e.g., for dynamically modeling the
IDF or QTF components, or for expressing term similarities in query expan-
sions or relevance feedback environment, calls for a modified score aggrega-
tion function, e.g., in the form of a weighted sum with score(d, ti) = αi si(d).

For some applications, e.g., the “+” operator of a keyword query, simply
scaling the local scores by a term weight αi may be not enough to emphasize
a term in a document independently of its local score si(d). In addition,
we instruct the index scans to prioritize index lists for mandatory terms
by “boosting” their per-term scores by an additional constant value βi that
dominates the local scores si(d) and disables the compensation property of
the score aggregation at the boosted query dimension. This leads to the
following modified score aggregation function

score(d, ti) =

⎧⎨⎩
αi (βi + si(d)) for d ∈ Li

0 otherwise
, (3.27)

88

3. Relevance Scoring Model

where the αi ∈ [0, 1] coefficients are either 1 or set to the search-task-specific
similarity values, and the βi ∈ 	+

0 coefficients are either 0 for optional terms
or set to a “high value” for mandatory terms. Note that we can combine
different similarity factors that influence the query term weights, such as
term similarities, relevance feedback, etc., into a single αi value that is used
in the modified score aggregation.

Also note that this notion of a “high value” for βi is basically IR-driven,
βi > m would safely enforce the presence of that term in the results but
might endanger recall; βi = 1 most probably suffices already with the option
of still being able to compensate that term for a number of very good other
matches. In any case, all αi and βi values are constants at query execution
time, and therefore keep the aggregation function monotonous in the input
scores si(d). Query terms are only boosted for a candidate item d, if this
item is actually present in the respective index list Li, i.e., if d ∈ Li; local
scores si(d) with a value of 0 are not boosted, of course. The modified score
aggregation is applied to both worst- and bestscore bounds during query
processing which may “stretch” these score intervals.

Introducing query weights and boosting factors may lead to increased scan
depths on the corresponding index lists, if an otherwise promising result can-
didate has very low scores in these lists but needs to be tested for the presence
of the mandatory terms. This is exactly the case where random accesses for
term-presence testing make sense, and our cost-based random-access sched-
uler automatically identifies lists with a high potential for candidate pruning
and gives higher priority to these lookups in such cases (see Chapter 6).

3.5.1 Relevance Feedback

Relevance feedback [Roc71, RJ76] is an important way to enhance retrieval
quality by integrating explicit relevance information provided by a user. In
XML retrieval, existing feedback engines usually generate an expanded key-
word query from the content of elements marked as relevant or non-relevant.
In order to support relevance feedback in XML queries, we extend the NEXI
syntax with additional weights for each content constraint similar to the
ftcontains operator in the XPath 2.0 Full-Text extension (see Subsec-
tion 2.2.2). A typical extended NEXI query then looks like the following:

//article[about(.,“0.8*XML”)//*[about(//p,“0.4*IR -0.2*index”)]

The extended NEXI syntax offers both a human readable and machine pro-
cessable way to incorporate relevance feedback in a structure-aware retrieval
engine.

89

3.5. Query Term Weights & Boosting Factors

3.5.2 Negative Query Weights

Relevance feedback – and in particular negative query term weights – pose an
additional challenge to a top-k query processor. With negative αi coefficients
and arbitrary boost factors βi, we have to generalize the score bounds as
follows to maintain monotonous score updates:

worstscore(d) =
∑

i∈E(d)

αi(βi + si(d))

+
∑

i/∈E(d)

min {αi(βi + highi), 0} (3.28)

bestscore(d) =
∑

i∈E(d)

αi(βi + si(d))

+
∑

i/∈E(d)

max {0 , αi(βi + highi)} (3.29)

Note that for negative αi, we are conceptually scanning the inverted lists
in inverse order, namely in ascending order of αi ·highi values of local scores.
Hence, the best match of a document at a condition with αi < 0 is a local
score si(d) = 0, i.e., if the document does not contain the negated term at
all. The modified bounds are more conservative than before, as we have to
keep larger intervals for the case that the actual best possible local score for
a negated dimension – namely 0 – is reached only at the end of the index
scans and no longer at the beginning.

For a detailed evaluation of the TopX engine for structure- and content-
aware relevance feedback in XML IR, see our most recent work [ST06b,
ST06a, TS05] which takes advantage of the versatile querying options of the
engine, including structured queries and negative query weights. Our ap-
proach that is inspired by text-based IR basically extends the probabilistic
Robertson and Sparck-Jones weighting scheme (see Subsection 3.2.1) to auto-
matically construct a content-and-structure (CAS) query from a content-only
(CO) query through user-provided relevance feedback.

90

Chapter 4

TopX Core Query Processor

The TopX core query processor is responsible for the top-k and candidate
bookkeeping. The algorithmic skeleton is based on Fagin’s work on the Com-
bined Algorithm (CA), using a round-robin-like – but multi-threaded – sorted
access scheduling baseline. As for random access scheduling, a simple cost
model is utilized that aims at a balanced amount of sorted and random ac-
cesses according to the cR/cS ratio between sorted and random access costs.
Here, the exact cR/cS ration is considered a system-dependent parameter
that can easily be empirically derived through an initial test query. As op-
posed to the original CA algorithm, TopX uses our Last-Probing approach
for RA scheduling by default that splits the SA and RA scheduling in two
strictly separated phases, thus saving all RAs until to the end of the query
processing which already results in major amount of access costs saved and
significantly improved query runtimes compared to CA (see Section 6.4.1 for
details on the scheduling). For the current chapter, however, we may just
assume that a static scheduling strategy for sorted access (e.g., round-robin)
and random access (e.g., one random lookup every cR/cS sorted accesses for
the currently best candidate in the queue) is given.

The TopX core algorithm is extended by an expensive predicate random
access scheduler, coined Min-Probing, to be able to also resolve more complex
query predicates that could not at all – or only with very high costs – be
resolved through sorted access alone. The Min-Probing approach also allows
for random access scheduling to auxiliary data structures other than the
inverted lists, such as as an additional term-to-position index for phrase
matching.

A modified scoring aggregation function with a combination of boosting
weights for individual query conditions and adaptive thresholds allows to im-
plement not only either strict conjunctive or “andish” query evaluations, but
also a mixed conjunctive (but ranked) and andish retrieval mode, with some

91

4.1. Conjunctive vs. Andish Query Evaluations

query conditions being marked as mandatory and others as optional. More-
over, the core TopX query processor already provides an efficient and versa-
tile algorithmic baseline for exact top-k query evaluations that outperforms
existing approaches without necessarily employing any heavy probabilistic
machinery.

4.1 Conjunctive vs. Andish Query Evaluations

Unlike for traditional, conjunctive database joins, the result quality in IR
applications greatly benefits from non-conjunctive query evaluations, where
the final result ranking for multidimensional queries is primarily determined
through the aggregation of local scores for each individual query condition,
and low-scoring conditions (including 0-scores for some conditions) can be
compensated by a result object, if it otherwise exhibits some extraordinar-
ily high local scores. Note that the general result output in this mode is
“almost” conjunctive, as the top-scored items typically need to have a good
score among most query conditions to qualify for the top ranks, but some
conditions can be relaxed on-the-fly, when not all conditions can be matched
among the items in the collection. Hence, this mode is often coined “andish”.
Therefore, an axiomatic demand [FZ05] for good scoring models in IR seems
to be a controlled skew over the local score distributions, with a dampened
and sublinear influence of all input parameters.

Note that andish is not the same as a disjunctive query evaluation in
database jargon, it would rather have to take all 2m subsets of m query
conditions into account for retrieving valid partial results and ranking them
by a subsequent (partial) sort algorithm to return the top-k results. This
would be extremely expensive to emulate in a default query language such
as SQL, with multiple outer joins on all attributes, thus forcing full scans on
all input lists. We will review this issue also for “andish” XML IR as opposed
to Boolean XPath (see Section 8.1.3).

A top-k-style query processor, on the other hand, is inherently “tuned” for
andish query evaluations, as partial results are combined (or accumulated) in-
memory for each candidate object individually, and a score-based threshold
condition is iteratively tested for algorithm termination.

4.1.1 Mixed Mandatory & Optional Query Conditions

For ranked retrieval with some or all conditions being marked as mandatory,
the scores for these mandatory query terms should still reflect the relevance of
the term for a given element, i.e., our precomputed TF·IDF- or BM25-based

92

4. TopX Core Query Processor

content scores. Yet an overly strict Boolean interpretation of the + operator
would make us run into the danger of losing recall at the lower ranks.

We therefore employ the slightly modified score aggregation of the form
score(d, q) =

∑m
i=1 αi(βi + si(d) from Section 3.5. Recall that si(d) is the

original per-term score, αi are query term weights, and βi is set to 1 if
the term is marked as mandatory (+) and 0 otherwise. Note that these
βi are constants at query evaluation time, and since the modified scores are
taken into account for both the worstscore(d) and bestscore(d) bounds of all
candidates, the boosting factors “naturally” enforce deeper sequential scans
on the inverted index lists for the mandatory query conditions, typically
until the final top-ranked results are discovered in those lists. Still, weak
matches for the remaining non-boosted query conditions may be compensated
by a result candidate through high-scored matches in the mandatory query
conditions.

Note that mandatory search conditions could now be cast into a notion
of expensive text predicates, too, with random access probing (see the next
section), but the way the scores are defined allows a significant contribution
of the precomputed local scores si(d) onto the final aggregated score and
affects both the worst- and bestscore bounds. We believe the latter option
is more elegant for top-k query processing, because it does exploit the local
scores si(d) and does not necessarily lead to additional random accesses.

4.1.2 Adaptive Min-k Thresholds

If we take a closer look at the modified score aggregation function, we see that∑
i αi βi for all i with d ∈ Li is a static score threshold that merely depends

on d’s presence in the respective inverted lists and that is independent of d’s
actual local scores si(d).

score(d, q) =
m∑

i=1

αi (si(d) + βi) (4.1)

=

m∑
i=1

αiβi︸ ︷︷ ︸
static score threshold

+

m∑
i=1

αisi(d)︸ ︷︷ ︸
local term scores

(4.2)

Then we set the initial min-k threshold to this static, query-dependent
value

∑m
i=1 αiβi that all top-k results have to overcome. Again, the exact

choice of the βi value is an IR-style trade-off between effectiveness and recall;
βi ≥ m would for sure enforce all mandatory query conditions to be matched
by the top-k results but might make us run into the danger of losing a

93

4.2. Expensive Predicates

substantial amount of recall at the lower ranks; βi = 1 most probably yields
the desired boosting effect already.

4.2 Expensive Predicates

The use of auxiliary query hints in the form of expensive text predicates such
as phrases (“”), mandatory terms (+), and negation (−) can significantly
improve the retrieval results of an IR system. The challenge for a top-k
based query processor lies in the efficient implementation of these additional
query constraints and their adaptation into the sorted versus random access
scheduling paradigm. Generalizing the notion of expensive predicates as
provided in [CwH02], we obtain the following definition:

Definition 4.2.1 (Expensive Predicate) An query predicate is called an
expensive predicate, if it cannot at all – or only through very high cost – be
resolved through sorted access alone.

From the above definition, it follows directly that, for example, phrase
tests are expensive, because phrases cannot be tested with a standard in-
verted index at all; and negations are expensive, because for a strict negation
test, we would have to scan entire lists regardless of the document’s score in
the negated condition(s). Associating a predicate condition with one or more
query conditions that inevitably entails increased index access cost calls for a
smart approach to minimize the amount of expensive random access probes
that are about to be scheduled for yet untested predicate conditions.

4.2.1 Random Access Scheduling for Expensive Predi-
cates

As for the final score that a candidate is assigned with a mixture of “nor-
mal” (unrestrained) query conditions and expensive predicates, we consider
a combination of local scores and a static (i.e., known) predicate gain that a
candidate additionally accumulates if it matches the predicate condition. As
a special case, this gain may be just the local scores themselves at the pre-
dicate condition, when predicates are used as binary filters, e.g., for binary
phrase matching.

On the one hand, it is clear that some documents must be fully probed
(for every predicate in the query), which include at least the top-k answers
in order to determine their query scores and ranks in the query results. On
the other hand, since k is usually small, only some answers are requested,

94

4. TopX Core Query Processor

and complete probing for every document is not necessary. To avoid this
prohibitive cost, our goal is to stop as early as possible for each candidate
object. In fact, the major amount of objects may not need to be probed at
all, if they can never be among the top answers. Following [CwH02], this
calls for the following definition:

Definition 4.2.2 (Necessary Predicate Probe) Consider a ranking que-
ry with scoring function aggr and retrieval size k. A probe for a predicate
i ∈ P (d) for a candidate object d is necessary, if the top-k answers with re-
spect to aggr cannot be determined by any algorithm without performing the
probe, regardless of the results of other probes.

The incremental testing and scheduling of expensive predicate probes
asynchronously of the inverted list lookups requires us to extend the candi-
date’s data structure as initially described in Section 1.3.2 by an additional
bit vector

• P (d), i.e., a set of unevaluated predicate dimensions that d still has to
match.

P (d) is defined by the query structure and initially contains the same subset
P (d) ⊆ {1, . . . , m} of predicate dimensions for all candidates encountered
during the inverted list scans. For example, in the query

undersea “fiber optics cable” -satellite

the initial P (d) field for each candidate contains dimensions for “fiber”, “op-
tics”, “cable” (both because of the phrase), and “satellite” (for its negation),
i.e., P (d) = {2, 3, 4, 5}.

We define the score-gap gap(d) that a candidate accumulates, if all pred-
icate conditions in P (d) are matched as

gap(d) =

m∑
i=1

si(d) for i ∈ E(d) ∩ P (d) . (4.3)

In order to keep updates for a candidate’s score bounds monotonous, we
need to modify the lower wortscore(d) bound to deal with the additional
uncertainty factor induced by the P (d) field:

worstscore(d) =
∑

i∈E(d)∩P̄ (d)

si(d) (4.4)

bestscore(d) =
∑

i∈E(d)

si(d) +
∑

i∈Ē(d)

highi (4.5)

(4.6)

95

4.2. Expensive Predicates

This way, we are more restrictive on the worstscore bound, thus assuming
that, although we might have seen the candidate in the inverted lists already,
the predicate, e.g., a phrase, might not be matched in the end. The bestscore
bound, on the other hand, remains unchanged, thus assuming that, though
we have not tested a predicate yet, we can be sure that d will not accumulate
more score mass than before. Recall that we have to keep both the worstscore
and bestscore updates monotonous for each candidate and at each step of
the query processing.

Now we are in a position to define a Min-Probe scheduling condition:
Schedule RAs for all i ∈ P (d), only if

worstscore(d) + gap(d) > min-k (4.7)

which is a direct translation of the above definition of necessary predicate
probes for our algorithmic paradigm with a focus on inexpensive sorted ac-
cess.

Note that the value of gap(d) increases when we gain additional infor-
mation about the candidate in i ∈ E(d) and worstscore(d) would increase,
such that the scheduling decision tends to be reached only at a late stage
of the query processing for most candidates. That is, we schedule expen-
sive random lookups for the unresolved predicates on d, only if we know in
advance that this will promote the candidate to the (intermediate) top-k re-
sults and in turn will lead to an increase of the min-k threshold (which might
lead to an increased pruning of remaining candidates). This way, only the
most promising candidates are tested; for the great majority of candidates,
worstscore(d) + gap(d) will never exceed min-k.

Further note that sequences of random accesses to test multiple predicates
may be interrupted as soon as bestscore(d) ≤ min-k, i.e., the candidate fails
sufficiently many predicate conditions and is dropped from the queue. Very
lowly selective predicates (e.g., very infrequent phrases), however, may lead
to an increased amount of predicate tests and degrade the performance of
our algorithm.

4.2.2 Negation

The semantics of negations for a non-conjunctive, i.e., “andish”, query proces-
sor is all but trivial. To cite the authors of the NEXI specification [TS04a],
“the user would be surprised if a ’−’ word is found among the retrieved re-
sults”. This leaves some space for interpretation and most commonly leads
to the conclusion that the negated term should merely lead to a certain score
penalty; yet we do not want to completely eliminate all documents contai-
ning one of the negated terms as in a conjunctive setup. Hence, a match to

96

4. TopX Core Query Processor

a negated query condition does not necessarily render the result irrelevant, if
good matches to other content-related query conditions are detected, and we
would run into the danger of losing a substantial amount of recall by strictly
enforcing negations.

Therefore, in contrast to mandatory search conditions, the scoring of
negated terms is defined to be constant and independent of the term’s actual
content score si(d). Similarly to the structural query constraints introduced
in the XML scoring model (see Section 3.4.2), a result candidate merely ac-
cumulates some additional static score mass if it does not match the negated
term. Let N(d) ⊆ P (d) ⊆ {1, . . . , m} be the set of query conditions marked
by a ’−’, then the aggregated score of a candidate item d is defined as

score(d, ti) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αi (si(d) + βi) for d ∈ Li

αiβi for d ∈ N(d) ∧ d /∈ Li

0 otherwise

(4.8)

with βi = 1 for i ∈M or i ∈ N . Note that we need at least one non-negated
query condition as basis to perform sequential scans on.

This quickly leads us back to the notion of expensive predicates and
the minimal probing approach. A random lookup for the candidate to the
inverted list Li for the negated conditions i ∈ N(d) is scheduled, before the
document gets promoted into the top-k results after a successful negation
test, i.e., if it does not contain the negated term and accumulated the static
score for the unmatched negation. In the current setup, this static score mass
has been set to the same value βi = 1 that was provided for the usual term
boosting as well as the structural query constraints in the XML case; the
αi ∈ [0, 1] coefficients furthermore allow for a weighting of these negations.

4.2.3 Phrase Matching

For phrase matching, we store all term offsets in an auxiliary database table.
Again, phrases are interpreted as expensive predicates and term proximities
for the inverted index entries are solely tested by random accesses to the
offset table, using the minimal probing approach already described for the
Min-Probe scheduling. The only difference now is to determine whether a
candidate may aggregate the additional score mass provided for the phrase-
related conditions into its overall worstscore(d) that is then used to deter-
mine its rank among the top-k results. In order to keep these score aggre-
gations monotonous in the precomputed content scores, phrase lookups are
treated as binary filters in the current implementation only.

97

4.2. Expensive Predicates

Phrase Negations

Similarly to the single-term negations, phrase negations are defined to yield
a static score mass c for each candidate that does not contain the negated
phrase. Single-term occurrences of the negated phrase terms are allowed,
though, and do not contribute to the final element score unless they are
also contained in the remaining query. If one inverted list that is part of a
phrase has been entirely scanned sequentially, we may safely reset the worst-
and bestscore of all candidates that have not yet been fully evaluated in the
related query dimensions of that phrase.

4.2.4 Frequent Terms

Frequent terms with a very high selectivity (i.e., document frequency) can be
considered as soft-filters, too. They yield long inverted lists, typically with
low slopes in their local scores. Scheduling sorted access for those lists would
be very expensive and would lead to unnecessarily high sequential IO costs.
Figure 4.1 shows a highly skewed distribution of the index list lengths of all

Document Frequency Distribution for GOV

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2,
50

0

5,
00

0

7,
50

0

10
,0

00

12
,5

00

15
,0

00

17
,5

00

20
,0

00

22
,5

00DF

Figure 4.1: Distribution of index lists lengths for the GOV collection with a
total of N = 1, 250, 000 documents (with stop words removed).

index terms in the TREC GOV collection (see the experiments overview in
Section 9.2.1), i.e., more than 98 percent of all search terms occur in less
than 1 percent of the documents (even with stop words and numbers being
removed). Note that this observation is purely selectivity-driven, it is not
affected by the scoring model applied.

As an example, consider the two short keyword queries

98

4. TopX Core Query Processor

“trec nist” vs. “trec home”.

Both refer to the homepage of the TREC benchmark website and should
return the link to http://trec.nist.gov among the top-ranked results
(Google aggrees on this). The term “trec” has a document frequency of
dftrec = 109, “nist” has a document frequency of dfnist = 19, 517, and “home”
finally has a document frequency of dfhome = 285, 633 out of 1,250,000 doc-
uments in the corpus.

Then sorted access for “trec” would fetch the whole list in a single batch
of sequential disk IO, so the runtime cost for that term is negligible. Then
the final ranking would be fought out among the remaining index lists for
“nist” or “home”, respectively. Now the rank of TREC home page in local list
for “home” could be almost an arbitrary position among the 285,633 entries.
So sorted access for the significantly longer “home” list would generally not
be beneficial for early stopping, given that we are looking for a small amount
of top-ranked pages, only. In fact, many short keyword queries are composed
of a mixture of highly specific (infrequent) terms and one or two rather
unspecific (frequent) terms.

Now, the frequent terms are by definition very highly selective, and the
expensive predicate probes for them will not often fail. So probing a candi-
date would only be necessary when some of the less selective term conditions
have already been matched with a high score through sorted access. That
is, we can in fact treat frequent terms with a document frequency of more
than about 2 percent (which corresponds to the rightmost histogram cell for
DF = 22, 500 in Figure 4.1) as soft filters in the notion of an expensive
predicate and solely probe them through random accesses.

4.3 Multi-threaded Top-k Query Processing
The TopX core processor performs parallel sequential index scans with large
prefetch batches and individual index list buffers that are continuously filled
by an additional tier of low-level buffer threads. Sorted accesses are per-
formed on top of these list buffers by a separate thread for each index list,
whereas candidate pruning and scheduling decisions are performed iteratively
by the TopX main thread, i.e., after a whole batch b of sorted access step
when all scans threads are suspended. At these synchronization points, all
threads responsible for sorted accesses are paused and the shared data struc-
tures are maintained.

Figures 4.3 and 4.2 demonstrate the advantages of the multi-threading
architecture in two small experiments, both conducting a batch of 50 TREC
2003 Webtrack queries for the topic distillation task on the GOV collection

99

4.3. Multi-threaded Top-k Query Processing

Single
CPU,

Single-
Threaded,

LAN,
35.19

Single
CPU,
Multi-

Threaded,
LAN,
35.23

0

10

20

30

40se
c

Figure 4.2: Multi-threading
vs. single-threading on a sin-
gle CPU system.

Dual
CPU,

Single-
Threaded,

RAID,
20.9

Dual CPU,
Multi-

Threaded,
RAID, 8.3

0

5

10

15

20

25se
c

Figure 4.3: Multi-threading
vs. single-threading on a dual
CPU system.

(see also [CHWW03] and Section 9.2.1), but on two different hardware con-
figurations. Figure 4.2 shows a wallclock runtime of 35.2 seconds for both the
multi- and single threaded configuration (the latter scheduling SA batches
in a simple round-robin style) using a single-CPU notebook (with a 1.6 Ghz
Centrino CPU) connected to the Oracle server via a 1 Gigabit LAN. This
demonstrates the I/O boundedness of the algorithm for this particular con-
figuration which is exactly what we would expect. The situation changes,
however, when queries are executed directly on the server machine that also
hosts the Oracle database (with a 3Ghz dual Xeon CPU) and tuples are
read directly read from the RAID disks. Figure 4.3 shows that the wallclock
runtime significantly drops from 20.9 seconds in single-threaded mode to 8.3
seconds in multi-threaded mode which demonstrates that a single thread can-
not exhaust the full I/O bandwidth on the server. So multi-threading is a
crucial performance issue, in particular on multi-CPU machines.

The general TopX architecture comprises a three-tier, multi-threaded hi-
erarchy consisting of

1) the main thread that iteratively maintains the data structure for can-
didate bookkeeping and optionally updates probabilistic predictors for
candidate pruning and adaptive scheduling decisions after a batch of b
index accesses,

2) the scan threads that continuously read and join input tuples from the
inverted list buffers for a batch of bi ≤ b sorted accesses, and

3) the buffer threads that continuously refill a small buffer cache and con-
troll the actual disk I/O for each inverted list involved in a multi-
dimensional query.

This three-level architecture builds on the observation that candidate pruning

100

4. TopX Core Query Processor

and scheduling decisions are expensive and should be done only iteratively,
and joining and evaluating score bounds for candidate may incur high CPU
load (in particular for path query evaluations), while the actual sequential
index accesses are not critical in terms of CPU load.

This way, the scan threads are totally decoupled from each other. Syn-
chronization (object locking) for shared data structures only takes place when
a candidate is pulled from the cache and the queue is updated, or when (oc-
casionally) a candidate is found to be promoted into the top-k queue which
happens much less frequently than updates on the candidate queue (following
the same argumentation why the expensive predicate scheduling remains ef-
ficient). Note that the lightweight min-k threshold and predicate gap tests
for expensive predicate probing may be employed for each candidate update,
i.e., after each sorted access step, directly by the respective scan thread.

The top-k operator itself allows for a pipelined and (almost) non-blocking
implementation modulo some static prefetching time needed to initialize the
candidate queue. Then any nested top-k operator can be seamlessly in-
tegrated into multi-threaded architecture of the TopX query processor by
making the scan thread at dimension i the main thread of a nested top-k
operator; see Section 7.5 for a detailed description of nested top-k operators.

Futhermore, we divide the task of candidate bookkeeping into two sepa-
rate data structures: the cache and the candidate queue.

Cache

The cache is the brain of the TopX query processor. It contains a superset of
the candidates currently being contained in the top-k and candidate queue.
Splitting the task of candidate management into two separate data structures,
namely a hash-based cache and a continuously sorted queue, arises from the
observation that only a small subset of the best candidates (according to
bestscores) actually has to be kept in the queue at-a-time for testing the
min-k threshold condition. Hashing has the great advantage of constant
lookup and update costs of O(1); and the queue updates, that are accounted
by O(log q) each, are significantly accelerated for a bounded queue of size q.
However, to have a correct algorithm, we need the cache to “remember” much
more partially evaluated objects than are actually necessary for maintaining
the threshold condition with a bounded queue of size q.

Candidate Queue

Various queuing options are conceivable for efficient candidate management.
The approaches we investigate range from maintaining up to 2m−1 for all pos-

101

4.3. Multi-threaded Top-k Query Processing

sible remainder sets Ē(d) over query dimensions in {1, . . . , m} toward using
only a plain, unsorted candidate pool. Among our most effective approaches
is the aforementioned combination of a bounded queue with a hash-based
cache (coined the Prob-smart in Section 5.3). Albeit a heuristic, the queue
bound q may be chosen in the order of the batch size b which is typically a safe
choice (see Section 5.3). Then testing the top candidate in the queue with
the kth ranked top-k item allows for a lightweight, any-time min-k threshold
test for algorithm termination.

4.3.1 Main Thread

Algorithm 3 shows pseudo code for the main routine of the TopX core query
processor. It synchronizes the scan threads and notifies a semaphore object
that the scan threads are waiting for. It optionally invokes more sophisticated
candidate statistics and advanced scheduling decisions.

Queue Garbage Collection

Following the basic top-k query processing introduced in Section 1.3.2, we
may safely drop a candidate d from the queue if

bestscore(d) ≤ min-k , (4.9)

i.e., when d cannot qualify for the top-k results any more. Then, bestscore(d)
is iteratively updated for all candidates in the queue by the main thread for
pruning, taking the current highi values at the current scan positions into
account.

Note that we also need to consider a “pseudo candidate” d̃ with best−
score(d̃) =

∑m
i=1 highi (see also Section 5.3), that is conceptually put in

the queue, too, prior to invoking the queue garbage collector. bestscore(d̃)
is considered as an upper bound for all yet unseen candidates, in order to
prevent the algorithm from stopping too early, namely before any yet unseen
candidate d′ with bestscore(d′) ≤ bestscore(d̃) that might still qualify for the
top-k is encountered.

This rather conservative deterministic min-k threshold test may be ex-
tended by a more aggressive probabilistic threshold test, thus yielding an
approximative top-k algorithm with great runtime gains, as described in
Section 5.

Cache Garbage Collection

TopX may optionally perform an iterative cache garbage collection, too, when
main memory consumption becomes crucial (e.g., for large query expansion

102

4. TopX Core Query Processor

runs). Analogously to the queue garbage collection, we may safely drop a
candidate d from the cache, if∑

i

highi ≤ min-k ∧ bestscore(d) ≤ min-k , (4.10)

because then d may be rediscovered in a subsequent sorted scan but will be
pruned immediately, because then bestscore(d) ≤ ∑

i highi ≤ min-k. Note
that cache garbage collection may be a costly operation as the cache poten-
tially contains much more candidates than the (bounded) queue, and many
items, that have only been seen at an early stage of the query processing, are
never seen again and hence are not updated by the current highi values and
could remain “stuck” in the cache with a high bestscore.

Basic Random Access Scheduling

Basic random access scheduling in TopX follows the initial work done by
Fagin on the Combined Algorithm (CA) and incurs a very lightweight cost
model that can be implemented just by counting the number of sorted and
random accesses done so far. The basic random access scheduler follows the
invariant cR · #RA ≤ cS · #SA, i.e., the random accesses scheduler would
limit the amount of RAs to one RA every cR/cS SAs, thus eliminating the
currently best cR/cS · b candidates from the queue after a batch of b sorted
accesses.

Now, anticipating the results from our scheduling efforts at this point,
we generally find a strict separation of the these two scheduling phases
to be much more cost-beneficial than the iterative intermixing of SA and
RA batches as originally specified by CA. Then our approach, coined Last-
Probing in Section 6.4.1, switches from a strict SA mode to RAs-only, at the
point when the overall (expected) query costs, denoted as #SA+cR/cS ·#RA,
is minimized. Using the number of unresolved query conditions |Ē(d)| of
candidates d remaining in the queue as an upper bound for the number of
expected remaining RAs, this minimum is reached, when

#SA = cR/cS ·
∑
d ∈ Q

|Ē(d)| . (4.11)

This simple extension already outperforms the CA baseline by a large margin,
because RAs are typically scheduled at a point when we have gained much
more information about the candidate ranks. Note that more sophisticated,
probabilistic cost models would also take advanced index lists statistics such
as score distribution histograms or even index lists correlations into account

103

4.3. Multi-threaded Top-k Query Processing

and may also diverge from the strict round-robin SA scheduling baseline as
described in Chapter 6.

Note that the algorithm does not require all top-k results to be fully eval-
uated at all query dimensions to safely return the top-k list. The remaining
scores for the k top results can easily be clarified for the final ranking by a
few random lookups when the algorithm terminates.

4.3.2 Scan Threads

Algorithm 4 shows pseudo code for the loop that each scan thread processes
to handle the next sorted access until it gets terminated by the main thread or
reaches the end of the inverted list. Candidate handling is strictly pipelined
and parallelized, while all accesses to shared data structures such as the
queue and the cache have to be implemented thread-safe. Each thread has
exclusive sorted access to an inverted list, with object locking only being
done for cache and queue updates. The number of threads may correspond
to the number of query conditions or it may be limited to the best m′ ≤ m
lists according to the SA scheduler. All scheduling decisions can be updated
iteratively and adaptively.

Sorted Access Batching

Sorted access are batched in blocks of b overall sequential index steps for
all content conditions of an m-dimensional query. This block is divided into
b1, . . . , bm individual batch sizes with

∑m
i=1 bi = b and worked through by an

individual thread that exclusively reads input tuples from the inverted list for
each individual query condition. After working through the batch bi steps,
each thread suspends its work, synchronizes onto a shared semaphore object,
and waits for the notification signal to that semaphore by the main thread.
In the meantime, when some threads with short bi batches are suspended,
the CPU load may be shared by other threads with higher batch loads bi.

In a basic round-robin-style of sorted access scheduling, these bi batches
are of equal size, i.e.,

bi =
b

m′ , (4.12)

where m′ ≤ m is the set of currently active, not yet completely scanned lists.
For a more sophisticated SA scheduling, the bi batches may diverge from
round-robin, e.g., taking the different skew of local score distributions into
account. In particular, for a CPU-bounded execution environment of the
query engine, some of the bi batches may become temporarily 0 to limit the

104

4. TopX Core Query Processor

number of threads concurrently being active to the m′ lists with the highest
score gradients, e.g., with m′ confirming to the number of CPUs available.
These SA scheduling decisions are iteratively redetermined after each syn-
chronization step in a continuously adaptive query optimization manner (see
Section 6.3). This enables us to perform hash-joins and score evaluations
for different data objects in a truly parallel manner, in particular for the
non-negligible computational overhead of complex XPath evaluations.

Note that the actual disk read operations (which are typically not CPU
critical) are decoupled from this synchronization architecture by an addi-
tional tier of buffer threads that constantly aim to refill a small read cache
for each index list that the actual scan threads are operating on.

4.3.3 Buffer Threads

As for the third and lowest tier in the TopX thread hierarchy, we distinguish
the goal to optimize individual query runtimes versus optimizing query costs
in terms of the absolute number of index lists accesses. For the first, we
may allow a bit more disk I/O than absolutely required for the actual query
evaluation; for the latter we would rather want to stop reading from disk as
early as possible.

To optimize query execution time, we need to ensure smooth and contin-
uous, asynchronous disk operations throughout the whole query processing.
With the above strategy of dividing index scans and garbage collections into
different threads, disk operations might get temporarily interrupted at the
synchronization points, namely when all scan threads are suspended and the
garbage collectors and candidate pruning is active at the main thread. There-
fore, apart from the result set prefetching at the database connector (e.g.,
ODBC or JDBC) or disk caching effects (which we cannot easily control), we
add an additional small buffer for each physically stored index list that does
not exceed the default batch size that is initially scheduled for the first round
of round-robin-like index list accesses (e.g., a maximum of 1,000 tuples). We
add an additional tier of threading responsible for the actual disk reads and
buffered index lists lookups to completely decouple the physical I/O perfor-
mance from the query processing. Figure 4.4 depicts this multi-tier buffering
architecture.

Then all scan threads solely work on top of these buffers which are con-
stantly refilled by the tier of decoupled buffer threads with asynchronous
disk I/O until the query processing terminates. This way, we experience no
startup delays after notifying the scan thread which makes multi-threaded
scheduling with different batch sizes per thread feasible, because the disk op-
erations are not interrupted. The actual buffer threads are suspended, too,

105

4.3. Multi-threaded Top-k Query Processing

min
max

min
max

min
max

List
Buffers

DBMS / Inverted ListsDBMS / Inverted Lists

Sorted Access
with individual
batch sizes bi

R
an

do
m

 A
cc

es
s

Index Access
Scheduler

Index Access
Scheduler

TopX Query Processor
with Periodic Queue Maintenance

& Garbage Collection

TopX Query Processor
with Periodic Queue Maintenance

& Garbage Collection

JDBC / DB CacheJDBC / DB Cache

Figure 4.4: Multi-tier buffering architecture of TopX.

when the intermediate read buffer is filled to the maximum value, and they
are notified when the buffer falls below some minimum fill threshold (e.g.,
a minimum of 100 tuples). The maximum buffer sizes may be chosen pro-
portionally to the scheduled index access batch sizes bi, when the scheduler
increasingly strives away from the initial round-robin scheme.

Note that random accesses as triggered by the main thread that directly
accesses the inverted lists. This type of access greatly benefits from the
internal caching strategy of the underlying DBMS.

4.3.4 Threshold & Continuous Queries

Returning exactly the top-k results per query may not always be very help-
ful in an interactive user session. Often, a user would require to click and
browse through various result pages and “explore” a certain topic of inter-
est to satisfy the information need. More general top-k application include
threshold queries, where all result items need to exceed an initial, user-defined
score threshold, and continuous queries, where the user may iteratively click
through a number of result pages each of which contains k ranked items.

Threshold Queries

Threshold queries are a trivial extension to a top-k query processor. Instead
of specifying a value for k, we simply determine a static score threshold ∆ to

106

4. TopX Core Query Processor

initialize min-k analogously to the boosting threshold described in Subsec-
tion 4.1.2. Note that it is also possible to incrementally (and monotonically)
increase ∆, if too many intermediate results are found, and thus stop earlier.

Continuous Queries and Top-k Shifts

Continuous queries, however, are a bit more tricky but also much more as-
sistant than a threshold query from a user perspective. These queries benefit
from the fact that a user typically first digests an initial result page (e.g.,
with k being in the order of 10 or 20) and then may decide to further browse
for the next page, thus looking at the k′ > k results, then again digests that
page, and so on. That is, the query processor does not need to precompute
the whole result set for a large value of k′; and moreover, the final value of
k′ is not decisive. Then the overall query cost (and runtime) to retrieve the
k′ = s · k is divided into s iterative top-k shifts. Thus, these top-k shifts are
nothing but dynamic threshold queries, where we iteratively reset min-k′ to
0 and refill the extended top-k′ list with the best intermediate k′ results.

Algorithm 5 shows pseudo code for this shift operation. The algorithm it-
erates over all items in the cache and puts those items d with worstscore(d) >
min-k′ into the extended top-k′ list, and otherwise puts items with best−
score(d) > min-k′ back into the queue. Note that min-k′ does not have
a fixed value and putting new items into the top-k′ list increases min-k′,
too. The new value of min-k′ must be lower or equal to the previous min-k
value that led to the last algorithm termination. Since min-k′ ≤ min-k, we
may need to resume the scan threads and perform additional index scans
until the new min-k′ threshold condition holds. Note that this requires the
cache garbage collector to be disabled, however, since we may not finally
prune items from the cache for an unknown value of min-k′. Then it is not
necessary to restart the whole query, but rather suffices to merely wake up
the suspended scan threads that can seamlessly continue their work. Typi-
cally, any subsequent top-k shift incurs significantly less execution cost than
retrieving the initial k items.

107

4.3. Multi-threaded Top-k Query Processing

Algorithm 3 Main thread of the TopX query processor.
1: TopXMainThread(Index Lists Li, Query q=ti,. . .,tm, Batches b1,. . .,bm, Predictor threshold ε)
2: top-k := ∅;
3: candidates := ∅;
4: cache := ∅;
5: min-k := max(0,

∑m
i=1 αiβi);

6: activeThreads = 0;
7: suspendedThreads = 0;
8: // Start background threads
9: for all Index Lists Li (i=1..m) do

10: threads[i].processIndexList(Li , bi);
11: activeThreads++;
12: end for
13: // Main thread loop
14: while activeThreads > 0 do
15: // Periodically synchronize with scan threads and iterate top-k workflow
16: while suspendedThreads < activeThreads do
17: // Main thread synchronization on semaphore object
18: semaphore.waitForNotification();
19: suspendedThreads := #threads waiting for notification;
20: activeThreads := #threads still being active;
21: end while
22: // Update pseudo candidate’s threshold
23: sumHigh :=

∑m
i=1 highi;

24: // Queue garbage collection & probabilistic pruning
25: for all d ∈ candidates do
26: bestscore(d) := worstscore(d) +

∑
ν∈Ē(d) highi;

27: if bestscore(d) ≤ min-k | p(d) ≤ ε then
28: Drop d from candidates;
29: else
30: Consider RA on all Li with i /∈ E(d) according to modified cost-model;
31: end if
32: end for
33: // min-k threshold termination
34: if topk.size() == k & (candiates == ∅ | bestscore(candidates.top()) ≤ min-k) then
35: break;
36: end if
37: // Cache garbage collection
38: if sumHigh ≤ min-k then
39: cache.gc();
40: end if
41: // Schedule next round of sorted access batches
42: scheduler.updateBatches();
43: // Notify scan threads
44: activeThreads = 0;
45: for all Index Lists Li (i=1..m) do
46: threads[i].notify();
47: activeThreads++;
48: end for
49: end while
50: // Schedule remaining random lookups for final top-k ranking
51: for all d ∈ top-k do
52: for all i ∈ Ē(d) do
53: Li.getRandomScore(d);
54: end for
55: end for

56: return top-k;

108

4. TopX Core Query Processor

Algorithm 4 TopX scan thread.
1: processIndexList(IndexList Li, Batch Size bi)
2: isAlivei = true;
3: isSuspendedi = false;
4: posi = 0;
5: while isAlive & Li.hasNext() do
6: // Perform next sorted access to Li

7: <docid, score> := Li.getNext();
8: d := cache.getCachedItem(docid);
9: si(d) := score;

10: E(d) := E(d) ∪ {i};
11: highi := score;
12: posi++;
13: // Update worst- and bestscore bounds
14: worstscore(d) :=

∑
i∈E(d) αi(βi+si(d));

15: bestscore(d) := worstscore(d) +
∑

ν∈Ē(d) αν(βν + highν);

16: // Check expensive predicates (Min-Probing)
17: gap(d) =

∑
i∈E(d)∩P (d) si(d);

18: if worstscore(d) + gap(d) > min-k then
19: for all i ∈ Ē(d) ∩ P(d) do
20: checkPredicates(d, i);
21: end for
22: end if
23: // Update top-k list
24: if worstscore(d) > min-k then
25: // Commit top-k update
26: d’ := top-k.removeMinkItem();
27: top-k.insert(d);
28: candidates.remove(d);
29: // Adaptive min-k threshold
30: min-k := max(top-k.getMinkScore(), min-k);
31: // Former top-k item may still be a valid candidate
32: if bestscore(d’) > min-k then
33: candidates.insert(d’);
34: end if
35: else
36: // Cache & queuing test
37: if bestscore(d) > min-k then
38: candidates.update(d);
39: cache.update(d);
40: else
41: candidates.remove(d);
42: end if
43: end if
44: // Suspend & wait for main thread notification
45: if posi mod bi == 0 then
46: isSuspendedi = true;
47: semaphore.notify();
48: this.waitForNotification();
49: end if
50: isSuspendedi = false;
51: end while

52: isAlivei = false;

109

4.3. Multi-threaded Top-k Query Processing

Algorithm 5 Top-k′ shift.
1: topkShift(New result size k′)
2: // Keep previous top-k results and reset new min-k′ threshold
3: top-k′ := top-k;
4: min-k′ := max(0,

∑m
i=1 αiβi);

5: for all d ∈ cache do
6: // Extend top-k′ list
7: if worstscore(d) > min-k′ then
8: d’ := top-k′.removeMinkItem();
9: top-k′.insert(d);

10: min-k′ := max(top-k′.getMinkScore(), min-k′);
11: // Former top-k′ item may still be a valid candidate
12: if bestscore(d’) > min-k′ then
13: candidates.insert(d’);
14: end if
15: else
16: // Extend candidate queue
17: if bestscore(d) > min-k′ then
18: candidates.insert(d);
19: end if
20: end if
21: end for
22: // Resume scan threads
23: for all Index Lists Li (i=1..m) do
24: threads[i].notify();
25: activeThreads++;
26: end for
27: // Continue as in TopX main thread shown in Algorithm 3

28: // ..

110

Chapter 5

Probabilistic Candidate Pruning

The TA family of threshold algorithms, and in particular the NRA vari-
ant with no random accesses being allowed, is conservative in that it stops
scanning index lists only when it is certain that no more top-k results can be
found. In particular in IR applications, the final scores among the top-ranked
results are often very tight, and typically most of these results are equally
relevant from a user perspective.

We believe that the given algorithms for query evaluations are overly
reluctant in pruning candidates given that the concept of a top-k query has a
heuristic nature, anyway. Hardly any end-user would be interested in looking
at exactly the k best matches to a similarity query. Rather the rationale of
top-k ranking is that users typically find one or a few relevant and novel
data items among the top 10 or 20 results. So there is an inherent and
unavoidable risk of missing the truly best results (in the subjective judgment
of the user). This in turn justifies relaxing the concept of a top-k query
into an approximate notion such that the query processor can occasionally
tolerate errors: false positives or false negatives with regard to the top-k.

Our approach is based on predicting the total score of a candidate item
for which we know a partial score, e.g., the sum of local scores for one or
more elementary conditions, but not the total score for all conditions. In
doing this, we avoid the overly conservative worst- and bestscore bounds of
the original TA family of threshold algorithms by calculating the probability
that the total score exceeds a threshold that would make the item inter-
esting for the top-k result. If this probability is sufficiently low, we drop
the data item from the candidate list. The probabilistic prediction of the
aggregated score involves computing the convolution of the score distribu-
tions of different index lists. To this end, we explore a variety of techniques
including aggregate score predictors using histograms, efficiently evaluable
Poisson estimations, and convolutions based on moment-generating functions

111

5.1. Top-k Query Processing with Probabilistic Guarantees

with generalized Chernoff-Hoeffding bounds for the resulting tail probabili-
ties. For approximate top-k results with a small, probabilistically bounded
error, the query processor also has these precomputed score histograms or
parameterized predictors available and maintains further state information
for estimating the score at a list position and the list position for a given
score: scorei : position → score and posi : score → position can be derived
as two deterministic, reversible functions using histograms or parameterized
score distribution estimators.

As the overhead of these techniques is crucial, the details of our bookkeep-
ing and candidate testing strategies are all but straightforward; we explore a
wide range of strategies within the paradigm of threshold algorithms based
on different setups of priority queues. To the best of our knowledge, our
work is the first to present a method for probabilistic top-k queries with a
controllable and tunable trade-off between result quality and index access
cost. Note that our probabilistic guarantees are not about query runtimes
but about query result quality; runtime bounds that hold with high probabil-
ity have been derived in [Fag99]. Also, our approach should not be confused
with probabilistic methods for deriving local and global scores, e.g., prob-
abilistic IR techniques as discussed in Section 3.2.1; we can handle a wide
variety of scoring functions as building blocks but our notion of probabilis-
tic guarantees developed in this chapter refers to the approximation of the
top-k retrieved data item in a completely scored and exactly ranked result
set. Our experiments on various text and semistructured data collections
demonstrate an impressive amount of evaluation costs saved, with up to two
orders of magnitude compared to the non-approximative baselines and a very
good precision versus runtime ratio.

5.1 Top-k Query Processing with Probabilistic
Guarantees

Recall from Section 1.3.2 that our family of threshold algorithms is based on
the invariants

worstscore(d) =
∑

i∈E(d)

si(d) (5.1)

bestscore(d) = worstscore(d) +
∑

i/∈E(d)

highi (5.2)

(5.3)

Suppose we already have k items that are the preliminary top-k results

112

5. Probabilistic Candidate Pruning

of a given query q for an arbitray snapshot of the query processing, and let
min-k := min{worstscore(d) | d ∈ top-k}. Then we can prune documents
and remainders of index lists for documents whose upper bound cannot ex-
ceed the min-k threshold, i.e., a document d can be dismissed from the can-
didate queue if bestscore(d) ≤ min-k. In this case we say that the threshold
test fails.

This consideration is often unnecessarily conservative, because the ex-
pected remainder score of a document is much lower than the sum of the
highi bounds for i /∈ E(d). In particular, with no random accesses being
allowed on the index structures (e.g., using the NRA baseline algorithm), ex-
clusive sequential scanning typically makes the [worstscore(d), bestscore(d)]
bounds converge only slowly, such that often a small number of good candi-
dates close to the top-k matches is kept in the queue over a long period of
the query processing. Figure 5.1 depicts this situation for candidate item d:
although d’s worstscore never exceeds the min-k threshold, it has to be kept
in the queue for a long time, namely until to the point when d’s bestscore
falls below min-k for the first time. Since k is usually small, in the order of
10 or 20, compared to the inverted lists, this in fact happens for the major
amount of candidates.

scan depth

bestscore(d)

worstscore(d)

min-k

sc
or

e drop d
from the
candidate

queue

(d)

Figure 5.1: Evolution of a candidate’s score bounds.

Of course, using plain expectations for pruning would not give us any
guarantees for not missing any of the true top-k results. But we would expect
that the sum of the si(d) scores in the remainder set Ē(d) is lower than the
sum of the highi bounds with very high probability. So we are interested in
estimating the probability that a document d that we encounter at position

113

5.1. Top-k Query Processing with Probabilistic Guarantees

posi in the index list Li, and for which Ē(d) �= ∅ holds, qualifies for the top-k
results as

p(d) := P

⎡⎣ ∑
i∈E(d)

si(d) +
∑

i∈Ē(d)

Si > min-k|Si ≤ highi for i ∈ Ē(d)

⎤⎦
where Si denotes the random variable that captures the probabilistic event
that document d has a score of si(d) in dimension i. With δ(d) := min-k −
worstscore(d), this is equivalent to

p(d) := P

⎡⎣ ∑
i∈Ē(d)

Si > δ(d) | Si ≤ highi for i ∈ Ē(d)

⎤⎦ (5.4)

Note that when we compute p(d) during query execution we know upper
bounds highi for the unknown scores, thus considering conditional probabil-
ities as denoted above. If the probability p(d) was below some threshold ε
(e.g., between 1 and 10 percent) then we might decide to disregard d, with-
out computing its full score, thus introducing a notion of approximate top-k
query processing with probabilistic guarantees for the result precision. We
refer to condition 5.4 as the probabilistic threshold test.

In the following section, we are developing the details for estimating the
probability p(d) that a candidate document d with non-empty remainder set
Ē(d) ⊂ {1..m} may qualify for the top-k results. The way how we estimate
p(d) depends on the assumptions that we make about the distribution of
the unknown scores si(d) that d would obtain. The following subsections
discuss various cases that are of interest from both a fundamental insight
and application viewpoint. We will concentrate on the most important case
of using summation for score aggregation, and will discuss generalizations at
the end of this chapter. Note that summation is the standard choice in IR
keyword query processing, with TF·IDF-style scores or probabilistic weights
(e.g., Okapi BM25) being precomputed and stored in the inverted index lists.

5.1.1 Convolutions

The convolution of two score distribution for two random variables X and Y
yields the score distribution for the sum X +Y of the two random variables.
Besides their application in statistics, convolutions are also an important tool
in data processing, in particular in digital signal and image processing.

Consider the sum U = X + Y of two random variables, where X has
the probability density function fx(x) and Y has the probability density
function fy(y), respectively. For independent random variables X and Y ,

114

5. Probabilistic Candidate Pruning

the convolved sum has the probability density f(u) given by the convolution
integrals

f(u) =

∫ ∞

−∞
fx(x) fy(u− x) dx (5.5)

=

∫ ∞

−∞
fy(y) fx(u− y) dy . (5.6)

Now the task is to determine f(u) given fx(x) and fy(y). Obviously, the
shape of the convolution density function f(u) depends on the assumptions
we make for the input density functions fx(x) and fy(y). For a number
of cases, f(u) can be computed analytically using an efficiently evaluable
closed form, thus following [All90]. A few of the most important ones are
listed below:

• The convolution of two Normal distributions with zero mean µ1 = µ2 =
0 and variances σ2

1 and σ2
2 is again a Normal distribution with zero mean

µ and variance σ2 = σ2
1 + σ2

2 .

• The convolution of two χ2 distributions with f1 and f2 degrees of free-
dom is again a χ2 distribution with f1 + f2 degrees of freedom.

• The convolution of two Poisson distributions with parameters λ1 and
λ2 is again a Poisson distribution with parameter λ = λ1 + λ2. This
is a particularly nice property which is directly applicable in many IR
tasks.

• The convolution of an Exponential and a Normal distribution is approx-
imated by another exponential distribution. If the original exponential
distribution is

f(x) =

⎧⎨⎩
e−

x
r

r
for x ≥ 0

0 for x < 0

, (5.7)

and the Normal distribution has zero mean µ and variance σ2, then for
u » σ the probability density of the sum is

f(u) ≈ e−
u
r
+ σ2

2r2

σr
√

2π
(5.8)

In a semi-logarithmic diagram, where log(fx(x)) is plotted versus x and
log(f(u)) versus u, the latter lies by the amount σ2/(2r2) higher than
the former, but both are represented by parallel straight lines whose
slope is determined by the parameter r.

115

5.1. Top-k Query Processing with Probabilistic Guarantees

• The convolution of a Uniform and a Normal distribution results in a
quasi-Uniform distribution smeared out at its edges. If the original
distribution is Uniform in the region a ≤ x < b and vanishes elsewhere,
and the Normal distribution has zero mean µ and variance σ2, then the
probability density of the sum is

f(u) =
ψ0

(u−a)
σ

− ψ0
(u−b)

σ

b− a
. (5.9)

Here

ψ0(x) =
1√
2π

∫ x

−∞
e

−t2

2 dt (5.10)

is the distribution function of the standard Normal distribution. For
σ → 0, the function f(u) vanishes for u < a and u > b and is equal
to 1/(b − a) in between. For finite σ, the sharp steps at a and b are
rounded off over a width of the order 2σ.

In the area of digital signal or image processing, convolutions are used for
the description of the response of linear shift-invariant systems, and are used
in many filter operations. One-dimensional discrete convolutions are written
as z(k) =

∑
i x(i) · y(k− i) and often abbreviated as z = x⊕y. Convolutions

are

• commutative, i.e., x⊕ y = y ⊕ x,

• associative, i.e., x⊕ (y ⊕ z) = (x⊕ y) ⊕ z, and

• distributive, i.e., x · (y ⊕ z) = (x · y) ⊕ (x · z).
Figure 5.2 illustrates the approach for a candidate document d10 that we

encounter during the sequential scans in the inverted list L1 for the query
term t1 with the score s1(d10). Let’s assume we have a 3-dimensional query
consisting of the terms t1,t2, and t3, and we did not see d10 in any other
index list so far; then Ē(d10) = {2, 3} and δ(d10) = min-k−s1(d10). In order
to predict the probability P [

∑
i∈Ē(d10) Si > δ(d10)], we simply convolute the

two score distributions for d10’s remainder dimensions, captured by the two
precomputed histograms for S2 and S3 in this case, to derive the probability
that the sum of d10’s remainder scores may exceed δ(d10). Then p(d) is
determined by the convolution score mass for scores beyond δ(d) (omitting
the conditional probabilities at this point).

116

5. Probabilistic Candidate Pruning

Inverted Index

…t1 d88
0.2

t2

t3

d78
0.9

d23
0.8

d10
0.8

d64
0.8

d23
0.6

d1
0.7

d78
0.5

d1
0.7

…

…

d78
0.1
d34
0.1

d11
0.2
d99
0.2

d10
0.6
d64
0.4

0

f2(x)

1 high2

Convolution(f2(x), f3(x))

2 0(d10)

f3(x)

high31 0

Figure 5.2: Convolution procedure and score prediction for a candidate doc-
ument with two remainder dimensions.

5.2 Predictors for Aggregated Scores

Among all possible score distributions, the Uniform distribution is the sim-
plest one, but usually not a good fit for real-world score distributions over
large text corpora. However, if we do not know any details about the scores,
assuming a Uniform distribution is often a convenient and indeed conserva-
tive choice. Moreover, computing the convolution of Uniform distributions is
still computationally feasible as we will see in Section 5.2.1. The Poisson dis-
tribution is a more reasonable fit for realistic score distributions (e.g., using
a BM25 scoring model with the default parameterization) and additionally
has some nice theoretical properties. As mentioned above, a particularly
nice property of the Poisson distribution is that the convolution of m such
distributions with parameters λ1, . . . , λm is again a Poisson distribution with
parameter λ = λ1 + . . .+ λm.

Even though parameterized distributions are elegant and efficient to com-
pute, it is often infeasible in practice to capture real score distributions
with basic distribution functions and parameter fittings. In such cases, his-
tograms [Ioa03] are commonly used as a compact way to capture arbitrary
score distributions.

5.2.1 Chernoff-Hoeffding Bounds for Uniform Distribu-
tions

In the absence of any other information, Occam’s razor suggests that the
simplest assumption about the distribution of unknown partial scores is a
Uniform distribution. More specifically, we assume that for document d and
dimension i ∈ Ē(d) = {1..m} − E(d), where d has not yet been evaluated,

117

5.2. Predictors for Aggregated Scores

the score si(d) is uniformly distributed between highi, the currently known
upper bound for the true score, and 0, the assumed lower bound. Instead
of 0, we may also use the lowest value that occurs in Li, provided we have
stored this information in the index metadata (i.e., without having to scan
Li to its end). We use continuous distributions rather than discrete ones,
as this simplifies the subsequent calculations. We assume that all random
variables Si are independent; feature correlations, or more precisely, the case
of limited feature independence [Nel95], will be reconsidered in the next step.

Treating each unknown si(d) value as a random variable Si, we thus
have to predict the probability P [

∑m
i=1 Si > δ(d) | Si ≤ highi]. For two

random variables S1 and S2 with uniform densities f1(x) = 1/high1 and
f2(x) = 1/high2 this requires computing the density of the convolution

f(x) =

∫ x

0

f1(z)f2(x− z) dz. (5.11)

Taking into account the fact that each factor is non-zero only within certain
intervals, namely, 0 ≤ z ≤ high1 and 0 ≤ x − z ≤ high2, or equivalently
max(0, x − high2) ≤ z ≤ max(x, high1), solving the integral requires the
following three cases, assuming high1 ≤ high2 (without loss of generality):

f(x) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x
high1·high2

for 0 ≤ x ≤ high1

1
high2

for high1 < x ≤ high2

1
high1

+ 1
high2

− x
high1·high2

for high2 < x ≤ high1 + high2

(5.12)

and a corresponding cumulative distribution in an efficiently evaluable closed
form.

Unfortunately, for three and more heterogeneous Uniform distributions,
this kind of computation, albeit still simple in principle, leads to a rapidly
increasing number of cases regarding integration boundaries that are fairly
awkward to handle. In order to avoid these case differentiations, we rather
treat the basic density functions for random variables Si with densities fi(x)
and their convolution f(x) in terms of moment-generating functions which
is the default strategy in statistics for this case. The moment-generation
function for a basic density function fi(x) then has the form

Mi(s) =

∫ s

0

es·xfi(x) dx = E[es·Si] . (5.13)

118

5. Probabilistic Candidate Pruning

The great advantage of transforming fi(x) into Mi(x) is that the convolu-
tion of moment-generating functions for independent random variables has a
moment-generating function of the following very compact form [Nel95]:

M(s) =

m∏
i=1

Mi(s) . (5.14)

But with Uniform distributions fi(x) plugged in, this yields a function
from which we cannot easily infer the density of the convolution. Instead,
we apply Chernoff-Hoeffding bounds to the tail probability of the convolu-
tion [Nel95, SSS95]:

P

[
m∑

i=1

Si > δ(d)

]
≤ inf

s≥0

{
e−s·δ(d) ·M(s)

}
, (5.15)

where the infimum on the right-hand side is either the minimum of the Cher-
noff bound function, computed by finding the roots of the first derivative, or
a limit, e.g., for s approaching 0. This computation can be automated using
computer algebra tools like Maple and its programming interface OpenMaple.

A great advantage of this approach is that it can be generalized to in-
corporate distributions other than Uniform ones by simply exchanging the
underlying density functions fi(x) that are used to approximate the actual
distributions. Moreover, it can easily handle heterogeneous distributions with
some scores Si being uniformly distributed and others following, e.g., Hyper-
exponential or Zipf distributions. Finally, using results from [SSS95] we can
even handle non-independent random variables, although the corresponding
generalized Chernoff-Hoeffding bounds may not be as strong as in the stan-
dard case. Assume that S1, . . . , Sm are our random variables of interest. We
construct a set of independent random variables T1, . . . , Tm such that Ti has
the same distribution as the marginal distribution Si. For a partitioning
δ = δ1 + . . .+δm for the tail quantile of interest consider the Chernoff bounds
εi with P [Ti > δi] ≤ εi. [SSS95] have shown that

P

[
m∑

i=1

Si > δ(d)

]
≤ inf

δ1(d)+...+δm(d)=δ(d)

{
max
i=1..m

{εi}
}
. (5.16)

While it is difficult to determine the best choice of the partitioning values
δi(d), a good heuristic choice (that is guaranteed to yield correct bounds) is
to set

δi(d) = δ(d) · highi∑m
i=1 highi

(5.17)

119

5.2. Predictors for Aggregated Scores

(i.e., we choose the δi(d) values in proportion to the highi values of the index
lists at the current scan positions). Computing these generalized Chernoff-
Hoeffding bounds can be programmed as OpenMaple procedures as well (see
Appendix A.2 for an OpenMaple implementation of these estimators).

As the computation of convolutions and their bounds using OpenMaple
involves the derivation of various density functions and finding roots numer-
ically (e.g., using the Monte-Carlo [PFTV92] method), our implementation
incurs a non-negligible overhead, part of which is caused by the communi-
cation overhead and iterative invocation of different software environments
such as Java, the Java Native Interface (JNI) for C libraries, and OpenMaple
itself. Despite the flexibility in applying Chernoff-Hoeffding bounds to differ-
ent kinds of distributions and even mixtures of heterogeneous distributions,
we are also interested in approximations that are computationally cheaper.

5.2.2 Poisson Estimators

Another form of distribution that has nice theoretical properties, can be
efficiently evaluated, and is a reasonable fit for realistic score distributions
(e.g., the BM25-based score distributions for terms in large corpora) is the
Poisson distribution. In order to fit the real score distribution of an inverted
list Li, we assume that Si is a discrete random variable with n equidistant
values νj = 1− j · highi

n
, for j = 0, . . . , n− 1, i.e., we discretize all scores si(d)

for d ∈ Li according to a tunable parameter n (e.g., between 20 and 100)
that denotes the resolution of the discretization and affects the accuracy of
the predictor. Then the probability for an object having a local score νk is

P [Si = νk] = e−λi
λk

i

k!
. (5.18)

Here, λi is the parameter that we fit to the actual distribution. The particu-
larity of the Poisson distribution is that the convolution of m such distribu-
tions with parameters λ1, . . . , λm is again a Poisson distribution with para-
meter λ = λ1 + . . . λm. As the highi values change during the index scans, we
actually need to predict P

[∑
i∈Ē(d) Si > ν | Si ≤ highi for i ∈ Ē(d)

]
, where

ν is the largest value smaller than the relevant δ(d) in the virtual value dis-
cretization.

p(d) = P

⎡⎣ ∑
i∈Ē(d)

Si > ν | Si ≤ highi for i ∈ Ē(d)

⎤⎦ (5.19)

= 1 − P

⎡⎣ ∑
i∈Ē(d)

Si ≤ ν | Si ≤ highi for i ∈ Ē(d)

⎤⎦ (5.20)

120

5. Probabilistic Candidate Pruning

= 1 −
P
[∑

i∈Ē(d) Si ≤ ν
∧

Si ≤ highi for i ∈ Ē(d)
]

P
[
Si ≤ highi for i ∈ Ē(d)

] (5.21)

(5.22)

Again, assuming independence among the random variables Si, we lower-
bound this probability as follows:

≥ 1 −
P
[∑

i∈Ē(d) Si ≤ ν
]

∏
i∈Ē(d) P [Si ≤ highi]

(5.23)

= 1 −
∑ν·n

k=1

(
1
k!
e−

∑
i∈Ē(d) λi

(∑
i∈Ē(d) λi

)k
)

∏
i∈Ē(d) P [Si ≤ highi]

(5.24)

(5.25)

Here, ν · n denotes the number of the bucket for the discretized ν value
in the convoluted Poisson predictor over m′ = |Ē(d)| remainder dimensions.
Instead of summing up the ν ·n first terms of the Poisson probability function
to get the cumulated probability

P

⎡⎣ ∑
i∈Ē(d)

Si ≤ ν

⎤⎦ =

ν·n∑
k=1

P

⎡⎣ ∑
i∈Ē(d)

Si = νk

⎤⎦ , (5.26)

we use the efficient numerical method given in [PFTV92] based on the In-
complete Gamma Function, which converges rapidly for ν ·n less than about
k + 1 and provides a very good approximation of the cumulative Poisson
probability function; and the individual P [Si ≤ highi] can easily be derived
from the basic Poisson estimators for the individual lists without having to
consider the convolution.

5.2.3 Histograms

Real score distributions may sometimes be impossible to capture with basic
distribution functions and parameter fitting. In such cases, the only viable
solution is to explicitly track the distribution in the form of a compact his-
togram [Ioa03]. Since histogram construction is not exactly inexpensive, we
precompute a histogram for the score distribution of each index list offline,
either by fully scanning entire inverted lists or by sampling the score en-
tries. At query time, we first compute the convolution of the query-relevant
histograms (and possibly of subsets of them). For simplicity, we consider
only equi-width histograms, but our approach could be easily generalized

121

5.2. Predictors for Aggregated Scores

to more sophisticated histogram variants (see [Ioa03] for an overview), at
higher precomputation and runtime costs, however. In order to break pre-
dictor ties among the entries of each histogram bucket, we assume a Uniform
distribution of scores within each bucket. For conservative probabilistic pre-
dictions, we might alternatively assume that all values within one histogram
cell coincide with the upper bound of the cell.

Similarly to the Poisson estimator described beforehand, we discretize the
input score domains and choose the same number n of cells for each basic
histogram, thus covering the score range (0, 1] and we use m′ · n cells for the
convolution histogram over m′ basic histograms, with the same width 1/n
as the basic histograms, thus covering the range (0, m′]. This way, cell i (for
i = 0, . . . , n − 1 or i = 0, . . . , m · n − 1) covers the interval (lbi, ubi] with
lbi = i/n and ubi = (i + 1)/n. Each cell stores the frequency freqi and the
cumulative frequency cfreqi of scores that fall into its interval. Then the
convolution H of basic histograms H1, . . . , H

′
m is computed by

H.freqi =
∑

(i1, . . . , im)
with∑m′
l il = i

H1.freqi1 · . . . ·H ′
m.freqi′m (5.27)

and

H.cfreqi =

i∑
j=0

H.freqj . (5.28)

The above formula suggests some form of dynamic programming for convo-
lutions over arbitrary remainder dimensions using m′ nested loops. Since
this would render the convolution procedure infeasible for high-dimensional
queries, we split the convolution computation in a series of binary convo-
lutions, where each of the m′ histograms is iteratively combined with the
previous convolution in an overall time of O(m′n2). The computation of the
probability then simply resolves in looking up the cumulated frequency in
the convolution histogram for the respective value of δ(d):

P

⎡⎣ ∑
i∈Ē(d)

Si > δ

⎤⎦ = (1 −H.cfreqi) with δ ∈ (lbi, ubi] (5.29)

Algorithm 6 shows pseudo code for a binary convolution procedure with
two nested loops that merge the relative bucket frequencies for two input
histograms. Exploiting the commutativity of convolutions, we can reduce the
m-dimensional case to a series of these binary convolutions in arbitrary order.

122

5. Probabilistic Candidate Pruning

The full convolution histogram that we compute for a given query captures
the complete distribution (m′ = m) of possible global scores and partial
scores over unevaluated dimensions (here, we compute the convolution of the
basic histograms for all m′ = |Ē(d)| = m− |E(d)| unevaluated dimensions).
Note that we can of course reuse convolution histograms for an arbitrary
amount of candidate tests in the index scans, but we may have to compute
up to 2m − 1 convolutions corresponding to the possible amount of distinct
remainder sets that candidates can be grouped into.

Algorithm 6 Binary convolution procedure.
1: getBinaryConvolution(Histogram a, Histogram b)
2: convolution.freq[0..a.n+b.n] := 0;
3: convolution.cFreq[0..a.n+b.n] := 0;
4: for i := 0; i < a.n; i++ do
5: for j := 0; j < b.n; j++ do
6: convolution.freq[i + j] += a.freq[i] · b.freq[j];
7: end for
8: end for
9: c := 0;

10: for i := 0; i < convolution.n; i++ do
11: c += convolution.freq[i];
12: convolution.cfreq := c;
13: end for

14: return convolution;

Furthermore, we would like to periodically update these convolutions.
As the index scans proceed, we are actually interested in conditional proba-
bilities of the form P

[∑
i∈Ē(d) Si > δ | Si ≤ highi for i ∈ Ē(d)

]
, where the

highi values reflect the current positions in the index scans. Obviously, dy-
namically rebuilding the histograms after every sorted access is out of the
question. We have three ways of addressing this point. The first option is to
conservatively bound the conditional probability, analogously to the Poisson
approximation model:

p(d) = P

⎡⎣ ∑
i∈Ē(d)

Si > δ | Si ≤ highi for i ∈ Ē(d)

⎤⎦ (5.30)

≥ 1 −
P
[∑

i∈Ē(d) Si ≤ δ
]

∏
i∈Ē(d) P [Si ≤ highi]

(5.31)

which can be directly looked up in the precomputed histograms.
The second option is to start with the full convolution histograms and

dynamically “undo” the terms that contribute to H.freqi as the highj values

123

5.2. Predictors for Aggregated Scores

change during query execution. Suppose that highj changes from some value
ubk to ubk−1. Then we modify all H.freqi values with νi ≤

∑m′
j=0 highj as

follows:

H.freqi = H.freq[i] −
∑

(i1, . . . , im)
with∑m′
l il = i
and
il = k

H1.freqi1 · . . . ·H ′
m.freqi′m

(5.32)

The subtrahend is also precomputed and additionally stored in cell k of the
histogram for index list Ll. The computational overhead for the dynamic
maintenance is O(m′ n) whenever one of the index scans crosses a histogram
cell boundary, but the – less critical – precomputation cost and the space
for each histogram increase considerably (with O(m′ 2 n2) space instead of
O(m′ n)).

Finally, the third way is to periodically recompute the histograms, after
every b sorted accesses with b being in the order of a few thousand. Each time
a convolution histogram is rebuilt from the precomputed basic histograms,
the current highi values are taken into account; so the recomputation be-
comes cheaper and the range of valid histogram buckets becomes smaller as
the index scans proceed toward lower local scores. We found this to be the
best choice for the trade-off between runtime and space required.

5.2.4 Extensions and Generalizations

Our framework for probabilistic predictions could be extended in the follow-
ing ways:

1) supporting more general score aggregation functions other than sum-
mation,

2) adding further classes of score distributions for specific scoring models,

3) adding selectivity estimators that also take the length of the inverted
lists into account, and

4) investigating the influence of correlated local scores.

124

5. Probabilistic Candidate Pruning

Various Score Aggregations

Using monotonous score aggregation functions beyond simple sums is al-
ready supported, to a large extent, within our framework. As described in
Section 3.1.2, a large class of aggregation options can simply be cast into
the precomputation of local scores, so that the actual aggregation step again
becomes a simple summation. For example, with weighted summation the
weights for each dimension can be factored into the local scores; IR-style
TF·IDF-based scores are of this type, since IDF values can be viewed as di-
mension weights. Also note that Cosine similarity in IR is usually reduced
to summation (i.e., scalar products between document and query vectors)
by normalizing all document vectors to length 1 using L2 norm. Similarly,
the product can be cast into a simple summation over log-transformed docu-
ment and query weights. Using the maximum for score aggregation is even
simpler than summation; instead of computing the convolution of several Si

distributions, we merely compute P [maxi{Si} > δ] = 1−∏
i P [Si ≤ δ]. Sec-

tion 7.6 discusses the materialization of meta histograms that capture this
max-distribution for multiple merged lists in the context of query expansion.

Various Score Distributions

As for score distributions, we can accommodate a wide variety of distributions
into the Chernoff-Hoeffding bound approach discussed in Subsection 5.2.1.
For example, it would be straightforward to incorporate Zipf distributed
scores, where P [Si = νk] for equidistant values νk is proportional to 1/k and
the cumulative distribution corresponds to the harmonic series, and we can
also easily handle heterogeneous mixes of different distributions, say Uniform
for some index lists but Zipf for some highly skewed ones. Moreover, our ex-
periments indicate an effective pruning behavior of the Poisson estimator for
more skewed distributions such as real-world TF·IDF-style scores, or even ar-
tificially generated Zipf distributions, with a good trade-off between retrieval
quality and efficiency. 2-Poisson mixes would be another intriguing option,
taking the probabilistic arguments for the BM25 scoring model into account,
with similar closed-form solutions for the convolution. For the histogram ap-
proach of Section 5.2.3, more general distributions are a non-issue, because
histograms are approximations of arbitrary distributions.

Selectivity Estimations

The score predictor implicitly assumes that a document occurs in all its
missing dimensions, hence it inherently overestimates the probability that a
document can get a score higher than the current min-k. For a more precise

125

5.3. Efficient Queue Management

estimation, we would like to also take the selectivity of the lists into account,
i.e., the probability that a document occurs in the remaining part of a list.
A simple extension to our histogram approach would be to just add an ad-
ditional 0-scored bucket with the frequency n−|Li|

n
of all documents that are

not contained in Li. Unfortunately, this 0-scored bucket would dominate all
the other buckets in the basic input histograms as well as in the convolu-
tion histograms, yet it would be difficult to incorporate this approach also
into our closed-form score predictors, using equi-width histograms, Chernoff-
Hoeffding bounds, or through fitting a parameterized Poisson predictor. We
rather postpone the solution at this point and will come back to this issue
in Section 6.2.2, where we discuss a combined score predictor and selectivity
estimator.

Feature Correlations

As for correlations between the local scores from different index lists, the
generalized Chernoff-Hoeffding bounds already provide an approach. The
histogram approach, on the other hand, would have to use multidimensional
histograms to capture joint distributions. We are not convinced that this
is practically viable except for specialized settings. Multidimensional his-
tograms over all index lists may be very space-consuming and either sparse
or inaccurate, and the subspace that is relevant for a given query is known
only at query time when histogram building would already be part of the
user-perceived response time. Fitting a parameterized multidimensional dis-
tribution, e.g., a multivariate Normal distribution, to the data seems more
promising, but the decision for a particular type of distribution function
would have to be carefully justified. Section 6.2.3 also provides a more gen-
eral solution to this issue, where feature correlations are captured by a more
sophisticated selectivity estimator that may in turn be combined with our
score predictor approach. Our experiments indicate that for probabilistic
candidate pruning, the score predictor approach already discriminates diffe-
rent candidate items reliably and provides a versatile building block for highly
efficient top-k query processing with a controllable loss in result precision and
recall.

5.3 Efficient Queue Management

Our query processing algorithms use the probabilistic models as predictors
for the global scores of data objects that have not been fully evaluated or not
seen at all in the index scans so far. Based on this central building block, we

126

5. Probabilistic Candidate Pruning

have developed several algorithms that differ in their selection of candidates
to which they apply the probabilistic predictions, as well as in their actions
that they take when a threshold test for a candidate fails, i.e., the candidate
is unlikely to be able to qualify for the top-k result. All algorithms maintain
the set of current top-k objects and the set of candidates organized as a hash
table based on object ids.

5.3.1 Conservative Algorithm

A naive algorithm would simply predict the scores of all candidate objects in
every step of the index scans and drop all candidates whose probabilities of
qualifying for the top-k result are sufficiently low. This would incur very high
overhead for probabilistic threshold tests; moreover, the score prediction for
an object d would have to be recomputed whenever one of the highi values
in the set Ē(d) = {1..m} −E(d) changes. A better way is to group the can-
didates by their E(d) sets, placing all objects with the same set of evaluated
dimensions into one partition using bestscore(d) as priorities. We will refer
to this pruning strategy as the Conservative Algorithm (or Prob-cons for
short).

Then it suffices to test only the best object per group, i.e., the one with
the highest predicted score. This object dominates all other candidates in
the same group in terms of the probability of qualifying for the top-k result.
Across groups, however, the top objects are not directly comparable. This
strategy benefits from the observation that in the beginning of the index scans
the distribution of remainder sets is scattered across different lists and groups
of remainder dimensions, but very quickly after the pruning of candidates
dominates the amount of newly discovered candidates, namely at the latest
when

∑
i highi ≤ min-k. Then there are only very few dominating groups

consisting of the longer index lists left, each with the potential to prune
a major amount of remaining candidates with only a single probabilistic
threshold test.

Based on this consideration, the conservative algorithm maintains a pri-
ority queue for each subset E(d) ⊆ {1..m}, i.e., up to 2m − 1 queues for a
query with m specified conditions. Each of the queues merely contains point-
ers to the hash table entries of the candidate objects. Note that m is much
smaller than the dimensionality of the data space (e.g., for keyword queries
over a text document space).

As an item d is evaluated at the current scan position posi in index
list Li, the conservative algorithm deletes d from the Ē(d) queue and, if
worstscore(d) still fails the threshold min-k, inserts it into the E(d) ∪ {i}
queue using its updated bestscore(d) as priority; the insertion is possible

127

5.3. Efficient Queue Management

with cost O(logn) using a binomial heap, or with amortized cost O(1) using
a Fibonacci heap [CLRC01]. If E(d) ∪ {i} = {1..m}, i.e., d is completely
evaluated, then d is dropped from the candidate list. In this case, d’s score
bounds have converged to worstscore(d) = bestscore(d); and either d exceeds
the min-k threshold such that d is added to the top-k list, or it is not a
relevant candidate any more. If an index list Li has been completely scanned
down to its end, we set highi = 0 and may safely remove i from all items’
remainder dimensions and update their bestscores, which in turn triggers the
pruning of many candidates.

For periodic index pruning, e.g., after every b = 1, 000 index scanning
steps, the top elements of all queues are probabilistically tested against the
current threshold min-k. When a top element fails the test, then all elements
of that queue are dropped from the candidate list. The algorithm proceeds
with fewer candidates and eventually stops when all queues have become
empty. Note that there is also one queue for E(d) = ∅ with a single virtual
candidate, thus capturing the predicted score for an object that has not been
seen at all so far.

Advancing the scan pointer in one index list may affect the priorities of
other candidates, too, namely by possibly reducing the highi value of one
dimension. But within each queue, this change will affect all candidates in
the same way; so we can simply track

∑
i∈Ē(d) highi per queue in constant

time O(1) as basis for pruning.

5.3.2 Aggressive Algorithm

The Aggressive Algorithm (Prob-aggr) is the extreme opposite of the Con-
servative Algorithm. It considers one candidate object for probabilistic test-
ing, only, namely the virtual document d with E(d) = ∅, worstscore(d) = 0,
and bestscore(d) =

∑m
i=1 highi consisting of the upper bounds highi at the

current scan positions. If the score prediction for this object falls below the
threshold min-k, the algorithm stops immediately. Since the prediction for
this unknown object is exclusively based on the highi scores at the current
scan positions, this item’s bestscore yields an upper bound for all yet unseen
documents. That is, even without probabilistic pruning this algorithm ty-
pically stops before the truly best candidate would fail the min-k threshold
and, thus, yields an approximate result even without the probabilistically
relaxed threshold termination. Similarly to a real candidate document, we
may also reason about the probability P [

∑
i Si > min-k | Si ≤ highi] of the

virtual candidate to get into the top-k results as an additional accelerating
factor for query processing and algorithm termination, even before

∑
i highi

really falls below min-k. The strength of the aggressive algorithm is its min-

128

5. Probabilistic Candidate Pruning

imal overhead, but we do not expect it to perform too well in terms of result
precision. Moreover, because of its more aggressive pruning behavior with
only a single candidate to be tested probabilistically, this method is less ro-
bust and will scale worse with the probabilistic pruning parameter ε, with
major potential drops in result precision and runtime for individual queries.

5.3.3 Progressive Algorithm

In between the overly eager behavior of the Prob-aggr and the substantial
queuing overhead of Prob-cons is the Progressive Algorithm (Prob-prog)
which maintains a single priority queue for all candidate objects. Again, the
queue elements are prioritized in descending order of bestscores. In each step,
the priority of the current candidate, i.e., the one previously fetched from the
index list, is updated and the queue is maintained accordingly. Note that
the major amount of candidates is typically not rediscovered and updated,
though, and would get “stuck” in the queue for an overly long duration.

The algorithm is conservative, because it does not immediately track
the bestscore changes that result from reduced highi values in each step, but
leaves the bestscore values higher than they actually are. Otherwise all queue
elements would have to be updated after each sorted access step which would
in fact lead to rebuilding the entire queue. An additional implementation
trick that we employ is that the queue is periodically traversed, e.g., again
after every b = 1, 000 index-scanning steps, and we tentatively compute the
up-to-date bestscore values of each queue element based on the current highi

values. All elements that do no longer pass the threshold test are dropped
from the queue. The priorities of the “surviving” elements are not updated
to avoid a massive batch of queue operations. So this periodic removal of
unneeded queue elements can be seen as a kind of garbage collection without
having to rebuild the entire queue.

In conjunction with the periodic garbage collection, the progressive algo-
rithm invokes the probabilistic predictor for each element d of the queue using
its up-to-date bestscore(d). All objects that fail this probabilistic threshold
test are dropped from the queue. The algorithm stops when its queue be-
comes empty or the top element’s bestscore falls below the threshold min-k.

Smart Algorithm

Prob-prog could stop earlier, if it reconsidered all elements in the priority
queue with the changing highi values reflected in each step. In the Smart
Algorithm (Prob-smart), we periodically rebuild the entire priority queue of
current candidates with the currently known highi values taken into consider-

129

5.3. Efficient Queue Management

ation. By default, the queue is rebuilt every b = 1, 000 steps. The rebuilding
has amortized cost O(n logn) for n queue elements, using a Fibonacci or a
Binomial heap [CLRC01]. For an online algorithm operating on very large
index lists this cost may still be out of the question. Therefore, the smart
algorithm maintains only a bounded priority queue. Whenever it is rebuilt,
only the best q elements are kept, with q being in the order of a few hundred
or thousand. Newly encountered data objects are admitted to enlarge the
queue until the next rebuild; so the maximum size is actually q+b, but every
rebuild truncates the size back to q.

As the priority queue is fully up-to-date after every rebuild, the smart
algorithm can take more aggressive actions than the progressive method with
regard to candidate pruning. If the top element of the rebuilt queue does not
pass the probabilistic threshold test, the smart algorithm immediately stops
all index scans and terminates.

5.3.4 Common Framework

All four algorithms share the same algorithmic skeleton illustrated for the
TopX core query processor in Algorithm 3 (see Section 4.3). We refer to the
above queuing extensions as the Prob-k family of algorithms. Note that,
in addition to the probabilistic predictions and corresponding probabilis-
tic threshold tests, all algorithms also include the original min-k threshold
test to compare the maximum bestscore among all candidates against the
worstscore of the current top-k objects. If this test fails, all index scans can
be stopped immediately, and this extra test is so lightweight that we can
always include it after each sorted access.

Candidate Queuing vs. Candidate Pooling

The usage of a separate (and optionally bounded) priority queue for main-
taining the candidate pool yields an up-to-date view on the (top) candidates
that are not currently among the top-k results and allows for a cheap min-k
threshold test after each single index access and candidate update just by
testing the top-priority item from the queue in constant time O(1). In par-
ticular, this allows us to immediately terminate query processing in-between
two batches of sorted access, however, at the expense of having to contin-
uously maintain a sorted candidate list in memory with amortized update
cost of O(log q) per index access and candidate update. If we set aside this
aspect and allow for a slightly coarser stopping condition, we may just omit
continuous queue updates and only test the threshold condition in conjunc-
tion with each of the iterative thread synchronizations and queue rebuilds.

130

5. Probabilistic Candidate Pruning

Since all candidates’ priorities can only be updated iteratively for a feasible
implementation and therefore tend to be slightly overestimated anyway, we
might be willing to trade a small increase in access rates of at most b − 1
steps for saving a significant amount of computation cost.

Hence, as an alternative to the conservative queuing approach, we may
merely maintain an unsorted list as candidate pool, e.g, by iteratively polling
the whole cache, with iterative candidate updates and linear scans for a single,
currently top-ranked candidate, with linear cost in the number of candidates
O(q). However, for the experiments with a primary focus on saved access
rates, the default queuing strategy of the Prob-sorted family of algorithms
was used.

As for the probabilistic pruning, we merely mark candidates that fail the
probabilistic threshold test and only drop them from the queue but not from
the cache. This significantly increases the robustness of the probabilistic
pruning, as it ensures that candidates that might have been falsely pruned
due to predictor mistakes are still “remembered” and have a chance to get
into the top-k list at a later point of the index scans, while early algorithm
termination due to a reduced queue size is assured.

Choosing the Queue Bound

Using a bounded queue as proposed by the Smart algorithm implies turning
the safe stopping criterion as specified by the original TA algorithm into
a heuristic also when no probabilistic candidate pruning is used, since an
eagerly small choice of the queue bound q might make the algorithm run
out of candidates too early and return approximate top-k results. Using an
unbounded queue on the other hand would render the procedure extremely
inefficient with most of the actual query processing time being spent on
updating and sorting candidates.

In order to determine a safe choice for the queue bound, let us therefore
consider the following construction: The task of finding the top-k results can
be reformulated as to finding the score of the final (k + 1)th candidate d̃,
i.e., the best candidate that just does not make it correct top-k result any
more. As we keep on scanning the inverted lists, we have to remember all
candidates that are still eligible for the top-k in some kind of memory or
queue. Now, d̃ has to be detected at an early point of the sequential scans,
because it must have a bestscore that makes it a top candidate until right
before algorithm termination, since its bestscore yields the counterpart for
the min-k threshold for stopping. The thing is that we do not know d̃ in
advance, and moreover, it may even temporarily move through the top-k list
and be pushed back into the candidate queue by some other top-k items.

131

5.4. Top-k Guarantees for Probabilistic Candidate Pruning

Such a top-k pass-through of d̃ can happen at most b times during a
batch of b index accesses. Then, the queue is truncated back to the queue
bound q. Assuming no ties in local scores, d̃ is either in the intermediate
top-k or among the top-b candidates at any time of the query processing,
such that q ≥ b is a safe choice for truncating the queue. With ties, however,
this bound might degrade. Experiments for the TREC GOV collection (see
Section 9.7.1) with queue bounds q down to a size of 100 (and a batch size
b = 200) did not exhibit any approximative results due to the bounded queue
heuristic – but it did substantially decrease the amount of queuing overhead
and, thus, contribute in much better query runtimes.

NRA Baseline Implementation

Finally, we comment on our implementation of the NRA baseline algorithm.
The original papers on TA and NRA do not specify any concrete data struc-
tures for the candidate set and how to determine the best candidate in each
step. We decided to implement these aspects analogously to the Prob-prog
algorithm, by maintaining a single priority queue with bestscore values as pri-
orities. As for implementing the priority queue, we chose a Fibonacci heap
with very efficient amortized insertion cost of O(1) and logarithmic update
cost O(log q). Like before, we do not update all queue elements whenever
one of the highi values changes, but only update the element currently en-
countered in the index scan and merely perform periodic garbage collections
on the queue with tentative updates.

5.4 Top-k Guarantees for Probabilistic Candi-
date Pruning

The previous considerations provide us with score predictions for individual
candidate items at arbitrary steps during the sequential index accesses. These
probabilistic predictions in our query processing strategies lead to probabilis-
tic guarantees from a user viewpoint, if we restrict the action upon a failed
threshold test to dropping candidates but stop the entire algorithm only if
we run out of candidates. This is the situation given in the Prob-cons and
Prob-prog algorithms. In this case the probability of missing an object that
should be in the true top-k result is the same as erroneously dropping a can-
didate, i.e., pruning errors are assumed to be uniformly distributed among
all items discovered during index processing; and this error, call it pmiss, is
bounded by the probability ε that we use in the probabilistic predictor when
assessing a candidate. For the relative recall of the top-k result, i.e., the frac-

132

5. Probabilistic Candidate Pruning

tion of true top-k objects that the approximate method returns, this means
that

P [recall = r/k] = (5.33)
P [precision = r/k] = (5.34)

=

(
k

r

)
(1 − pmiss)

r pmiss
(k−r) (5.35)

≤
(
k

r

)
(1 − ε)rε(k−r) (5.36)

where r denotes the number of correct results in the approximate top-k. We
can then efficiently compute Chernoff-Hoeffding bounds for this Binomial
distribution. Note that the very same probabilistic guarantee holds for the
precision of the returned top-k result, simply because recall and precision use
the same denominator k in this case. The predicted expected precision then
is

E [precision] =
k∑

r=0

P [precision = r/k] · r

k
(5.37)

= 1 − ε . (5.38)

For the more heuristic strategies, Prob-smart and Pro-aggr, that only
test top elements of priority queues and, upon a failed probabilistic threshold
test, stop the entire algorithm, carrying over the candidate-error probability
ε to an argument about recall and precision guarantees would be more so-
phisticated. Our experiments for the Prob-cons and Prob-prog query eval-
uation strategies using histogram convolutions over a basic TF·IDF model in
fact reveal the relative precision/recall curves almost as linearly decreasing
functions of ε which confirms the bounds suggested above.

This result yields a compact and intuitive assumption on the result quality
that the approximate top-k algorithms provides compared to the exact top-
k algorithm without probabilistic pruning in terms of relative precision or
recall, i.e., the overlap of two result sets. In practice, the score differences
between the top-ranked items are often very marginal for many real-world
datasets and scoring models such as TF·IDF or BM25. Moreover, all the
scoring models developed in IR which are aiming to model user-perceived
relevance as a compact score aggregation, often using term independence
assumptions, have a heuristic nature themselves. Our experiments on various
data collections using human relevance judgments for query results indicate
that with increasing pruning aggressiveness, the user-perceived result quality
decreases at a much lower rate than the relative overlap measures, especially

133

5.4. Top-k Guarantees for Probabilistic Candidate Pruning

in typical large-corpus benchmark settings such as TREC or INEX, where
absolute recall for a top-k query, with k being in the order of 10 or 20, is not
a critical issue. Often the top-k results exhibit significant changes through
probabilistic pruning and early algorithm termination, but the user-perceived
precision measures remain almost equally high.

134

Chapter 6

Index Access Scheduling

Approximation may be a viable choice from an IR point-of-view, with almost
arbitrary runtime gains, however, at the price of a noticeable loss in result
precision and recall. In this chapter, we investigate on how to exploit very
similar statistics, compared to those employed for probabilistic candidate
pruning, for accelerating query executions with no loss in result quality, thus
following our work developed in [BMT+06]. The continuous optimization of
top-k queries entails scheduling for the two kinds of accesses:

1) the prioritization of different index lists in the sorted accesses (SA),
and

2) the decision on when to perform random accesses (RA) and for which
candidates.

The chapter develops an integrated view of SA and RA scheduling is-
sues and presents novel strategies that outperform prior state-of-the-art pro-
posals such as Fagin’s Combined Algorithm (CA) [FLN01] algorithm by a
large margin. Our main contribution are new, principled scheduling methods
based on a Knapsack-related optimization for sequential accesses and a be-
neficial cost model for random accesses. The methods can be further boosted
by harnessing probabilistic estimators for scores, selectivities, and index list
correlations.

Albeit the performance gains of these algorithms is significantly lower
than for the probabilistic pruning approach, our experiments show that our
proposed methods achieve significant gains compared to the CA baseline on
three different datasets (the TREC Terabyte text collection, a semistructured
version of the IMDB movie collection, and a large, highly structured collec-
tion of HTTP server logs for the 1998 soccer worldcup): a factor of up to 3
in terms of abstract execution costs, and a factor of 5 in terms of absolute

135

6.1. Index-Optimized Top-k Query Processing

runtimes of our implementation. We also show that our best techniques are
within 20 percent of an empirically evaluated lower bound for the execution
cost of any top-k algorithm from the TA family; so our probabilistic cost
model gets fairly close to an optimal scheduling.

6.1 Index-Optimized Top-k Query Processing

6.1.1 Adaptive Index Access Scheduling

The potential cost savings for flexible and intelligent scheduling of index-
scan steps result from the fact that the descending scores in different lists
exhibit different degrees of skew and may also be correlated across different
lists. For example, dynamically identifying one or a few lists where the scores
drop sharply after the current scan position may enable a TA-style algorithm
to eliminate many top-k candidates much more quickly and terminate the
query execution much earlier than with standard round-robin scheduling or
the best compile-time-generated plan. These savings are highly significant
when index lists are long, with millions of entries that span multiple disk
tracks, and the total data volume rules out a solution where all index lists
are completely kept in memory (i.e., with multi-Terabyte datasets like big
data warehouses, Web-scale indexes, or internet archives).

Adaptive Query Executions

As the local characteristics (i.e., the skew) of score distributions may vary
across index lists and with increasing scan depths, the SA scheduling deci-
sions have to be adaptive, thus taking the currently best combination of in-
dividual sorted access batches into account, in order to lower the bestscores
of many candidates to the highest possible extent and with the lowest effort
in terms of additional scan depths required. This way, the SA scheduling
has to be aware of both the distribution of scores in the upcoming parts of
the index lists (which calls for the usage of histograms) and of the benefit
of these scheduling decisions for each individual candidate in the queue, in
order to eliminate as many candidates as possible and, thus, stop earlier.

RA scheduling, on the other hand, has to take each individual candidate
object into account to determine if and when it is cost-beneficial to explicitly
schedule a random access for that particular candidate in order to determine
its final score. It therefore compares the cost of looking up the candidate,
thus paying the price for one or more expensive random accesses to disk-
resident index structures, with the (expected) cost of not looking up that
candidate, and thus having to keep the candidate in the queue, waiting for

136

6. Index Access Scheduling

it to be pruned or to get promoted to the intermediate top-k results during
another batch of sorted accesses. In any case, scheduling a random access
definitely affects the dynamics of the system, since the candidate will be
removed from the queue after the random lookup. Either it is pruned and
ultimately dropped when its final score falls below the min-k threshold, or
it is promoted to the top-k list. In the first case, the algorithm might stop
earlier, because the queue gets smaller; in the second case, taking another
item into the top-k results means increasing the min-k threshold which may
in turn lead to an increased pruning of candidates from the queue.

Hence, the ultimate goal is to accelerate query executions and, at the same
time, limit or even aim to reduce the memory consumption for candidate
queues and other auxiliary data structures. The statistics that we consider
in this context are histograms over the score distributions of individual index
lists and also the (precomputed) correlations between index lists that are
processed within the same query.

Adaptive Environment Customization

Moreover, the presented scheduling algorithms are also adaptive to different
system environments and middleware layers. Given an arbitrary cost ratio
cR/cS for the cost of a single random versus a single sorted access, which
can easily be empirically measured or even be set up to be self-tuning, we
can easily adapt the generated scheduling decisions, e.g., using a cost ratio
of 50–100 for a top-k engine on top of a DBMS, with relatively low sequen-
tial throughput but good random access performance through caching, or
500-1,000 for inverted files and direct disk access providing faster sequential
access and slower random access performance, or lastly 1,000–10,000 for a
distributed system with high network latency. Note that cR/cS = ∞ would
generate a plan that just corresponds to the NRA baseline algorithm; and
cR/cS = 0 corresponds to the original TA (see [Fag99] for both).

6.1.2 Extended Classification of Threshold Algorithms

Based on the previous considerations, let us first extend our initial taxonomy
of top-k selection queries as introduced in Section 1.2. Different algorithmic
instances within the paradigm of top-k selection queries with support for
both sorted and random access differ in the ways how they handle three
fundamental issues:

1) how sorted accesses are scheduled,

2) how random accesses are scheduled, and

137

6.1. Index-Optimized Top-k Query Processing

3) how random accesses are ordered.

This subsection presents an extended taxonomy of the different possibilities
for each dimension and classifies the existing approaches (TA, NRA, CA) in
this scheme and points out the new approaches presented here.

Sorted Access Scheduling

• RR: Round-robin (TA, see [FLN03, GBK01, NR99], NRA, see [FLN03,
GBK01], and CA, see [Fag02]), see also Section 1.4.1.

• KSR: Knapsack-based optimization of RR that aims to maximize the
reduction of scores at the future scan positions for a fixed batch of
sorted accesses (see Section 6.3.1).

• KBA: Knapsack-based optimization of RR that aims to maximize an
aggregated benefit among all candidates currently being in the queue
for a fixed batch of sorted accesses (see Section 6.3.2).

Random Access Scheduling

• Never: Perform SA only (NRA, see [FLN03, GBK01]).

• All: After each SA, perform full RA for each new candidate to re-
trieve its final score; no candidate queuing is required (TA, see [FLN03,
GBK01, NR99]).

• Each: After each round of SAs, schedule a balanced amount of RAs
according to the current cost ratio cR/cS between RAs and SAs per-
formed so far (CA, see [Fag02]).

• Last: We start with performing only batches of SAs and, at some point
in the algorithm, we switch to performing only RA, thus scheduling the
full amount of RA to eliminate all the remaining items in the queue
(see Section 6.4.1 and 6.4.2). We stop the SA batches according to
the estimated cost for the remaining RAs (i.e., corresponding to the
estimated number of candidates in the queue that need to be looked
up to raise min-k above the bestscore of the currently best candidate).

Random Access Ordering

• Best: Perform RAs in descending order of bestscore(dj) (CA, see
[Fag02] and Section 6.4.1).

138

6. Index Access Scheduling

• Ben: Perform RAs according to a cost model, i.e., proportionally to the
probability p(dj) that dj gets into the top-k results (see Section 6.4.2).

Any algorithm for TA-style top-k query processing now corresponds to a
triplet, for example, the NRA scheme from [FLN03] corresponds to RR-Never,
TA corresponds to RR-All, and CA is RR-Each-Best. Obviously, only cer-
tain RA-scheduling and -ordering combinations make sense, whereas any
SA-scheduling approach may be combined with a given RA-scheduling and
-ordering combination. In Sections 6.3 and 6.4 we will investigate the more
sophisticated combinations. Our best results have been obtained by the com-
bination KSR-Last-Ben.

6.2 Probabilistic Extensions

In this section, we refine the details for estimating the probability p(d) that a
candidate document d with non-empty remainder set Ē(d) may qualify for the
top-k results. Recall from the previous chapter that the way how we estimate
p(d) depends on the assumptions that we make about the distribution of
unknown scores that d would obtain from each remaining list in Ē(d). For
each missing dimension, we consider a random variable Si for the score of d
in that dimension. Then we estimate the probability pS(d) that a candidate
document can get enough score mass from its remaining lists to enter the
top-k as

pS(d) := P

⎡⎣ ∑
i∈Ē(d)

Si > δ(d) | Si ≤ highi

⎤⎦ (6.1)

As this involves the sum of random variables, this entails computing the con-
volution of the corresponding distributions to compute this probability, using
either a parameterized score estimator or compact and flexible histograms.
Then we can utilize pS(d) as an approximation of p(d) (as deduced from
Section 5.2).

6.2.1 Selectivity Estimator

The score predictor implicitly assumes that a document occurs in all its
missing dimensions, hence it inherently overestimates the probability that a
document can get a score higher than the current min-k threshold. For a
more precise estimation of the probability, we take the selectivity of the lists
into account, i.e., the probability that a document occurs in the remaining

139

6.2. Probabilistic Extensions

part of a list. For a single list Li with length li and a total dataset size of n
documents, this probability is

qi(d) :=
li − posi

n− posi
, (6.2)

where posi denotes the current scan position in list Li. For a partially eva-
luated document d with a set Ē(d) of remainder dimensions, the probability
q(d) that d occurs in at least one of the dimensions in Ē(d) is computed as

q(d) := P
[
d occurs in at least one list in Ē(d)

]
(6.3)

= 1 − P
[
d does not occur in any list in Ē(d)

]
(6.4)

= 1 −
∏

i∈Ē(d)

(1 − qi(d)) (6.5)

assuming independence for tractability. Note that this independence as-
sumption can be relaxed using a covariance-based technique as introduced in
Subsection 6.2.3.

6.2.2 Combined Score Predictor & Selectivity Estima-
tor

In the following, we write A(d, Y ′) for the probabilistic event that d occurs
in all lists Y ′ and in none of the remaining lists in Ē(d) \ Y ′ and O(d, Ē(d))
for the probabilistic event that d occurs in at least one of the dimensions in
Ē(d). Then the combined probability that a document d can get into the
top-k results can be estimated as follows:

p(d) := P [d ∈ top-k] (6.6)

=
∑

Y ′⊆Ē(d)

P

[
A(d, Y ′) ∧

∑
i∈Y ′

Si > min-k

]
(6.7)

≤
∑

Y ′⊆Ē(d)

P

⎡⎣ A(d, Y ′) ∧
∑

i∈Ē(d)

Si > min-k

⎤⎦ (6.8)

= P

⎡⎣ O(d, Ē(d)) ∧
∑

i∈Ē(d)

Si > min-k

⎤⎦ (6.9)

= P

⎡⎣ ∑
i∈Ē(d)

Si > min-k | O(d, Ē(d))

⎤⎦
· P [

O(d, Ē(d))
]

(6.10)
= pS(d) · q(d) (6.11)

140

6. Index Access Scheduling

This corresponds to a conjunctive combination of the probabilities from the
score predictor and selectivity estimates, assuming independence between the
score predictor and the selectivity estimator, however.

6.2.3 Feature Correlations

Assuming that documents occur independently in different lists may lead to
a crude and often useless estimator as terms used in queries are frequently
highly correlated. To capture this in our probability estimator, we precom-
pute pairwise term covariances for terms in frequent queries. For two such
terms and their corresponding lists Li and Lj , we use a contingency table to
capture co-occurrence statistics for these terms, e.g., using frequently used
term pairs from query logs or by extracting 2-grams from a thesaurus.

In the following, we denote by li the length of list Li and by lij the number
of docs that are in both Li and Lj . We then consider the random variable
Xi which is 1 if some doc d is in Li (the same distribution for all d, but not
the same value, of course), and 0 otherwise. To predict Xj(d) after knowing
Xi(d) = 1, we have to compute the covariance cov(Xi(d), Xj(d)) of Xi and
Xj . Following basic probability theory, we can estimate this covariance as

cov(Xi, Xj) =
lij
n

− li · lj
n2

. (6.12)

In the remainder of this section, we show how feature correlations can
be exploited for a better estimation of selectivities. We want to estimate
the probability qi(d) that a document d occurs in the remainder of the list
Li given that it already has occurred in some lists E(d), using the pairwise
covariances of Li with the lists in E(d). First we consider the case where
E(d) = {j} consists of a single list. Using the equality

P [Xi ∧Xj] = P [Xi] · P [Xj] + cov(Xi, Xj) (6.13)

for Bernoulli random variables, we can then derive

P [Xi|Xj] =
P [Xi ∧Xj]

P [Xj]
(6.14)

=
P [Xi] · P [Xj] + cov(Xi, Xj)

P [Xj]
(6.15)

=
li
n
· lj

n
+

lij
n
− li·lj

n2

lj
n

(6.16)

=
lij
lj

(6.17)

(6.18)

141

6.3. Sorted Access Scheduling

We would like to estimate P [Xi = 1 | i ∈ E(d)] = P [Xi = 1 | X1 =
1∧X2 = 1∧ . . .∧Xj = 1] with E(d) = {1, 2, . . . , j} and the elements of E(d)
conveniently renumbered.

Since we only have pairwise covariance estimates, we work with the ap-
proximation P [Xi = 1 | i ∈ E(d)] ≥ maxj∈E(d) P [Xi = 1 | Xj = 1] which
yields

qi(d) := P [Xi = 1 | i ∈ E(d)] (6.19)
≥ max

j∈E(d)
P [Xi = 1 | i ∈ E(d)] (6.20)

= max
j∈E(d)

lij
lj

(6.21)

(6.22)

Then we can now plug this correlation-aware estimation for the probability
that a document occurs in a single list into the selectivity estimator from
Section 6.2.1 and the combined score predictor from Section 6.2.2.

6.3 Sorted Access Scheduling
Recall that index lists are processed in batches of b sorted accesses. That
is, the query engine fetches b index entries from all m query-relevant index
lists, and these b entries can be distributed across the lists in an arbitrary
manner. The priority queue Q for result candidates is rebuilt with updated
priorities after each round of b such steps.

Our goal in sorted-access (SA) scheduling is to optimize the individual
batch sizes bi (i = 1..m) across all the lists, i.e., choose b1, . . . , bm so as
to maximize some benefit function under the constraint

∑m
i=1 bi = b. For

the batched sorted access mode, the units of the scheduling decisions are
entire batches or blocks of the inverted lists. In the following we will present
our methods in terms of SAs to individual index entries; the block-oriented
variant follows in a straightforward manner.

Inspired by the earlier work on simple scheduling heuristics [GBK01], our
first method aims to reduce the scores at the index scan positions, the highi

bounds, as quickly as possible. The rationale of this strategy is that low
highi values result in lower bestscores of top-k candidates, which in turn en-
ables us to prune more candidates more quickly. It turns out, however, that
this strategy does not perform well in many cases. We have developed a
more general and typically better performing scheduling strategy that con-
siders an explicit notion of benefit of a candidate in Q and aggregates over
all candidates for a judicious decision on the bi steps. We will discuss the

142

6. Index Access Scheduling

score-reduction strategy in Section 6.3.1 and the benefit-aggregation strat-
egy in Section 6.3.2. As we show in Appendix A.3.1, both strategies have a
reduction to an NP-hard Knapsack problem, hence we have coined them KSR
(Knapsack scheduling for Score Reduction) and KBA (Knapsack scheduling
for Benefit Aggregation).

6.3.1 Knapsack Scheduling for Score Reduction

Given the current scan positions pos1, . . . , posm, the Knapsack Scheduling for
Score Reduction (KSR) is looking for a schedule of b1, . . . , bm steps (with b1 +
. . .+ bm = b), that maximizes the total reduction in bestscores of documents
that are currently present in our candidate queue. For a candidate document
d ∈ Q, bestscore(d) reduces by

∆i := highi − scorei(posi + bi) (6.23)

if i ∈ Ē(d), i.e., when we scan bi elements further into list Li and do not see
the document d in the list Li, and by 0 if i ∈ E(d). Since the probability
of seeing a particular document by scanning a small part of a list is close
to zero, the expected reduction in bestscore(d) can be considered as ∆i as
shown in Figure 6.1.

posi

posi
+bi

i

... ...

index lists in E(d)

i

where
• i = highi – scorei (posi+bi) is the score

reduction in list Li and
• i is the mean score in Li in the range

between posi and posi+bi

Li

Figure 6.1: Expected score reduction and mean score for the next batch of
bi sorted accesses.

Hence the expected aggregated reduction in bestscores for all documents
in Q is given by wi · ∆i where wi := |{d ∈ Q | i ∈ Ē(d)}| is the number of
documents for which a reduction in bestscore is expected by scanning into
list Li. We can easily estimate the scorei(posi + bi) from the precomputed
histograms, assuming a Uniform distribution of scores within each histogram

143

6.3. Sorted Access Scheduling

cell. Note that scorei cannot fall below 0. We can now define our objective
function for the choice of bi values: maximize the score reduction

SR(b1, . . . , bm) =

m∑
i=1

wi · ∆i (6.24)

where we treat the ∆i values as a (deterministic) function of the bi choices
(ignoring potential estimation errors caused by the histograms). Since candi-
dates are assumed to be Uniformly distributed among all lists and remainder
groups, the globally best score reduction should affect most partially eval-
uated candidates and yet unseen items and reduce their bestscores to the
largest extent.

This problem is NP-hard, as we can reduce the well-known Knapsack
problem to it; see Appendix A.3.1. However, usually the number of lists m
for a query is small enough, and if we restrict our choice of b to a reasonably
small number of batched index blocks (usually c ·m for a constant c between
2 and 4), the number of possible schedules (b1, . . . , bm) for large list batches
(e.g., multiples of the amount of tuples that fit on a disk sector) to compute
the expected score reduction for all combinations is efficient enough to find
their maximum without causing any noticeable overhead.

Greedy Heuristics Based on Score Gradients

Obviously, for arbitrary query sizes m and batch sizes b, we do not want to
solve an NP-hard problem at query run-time, so we resort to efficient greedy
heuristics for the Knapsack scheduling. For Knapsack itself, a simple tech-
nique is to compute utility/weight ratios and select items in greedy order of
these values. The counterpart for scheduling is to consider the score gradi-
ents in the different lists as utility and the additional scan depth required to
achieve a certain gradient as weight. To this end, we can compute the score
look-ahead for each list if we made all b steps in that list, thus leading to:

gradient(Li) :=
highi − scorei(posi + b)

b
. (6.25)

These gradients reflect the relative value of the different lists. Again, the
look-ahead score scorei(posi+b) can easily be read off the precomputed index
statistics. Then we may finally choose the actual bi values in proportion to
the gradients:

bi = b · gradient(Li)∑m
ν=1 gradient(Lν)

(6.26)

= b · ∆i∑m
ν=1 ∆ν

. (6.27)

144

6. Index Access Scheduling

6.3.2 Knapsack Scheduling for Benefit Aggregation

The Knapsack scheduling framework introduced in the previous subsection
is intriguing and powerful, but it solely aims at reducing the local scores at
the current scan positions as quickly as possible which might not be the best
optimization criterion, because it does not exhaust any available candidate
statistics from the queue and the current top-k list. Although it allows us
to identify some low-scoring candidates and prune them earlier, it does not
necessarily lead to more information about the high-scoring candidates. In
particular, we may not find any additional scores of the current top-k results,
so that we cannot improve the min-k threshold, which would be another way
of pruning many candidates quickly. Key to increasing the min-k threshold
would rather be to perform additional random accesses; we will come back
to this issue in the next section.

An aspect directly related to SA scheduling is that we do not only want to
reduce the bestscore bounds of some candidates as much as possible, but are
actually more concerned about the bestscore bounds of those candidates that
are close to the min-k threshold. More generally, we would prefer a modest
bestscore reduction of many candidates over a big reduction for some smaller
fraction only.

To address these issues, the Knapsack Scheduling for Benefit Aggregation
(KBR) defines an explicit formalization of the benefit that we obtain from
scanning forward by (b1, . . . , bm) positions in the m index lists, taking into
consideration not only the current scan positions and score statistics, but
also the knowledge that we have compiled about the documents seen so far
during the scans. Benefit will be defined for each document, and we will then
aggregate the benefits of all documents in the current top-k or the candidate
queue Q. Observe that if a candidate document d has already been seen in
list Li, then neither bestscore(d) nor worstscore(d) changes when we scan
Li further. So, for each list Li, we will consider only the documents d ∈ Q
which are have not been seen in Li yet, i.e., i ∈ Ē(d). Then the probability
qbi
i (d) of seeing d in Li in the next bi steps is

qbi
i (d) := P

[
d in next bi elements of Li | i ∈ Ē(d)

]
(6.28)

= P
[
d in next bi | d ∈ Li ∧ i ∈ Ē(d)

]
· P [

d ∈ Li | i ∈ Ē(d)
]

(6.29)

=
bi

li − posi
· P [

d ∈ Li | i ∈ Ē(d)
]

(6.30)

=
bi

li − posi
· P [

Xi = 1 | i ∈ Ē(d)
]

(6.31)

145

6.3. Sorted Access Scheduling

≤ bi
li − posi

· max
j∈E(d)

lij
lj

(6.32)

We can estimate the reduction in bestscore(d) of a candidate document
d ∈ Q with regard to list Li as (1 − qbi

i (d)) · ∆i. On the other hand, if
a document d is actually found in Li by scanning further to depth bi, the
worstscore(d) of d increases which in turn contributes to increasing min-k
and, thus, in pruning more documents. Figure 6.1 also shows that the ex-
pected gain in worstscore(d), when list Li is scanned further to depth bi, is
given by qbi

i (d) · µ(posi, bi), where µ(posi, bi) is the mean score of the docu-
ments from current scan position posi to posi+bi. We can estimate µ(posi, bi)
as well from the precomputed histogram.

Now we can define our benefit function for every candidate document
d ∈ Q not already seen in list Li as

Beni(d, bi) =
(
1 − qbi

i (d)
) · ∆i + qbi

i (d) · µ(posi, bi) (6.33)

and the total benefit of scanning to depth bi in Li as

Beni(bi) =
∑
d ∈ Q
i ∈ Ē(d)

Beni(d, bi) (6.34)

Finally, we can define the overall benefit for a schedule s = (b1, . . . , bm) by a
simple benefit aggregation:

Ben(s) =
m∑

i=1

Beni(bi) (6.35)

So we are looking for a schedule s for which the benefit Ben(s) is max-
imized. This notion of an overall benefit includes an implicit weighting of
lists, by giving higher weight to the lists for which we have many documents
in the queue that have not yet been seen there and which would benefit
from a significant reduction of the highi bounds for these lists. Thus scan-
ning on these lists could make the decisive difference between pruning many
candidates or having to keep them in the queue. Again, the NP-hardness
of this problem can be proven by a similar construction as sketched in Ap-
pendix A.3.1. With the above definitions, our goal clearly is to maximize the
overall benefit Ben(s) subject to the constraint b1 + . . . + bm = b. As justi-
fied in the previous subsection, we can usually compute the optimal solution
exactly without any noticeable overhead, when we allow only a few possible
combinations of large, discrete batching depths bi in each round, and the
number of input lists m is small.

146

6. Index Access Scheduling

Greedy Heuristics Based on Aggregated Benefits

Just like in the previous subsection, this is a Knapsack-related NP-hard prob-
lem. So even if we had all Beni(bi) values precomputed and stored in a table
for all possible choices of b1, . . . , bm, we would not want to solve this opti-
mization problem at query runtime exactly for the general case. Analogously
to the approach of the previous subsection, we may rather employ a fast and
greedy approximation.

We only consider the Beni(b) values that reflect the relative importance of
the different lists (in the current state of the query processing) for a constant
batch size b and with regard to all candidates currently being in the queue.
Finally, we may choose the bi values in proportion to the Beni(b) importance
levels of the various lists:

bi = b · Beni(b)∑m
ν=1Benν(b)

(6.36)

6.4 Random Access Scheduling
Random access (RA) scheduling is crucial both in the early and the late
stages of top-k query processing. In the early stage, it is important to en-
sure that the min-k threshold moves up quickly so as to make the candidate
pruning more effective as the scans proceed and collect large amounts of can-
didates. Later, it is important to avoid that the algorithm cannot terminate
merely because of a few pieces of information missing about a few borderline
candidates. In the following, we present various strategies for deciding when
to issue RAs and for which candidates in which lists. Some of them have
a surprisingly simple heuristic nature, others are cost-model-driven. All of
them and also the hybrid methods can be easily integrated with different
strategies for SA scheduling. Following the literature [CwH02, MBG04], we
refer to score lookups by RAs as probing.

6.4.1 Last-Probing

The Last-Probing approach works in two strictly separated phases: the first
phase performs only SAs and no RAs at all, then the algorithm stops the
index scans and is completed by the second phase with all RAs that are
necessary to identify the final top-k result. Obviously, the second phase can
start only when

∑m
i=1 highi ≤ min-k, but this point is usually reached fairly

soon in real queries on real data. With this constraint, the main criterion
for switching from the first to the second phase is based on the accumulated
costs for SAs in phase 1 so far and the expected costs for RAs in phase 2.

147

6.4. Random Access Scheduling

It is derived from a simple cost model that reflects the typical behavior of
TA-style top-k query processing.

Suppose we want to move from phase 1 to phase 2 at point x (where x
can be in terms of discrete time or in terms of scan depth or number of SAs).
The number of SAs up to this point is typically linear, hence the cost is

CSA(x) = cS · ax (6.37)

with some coefficient a and cS the cost for a single SA. The number of RAs
in phase 2, starting at point x, should go down with increasing x. Typically,
the cost would decrease much faster than linear, for example, in the form

CRA(x) = cr · 1

cx
(6.38)

with some coefficient c and cR the cost for a single RA as shown in Figure 6.2.
This assumption is invigorated by the observation that after the first batches
of sorted accesses, namely when

∑m
i highi ≤ min-k, a vast majority of can-

didates is immediately pruned and then only very few candidates are that are
either going into the final top-k or very close matches are kept in the queue
for a long time until they would finally be uncovered through sorted accesses
alone. This is the typical behavior (and the weakness) of the NRA algorithm.
So the RA costs to resolve the remaining candidates in the queue decreases at
a much higher rate than the SA costs are increasing which would be the case
when we decided to keep on scanning sequentially. Similarly, the chances to
hit a final top-k item among the queued candidates and thus increase min-k
(which leads to immediate pruning of more candidates increases with only a
small amount of candidates left (see Section 6.4.1).

100 200 300 400 500 600 700 800 900 1000
100

200

300

400

500

600

700

800

900

1000

SA

C
os

ts

C(SA)

C(RA)

C(SA)+C(RA)

Figure 6.2: Expected trend of the CSA and CRA costs.

148

6. Index Access Scheduling

Then, minimizing the total cost

C(x) = CSA(x) + CRA(x) (6.39)

= cS · ax+ cR · 1

cx
(6.40)

would choose the optimal point x. The solution (easily found by differentia-
tion) is

xopt =

√
cR
cS

· 1

ac
. (6.41)

For this point, the costs

CSA(xopt) = CRA(xopt) (6.42)

=

√
cR · cS · a

c
(6.43)

become equal regardless of the values for the coefficients a and c and the
ratio cR/cS of the costs. That is, the optimal switching point (under this
simple cost model) is when the expected RA cost is the same as the SA cost
consumed so far.

The SA cost consumed so far is trivially computed by simply counting
the index-scan steps; and the remaining RA cost is also easy to determine
from the candidate queue and the Ē sets:

CRA =
cR
cS

·
∑
d ∈ Q

|Ē(d)| (6.44)

Thus, we are normalizing the cost of an SA to 1 and weighting RAs according
to the ratio cR/cS; then the actual values for cR and cS do not make any
difference for the scheduling decisions, just the ratio.

Estimating the Number of Remaining RAs

According to the Last heuristic, we stop performing sorted accesses once the
number of candidate documents |Q| becomes less than a fraction of cS/cR of
the total number of sorted accesses done until that point. This guarantees
that the total random access cost is never more than the total sorted access
cost. Now the number of random accesses that have do be done in the last
round is often (but not necessarily) much less than the size of the queue.
This is, because certain random lookups might increase the scores of the
respective documents to such an extent, that they already get promoted into
the top-k, and thereby increase the min-k score which may in turn lead to an

149

6.4. Random Access Scheduling

increased pruning of candidates from the queue. In this section, we develop
an accurate estimator for this number of actually remaining random accesses.

Let us consider the queue after some round and assume an ordering of the
documents by descending bestscores, i.e., highest bestscore first. For the ith
document in that ordering, let Wi and Bi denote its worstscore and bestscore,
respectively, and by Fi its final score (which we do not know before doing
random accesses, unless Wi = Bi). Now consider the lth document (in the
bestscore ordering), and let k′ be the number of top-k items with worstscore
below Bl. Then it is not hard to see that there will be a random lookup for
this lth document, if and only if at most k′ of the l−1 documents d1, . . . , dl−1

have a final score larger than Bl. Let Rl be the random indicator variable
that is 1 if that happens and 0 otherwise. Let pi,l := P [Fi > Bl], which can
be computed as described in Section 6.2.2. Since the pi,l are small, and l
tends to be large, the number of i for which Fi > Bl can be approximated
very accurately by a random variable Xl with a Poisson distribution with
mean p1,l + · · ·+ pl−1,l. We then have

E(Rl) = P [Rl = 1] = P [Xl < k] (6.45)

which can be computed very efficiently and accurately by means of the In-
complete Gamma function [PFTV92].

As described so far, the probabilities p1,l, . . . , pl−1,l would have to be com-
puted from scratch for every document. The time for computing

∑
lE(Rl)

as an estimate for the number of random accesses would then be quadratic in
the number of documents in the queue. We improve on this by approximating
pi,l = P [Fi > Bl] by

p̃i,l = P [Fi > min-k] · Bl −min-k
Bi −min-k

(6.46)

Note that by the bestscore ordering we have that Bl ≤ Bi, for i < l. It
then suffices to compute P [Fi > min-k], once for each document i, and to
maintain, while processing the documents in order of descending bestscores,
the number of top-k items which are smaller than the current document,
which can be done in linear overall time. It is not hard to see, that from
these quantities,

∑l−1
i=1 p̃i,l can be computed in constant time, for any given l.

Similarly to original CA baseline, the RAs are then scheduled in descending
order of bestscore(d), denoted as Last-Best.

6.4.2 Ben-Probing

The beneficial probing strategy, Ben-Probing for short, extends the Last-
Probing by a probabilistic cost model for assessing the benefit of making

150

6. Index Access Scheduling

RAs to a number of the most promising candidates versus continuing with
SAs in the index scans. The cost comparison is updated periodically every b
steps, i.e., whenever we need to make the next SA-batching decision anyway.
The cost is computed for each document dj in the candidate queue or the
current top-k separately; obviously SA costs per document are then fractions
of the full SA costs as the index scan steps are amortized over multiple
documents. Then we can either schedule RAs for individual documents based
on the outcome of the cost comparison, or we can batch RAs for multiple
candidates and would then simply aggregate the per-candidate RA costs. In
the following we first develop the cost estimates, and then come back to the
issue of specific scheduling decisions.

For both cost categories, we consider the expected wasted cost (EWC)
which is the expected cost of random (or sorted) accesses that our decision
would incur but would not be made by an optimal schedule that would make
random lookups only for the final top-k and traverse index lists with minimal
depths. To compute the EWCs, we set the cost of an SA to 1 and the cost
of an RA to cR/cS, hence the model uses only the cost ratio, not the actual
costs.

For looking up unknown scores of a candidate document d in the index
lists Ē(d), we would incur |Ē(d)| random accesses which are wasted if d does
not qualify for the final top-k result. We can compute this probability using
the combined score estimator from Section 6.2.2 and exploiting correlations
as shown in Section 6.2.3, as

P [d /∈ top-k] = 1 − p(d) (6.47)
= 1 − pS(d) · q(d) (6.48)

= 1 − pS(d) ·
⎛⎝1 −

∏
i∈Ē(d)

(1 − qi(d))

⎞⎠ (6.49)

≤ 1 − pS(d) ·
⎛⎝1 −

∏
i∈Ē(d)

(
1 − max

j∈E(d)

lij
lj

)⎞⎠ (6.50)

Then the random accesses to resolve the missing scores have expected wasted
cost:

EWCRA(d) := |Ē(d)| · (1 − p(d)) · cR
cS

(6.51)

Analogously, the next batch of b sorted accesses for an additional depth
bi at index list Li, with

∑
i bi = b, incurs a fractional cost to each candidate

in the priority queue, and these total costs are shared by all |Q| candidates.

151

6.4. Random Access Scheduling

For a candidate d, the sorted accesses are wasted, if either we do not learn
any new information about the total score of d (that is, when we do not
encounter d in any of the m remainder dimensions), or if we encounter d, but
it does not make it to the top-k. Denoting the probability of seeing d in the
ith list in the next bi steps as qbi

i (d) like in Section 6.3.2, we can compute the
probability qb(d) of seeing d in at least one list in the batch of size b as

qb(d) := 1 − P [d not seen in any list] (6.52)

= 1 −
∏

i∈Ē(d)

(1 − P [d seen in Li in next bi steps]) (6.53)

= 1 −
∏

i∈Ē(d)

(
1 − qbi

i (d)
)
. (6.54)

(6.55)

Hence the probability of not seeing d in any list is 1− qb(d). The probability
that d is seen in at least one list, but does not make it into the final top-k
results can be computed as

qS(d) := (1 − pS(d)) · qb(d) (6.56)

in analogy to Section 6.2.2. Then the total costs for the next batch of b
sorted accesses are shared by all candidates in Q, and this incurs expected
wasted cost:

EWCSA :=
b

|Q| ·
∑
d∈Q

(
(1 − qb(d)) + (1 − pS(d)) · qb(d)

)
(6.57)

=
b

|Q| ·
∑
d∈Q

(
1 − pS(d) · qb(d)

)
(6.58)

We can now replace the real costs (as counted in the Last-Probing) with the
expected wasted costs EWCRA and EWCSA for the Ben-Probing. In order
to trigger random accesses for specific candidates, we always consider the
cumulated EWCRA costs and compare them to the cumulated EWCSA of all
batches done so far. For Last-Ben, we exclusively perform SA batches until
the sum of the expected wasted costs of all remaining candidates in the queue
is less than the cumulated expected wasted costs of all previous SA batches;
we then perform the RAs for all documents in the queue in ascending order
of the candidates’ EWCRA.

For each candidate d, we actually perform the RAs one at a time in
ascending order of the remaining index list selectivity (li−posi)/n for all i ∈
Ē(d) (because if d fails the final top-k, it will probably fail at a lowly selective

152

6. Index Access Scheduling

list first), thus counting a single RA for each candidate and list. After each
random access, it is tested whether the candidate document can qualify for
the top-k results; if the candidate can be dismissed, i.e., bestscore(dj) ≤
min-k, all subsequent random accesses are canceled, and we may safe some
RA costs for another candidate this way. If otherwise worstscore(dj) >
min-k, the candidate is promoted into the (intermediate) top-k list. In any
case, after triggering the batch of random accesses for any candidate dj in the
queue, dj will be discarded from the queue and is either dropped “forever” or
made sure to belong to the top-k results.

The cost comparisons and scheduling decisions are made only once at
the start of the entire sequence of random accesses for a candidate. The
cost comparisons have a fairly low overhead and are performed whenever the
priority queue is rebuilt. As an additional variant, one could perform the
cost comparisons for each of the top-ranked (≈ 100) candidates sorted by
their bestscores only.

153

Chapter 7

Dynamic & Self-tuning Query
Expansion

Query expansion is an indispensable technique for evaluating difficult queries
where good recall is a problem. Examples of such queries are the ones in the
TREC Robust track [TRE], e.g., queries for “transportation tunnel disasters”
or “ship losses” on the Acquaint news corpus. State-of-the-art approaches use
one or a combination of the following sources to generate additional query
terms: thesauri such as WordNet with concept relationships and some form
of similarity measures, explicit user feedback or pseudo relevance feedback,
query associations derived from query logs, document summaries such as
Google top-10 snippets, or other sources of term correlations. In all cases,
the additional expansion terms are chosen based on similarity, correlation,
or relative entropy measures and a corresponding threshold. For difficult
retrieval tasks like the above, query expansion can improve both precision at
the top ranks, as well as recall over the complete retrieval result and, hence,
typical IR benchmark metrics such as Mean Average Precision (MAP) by a
significant margin (see, e.g., [Kwo04, LLYM04]).

Following [BZ04a, BZ04b], in contrast to a mere benchmark setting such
as TREC, applying these techniques in a real application with unpredictable
ad-hoc queries, e.g., in digital libraries, intranet search, or Web communities,
faces three major problems:

1) The threshold for selecting expansion terms needs to be carefully hand-
tuned, and this is highly dependent on the application’s corpus and
query workload.

2) An inappropriate choice of the sensitive expansion threshold may re-
sult in either not achieving the desired improvement in recall (if the

154

7. Dynamic & Self-tuning Query Expansion

threshold is set too conservatively) or in high danger of topic dilution
(if the query is expanded too aggressively).

3) The expansion may often result in queries with more than 50 or 100
terms, which in turn leads to very high computational costs in evaluat-
ing the expanded queries over inverted index lists in a non-conjunctive,
i.e., “andish”, manner.

TopX addresses the above three issues and provides a practically viable,
novel solution. Our key techniques for making query expansion efficient, sca-
lable, and self-tuning are to avoid aggregating scores for multiple expansion
terms of the same original query term and to avoid scanning the index lists
for all expansion terms. For example, when the term “disaster” in the query
“transportation tunnel disaster” is expanded into “fire”, “earthquake”, “flood”,
etc., we do not count occurrences of several of these terms as additional ev-
idence of relevance. Rather than that, we use a score aggregation function
that counts only the best match of a document for a given set of expansion
terms of the same original query term, optionally weighted by the similarity
(or correlation) of the expansion term to the original term. Furthermore and
most importantly for efficiency, we open scans on the index lists for expan-
sion terms as late as possible, namely, only when the best possible candidate
document from a list can achieve a score contribution that is higher than the
score contributions from the original term’s list at the current scan position
or any list of expansion terms with ongoing scans at their current positions.
The algorithm conceptually merges the index lists of the expansion terms
with the list of the original query term in an incremental, on-demand man-
ner during the runtime of the query. For further speed-up, probabilistic score
estimations can be used, thus leveraging our previous work on convolutions
for score distributions, different index lists selectivities, and feature correla-
tions (see Sections 5.2 and 6.2).

7.1 Static vs. Dynamic Query Expansion

7.1.1 Static Expansions & Topic Drifts

Traditional query expansion methods select expansion terms whose thematic
similarity to the original query terms is above some specified threshold, e.g.,
using the Rocchio [Roc71] method or Robertson and Sparck-Jones [RJ76]
weights, thus generating an “andish” query with much higher dimensionality.

Figure 7.1 shows a typical expansion scenario for the query “transporta-
tion tunnel disasters” which is drawn from the TREC 2004 Robust track

155

7.1. Static vs. Dynamic Query Expansion

and explicitly marked by TREC as a particularly “hard” query based on re-
trieval results from previous TREC ad hoc tracks and tasks. The main reason

transportation tunnel disasters

transit
highway

train
truck

metro
“rail car”

car
…

tube
underground

“Mont Blanc”
Gotthard

…

catastrophe
accident

fire
flood

earthquake
“land slide”

…

0.9
0.8
0.7
0.6
0.6
0.5
0.1

1.0
0.9
0.7
0.6
0.6
0.5

0.9
0.8
0.7
0.5

1.0 1.0 1.0

d1

exp(transportation) exp(tunnel) exp(distaster)

d2

Figure 7.1: Topic drift through overly aggressive static query expansions.

why standard IR systems fail in this case is that the given corpus, namely
the Aquaint News corpus with news articles from the Financial Times, LA
Times, etc. (see Section 9.2), is very unlikely to contain many documents
with this particular combination of keywords (this might not be the case for
a different corpus such as a large Web crawl, however). Most notably, the ori-
ginal query does not specify any particular instance of such an incident which
would be more likely to be found on the Aquaint corpus, but rather yields
a vague description of the topic in general. In such a case, query expansion
offers the potential not only to increase recall but also precision at the upper
ranks which makes the aforementioned expansion techniques attractive for a
top-k engine with k being in the order of 10-100, because, with the original
keyword query, we virtually start with nothing.

Topic Drifts

Let us for now suppose we have a good source for expansion terms and some
notion of similarity between the original topic term and the expanded term or
phrase concept, and each of the three keywords has been expanded into the
three expansion groups with respective similarities as shown in Figure 7.1.
An initial query using all keywords as a plain set of expansion terms might
identify the two documents d1 and d2 as shown in Figure 7.1. We see that d2

contains some matches for expanded terms from all the three original query
concepts; whereas d1 contains much more matches overall for expansions
from “transportation” and “disaster”, but not a single match to the “tunnel”
concept. With plain summation being used for score aggregation, d1 is very
likely to be ranked much higher than d2 which would in turn be much more

156

7. Dynamic & Self-tuning Query Expansion

likely to be relevant to the original topic than d1. This is exactly what we
call a topic drift.

Note that these situations are hard to foresee, because term correlations
in queries often diverge from term correlations we observe among the docu-
ments in the corpus. Typically, there is no common generative model from
which queries, expansion terms (e.g., a large common sense thesaurus), and
documents can be drawn. This is also the reason why certain entropy-based
IR methods such as the Divergence From Randomness (DFR) model [AvR02,
ACR03] work well for many corpora and queries; often the most relevant doc-
uments for a query are those documents whose document-specific term dis-
tribution diverges from the collection-specific term distribution to the largest
extent.

Note that the emphasis of this thesis is not on the best possible choice of
relevant expansion terms; we rather aim at providing the algorithmic basis for
an efficient and robust, top-k-style query processing for any given, large-scale
expansion.

7.1.2 Dynamic & Incremental Query Expansion

The novel approach presented here addresses all three problems described
in Section 7.1 by dynamically and incrementally merging the inverted lists
for the potential expansion terms with the lists for the original query terms.
We introduce a novel notion of best match score aggregation that only allows
for the best match per expansion group to contribute to the final document
score, thus reflecting the semantic structure of the query directly in the query
precessing and score aggregation. The algorithm is implemented as an In-
cremental Merge operator that can be embedded into other pipelined and
non-blocking Incremental Merge or nested top-k operators. This approach
even allows for a special case of Boolean retrieval, where conjunctive query
evaluation is enforced at the top-level operators and each expansion group is
evaluated in a disjunctive manner.

Up to this point, sorted accesses to inverted lists have been performed
on static, fully precomputed and materialized lists, where each list directly
corresponds to a keyword condition denoted by a query. In this chapter, we
generalize the notion of inverted lists toward dynamic views over a set of
physically stored lists that are incrementally merged on demand, with min-
imum overhead in the merging algorithm itself as illustrated in Figure 7.2.
Let us suppose we want to expand the term “disasters” in our example query
“transportation tunnel disasters”. Where a static expansion would just add
expansion terms like “fire” or “accident” to the original query, optionally
weighted by some similarity score, our approach utilizes a specialized opera-

157

7.2. Thesaurus-based Query Expansion

tor that exploits the explicit structure defined by the original query and its
expansions. Our approach incrementally merges the inverted lists associated
with each expansion set into a virtual index list that provides sorted access to
the outside top-k operator in descending order of combined similarity score
sim and local scores si(d). Note that the original query term“disaster” is
kept in the expanded query, too; typically with a perfect similarity score of
1.

The great advantage of this method is that we do not have to predetermine
the depth of the merging process itself. The superordinate top-k operator
just incrementally inquires the subordinate Incremental Merge operator for
the next document, thus preserving the efficient sorted access paradigm.

d42
d11d92

...
d21

d78
d10

d11
...

d1

d92
d42

d32
...

d87

disaster

accident

fire

transport
d66

d93
d95

...

d101

tunnel
d95

d17
d11

...
d99

top-k
(transport, tunnel,

~disaster)

top-k
(transport, tunnel,

~disaster)

d42
d11d92

...
d21

d78
d10

d11
...

d1

d92
d42

d32
...

d87

disaster

accident

fire

transport
d66

d93
d95

...

d101

tunnel
d95

d17
d11

...

d99

top-k
(transport, tunnel,

~disaster)

top-k
(transport, tunnel,

~disaster)

d42 d11 d92 d11 …
~disaster

Incr. Merge

Figure 7.2: Static query expansions (left) vs. dynamic expansions (right),
both embedded into a top-k query processor.

7.2 Thesaurus-based Query Expansion
We generate potential expansion terms for queries using a thesaurus database
based on WordNet [Fel98]. WordNet is the largest electronically available,
common-sense thesaurus with more than 120,000 semantic concepts, consis-
ting of single terms and as well as explicitly identified phrases, and more than
300,000 handcrafted links that define the way how the concepts or synsets
(i.e., sets of synonyms that refer to the same meaning) in the WordNet graph
are related. The basic structure of WordNet with regard to the hypernym
relationship only is “mostly” a tree structure which is the reason why Word-
Net is often referred to as a hierarchical thesaurus (HT) which is not exactly

158

7. Dynamic & Self-tuning Query Expansion

true, since multiple inheritance is allowed and some concepts with multiple
hypernyms break this tree structure. Taking all the 16 distinct edge types
or concept relationships into account, WordNet forms a large concept graph
as cycles are also possible.

Query expansion techniques used in IR typically suffer from the following
two common phenomena of word usage in natural language:

1) Polysemy: A term can have different meanings depending on the con-
text that it is used in.

2) Synonymy: Multiple terms have the same meaning; together with 1)
the situation may become mutually context sensitive.

In order to address these problems, a query term t is mapped onto a WordNet
concept c by comparing some form of textual context of the query term (i.e.,
the description of the query topic or the summaries of the top-10 results of
the original query when relevance feedback is available) against the context
of synsets and glosses (i.e., short descriptions) of possible matches for c and
its neighbors in the ontology graph. The mapping uses a simple form of
Word Sense Disambiguation (WSD) by choosing the concept with the highest
similarity of each two context pairs.

7.2.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) has a long tradition and is an active
research issue in the field of computational linguistics. We focus on so-called
unsupervised WSD methods, i.e., fully automatic WSD. In the following we
briefly discuss two unsupervised WSD approaches that have been developed
and conducted in the context of our work on document classification and
query expansion [TSW03, MTV+05].

As an example for our efforts, consider the the term “goal” which yields
the following different word senses when queried in WordNet:

1) {goal, end,...} – the state of affairs that a plan is intended to achieve
and that (when achieved) terminates behavior to achieve it; “the ends
justify the means”

2) {goal} – a successful attempt at scoring; “the winning goal came with
less than a minute left to play”

and two further senses. By looking up the synonyms of these word senses,
we can construct the synsets {goal, end, content, cognitive content, men-
tal object} and {goal, score} for the first and second meaning, respectively.

159

7.2. Thesaurus-based Query Expansion

As each of the meanings is connected to different concepts in the ontology
graph, a reliable disambiguation and choice of the seed concepts is a crucial
precondition for any subsequent expansion or classification technique.

Figure 7.3: Visualization of the concept neighborhood graph for one possible
meaning of the word ’goal’.

Now the key question is of course: which of the possible senses of a word
is the right one? Our approach to answer this question is based on word
statistics for some local context of both the term that appears in a part of
a document or a keyword query and the candidate senses that are extracted
from the concept graph.

Independent Mapping

In [TSW03], we coined the first approach the Independent Mapping or Inde-
pendent Disambiguation, because each term or n-gram out of a given text se-
quence (e.g., a short keyword query or a paragraph in a document) is mapped
individually onto its most likely meaning in the concept graph without taking
the mapping of the word sequence “as a whole” into account (considering also
the relationships between the mappings of these terms or n-grams).

In order to identify the largest possible subsequences of n-grams out of a
given sequence, let us first consider a word sequence w1, ..., wm. Starting with
the first word w1 at position i = 1 in the sequence and a small lookahead

160

7. Dynamic & Self-tuning Query Expansion

distance m′ of at most 5 words, we use a simple window parsing technique
to determine the largest subsequence of words that can be matched with a
phrase contained in WordNet’s synsets to identify an initial set of possible
word senses si1 , . . . , sip. If we have successfully matched the current sequence
wi, . . . , wi+m′, we increment i by m′ and continue the mapping procedure on
the suffix of the sequence; if we could not match the current sequence onto
any phrase denoted by a WordNet concept, we decrement m′ by 1 and try
the lookup again until m′ = 1. After performing that subroutine, i is again
incremented by 1 until i = m.

Fortunately, phrases of length 2 or 3 hardly ever exhibit more than one
distinct meaning in WordNet, whereas in fact most single keywords match
more than one semantic concept and, thus, are highly ambiguous. If the
word sequence consists of some piece of natural language, we can improve
the accuracy of this mapping procedure by using a so called Part-of-Speech
(POS) grammatical tagger that annotates the words prior to disambiguation
with their role in a sentence (e.g., verb, noun, adjective, etc.). The simple
word “run”, for example, has 57 distinct meanings in WordNet, out of which
16 are marked as nouns and 41 are verbs.

For a given term or n-gram t, we consider either the query that it occurred
in, or, for a natural language document, a short context of some sentences
that enclose that term, since the meaning of a term may of course vary across
a large document. For an XML element this may be the full-content text its
embedded descendant nodes. We denote this as the local context con(t) of t.
For a candidate word sense s, we extract synonyms, all immediate hyponyms
and hypernyms, and also the hyponyms of the hypernyms (i.e., the siblings
of s in the HT). Each of these has a synset and also a short explanatory
text, coined “gloss” in the WordNet terminology. We form the union of the
synsets and corresponding glosses, thus constructing a local context con(s)
of sense s extracting also n-grams from synsets and glosses. As an example,
the context of sense 1 of the word “goal” (see Figure 7.3) corresponds to the
bag of words {goal, end, state, affairs, plan, intend, achieve, . . ., content,
cognitive content, mental object, perceived, discovered, learned, . . ., aim, ob-
ject, objective, target, goal, intended, attained, . . . }, whereas sense 2 would
be expanded into {goal, successful, attempt, scoring, winning, goal, minute,
play, . . ., score, act, game, sport, . . . }.

The final step toward disambiguating the mapping of a term onto a word
sense is to compare the term context con(t) with the context of candidate
concepts con(s1) through con(sp) in terms of a similarity measure between
two bags of words. The standard IR measure for this purpose would be the
cosine similarity between con(t) and con(sj), or alternatively the Kullback-
Leibler divergence [BYRN99] between the two word frequency distributions

161

7.2. Thesaurus-based Query Expansion

(note that the context construction may add the same word multiple times,
and this information is kept in the word bag). Our implementation uses the
cosine similarity between the TF·IDF vectors of con(t) and con(sj) for its
simpler computation.

Finally, we map term t onto that sense sj whose context has the highest
similarity, i.e., the lowest cosine distance, to con(t). We denote this word
sense as sense(t). If there is no overlap at all, e.g., if the context denoted by
a keyword query consists only of a single term, namely the one that is about
to be expanded, we choose the sense that has the highest a-priory probability,
i.e., the one with the lowest IDF-value.

Compactness-based Disambiguation

Another intriguing option of performing highly accurate, non-supervised
WSD is the compactness-based disambiguation method that has been ini-
tially sketched by Vazirgiannis et al. in [MTV04] and recently refined in
[MTV+05]. Unlike the Independent Mapping, this method aims at mapping
a whole set of terms or n-grams, e.g., extracted from a natural language
sentence, onto their most compact representation in the concept graph in
a single, holistic step. The compactness-based WSD algorithm is based on
the intuition that adjacent terms extracted from a piece of text are expected
to be semantically close to each other. Given a set of adjacent terms, the
disambiguation algorithm considers all the candidate sets of senses and out-
puts the set of senses that exhibits the highest level of semantic relatedness.
Therefore, the main component of our WSD algorithm is the definition of a
semantic compactness measure for sets of senses.

The compactness measure utilized in here is defined as follows:

Definition 7.2.1 (Semantic Compactness) Given a concept graph G =
(N, V) with nodes N and vertices V ⊆ N × N and a set of senses S =
(s1, ..., sn) with si ∈ N , the compactness of S is defined as the cost of the
Steiner Tree [CLRC01] over V that contains all si ∈ S.

Note that the problem of computing the Steiner Tree over arbitrary
graphs to get the compactness for a given mapping of terms onto possible
concepts is already NP-complete. Another issue, potentially adding excessive
computational load, is the large number of combinations of possible mappings
for terms onto their senses, when each term is highly ambiguous (with 5 or
more possible senses) and a term set of large cardinality is considered for dis-
ambiguation. In order to address this combinatorial complexity, we reduce
the search space by including n-grams whenever possible using the window
parsing technique described for the Independent Disambiguation approach

162

7. Dynamic & Self-tuning Query Expansion

and restricting the mapping step to fairly small sets only, e.g., concept can-
didates extracted from a single sentence or a short keyword query.

Figure 7.4 illustrates the compactness-based disambiguation of the term
“wind” with regard to two different contexts. The first pair, {wind, thun-
der}, finds a compact Steiner Tree mapping for “wind” and “thunder” as two
phenomena of “weather”. The second pair, {wind, guitar}, can be compactly
mapped under “music instruments”. Hence, the ambiguous term “wind” can
successfully be assigned two different meanings depending on the context it
occurred in. Note that both concept contexts would yield totally different
expansion terms.

device, artifact

musical
instrument

weather

thunder
string

wind guitar
wind

…

…

{wind, thunder}
vs.

{wind, guitar}

physical entity

natural
phenomenon

…

Figure 7.4: Compactness-based disambiguation of two term pairs.

The two unsupervised WSD approaches have been more extensively stu-
died and successfully applied in the context of our work on concept-aware
document classification [TSW03, MTV+05] and semi-supervised learning,
where the enhanced knowledge basis of a concept-aware classifier can sub-
stantially improve classification accuracy compared to a text classifier, in
particular when only very little training data is available.

7.2.2 Similarity Joins

Edge Similarities

There have been various efforts proposed in the literature aiming to quantify
semantic similarities of concepts in WordNet [Fel98]. We believe that among
the most promising ones are those that aim to model concept similarities on

163

7.2. Thesaurus-based Query Expansion

the basis of term and phrase correlations over large, real-world data collec-
tions. These measures exploit co-occurrence statistics for terms (or n-gram
phrases) to estimate the semantic relatedness of terms and, hence, concepts in
a given corpus. Ideally, this is the same corpus that is also used for querying.
A measure often referred to for this purpose is the Dice coefficient.

As for Dice coefficients, the similarity between to senses S1 and S2 is
defined as:

dice(S1, S2) := maxS1×S2

{
2 · df(t1,i ∧ t2,j)

df(t1,i) + df(t2,j)

}
(7.1)

where t1,i ∈ S1 and t2,j ∈ S2, respectively, and df(t1,i ∧ t2,j) is the cardinality
of documents that contain both t1,i and t2,j . Note that with the presence
of an explicit thesaurus or dictionary, phrase indexing may become feasi-
ble, although it would remain a costly operation, because the indexer would
have to implement the aforementioned window parsing technique for each
potential token sequence in all documents of the collection. Moreover, sub-
sequent phrase matching in query executions would be restrained to the ones
contained in the particular thesaurus. Without explicit knowledge about
the document frequencies of phrases, however, we may also use the maxi-
mum single-term co-occurrence frequency as an approximation to estimate
the Dice similarities among concepts.

Note that Dice weights are precomputed for all related concept pairs (e.g.,
all hypernym/hyponym edges) in the concept graph. In most IR applications,
these concept mappings will not be at hand for all terms and documents in
the corpus. Therefore, we propagate the precomputed concept weights back
to the term level after the WSD step. This way, retrieval is still performed
on the term level, but term similarities are not static but rather depend of
the disambiguation of the terms (or phrases) in the given document or query
context (see Section 7.2.1 for details of the disambiguation step).

Since WordNet offers directed edges or relationships between concepts,
another option for modeling these concept similarities would be conditional
probabilities of the form P [S1|S2]. Yet the current implementation and ex-
periments use precomputed Dice coefficients for their better way to genera-
lize. We believe they are the more viable approach that reflects corpus-based
correlations (which are undirected) in our intuitive feeling of semantic simi-
larities in a better way. Moreover, Dice coefficients produce higher absolute
values than conditional probabilities. Optionally, these may be smoothed
with a similar method as described in Section 3.3.

164

7. Dynamic & Self-tuning Query Expansion

Path Similarities

To implement the similarity search for two arbitrary, not directly connected
concepts S1 and S2, we employ Dijkstra’s shortest path algorithm [CLRC01]
to find the shortest connection between S1 and S2. Then, interpreting the
edge similarities as transition probabilities, the senses’ final path similarity
sim(S1, S2) for a path 〈v1, . . . , vk〉 of length k with v0 = S1 and vk = S2 and
〈vi, vi+1〉 ∈ V for i = i, . . . , k − 1 is defined as

sim(S1, S2) :=

k−1∏
i=1

dice(vi, vi+1) (7.2)

If there is more than one path that minimizes the length, we choose the
one with highest path similarity sim to yield the final concept similarity.
Note that regarding hypernym/hyponym relationships, WordNet’s structure
is primarily a small forest of large concept trees. For example, the common
hypernym of all concrete noun concepts is “entity”; and there are only 8
more root concepts. Hence, we can take advantage of this observation and
generalize the above approach by introducing an artificial super-root concept
“all” that connects all the 9 original WordNet root concepts.

7.3 Unified Ontology Service
In [TSW03], we also defined a framework for a Unified Ontology Service
that provides unified access to multiple thesaurus or ontology sources such
as WordNet or OpenCyc [OPE] in a compact API. Our recent work also
investigated the automatic ontology extraction from large, semistructured
and richly linked Web collections such as the Wikipedia [WIK] encyclopedia
with more than 800,000 documents with promising results. The developed
service can be centrally deployed and accessed via a set of WebServices using
the SOAP protocol for Remote Method Calls, as Enterprise Java Beans (EJB)
using the Remote Method Invocation (RMI) of the Java environment, or
locally via direct API calls.

The internal structure of our ontology service is derived from the Word-
Net graph and stored in a set of database relations for concepts, i.e., the
nodes of the ontology graph that yield all known synsets S, and relations
Rt for the 16 currently supported directed edge such as types hypernym, hy-
ponym, holonym, meronym, antonym, pertainym, etc., that define the way
how the synsets nodes are connected. For each edge type t, all edges of the on-
tology graph are stored as triples Rt = {(sid, tid, dice) | with sid, tid ∈ S;
dice ∈ [0, 1]} for t ∈ {hypernym, hyponym, holonym, meronym, antonym,

165

7.4. Incremental Merge Operator

pertainym,. . .} including the identifiers of the source and the target synset
and their estimated semantic similarity using Dice coefficients. The API fa-
cilitates the detection of n-grams and their disambiguation for a given set of
context words, as well as the statistical quantification of concept similarities
on the basis of a large (topic-specific) Web crawl or a benchmark-specific
document collection.

The Ontology Service provides the following basic functions:

• findConceptByTerm – returns all matching concepts for a given string
expression; this expression may be a single keyword or a phrase

• disambiguateConcepts – disambiguates a set of concepts (usually ob-
tained from an initial findConceptByTerm query) for a given context
string (e.g., part of a document or topic description)

• findConceptSimilarity – queries the concept graph to detect the
shortest path between two concepts S1 and S2 and returns the aggre-
gated edge similarity sim(S1, S2)

• getDiceCoeff – computes the Dice similarity for two arbitrary con-
cepts S1, S2 referred to by their ids

7.4 Incremental Merge Operator

Given a set of p inverted index lists for an expansion set exp(ti) = {ti1, . . . , tip}
that are already sorted in descending order of local scores, we can efficiently
merge the p lists by iteratively moving a cursor through each of the input lists
to get a sorted output list with minimal overhead of the merging algorithm
itself. Then the highi score at the end of the incrementally created output
list is an upper bound for all the local high values at the current cursors of
the input lists.

If we also want to incorporate term similarities sim(ti, tij) into the result-
ing output scores, we simply multiply the similarity values with the scores of
the input lists during the merging procedure and still retain a sorted output
list, since these similarities are constants at query runtime. If we further
want to implement a max-score aggregation (as denoted below) that only
allows the best match of a document for the whole expansion set to con-
tribute in the score aggregation, we merely need to eliminate duplicate, i.e.,
repeated, document occurrences in the resulting output lists on-the-fly dur-
ing the merging step. Since for each candidate d, we have to remember the
set of evaluated dimensions E(d) for the baseline top-k algorithm anyway,

166

7. Dynamic & Self-tuning Query Expansion

we accept only the first occurrence of each document in the merged list for
the worst- and bestscore updates and mark this information in E(d). For
the score aggregation, we skip all further occurrences of the same document
in the merged output list, inevitably having a lower score.

By embedding this method into the TA-style baseline algorithm, we ite-
ratively pull the next tuple from this virtual list without having to predeter-
mine the final scan depth in the merged list. Through exploiting the given
index structures for random access on plain lists in a smart way, we even
provide efficient support for random accesses on the merged lists as required
by our cost-based index access scheduler. Then there is no difference for the
query processing strategy at the encapsulating top-k algorithm, regardless
of whether it operators on a number of physically stored inverted lists, mul-
tiple virtual lists, or even a mixture of both kinds. Thus, the Incremental
Merge algorithm can be implemented as new join operator that is natively
embedded into the given infrastructure of top-k algorithms. Even all our
previous assumptions about probabilistic candidate pruning and cost-based
index access scheduling remain valid – with very few modifications, however,
using a notion of meta histograms that capture the score distribution and
selectivity of the merged lists (see Section 7.6).

7.4.1 Max-Score Aggregation

The top-k algorithm is extended such that it now merges multiple index
lists Lij in descending order of the combined score that results from the local
score sij(d) of an expansion term tij in a document d and the thesaurus-based
similarity sim(ti, tij). Moreover, to reduce the danger of topic drift, we use
the following modified score aggregation for a query t1 . . . tm that counts only
the best match for any one of the expansion terms per document:

score(d) :=
∑

i=1..m

max
tij∈exp(ti)

{sim(ti, tij) · sij(d)}, (7.3)

with analogous formulations for the worstscore(d) and bestscore(d) bounds
as used in the baseline top-k algorithm.

The actual set of expansions is typically chosen such that for a query with
terms t1 . . . tm, we first look up the potential expansion terms tij ∈ exp(ti) for
each tij with sim(ti, tij) > θ, where θ is a fine-tuning threshold for limiting
exp(ti). It is important to note that this is not the usual kind of threshold
used in query expansion. In our method, we can choose fairly small values
θ and the exact choice is not critical. In contrast to a static expansion, our
algorithm does not necessarily exhaust the full set and remains fairly robust
for a broad range of θ, such that θ could even be set to 0 in the incremental

167

7.4. Incremental Merge Operator

expansion setup. However, for the experiments we also need θ to initialize a
set of static expansions that serves as a competing baseline reference.

7.4.2 Incremental Merge Algorithm

Algorithm 7 shows pseudo code for the Incremental Merge algorithm that is
seamlessly integrated into the multi-threaded architecture of the TopX core
query processor (see Section 4.3) and replaces the former processIndexList
procedure of the index lists scan thread for physically stored inverted lists.

Then the index lists for the expansion terms for a given query term are
merged on demand (and, hence, incrementally) until the min-k threshold
termination at the enclosing top-k operator is reached, by using the following
scheduling procedure for the index scan steps: the next scan step is always
performed on the list Lij with the currently highest value of sim(ti, tij)·highij,
where highij is the last score seen in the index scan (i.e., the upper bound for
the unvisited part of the list). This procedure guarantees that index entries
are consumed in exactly the right order of descending sim(ti, tij) · sij(d)
products.

This way, we are in a position to open the scans on the expansion-term
index lists as late as possible, namely, when we actually want to fetch the
first index entry from such a list. Thus, resources associated with index-scan
cursors are also allocated on demand.

Index List Metadata

The pairwise similarities sim(ti, tij) and the initial index list high-scores
highij constitute the index list metadata that is required to efficiently ini-
tialize the Incremental Merge algorithm.

The pairwise similarities sim(ti, tij) for tij ∈ exp(ti) are retrieved by the
Ontology Service upon query initialization. Note that the amount of data
retrieved thereby is fairly small such that large parts of the thesaurus can
actually be cached in main memory (e.g., all WordNet nouns and their path
similarities). The sim(ti, ti) for identical source and target expansions is
defined to yield the maximum similarity value of 1, such that the Incremental
Merge scans are initialized on the index lists for the original query conditions
ti first.

The maximum possible scores of all expansion candidates, on the other
hand, i.e., the initial highij values for all expansion terms tij ∈ exp(ti) at the
start of the query execution, can be derived from the index lists histograms
that are needed for the probabilistic candidate pruning or cost-based schedu-
ling decisions, anyway. Note that even in the absence of this metadata, we

168

7. Dynamic & Self-tuning Query Expansion

Algorithm 7 Incremental Merge Algorithm.
1: processIndexListIncremental(Expansion exp(ti)={ti1, . . ., tip}, Similarities sim(ti,ti1), . . . ,

sim(ti,tip), Index list max-scores highi1, . . ., highip, Batch-size bi)
2: // Initialize set of active expansions activeExp(ti) for term ti

3: activeExp(ti) := {ti};
4: besti := ti;
5: nexti := tij with max{sim(ti,tij) | tij ∈ {exp(ti) - ti} };
6: nextHighi := sim(ti, nexti) · highnextExpi

;
7: // Determine the currently best expansion besti and the threshold nextHighi

8: // for jumping to the next best expansion nexti
9: besti := tij ∈ activeExp(ti) with max{sim(ti,tij) · highij};

10: if (sim(ti, best) · highbest < nextHigh(ti)) then
11: activeExp(ti) := activeExp(ti) ∪ {best};
12: besti := nexti;
13: nexti := tij with max{sim(ti,tij) · highij | tij ∈ {exp(ti) - besti} };
14: nextHighi := sim(ti,nexti) · highnexti ;
15: end if
16: // Perform next sorted access to Lbesti

17: <docid, score> := Lbesti
.getNext();

18: d := cache.getCachedItem(docid);
19: si(d) := sim(ti, besti) · score;
20: E(d) := E(d) ∪ {i};
21: highbesti

:= si(d)
22: posi++;
23: // Continue as in scan thread of the core query processor in Alg. 4
24: ...
25: // Suspend & wait for main thread notification
26: if posi mod bi == 0 then
27: isSuspendedi = true;
28: semaphore.notify();
29: this.waitForNotification();
30: end if
31: isSuspendedi = false;

32: ...

are able to perform the Incremental Merge procedure; we simply have to
fetch the first tuple of each index lists entry to get the initial highij values,
assuming the perfect default similarity sim(ti, tij) of 1, however.

7.4.3 Sorted Access for Dynamic Expansions

The Incremental Merge algorithm naturally provides sorted access to the
“virtual” index list that results from merging a set of physically stored or
other virtual index lists in descending order of their combined sim(ti, tij) ·
sij(d) scores. Figure 7.5 illustrates this merging procedure for an expansion
exp(t) = {t1, t2, t3}. The best initial combined score based on the index list
metadata is determined to be 0.9 for term t1. Then list L1 is scanned until
the combined score for that list falls below the next best combined score for
another list, namely L2 with 0.72 in this case. Then the algorithm remembers
the combined score at the last scan position of L1 and switches to the next

169

7.4. Incremental Merge Operator

best expansion list L2, and so on, until the threshold stopping condition at
the top-level operator is reached.

~t

Large corpus
statistics

Large corpus
statistics

sim(t, t1) = 1.0sim(t, t1) = 1.0
~t = { t1, t2, t3 }

sim(t, t2) = 0.9sim(t, t2) = 0.9

sim(t, t3) = 0.5 sim(t, t3) = 0.5

t1 ...d78
0.9

d1
0.4

d88
0.3

d23
0.8

d10
0.8

0.4

t3 ...d99
0.7

d34
0.6

d11
0.9

d78
0.9

d64
0.7

d78
0.9

d23
0.8

d10
0.8

d64
0.72

d23
0.72

d10
0.63

d11
0.45

d78
0.45

d1
0.4 ...

...d12
0.2

d78
0.1

d64
0.8

d23
0.8

d10
0.7t2

0.9

0.72

0.350.45

Thesaurus/ontology
lookups

Thesaurus/ontology
lookups

Index list meta data
(e.g., histograms)

Index list meta data
(e.g., histograms)

d88
0.3

Expansion terms

Expansion similarities

Initial high-scores

0.18

Figure 7.5: Example schedule for Incremental Merge.

Note that multiple occurrences (duplicates) of the same document in the
merged list that arise from different expansion lists are eliminated on-the-fly
as indicated by the red bars in Figure 7.5. This information is stored in the
E(d) sets for each candidate individually.

Index lists for potential expansion terms are opened and added to the set
of active expansions activeExp(ti) for term ti, only if they are beneficial for
identifying a top-k candidate. Often, the scan depth on these lists is much
smaller than on the index lists for the original query terms, and for many
terms in exp(ti) the index scans do not have to be opened at all, i.e., typically
the set of active expansions activeExp(ti) ⊂ exp(ti) is a true subset of the
whole expansion set.

7.4.4 Random Access for Dynamic Expansions

Random access support to a set of dynamically merged inverted lists requires
specific consideration for the Incremental Merge operator, since we need to
combine the precomputed local index scores with the query-specific expansion
similarities for a potentially large expansion set efficiently, and we certainly
cannot afford to materialize the whole merged expansion list at any time
of the query processing. Fortunately, it turns out that with the B+-tree
index on the TextFeaturesRA base table over the key tuple (docid, term) (see
Section 2.3), we already made a safe choice, because the range of the random

170

7. Dynamic & Self-tuning Query Expansion

access scan still is primarily bounded by the document id. Assuming N»M ,
using this attribute combination remains much more efficient than an index
on the key (term, docid). Figure 7.6 shows the respective SQL statement for
a set of active expansions containing the terms “car”, “truck”, etc.

select
term, score

from
FeaturesRA

where
docid = ’12345’ and term in (’car’, ’truck’, ...)

Figure 7.6: Index range scan on the TextFeaturesRA text index as random
access statement for a given document and expansion list.

This way, random accesses remain fairly efficient and are explicitly sup-
ported for the Incremental Merge method as well, because the query pro-
cessor just has to fetch all term-score pairs by a primary index range scan
on the docid attribute and some secondary, intermediate index skip scans on
the term attribute for each expansion term. The term-score pairs can be
combined with the concept similarities in-memory by the query processor in
order to support the max-score aggregation. Note that the above statement
returns tuples only for those expansion terms that are actually present in the
current document which is typically a small subset of the expansion. Again,
the structure of these statements can be precompiled and uploaded to the
DBMS prior to query executions for the whole expansion set.

7.5 Nested Top-k Operator

For more sophisticated query subconditions such as multiple phrase expan-
sions, local scores for individual conditions cannot be fetched from materi-
alized index lists but need themselves to be computed dynamically. This
poses a major problem to any top-k algorithm that wants to primarily use
sorted accesses. A possible remedy would be that the global top-k opera-
tor “guesses” a value k′ and asks the dynamic source to compute its top-k′
results upfront, with k′ being sufficiently large so that the global operator
never needs any scores of items that are not in the local top-k′.

Note that, for example, the rank-aggregation framework [IAE03, ISA+04,
LCIS05, LSCI05] pursues this strategy for splitting an m-dimensional query
into a tree of binary, conjunctive joins. In order to provide a safe upper bound

171

7.5. Nested Top-k Operator

of k′, a Uniform distribution of scores in the basic input lists is assumed which
may lead to overly conservative upper bounds for k′ and unnecessarily deep
scans on the underlying input sources, whereas top-k-style query process-
ing would just make us expect the largest benefits for non-Uniform, skewed
input scores. Moreover, we do not restrict ourselves to binary, conjunctive
top-k operators, but we consider index lists to be equally relevant to the
query altogether. So the demand for nested top-k operators in our case
rather arises from specific expansion tasks such as a mixture of phrase and
single-keyword expansions that are merged incrementally, and with lists for
individual phrases being combined dynamically and only on demand, thus
translating the explicit structure defined by a query and its expansion sets
into a highly specialized operator tree.

In general, we believe that the common fix of estimating a k′ value for sub-
ordinate top-k operators is unsatisfactory, since it inherently is very difficult
to choose an appropriate (i.e., safe and tight) value for k′, and this approach
destroys the incremental and pipelined nature of the TA-style methods.

7.5.1 Dynamic Index Lists

TopX treats such situations by running a nested top-k operator on the dy-
namic data source(s), which iteratively reports candidates to the caller (i.e.,
the global top-k operator), and efficiently synchronizes the candidate priority
queues of caller and callee. The callee starts computing a top-∞ result in an
incremental manner, by whatever means it has; in particular, it may use a
TA-style method itself without a specified target k, hence top-∞. It grad-
ually builds a candidate queue with [worstscore′(d), bestscore′(d)] intervals
for each candidate d. The caller periodically polls the nested top-k operator
for its currently best intermediate results with their score intervals. Now
the caller integrates this information into its own bookkeeping by adding
bestscores to the bestscores of its global candidates and worstscores to the
worstscores of its global candidates. From this point, the caller’s process-
ing simply follows the standard top-k algorithm (but with score intervals).
When the global rank-k worstscore is at least as high as the highest bestscore
among all non-top-k candidates at the global level, the caller terminates and
notifies all nested top-k operators.

This method nicely provides a non-blocking pipelining between caller and
callees, and gives the callees leeway as to how exactly they proceed for com-
puting their top results. Note that the caller may terminate (and terminate
all callees) long before a callee has really computed its final top results.
Within the TopX engine, nested top-k operators are primarily useful for
handling phrase matching.

172

7. Dynamic & Self-tuning Query Expansion

7.5.2 Phrase Matching

In general, it will be too expensive to precompute and materialize an inverted
list for all possible phrases, i.e., multi-keyword composite terms that a query
wants to find as adjacent words. But if we merely index the individual
words, we cannot simply read off the combined scores from local index lists.
Furthermore, scanning the index lists for all relevant words indeed provides
us with candidates, but we need an additional adjacency test to eliminate
false positives. Moreover, if we consider adjacency as a relaxable condition
(e.g., allowing the words of a phrase to appear within some short distance),
there is an additional aspect in the scoring function that may violate the
monotonicity of the score aggregation that top-k-style algorithms rely on.
Our solution is to encapsulate phrase conditions in separate top-k operators
and invoke these from the global top-k operator in the pipelined manner
described above.

Recall from Section 4.2.3 that we store term positions in a separate index
(not in the inverted index lists themselves) to keep the actual inverted in-
dex as compact as possible and minimize disk I/O when scanning these lists.
Thus, testing the adjacency condition (or other kinds of proximity conditions
and computing an additional proximity factor for the overall score contribu-
tion) requires random I/O. We therefore further treat the adjacency tests as
expensive predicates in the sense of [CwH02] and postpone their evaluation
as much as possible.

Now, for the Incremental Merge expansions with multiple phrases, we
incrementally merge lists of partially evaluated candidates obtained from a
separate nested top-k operator for each phrase in descending order of can-
didate bestscores. For single-keyword expansions, the score obtained from
a single inverted list will already be the final score for that candidate and
expansion; for phrase expansions, the score will be a partial score obtained
from one or more local keyword conditions of the phrase. Just like in the
non-expanded case, our approach assumes that the score for a phrase match
of a phrase t1 . . . tp is the sum of the scores for the individual words, pos-
sibly normalized by the phrase length, thus reducing the otherwise overly
big impact of long phrases. The key idea to minimizing the random I/Os
for adjacency tests is to eliminate many candidates based on their upper
score bounds (or estimated quantile of their scores) early before checking for
adjacency. Consider a phrase t1 . . . tp and suppose we have seen the same
document d in the index lists for a subset of the phrase’s words, say in the
lists for t1 . . . tj (j < p). At this point we know the bestscore′(d) with regard
to this phrase match alone (which is part of a broader query), and we can
compare this bestscore′(d) or the total bestscore(d) for the complete query

173

7.5. Nested Top-k Operator

against the worstscore(d′) of other candidates d′ that have been collected
so far. In many cases, we can eliminate d from the candidate pool without
ever performing the adjacency test. Even if we have seen d in all p index
lists for the phrase’s words, we may still consider postponing the adjacency
test further, as we gain more information about the total bestscore(d) for the
entire query (not just the phrase) and the evolving min-k threshold of the
current top-k documents. This seamless integration of multiple Incremental
Merge and nested top-k operators into complex operator trees provides a
very finely grained modeling of semantic similarities at the very core level of
query processing.

Phrase Expansion Example

Figure 7.7 depicts an expansion for the keyword query “undersea fiber op-
tics cable” which is another “hard” query from the TREC 2004 Robust track.
The phrase “fiber optic cable” has been automatically identified as a WordNet
concept and yields the very near match “fiber optics” with a similarity value
of 0.8, assuming stemming is disabled for the inverted lists. So we can auto-
matically rewrite this query, using the original keyword condition “undersea”
and an Incremental Merge over the two phrases “fiber optic cable”, i.e., the
original condition with similarity 1, and the actual expansion “fibre optics”,
each using a nested top-k operator to dynamically combine the inverted lists
with regard to each phrase condition.

7.5.3 Nested Top-k Algorithm

The algorithm works by running outer and inner top-k operators in sepa-
rate threads, with inner operators periodically reporting their currently best
candidates along with the corresponding [worstscorei(d), bestscorei(d)] in-
tervals. Then the aggregated score interval of a candidate d at each operator
simply becomes the sum of the score interval boundaries propagated by each
of the subordinate operators[∑

i=1..m

worstscorei(d),
∑

i=1..m

bestscorei(d)

]
for a top-k join, or the maximum of the respective interval boundaries[

max
i=1..m

worstscorei(d), max
i=1..m

bestscorei(d)
]

for an Incremental Merge join which remains a monotonous score aggregation
at any level of the operator tree.

174

7. Dynamic & Self-tuning Query Expansion

q = {undersea „fiber optic cable“}

Term-
Position

Index

Term-
Position

Index

undersea
…

d14
0.9

d23
0.8

d32
0.7

d18
0.9

d10.8

fiber
…

d78
0.9

d10.7
d88
0.2

d23
0.8

d10
0.8

optics
…

d78
0.8

d50.4
d47
0.1

d17
0.6

d23
0.6

sim(„fiber optic cable“,
„fiber optic cable“)

= 1.0

sim(„fiber optic cable“,
„fiber optics“)

= 0.8

Incr.MergeIncr.Merge

Top-k

fiber
…

d78
0.9

d10.7
d88
0.2

d23
0.8

d10
0.8

optic
d34
0.9

d70.4
d23
0.3

d12
0.8

d78
0.6

cable
d41
0.9

d20.3
d23
0.1

d10
0.7

d75
0.5

… …

R
andom

 A
ccess

Nested
Top-k

Nested
Top-k

Figure 7.7: Phrase matching with multiple nested top-k operators.

Figure 8 shows pseudo code for the nested top-k algorithm. Just like the
previous top-k operator, the nested top-k operator gathers candidates in a
queue with candidates ordered in descending order of bestscores. Note that
since the sum of the current highi values is monotonically decreasing, the
bestscores of all yet unseen candidates are monotonically decreasing, too.
This way, the lower operators queue serves as a buffer from which partly
evaluated candidates can be read and propagated to the upper operator in
the sense of a sorted access. The superordinate operator may in turn be
a (nested) top-k operator or an Incremental Merge operator. For dynamic
query expansion with phrases, this is always an Incremental Merge operator.
Note that the nested top-k operator is initialized with k = ∞, it just peri-
odically prefetches a batch of sorted accesses from the subordinate operators
or physically stored index lists, typically using the same batch size b that is
scheduled for the top-level operator. It then falls into the very same synchro-
nization loop that is provided by the responsible superordinate scan thread
and waits for notification by the superordinate operator’s main thread (see
Section 4.3). This way, the nested top-k operator’s main thread becomes the
scan thread of the parent top-k operator for the respective query dimension.

175

7.5. Nested Top-k Operator

Algorithm 8 Nested Top-k Algorithm.
1: processIndexListNested(IndexList Li, Batch Size bi, Operator parentTopk, Parent dimension

parentDim)
2: isAlivei = true;
3: isSuspendedi = false;
4: posi = 0;
5: while isAlive & Li.hasNext() do
6: // Perform next sorted access to Li

7: <docid, score> := Li.getNext();
8: d := cache.getCachedItem(docid);
9: si(d) := score;

10: E(d) := E(d) ∪ {i};
11: highi := score;
12: posi++;
13: // Update worst- and bestscore bounds
14: worstscore(d) :=

∑
i∈E(d) αi(βi+si(d));

15: bestscore(d) := d.worstscore +
∑

ν∈Ē(d) αν(βν + highν);

16: // Fetch dparent from parentTopk operator and
17: // propagate the score update directly to the parent operator
18: dparent := parentTopk.cache.getCachedItem(docid);
19: if parentDim ∈ parentTopk.E(dparent) then
20: worstscoreparentDim(dparent) := worstscore(d);
21: bestscoreparentDim(dparent) := bestscore(d);
22: else
23: candidates.insert(d);
24: end if
25: // Suspend & wait for main thread notification
26: if posi mod bi == 0 then
27: isSuspendedi = true;
28: semaphore.notify();
29: this.waitForNotification();
30: end if
31: isSuspendedi = false;
32: end while

33: isAlivei = false;

Random access may be supported as well, thus propagating the random
lookup down the operator tree until to the leafs nodes of the scans which
always refer to physically stored index lists that are accessed through some
kind of B+-tree index structure.

At the synchronization points, the outer operator integrates the reported
information into its own candidate bookkeeping and considers pruning can-
didates from the outer priority queue. The top-level operator’s queue is also
the only point-of-attack, where probabilistic candidate pruning and index
access scheduling is applied on the basis of index list statistics and global
candidate scores.

176

7. Dynamic & Self-tuning Query Expansion

Incremental Merge and Nested Top-k as Eddies

The incremental evaluation of candidates by a nested operator and the prop-
agation of [worstscorei(d), bestscorei(d)] intervals at each query dimension i
requires the lower operator to remember whether a candidate has been read
off its queue already, which is again achieved through checking the E(d) set
of each candidate at the parent top-k operator. If i /∈ E(d), d has not been
taken into the parent top-k’s score aggregation for d, and d is first enqueued
at the nested operator; if otherwise i ∈ E(d), d has already been read off
the nested top-k operator’s queue. Enqueuing d at the nested operator again
would not be beneficial, since it might be considered as a duplicate by the
parent operator in case of Incremental Merge, and the update would be lost.
Rather, the nested top-k has an option to directly propagate the score update
“upwards” the operator tree until to the root operator (see Algorithm 8).

The direct propagation of score updates to the parent top-k operator
provides a means to break the operator pipeline and allows to update a
candidate’s score directly, i.e., whenever the lower operator at dimension i
gains new information on d’s [worstscorei(d), bestscorei(d)] bounds which
may lead to undelayed candidate pruning and at the same time keeps all
score updates monotonous. Note that this notion of individual tuple routing
is very related to the Eddies [AH00, DH04] architecture. In fact, we could
encapsulate the Incremental Merge and nested top-k technique into an Eddy-
style execution plan for each candidate individually, using the max-score
aggregation as described above.

Lazy Phrase Validations

Our technique also allows a lazy scheduling of random lookups for phrase tests
by applying the expensive predicate test at the top-level operator, only, which
can further decrease the amount of phrase tests by an order of magnitude (as
indicated by our experiments in Section 9.7.3) for large phrase expansions.

Mandatory and Optional Expansion Groups

The modified top-k algorithm with Incremental Merge generalizes the idea
of boosting factors for individual terms to whole expansion groups using
the modified score aggregation

∑m
i sim(ti, tij) · (βi + sij(d)). This may lead

to increased scan depths on the corresponding index lists, if an otherwise
promising result candidate has very low scores in these lists but needs to
be tested for the presence of a mandatory term tij out of an expansion set
exp(ti). The βi coefficients are either 0 for the default “andish” interpretation
of the expansion group or set to a high value, i.e., βi ≥ 1, for mandatory

177

7.6. Probabilistic Extensions

terms whose local score should not effortlessly be compensated by other query
conditions (see also Section 3.5 for details on incorporating query weights and
term boosting for plain keyword queries).

7.6 Probabilistic Extensions

When we want to employ probabilistic pruning based on score predictors,
we face an additional difficulty with query expansion using the Incremen-
tal Merge technique, since the original histograms or parameterized score
estimators no longer capture the resulting score distribution for a set of in-
crementally merged lists.

Before computing the convolution over the still unknown scores for a
subset of the original query’s terms, we need to consider the possible ex-
pansions for each of the original query terms. For a term ti with a random
variable Si capturing the score distribution in the not yet visited part of
the incrementally merged lists, we are interested in probabilities of the form
P [Si > x | Si ≤ highi]. With expansion into exp(ti) = {ti1, ..., tip}, we obtain

P [max{simi1 · Si1, . . . , simip · Sip} ≤ x | Si1 ≤ highi1 ∀tij ∈ exp(ti)]

(7.4)

where simij is shorthand for sim(ti, tij). This is equivalent to

p∏
j=1

P [simij · Sij ≤ x | Sij ≤ highij ∀tij ∈ exp(ti)] , (7.5)

assuming independence between score distributions of different lists. Note
that this independence assumption is unlikely to hold on real-life data, but it
already seems to go a long way in terms of accuracy and resulting performance
gains for small expansion sizes p. We thus obtain

1 −
p∏

j=1

P [simij · Sij > x | Sij ≤ highij ∀tij ∈ exp(ti)] (7.6)

As the individual factors of this product are captured by the precomputed
histograms per index list (with the constant sim(ti, tij) coefficients simply
resulting in a proportionally adjusted distribution), we can now easily derive
a new combined histogram for the max distribution.

178

7. Dynamic & Self-tuning Query Expansion

7.6.1 Selectivity Estimator for Incremental Merge

Unfortunately, for increasingly large expansions, the inherent independence
assumption in the predictor derived above would dominate the score estima-
tions which would converge to 1 regardless of the actual score distributions
in the basic input lists. This would render the candidate pruning without
effect.

Moreover, postulating a basic parameterized score distribution for the
merged lists out of the distribution parameters of the input lists is not easy
to justify anymore. So, for the following subsections, we will focus on the
extraction of meta histograms with the capability to capture arbitrary distri-
butions for the max-score aggregation over multiple merged lists. In order to
get a clue on the resulting distribution that the Incremental Merge technique
creates, let us first have a look at what goes on when the Incremental Merge
would not be embedded into a top-k algorithm but would completely merge
all input lists.

~t

sim(t, t1) = 1.0sim(t, t1) = 1.0

sim(t, t2) = 0.9sim(t, t2) = 0.9

sim(t, t3) = 0.5 sim(t, t3) = 0.5

t1 ...
d78
0.9

d1
0.4

d88
0.3

d23
0.8

d10
0.8

t3 ...
d99
0.7

d34
0.6

d11
0.9

d78
0.9

d64
0.7

d78
0.9

d23
0.8

d10
0.8

d64
0.72

d23
0.72

d10
0.63

d11
0.45

d78
0.45

d1
0.4 ...

...d12
0.2

d78
0.1

d64
0.8

d23
0.8

d10
0.7t2

d88
0.3

exp(t) = { t1, t2, t3 }

L1

L2

L3

|~L| |L1|+ |L2|+ |L3|

Figure 7.8: Estimated selectivity of a set of merged lists.

Figure 7.8 depicts the situation for our example Incremental Merge sched-
ule from the previous section. Ignoring overlap, the full length of the resulting
merged list for an expansions exp(ti) = {ti1, . . . , tip} is upper bounded by the
sum of the lengths of the input lists:

|̃Li| ≤
∑

tij∈exp(ti)

|Lij| . (7.7)

This may already be a good-enough guess for top-k scheduling and pro-
babilistic pruning applications, although it tends to substantially overesti-
mate the selectivity of the merged lists, since our algorithm eliminates du-

179

7.6. Probabilistic Extensions

plicate document occurrences with respect to the max-score aggregation.
Without any further information about feature correlations or co-occurrence
statistics, we may in fact choose to rely to this simple estimate.

Incremental Merge Selectivity with Feature Correlations

However, with the presence of pairwise correlation statistics, or more specifi-
cally, with term-co-occurrence values for |Li∩Lj | as described in Section 6.2.3,
we can significantly improve the first estimate through a correction for the
pairwise overlap as

|̃Li| ≈
p∑

j=1

|Lij| + |Li j+1| − |Lij ∩ Li j+1| (7.8)

≤
∑

tij∈exp(ti)

|Lij| (7.9)

7.6.2 Meta Histograms for Incremental Merge

As for estimating the score distribution that the Incremental Merge algorithm
creates for an expansion exp(ti) = {ti1, . . . , tip}, we employ the basic input
histograms, thus covering the score range (0, 1] with n equi-distant buckets
(lbk, ubk] with lbk = k/n and ubk = (k + 1)/n. Recall from Section 5.2.3
that each cell k stores the frequency freq[k] and the cumulative frequency
cfreq[k] of scores that fall into the interval (lbk, ubk]. So, given the input
bucket frequencies

freqij[k] =
#docs d ∈ Lij

|Lij | with sij(d) ∈
(
k

n
,
k + 1

n

]
, (7.10)

and expansion similarities sim(ti, tij), we can construct the meta histogram’s
bucket frequencies as a weighted sum of the input frequencies

˜freqi[k] =
∑

tij∈exp(ti)

⎛⎜⎜⎝ |Lij |∑p
ν=1 |Liν | ·

� ubk
simij

· n∑
l=� lbk

simij
· n

freqij[l]

⎞⎟⎟⎠ (7.11)

and

˜cfreqi[k] =
k∑

l=0

˜freqi[l] (7.12)

which approximately captures the score distribution of the merged list, as-
suming overlap to be uniformly distributed among all scores and histogram

180

7. Dynamic & Self-tuning Query Expansion

buckets. Here,
� ubk

simij
· n∑

l=� lbk
simij

· n

freqij [l]

creates a proportionally adjusted distribution for each of the basic input
distributions with input frequencies freqij [0..n−1], thus taking the individual
expansion similarities 0 < simij ≤ 1 into account. Note that this estimate
already forms a perfect probability distribution, with the sum of all bucket
frequencies adding up to 1.

Meta Histograms with Feature Correlations

For considering feature correlations in the meta histogram construction, we
would simply use the |̃Li| estimates to derive the absolute frequencies of
documents that are below (or beyond) a certain score as |̃Li| · ˜cfreqi[k] (or
|̃Li| · (1 − ˜cfreqi[k]), respectively).

Note that binary feature correlations already provide the major step from
the first trivial estimate on our way to more precise selectivity estimations for
the incrementally merged lists. Assuming overlap to be non-uniformly dis-
tributed among histogram buckets (and thus to depend on the scores) would
require us to maintain more specific histograms for the pairwise list over-
laps in addition to the basic input histograms. A perfectly precise selectivity
estimator for the merged lists, however, would require all basic histogram
buckets to contain the actual object identifiers of items that have been cu-
mulated into each bucket’s frequency value – which would not be in the sense
of a compact histogram representation anymore.

Dynamic Meta Histogram Construction

This meta histogram construction is performed prior to query execution, and
it can efficiently be updated whenever a new scan on another index list is
opened with linear costs O(nm′) in the number of histogram cells n and the
current number of active query expansions m′. Then this meta histogram is
fed as input into the convolution with other (meta) histograms for the original
query terms (or their expansion sets). In our experiments, the overhead for
this dynamic histogram construction was negligible compared to the costs
saved in physical disk accesses.

Summing up, we identify two orthogonal dimensions in which we may ex-
ploit feature correlations: one is query driven, namely the adjusted selectivity

181

7.6. Probabilistic Extensions

estimation of top-level query conditions at a candidate’s remainder dimen-
sions; and the other is expansion driven, namely the adjusted selectivity
estimation for an incrementally merged set of active expansion terms. Both
are seamlessly integrated by the meta histogram approach which generalizes
our previous assumptions for optimizing static queries.

182

Chapter 8

Top-k Query Processing for XML

Non-schematic XML data that comes from many different sources and in-
evitably exhibits heterogeneous structures and annotations (i.e., XML tags)
cannot be adequately searched using database query languages like XPath
or XQuery. Often, such queries either return too many or too few results.
Rather the ranked-retrieval paradigm is called for, with relaxable search con-
ditions and quantitative relevance scoring. Note that the need for ranking
XML queries goes beyond adding Boolean text-search predicates to XQuery.
In fact, similarity scoring and ranking are orthogonal to data types and would
be desirable and beneficial also on structured attributes such as time (e.g.,
approximately in the year 1790), geographic coordinates (e.g., near Paris),
and other numerical and categorical data types (e.g., numerical sensor read-
ings and music style categories).

Research on applying IR techniques to XML data has started five years
ago [CK01, FG01, SM02, TW00] and has meanwhile gained considerable
attention. An emphasis of this thesis is to efficiently support vague search on
element names and terms in element contents in combination with XPath-
style path conditions. Structural similarity is considered in the sense that
documents can qualify even if they do not satisfy all path conditions (if
there were too few results otherwise). For relaxing tag names and content
terms, thesaurus-based similarity measures are employed, and queries can be
appropriately expanded. Boolean XPath-like query evaluations over content-
and-structure are supported as well, but they inherently incur high evaluation
cost for a top-k query processor that largely benefits from “andish” score
aggregations and on-the-fly compensation of weak or non-existent matches
to some query conditions.

183

8.1. Challenges in Efficient XML IR

8.1 Challenges in Efficient XML IR
Generalizing the algorithmic paradigm of top-k threshold algorithms from
simple inverted lists to ranked XML retrieval is all but straightforward. The
difficulties in applying the existing approaches to XML data lie in

1) the need to consider scores for XML elements while aggregating them
at the document level,

2) the combination of vague content conditions with XPath-like structural
conditions and efficient structural joins, thus dealing with uncertainty
about structural and content related query conditions,

3) the adaptation of selectivity estimations and index access scheduling
for both content and structure conditions and their impact on the eval-
uation strategies, and

4) the need to relax query conditions and the dynamic expansion of content-
related and structural query conditions with similar constraints, if too
few results satisfy all query conditions.

TopX addresses these issues by precomputing score and path information
in an appropriately designed index structure, by largely avoiding or post-
poning the evaluation of expensive path conditions so as to preserve the
sequential access pattern on index lists, and by selectively scheduling ran-
dom accesses when they are cost-beneficial. As in the text case, TopX can
compute approximate top-k results for XML using probabilistic score estima-
tors, thus significantly speeding up queries with a small and controllable loss
in retrieval precision. We leverage the methods presented in the previous
chapters such as probabilistic candidate pruning, index access scheduling,
and dynamic expansion techniques for a novel and versatile view on efficient
XML retrieval.

8.1.1 An XML IR Example Scenario

Table 8.1 depicts an example query written in the NEXI syntax (see Sec-
tion 2.2), with its corresponding tree structure shown in Figure 8.2. The
gray-marked paragraph node in the figure denotes the target node of the
query tree. All the remaining inner nodes are referred to as support elements.
According to the query, we are looking for paragraphs (par) which are nested
into some article element. The left branch of the query requires the article
to have a bibliographic reference containing the term “W3C” as text con-
tent under the path //article//bib//item and an //article//sec//par

184

8. Top-k Query Processing for XML

path pointing to a text node that is about “native XML databases”. The
par target is supposed to be embedded into a sec element that mentions
the terms “XML retrieval” somewhere within that particular section element
but not necessarily in the same paragraph as the actual target paragraph.
Looking at this query as a tree, we see that its structure can be broken down
into two basic twig structures, i.e., we have two branching elements, namely
the article and the sec elements. Unlike in text retrieval, any subsequent
matching of the content-conditions for XML scoring has to take these struc-
tural constraints into account, thus making XML top-k queries much more
expensive than simple text queries.

//article[
//bib[
about(.//item, "W3C")

]
]//sec[
about(.//, "XML retrieval")

]//par[
about(.//,"native XML databases")

]

Figure 8.1: A NEXI query.

articlearticle

bibbib

itemitem

secsec

“W3C”“W3C”

parpar

“XML retrieval”“XML retrieval” “native XML
databases”

“native XML
databases”

Figure 8.2: And its tree structure.

Among the two example documents shown in Figure 8.3, document d1

is nearly a perfect match to the query, because the query pattern can be
embedded into the document’s structure almost as a whole. The only flaw
of d1 is that the matching element for the content condition about “XML
retrieval” is not contained in the same sec element as the actual target
paragraph for the content condition about “native XML databases”, but it is
indeed contained in a sibling section. This minor twist in the structure should
be reflected by a slight penalty in the aggregated score for the document’s
target element.

The second document d2, however, completely lacks any matching element
for the “native XML databases” content conditions which is even specified to
belong to the target element of the query and, therefore, should get a much
lower score than d1 – in fact even 0 according to our scoring model. Note
that a strictly conjunctive, Boolean XPath-like evaluation of the query would
have returned none of the two documents as a valid match for this query.

185

8.1. Challenges in Efficient XML IR

sec

article

sec

par

bib

par

title
“Current

Approaches
to XML Data

Manage-
ment.”

item

“Data management systems control
data acquisition, storage, and
retrieval. Systems evolved from flat
files … ”

“XML queries
with an expres-

sive power
similar to that
of Datalog …”

par

title
“XML-QL:
A Query
Language
for XML.”

“Native XML
database systems can
store schemaless
data ... ”

inproc
“Proc. Query
Languages
Workshop,
W3C,1998.”

title
“Native XML
databases.”

sec

article

sec

par
“Sophisticated

technologies
developed by

smart people.”

par

title
“The

XML Files”

par

title
“The

Ontology
Game”

title
“The
Dirty Little
Secret”

“What does XML
add for retrieval?
It adds formal ways…”

bib

“w3c.org/xml”“There, I've said
it - the "O" word. If

anyone is thinking
along ontology lines, I
would like to break
some old news …”

title

item

url
“XML”

d1 d2

Figure 8.3: Two XML example documents of different relevance for the query
of Figure 8.1.

8.1.2 Requirements & Solutions Overview

We briefly summarize the requirements for efficient XML IR together with
our key solutions for the implementation of a high-performance, scalable top-
k query processing engine for XML data as follows:

1) Indexing: Path conditions that test partial results for their connectivity
along the specified XPath axes must be inexpensive to evaluate.

– Low Target Element Selectivity: Full-content indexing of tag-term
pairs accelerates the descendant axis for lowly selective target ele-
ments. We immediately benefit from less selective combined tag-
term pairs and shorter inverted lists.

– High Support Element Selectivity: Navigational tags in support
elements aggregate additional score mass for the target element
results and can be evaluated in the notion of expensive predicates.
Highly selective target elements (as in INEX) do not decelerate
query evaluations.

2) Query Rewriting and Structure-Aware Processing: We would like to
achieve fast convergence of worst- and bestscores of candidate items
even when we do not have the full knowledge about the candidates’
complete structure for effective pruning and fast termination of index
scans.

186

8. Top-k Query Processing for XML

– Query Dimensionality Reduction: Merging of terms with their
preceding tags helps reducing the query dimensionality without
changing its semantics. Combining tag-term pairs benefits from
lower combined selectivities and shorter inverted lists.

– Deterministic and Monotonous Score Updates: In order to provide
a correct algorithm, the scoring model may not interfere with any
structure- or scheduling-specific join-ordering, i.e., the order in
which newly discovered elements are joined to the partial paths.

– Early Worst- and Bestscore Guarantees: We aim to provide tight
and accurate, structure-aware score bounds for partially evaluated
candidates at an early stage of the sequential scans.

3) Random Access Scheduling: The random accesses to test structural
query conditions are expensive and should be minimized.

– Structural Selectivity Estimator: According to a our cost model,
we aggressively schedule lookups to structural query conditions in
ascending order of selectivities at the end of the sequential scans.

– Structure-aware Candidate Pruning: Lowly selective structural
conditions can be assigned a high score. If any condition can-
not be satisfied by a candidate, this candidate is most probably
eligible for pruning and not evaluated any further.

4) Dynamic Relaxation and Expansion of Query Conditions: We primar-
ily pursue an IR-style “andish” ranked retrieval for XML data. Content
and structure conditions can be dynamically relaxed (or compensated)
by a good match at another query condition and/or expanded in the
sense of a similarity (∼) operator, thus following the specification of
the ftcontains operator of the XPath 2.0 Full-Extension and the (im-
plicit) definition of the about operator in NEXI. Efficient query expan-
sion for XML data poses further challenges to the query processing.

– Incremental Merge for Semistructured Data: We generalize the
Incremental Merge technique for dynamic and self-tuning query
expansion to the XML case.

– Dynamic Selection of Index Access Structure and Hybrid Indexes:
Using tag-term pairs and tag sequences with pre/postorder labels
to encode entire paths may not always be beneficial. We adapt
the Incremental Merge technique to also incorporate hybrid in-
dex structures, including DataGuides [GW97], to also efficiently
support lowly selective support elements.

187

8.1. Challenges in Efficient XML IR

XML Indexing

The first requirement is met by adding pre- and postorder values to the entries
in the base tables (see Section 2.3), thus following the XPath accelerator work
by [Gru02, GvKT03] which perfectly suits our requirements for compact path
encodings that can be stored directly in the inverted lists. This gives us an
efficient in-memory test as to whether an element e1 is an ancestor of another
element e2 (within the same document) by evaluating pre(e1) < pre(e2) and
post(e1) > post(e2), with analogous support for all XPath axes, including
the child axis by extending this schema with the level information. Since the
pre/post information is at hand as we continuously fetch the entries from
the inverted lists for the content-related query conditions, we can test path
conditions for candidates with high local scores without additional random
lookups on a separate index for the structure. If an element fails such a
path test, we simply drop it and exclude it from further structural joins. As
this element itself may have been chained to other elements at different (yet
unevaluated) query dimensions, dropping that element may have a crucial
impact to the candidate’s aggregated bestscore and, thus, prune a whole
group of target elements for that document from the candidate queue.

Structure-aware Top-k Query Processing

As for the second requirement, fast convergence of worstscores and bestscores
for candidate elements or entire documents, can be met by block-scanning
all elements per query condition and, thus, eagerly eliminating uncertainty
about further matches among documents for which only a subset of elements
has been seen so far in the sequential index scans. The problem is that we
may have to keep the document in the candidate queue for a long time until
we finally find low-scored elements that might satisfy the content conditions
but violate the path conditions. In particular, the bestscores would have to
be kept unnecessarily high, namely at the aggregation of the maximum local
term scores of elements at each dimension that are still a potential match
for the path query and therefore are still valid. Analogously, the worstscores
could still gradually increase as we find better elements that, though having
a low local score themselves, could provide a crucial path connection and
thus yield a higher aggregated score with regard to the whole path. As
opposed to the text retrieval case, the worst- and bestscore bounds in the
XML case would remain much too broad – and in fact almost meaningless
– for candidate pruning. In using sequential block-scans, we make sure we
have seen all the elements for a particular query condition as soon as we have
encountered a document in one of the inverted lists; and this allows us to

188

8. Top-k Query Processing for XML

reason about the worst- and bestscore bounds more accurately.

Random Access Scheduling for Structural Conditions

As for the third issue, TopX postpones random accesses as much as possible,
namely, until the point when random I/Os are cost-beneficial according to our
scheduling approach (see Section 8.4) for a given candidate. For most of the
candidates, the content-based bestscore quantiles (or the probabilistically es-
timated quantiles) already become low enough, so they can be dropped from
the candidate queue before the structural conditions need to be evaluated
at all. This results in major savings of random accesses. We extend the
beneficial cost model introduced in Section 6.4.2 for plain inverted lists for
structured data and queries by analyzing and precomputing the structural
selectivities of basic query patterns such as path and twig relationships of
elements in the corpus.

Dynamic Relaxation and Expansion of Query Conditions

Finally, the fourth requirement is addressed by adopting the Incremental
Merge approach for semistructured data. Applying the Incremental Merge
and nested top-k framework for XML is fairly straightforward; the only prin-
ciple obstacle is that query conditions are now constrained by structural
path conditions. That is, the first maximum scored single element or whole
element block per candidate that is reported by the Incremental Merge ope-
rator does not necessarily maximize the aggregated path score (and hence the
document score) any more, similarly to the discussion above. Lower-scored
elements that are only merged further down the lists, on the other hand,
might contribute to a higher aggregated path score. We have to ensure that
we incrementally allow further element blocks to be merged into the existing
element block of a candidate for the structural joins and still keep the worst-
and bestscore updates monotonous. As an additional tweak, we may exploit
the Incremental Merge framework not only for content-related query expan-
sions but also to dynamically relax the structural query constraints up to
the usage of hybrid index structures, where some navigational query condi-
tions correspond to pre/postorder labeled tag conditions and others contain
DataGuide-like path encodings.

189

8.1. Challenges in Efficient XML IR

8.1.3 Boolean XPath vs. XML IR

Conjunctive Query Evaluation – Boolean XPath

For conjunctive or Boolean XPath-like top-k query processing, reasoning
about the scores of partial matches with uncertain knowledge about the whole
structure is a secondary issue. To evaluate, score, and rank a candidate item
in conjunctive mode, we could just require the candidate to be fully evaluated
at all query dimensions through a mix of sequential and random index ac-
cesses and then process the query on the whole document structure. This is as
it is done in existing XPath and top-k query processors for XML [KKNR04].
Hence, in contrast to a traditional DBMS whose query optimizer is eagerly
driven by selectivity assumptions, conjunctive query evaluations are generally
more expensive and offer less tuning opportunities for a top-k query proces-
sor than the typical IR-style “andish” query evaluations that are primarily
driven by score aggregations and largely benefit from the dynamic relaxation
and compensation of weak matches for some query conditions. However, in
order to efficiently prune candidates at an early stage of the query processing
in conjunctive mode as well, we aim at testing structural query conditions
based on selectivity estimations. In conjunctive mode, all structural condi-
tions in the query, i.e., XPath axes and tag names, as well as the content
conditions are mandatory for a document or subtree to qualify for the query
result. If a single query condition is missed, the candidate is immediately
dropped from the candidate queue and not evaluated any further.

Andish Query Evaluation – XML IR

In order to substantially improve recall as required in most IR-related bench-
mark settings such as INEX, we can relax this strict notion of conjunctive
query evaluations to an “andish” form of content and structure matching
which suits most IR-related applications in a much better way. In fact, even
for top-k queries with k being set to 10 or 20, Boolean XPath-like query
evaluations often yield too few exact matches and thus hinder a conjunctive
query processor from providing not only good recall values but also satisfac-
tory precision values for the upper ranks.

In “andish” mode, a result document (or subtree) should still satisfy most
structural constraints, but we may tolerate that some tag names or path
conditions are not matched. This is useful when queries are posed without
much information about the possible and typical tags and paths, e.g., when
the XML corpus is a federation of datasets with highly diverse schemata.
In the INEX benchmark, a collection of IEEE CS conference and journal
publications, the situation arises because of the large number of different

190

8. Top-k Query Processing for XML

tags and the user’s a-priori ignorance about certain content terms occurring
in sections or subsections or paragraphs or captions, etc. In this setting our
scoring model essentially counts how many structural conditions are satisfied
by a result candidate and assigns a small and constant score mass c for every
condition that is matched. This structural score mass is combined with the
content scores by summation. Note that it is still important to identify non-
satisfiable conditions as early and efficiently as possible, because this can
reduce the bestscore of a result candidate and make it eligible for pruning.
We refer to this “andish” form of query evaluation with relaxable structural
and content-related query conditions as the default mode for XML IR.

8.2 Query Decomposition & Index Block-Scans

8.2.1 Query Decomposition & Rewriting

The query rewriter analyzes the query syntax (according to the NEXI or the
XPath 2.0 Full-Text specification) and decomposes the query into a number of
navigational and content conditions which are constrained through structural
conditions each of which is referring to an XPath axis such as the child or the
descendant axis. This way, the engine’s internal representation of the query
is purely graph-based and completely abstracted from the query-language-
specific syntax.

Query Trees

Recall from the query language definition in Section 2.2 that the rightmost,
top-level node test of a location path is called the target element of the query;
all other node tests in the location path denote the query’s support elements.
In a strict interpretation of the query structure, only those elements that
match the query’s target element are considered to be valid results.

Definition 8.2.1 (Navigational Condition) One or more node tests out
of a location path that refer to element nodes only are called navigational
conditions.

For branching path queries, we consider all distinct root-to-leaf paths in
the query tree as location paths. Navigational conditions are either inner
nodes or leaf nodes of the query tree.

Definition 8.2.2 (Content Condition) Node tests that refer to text nodes
(CDATA) are called content conditions. Each content condition refers to
exactly one text token according to the full-content text model for elements.

191

8.2. Query Decomposition & Index Block-Scans

Content conditions are always leaf nodes of the query tree. Typically, but
not necessarily, the query target elements refer to content conditions.

Definition 8.2.3 (Structural Condition) The edges of a location path or
query tree are called structural conditions. Each edge refers to exactly one
XPath axis.

Navigational query conditions are either single tag conditions using the
pre/postorder labeling scheme, or they may encode whole locations paths
using DataGuides (see Section 2.3.2 for an example). Content conditions
can then be rewritten as combined locator-term pairs. For the pre/postorder
scheme these are tag-term pairs; and for DataGuides, these are bucketid-term
pairs. A structural query condition constrains the way how the content and
navigational conditions are connected. For NEXI, these structural conditions
refer to the descendant, self, and attribute axes, only.

Note that depending on the corpus-specific selectivities of the query’s
location paths, it may be beneficial to use DataGuide-like index structures
and bucket ids to encode whole location paths into a single query condition
instead of splitting the path into a number of single navigational tag con-
ditions. In both cases, the key idea is to benefit from the lower selectivity
of combined navigational and content-related query conditions compared to
the selectivities of each tag (or bucket id) and term alone and to reduce the
number of random accesses for testing the structure to the largest possible ex-
tent. This way, the most important building blocks for querying and ranking,
namely the target elements that typically form the leaf nodes of the query,
can be efficiently encoded into a combined index for content and structure
using tag-term pairs or even bucketid-term pairs for DataGuides. The lat-
ter option that dynamically chooses between DataGuides and tag sequences
with pre/postorder labels poses additional challenges for queries using the
descendant axis and will be discussed in Section 8.5.2. In the following sec-
tions, we will focus on the usage of the pre/postorder labeling scheme for the
default query processing; the usage of DataGuides follows analogously.

Then the main building block for queries are tag-term pairs that are
obtained from merging each term of a query’s text node with its nearest
preceding tag. Whole location paths with multiple descendant constraints
are decomposed into a number of navigational conditions (tag sequences)
and combined tag-term pairs for the content-related conditions as leaf nodes
in the query tree. Branching path queries can be expressed analogously.
Figure 8.4 shows the resulting structure of this merging step for our example
query depicted in Figure 8.2. Since the par and title elements exclusively
point to content-related leaf nodes, we do not have to expand the par and

192

8. Top-k Query Processing for XML

title tags into separate navigational query conditions but rather merge
them with their descendant terms and directly connect the resulting tag-
term pairs to the preceding sec and item element, respectively. This helps
us to significantly reduce the dimensionality of the query without changing
the semantics of the original query pattern.

Note that we need to introduce an additional edge type for the above
query representation to express the self axis for term conditions that have
been extracted from the same original text node as shown in Figure 8.4.

Query DAGs

After the query decomposition step, every individual node in the query tree
represents either a navigational tag or a combined locator and keyword con-
dition in the form of a tag-term pair. In both cases, the in-memory structural
joins are efficiently performed on the pre/postorder information associated
with each candidate element in the document tree. For efficient incremen-
tal testing of structural query conditions and our advanced random access
scheduling decisions, we also transitively expand all structural dependencies
in the query as illustrated in the step from Figure 8.4 to Figure 8.5. This
way, the query forms a directed acyclic graph (DAG) with elementary tag
conditions as inner nodes, tag-term conditions as leafs, and all transitively
expanded descendant constraints as edges.

This transitive expansion of structural constraints will be key for efficient
path validations and random access scheduling and allows for an incremental
testing of path satisfiability which enables the engine to derive more restric-
tive bestscore bounds at an early stage of the query processing. This way, the
query processor can also take partial knowledge about the candidates struc-
ture into account without having to evaluate the candidate completely at
all query dimensions to provide precise and meaningful worst- and bestscore
guarantees.

articlearticle

bibbib secsec

item=
w3c

item=
w3c

sec=
XML

sec=
XML

sec=
retriev

sec=
retriev

par=
nativ

par=
nativ

par=
xml

par=
xml

par=
databas

par=
databas

Figure 8.4: Text contents merged
with their preceding tags.

articlearticle

bibbib secsec

item=
w3c

item=
w3c

sec=
XML

sec=
XML

sec=
retriev

sec=
retriev

par=
nativ

par=
nativ

par=
xml

par=
xml

par=
databas

par=
databas

Figure 8.5: Transitively expanded
descendant constraints.

193

8.2. Query Decomposition & Index Block-Scans

For example, in the left branch //article//bib//item=w3c in the query
DAG of Figure 8.5, an element with tag item and content term "w3c")
has to be a descendant of both the article and the bib elements in order
to aggregate score mass from the sibling nodes rooted at those elements.
If the pre/postorder labels of the item element already do not match the
pre/postorder labels of the more selective article element, we can decrease
that element’s bestscore by a significant margin (and possibly make it eligible
for pruning) without ever having to test the bib condition through another
expensive random lookup. This is a crucial performance factor for the TopX
engine, since it may already prune a major number of items based on their
bestscore assumptions and save a substantial amount of index access costs.

8.2.2 Schema Mapping & Index Structures

All inverted index lists are stored in a relational schema; Figure A.1.2 of
the Appendix lists the corresponding table and index definitions. An XML
element is identified by the combination of the document identifier docid
and the element’s preorder label pre. Navigation along all XPath axes is
supported by both the pre and post attributes using the indexing technique
by [Gru02], in order to implement a combined inverted index for XML content
and structure in a compact way.

All index structures could be implemented as a customized index just
as well, e.g., using inverted files with some potential gains in the flexibility
of our storage management, in particular trough saving redundant key pre-
fixes in a more object-oriented way than a strictly relational system would
allow. In using the given database infrastructure, we basically rely on 30
years of database research for efficient index structures and transaction man-
agement (including index updates). In the following, we discuss the detailed
schema setup using the Oracle database system with the option of leveraging
space-efficient Index Only Tables (IOTs) [IOT] and the index key compres-
sion feature for our primary storage structures; all schema definitions can be
transfered analogously to other DBMS or inverted files:

• TagTermFeaturesRA: IOT with attributes concatenated in the order
(docid, tag, term, score, maxscore, pre, post) as key.

• TagTermFeaturesSA: B+-tree index over all attributes of TagTerm-
FeaturesRA but concatenated in the order (tag, term, maxscore, docid,
score, pre, post) as key.

• TagsRA: Separate IOT with attributes concatenated in the order
(docid, tag, pre, post) as key.

194

8. Top-k Query Processing for XML

A sequential scan through an inverted index list now corresponds to an in-
dex range scan on the B+-tree index TagTermFeaturesSA using the key prefix
(tag, term). Sorted access in descending order of scores is guaranteed by the
key suffix (maxscore, docid, score, pre, post), where maxscore is the maxi-
mum score value among the records grouped by (docid, tag, term), and pre
and post denote the position of each tag-term pair in the document tree. By
keeping all query-relevant attributes redundantly in the TagTermFeatures-
RA and TagTermFeaturesSA index (and thus forcing a full replication of the
index data), we prevent the DBMS from performing more expensive index-
access-per-rowid plans (i.e., hidden random accesses between the index and
the base table) and are able to perform truly sequential disk accesses on top
of the DBMS by reading the all tuples directly from the B+-tree leaf nodes
in sorted order. Content-related query conditions for a given document can
also be efficiently tested through random accesses on the TagTermFeaturesRA
IOT (i.e., small index-range-scans and index-skip-scans) using the key prefix
(docid, tag, term).

As an additional enhancement, we use Oracle’s index key compression op-
tion to automatically truncate redundant index key prefixes and skip dispens-
able key prefix replications at the inner index nodes of the B+-tree structures.
This is the case for the (docid, tag, term) prefixes of the TagTermFeaturesRA
IOT, the (tag, term,maxscore) prefixes of the TagTermFeaturesSA index,
and the (docid, tag) prefixes of the TagsRA IOT which are kept only once in
the respective B+-tree index structure and directly link to the actual data in-
stances as leaf nodes of the B+-tree. We fully precompute and materialize the
TagTermFeaturesRA base table to efficiently support our full-content scoring
model on the descendant axis between tags and their succeeding terms, i.e.,
for patterns of the type A[.//"a"] (see Section 3.4.1).

Since elementary tag conditions are defined to contribute to a candidate’s
aggregated score with a constant score mass c, only, sorted access to those
tag conditions would not be beneficial. These structural conditions (i.e., the
tags article, bib and sec in the example query) are tested through random
access on the TagsRA IOT, only.

Document Model

Note that plain text indexing can now be reduced to a special case of the
generic XML schema and indexing technique above, using a single virtual
and document-wide element with an empty tag (or the wildcard tag *) and
a pre- and postorder label pre = post = 1 for indexing the text document.

On the other hand, the scoring model applied for the XML document’s
root element (see Section 2.1) refers to the very same scoring model that

195

8.2. Query Decomposition & Index Block-Scans

a text indexing technique would generate for an unstructured document
with the same content. Moreover, all nested elements are treated as mini-
documents, each of which is an eligible retrieval unit using their descendant
full-contents for scoring and retrieval.

Document Granularity

Keeping the docid attribute in our inverted lists basically helps us to quickly
identify the hash targets for the inverted block-scans and keeps the range
of our in-memory structural joins small and efficient, since path matches
are only allowed within the same document and scores are aggregated on
a path within a document’s boundaries. However, this approach assumes a
reasonable document size for efficient top-k-style query processing as it is
typically given in current benchmark settings such as INEX.

Focusing on XML from a pure data-centric point-of-view, an XML col-
lection might consist of a single large document tree of several Megabytes
or even Gigabytes size. This would degrade the performance of the TopX
engine, since we would effectively end up performing full scans on the in-
verted index structures, because every element block would be mapped to
the same document. In this case, the TopX algorithm would degenerate to
a DBMS-style join-then-sort approach on the TopX index structures. How-
ever, it would still allow us to identify and score individual target elements
within that large document tree which can be returned as a ranked result
list of target elements just as well. Note that even in this case, we benefit
from indexing combined tag-term pairs and shorter inverted lists compared
to many standard indexing techniques. Moreover, various partitioning ap-
proaches have been proposed in the literature to automatically identify and
segment large XML trees based on some notion of coherent information units
or index nodes [FG01] which might be applied as an ad-hoc patch here.

8.2.3 Sorted Access for Element Blocks

Using our full-content indexing approach described in Section 2.1.4, each tag-
term pattern can now be mapped onto exactly one of the inverted index lists
which corresponds to a strict interpretation of the query’s target element in
the INEX notation 9.5.1. This way, the data instances of all tag-term pairs
are read directly off the inverted lists using efficient sequential accesses. For
each such content condition (e.g., par=native in our example query), such
a sorted index scan is opened by issuing an SQL statement of the form as
depicted in Figure 8.6 and incrementally moving a database cursor through
the inverted block index for that content condition.

196

8. Top-k Query Processing for XML

select
score, pre, post

from
TagTermFeaturesRA

where
tag = ’item’ and term=’w3c’

order by
maxscore desc, docid, score desc

Figure 8.6: Index range scan on TagTermFeaturesRA as sorted access state-
ment (using the TagTermFeaturesSA B+-tree index) for a given tag and term.

The base table TagTermFeaturesRA contains the textual contents en-
coded as one row per tag-term pair per document, together with the local
scores and the pre- and postorder labels. For each tag-term pair, we also
provide the maximum score maxscore among all entries grouped by docu-
ment, tag, and term in order to rearrange the tuples in the inverted lists
in a convenient way that supports our approach for incremental structural
joins to the best possible extent. We thus extend the traditional notion of
single-row sorted accesses to a notion of sorted block-scans. To efficiently
fetch all tag-term pairs connected to a content-related query condition (i.e.,
a tag-term pair), we perform these sequential block-scans that fetch all the
elements per document that are relevant for such a content condition from
the respective inverted list through an inexpensive series of sequential disk
I/O. The TagTermFeaturesSA that materializes this block grouping of ele-
ments in descending order of (maxscore, docid, score) for each tag-term con-
dition helps us to this end. Instead of using the tag-term-specific score
attribute for sorting, we perform sorted accesses for a given (tag, term) key
prefix primarily in descending order of maxscore using the concatenation of
(maxscore, docid, score, pre, post) as key suffix.

The sequential scans now prefetch all tag-term pairs for the same docu-
ment in “one shot” and keep them in memory for further processing. This
allows us to read all the relevant element matches per document by continu-
ously moving a single cursor on each of the physical index list and read them
directly from the leafs of the B+-tree.

If a document is tested at a respective dimension against a path condi-
tion and none of its elements meets the path expression, or if a path connec-
tion is interrupted at such an element block, we can significantly reduce the
bestscore of the whole document and potentially drop the document (and
with all its potential target elements) from the queue and the cache. So
we can drop many candidates before actually having evaluated them at all

197

8.2. Query Decomposition & Index Block-Scans

query dimensions and save expensive random IO’s compared to existing ap-
proaches (e.g., see [KKNR04]), keep the candidate queue smaller and, thus,
stop earlier.

Modified Bestscore Bounds

The way we block-scan documents in index lists (or actually their element sets
for a given tag-term pair) also affects the way we estimate the bestscores of
the current candidates as the score attribute would not ensure a monotonous
decrease of the highi values any more. Therefore, in analogy to the single-
row sorted accesses model, the maxscore attribute now yields the basis for
the highi values used in each inverted list Li to estimate the upper bestscore
bounds for all candidates. Note that the highi values now serve as a more
generous upper bound for the score each candidate can still achieve, because
the structural join might actually take an element with a much lower score
value than the maxscore into the path aggregation, but our experiments
indicate that pruning remains effective.

We can now update the intermediate [worstscore(d), bestscore(d)] inter-
val of a candidate document d each after having block-scanned d at a re-
spective index list Li and add the query dimension i to the set of evaluated
dimensions E(d), thus excluding uncertainty about further matches of yet
unseen elements of d in Li that – though yielding a lower local score – could
potentially yield a higher aggregated path score and might render the score
updates non-monotonous. Hence, we will determine the new score bounds of
d on the basis of the structural joins between whole element blocks according
to the materialized grouping of elements by candidate document and query
dimension in our inverted block-index.

Similarly to the text retrieval case, we add the document to the current
top-k results, if its worstscore is raised above the current min-k threshold.
If otherwise its bestscore drops below the min-k threshold, we may safely
prune d from the candidate queue and the cache. Also note that we can
optionally invoke score predictors on the basis of these modified highi and
bestscore(d) values for probabilistic pruning at this point, in order to prune
weak candidates similarly to the text retrieval case.

8.2.4 Random Access for Element Blocks

Random accesses to content scores for a given document, tag, and term are
performed through additional index range scans on the TagTermFeaturesRA
index using the triplet (docid, tag, term) as key which is shown in Figure 8.7.

198

8. Top-k Query Processing for XML

The structure of these statements is precompiled and uploaded to the DBMS
to accelerate their executions.

select
score, pre, post

from
TagTermFeaturesRA

where
docid = ’12345’ and tag = ’item’ and term=’w3c’

order by score desc

Figure 8.7: Index range scan on TagTermFeaturesRA IOT as random access
statement for a given document, tag, and term.

Note that structural tests to the element directory, namely the TagsRA
IOT, are performed through random access, only, using similar SQL state-
ments. The only difference is that, since the TagsRA index merely serves as
an element directory to test structural conditions which are encoded as single
tags, we are using the concatenation of (docid, tag) as key.

8.3 Structure-aware Top-k Query Processing

Recall from the Section 8.1.2 that the structure-aware path evaluation of can-
didate poses specific requirements to a top-k query processor. In particular,
we are aiming to provide

1) deterministic and monotonous score updates which are independent of
the schedule,

2) tight and accurate, quickly converging worst- and bestscore bounds for
effective candidate pruning, and

3) incremental score updates taking also partial information about the
content and structure into account.

Algorithm 9 shows the basic TopX workflow for processing XML data
and structured queries as a very straightforward extension to our previous
top-k query processing strategies. Once we have a document’s complete set
of elements that match a given content condition in memory, we can compare
this set against other element sets from the same document, namely, those
that we have found through sorted block-scans or random range-scans on the

199

8.3. Structure-aware Top-k Query Processing

Algorithm 9 Basic TopX Workflow for Structured Queries.
1: Parse the XPath or NEXI query.
2: Translate query into internal tree representation for path evaluations.
3: Translate query tree into DAG structure which will be used for RA scheduling only.
4: Open cursors to inverted lists for sequential scans on all tag-term leaf nodes.
5: Initialize top-k list, candidate queue, and hash-based cache.
6: Fetch next element block from sequential block-scan according to basic SA scheduling.
7: Join this element block on did attribute with other element blocks seen so far.
8: Evaluate path structure for all elements contained in a target element block.
9: Update worst- and bestscore bounds for current document.

10: Determine Min-Probing RA scheduling decisions for expensive predicates.
11: Determine cost-based RA scheduling decisions for remaining content conditions.
12: Determine pruning decisions.
13: Test for min-k threshold termination.
14: Return top-k results or continue with step 6.

other index lists for further query conditions. At this point, we compare ele-
ment sets for the same document against each other, testing path conditions
and aggregating local scores. This is performed efficiently using in-memory
hash and Staircase [GvKT03] joins on the pre- and postorder labels. Element
sets for documents that have at least one element that satisfies all path con-
ditions that can be tested so far are kept around in the cache for later testing
of additional path conditions as candidates for further content conditions are
fetched, all other elements can be pruned to safe valuable main memory.

8.3.1 TopX Query Processing by Example

For an illustration of the indexing and query evaluation process, consider the
example data in Figure 8.8 and the following simple twig query:

//A[//B[.//,“b”]]//C[.//,“c”]

(omitting the NEXI-style about operator for short). Note that in order
to provide a full turn on the algorithm from indexing to querying, we will
temporarily switch to a more abstract example with abbreviated tag and
term names. All documents are parsed using our full-content scoring model
described on Section 3.4.1 and indexed using the inverted block-index over
tag-term pairs from Section 2.3.3. Note that this is the same example figure
as depicted in Section 3.4.1 to illustrate the scoring model.

Figure 8.1 shows an excerpt of the respective TagTermFeaturesSA B+-
tree index. For simplicity, we do not show the Okapi-based scores here,
but rather pretend that our scores are mere ftf values normalized by the
number of terms in a subtree (e.g., for the tag-term pair A:a, the element e10

200

8. Top-k Query Processing for XML

2:A

1:R

6:B

3:X 7:X

4:B 5:C

aaccab

8:B 9:C

bbb cccxy

2:X

1:A

6:B

3:B 7:C

4:B 5:C

cccabb

abc

2:B

1:Z

3:X

4:C 5:A

aaaabb

6:B 8:X

7:C

acc

9:B 10:A

bb 11:C 12:C

aabbc xyz

d1 d2 d3

Figure 8.8: Some simple XML example documents.

in document d3 has score 1/4, because the term a occurs twice among the
eight terms under e10).

Li tag term maxscore did score pre
A a 1 d3 1 e5

1 A a 1 d3 1/4 e10
A a 1/2 d1 1/2 e2
A a 2/9 d2 2/9 e1
B b 1 d1 1 e8

2 B b 1 d1 1/2 e4
B b 1 d1 3/7 e6
B b 1 d3 1 e9
B b 1 d3 1/3 e2
B b 2/3 d2 2/3 e4
B b 2/3 d2 1/3 e3
B b 2/3 d2 1/3 e6
C c 1 d2 1 e5

3 C c 1 d2 1/3 e7
C c 2/3 d3 2/3 e7
C c 2/3 d3 1/5 e11
C c 3/5 d1 3/5 e9
C c 3/5 d1 1/2 e5

Table 8.1: Block index for the example of Figure 8.8

TopX evaluates the query by opening index scans for the two tag-term
pairs B:b, and C:c, and block-fetches the best document for each of the
two conditions. For example, for B:b, the first three lines of index list L2

in Figure 8.1 that belong to the same document d1 are fetched as a sorted
block-scan. Figure 10 shows pseudo code for the TopX algorithm. As the
index scans proceed in a baseline round-robin fashion among all index lists
Li connected to content conditions (i.e., tag-term pairs), the algorithm conti-
nuously computes [worstscore(d), bestscore(d)] intervals for each candidate d
that it is fetched by a sorted access and periodically updates the bestscore(d)

201

8.3. Structure-aware Top-k Query Processing

values of all candidates using the current highi values and the score mass of
the not yet evaluated structural constraints oj · c.

As the first round of block-scan fetches yields two different documents,
the algorithm needs to continue fetching the second-best document for each
condition. After the second round, it happens that d3’s relevant elements
for both conditions are in memory at this point. A random access for all A
elements in d3 can now be triggered, if it is cost-beneficial (see Section 8.4). If
so, we can efficiently test both path conditions for d3, namely whether a B:b
element is a descendant of an A element and a C:c element is a descendant
of the same A element, by comparing the pre- and postorder numbers of the
respective element pairs. This way, it is detected that none of d3’s element
triples satisfies both path conditions and the wortscore(d3) and bestscore(d3)
values have both converged to the final value 1 + 2/3, however, without the
score mass c = 1 for the missed A condition. The same test can be performed
for document d1 at this point, but only for one of the two path conditions,
namely, whether an A element has a B:b element among its descendants.
The second condition, namely the connection between A and C:c, can be
tested only later, when the matches for C:c within d1 are encountered on the
C:c index list. As d1 has valid element pairs after the A vs. B:b test, we
recompute the [worstscore(d1), bestscore(d1)] interval which now becomes
[1 + 1, 1 + 1 + 3/5]. If worstscore(d1) > min-k, we put d1 into the top-k
results; if otherwise the bestscore(d1) > min-k, we put d1 into the candidate
queue and reserve the option to perform the probabilistic threshold test as
to whether d1 still has a good chance to qualify for the top-k.

The following sections describe the algorithmic details for these evaluation
strategies.

8.3.2 In-Memory Structural Joins

Algorithm 10 shows only a minor modification compared to the core TopX
query processor described in Section 4.3, namely at the point where a can-
didate’s worstscore is determined. For XML document retrieval, the doc-
ument’s final score is defined as the maximum path score in d’s element
structure that matches the query’s target element, i.e.,

worstscore(d) :=

max{getElementScore(d, targetNode, e)|e ∈ targetElements(d)}

where targetNode denotes the query target node and targetElements(d)
refers to the element block that is fetched for d from the inverted block index
and matches targetNode. Note that in order to ensure that we only retrieve

202

8. Top-k Query Processing for XML

Algorithm 10 Structure-Aware Index List Processing.
1: processIndexListXML(Index List Li, Batch-size bi)
2: isAlivei = true;
3: isSuspendedi = false;
4: posi = 0;
5: while isAlive & Li.hasNext() do
6: // Scan for next element block in Li

7: <docid,maxscore,elements(d,i)> = Li.getNextBlock();
8: d := cache.getCachedItem(docid);
9: E(d) := E(d) ∪ {i};

10: highi := αi(βi+maxscore);
11: posi++;
12: // Update worst- and bestscore bounds
13: worstscore(d) :=

max{ getElementScore(d,targetNode,e) for all e∈ targetElements(d) };
14: bestscore(d) := worstscore(d) +

∑
ν∈Ē(d) highν ;

15: // Continue as in core query processing algorithm shown in Algorithm 4
16: ...

17: if GRANULARITY = ELEMENTS then
18: min-k := getTopkElements(top-k)[k];
19: else
20: min-k := top-k.getMinkScore();
21: end if
22: ...

23: end while

valid target elements as results, it is cheapest to start the recursive path
traversal only for elements at the query’s target node rather than maximizing
path scores for all possible element combinations and then filtering those that
actually match the target node condition.

Thus, for a given query target node and each element in a block asso-
ciated with that target node, we invoke a recursive tree traversal using the
getElementScore procedure (see Algorithm 11) to determine the maximum
path score among all target elements seen so far, which will then be used
to determine the document’s worstscore. These in-memory structural joins
and path evaluations for a candidate d are updated incrementally after each
sequential block-scan on d on a different tag-term index list, i.e., whenever
we gain additional information about a candidate document’s element struc-
ture. All the remaining building blocks of the TopX query processor such as
the candidate and top-k bookkeeping remain unchanged.

Document vs. Element Retrieval

Algorithm 10 also has an option that distinguishes between document and
element granularity for retrieval. In document mode, we use the worstscore
of the rank-k document of the current top-k document list to determine

203

8.3. Structure-aware Top-k Query Processing

the min-k threshold as before; in element mode, we use the score of the
rank-k element among the current top-k documents to determine the min-k
threshold. Note that the rank-k document score is a lower bound for the
rank-k element score. We will revisit this issue in Section 8.3.6.

8.3.3 Incremental Path Tests

The focus of our algorithm lies on the efficient evaluation of path queries
over partially evaluated candidate documents, thus dealing with uncertainty
about both content-related and structural query conditions. We introduce a
novel approach for incremental path testing that comprises a combination of
efficient hash-joins for content-related query conditions and Staircase joins
(from the XPath Accelerator work [Gru02, GvKT03]) for the structure. We
extend this approach by a notion of virtual elements with 0 scores that en-
able the engine to also navigate through the structure of partially evaluated
candidate documents.

Figure 8.9 first illustrates the algorithm for a fully evaluated candidate
document d and the example query from Table 8.1, we will then extend
the approach for partially evaluated candidates. The figure shows all ele-
ment blocks for d depicted as score, pre- and postorder triplets of the form
score[pre, post] for all element blocks that have been mapped to the individ-
ual nodes of the query pattern. This is the case when all query conditions
have been successfully tested on d by a combination of sorted and random
accesses to our inverted block index as described in Section 2.3.3. In the
following, we denote the element block associated with a query node n at
document d as elements(d, n). For example, the rightmost element block in
Figure 8.9

par=databas
0.071 [389, 388]

0.068 [354, 353]
0.041 [375, 378]
0.022 [372, 371]

refers to the element block of candidate d for the target content condition
par=databas (including stemming) of the example query of Figures 8.1 to 8.5.
Each of the entries represents a distinct element of the candidate document d.
The bold-face element entry 0.068 [354, 353] refers to the par element with
the preorder label 354 matching the term “databas” among its full-contents
that will maximize the local content conditions for the target node and in
fact aggregate the highest path score with regard to the whole query. Hence,
it will determine the document’s final score.

204

8. Top-k Query Processing for XML

Then query evaluation and recursive tree traversal is performed along
the node structure of the query, with individual elements e ∈ elements(d, n)
being joined at each query node n for score aggregation. Note that – although
d yields valid local matches for each of the query conditions – the query
might still not be satisfiable by d in a conjunctive sense, since at least one
element combination has to lie on a connected path structure that matches
the whole query pattern. Since only those elements that are specified as
target elements by the query are defined to be valid result elements and to
obtain a non-zero score, we have to start evaluating the candidate at the
elements matching a target query condition which corresponds to the par
node in our example. Starting with these targets, we traverse the query tree
in two opposite directions (only considering the query tree structure without
the transitively expanded descendant edges at this point) to make sure we
start with a valid result element. For each of the target elements, we aim
at maximizing the aggregated score of a connected path from a target leaf,
over its parent nodes and down to its valid siblings. The top-scored target
element finally yields the document’s score.

articlearticle

bibbib secsec

item=
w3c

item=
w3c

sec=
xml

sec=
retriev

par=
nativ

par=
xml

par=
databas

getElementScore()

getElementScore()

1.0 [1, 419]

1.0 [398, 418]

0.096 [402, 412]

1.0 [37, 46]
1.0 [49, 166]
1.0 [169, 348]
1.0 [351, 389]
1.0 [392, 395]

0.309 [49, 166]
0.211 [169, 348]
0.163 [351, 389]
0.113 [37, 46]

0.115 [351, 389]

getSubtree-
Score()

getSubtree-
Score()

getSubtree-
Score()

0.173 [71, 69]
0.171 [68, 66]
0.159 [163, 161]
0.149 [347, 343]
0.136 [166, 164]
0.125 [354, 353]
0.112 [313, 311]
0.101 [55, 53]
0.099 [329, 326]
0.087 [357, 359]
0.085 [324, 321]

0.071 [389, 388]
0.068 [354, 353]
0.041 [375, 378]
0.022 [372, 371]

0.242 [354, 353]
0.185 [357, 359]
0.160 [65, 64]

getSubtree-
Score()

Figure 8.9: Path query evaluation on a candidate’s element block structure
for the example query of Figure 8.2.

205

8.3. Structure-aware Top-k Query Processing

The getElementScore Procedure

For a given target element and query target node, the main procedure getEle-
mentScore, see Algorithm 11, iteratively traverses the query tree “upwards”
all the target elements’ parents up to the query root node simply by inverting
the direction of the descendant constraints. We choose the target node of the
query as our initial context node for the path evaluation. Each of the entries
of the parent’s element block is joined with the source element by compa-
ring the pre- and postorder labels, see Algorithm 11. Note that all query
conditions that relate to the query subtree rooted at the query node of the
previous iteration are excluded from the next round of the getSubtreeScore
aggregation in order to avoid redundant score aggregations. At each level of
the query tree, we choose the element that maximizes the aggregated score
of the getSubtreeScore and getParentScore calls, respectively, in the case that
multiple elements qualify for a query subcondition based on their pre- and
postorder labels.

Algorithm 11 Iteratively navigate “upwards” the query tree to the root.
1: getElementScore(Document d, Query node n, Element e):
2: // Recursively retrieve the score of the subtree rooted at the parent node
3: // each excluding the previously retrieved subtree; stop at the query root node
4: score := 0;
5: contextNode := n;
6: previousNode := null;
7: while contextNode �= null do
8: subtreeScore :=

max{getSubTreeScore(d, contextNode, previousNode, e) |
e.pre < sourceElement.pre & e.post > sourceElement.post

for all e∈elements(d, contextNode)
};

9: // If one subtree recursion yields a zero score in conjunctive mode
10: // then break the evaluation of the current element
11: if MODE == CONJUNCTIVE & subtreeScore == 0 then
12: return 0;
13: end if
14: score += subtreeScore;
15: previousNode := contextNode;
16: currentNode := contextNode.parent;
17: end while

18: return score;

The getSubtreeScore Procedure

Starting from an arbitrary source element and query node, the recursive pro-
cedure getSubtreeScore, see Algorithm 12, queries the candidate’s element
block structure for all elements that are connected to the source element

206

8. Top-k Query Processing for XML

with regard to the self and the descendant-axis by comparing pre- and post-
order labels. Query leaf nodes that refer to content-related query conditions
and which are connected by a self-constraint (denoted by a dark background
rectangle in Figure 8.9), are hash-joined on the preorder attribute and cumu-
late their local scores to an aggregated element score for the respective query
subcondition. Again, for structural query conditions, i.e., inner nodes of the
query tree, the method recurses into all the element blocks for the query’s
subtree structure according to the descendant constraints now based on the
comparison of both the pre- and the postorder labels, see Algorithm 12. Note
that, since we always start traversing the query at the its target dimension,
each recursion finally contributes to the aggregated score of one of the target
elements for a given candidate document.

Algorithm 12 Recursively retrieve the aggregated path score for a given
element at a query subtree.
1: getSubtreeScore(Document d, Query node n, Excluded sibling node x, Element e):
2: contextNode = n;
3: excludedNode = x;
4: if contextNode.isLeaf then
5: // Hash-join all element blocks related to contextNode using e.pre
6: subtreeScore :=

∑
n∈self(contextNode) {e.score | e.pre = e’.pre for all e’∈elements(d,n)};

7: else
8: // Staircase-join all elements blocks related to children of currentNode
9: // using sourceElement.pre and sourceElement.post

10: subtreeScore := e.score;
11: for all i = 1..#currentNode.children do
12: if contextNode.child[i] != excludedNode then
13: subtreeScore +=

max{getSubTreeScore(d, contextNode.child[i], null, e) |
e.pre < e’.pre & e.post > e’.post for all e’∈ elements(d, contextNode.child[i])

};
14: end if
15: end for
16: end if

17: return subtreeScore;

In the example structure of Figure 8.9, we initialize the algorithm by first
hash-joining all element blocks for the three query conditions that refer to
the target par element, namely the par=native, par=xml and par=databas
content-conditions. We see that the par=native condition has a relatively
low selectivity with 3 matching elements for that candidate; par=xml has
the highest selectivity with 11 matches; and par=databas has 4 matches.
After hash-joining all three element blocks for that query target dimension,
there are still 15 distinct target elements left, each of which is already a valid
match for the query. For each of these, we have to start a getElementScore
recursion for the remaining query dimensions and scores. For simplicity,
we only consider the element with the preorder label 354 (emphasized in

207

8.3. Structure-aware Top-k Query Processing

bold face) here, which yields the best aggregated score of 0.435 so far. The
parent query condition sec yields 5 more elements out of which only the
one with the preorder label 351 qualifies for further traversal by its pre-
and postorder labels and thus contributes to the aggregated score of element
354 with a value of 1.278 using the getSubtreeScore traversal. Similarly, the
second iteration of getElementScore yields the only article root element
with a preorder label of 1 and a static local score of 1.0. From here, the
getSubtreeScore method recursively navigates down two levels to the two bib
and item=w3c query conditions which are also found to provide valid element
matches that contribute to the aggregated score of element 354 with values
of 1.0 and 0.096, respectively, after checking their pre- and postorder labels.
Finally, element 354 obtains an aggregated score of 3.809 which also makes
it the top-scored element out of the 15 distinct target elements for the target
par condition. Note that it is also the only element that satisfies this query
in a conjunctive sense.

Conjunctive Mode

Algorithm 11 has an option to terminate an element’s evaluation in conjunc-
tive mode, if any query subtree recursion or single query dimension yields
a local score of 0 for the path traversal on that candidate. Note that this
does not necessarily render the whole candidate invalid as it may still be
encountered in all of its remainder dimensions, so we may only assign it a
conservative worstscore bound of 0 at this point. Breaking the evaluation in
conjunctive mode may be due to the fact that at least one query condition i

1) has not been fully evaluated yet (∃ i with i /∈ E(d)) through the se-
quential block-scans, so we do not yet know if the candidate will still
satisfy the query conjunctively, and the candidate is kept in the queue

2) has been tested (i ∈ E(d)), e.g., through a random lookup, but the
inverted list Li does not contain any match for that document, and the
candidate is dropped, or

3) has been tested (i ∈ E(d)), but there is no valid path from a target ele-
ment to any of the elements at dimension i based on their pre/postorder
labels, and the candidate is dropped.

In all three cases, the document and, thus, all its target elements obtain a
worstscore(d) of 0. In the first case, bestscore(d) is assigned a positive value
as the document is not yet evaluated at all query dimensions and may still
provide a valid path match for all query conditions. Note that we may already

208

8. Top-k Query Processing for XML

take partial knowledge about the candidate’s structure into account in order
to provide an as-tight-as-possible bestscore(d) bound. In the latter two cases,
the document obtains also a bestscore(d) = 0, and thus the evaluation of d
terminates, and d can be safely pruned, since one or more query conditions
have been tested on d that did not provide a valid path match which is
not allowed in conjunctive mode. So the distinction between “andish” and
conjunctive mode affects the estimation of both the worst- and bestscore
bounds.

Andish Mode

In andish mode, the evaluation of d is not terminated due to a single failed
query condition, but worstscore(d) is increased as soon as one of the query’s
target elements is positively matched against d and it further increases with
partially fulfilled path conditions for further support elements that are con-
nected to the target element. Similarly, bestscore(d) is not reset to 0 if a
single condition fails, but the algorithm assumes that other element blocks
for the remaining query conditions may still contribute to the document’s
score, even if we cannot match any path starting from a target element in
the sense of a Boolean XPath-like evaluation any more.

Unsurprisingly – and in contrast to conventional database queries – con-
junctive query evaluations are more expensive to evaluate for a top-k engine
than the “andish” counterpart, because the [worstscore(d), bestscore(d)] in-
tervals converge much slower and low-scored content matches cannot be com-
pensated for queries with a drastically reduced conjunctive join selectivity.
In the following, we will focus on the “andish” evaluation strategy as the
much more interesting but also more difficult case for XML IR involving
incremental path validations. The conjunctive mode is merely kept as an op-
tion to support Boolean-XPath-like query evaluations as demanded by some
applications.

8.3.4 Virtual Navigational Elements

Virtual Support Elements

Now, unfortunately, the situation is not alway as simple as in the above
setting, with fully evaluated candidate documents at all query conditions.
Since our query evaluation strategy focuses on performing mainly efficient
sorted access to the disk-resident inverted index structures, the order in which
documents are encountered in the inverted lists by the query processor is
unpredictable and virtually random. With only partial knowledge about the

209

8.3. Structure-aware Top-k Query Processing

document structure, our structure-aware query processing algorithm would
terminate evaluations when the path structure is interrupted at any node in
the query tree – and so would do any traditional technique such as Holistic
Twig Joins or the original Staircase joins. Moreover, if the query target
node has not yet been evaluated, there would not even be an anchor node to
start the evaluation process, because the remainder of the candidates element
structure would simply not be reachable. This would render the worst- and
bestscore bounds overly conservative and bar the top-k query processor from
reaching the min-k threshold termination comparably early as in the text
case, although we might have already gained substantial knowledge about
the partial path structure that could be taken into account for scoring.

In order to avoid these situations, we introduce the notion of virtual
support elements for the inner nodes of the query tree with a local score
of 0 and an any-match option for the pre- and postorder-based Staircase
joins (thus conceptionally attaching entries of the form 0.0 [*,*] to each
element block). These “joker” elements may be joined in the getElementScore
and getSubtreeScore traversals with any real element match or with other
virtual support elements for navigation through unevaluated navigational
query conditions. Even after an element-block for an inner node is fetched
from disk, we keep the virtual navigational element for that node. This
simple tweak prevents us from having to reject the score of a subtree that
might have already been granted to the candidate by a previous update using
a virtual element for navigation which might render the score updates non-
monotonous. This way, the content nodes serve as a synapse for connecting
whole query subtrees, without having to necessarily make the actual random
lookup for the connecting path condition. In “andish” query evaluation mode,
we may safely increase the worstscore of a candidate d without having to
assume a connected path structure which let’s us provide more accurate
worst- and bestscore bounds taking into account all the evaluated query
conditions. In many cases, the bestscore of a candidate document based on
its content-related query conditions might already make it eligible for pruning
without having to perform the actual random lookups onto the structure.

The value of the static score mass c that every candidate is about to
aggregate for a successfully tested structural query condition determines
whether we are in favor of matching the query structure or the content-
related query conditions among the top-scored result documents. A large
value of c tends to dominate the content-related query conditions and will
make the algorithm choose only real support elements with a score of c for the
maximum path score, although it might have to neglect some lower-scored
content conditions that do not match the structure. A low value of c, on
the other hand, tends to choose the content-related query conditions for the

210

8. Top-k Query Processing for XML

aggregated path score and might accept some zero-scored virtual support
elements. In the above example (and in the experiments section), we chose
c = 1.0, i.e., we put a relatedively high emphasis on the query structure (note
that content scores are normalized to 1 and most tag-term pairs indeed have
a significantly lower score than 1).

Virtual Target Elements

As mentioned above, the lack of a target element in the candidate’s path
structure would prevent our algorithm from processing a candidate at any
of the remaining query dimension and especially keep the bestscore bound
unnecessarily high. Similarly to the virtual support elements, which mainly
serve to reason more accurately about a candidates worstscore, we also in-
troduce the notion of virtual target elements with a local score of 0 and the
same any-match option for the pre- and postorder-based Staircase joins.

The only difference between the two kinds is that a virtual target ele-
ment helps us to more accurately restrict a candidates’ bestscore, whereas,
according to our scoring model, the worstscore has be reset to zero as long
as no valid target element has been detected. Again, both the worst- and
bestscore aggregations remain monotonous, because any subsequent update
on the candidates structure with a real block of target elements may only
raise the worstscore above zero and – at the same time – further decrease the
bestscore.

8.3.5 Complexity

Subtree Caching

As described in the previous subsection, element blocks for content-related
query conditions are efficiently hash-joined in linear runtime O(m′ b) with re-
gard to the maximum block size b and the number of self-constrained content
conditions m′. Algorithm 11 shows that, in order to get the top-ranked target
element for a given candidate document and thus maximize its worstscore,
the parent-nodes are traversed repeatedly for all target elements of that can-
didate document. Obviously, for complex queries the amount of CPU time
spent on recursively evaluating the path structure may be a significant frac-
tion of the overall query processing time and might even dominate the time
spent on physical disk I/O.

An effective way of avoiding repeated tree traversals is to introduce an
additional level of hashing for the Staircase joins, too, and to cache the
aggregated scores of all inner element nodes whenever the respective query

211

8.3. Structure-aware Top-k Query Processing

subtree is traversed for the first time and to remember the resulting score
of the whole getSubtreeScore recursion for a given query node and source
element.

Runtime Complexity of the Tree Algorithm

If we consider the two procedures getElementScore and getSubtreeScore,
we see that the algorithm performs nested-loop-like Staircase join steps for
each two element blocks between an inner node of the query tree and each of
its child nodes, with quadratic complexity for each of these Staircase joins.
These Staircase joins are performed f times for a node with f children. Note
that the amount of elements at all nodes (and hence the maximum block
size) remains constant, because we merely aggregate scores for the existing
elements, but no new elements are added to any of the nodes. Then the
runtime complexity of our in-memory structural joins is O

(
(f b2)h

)
, for a

maximum query fanout of f (only counting true structural descendant re-
lationships between tags at this point, because content conditions are hash-
joined anyway), a maximum element block size of b, and a query tree height
of h. Here, the maximum element block size b refers to the document com-
plexity, and k and h refer to the query complexity. Note that although our
algorithm is exponential in the query height, this specialized type of path
evaluation is designed to suit the typical IR-style NEXI queries and our in-
cremental path tests to the best possible extent, thus dealing with a major
amount of content conditions and ensuring monotonous score updates with
uncertainty in the structure for partly evaluated candidates.

Although XPath evaluations have been shown to be solvable in poly-
nomial time O(|D|5 |Q|2) with a bottom-up, dynamic programming algo-
rithm [GKP02, GKP03], these approaches hardly apply to our application,
since they are assuming conjunctive queries only and cannot easily be adapted
to efficiently deal with uncertainty in the structure (similar assumptions ap-
ply for Holistic Twig joins [BKS02, CMW03] as well).

We believe that our specific solution is superior in terms of both runtime
complexity and scoring flexibility for typical XML IR queries. It largely
benefits from a major amount of efficiently hash-joined content conditions
and queries that hardly ever exhibit a query tree height of more than 2. Note
that this is a very pessimistic upper bound, as is does not take the subtree
caching for the Staircase join into account. With this option enabled, the
complete tree structure is fully traversed only for the first target element
out of the target element block of the query. After that, all parent and
descendant scores at inner query nodes are cached, such that each support
element is touched at most once per candidate update.

212

8. Top-k Query Processing for XML

8.3.6 Element Retrieval

With the above building blocks, we are able to retain the very same top-
k and candidate bookkeeping strategies developed for document retrieval
also for element retrieval. Returning the top-k target elements instead of
the top-k documents, is very straightforward with our approach. Since, in
the beginning of this section, we defined the score of a document to be the
maximum score of a path from a target element across its parents and down
to its siblings. Then the document’s worstscore is an upper bound of all
target elements’ worstscore; and so is the document’s bestscore an upper
bound of all target elements’ bestscore. Now we can easily extend our top-k
retrieval granularity from returning the top-k documents to returning the
top-k elements just by extracting further target elements from the current
top-k documents with scores that are less or equal to the document score.
Hence, the kth-ranked element yields a new ˜min-k threshold condition that
is equal or greater than the kth-ranked document which is now a true top-k
algorithm for XML element retrieval. It even allows us to dynamically switch
between document and element granularity with almost no computational
overhead. We extend the existing algorithm by

1) efficiently merging the target elements of the current top-k documents,

2) introducing a new main-memory top-k-style breaking condition for this
merge, and

3) refining the ˜min-k threshold for algorithm termination now based on
the kth-ranked target element.

Adaptive Thresholds for the Top-k Elements

Algorithm 13 shows an efficient merging of k sorted linked lists of target
elements as an in-memory top-k algorithm for this merging step. In lines 8.3.6
and 8.3.6, it has two break conditions for the merging procedure for the target
elements obtained from the current top-k document, namely whenever the
score of the current element list is below the original document-based min-k
threshold. The efficient merging of target elements from the top-k documents
has a crucial impact on query runtime, since it is an internal loop of the TopX
query processor. It is called iteratively whenever thread synchronization is
done and the min-kstopping condition is tested.

Note that using element granularity even helps to further increase re-
trieval efficiency, because the increased threshold ˜min-k ≥ min-k leads to

213

8.4. Random Access Scheduling for Structural Conditions

more aggressive candidate pruning and earlier threshold termination. As an
obvious example, consider the query

//article[about(.//sec,“Native XML Databases”]//bib//item

where the item tag denotes the query’s target node. Processing this query
at element granularity for the top-10 target elements effectively means we
are looking for the top-1 document that matches the respective content con-
ditions best. For this top-ranked document, we just have to schedule a few
random range scans on the TagsRA IOT for the tags bib and item to re-
turn all bibliographic citations under the //article//bib//item path which
will most probably be more than 10 target elements for the top-1 document
ranked after the scores for “Native XML Databases” already (for the typical
IEEE journal or conference proceedings from the INEX collection). Since all
target elements are joined with the aggregated score for these content condi-
tions under their common article root, they all get perfectly the same final
score.

8.4 Random Access Scheduling for Structural
Conditions

The rationale of TopX is to postpone expensive random accesses as much
as possible and perform them only for the best top-k candidates. However,
it can be beneficial to test path conditions earlier, namely, for eliminat-
ing candidates that do not satisfy the conditions but have high worstscores.
Moreover, in the query model where a violated path condition leads to a
score penalty, positively testing a path condition increases the worstscore of
a candidate, thus potentially improving the min-k threshold and leading to
increased pruning subsequently. In TopX, we consider random accesses at
specific points only, namely, whenever the priority queue is rebuilt. At this
point, we consider each candidate d and decide whether we should make ran-
dom accesses to test unresolved path conditions, or look up missing scores
for content conditions.

For this XML-specific scheduling decision, we have developed two dif-
ferent strategies. The first, coined Min-Probing, transfers the expensive
predicate paradigm to the XML case. Since the structure of a document
contributes a constant score mass c for each matched structural query con-
dition, these structural tests are performed through random lookups to the
TagsRA index only, i.e., they cannot be resolved through sorted accesses at
all. The Min-Probing scheduler tests all candidates that are about to be

214

8. Top-k Query Processing for XML

promoted to the intermediate top-k results individually on the basis of their
known worstscores, indifferently of their estimated scores or the selectivity of
the remaining structural query conditions. It is a simple and safe approach
that guarantees all top-k items to have only fully resolved path conditions at
any time of the algorithm, but it is not cost-aware and potentially schedules
too many lookups onto candidates, if the structured parts – and moreover
the not yet resolved support elements – have a very low selectivity.

The second, coined Ben-Probing, extends the cost model developed in Sec-
tion 6.4.2 from the unstructured case to structural query conditions in XML
retrieval. This cost model can be combined with the content-based scheduler
to trigger lookups to both structural and content-related query conditions for
a given candidate. This model is cost-aware and aims at a balanced amount
of SA and RA costs, taking the cR/cS cost ratio between random and sorted
accesses into account. The tricky thing is again the appropriate probabilistic
ordering of candidates for the random lookups with regard to their estimated
scores and the combined content-related and structural selectivities of query
conditions that they are still about to match.

8.4.1 Min-Probing

Min-Probing aims at a minimum number of random accesses by probing
structural conditions for the most promising candidates, only. Since we do
not perform sorted access on structural query conditions such as tag se-
quences and branching path conditions, we adopt the notion of expensive
predicates in the sense of [CwH02] for these navigational query conditions.
We schedule random accesses only for those candidates d whose

worstscore(d) + oj · c > min-k , (8.1)

where oj is the number of untested structural conditions for d and c is a static
score mass that d earns with every satisfied structural condition according to
our scoring model (see Section 3.4.2). Then oj ·c corresponds to the expensive
predicate deficit gap(d) that d would accumulate for the matched predicates
in addition to its already known worstscore as defined in Section 4.2.

This way, we schedule a whole batch of random lookups, if d has a suffi-
ciently high worstscore(d) to get promoted to the top-k when the structural
conditions can be satisfied as well. If otherwise bestscore(d) becomes less
than the current min-k threshold after the random lookups, we may safely
drop the candidate. This has the positive effect that the top-k index list only
contains items whose structure has already been verified and proven to yield
a sufficiently high score mass to push the candidate into the current top-k
list (with a respective boost for the min-k threshold as well).

215

8.4. Random Access Scheduling for Structural Conditions

This scheduling strategy suits best for a combination of lowly selective
(i.e., infrequent) tag-term pairs as query targets and highly selective (i.e.,
frequent) support elements, that is, the ranking is mostly decided by the
content-related query conditions (the tag-term pairs, or query leafs), and the
random accesses for the structure (the inner nodes that connect the tag-term
pairs) do not fail often. In the experiments in Section 9.8, we will see that
in fact most INEX queries are very close to this kind.

The Min-Probe approach also fits with any content-based SA an RA
scheduling approach as described in Sections 6.3 and 6.4. It is lightweight
and inexpensive to evaluate, such that it can be tested after each sorted
block-access and for each candidate that is about to be promoted to the
top-k results. It is therefore part of the core TopX query processor, see
Section 4.3.

8.4.2 Ben-Probing

Ben-Probing uses an analytic cost model that is closely related to the one
introduced in Section 6.4.2 for plain inverted lists, e.g., in the text retrieval
case. We assume that there are oj still unresolved structural query conditions
that relate to at least one path or twig constraint for a candidate d. The total
number of index entries still to be scanned in the ith index list is denoted
by li and the overlap of lists in the presence of explicit correlation statistics
is denoted as lij , respectively. We denote the number of documents in the
priority queue by |Q|, and the batch size for the next round of sorted accesses
on the index lists by b =

∑m
i bi. The probability that document d, which has

been seen in the tag-term index lists E(d) and has not yet been encountered
in lists Ē(d) = [1..m] − E(d), qualifies for the final top-k result is estimated
by the combined score predictor and selectivity estimator similarly to the
random access scheduling approach for plain inverted lists (see Section 6.2.2)
and denoted as p(d). Notice that the histogram-based score predictors (or
closed-form score estimators) are now based on precomputed statistics about
the joint tag-term score distributions for the full-content scoring model and
our inverted index structure over tag-term pairs. Selectivities are further
determined at document level, e.g, a value of s11 = 0.055 for the tag-term
pair p=xml (see Table 8.2) means that 5.5 percent of the documents in the
corpus contain that particular tag-term pair. This approach translates our
previous scheduling and probabilistic pruning assumptions for plain inverted
lists directly to the XML case and helps granting compatibility among the
different software components. To adopt these existing approaches toward
a true structure-aware scheduler, we now refine the selectivity estimator to
also take characteristic XML patterns into account.

216

8. Top-k Query Processing for XML

Selectivity Estimators for Structural Query Conditions

In order to adopt our previous selectivity estimations assumptions, we break
down the query structure into the following basic structural query patterns:

• Tag-Term Pairs – Merged tag-term pairs for content-related conditions.

• Descendants – Tag pairs for transitively expanded descendant relations.

• Twigs – Tag triplets of branching path element for transitively ex-
panded descendant relations.

We now estimate the selectivity of the oj remaining structural query con-
ditions that are connected to one or more path or twig patterns by pre-
computed corpus frequencies of ancestor-descendant and branching path ele-
ments, i.e., pairs and triples of tags. Note that is a very simple form
of XML synopsis; it could be replaced by more advanced approaches like
[AAN01, LWP+02, WPJ03], but our experiments indicate that this approach
already yields a very effective method for pruning and identifying which can-
didate and also when it should be tested by an explicit random lookup on
the structure.

//article[
//sec[
about(.//, "XML retrieval")
and
about(.//bib, "W3C")

]
]//par[
about(.//,"native XML databases")

]

Figure 8.10: Slightly modified
NEXI query with a very lowly
selective structural condition.

articlearticle

secsec

bib=
w3c

bib=
w3c

sec=
xml

sec=
xml

sec=
retriev

sec=
retriev

par=
nativ

par=
nativ

par=
xml

par=
xml

par=
databas

par=
databas

Figure 8.11: DAG structure of
the modified query.

Each query condition – or node in the query DAG – can now be as-
sociated with one or more of these structural query patterns. For exam-
ple, the content-related tag-term condition par=xml is connected to the two
paths article//par and sec//par and to the twig article[//bib]//par.
Note that we disregard element ordering and thus consider symmetric pat-
terns only, e.g., the twig article[//bib]//par is equivalent to the twig
article[//par]//bib and is therefore assigned the same selectivity. The

217

8.4. Random Access Scheduling for Structural Conditions

non-symmetric case would follow directly by extracting more detailed statis-
tics for order-aware tag patterns if required.

In order to take a structure-specific scheduling decision, we always con-
sider the largest subset of unresolved structural path and twigs patterns for
a candidate that are non-overlapping in their structure. For example, if we
have the three unresolved query conditions sec, bib=w3c and p=xml for a
partially evaluated candidate, we do not multiply the selectivities s5 = 0.002
and s6 = 0.964 of the two connected paths sec//bib and sec//p and the
twig selectivity s3 = 0.002 for the sec[//bib]//par twig, but rather use the
twig selectivity s3 = 0.002 as combined selectivity estimate alone.

Type Pattern Selectivity
Twigs article[//bib]//par s1 = 0.682

article[//bib]//sec s2 = 0.613
sec[//bib]//par s3 = 0.002

Descendants article//bib s4 = 0.614
article//par s3 = 0.982
article//sec s4 = 0.982
sec//bib s5 = 0.002
sec//par s6 = 0.964

Tag-Term Pairs bib=w3c s7 = 0.007
sec=xml s8 = 0.055
sec=retriev s9 = 0.171
par=nativ s10 = 0.044
par=xml s11 = 0.055
par=databas s12 = 0.319

Table 8.2: Basic structural query patterns and their selectivities for the ex-
ample twig query of Figure 8.10.

For the example query in Figure 8.11, we intentionally switched the query
structure compared to the initial example query of Figure 8.2, such that
we now require the bib element not to be a descendant of the article
element any more but a descendant of a sec element. This infringes upon
the INEX schema convention, however the selectivity of that path condition
sec//bib is indeed low but not 0; Table 8.2 shows the actual values for the
INEX collection. Recall that we do explicitly support such queries and try to
optimize our processing strategies for such situations, since we are aiming at
schema-oblivious and non-validating indexing and querying. Any sequence
of random accesses to a partially resolved candidate d would now start with
the two query conditions for this least selective edge, namely sec//bib, and
cancel further lookups on d, if because of the first random I/O bestscore(d) ≤
min-k and d could be pruned already.

218

8. Top-k Query Processing for XML

Cost Model for Random Lookups to Structural Conditions

BenProbe compares the cost of making random accesses to tag-term index
lists or to indexes for structural path conditions versus the cost of proceeding
with the sorted-access index scans. For all three cost categories, we consider
only the expected wasted cost (EWC) which is the expected number of random
(or sorted) accesses that our decision would incur but would not be made by
an optimal schedule that could make random lookups only for the final top-k
and would traverse index lists with different and minimal depths.

For looking up unknown scores of a candidate d in the index lists Ē(d), we
would incur |Ē(d)| random accesses which are wasted if d does not qualify for
the final top-k result (even after considering the additional score mass from
E(d)). By computing the convolution histogram for Ē(d), we can estimate
this probability as

P [d /∈ top-k] = 1 − p(d) (8.2)
= 1 − pS(d) · q(d) , (8.3)

where pS(d) is our well-known the score predictor

pS(d) = P

⎡⎣ ∑
i∈Ē(d)

Si > δ(d) | Si ≤ highi

⎤⎦ (8.4)

but now using δ(d) = min-k−worstscore(d)−oj ·c, and q(d) is the selectivity
estimator

q(d) =

⎛⎝1 −
∏

i∈Ē(d)

(
1 − max

j∈E(d)

lij
lj

)⎞⎠ . (8.5)

Note that we may incorporate all the available information about score con-
volutions, different index list selectivities, and correlations between tag-term
pairs into the calculation of p(d) in the very same way as described in Sec-
tion 6.4.2. Then the random accesses to resolve the missing tag-term scores
have expected wasted cost:

EWCRA-C(d) := |E(d)| · (1 − pS(d) · q(d)) · cR
cS

. (8.6)

As for path conditions, the random accesses to resolve all oj path condi-
tions are “wasted cost”, if the candidate does not make it into the final top-k,
which happens if the number of satisfied conditions is not large enough to
accumulate enough score mass. Recall from Section 3.4.2 that each satisfied

219

8.4. Random Access Scheduling for Structural Conditions

structural condition earns a static score mass c. The probability q′(d) that d
satisfies a set Y of the structural conditions is

q′(d) =
∑

Y ′⊆Y

P [Y ′ is satisfied] (8.7)

=
∑

Y ′⊆Y

P [o′ conditions i1 . . . io′ are satisfied] , (8.8)

where the sum ranges over all subsets Y ′ of Y for the oj remaining structural
conditions. P [Y is satisfied] is estimated as

P [Y is satisfied] =
∏
ν∈Y

sν ·
∏
ν /∈Y

(1 − sν) , (8.9)

assuming independence for tractability. The independence assumption can
be relaxed by the covariance-based chain rule mentioned in Section 6.2.3,
considering only non-overlapping subsets Y ′ of unresolved structural query
patterns in Y . For efficiency, rather than summing up over the full amount
of subsets Y ′ ⊆ Y , a lower-bound approximation can be used. For efficiency,
we do not consider all subsets Y but only those that correspond to a greedy
order of evaluating the structural conditions in ascending order of selectivity,
thus yielding a lower bound for the true cost. Then the random accesses for
path and twig conditions have expected wasted cost:

EWCRA-S(d) := oj · (1 − pS(d) · q′(d)) · cR
cS

. (8.10)

The next batch of b sorted accesses for all content-related index lists,
incurs a fractional cost for each candidate in the priority queue, and the
total cost is shared by all candidates in Q. Again, for a candidate d, the
sorted accesses are wasted, if we do not learn any new information about the
total score of d, that is, when we do not encounter d in any of the lists in
Ē(d). Then the probability qbi

i (d) of not seeing d in the ith list in the next bi
steps is defined like in Section 6.3.2 as

qbi
i (d) = P [d in next bi elements of Li | i ∈ E(d)] (8.11)

≤ bi
li − posi

· max
j∈E(d)

lij
lj
. (8.12)

We can compute the probability qb(d) of seeing d in at least one list in the
batch of size b as

qb(d) = 1 − P [d not seen in any list] (8.13)

= 1 −
∏

i∈Ē(d)

(
1 − qbi

i (d)
)
. (8.14)

(8.15)

220

8. Top-k Query Processing for XML

Hence the probability of not seeing d in any list is 1 − qb(d). In analogy
to Section 6.4.2, the total costs for the next batch of b sorted accesses are
shared by all candidates in Q, and this incurs expected wasted cost:

EWCSA :=
b

|Q| ·
∑
d∈Q

(
1 − pS(d) · qb(d)

)
(8.16)

We initiate the random accesses for tag-term score lookups and for struc-
tural conditions, if and only if

EWCRA-C(d) < EWCSA ∧ EWCRA-S(d) < EWCSA , (8.17)

respectively, with RAs weighted to SAs according to the cost ratio cR/cS.
Similarly to the initial Ben-probe scheduling we always consider the cumu-
lated EWCs for all batches done so far.

Note that all three EWC classes have the same basic structure that is de-
rived from the combined score predictor and selectivity estimator described in
Section 6.2.2. For each type, we count the wasted cost as individual lookups
to each of the remaining index lists for a candidate depending of the type
of lookup, i.e, |E(d)|, oj and b, respectively. Solely the selectivity estimate
q(d) is exchanged based on what type of random or sorted access is about
to be taken into consideration, whereas the score prediction pS(d) remains
the very same for all the three types. EWCSA additionally aggregates these
values into an average cost over all candidates d ∈ Q.

We actually perform the random accesses one at a time in ascending
order of content-related (for tag-term pairs) and structural selectivities (for
navigational conditions connected to path and twig conditions). Candidates
that can no longer qualify for the top-k are eliminated as early as possible and
further random accesses on them are canceled. After each random access, it
is tested whether the candidate document can qualify for the top-k result; if
the candidate can be dismissed, all subsequent random accesses are canceled.
The cost comparison and scheduling decision are made only once at the start
of the entire sequence of random accesses for a candidate. Analogously to our
argumentation for the content-only scheduling decisions, the additional cost
comparisons for the scheduling decisions on the structure have an acceptable
computational overhead and are performed whenever the priority queue is
rebuilt.

221

8.5. Dynamic Query Expansion for Content & Structure

8.5 Dynamic Query Expansion for Content &
Structure

8.5.1 Incremental Merge & Structural Joins

Adapting the Incremental Merge method for semistructured data and queries
is very straightforward and opens a variety of novel expansion options for
vague search on XML data. The only obstacle compared to joining plain
inverted lists is that elements and their scores are constrained through struc-
tural conditions, too; and element entries in the basic inverted index lists are
grouped into element blocks in our setting, where not all elements within a
block have to be assigned the same perfect score maxscore of that block.

In contrast to the plain text case, elements may be mutually dependent
and allowing only the first expansion block per document, i.e., the one with
the maximum combined similarity and element score max simij ·maxscore,
would make us run into the danger of reporting false negatives and potentially
prune candidates from the top-level queue too early. This might be the case
when the structure is not matched by an element out of the first expansion
block that is reported by the Incremental Merge operator for a document
d, whereas lower-scored elements from expansion blocks with a lower simij ·
maxscore value might still achieve a higher aggregated path score. However,
these potential matches can easily be detected through further merging the
expanded lists and iteratively polling the Incremental Merge operator for the
next element block in descending order of the combined similarity and block
scores.

Disjunctive Incremental Merge Operator

The only conceptual change is to skip the elimination of duplicate document
occurrences in the virtual list by the Incremental Merge operator and, thus,
incrementally allow more than one element block per document and query
condition to be taken into the structural joins, in the sense of a disjunc-
tive expansion for each virtual list. In order to still be able to guarantee a
monotonous bestscore decrease for all candidates, we have to consider a more
conservative bestscorei(d) bound for a candidate d at an Incremental Merge
dimension i as

bestscore(d) =

m∑
i=1

max(worstscorei(d), highi) . (8.18)

Note that the way the path scores are evaluated, namely through iteratively
maximizing parent- and subtree scores at each Staircase join step, keeps the

222

8. Top-k Query Processing for XML

worstscore updates monotonous, too, and exactly confirms to an Incremental-
Merge-style max-score aggregation – but with regard to the structure. This
practical idea elegantly closes the gap between the Incremental Merge ap-
proach and our XML evaluation strategy, now maximizing path scores in-
stead of document-wide scores.

Since elements are read off the index in sorted order of maxscore val-
ues per block, the Incremental Merge now propagates whole element blocks.
Note that the virtual lists for expansion terms are also organized by (docid,
maxscore, score, pre, post), so we simply apply the block-scan technique
whenever we perform the next scan step on one of these lists. Each new
block that comes in by an Incremental Merge step is already sorted in de-
scending order of element scores, and the new block can be efficiently merged
into the existing element block, that a candidate already collected for a previ-
ous Incremental Merge step, in linear time without having to resort element
scores at query processing time. Then further query processing is identical
to the TopX algorithm for in-memory structural joins.

Incremental Merge for Tag-Term Pairs

Suppose we want to dynamically relax the combined tag-term pair //∼par
= ∼databas with similar tags and terms, e.g., detected through thesaurus
lookups or structural relevance feedback (see also [ST06a, ST06b] for a
possible approach). Expanding multiple tag and term conditions in a single
step gives leeway on how to combine the resulting relaxations, namely

1) independently through expanding the tags and terms into all tags ×
terms tag-term pair combinations, or

2) with conditional dependencies, thus expanding individual tag-term com-
binations, only, with the possibility to exploit explicit correlations or
expansion dependencies as provided by the particular expansion tech-
nique.

The first case can easily be implemented as a two-dimensional Incremental
Merge operator that simply consists of two nested Incremental Merge oper-
ators, one for the tag expansion and one for the term expansion. Then the
resulting combined expansion similarities, and local scores for the expansions
take the form sim(tagi, tagij) · sim(ti, tij) · sij(e).

Note that for the second case, our default Incremental Merge strategy
remains unchanged, with all expanded tag-term pairs being explicitly enu-
merated to initialize the Incremental Merge operator with an individual sim-
ilarity score obtained through any specific expansion technique as mentioned

223

8.5. Dynamic Query Expansion for Content & Structure

above. In both cases, meta histograms can be used to carry over our extended
scheduling and probabilistic pruning decisions similarly to the text case, with
basic input histograms being precomputed over the element full-contents.

0.215 [354, 353]
0.097 [357, 359]
0.020 [65, 64]

par=
nativ

par=
xml

par=
~databas

getElementScore()

0.173 [71, 69]
0.171 [68, 66]
0.159 [163, 161]
0.149 [347, 343]
0.136 [166, 164]
0.125 [354, 353]
0.112 [313, 311]
0.101 [55, 53]
0.099 [329, 326]
0.087 [357, 359]
0.085 [324, 321]

0.234 [389, 388]
0.128 [354, 353]
0.105 [375, 378]
0.092 [372, 371]
0.043 [357, 359]

0.242 [354, 353]
0.185 [357, 359]
0.160 [65, 64]

getSubtree-
Score()

……

par=
databas

par=
“data base”

par=
storedg

Incr.MergeIncr.Merge

Nested
Top-k

0.071 [389, 388]
0.068 [354, 353]
0.041 [375, 378]
0.022 [372, 371]

0.686 [389, 388]
0.568 [354, 353]

par=
data

par=
base

1.0 1.0 0.8

0.8 0.8

Figure 8.12: Dynamic expansion of content conditions.

Figure 8.12 depicts the situation for an example expansion of the stemmed
tag-term pair par=databas into exp(par=∼databas) = { par=databas, par=
“data base”, par=storedg} with similarities 1.0, 1.0, and 0.8, respectively
(we omit the tag expansion for easier readability). The Incremental Merge
operator schedules the order in which element blocks from the corresponding
inverted lists are merged into the element block of the candidate document
for the expanded dimension. Whenever the candidate structure is changed,
i.e., a new element block has been merged with the existing elements, these
elements are taken into the structural joins and the worst- and bestscore
bounds are updated accordingly.

Note that a nested top-k operator is utilized to generate a dynamic in-
dex list for the phrase expansion par=“data base” which aggregates phrase
scores at the lower operator analogously to the text case – but with respect
to individual element scores. Also, the lazy scheduling of phrase tests by
the top-level top-k operator remains the most efficient strategy. Phrase tests

224

8. Top-k Query Processing for XML

are now used to prune individual elements and do not necessarily render the
whole candidate document invalid when failed for some of the elements.

8.5.2 Hybrid Index Structures

Recall from Section 2.3 that the pre/postorder labeling scheme can efficiently
accelerate the descendant axis in location paths, but might degenerate for
deeply nested path expressions with a low selectivity. DataGuides, on the
other hand, with their ability to encode whole location paths into a single
bucket id, are a perfect method to address this issue, but they do not sup-
port the descendant axis in location paths well. Although we might try to
precompute all descendant path relaxations and materialize them in our in-
verted index for all bucketid-term pairs, this would hardly be feasible for an
XML collection with a complex schema or diverse structure such as INEX.

As an example, consider the rather inconspicuous path expression

//article//sec//p

which contains three descendant-axis steps and yields exactly 520 distinct
bucket ids (i.e., distinct root-to-leaf paths) in the DataGuide structure for
INEX. On the other hand, the location path for

//movie//actor//name

comprises the same amount of descendant steps but yields only a single
bucket id in the DataGuide for the IMDB collection which would make the
DataGuide the perfect choice to process the latter path expression in IMDB.

An intriguing idea would be to perform the relaxation (for a reasonable
amount of choices in the expansion possibilities) again directly in the query
processor, now using our Incremental Merge approach to dynamically expand
a location path with descendant steps into a number of similar paths using
the child axis, only.

Incremental Merge for Bucketid-Term Pairs

Incorporating DataGuides in our structure-aware query processing requires
a significant schema extension, however. Analogously to the tag-term pair
content index used for the pre/postorder labeling scheme, we now index
and query for bucketid-term pairs as the main building blocks for our query
processing strategies. Then the new content index constitutes of the following
relations:

• DataGuide: IOT with attributes concatenated in the order (path,
bucketid).

225

8.5. Dynamic Query Expansion for Content & Structure

• BuckeidTermFeaturesRA: IOT with attributes concatenated in the or-
der (docid, bucketid, term, score, maxscore, pre, post) as key.

• BucketidTermFeaturesSA: B+-tree index over all attributes of Bucket-
idTermFeaturesRA but concatenated in the order (bucketid, term, max-
score, docid, score, pre, post) as key.

• BucketidsRA: Separate IOT with attributes concatenated in the order
(docid, bucketid, pre, post) as key.

Each content condition in the query now opens a sequential scan on the
BucketidTermFeaturesSA B+-tree index using the key prefix (bucketid, term).
All assumptions on random accesses for content and navigational conditions
on the BucketidsRA index follow analogously to the pre/postorder labeling
scheme (see Appendix A.1.2 for the exact schema definitions (DDL) using
Oracle).

The compact DataGuide DFA (see Section 2.3.2) and all distinct path-
to-bucketid mappings can typically be kept in-memory for the type of docu-
ment collections we investigate. These mappings are stored in the relational
schema, too, and loaded into main memory when the engine starts. For both
INEX and IMDB, the memory consumption of the DataGuide is negligible;
for INEX the DataGuide has about 10,000 and for IMDB only about 100
entries.

The DataGuide easily fits into main memory, the data instances of course
not. Moreover, using bucketid-term pairs for querying, only provides a struc-
tural filter for element contents, since the paths do not provide a unique
identifier for the elements as required for joining their scores. In particular,
evaluating branching path queries only on the basis of DataGuides would
make us run into the danger of returning false positives. Hence, structural
joins are furthermore performed on the pre- postorder labels in the form of
a hybrid index which basically gets us two birds in one shot:

1) We use DataGuides for query rewriting, only, and encode whole paths
into a compact bucket id with lower selectivity than simple tags.

2) We perform structural joins on pre- postorder labels, and thus are able
to reuse the very same join-algorithm and implementation.

The latter point even enables the query rewriter to dynamically select the
most appropriate index structure for individual query nodes and to efficiently
process mixed query conditions, with some navigational conditions referring
to DataGuide locators and some using individual tag conditions.

226

8. Top-k Query Processing for XML

Figure 8.13 depicts the approach for the example location path //article
//sec//par that is merged into a content condition with the (stemmed)
term “databas”. Let us assume, the DataGuide lookup yields only three
matching path with respect to the child axis, namely /article/sec/par,
/article/sec/ss1/par, and /article/sec/ss2/par. Note that it is also
possible to incorporate path similarities at this point, e.g., along the lines
of [ST06a, ST06b], as indicated by the figure. An Incremental Merge ope-
rator is used to determine the order in which inverted index lists for the re-
spective bucketid-term pairs are merged, again merging whole element blocks
and propagating them for the structural joins with other element blocks at
different query dimensions for each candidate.

Note that the example is a bit simplified, for the actual amount of 520 dis-
tinct bucket ids for the above path expression, we would rather keep the ap-
proved pre/postorder scheme and be willing to accept some random lookups
for the navigational tag conditions article and sec, thus sequentially scan-
ning on the tag-term pair par=databas, only.

//article//sec////article//sec//

/article/sec/p=
databas

0.071 [389, 388]
0.068 [354, 353]
0.041 [375, 378]
0.022 [372, 371]

0.8
/article/sec/ss1/p=

databas
/article/sec/ss2/p=

databas

Incr.MergeIncr.Merge

0.91.0

//article//sec//p=
databas

getElementScore()

getSubtree-
Score()

0.373 [71, 69]
0.274 [68, 66]
0.259 [163, 161]
0.249 [347, 343]
0.237 [166, 164]
0.173 [354, 353]

0.432 [354, 353]
0.342 [313, 311]
0.301 [55, 53]
0.299 [329, 326]
0.187 [357, 359]
0.035 [324, 321]

Figure 8.13: Dynamic expansion of the descendant axis for a DataGuide-like
location path.

Dynamic Selection of Index Structures

The query rewriter can now incrementally query the DataGuide for all path
prefixes and break the location path into a tag sequence (thus switching
from DataGuides to the pre/postorder scheme) as soon as the amount of

227

8.5. Dynamic Query Expansion for Content & Structure

distinct bucket ids for the path prefix exceeds a certain threshold value.
The exact choice on when to keep a location path with descendant steps
for being processed with a DataGuide, and when to split the path into a
sequence of single navigational tags is collection-dependent. Initializing a
huge amount of database cursors for the Incremental Merge algorithm may
become more expensive than the actual query execution; we found a threshold
of 12–24 a good choice in INEX, however. Although we do not consider
DataGuides to be a general panacea for addressing a lowly selective structure,
dynamically switching between DataGuides and tag-term pairs in fact allows
us to efficiently cover a broad range of XML data collections with different
structural characteristics.

Note that supporting DataGuides and tag-term pairs concurrently in our
inverted block-index organization is space-consuming, since it roughly dou-
bles the index size as scanning for bucketid-term pairs instead of tag-term
pairs of course affects the grouping condition for the elements in the in-
verted block-index which are then grouped by (docid, bucketid, term) and
(docid, bucketid), respectively. Keeping the two schemes in parallel would be
an option for prototype tests, only. The decision on whether to index a col-
lection using only DataGuides or only tag-term pairs depends on the amount
of variations of paths in the collection, thus considering the different salient
properties of each index structure (see Section 2.3). Note that the compact
in-memory DataGuide DFA may be further kept for filtering invalid edges
in the pre/postorder mode, too, and thus prevent the algorithm from per-
forming unnecessary random lookups for inherently unsatisfiable structural
constraints. Using the DataGuide schema is supported without any restric-
tions, when exclusively the child axis is used for the path queries.

228

8. Top-k Query Processing for XML

Algorithm 13 In-memory top-k element extraction.
1: getTopkElements(Top-k Documents documents[1..k])
2: resultElements := ∅;
3: threshold := documents[k].worstscore;
4: for all i := 1..k do
5: elements := getRankedTargetElements(documents[i]);
6: e := 1;
7: for all a := 1..|elements| do
8: // We do not need more than k elements from all docs
9: if e geq k then

10: break;
11: end if
12: // No results yet, then take the first non-empty list
13: if resultElements = ∅ then
14: resultElements := elements;
15: break;
16: else
17: b := 1;
18: // Otherwise iterate over the result list
19: while b < |resultElements| & elements[a].score < resultElements[b].score do
20: resultElements.insert(b, elements[a]);
21: // We already have k better elements
22: if e ≥ k | resultElements[k].score ≥ threshold then
23: break;
24: end if
25: b++;
26: e++;
27: end while
28: // Reached end of the result list –> append all remaining elements
29: if b = |resultElements| then
30: resultElements.appendAll(elements[a..|elements|]);
31: break;
32: else
33: // Otherwise iterate over the current element list
34: while a < |elements| & elements[a].score > resultElements[b].score do
35: resultElements.insert(b, elements[a]);
36: // We already have k better elements
37: if e ≥ k | resultElements[k].score ≥ threshold then
38: break;
39: end if
40: a++;
41: e++;
42: end while
43: end if
44: end if
45: end for
46: end for

47: return resultElements[1..k];

229

Chapter 9

Experimental Evaluation

9.1 Hardware & Software Setup

The TopX prototype search engine presented in this thesis is fully imple-
mented in Java using J2SDK 1.5. All inverted index lists are stored as tables
with appropriate B+-tree indexes in an Oracle 10g database; in addition, a
term position index is kept in a separate table for phrase matching. Auxiliary
data such the thesaurus database used by the Ontology Service and index
list statistics such as histograms are stored in the form of further database
relations and largely cached inside the engine for multiple, interactive user
sessions.

For sequential and random accesses, the search engine accesses the in-
dex lists via JDBC, with large, collection-specific prefetching buffers that are
continuously filled through the background scan threads as described in Sec-
tion 4.3. The query processing is multi-threaded and reads the input tuples
sequentially off these buffers, with thread synchronization according to this
prefetch size (e.g., after every b = 1, 000 index scan steps).

If not stated otherwise, experiments described in this chapter were con-
ducted on a high-end PC (Intel Dual Xeon with 3 Ghz each), 4 GB of RAM,
and a large RAID-5 disk array.

9.2 TREC - Text REtrieval Conference

The annual Text Retrieval Conference (TREC) [TRE] provides a high level fo-
rum for state-of-the-art research on text IR. It is a unique means for standar-
dized text collections, queries, and evaluations, with largely non-idiosyncratic
relevance judgments provided by senior employees of the National Institute
for Standards and Technology in Gaithersburg, Maryland, USA.

230

9. Experimental Evaluation

We participated in various subtasks (so-called “tracks”) in 2003, 2004
and 2005 (TREC-12–14). In the first year, runs were conducted with a
modified version of the BINGO! [SSTW02, STSW02] indexing framework;
for the latter two years, the brand new TopX prototype came into play. We
report our results for the TREC 2004 Robust, Web, and Terabyte tracks, as
well as for the TREC 2005 Terabyte Efficiency task at the end of the text
experiments section. Note that all TREC default query sets and relevance
judgments for the various tracks and tasks are available for download at
http://trec.nist.gov/data.html. A complete list of our extended queries
for the non-standard collections and experimental setups such as IMDB and
XGOV (see below) is contained in the Appendix.

9.2.1 TREC Data Collections

GOV Collection

Our GOV setting uses the data of the official GOV collection of the TREC
12–14 (2003–2005) Web Track [CHWW03, CH04] which consists of a large
crawl from the .gov Internet domain of the U.S. government. It contains
about 1.25 million documents (mostly HTML and former PDF files converted
to text) and a total size of 18.1 Gigabytes. We used the original 50 queries
from the TREC-12 Web Track’s topic distillation task [CHWW03], which
are plain keyword queries with up to 5 keywords. Examples are “legalization
marijuana”, “Lewis Clark expedition”, “airbag injuries death”.

We also participated in the Web track 2004 [CH04] which presented a
mixed set of topics consisting of 75 home page finding topics, 75 named
page fining topics, and 75 topic distillation queries which were not explicitly
distinguished by TREC. The clue for this task was to automatically tune
the system to work well for a broader range of different topic types, thus
simulating typical Web search queries.

XGOV Queries

The eXpanded GOV (XGOV) setting, which we will refer to for the proba-
bilistic pruning experiments, is not an official benchmark task. In the XGOV
setting, we wanted to study the impact of the number of query-relevant in-
dex lists and manually modified the queries by adding synonyms and other
strongly related terms to the keywords of a query. These additional terms
were mostly taken from the synonym entries and descriptions of the Word-
Net thesaurus, where we manually identified for each original keyword the
relevant word sense. This query expansion typically doubled the number

231

9.2. TREC - Text REtrieval Conference

of keywords per query; the longest query contained 20 keywords (e.g., “le-
galization marijuana cannabis euphoric drug abuse pot smoke . . .”, see also
Appendix A.4.3 for the whole set of expanded queries).

The GOV and XGOV settings are the basis for the evaluation of our
probabilistic pruning techniques.

Aquaint Collection

The Aquaint corpus contains approximately 528,000 news articles from the
LA Times, Financial Times, and the Foreign Broadcast Information Service
(FBIS) in about 1.9 Gigabyte of raw text data. The TREC-13 (2004) Ro-
bust track [Vor04] explicitly identifies a distinguished set of 50 topics drawn
from previous TREC ad-hoc tasks which are marked as hard based on result
obtained by earlier submissions.

Since the focus of the Robust track is on poorly performing topics, a box
plot of the average precision scores for all runs submitted to the ad-hoc task
from TREC 6–8 was created to distill the most difficult queries. NIST then
selected topics with low median average precision scores but with at least one
(there was usually more than one) high outlier. The requirement for at least
one system doing well on the topic was designed to eliminate flawed topics
from the topic set.

We intensively studied this particular collection together with the 50 hard
Robust queries for our query expansion experiments.

Terabyte Collection

Since GOV and Aquaint are still not exactly very large dataset in terms
of documents, we included experiments on the TREC Terabyte corpus as
a stress test, as well. The Terabyte collection of the new TREC-13 (2004)
Terabyte track [CCS04, CCS05] is a more recent and extended crawl of the
.gov domain and consists of more than 25 million crawled Web pages from
the U.S. government domain and a total size of about 426 Gigabytes. So
Terabyte is basically an extended version of the GOV collection and as such,
also contains mostly HTML and PDF files converted to plain text. Again, the
50 ad-hoc-style benchmark queries are mere keyword queries such as “train
station security measures” or “Aspirin cancer prevention”.

We also included this benchmark in our evaluation as a stress test for
the thesaurus-based query expansion with the Incremental Merge technique
for inverted lists. The thesaurus-based expansion for the above two queries
considered additional terms such as “railway station, railroad terminal, pas-
senger, security system, alarm, . . . ” and “acetylsalicylic acid, drug, Bayer,

232

9. Experimental Evaluation

tablet, malignant growth, cell division, . . . ”.
Terabyte served as a stress test for the both the scheduling and the query

expansion experiments.

Terabyte Efficiency Task

In TREC-14 (2005), there was an additional Efficiency task [CCS05] intro-
duced for the Terabyte collection with 50,000 queries from a commercial
search engine. While systems had to submit results for all topics, only a
small subset of them, namely the 50 manually intermixed ad-hoc topics of
the same TREC, were judged by human assessors. The subset of 50 ad-hoc
topics was officially announced only after the submission deadline for the
Efficiency runs, however.

9.2.2 Topic Format

One particularity of the TREC queries (or so called topics) is that they also
come shipped with larger description and narrative fields that allow for the
extraction of extended keyword queries or automatic query expansion runs.
<top>
<num> Number: 705

<title>
Iraq foreign debt reduction

<desc> Description:
Identify any efforts, proposed or undertaken, by world governments to seek
reduction of Iraq’s foreign debt.

<narr> Narrative: Documents noting this subject as a topic for
discussion (e.g. at U.N. and G7) are relevant. Money pledged for
reconstruction is irrelevant.

</top>

Figure 9.1: TREC ad-hoc topic format.

A typical ad-hoc run would simply extract the 2–5-term title fields for
querying, whereas more elaborated expansion techniques could also take ad-
ditional information from the description <desc> or narrative <narr> fields
into account. Note that this may pose further challenges for an automatic
system to translate these natural language descriptions into a meaningful
keyword query.

233

9.3. INEX – INitiative for the Evaluation of XML Retrieval

9.3 INEX – INitiative for the Evaluation of XML
Retrieval

The counterpart of TREC in the semistructured world is the INitiative for
the Evaluation of XML Retrieval (INEX) [INE]. INEX queries come shipped
in a similar topic format as TREC queries (but with structured CAS queries
fomulated in the NEXI query language, see Section 2.2.3), but both the topic
development and relevance assessments are selflessly conducted through the
active participants themselves. The INEX workshop is traditionally held at
the Schloss Dagstuhl International Conference and Research Center located
in the south-west of Germany, very close to Saarland University and MPII.
We also report results from our participation in the INEX 2005 ad-hoc re-
trieval task at the end of the XML experiments section.

9.3.1 INEX Collection

The INEX collection consists of full articles from IEEE Computer Society
journals and conference proceedings in a rather complex XML format. In
2005, there was as switch form the original collection with about 12,500
documents in 500 MB raw XML data to a slightly extended version with
17,000 documents and about 750 MB data size.

We chose 46 queries from the INEX topics of 2004 for which official rele-
vance assessments are available. These yield 22 content-and-structure (CAS)
queries and another 25 content-only (CO) queries. A CO example query
is “XML editors or parsers”, and a CAS example is //article[.//bibl
[“QBIC”] and //p[“image retrieval”]].

As for expectations about performance, we believe typical comparisons
to Google, in particular in terms of collection sizes, are misleading. XML is
much more complex than Web data, and INEX CAS queries have a significant
structural part. Most experimental work on XPath, XQuery, and XML IR
reported in major recent conferences used the 100 MB XMark [SWK+02]
dataset (fitting into memory); some of these papers reported response times
around 10 seconds for more complex XMark queries. Among the participants
of the 2004 and 2003 INEX benchmarks only 7 groups reported response time
figures; the best numbers were 13 seconds per query, which we outperform by
a factor of 20 on similar hardware and with similar result quality. With a 64-
bit processor we would expect further gains from larger memory (especially
for the Terabyte setup).

In the history of INEX, most participants have focused on result quality
alone; only seven groups among the 2003 and 2004 official participants have

234

9. Experimental Evaluation

reported response figures and the best numbers were around 13 seconds per
query (on hardware comparable to ours). For the same reason, we studied
query expansion for increasing query complexity even if the thesaurus-based
aspects may be viewed as orthogonal to the structural side of XML.

9.4 Highly Structured Collections

9.4.1 IMDB Collection – Relational

The first IMDB setting uses the data of the Internet Movie Database (http:
//www.imdb.com) to study our methods’ performance on a combination of
text and structured attributes. Since we do not consider structured queries
in this setting, we refer to this collection in a strictly relational sense, with
disjunctive combinations of keyword queries over different attributes. The
IMDB collection that we extracted from the available IMDB dump files con-
tains about 375,000 movies and more than 1,200,000 person files (describ-
ing actors, directors, etc.), and we prepared it into a four-attribute object-
relational table with the schema Movies(T itle, Genre, Actors,Description)
where T itle and Description refer to text attributes and Genre and Actors
are set-valued categorical attributes. Genre typically contains 2 or 3 gen-
res, and Actors were limited to those that appeared in at least 5 different
movies. For similarity scores among Genre values and among Actors, we
precomputed the Dice coefficient for each pair of Genre values and for each
pair of Actors that appeared together in at least 5 movies. So the similarity
for two Genres or Actors x and y is set to

2 · #{movies containing x and y}
#{movies containing x} + #{movies containing y}

and the corresponding index list for x then contains entries for similar values
of y, too, with scores weighted with the similarity of x and y in the sense of
a precomputed, static expansion.

A typical query then looks like

Title ⊆{Space} ∧ Genre ⊆{SciFi} ∧
Actors ⊆ {Harrison Ford} ∧ Description ⊆{Robot, War}

and is evaluated in an “andish” manner. We compiled 20 queries of this
kind by asking colleagues (see Appendix A.4.1 for all these queries). Note
that, since we use “andish” query evaluations, our similarity scoring does not
require a match to satisfy all conditions.

235

9.5. Collections Summary

9.4.2 IMDB Collection – Semistructured

For a true semistructured version of the IMDB collection, we also gener-
ated an XML document for each of the movies available at the Internet
Movie Database (www.imdb.com). Such a document contains the movie’s ti-
tle, plot summaries, information about people such as name, date of birth,
birth place, etc. The interesting issue in using this collection is the mixture
between elements with rich text contents and categorical attributes such as
Genre=Thriller yielding many ties in local scores. Again, we asked col-
leagues to create 20 meaningful NEXI-style queries with structural and key-
word conditions; examples are queries of the kind

//movie[about(.//cast//casting//role, Sheriff)]
//casting//actor[about(.//name, Henry Fonda)]

thus looking for movies with Henry Fonda and an arbitrary actor in the role
of a sheriff (see Appendix A.4.2 for all IMDB NEXI queries).

9.4.3 WorldCup HTTP Logs – Relational

The Internet Traffic Archive (http://ita.ee.lbl.gov) [ITA] provides a
huge HTTP server log with about 1.3 billion HTTP requests from the 1998
FIFA soccer world championship. We aggregated the information from this
log into a relational table with the schema Log(interval,userid,bytes),
aggregating the traffic (in bytes) for each user within one-day intervals.
Queries ask for the top-k users, i.e., the k users with the highest aggre-
gated traffic, within a subset of all intervals (like “from June 1 to June 10”);
our query load consists of 20 such queries for different intervals.

9.5 Collections Summary

Note that experimental studies in the literature on XPath, XQuery, and XML
IR system performance are mostly based on the XMark synthetic dataset (of-
ten using the 100 MB version which fits into memory), which is not really
appropriate for our setting. We believe that INEX has become the main
benchmark for XML IR. Table 9.1 shows the sizes of our test collections,
Table 9.2 shows the disk resident sizes including all index structures required
for sorted and random accesses as denoted in the schema definitions in Ap-
pendix A.1.1 for text and A.1.2 for XML, respectively. Index creation times
were between 83 minutes for INEX and roughly 14 hours for Terabyte, us-
ing standard IR techniques such as stemming, stop word removal, and the

236

9. Experimental Evaluation

BM25-based scoring models described in Section 3.2.2 for text and in 3.4.1
for XML, respectively, requiring corpus-wide document or element frequency
statistics of term features.

#Docs #Elements #Features Size
AQUAINT 528,155 n/a 84 M 1.9 GB
GOV 1,247,753 n/a 230 M 18.1 GB
TB 25,150,527 n/a 2,938 M 426 GB
INEX ’04 12,223 12,071,272 119 M 534 MB
INEX ’05 16,819 17,903,073 142 M 743 MB
IMDB 386,529 34,669,538 130 M 1,117 MB
WorldCup n/a n/a 1,321 M 129 GB

Table 9.1: Source data sizes of test collection used.

INEX IMDB TB
Features 3.8GB 7.4GB 190.2GB
Elements 0.2GB 0.6GB n/a
Histograms 7.4MB 11.5MB 13.5MB
Twigs&Paths 108KB 4KB n/a
Total 4.0GB 8.0GB 190.2GB

Table 9.2: Index sizes for some of the test collections.

9.5.1 INEX Evaluation Strategies

The INEX benchmark pursues a wide range of different evaluation strate-
gies and in fact offers various XML-IR-specific metrics that aim to provide
a comprehensive evaluation for different tasks and topic exploration strate-
gies. Besides the two basic querying modes, namely content-only (CO) and
content-and-structure (CAS) queries, we basically distinguish three orthogo-
nal dimensions that affect the recall base for the relevance judgments of XML
elements that are included for the evaluation of a run. This recall base affect
the maximum recall a system can achieve in terms of relevant elements:

1) Document granularity (Fetch&Browse) vs. element granularity,

2) for element granularity, we additionally distinguish between allowing
overlapping results (Thorough) or not (Focused), and

237

9.5. Collections Summary

3) the quantization of the recall base according to a two-dimensional scale
of specificity and exhaustiveness weights for each XML element as judged
by a human assessor.

A strict interpretation of the support and target element in the query, for
example, reduces the size of the recall base, since only those judged elements
may be kept in the recall base that match the given prerequisites.

Providing a proper methodology for relevance assessments of the various
subtasks in INEX has become rather complex and in fact a research issue of
its own. In the following, we merely report the most important aspects for
determining the recall base of elements accounted for being relevant and for
weighting (quantifying) these judgments with respect to the various INEX
subtasks. For more details, please have a look at [KL05].

Document-centric vs. Element-centric Retrieval

Orthogonal to the structural demands of the query, thus distinguishing CO
and CAS queries, is the granularity at which results are to be presented to
the user and whether they may contain overlapping result elements or not.

• Fetch&Browse is a basic topic exploration mode. In this mode, all
target elements are grouped per document and presented to the user in
“one piece”, i.e., at the same rank but with potentially different scores.

• Thorough tasks are evaluated using the full recall-base based on all the
available relevance judgments. Systems will obtain a score for returning
as many of the relevant reference elements as possible, including all
overlapping elements.

• Focused tasks are evaluated using a restricted recall-base and based on
the assumption that returned overlapping components represent only
as much gain as the amount of new relevant information they contain,
and that the retrieval of near-misses is considered useful to the user.
That is, if a less specific or exhaustive element A that is contained in
another element B, and B has been returned by the system at a higher
rank than A already, A is not accounted as relevant for the submission.

Further subtasks in the basic element modes may further restrain the
recall base depending on whether the support elements are interpreted as
vague and the target element as strict (SVCAS), or whether the support
elements are strict and the target element is vague (VSCAS), or, finally,
both types are vague (VVCAS), or both types are strict (SSCAS).

238

9. Experimental Evaluation

Note that controlling overlap is inherently difficult for a top-k engine
to be performed at query processing time for the two subtasks that specify
vague target elements, namely VSCAS and VVCAS, because they accept
different element types as valid results, e.g., potentially large section that
contain smaller embedded paragraphs elements which are also returned as
separate results. That is, overlap removal as demanded by the Focused tasks
is typically a result of a post-processing step; see also [Cla05] for a nice
overview of these strategies.

For the SSCAS or Thorough tasks, the problem of overlapping results does
not arise (following a strict evaluation strategy). Thus, we restrict our INEX
experiments (see Section 9.8.4) to either the SSCAS or Thorough evaluation
strategies.

Quantization

The quantization function f defines the weight at which relevant elements are
accounted for the recall base. Unlike the binary relevance judgments provided
in TREC, i.e., “Not Relevant” and “Relevant”, relevance judgments in INEX
are distinguished at a two-dimensional scale of specificity and exhaustiveness
judgments. These range from “Unspecific” to “Highly Specific” and “Not
Exhaustive” to “Highly Exhaustive” in a four-point scale each.

• Specificity is determined as an estimate of the fraction of the amount
of relevant information about the topic-of-interest versus the amount
of overall information (including other topics) that is captured by the
result element.

• Exhaustiveness, on the other hand, is determined as the fraction of the
amount of relevant information that is captured by the result element
versus the amount of overall available information about the topic-of-
interest.

The relevance degree of an assessed component c, given by the combined
values of exhaustiveness and specificity, is then denoted by pairs (e, s) ∈ ES,
where ES = {(0, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},
and referred to as assessment(c). Near misses, however, that may also guide
the user the a relevant piece of information can be taken into account for
the (e, s) evaluation. The two most important quantization functions are the
strict and generalized quantizations which are defined as follows:

• The strict quantization only accounts result elements that have been

239

9.6. Evaluation Metrics

judged with the maximum value of (e, s) = (3, 3).

fstrict(e, s) =

{
1 if 3/3
0 otherwise (9.1)

• The generalized quantization also accounts those elements that do not
have the maximum (e, s) judgment. Individual exhaustiveness and
specificity pairs are mapped onto discrete weights for determining the
recall.

fgeneralized(e, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 3/3
0.75 if 2/3, 3/2, or 3/1
0.5 if 1/3, 2/2, or 2/1
0.25 if 1/1, or 1/2
0 if 0/0

(9.2)

Then the number n of relevant components in the recall base with respect
to a given topic is calculated as

n =
∑

c∈components

fstrict|generalized(assessment(c)) (9.3)

which is taken into account to derive the default precision/recall curves and
MAP values [BV00, Vor04] for the final system rankings.

Note that the new INEX 2005 metrics [KL05] also foresee a new quan-
tization function fquant : ES → [0, 1]3 with continuous scores that are auto-
matically derived from an interactive topic assessment tool that allows for
the manual selection of individual text passages for each result element.

9.6 Evaluation Metrics
We employed various metrics to evaluate our approaches with respect to the
given benchmark task. Note that we cannot report results for all possible
combinations of tasks and metrics at this point, we rather try to apply a
choice of the most appropriate metrics with respect to the given query task,
mostly being derived from the official TREC or INEX benchmark guidelines
for transparency.

For efficiency comparison, we collected the following measures:

• #SA – the total amount of sorted accesses to inverted index lists for
all benchmark queries, thus counting the number of individual tuples
(or index list rows) that are read sequentially

240

9. Experimental Evaluation

• #RA – the total amount of random accesses to the index lists and
the position index (for phrase matching), thus counting the number
of individual tuples (or index list rows) that are read through random
access for some object id

• COST – the total cost of executing all queries denoted as #SA+cR/cS ·
#RA according to the cost ratio cR/cS

• #CPU – the total CPU time for all benchmark queries in CPU seconds
altogether (e.g., for a whole batch of 50 queries)

• #sec – the total wallclock runtime for all benchmark queries in seconds
altogether (e.g., for a whole batch of 50 queries)

• KB – the maximum memory consumption in Kilobytes during the
benchmark run (for maintaining the candidate pool priority queue, etc.)

• q – the maximum queue size q created with regard the different queuing
strategies in the probabilistic pruning setup (as opposed to the mere
KB value, this yields an intuition for the absolute number of candidates
kept in the queue)

For assessing the quality of the approximate top-k query results, we col-
lected the following measures:

• precision – the fraction of top-k results in an approximate result that
belongs to the true top-k result (this is equal to the definition of recall
when comparing the exact top-k result set with the approximate top-k
results obtained from probabilistic pruning with ε > 0), i.e.,

true-top-k ∩ approx-top-k
k

• rank distance – the footrule distance [KG90] between the ranks of the
approximate top-k results versus their true ranks in the exact top-k
result, i.e.,

1

k

k∑
i=1

|true-rank(i) − i|

• score error – the absolute error for approximate versus exact top-k
scores, i.e.,

1

k

k∑
i=1

|true-score(i) − approx-score(i)|

241

9.6. Evaluation Metrics

• P@k – the macro-averaged absolute precision for the top-k results of
each query, using official relevance assessments provided by TREC or
INEX

• MAP – the non-interpolated mean average precision (MAP) [BV00,
Vor04] displays the absolute (i.e., user-perceived) precision as a function
of the absolute recall, using official relevance assessments provided by
TREC or INEX

The following TREC-specific metrics were used by the Web track [CH04]
for the home page and named page finding tasks, since these aim at only a
single target page:

• MRR – the mean reciprocal rank (MRR) is the macro-average over all
queries of the reciprocal of the ranks of the target pages in the result
lists

• S@k – the success at the top-k results reflects the absolute number
of queries for which the target page has been found among the top-k
results

The following XML-specific metrics were newly introduced for the INEX
benchmark 2005 [KL05]:

• nxCG – the normalized extended Cumulated Gain metrics is an exten-
sion of the cumulated gain (CG) metrics which aims to consider the
dependency of XML elements (e.g., overlap and near-misses) within
the evaluation, and

• ep/gr – the precision-precision/gain-recall metrics finally aims to dis-
play the amount of relative effort (where effort is measured in terms of
the number of visited ranks) that the user is required to spend when
scanning a system’s result ranking compared to the effort an ideal rank-
ing would take in order to reach a given level of gain relative to the
total gain that can be obtained

All averages are reported as macro-averages over the whole set of bench-
mark queries to smooth the otherwise high variance induced by few extraor-
dinarily short- or long-running queries. Note that we did not use default
rank-comparison measures such as Spearman’s rank correlation or Kendall’s
τ [KG90] as we wanted to assess only the top-k ranks of the approximate
result rather than all ranks, but the Spearman and Kendall measures re-
quire comparing two permutations of the same sets of possible ranks (as-
suming 100 percent overlap). Further note that the relative precision and

242

9. Experimental Evaluation

recall have identical values in our setup, because both metrics use the same
denominator k. The baseline for precision and recall is the top-k result
of the exact top-k baseline algorithm (e.g., Fagin’s orginal TA, NRA, or
CA algorithms [Fag02, FLN03] with respect to the given task) or the non-
approximative Prob-con and Prob-prog setups with ε = 0.

9.7 Text IR

9.7.1 Probabilistic Candidate Pruning

We will first turn our attention on the evaluation of the probabilistic can-
didate pruning component for plain inverted lists. The case for XML is
described later.

Scoring Models

In order to evaluate the behavior of different parameterized score predictors
and our histogram approach, we employ different scoring functions ranging
from a typical IR scoring model to synthetic (clean) distributions, that are
representing different applications and lead to a radically different pruning
behavior for a top-k algorithm, even when no probabilistic pruning is used.

1) the original scores computed using TF·IDF products, with TF and IDF
normalized by the maximum TF value per document and the strongly
dampened IDF value as described in Section 3.1.1,

2) randomly assigned scores with a (0, 1] Uniform distribution,

3) randomly assigned scores with a Zipf distribution starting from low
scores, so that low scores are much more frequent

For both the synthetic Zipf and Uniform distributions, merely the scores
among list entries were exchanged, while the object ids in the index list
entires were not changed, i.e., the ordering of items within each list and the
overlap across lists (correlations) were preserved.

Queuing Strategies

The algorithms compared in the experiments are the four Prob-k methods
presented in Section 5.3:

• Prob-con: the conservative algorithm,

243

9.7. Text IR

• Prob-agg: the aggressive algorithm,

• Prob-pro: the progressive algorithm, and

• Prob-smart: the smart algorithm.

Competitors

For each of them, we considered different options for probabilistic prediction.
The baseline against which we compare our methods is:

• NRA: the original No-Random-Access algorithm with sorted access only,
using the implementation as discussed in Section 5.3.4.

All algorithms access index lists in the baseline round-robin manner and
cache large index blocks in memory. In order to be able to directly compare
the effectiveness of the probabilistic pruning component, no random accesses
were allowed for this setup which makes the NRA algorithm the most natural
candidate for being employed as competitor in this setup. In the following,
we explore a variety of scoring and predictor combinations as well as diffe-
rent queuing strategies for the GOV, XGOV, and IMDB (in the relational
version) settings. Since no random accesses are used, #SA is our primary
cost measure.

Baseline Pruning Runs

In the baseline experiment, all probabilistic predictors use histograms with
cell-width 0.01 (i.e., n = 100 bins for each basic histogram). Convolution
histograms were precomputed at query initiation time, and the impact of
changing highi values was taken into consideration by periodically (i.e., every
b = 200 sorted-access steps) rebuilding the remaining parts of the convolution
histograms (see Section 5.2.3). We set the probabilistic prediction confidence
level to 90 percent, i.e., ε is set to 0.1. For the smart strategy with a bounded
priority queue the queue size was set to b = 200 entries. All access costs
and runtime values were measured for the 50 GOV benchmark queries with
k = 20.

Table 9.3 shows the performance results for the five algorithms under
comparison for the GOV, XGOV, and the IMDB settings, respectively. For
GOV, the chart is based on the original, TF·IDF-derived scores. We present
the three efficiency metrics in terms of benchmark totals over all queries, and
the three result quality metrics as macro-averages over all queries. For the
GOV setting, micro-averaged values are heavily biased by a few long-running
queries; for these queries the performance gains of Prob-k over NRA are even

244

9. Experimental Evaluation

#SA #sec q KB prec rank dist. score err.

GOV

NRA 2,263,652 148.7 10,849 87 1.00 0.00 0.00
Prob-con 993,414 25.6 29,207 235 0.87 16.9 0.01
Prob-agg 20,435 0.6 0 52 0.42 75.1 0.09
Prob-pro 1,659,706 44.2 6,551 52 0.87 16.8 0.01
Prob-smart 527,980 15.9 400 52 0.69 39.5 0.03

XGOV

NRA 22,403,490 7,908 70,896 571 1.00 0.00 0.00
Prob-con 10,165,677 6,448 51,893 418 0.90 10.9 0.04
Prob-agg 133,745 2 0 101 0.35 80.7 0.18
Prob-pro 20,006,283 1,791 12,435 101 0.95 9.3 0.03
Prob-smart 18,287,636 1,066 400 101 0.88 14.5 0.04

IMDB (Relational)

NRA 1,003,650 201.9 12,628 103 1.00 0.00 0.00
Prob-con 463562 17.8 14,990 121 0.71 119.9 0.18
Prob-agg 41,821 0.7 0 74 0.18 171.5 0.39
Prob-pro 490,041 69.0 9,173 74 0.75 122.5 0.14
Prob-smart 403,981 12.7 400 74 0.54 126.7 0.25

Table 9.3: Baseline runs comparing NRA and the Prob-k family of algorithms
(at ε = 0.1) for GOV, XGOV, and IMDB.

significantly higher than the macro-averaged values indicate. The XGOV
results show significantly increased access rates (#SA) and queue sizes – a
true stress test to the queue management, in particular for Prob-con.

Efficiency

The results demonstrate the significant cost savings that the Prob-k family of
algorithms can achieve compared to NRA. In terms of the number of sorted
accesses the conservative algorithm Prob-con gains more than a factor of
two, and the smart algorithm Prob-smart achieves even a factor of four for
GOV. In terms of runtimes, the two probabilistic algorithms even reduce
the cost by an order of magnitude. Figure 9.2 shows that the wallclock
elapsed time drops much faster than linear with increasing ε. Note that the
runtime is not simply a linear function of the sorted accesses but reflects also
cache and queue management overhead that is drastically reduced by the
probabilistic candidate pruning. Also recall that the numbers in Figure 9.2
are total runtime, for all benchmark queries together.

For the GOV and IMDB settings, Prob-con temporarily even created a
larger queue than the NRA baseline using periodic garbage collection, but

245

9.7. Text IR

0
25
50
75

100
125
150
175
200

0.
0

0.
02

0.
04 0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

elapsed
time [s] NRA

Prob-cons
Prob-prog
Prob-smart
Prob-agg

Figure 9.2: Wallclock elapsed runtime for GOV as a function of ε, for k = 20.

Prob-con dropped this large queue quickly after initialization and then dis-
tributed the remaining candidate items to multiple small queues. Interest-
ingly, the progressive algorithm Prob-pro did not do as well as expected; its
capabilities for early pruning are limited and its queue management, which
required many insert and delete operations, is a significant cost factor. The
aggressive method Prob-agg outperformed all competitors, but as expected,
its result quality was rather poor; so we would not really consider it a winner.

For individual queries, especially those that involve very long index lists,
the savings are even more impressive. For example, for the GOV query
“weather hazard extremes” Prob-con and Prob-smart needed 25,802 and
19,401 sorted accesses with runtimes 0.59 and 0.68 seconds, whereas NRA
required 160,002 accesses and ran in 55.60 seconds (for the 50 queries with
k = 20, at precision 0.9 and 0.75, resp.). In the IMDB setting, the re-
ductions of sorted accesses were not as high as for GOV but the runtime
reductions reached a factor of about 10 at a high macro-averaged precision
of 0.71 to 0.75. A typical query like “Genre ⊆{Western} ∧ Actor ⊆{John
Wayne, Katherine Hepburn} ∧ Description ⊆{Sheriff, Marshall}” required
10,802 sorted accesses for both Prob-con and Prob-smart with runtimes
0.41 and 0.51 seconds, whereas NRA performed 26,402 accesses in time 4.92
seconds (for k=20, both at precision 0.7).

Finally, for XGOV queries with more keywords per query, the overhead
for queue management and probabilistic predictions became a truly decisive
issue. Among the methods with acceptable to very good precision, Prob-con
performed best in terms of sorted-access savings, but the runtime gains were
only modest because of the overhead of maintaining up to 2m − 1 queues.
Prob-pro and Prob-smart were the clear winners in terms of runtime, with
acceleration factors up to 8 compared to NRA. Interestingly, these meth-
ods did not save that many sorted accesses but benefited greatly from their
efficient queue management.

246

9. Experimental Evaluation

Result Quality

Figure 9.3 depicts that the metrics for result quality show very good val-
ues for Prob-con and Prob-pro and still acceptable results for Prob-smart.
Prob-con and Prob-pro achieved nearly 90 percent precision (and the same
recall) for the GOV setting. For the IMDB setting, the precision figures
were worse, one reason being that Genre scores had a major influence on
the overall ranking and the small number of different values led to a fairly
discontinuous score distribution with big gaps and many ties, causing some
inaccuracy of probabilistic predictions. We will discuss the influence of the
various predictors thereafter.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
0

0.
02

0.
04 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

macro-avg.
precision

NRA

Prob-cons

Prob-prog

Prob-smart

Prob-agg

Figure 9.3: Precision for GOV as a function of ε, for k = 20.

The other two result-quality metrics show that the user-perceived “loss”
of an approximate result actually seems well tolerable. The average rank
distance for Prob-con and Prob-pro was only around 16. For k = 20 or
higher this seems acceptable, in particular, when we consider that the average
rank distance is dominated by a few outliers with very high rank distance. In
terms of score error, the loss even seems negligible. By and large, the objects
that are returned by the Prob-k algorithms are nearly as good as the exact
top-k results.

Again, the results for the IMDB setting were not quite as good as for
GOV. We manually inspected a fair number of the results and found that in
most cases the results would be considered as good matches by a human user.
For example, the query “Genre⊆{Thriller} ∧ Actor⊆{Arnold Schwarzeneg-
ger} ∧ Description⊆{robot}” returned top results Terminator3, The 6th Day,
Total Recall, Die Hard 2, Star Wars IV, etc. (recall that top-k results do not
necessarily have to satisfy all query conditions).

For XGOV, Prob-con, Pro-pro, and Prob-smart showed very good pre-
cision, rank distance, and score error values.

247

9.7. Text IR

Parameter Sensitivity

We studied the influence of several parameters on the performance of our
four Prob-k algorithms: the probabilistic prediction confidence level 0.1, the
result size k for top-k queries, the number n of bins per basic histogram, and
the maximum size b of a bounded priority queue for the smart algorithm.
Figure 9.4 shows the results for varying the parameter ε (the vertical dashed
line is the baseline setting). The curves show that for ε below 5 percent,
the progressive and smart algorithms achieve only marginal savings. For
ε between 5 and 20 percent, on the other hand, these two methods offer
excellent benefit/cost ratios. The conservative Prob-cons method performs
best according to the theory of probabilistic guarantees. Already small ε
values like 1 percent lead to significant cost savings, and even for ε values
as large as 50 percent, which results in sorted-access savings of more than a
factor of 4, still yield 70 percent precision compared to the non-approximative
top-k results. The aggressive method Prob-aggr always exhibits great cost
savings, but this is at the expense of precision values of 40 to 50 percent only.
Still, this may possibly be the preferred method in applications with tight
response time demands.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0.
0

0.
02

0.
04 0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

SA NRA

Prob-cons

Prob-prog

Prob-smart

Prob-aggr

Figure 9.4: Efficiency (in #SA) for GOV as a function of ε, for k = 20.

We also compared the measured precision with the expected precision
that we predict as a function of ε according to the formulas of Section 5.1.
For Prob-con and Prob-pro, the prediction model is fairly accurate. The
absolute difference between predicted and measured precision is only one
or two percent for ε values of 0.2 or less; it increases for larger ε, but this
prediction is conservative in that it lower-bounds the measured precision.

Figures 9.5 and 9.6 show that, with increasing k which was varied between
1 and 200, all methods exhibit linearly increasing sorted-access costs but
with different gradients. For large k, the gains of Prob-con, Prob-pro, and
Prob-smart compared to NRA are even higher than in the baseline setting;
at the same time the precision of the approximate top-k results becomes even

248

9. Experimental Evaluation

better for high k.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

1 5 10 20 50 100 200 k

SA NRA

Prob-cons

Prob-prog

Prob-smart

Prob-agg

Figure 9.5: Efficiency (in #SA) for GOV as a function of the number k of
returned top-k results, with ε = 0.1 fixed for the probabilistic algorithms.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 5 10 20 50 100 200 k

macro-avg.
precision

NRA

Prob-cons

Prob-prog

Prob-smart

Prob-agg

Figure 9.6: Precision for GOV as a function of the number k of returned
top-k results, with ε = 0.1 fixed for the probabilistic algorithms.

Figures 9.7 and 9.8 show that the performance for different values n of
histogram bins is fairly stable over a wide range of settings. Between 50
and 1,000 bins the relative performance of the different algorithms does not
change much; below 50 bins the Prob-smart method does not work that well
anymore, but Prob-con and Prob-prog remain more robust and show consis-
tently good performance even with down to 25 bins per histogram. Similarly,
we found that the maximum queue size parameter b for the Prob-smart al-
gorithm is largely uncritical. Queue size limits as low as b = 100 with our
iterative pruning technique (see Section 5.3) still worked very well for k = 20.

Predictor Sensitivity

Finally, we compared our different approaches for probabilistic prediction:
histograms vs. Poisson approximations vs. Chernoff bounds based on the
assumption of Uniform distributions vs. Chernoff bounds considering term

249

9.7. Text IR

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

10 25 50 100 1,000 n

SA Prob-cons

Prob-prog

Prob-smart

Prob-aggr

Figure 9.7: Efficiency (in #SA) for GOV as a function of the number of
histogram buckets n, with ε = 0.1 fixed for the probabilistic algorithms.

0.4

0.5

0.6

0.7

0.8

0.9

1

10 25 50 100 1,000 n

macro-avg.
precision

Prob-cons

Prob-prog

Prob-smart

Prob-agg

Figure 9.8: Precision for GOV as a function of the number of histogram
buckets n, with ε = 0.1 fixed for the probabilistic algorithms.

correlations. We limit the presentation to results for the Prob-con algorithm
with k = 20, ε = 0.1, n = 100, and the GOV setting. Due to the high
overhead of computing Chernoff bounds with OpenMaple, we removed the
three most expensive queries from the Web tracks’s topic distillation task
which consumed about 40 percent of the overall runtime with 50 queries.

Figure 9.9 shows the performance comparisons for the original TF·IDF
scores. The dashed line is the predicted precision (for Prob-con this is sim-
ply a linear decrease at 1 − ε). Similar experiments have been run for two
artificially generated Uniform- and Zipf-distributed scores on the GOV index
lists as shown in Figures 9.10 and 9.11, respectively.

The charts show that histograms generally provide the most accurate
score predictions. A comparison with the Uniform- and Zipf-distributed
scores shows that they are a flexible solution to capture different score distri-
butions already for n as low as 50 to 100 buckets in a score domain of (0, 1].
Both the Poisson estimator and, particularly, the Chernoff-bound method
(the latter assuming Uniform-distributed scores) are overly conservative and
overestimate score probabilities for the TF·IDF and the Zipf case. The differ-

250

9. Experimental Evaluation

0.5

0.6

0.7

0.8

0.9

1

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
2

0.
3

0.
4

0.
5

macro-avg.
precision

(1-) Prediction

TFIDF/Histogr

TFIDF/Poisson

TFIDF/Chernoff

TFIDF/Chernoff
Corr

Figure 9.9: Precision of various predictors for TF·IDF-distributed scores for
GOV as functions of ε, for k = 20.

0.5

0.6

0.7

0.8

0.9

1

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
2

0.
3

0.
4

0.
5

macro-avg.
precision

(1-) Prediction

UNI/Histogr

UNI/Poisson

UNI/Chernoff
Corr

Figure 9.10: Precision of various predictors for Uniform-distributed scores
for GOV as functions of ε, for k = 20.

ence between the Chernoff-bound methods with and without independence
assumption is not really significant for the GOV data, but this could be dif-
ferent in other settings. For Uniform-distributed scores the Chernoff-bounds
are fairly accurate over a wide range of ε, whereas, as expected, Poisson es-
timators do not work well for the Uniform case, because they substantially
underestimate the tail probability. The Zipf distribution is closer to the orig-
inal TF·IDF score distribution, but has a longer tail of low scores, for which
the Poisson estimator works better, but, again, the Chernoff-bounds behave
overly conservative.

The advantage of the Poisson approximation method is its very little over-
head, whereas the overhead of the histogram method increases with dimen-
sionality. But note that even with the higher-dimensional XGOV workload,
the algorithms still achieved major runtime gains using histograms with dy-
namic convolutions. The Chernoff-bound predictors are largely independent
of the dimensionality, but they suffer from huge startup costs for invoking
OpenMaple. For a practically viable solution one would have to hand-code
the OpenMaple computations (which involve differentiation and finding roots

251

9.7. Text IR

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
2

0.
3

0.
4

0.
5

macro-avg.
precision

(1-) Prediction

ZIPF/Histogr

ZIPF/Poisson

ZIPF/Chernoff
Corr

Figure 9.11: Precision of various predictors for Zipf- distributed scores for
GOV as functions of ε, for k = 20.

numerically) in C or C++.

Finally, our model for precision guarantees developed in Section 5.4 works
very well for the Prob-con algorithm. The Prob-pro and Prob-smart al-
gorithms deviate from this basic statistical model, because they merge all
candidates into a single queue and Prob-smart even bounds this queue and
heuristically stops after testing the top item, only. Here the predictions were
reasonably accurate for small values of ε but degraded and became overly
conservative for ε higher than 5 percent, as the pruning behavior of the
heuristic extensions progressively increases.

Discussion of Probabilistic Pruning Experiments

Our comprehensive experiments on various collection show that the prob-
abilistically enhanced algorithms can achieve major performance gains, in
terms of both sorted accesses and actual runtime, and at the same time
provide probabilistic guarantees for result precision and recall. Among the
four competing algorithms, Prob-con and Prob-smart turned out to be the
most interesting ones. Prob-con is closest to the theory of probabilistic guar-
antees and does best in terms of result quality; Prob-smart offers the best
benefit/cost ratio. Both methods achieve runtime gains by an order of mag-
nitude compared to NRA. All four Prob-k methods are fairly robust with
regard to parameter settings; there is no need for sophisticated tuning. For
score predictions, we believe that histograms are the best choice from an
engineering viewpoint, but the other two methods showed good results and
certainly deserve further studies, too.

252

9. Experimental Evaluation

9.7.2 Index Access Scheduling

We consider three structurally different data collections: the TREC Terabyte
collection, movie data from IMDB, and the huge WorldCup HTTP server log.
As competitors for our algorithms we chose the most important variants of
threshold algorithms, namely TA, NRA, and CA, and a baseline Full Merge
that computes the full join of all index lists using a merge join, partially
sorts the results by score, and outputs the top-k results. Additionally, we
empirically compute a lower bound for the cost of any threshold algorithm
(see Appendix A.3.2 for details) to assess how close our algorithms get to the
optimum.

We also ran our experiments for the RA-extensive threshold algorithms
TA, Upper [BGM02, MBG04] and Pick [BGM02] (see Section 1.4). In our
setting, where both sorted and random access is possible and a random access
is much more expensive than a sorted access (the lowest ratio we consider
is 100), all these methods performed considerably worse than even the Full
Merge baseline, in terms of both costs and running times, and for all values
of k and cR/cS we considered. For example, for k=10 and cR/cS=1,000
on Terabyte-BM25, they resulted in total cost 72,389,140 (TA), 31,496,440
(Upper), and 3,798,549 (Pick), compared to 2,890,768 for the Full Merge,
788,511 for NRA and 386,847 for our best method. We therefore did not
include these methods in our charts. Note that, as we discussed in Section 1.4,
MPro, Upper and Pick were actually designed for a different setting, where
some lists are accessible by random access only.

We focus on experiments with the Terabyte collection using a BM25 (see
Section 3.1.1) and a TF·IDF model (see Section 3.2.2), both with scores
normalized to (0, 1]. Our main attention is turned on the BM25 model, how-
ever, as this is the most challenging and most realistic IR scoring model;
main results for the two other collections are presented afterwards. For fur-
ther sensitivity studies we also employed two synthetically generated Zipf
and Uniform score distributions for this collection.

We used a default cost ratio cR/cS = 1, 000; and the inverted lists are
logically divided into large blocks of size b = 32, 768, i.e., the batch sizes
bi determined by the sorted access scheduler are multiples of this value to
accommodate the size of the collection and to be able to solve the NP-hard
Knapsack SA scheduling tasks exactly. We report the average query cost as
COST = #SA+ cR/cS · #RA computed over the whole batch of queries as
our primary performance measure.

253

9.7. Text IR

Modified Prototype

For reporting the wallclock runtime figures for the scheduling experiments, we
conducted a new prototype system implemented in C++ and using raw disk
access to inverted files, with large blocks of (docid, score)-tuples efficiently
being merge-joined in-memory. The average runtime gains we achieve with
this highly specialized implementation compared to the default TopX engine
implemented in Java and reading tuples from Oracle via JDBC are at an
amazing factor of up to 20 with no loss in precision. Note that this factor
holds in particular for very large collections such as Terabyte, because we
need to fetch the first block for each query term (which roughly confirms
to a disk sector, e.g., using a block size of 32,000 tuples) also for a short
list completely into memory which diminishes the runtime advantage of the
block-merge for small collections, where the average index lists size does not
even exceed a disk sector (see [BMS+06] for a full description of the imple-
mentation). The abstract cost measures based on index accesses, however,
remain directly comparable to TopX.

The runtime for the scheduling experiments was measured using a two-
processor Opteron 250 server with 8 Gigabytes of memory and all data loaded
from a large SCSI RAID. With this new prototype, we would rank at the
very top of real wallclock runtime figures reported for Terabyte so far (see
Figure 9.44) for a non-distributed engine. This direction certainly deserves
further attention in our future work.

Baseline Scheduling Runs

Figure 9.12 presents the average cost savings of our best approach (KSR-Last-
Ben) for Terabyte which outperforms all our three baselines by factors of up
to 3. Even for k = 1, 000, there is a 50 percent improvement over all three
baselines. Note that the end-user consumption of top-k results (as in Web
search) would typically set k to 10–100, whereas application classes with au-
tomated result post-processing (such as multimedia retrieval) may want to
choose k values between 100 and 1,000. Especially remarkable is the fact that
we consistently approach the absolute lower bound by about 20 percent even
for large k, whereas both CA and NRA increasingly degenerate; CA even
exceeds the Full Merge baseline in terms of access cost for k > 200. Note
that we measured the average query cost for the original TA algorithm with
full random lookups for each candidate (RR-All) with a value of 72,389,140
which could not even be plotted on the same scale as the other variants for
the default cost ratio cR/cS = 1, 000.

Figure 9.13 shows that the average runtimes we achieve per query are

254

9. Experimental Evaluation

10 50 100 200 500
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

*
#R

A
s)

Terabyte−BM25

Full merge
RR−Never (NRA)
RR−Each−Best (CA)
KSR−Last−Ben (NEW)
Lower bound

Figure 9.12: Average costs for Terabyte-BM25 of our best algorithm com-
pared to various baselines and a computed lower bound, for varying k.

in the order of 30–60 milliseconds for 10 ≤ k ≤ 100, even when the total
list length is in the millions, which outperforms the NRA and Full Merge
baselines by a factor of up to 5. Interestingly, for k > 20 our true baseline
for measuring runtimes is no longer CA, because it is already outperformed
by the DBMS-style Full Merge. Here, NRA is already out of the question
because of its high overhead in index access costs (Figure 9.12) and its ad-
ditional need for candidate bookkeeping, whereas the amount of access costs
saved by our improved scheduling approaches (KSR-Last-Ben) more than
compensates the bookkeeping overhead. To pick just one example, the Full
Merge on the query “Kyrgyzstan United States relations”, which has a total
list volume of over 15 million document ids, takes about one second, while our
best top-k algorithms, by scanning only about 2 percent of this volume and
by doing about 300 well-targeted random lookups, process the same query
in about 10 milliseconds.

Sorted Access Scheduling

To analyze the benefit of our Knapsack-driven SA scheduling approaches, we
fix the RA scheduling to the Last-Best strategy and focus on the individual
SA scheduling performance of the two Knapsack optimizations KSR and KBA.
Note that the following figures report our results with the exact Knapsack
problem being solved at query runtime. No greedy approximations were
required for the Terabyte setting using large sorted access batching blocks

255

9.7. Text IR

10 50 100 200 500
0

50

100

150

200

250

number of top items computed (k)

av
er

ag
e

ru
nn

in
g

tim
e

in
 m

ill
is

ec
on

ds

Terabyte−BM25

Full Merge
RR−Never (NRA)
RR−Last−Best (NEW)

Figure 9.13: Average running times in milliseconds of our best algorithm
compared to Full Merge and NRA, for Terabyte-BM25 and varying k.

of multiples of size b = 32, 768 and the 4–5 keyword queries of the Terabyte
track.

Figure 9.14 shows relatively low performance gains in between 2–5 percent
for BM25 scores compared to round-robin. For more skewed distributions
such as TF·IDF, we observe larger benefits of up to 15 percent for k ≥ 50.
Here, the more sophisticated benefit-optimized Knapsack (KBA) wins overall
(see Figure 9.14).

Random Access Scheduling

Now we fix the SA scheduling to the basic round-robin (RR) strategy and
analyze our different RA scheduling approaches. Figure 9.16 shows that
we gradually improve our RA scheduling performance as we move from the
original CA baseline over the simple Last-Best strategy toward the more
sophisticated cost-driven scheduling Last-Ben. Interestingly, the step from
RR-Each-Best (CA) to RR-Last-Best already provides 90 percent of the
overall gain we can achieve, whereas the more complex RR-Last-Ben achieves
about 10 percent more cost savings with an overall factor of about 2.3 com-
pared to the CA baseline.

256

9. Experimental Evaluation

10 20 50 100 200
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Terabyte−BM25

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
00

 ×
 #

R
A

s)

RR−Last−Best
KSR−Last−Best
KBA−Last−Best

Figure 9.14: Average cost for the different SA scheduling approaches for
Terabyte with a BM25 model, for varying k.

Varying the Query Size

In the next setup, we increase the query sizem for the Terabyte setting by also
taking terms from the TREC topic descriptions into account, i.e., we increase
the average query size from m = 2.9 to m = 8.3 with a maximum of m = 15
terms which roughly simulates a query expansion task – a common technique
in IR. Increasing the query dimensionality m yields further performance gains
of up to a factor of 2.3 over NRA and a factor of 4 over CA. Note that NRA
and CA essentially scan the whole lists for the larger m; then NRA has
essentially the same costs as the Full Merge, while CA costs almost twice as
much, due to its proportional number of random accesses.

Varying the cR/cS Ratio

By tuning the cR/cS ratio we can easily simulate different systems setups.
Obviously, large ratios punish RAs and make the NRA or even the Full Merge
more attractive. This is the case in systems with high sequential throughput
and relatively low RA performance (e.g., cR/cS = 10, 000 for mostly raw disk
accesses with hardly any caching as opposed to cR/cS = 100 for a DBMS with
lower sequential throughput but higher RA performance through caching).
Figure 9.18 shows that for low values of cR/cS between 100 and 1,000, the
combined scheduling strategies provide the highest cost savings with a factor
of more than 2 for k = 100. Even when only very few RAs are allowed, a

257

9.7. Text IR

1020 50 100 200
0

100,000

200,000

300,000

400,000

500,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
 ×

 #
R

A
s)

Terabyte−TFIDF

RR−Last−Best
KSR−Last−Best
KBA−Last−Best

Figure 9.15: Average cost for the different SA scheduling approaches for
Terabyte with a TF·IDF model, for varying k.

clever scheduling can still make a decisive difference and improve over NRA
or Full Merge.

IMDB

The largest index lists derived from the IMDB collection (in the relational
version) with up to a length of 285,000 entries are generated by the categorical
attributes such as Genres and Years, whereas the largest inverted lists from
text contents only yield a few thousand entries which are typically scanned
through by the first block. This makes the collection provide an interesting
mixture of short textual lists with quickly decreasing scores and longer lists
of categorical values with a low skew and many score ties. Figure 9.19 shows
that the performance gains here are a bit less than for Terabyte with a factor
of 1.5 to 1.8 for 10 ≤ k ≤ 200. For this particular combination of lists
and mixture of score distributions, all top-k algorithms outperform the Full
Merge baseline by a large margin, for wide ranges of k. Note that we are still
able to stay very close to the lower bound compared to CA and NRA.

HTTP Worldcup Log

The HTTP Worldcup log yields highly skewed score distributions with a
few users having downloaded up to 750 MB per day, whereas the average
traffic per user and day lies between 50-100 KB. Figure 9.20 shows that CA

258

9. Experimental Evaluation

10 50 100 200 500
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

*
#R

A
s)

Terabyte−BM25

RR−Each−Best (CA)
RR−Last−Best (NEW1)
RR−Last−Ben (NEW2)
Lower bound

Figure 9.16: Average cost for the different RA scheduling approaches for
Terabyte-BM25, for varying k.

(which is already close to optimal) becomes more competitive to our best
algorithm (KBA-Last-Ben here) with only a factor of about 1.2 additional
cost for k up to 100, because a few random accesses on the currently best-
scored items typically suffice to yield the final top-k results. KBA-Last-Ben
almost touches the lower bound for wide ranges of k. Note that for these
skewed distributions, the benefit-optimized Knapsack KBA yields the better
basis for SA scheduling. Also note that, here, NRA ends up scanning the full
lists already for relatively small k.

Discussion of Index Access Scheduling Experiments

For many real-word data sets and score distributions, Fagin’s originally pro-
posed CA algorithm already yields a tough baseline. Except for extremely
skewed distributions and small values of k, NRA is out of the question, be-
cause there is typically only a marginal difference between the final scores of
the kth and (k+1)-ranked result which makes the best- and worstscores con-
verge very slowly and leads to a very late threshold termination (Figure 9.12).
On the other extreme, TA with its high overhead in random I/O is a viable
choice only for setups with an extremely low cR/cS ratio. Our experiments
demonstrate that our proposed algorithms perform much better than CA
which is considered the most versatile variant of Fagin’s algorithm, espe-
cially for larger k. According to Fagin’s instance optimality proof [Fag02]
which guarantees optimal access rates within a constant factor of 4m+k per

259

9.7. Text IR

average query size 3 average query size 8
0

5,000,000

10,000,000

15,000,000

20,000,000

Terabyte−BM25

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

Full
merge

Full
merge

NRA

NRA

CA

CA

KSR

KSR

Figure 9.17: Average costs for Terabyte-BM25 of our best algorithm
(KSR-Last-Ben) compared to various baselines, for shorter queries (left) and
longer queries (right), for k = 100.

query, larger values of m and k are our best opportunity to beat this baseline
by a very significant margin.

A comparison with two artificially generated Uniform and Zipf distribu-
tions for Terabyte reveals that for uniformly distributed scores, the round-
robin SA scheduling already provides the best approach, whereas only for
more skewed distributions (e.g., for TF·IDF, see Figure 9.15, or even Zipf) the
Knapsack-based optimizations take effect. Fortunately, the Knapsack imple-
mentations tend to converge exactly to such a round-robin-like SA schedule
in the Uniform case, hence they do not degenerate, but also can not improve
much over the round-robin baseline in this case. Generally, a few judiciously
scheduled RAs have the potential to yield an order of magnitude higher cost
savings than the best SA scheduling could do.

For all setups, our algorithms that postpone random accesses to a late,
more cost-beneficial phase and hence gather more information about the in-
termediate top-k and candidate items outperform their algorithmic pendants
that eagerly trigger random accesses after each round or batch of sorted
accesses (Figure 9.16). For all values of k and cost ratios cR/cS, our pro-
babilistic extensions outperform the baseline algorithms by a large margin;
moreover, they never degenerate or lead to higher access costs than their
non-probabilistic counterparts. The simple Last-Probing approach with its
heuristic stopping criterion is already a very solid basis; the cost-based Ben-

260

9. Experimental Evaluation

100 1000 10000
0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

Terabyte−BM25

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

c
R

/c
S

Full
merge

Full
merge

Full
merge

NRA NRA NRA

CA

CA

CA

KSR

KSR

KSR

Figure 9.18: Average cost for Terabyte-BM25 of our best algorithm
(KSR-Last-Ben) compared to various baselines with cR/cS = 100 (left),
cR/cS = 1, 000 (middle) and cR/cS = 10, 000 (right), for k = 100.

Probing beats it merely by another 10 percent of costs saved and in fact comes
close to the lower bound for many queries and collections (Figure 9.12, 9.19,
and 9.20). Note that the iterative evaluation of the cost formulas in Sec-
tions 6.3, 6.4.1, and 6.4.2 is fairly light-weight so that the overhead of run-
ning the cost models for all candidates after a batch of b SAs is acceptable
with regard to the costs saved in physical I/O.

9.7.3 Query Expansion

As for our query expansion runs, we again used Okapi BM25 for the per-
term scores for both the Aquaint and Terabyte collections. Query expan-
sion was based on WordNet concepts and the statistically quantified hyper-
nym/hyponym relations in addition to the concept synsets as described in
detail for the Independent Mapping WSD method in Section 7.2. We used
both the benchmark query titles, which are merely 2 to 5 keywords, and the
descriptions and narratives, which are a few sentences describing the query
topic, to automatically extract term and phrase candidates for expansion.

Title terms were considered to be mandatory, with boosting weights
βi = 1 as described for the extended score aggregations in Section 3.5, terms
from query descriptions were optional with βi = 0; expansion terms were de-
rived from both titles and descriptions and always considered optional. The
similarity values αi for the expansion terms (and phrases) were set according

261

9.7. Text IR

10 20 30 40 50 60 70 80 90 100
0

50,000

100,000

150,000

200,000

250,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

IMDB

Full merge
RR−Never (NRA)
RR−Each−Best (CA)
KSR−Last−Ben (NEW)
Lower bound

Figure 9.19: Average cost for IMDB of our best algorithm compared to var-
ious baselines and a computed lower bound, for varying k.

to the precomputed thesaurus-based Dice similarities. In the subsequent
sections, we will mostly concentrate on results for the 50 hard queries of the
Robust track data as these have become the gold standard for query expan-
sion; we will discuss results for the Terabyte corpus thereafter with regard
to scalability.

We compared both efficiency and effectiveness of the following methods:

• a baseline method without query expansion, with the option of prob-
abilistic candidate pruning and variation of the control parameter ε
(with ε = 0.0 being the conservative case where all speculative and
approximative techniques are disabled),

• a static expansion method where we generate a large disjunctive key-
word query by adding all expansion terms with similarity to at least
one of the original query terms above a threshold θ (with θ = 1.0 being
the special case where only synonyms are added), and

• the Incremental Merge method for dynamic on-demand expansion, with
an upper bound on the number of expansion terms controlled by θ.

With static expansion, the score aggregation function was the total sum of
the scores from individual terms; with Incremental Merge, we used the max-
score aggregation function introduced in Section 7.4.1. For both expansion
methods we also varied the control parameter ε for probabilistic candidate

262

9. Experimental Evaluation

0 20 50 100 150 200
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

number of top items computed (k)

av
er

ag
e

co
st

 (
#S

A
s

+
 1

00
0

×
#R

A
s)

HTTP Worldcup logs

Full merge
RR−Never
RR−Each−Best (CA)
KBA−Last−Ben (NEW)
Lower bound

Figure 9.20: Average cost for the HTTP Worldcup logs of our best algorithm
compared to various baselines and a computed lower bound, for varying k.

pruning. In addition to these methods under comparison, we also indicate
some performance measures for a Full Merge query processing technique,
where all inverted index lists that are relevant to a query are fully scanned
and completely loaded into memory; this merely serves as a reference point.
Note the recall-dependent MAP values were obtained from separate runs to
obtain the top 1,000 for each query as demanded by TREC.

Further note that we decided to switch toward measuring runtimes in
CPU seconds spent on the query processing, since CPU time is much less
sustainable to caching effects, in particular for increasingly large expansions
with huge and almost unpredictable variances in the wallclock runtimes of
more than 300 percent (even with a “warm cache” when each query is directly
executed twice in a role). Wallclock runtimes were generally about an order
of magnitude higher than the reported CPU times.

Baseline Expansion Runs

Table 9.4 shows the results for the baseline run, i.e., without query expansion.
The maximum query dimensionality was 4, the average query length was
merely 2.5 terms; there was no consideration of phrases in this baseline runs.

We see that top-k query processing is generally much more efficient than
the Full Merge technique with full index scans could possibly be, in terms
of the number of sorted accesses to inverted index lists and the memory
consumption. For the expansion setup, we did actually execute the Full

263

9.7. Text IR

Merge, but merely measured the index-scan work (in the total amount of
index list lengths) as this yields exactly the index access costs of this method.
The rows for the top-k baseline method differ in their settings for the ε
control parameter. Allowing a modest extent of probabilistic pruning led
to noticeable performance gains, while staying at almost the same level of
effectiveness.

We also see that enforcing conjunctive query evaluations in these bench-
mark settings is generally not beneficial for result quality. Already for the
short title queries, the conjunctive run substantially loses in the recall-depending
MAP metric with a drop from 0.091 to 0.068 (with ε = 0) compared to the
default “andish” mode. Interestingly, also P@10 shows better results for an-
dish, with a value of 0.252 for andish and a value of 0.244 for conjunctive
queries. Note that expansion runs would not at all be feasible with a con-
junctive setup.

In addition to P@10, MAP, and the relative precision, we also measured
various other kinds of metrics relative to the query result quality of the
conservative case with ε = 0.0, like the score error in the top-k lists or the
footrule distance between ranks in the approximate and the “exact” top-k
results. All these measures indicate that the probabilistic pruning affects
the result quality only to a minor degree that would be acceptable by most
applications. This makes the Prob-k method an excellent choice for a system
where high precision at the top ranks is required and efficiency is crucial.

ε Max(m) #SA #RA CPU KB P@10 MAP prec

Robust Baseline Runs
Full Merge 4 2,305,637 0 n/a 13,509 0.25 0.09 1.00
Title-Only 0.0 4 1,439,815 0 9.4 519 0.25 0.09 1.00
andish 0.1 4 1,339,756 0 9.3 520 0.25 0.09 0.93
Title-Only 0.0 4 1,411,815 0 9.2 733 0.24 0.07 1.00
conjunctive 0.1 4 1,322,874 0 8.9 734 0.24 0.07 0.94

Table 9.4: Baseline runs for the 50 hard topics comparing conjunctive versus
“andish” query evaluations (using only title keywords).

Different Expansion Strategies

The second part of Table 9.5 shows the efficiency and effectiveness results for
the 50 hard queries of the TREC Robust track, comparing the Incremental
Merge method with static query expansion.

Using the Independent Mapping with a rather conservative expansion
strategy using only synonyms and first-order hyponyms of noun-phrases (i.e.,
directly related, more specific concepts) from the topic titles and descriptions

264

9. Experimental Evaluation

already produced fairly high-dimensional queries, with up to m = 118 terms
(many of them marked as phrases); the average query size for these queries
was m = 35 terms.

Compared to the baseline without query expansion, all expansion tech-
niques significantly improved the result quality in terms of P@10 and MAP.
The quality is still below the values reported by the very best TREC runs
2004 [Kwo04, LLYM04] which achieved about 0.37 in P@10, but the results
are decent. Recall that our basis for query expansion, WordNet, is certainly
not the most suitable choice for ad-hoc query expansion (at least not unless
combined with other sources and techniques), and the emphasis of our work
is on efficiency with good (but not eagerly hand-tuned) effectiveness.

The best result quality in our experiment, 0.31 in P@10, was achieved
by the Incremental Merge technique with ε set to 0.0. Probabilistic pruning
with ε = 0.1 reduced the number of sorted accesses by about 25 percent, but
in terms of runtime (in CPU seconds) it gained a factor of 2 as it also in-
curred fewer random accesses (mostly for phrase matching) and lower mem-
ory overhead. For the static expansion technique, the cost savings by the
probabilistic pruning were much higher, more than a factor of 4 in all major
efficiency metrics, but this came at the expense of a significant loss in query
result quality.

Notwithstanding this trade-off, this technique may be of interest for some
applications. In terms of runtime, however, both Incremental Merge and
static expansion performed almost equally well when probabilistic pruning
was used. The absolute performance numbers of less than 2 seconds per
query, with an academic prototype in Java and the high overhead of JDBC
sessions, are very encouraging. It is particularly remarkable that for the In-
cremental Merge method, the probabilistic pruning affected the effectiveness
only to a fairly moderate degree, reducing P@10 from 0.310 to 0.298. This
seems to be a very low price for a speed-up factor of 2.

Figures 9.21 and 9.22 show how the effectiveness and efficiency measures
change as the control parameter ε is varied from 0.0 and 0.1 toward higher,
more aggressive values (with the extreme case 1.0 corresponding to a fixed
amount of index-scan work, looking only at the b = 500 highest score en-
tries of each index list). We see that the relative precision (prec) of most
variants drops linearly with ε, which is just the expected behavior (see Sec-
tion 5.4), but in terms of objective result quality, as measured by the TREC
relevance assessments, the pruning technique performed much better: both
precision@10 and MAP decrease only very moderately with increasing ε. For
example, for ε = 0.5 the best Incremental Merge method could still achieve a
precision@10 of about 0.27 while its runtime cost, in terms of sorted accesses,
was reduced by a factor of more than 3.

265

9.7. Text IR

ε Max(m) #SA #RA CPU KB P@10 MAP prec

Robust Baseline Runs
Full Merge 4 2,305,637 n/a
Title-Only 0.0 4 1,439,815 0 9.4 431 0.25 0.09 1.00

0.1 4 1,339,756 0 9.3 432 0.25 0.09 0.93

Robust Fixed Expansions
Full Merge 118 20,582,764 n/a
Static Exp. 0.0 118 18,258,834 210,531 245.0 37,355 0.29 0.11 1.00

0.1 118 3,622,686 49,783 79.6 5,895 0.24 0.09 0.54
Incr. Merge 0.0 118 7,908,666 53,050 159.1 17,393 0.31 0.12 1.00

0.1 118 5,908,017 48,622 79.4 13,424 0.30 0.11 0.79

Terabyte Fixed Expansions
Full Merge 119 581,307,315 n/a
Static Exp. 0.0 119 360,811,608 973,188 18,090.1 783,273 0.23 0.08 1.00

0.1 119 63,028,142 120,180 6,785.5 101,333 0.22 0.07 0.63
Incr. Merge 0.0 119 87,327,339 211,981 10,734.3 575,440 0.27 0.10 1.00

0.1 119 64,548,694 147,238 7,966.5 540,845 0.27 0.10 0.71

Table 9.5: Baseline and fixed expansions for the 50 hard Robust and the 50
Terabyte queries.

In Figures 9.21 and 9.22 the curves for static expansion with query titles
and descriptions also reveal that the score predictor degenerates for very high-
dimensional disjunctive queries because of neglecting feature correlations.
This led to the sudden drop in the number of sorted accesses already for
ε being as low as 0.1, but this came at the expense of a significant loss in
retrieval quality. This phenomenon did not occur for the Incremental Merge
method, where expansions are grouped into multiple nested top-k operators,
such that the maximum number of query dimensions at the top level was
only 22 compared to 118 for the static expansion (including phrases).

Figures 9.23 and 9.24 show the efficiency and effectiveness results as a
function of varying the θ parameter, i.e., the aggressiveness of generating
candidate terms and phrases for query expansion. Table 9.6 yields detailed
figures for various combinations of θ and ε values. The charts demonstrate
the robustness and self-tuning of the Incremental Merge method: even with
very low θ, meaning very aggressive expansion, both P@10 and MAP values
stayed at a very good level. The execution cost did significantly increase,
however, but this is not surprising when you consider that the expansion
candidate sets for some queries had up to m = 876 terms or phrases (at
an average of m = 230 terms per query) – quite a stress test for any search
engine. In combination with moderate probabilistic pruning, the Incremental
Merge method was still able to answer all 50 queries in a few minutes, less
than 4 seconds per query.

266

9. Experimental Evaluation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

prec, title-only
prec, static expansion
prec, incr. merge
P@10, title-only
P@10, static expansion
P@10, incr. merge
MAP, title-only
MAP, static expansion
MAP, incr. merge

Figure 9.21: Expansion precision for the 50 hard Robust queries as a function
of ε.

Scalability of Expansion Strategies

The evaluation on the Terabyte corpus and queries served as a proof of scala-
bility for the developed top-k query processing and expansion methods. The
third part of Table 9.5 shows the results of some of our runs, using the same
fixed expansion technique as aforementioned for the Robust track. The per-
formance gap for static expansions without versus the one with probabilistic
pruning indicates the same overly aggressive behavior of the score predictor
as for the high dimensional queries in the Robust setup – however, again at
the expense of retrieval quality. Generally, expansion queries on Terabyte
are in the order of up to several minutes per query rather than seconds.
Moreover, we see that memory consumption becomes critical, with up to 783
MB for the static expansion method and 540 MB for Incremental Merge,
respectively.

The overall efficiency gain in terms of access rates for the Incremental
Merge method compared to the static expansion without probabilistic prun-
ing is even more impressive by a factor of more than 4 and a factor of 8
compared to Full Merge, respectively, while achieving higher P@10 and MAP
values. This makes the Incremental Merge approach the method of choice in
terms of both retrieval robustness and efficiency.

267

9.7. Text IR

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

20,000,000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

#SA, title-only
#SA, static expansion
#SA, incr. merge
#RA, title-only
#RA, static expansion
#RA, incr. merge

Figure 9.22: Expansion efficiency (in #SA and #RA) for the 50 hard Robust
queries as a function of ε.

Discussion of Query Expansion Experiments

Incremental Merge clearly has the potential to outperform traditional static
expansion in terms of both effectiveness and efficiency by exploiting the ex-
plicit structure that is given by an expanded query (i.e., the relation between
original query concepts and expanded terms and phrase). It proved that it
can achieve decent query-result quality while exhibiting very good execution
cost and runtime behavior. Especially in combination with probabilistic score
prediction and candidate pruning, it is a very efficient and effective, scalable
method that could be of interest for industrial-strength search engines. Our
emphasis has been on efficiency, so we used only a relatively simple basis
for generating expansion terms and phrases. More elaborated expansion
techniques, e.g., using document summaries from Google top-10 snippets or
query associations from query logs along the lines of [Kwo04] or [LLYM04],
could easily be supported by our algorithm, with similar expected trends for
Incremental Merge as compared to static expansions.

9.7.4 TREC 2004

The following results are taken from our TREC 2004 and 2005 participation.
The 2005 result were not previously published in an official TREC notebook

268

9. Experimental Evaluation

θ Max(m) #SA #RA CPU KB P@10 MAP prec

Robust Large Expansions
Full Merge 1.00 36 7,655,462

0.30 59 16,157,145
0.10 102 30,288,748 n/a
0.01 876 243,394,509

Static Exp. 1.00 36 5,427,347 169,635 38.5 8,987 0.28 0.11 1.00
ε = 0.0 0.30 59 10,586,175 555,176 156.6 29,913 0.29 0.11 1.00

0.10 102 15,541,754 1,950,718 230.8 60,195 0.27 0.11 1.00
0.01 876 47,169,998 4,575,223 679.2 755,792 0.26 0.09 1.00

Incr. Merge 1.00 36 4,850,129 60,739 33.6 6,802 0.28 0.12 1.00
ε = 0.0 0.30 59 7,575,647 65,523 56.8 13,867 0.28 0.11 1.00

0.10 102 10,889,717 77,261 100.1 25,628 0.27 0.10 1.00
0.01 876 31,023,932 102,669 407.6 68,592 0.26 0.09 1.00

Incr. Merge 1.00 36 3,668,119 30,759 26.2 3,257 0.28 0.12 0.65
ε = 0.1 0.30 59 5,671,493 34,895 43.8 7,931 0.28 0.11 0.65

0.10 102 7,615,389 38,641 78.3 24,454 0.28 0.10 0.67
0.01 876 16,748,953 73,153 189.4 46,456 0.28 0.10 0.66

Table 9.6: Various θ expansions for the 50 hard Robust queries.

paper, because they provided the major intermediate step toward our final
query expansion methods applied and published in [TSW05a]. For the three
conceptually different tasks, the full range of our relevance scoring model as
described in Chapter 3 came into play. Except for the 2005 Efficiency task,
efficient query executions are only a minor aspect for the TREC runs, as
generally the top 1,000 results per run were to be submitted to TREC to be
able to ensure a sufficiently large recall base. Although TopX did not rank
among the top participants in any of the tracks, we believe that our runs did
a thorough job and that nethertheless the evaluation methodology applied
throughout the whole thesis greatly benefits from these TREC participations.
Note that TREC tasks are quite challenging and competitive, with many
groups frequently participating over many years and hand-tuning systems
for specific tasks.

Robust Track - Individual Retrieval Robustness

We submitted 10 runs for the 2004 Robust track with slightly different pa-
rameter settings and expansion strategies. The emphasis of this track was
on the fine-tuning of our expansion methods and extracting additional query
terms and phrases out of the extended description and narrative fields. We
were using a TF·IDF model with boosting for the title keywords and addi-
tional, non-boosted keywords extracted from the description and narrative
fields. Phrases were automatically detected by WordNet lookups, disam-
biguated using the Independent Mapping approach, and carefully expanded
using only synonyms and first-order hyponyms. Query expansions using the
new Incremental Merge method were conducted for noun-phrases only (as
matched and disambiguated in WordNet), and only if they were sufficiently

269

9.7. Text IR

0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.30 0.10 0.03 0.01

prec, incr. merge, = 0.1
P@10, static expansion, = 0.0
P@10, incr. merge, = 0.0
P@10, incr. merge, = 0.1
MAP, static expansion, = 0.0
MAP, incr. merge, = 0.0
MAP, incr. merge, = 0.1

Figure 9.23: Expansion precision for the 50 hard Robust queries as a function
of θ.

specific, i.e., with a high IDF value.
For the whole set of 249 Robust queries, we achieved good P@10 and

MAP values of 0.37 and 0.17 (and even 0.42 for P@5), respectively, as shown
in Figures 9.25 and 9.26; though we did not rank among the very best partic-
ipants with up to 0.55 and 0.33 in P@10 and MAP, respectively. Figure 9.27
depicts an interesting plot that displays the relative difference of the TopX
runs to the median average precision per query sorted by difference. We see
that for many queries, we are in fact slightly above or at the median, but
we also significantly drop below the median for about 50–60 percent of the
queries. Note that the median displays a synthetic run, thus using a macro-
average of all the achieved MAP values of all participants per query, i.e.,
none of the systems is necessarily always above or below that median for all
queries.

Web Track - Topic Distillation & Named Page Search

For the Web track, we exploited the full range of our Web-specific exten-
sions and the combined scoring approach described in Section 3.3 to get a
smoothed influence of PageRank on the content scores. We submitted 5 runs
with different parameter setups for studying the influence of the link struc-

270

9. Experimental Evaluation

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

1.00 0.30 0.10 0.03 0.01

#SA, static expansion, = 0.0

#SA, incr. merge, = 0.0

#SA, incr. merge, = 0.1

#RA, static expansion, = 0.0

#RA, incr. merge, = 0.0

#RA, incr. merge, = 0.1

Figure 9.24: Expansion efficiency (in #SA and #RA) for the 50 hard Robust
queries as a function of θ.

ture, anchor texts, and multiple weighted HTML fields. The 2004 Web track
was a mixed query task with 75 home page finding queries, 75 named page
finding queries, and 75 topic distillation queries (which were not explicitly
distinguished by the topic statements). The goal was to find ranking ap-
proaches which work well over all the 225 queries, without having access to
the actual query type labels.

Figure 9.28 shows a mean reciprocal rank (MRR) of 0.42 for the named
page (NP) task which means that the named page was typically returned at
ranks between 1 and 5 for most queries; and Figure 9.29 shows a very homo-
geneous flow of the precision/recall curve which makes this a very successful
result from a user perspective. Figure 9.30, however, shows that we are still
performing significantly below the (artificial) median run. Figure 9.43 shows
a nice plot that compares the MRR results of all the participating groups.

Terabyte – Ad-hoc Retrieval on a Very Large Collection

For the Terabyte task, Figure 9.44 shows that we are competitive in terms
of indexing and querying times compared to other participants. Indexing
took about 14 hours for parsing the 426 GB Terabyte collection using three
server machines in parallel (one of them being the database storage server)
which confirms to a total of about 42 hours, and the average query response

271

9.7. Text IR

Robust track results — Max-Planck-Institute for Computer Science

Summary Statistics

Run ID mpi04r07
Run Description: Automatic run, title+desc+narr
Kendall � of difficulty predictions: -0.174

Topic set
Old 200 New 49 Hard 50 All 249

Total number retrieved 49842 12243 12445 62085
Total relevant 15350 2062 4416 17412
Total relevant retrieved 4530 788 837 5318
Mean average precision 0.1723 0.1885 0.0629 0.1755
% topics with no relevant in top 10 16.0 18.4 26.0 16.5
area under MAP(X) curve 0.0034 0.0037 0.0009 0.0032

Document Level Averages
Precision

Old New Hard All
At 5 docs 0.4200 0.3918 0.2280 0.4145
At 10 docs 0.3650 0.3469 0.2040 0.3614
At 15 docs 0.3330 0.3170 0.1973 0.3299
At 20 docs 0.3008 0.2929 0.1800 0.2992
At 30 docs 0.2582 0.2605 0.1673 0.2586
At 100 docs 0.1514 0.1357 0.1110 0.1483
At 200 docs 0.1036 0.0766 0.0776 0.0983
At 500 docs 0.0453 0.0322 0.0335 0.0427
At 1000 docs 0.0226 0.0161 0.0167 0.0214

R-Precision
Exact 0.2304 0.2585 0.1194 0.2359

Figure 9.25: Result summaries for the best TopX Robust run 2004.

times were in between 6–9 seconds per query which provides acceptable run
times even with no approximations being used. These runs also used our
combined scoring approach described in Section 3.3, but with a strongly
damped influence of the PageRank component compared to the Web track
runs. Generally, we found that the extended Terabyte topic statements are
much more similar to the Robust topics than to the Web track, since mostly
content-oriented retrieval is required.

Figures 9.31 and 9.33 show similar trends of the best TopX run (out of
5 submitted TopX runs) as in the previous two tracks when compared with
the result quality achieved by all participants, with a P@10 value of 0.36
and a MAP value of merely 0.03 (because we did not return the top 10,000
documents as actually demanded by the Terabyte track). Figure 9.33 shows
that we are very close to the median for almost all the queries.

Note that with the runtime figures reported for our scheduling experi-

272

9. Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

old topics
new topics
hard topics
all topics

Figure 9.26: Precision/recall plot of the best TopX Robust run 2004.

-1.0

-0.5

0.0

0.5

1.0

D
if

fe
re

n
ce

Figure 9.27: Difference to the median of the best TopX Robust run 2004.

ments (see Section 9.7.2) of our latest prototype implementation, we would
rank at the very top among all Terabyte participants 2004 as depicted in
Figure 9.44.

9.7.5 TREC 2005

Terabyte Efficiency Task

The TREC 2005 Terabyte Efficiency task used 50,000 queries from a com-
mercial (but anonymous) search engine, so the challenge for our setup was
to find a proper efficiency versus effectiveness trade-off. While the collection
remained unchanged and we achieved similar indexing times for the Terabyte
2005 Efficiency task, we managed to press down querying time to an 0.3 sec-
onds average per query (and 0.2 seconds for another run with slightly worse
MAP and P@10 results) with the TopX Java prototype and Oracle as back-
end, using probabilistic pruning and our aggressive queuing strategy. The
resulting P@10 and MAP values of 0.35 and 0.03 as shown in Figures 9.34
and 9.35 confirm our good experience for the probabilistic pruning and queue

273

9.8. XML IR

��� � � � � �� ��� ��� 	 �

 �� �� � �� �� � �� ��

 �� � � 	�� � �� �� � � 	� � �� � � �� �� � � �� � � 	� � � 	 �� � � 	� �

�
 � �� � � � � �
 �! � �� � � � �
" �� � � � �# � � �� 	 �� $ $ % &' %(� ���)) ��� �� � ' %� �� � (� � � � � ' % � �� � � � � *

� �� �) � �� � � � �# (� 	�� � � � �
�)) � � �� 	 � � " + ,+

 � � �� �- � (� � ./ %/ $� 0 . 1 $� ' � . $� . � .

 �) �- �� �� 1 ' ./ 1 . � � � � � /

 �) � � � �� %� � � 0 0 � % � �

23 	� �) � � � �� � � �� � � �
�)) � � �� 	 � � " + ,+

� - � � � � + � � 	� �� �� � �4 $� . � �4 �� $� �4 � 1 � 1 �4/ . %.
�� 	 	� � �5 1� �4 $0 '� �4 $� � � �4/ � . ' �4/ �. '
�� 	 	� � �5 %� �4 % $ � � �4 %� . ' �4 % �. ' �4 � . . '
�� 	 	� � �5 1 �� �4 %. � � �4. %/ / �4 %� . ' �4 � 0/ /

+ � � 	� �� �� 5 1 � (� 	 �� �4 1 � $ '
+ � � 	� �� �� 5 6
7 (� 	 �� �4 $ %� � �4 1 1 ' ' �4/ %1 1 �4 $0/ /

8 � �� � � �� � � 	 �) � �� �� �4/ 0 '/ �4/ � 0 0 �4 � $ $ ' �4/ ' 0/
� � �� 	 � �� � � � � � �) �- �� � # ��� (� ' 1 . / $ / /

Figure 9.28: Result summaries for the best TopX Web run 2004.

management. Figure 9.36 shows that we dropped significantly below the me-
dian, however.

9.8 XML IR

For the XML experiments, we focus our attention on the INEX 2004 collec-
tion and queries, since they come shipped with official relevance judgments.
To evaluate our runs, we chose the strict quantization, i.e., we are consid-
ering only those elements with a maximum specificity and exhaustiveness
judgment of 3 for the recall base. Furthermore, we use a strict interpreta-
tion of both the support and target elements which further prunes the size
of the recall base, i.e., the number of relevant elements referred to in the
relevance judgments, thus anticipating the newly introduced SSCAS task in
INEX 2005. Note that this strict notion of the query’s support and target
elements also naturally avoids overlap among result elements directly in the
top-k engine, without requiring any additional query post-processing step.

9.8.1 Setup & Competitors

Our experiments for XML compared the following strategies for top-k query
processing:

274

9. Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Figure 9.29: Precision/recall plot of the best TopX Web run 2004.

0 10 20 30 40 50 60 70 80 90 100

Rank

0

10

20

30

40

50

60

70

80

90

100

%
 t

o
p

ic
s

"Median" Run
System

Figure 9.30: Difference to the median of the best TopX Web run 2004.

• TopX Min-Probe with the minimum probing strategy for random ac-
cesses as explained in Section 8.4.1.

• TopX Ben-Probe with the cost-based strategy for beneficial random
accesses as explained in Section 8.4.2.

• TopX Text, using sorted-access-only to inverted term index lists for
unstructured data. Here, random lookups are only used to clarify the
final ranking among all top results’ [worstscore, bestscore] intervals.

• the Full Merge strategy where all query-relevant index lists are first
completely fetched into main memory and the structural joins are per-
formed in-memory with the full information about all candidates’ struc-

275

9.8. XML IR

Terabyte Track results — Max-Planck-Institute for Computer Scienc

Summary Statistics

Run ID mpi04tb07
Run Type automatic
Fields Used title
Run Description LinksUsed-NoAnchorTextUsed-

DocStructUsed

Time to index 2520 min.
Time to retrieve top 20 per query 6 sec.

System RAM 2 GB
Size of on-disk structures 479 GB
Approx system cost $15000

Number of Topics: 49

Total number of documents over all topics
Retrieved: 48266
Relevant: 10617
Rel-ret: 4143

Recall Level Averages

Recall Precision

0.00 0.6559
0.10 0.3404
0.20 0.2499
0.30 0.1817
0.40 0.1102
0.50 0.0769
0.60 0.0583
0.70 0.0255
0.80 0.0104
0.90 0.0018
1.00 0.0000

Mean average precision

non-interpolated 0.1249

Document Level Averages

Precision

At 5 docs 0.4245
At 10 docs 0.4122
At 15 docs 0.3864
At 20 docs 0.3663
At 30 docs 0.3388
At 100 docs 0.2667
At 200 docs 0.2033
At 500 docs 0.1306
At 1000 docs 0.0846

R-Precision: precision after
R (number relevant) docu-
ments retrieved

Exact 0.2108

Figure 9.31: Result summaries for the best TopX Terabyte run 2004.

ture using hash tables and cheap random access (which are then cheap
because they do not incur any extra disk IO).

• StructIndex, the algorithm developed in [KKNR04] which uses a struc-
ture index to preselect candidates that satisfy the path conditions and
then uses a TA-style evaluation strategy with random access to com-
pute the top-k result.

• StructIndex+, an optimized version of the StructIndex top-k algo-
rithm, using also the extent chaining technique of [KKNR04] (see be-
low).

In analogy to the text case, the Full Merge competitor corresponds to
a traditional DBMS-style query processing that is extended by a structure-
aware query processor for the XML case. It is inspired by the Holistic Twig

276

9. Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Figure 9.32: Precision/recall plot of the best TopX Terabyte run 2004.
Recall-Precision Curve

700 710 720 730 740 750

Topic

-1.0

-0.5

0.0

0.5

1.0

D
if

fe
re

n
ce

Figure 9.33: Difference to the median of the best TopX Terabyte run 2004.

Join of [BKS02, JWLY03, CMW03] which is probably the best known method
for twig queries without any scoring or ranking (i.e., non-IR, Boolean XPath).
It is a lower bound for the amount of index list accesses any non-TA-based
implementation would have to make. For Full Merge, we report the MAP
values taken from the top 1,000 final result elements (thus cutting off the long
tail). The most interesting question here is of course, if the early termination
of index scans that is characteristic for the top-k algorithms and for TopX
really pays off in the end.

The StructIndex competitor is driven by the assumption that structural
conditions are often quite selective. It uses a DataGuide-like structure in-
dex for first evaluating the structural skeleton of the query. This provides
it with a compact representation of result candidates, namely, all element

277

9.8. XML IR

Terabyte Track results, efficiency task — Max-Planck Institute

mpi05tbefcy1

Run Type automatic
Fields Used title
Links/Anchor text/Structure used doc struct
Number of Topics: 50

Total number of documents over all topics
Retrieved: 1000
Relevant: 10407
Rel-ret: 312

% of collection indexed 100% Number of CPUs 2
Indexing time 990 min. System RAM 4 GB
Avg. time to retrieve top 20 0.310 sec. Approx. system cost $10000
Total processing time 15513 sec. Year of system purchase 2004
Size of on-disk structures 600 GB

Recall Level Averages
Recall Precision
0.00 0.5621
0.10 0.0805
0.20 0.0294
0.30 0.0044
0.40 0.0044
0.50 0.0044
0.60 0.0033
0.70 0.0033
0.80 0.0000
0.90 0.0000
1.00 0.0000

Mean average precision
non-interpolated 0.0336

Document Level Averages
Precision

At 5 docs 0.3840
At 10 docs 0.3580
At 15 docs 0.3280
At 20 docs 0.3120

R-Precision 0.0439
bpref 0.0308

Figure 9.34: Result summaries for the best TopX Terabyte Efficiency run
2005.

combinations that satisfy all path constraints, concisely encoded into com-
binations of “extent identifiers”. These identifiers are stored as additional
attributes in the entries of the inverted index lists; so we can quickly test,
if an element that is encountered in the index scan for a tag-term condition
belongs to a document that satisfies the structure conditions. These tests are
implemented by in-memory lookups to hash tables. As the algorithm also
performs immediate lookups of missing tag-term scores (i.e., the original TA
of Fagin [FLN03]), it generally follows an eager strategy for random accesses.

The optimized StructIndex+ method assumes that all elements in a tag-
term index list that have the same extent identifier in the structure index, i.e.,
have the same path tags from the root to the elements, form a forward-linked
chain. The evaluation of the structure conditions then groups the resulting
candidate elements by extent identifier, and conceptually invokes one sorted

278

9. Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Figure 9.35: Precision/recall plot of the best TopX Terabyte Efficiency run
2005.

index scan for each extent. The implementation merges these cursors into
one index scan that is mostly sequential but can perform skips. Depending
on the gaps between index positions with candidates, this strategy may or
may not degrade into a series of random accesses (if there are frequent and
large skips), or it may or may not degrade into sequentially scanning all
index entries anyway (if there are hardly any gaps). The two StructIndex
approaches have been optimized to fit our full-content scoring model.

A comparison with Okapi BM25 scores for simple element contents has
shown major benefits of our full-content scoring model in terms of result
quality. Furthermore, StructIndex has been extended to also use a hash-
based cache structure to avoid redundant random accesses. Note that typical
INEX queries are already much more complex than the experiments in the
original paper for StructIndex had considered.

9.8.2 Strict Content & Structure Queries

Although the TREC Terabyte collection is a pure text collection, we review
runs for Terabyte in this section to compare query costs between two mod-
erately large XML collections and a large text collection.

Table 9.7 presents detailed results comparing different TopX configura-
tions and competitors for varying k for INEX, IMDB (in the semistructured
version), and Terabyte. The table lists the following statistics each for the
whole batch of queries: the parameter k, the amount of queries, the sum of
sorted accesses #SA and the sum of random accesses #RA (both for the
entire batch of queries), the the sum of CPU running times in seconds, the

279

9.8. XML IR

750 760 770 780 790 800

Topic

-1.0

-0.5

0.0

0.5

1.0

D
if

fe
re

nc
e

Figure 9.36: Difference to the median of the best TopX Terabyte Efficiency
run 2005.

maximum memory consumption in KB, the macro-averaged absolute preci-
sion at k (P@k), and the mean average precision (MAP) for the top-k results
using official relevance assessments for INEX and Terabyte. Since the IMDB
is not an official benchmark setting, we omit the P@k and MAP values for
the IMDB, although results were very good throughout the whole range of
queries.

Wallclock times were typically a factor of 10 higher than CPU times
(because of sequential and random disk I/O being performed by the Oracle
server process), yielding user-perceived response times in the range of 0.1 to
0.7 seconds per INEX query (and up to 30 seconds for Terabyte) at k = 10
and without probabilistic pruning, and this proportion was fairly consistent
for all algorithms and parameter settings.

Note that random accesses to test navigational query predicates are han-
dled in the notion of expensive predicate probing to the external TagsRA
element index which is not part of the actual inverted lists (see Section 8.4).
That means that these random accesses are indispensable for query evalua-
tions and cannot be compensated by a respective increase of sorted access
rates. As such, we report the sorted and random access rates separately.

Baseline XML Runs

Table 9.7 shows that the conservative TopX method without probabilistic
pruning (ε = 0) reduces the number of expensive random accesses by a
factor of 50 to 80 compared to the StructIndex competitors on INEX in
both the Min-Probe and Ben-Probe configurations, and still by a factor of

280

9. Experimental Evaluation

4 to 6 on IMDB, with very good rates of inexpensive sorted accesses (#Q
denotes the number of queries in the different benchmark batches).

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

1 5 10 50 100 500 1,000 k

SA

 +
 #

 R
A

Full Merge

StructIndex+

StructIndex

BenProbe

MinProbe

Figure 9.37: Efficiency (in #SA+ #RA) as a function of k for INEX.

The Min-Probe scheduling outperforms Ben-Probe on INEX, in terms
of saving random accesses. Random accesses have a very sensitive effect on
running times, because they incur in an estimated runtime factor of about
20–50 in our specific hardware and database setup.

On IMDB, on the other hand, Ben-Probe was superior because of the
different structural characteristics of the data. There are 106,970 distinct
twig and 3,404 distinct path structures in INEX compared to only 3,859
distinct twigs and 111 distinct path structures in IMDB. Because of the
high document-level selectivity and the deeper structure of path conditions
on IMDB, the structural constraint tests using range scans on the TagsRA
table to get the pre/postorder codings were much more expensive than for
INEX so that random access scheduling became very crucial. Here, the
cost-based Ben-Probe method showed its benefits. For the same reason, the
StructIndex techniques became competitive to TopX for large k in terms
of access rates, but for small k up to 100 both Min-Probe and Ben-Probe
won by a large margin. Generally, sorted access shows its drawbacks for
categorical attributes such as genres, birth places, etc., which yield very long
lists with many ties in the local scores.

Note that the sorted-access cost of Full Merge is the same for all k values
as the query-relevant index lists are completely fetched anyway (even for
k = 1). We report the MAP value (which depends on k) for the top k = 1, 000
in this case. For k = 1, 000, the StructIndex approaches have even more
index accesses than Full Merge because of the different index structures,
where TopX still remains more efficient than Full Merge. Note that for k as
large as 1,000 or higher, all top-k approaches increasingly degenerate.

The run Full-Merge-NR for INEX that is using a non-redundant scor-

281

9.8. XML IR

k #Q #SA #RA CPU KB P@k MAP

INEX
Full Merge 1,000 46 9,122,318 0 12.4 14,981 0.03 0.17
Full-Merge-NR 1,000 46 8,189,566 0 11.3 14,981 0.01 0.07

1 46 289,160 1,500,804 7.4 3,351 0.57 0.04
StructIndex 10 46 761,970 3,245,068 16.4 10,316 0.34 0.09

100 46 1,966,960 4,938,645 29.8 12,810 0.13 0.15
1,000 46 4,442,806 6,307,770 51.7 14,196 0.03 0.17
1 46 30,309 2,282,280 41.2 3,350 0.57 0.04

StructIndex+ 10 46 77,482 5,074,384 84.5 10,316 0.34 0.09
100 46 160,816 8,447,310 126.6 12,810 0.13 0.15
1,000 46 271,803 11,441,431 168.3 14,197 0.03 0.17
1 46 605,975 10,668 2.3 14,145 0.57 0.04

TopX 10 46 723,169 84,424 3.6 14,317 0.34 0.09
Ben-Probe 100 46 826,458 441,563 5.7 14,322 0.13 0.15

1,000 46 882,929 1,902,427 16.2 14,370 0.03 0.17
1 46 322,109 15,876 0.7 11,263 0.57 0.04

TopX 10 46 635,507 64,807 1.2 12,088 0.34 0.09
Min-Probe 100 46 999,608 361,706 2.9 13,335 0.13 0.15

1,000 46 1,219,639 1,984,801 11.9 13,601 0.03 0.17

IMDB (Semistructured)
Full Merge 1,000 20 14,510,077 0 755.160 468,382 n/a n/a

1 20 251,036 205,775 2.5 6,908 n/a n/a
StructIndex 10 20 346,697 291,655 3.3 8,417 n/a n/a

100 20 629,574 747,737 7.6 30,064 n/a n/a
1,000 20 1,274,624 1,735,399 20.1 39,559 n/a n/a
1 20 15,250 208,140 0.2 6,908 n/a n/a

StructIndex+ 10 20 22,445 301,647 0.2 8,417 n/a n/a
100 20 67,065 782,856 0.4 30,064 n/a n/a
1,000 20 180,701 1,914,181 1.1 39,559 n/a n/a
1 20 202,429 8,672 1.3 40,726 n/a n/a

TopX 10 20 241,471 50,016 1.6 41,519 n/a n/a
Ben-Probe 100 20 248,080 187,684 2.5 39,549 n/a n/a

1,000 20 400,142 1,231,516 11.4 46,564 n/a n/a
1 20 181,973 13,889 0.6 5,260 n/a n/a

TopX 10 20 317,380 72,196 2.4 8,683 n/a n/a
Min-Probe 100 20 870,615 241,955 6.9 35,481 n/a n/a

1,000 20 993,751 1,326,999 24.3 82,942 n/a n/a

Terabyte
Full Merge 1,000 50 105,806,358 0 n/a n/a 0.08 0.13

1 50 13,452,578 1,390 91.5 6,259 0.16 0.01
TopX 10 50 27,541,711 2,035 974.0 13,388 0.31 0.01
Text 100 50 53,000,119 3,192 4,879.2 16,735 0.21 0.07

1,000 50 56,619,220 25,227 1,650.8 19,190 0.08 0.13

Table 9.7: Baseline runs for INEX, IMDB, and Terabyte, for various k.

ing model with Okapi BM25 weights on per-document statistics performs
very poorly in terms of precision and MAP values for the top 1,000 results.
This demonstrates the severe shortcomings of document-wide content sco-
ring approaches in XML element retrieval. Note that MAP captures both
precision and recall and is the key metric in the relevance assessment in both
benchmarks, INEX and TREC.

Although there are much fewer distinct variations of path and twig struc-
tures for the IMDB than for INEX, the situation now changes to the benefit
of the Ben-Probe scheduling. Despite the high structural selectivity of the
IMDB collection, the conservative Min-Probe scheduler makes many random
lookups to ancestor elements that would actually be dispensable, because,

282

9. Experimental Evaluation

e.g., name tags may not only appear in actor elements but in many different
contexts like directors, producers, plot writers and various other person de-
scriptions. This way, the Min-Probe approach yields slightly more overhead
mostly in terms of random accesses. But also Min-Probe still outperforms
the best StructIndex+ competitor in terms of random access rates and a
significant runtime gain especially for k < 100.

Again, Terabyte served as a stress test to our engine. The relatively high
P@1,000 values indicate that the relevance sets are huge as well. Therefore
the MAP values at the lower k mostly suffer from not returning the top
10,000 as originally proposed by TREC 2004 which we do not consider mea-
ningful for a top-k engine (see also Sections 9.7.2 and 9.7.3 for more details
on Terabyte).

9.8.3 Strict Content & Structure with Probabilistic Prun-
ing

We also studied the influence of ε on performance and query result quality.
The results for the Min-Probe scheduling are shown in Table 9.8. As an addi-
tional quality measure we again report the macro-averaged relative precision
prec compared to the conservative algorithm with ε = 0.

ε #Q #SA #RA CPU KB P@k MAP prec

INEX
0.10 46 426,986 59,414 2.9 13,071 0.32 0.08 0.80

TopX 0.25 46 392,395 56,952 2.6 13,071 0.34 0.08 0.77
Min − Probe 0.50 46 231,109 48,963 1.2 9,582 0.31 0.08 0.65

0.75 46 102,118 42,174 0.8 4,212 0.33 0.08 0.51
1.00 46 36,936 35,327 0.3 758 0.30 0.07 0.38

IMDB (Semistructured)
0.10 20 250,173 57,066 0.6 8,683 n/a n/a 0.95

TopX 0.25 20 234,248 67,015 0.7 8,683 n/a n/a 0.89
Min − Probe 0.50 20 147,471 55,197 0.5 8,683 n/a n/a 0.80

0.75 20 38,679 41,504 0.4 5,952 n/a n/a 0.77
1.00 20 10,068 37,058 0.3 942 n/a n/a 0.78

Terabyte
0.10 50 23,010,990 1,106 215.6 13,391 0.27 0.01 0.73

TopX 0.25 50 22,948,882 871 347.6 13,388 0.27 0.01 0.67
Text 0.50 50 19,283,550 993 160.9 13,388 0.26 0.01 0.60

0.75 50 11,538,263 641 68.1 13,388 0.22 0.01 0.51
1.00 50 151,043 779 0.6 41 0.19 0.01 0.35

Table 9.8: TopX runs with probabilistic pruning for various ε, for k = 10.

The probabilistic pruning reduces both the amount of index accesses and
the overhead in queue operations, whereas the predictor overhead itself is
almost negligible. The performance gain is another factor of 20 in access
rates and a factor of 10 in runtimes compared to the conservative TopX and

283

9.8. XML IR

more than two orders of magnitude compared to StructIndex or Full Merge
throughout all the collections, still at very high precision values. Figure 9.38
shows performance gains for INEX, in terms of accesses rates, as a function
of the ε value. Although there are minor reductions in the user-perceived
quality measures like precision and MAP, probabilistic pruning hardly affects
the result quality.

10,000

100,000

1,000,000

10,000,000

100,000,000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

SA

 +
 #

 R
A

Terabyte
INEX
IMDB

Figure 9.38: Efficiency (in #SA+#RA) as a function of ε for INEX, IMDB,
and Terabyte, for k = 10.

Figure 9.39 shows that the relative precision value (prec) degrades at a
much higher rate. This means that different results are returned at the top
ranks, but they are equally good from a user perspective based on the official
relevance assessments of INEX and TREC.

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

prec, INEX
prec, Terabyte
P@10, INEX
P@10, Terabyte
MAP, INEX
MAP, Terabyte

Figure 9.39: Precision as a function of ε for INEX and Terabyte, for k = 10.

284

9. Experimental Evaluation

9.8.4 INEX 2005

CO-Thorough

For the CO-Thorough task, Figure 9.40 shows that TopX ranks at position
22 for the nxCG@10 metric using a strict quantization with a value of 0.0379
and only at rank 37 of 55 submitted runs for MAP with a value of just
0.0008. As for all runs, we used the modified BM25 scoring model described
above and also expensive text predicates to leverage phrases, negations, and
mandatory terms.

 0

 0.1

 0.2

 0.3

 0.4

 0 0.5 1

nX
C

G

rank%

INEX 2005: Results’ Summary
metric: nxCG,quantization: strict

task: CO.Thorough

Figure 9.40: nxCG results for the TopX CO-Thorough run.

The very modest rank in the sensitive CO task attests that there is still
some space for optimizations in our scoring model left for CO queries, when
there is no explicit target element specified by the query (i.e., using the
“//*” wildcard tag). Yet there was neither any restriction given on the result
overlaps or granularities nor on the expected specificity or exhaustivity of
special element types such as sections or paragraphs, such that the engine was
allowed to return any type of element (also list items or even whole articles)
according to their aggregated content scores. An additional simple post-
processing step based on the element granularities and overlap removal would
already be expected to achieve great performance gains here. However, for
the old precision/recall metrics using the former INEX-eval tool with a strict
quantization (as used in INEX ’04), the TopX run ranks at a significantly
better position of rank 3 with an average precision of 0.058 (MAP), which
actually corresponds to the particular metric and setup for which we had
tuned the system.

285

9.8. XML IR

COS-Fetch&Browse

The situation improves for the COS-Fetch&Browse task, where the TopX run
ranks at position 4 out of 19 with a value of 0.0601 in the ep-gr metric with
strict quantization as shown in Figure 9.41. The high peak in first part of the
ep/gr plot indicates that we were doing exceptionally well on the first ranks
(i.e., the top-ranked results), but seem to have lost a substantial amount of
recall at the lower ranks in this particular setting, however.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

ef
fo

rt
-p

re
ci

si
on

gain-recall

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict

task: COS.FetchBrowse

Figure 9.41: ep-gr results for the TopX COS-Fetch&Browse run.

TopX was configured to first rank the result documents according to their
highest-ranked target element and then return all target elements within the
same result document with the same score according to a strict interpretation
of the target element given by the query which exactly matches our full-
content scoring model. Here, the strict – XPath-like – interpretation of the
query target element in combination with our full-content scoring model that
treats each target element itself as a mini-document shows its benefits and
naturally avoids overlap, since we return exactly the element type that is
specified in the query and therefore seem to match the result granularity
expected by a human user better.

SSCAS

Finally, the SSCAS task perfectly matches our strict interpretation of the
target element with the precomputed full-content scores and no overlap al-
lowed. The two submitted TopX runs rank at position 1 and 2 out of 25
submitted runs for the strict nxCG@10 metric with a very good value of 0.45

286

9. Experimental Evaluation

for both runs, and they still rank at position 1 and 6 for MAP with values
of 0.0322 and 0.0272, respectively.

 0

 0.2

 0.4

 0.6

 0 0.5 1

nX
C

G

rank%

INEX 2005: Results’ Summary
metric: nxCG,quantization: strict

task: SSCAS

 0

 0.07

 0.14

 0.21

 0.28

 0.35

 0 0.5 1
ef

fo
rt

-p
re

ci
si

on

gain-recall

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict

task: SSCAS

Figure 9.42: ep-gr and nxCG results for the two TopX SSCAS runs.

Figure 9.42 shows the nxCG and ep/gr plots for the two SSCAS runs, one
with and one without considering expensive text predicates which performed
almost equally well in this case. We see that TopX quickly reaches a max-
imum in the cumulated gain measure at about 50 percent of the returned
ranks and then saturates, which is an excellent property for a top-k engine,
because the best results are typically detected and returned at the first ranks
already. Particularly nice is also the high peak of the second TopX run in the
ep/gr metric which makes this run way outstanding from the competitors.

Although one might argue that this strict evaluation setup is less chal-
lenging from an IR point-of-view, the SSCAS task offers most opportunities
to improve the efficiency of a structure-aware retrieval system, because the
strict notion of all structural query components like target and support el-
ements drastically reduces the amount of result candidates per document
and, hence, across the corpus. Clever precomputation of the main query
building blocks, namely tag-term pairs with their full-content scores, and in-
dex structures for efficient sorted and random access on whole element blocks
grouped by document ids allows for decent runtimes of a true graph-based
query engine that lies in the order of efficient text IR systems. Here, TopX
can greatly accelerate query runtimes and achieve interactive response times
at a remarkable result quality.

287

9.8. XML IR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1
MSRC04B2S
MSRC04C12

MSRAx2
MSRAmixed1

MSRAx4
MSRC04B1S
MSRAmixed3

MSRAx5
MSRC04B1S2
uogWebSelAn

UAmsT04MSinu
UAmsT04MWSc
uogWebSelAnL

UAmsT04MSind
UAmsT04MWinu

THUIRmix045
MSRC04B3S

THUIRmix044
uogWebCA

THUIRmix042
ICT04MNZ3

ICT04CIIS1AT
THUIRmix041

ICT04RULE
uogWebSelL

THUIRmix043
humW04rdpl

UAmsT04LnuN
ICT04CIILC

uogWebCAU150
ICT04basic

SJTUINCMIX3
SJTUINCMIX2

MeijiHILw1
MeijiHILw3

SJTUINCMIX1
MeijiHILw2
csiroatnist

SJTUINCMIX4
SJTUINCMIX5

humW04dpl
MU04web1
humW04dp

wdf3oks0arr1
wdf3oks0brr1

wdf3oks0a
MeijiHILw4
wdf3oks0b
humW04pl
MeijiHILw5

VTOK5
MU04web3

mpi04web08
mpi04web06
mpi04web01
mpi04web02

fdwiedf0
mpi04web07

MU04web5
MU04web2
MU04web4
LamMcm1
humW04l

irttil
irtbow

fdwiesl0
fdwiellq1

irtphr2
fdwiellq0

XLDBTumba01
VT2

VTTD1
VT1
VT3

average(T
D

,N
P

,H
P

)

T
D

:M
A

P
/M

A
P

m
ax

N
P

:M
R

R
/M

R
R

m
ax

H
P

:M
R

R
/M

R
R

m
ax

Figure 9.43: Mean Reciprocal Rank (MRR) results for all participants of the
TREC 2004 Web track, broken down into average (AV), topic distillation
(TD), named page (NP), and home page (HP) finding tasks. MPI/TopX
runs are prefixed with ’mpi*’.

288

9. Experimental Evaluation

G
ro

up
Id

R
un

Id

T
op

ic
F
ie

ld
s

L
in

ks
?

A
nc

ho
rs

?

St
ru

ct
ur

e?

Q
ue

ry
T

im
e

(s
)

In
de

x
T

im
e

(h
)

M
A

P

cmu.dir.callan cmuapfs2500 TDN N N N 600 20.0 0.284
cmutufs2500 T N N N 240 20.0 0.248
cmutuns2500 T N N N 75 20.0 0.207

dubblincity.u DcuTB04Base T N N N 2 408.7 0.118
DcuTB04Ucd1 TDN N Y N 84 883.7 0.076
DcuTB04Wbm25 T N N Y 2 760.8 0.079
DcuTB04Combo T N Y Y 2 906.0 0.033
DcuTB04Ucd2 TDN N Y N 15 457.5 0.070

etymon nn04tint T N N N 25 44.8 0.112
nn04eint T N N N 78 44.8 0.074
nn04test T N N N 46 44.8 0.028

hummingbird humT04l T N N Y 115 100.0 0.224
humT04dvl T N N Y 142 100.0 0.212
humT04vl T N N Y 119 100.0 0.221
humT04l3 T N N Y 49 100.0 0.155
humT04 T N N Y 50 100.0 0.196

iit iit00t T N N N 23 8.0 0.210
robertson T N N N 42 8.0 0.200

jhu.apl.mcnamee apl04w4tdn TDN N N N 10000 0.0 0.034
apl04w4t T N N N 10000 0.0 0.027

max-planck.theobald mpi04tb07 T Y N Y 6 42.0 0.125
mpi04tb09 TD Y N Y 9 42.0 0.123
mpi04tb101 TD Y N N 9 42.0 0.081
mpi04tb81 TD Y N N 9 42.0 0.092
mpi04tb91 TD Y N N 9 42.0 0.092

microsoft.asia MSRAt3 T N Y Y 1 11.6 0.171
MSRAt4 T N Y Y 1 11.6 0.188
MSRAt5 T N Y Y 1 11.6 0.190
MSRAt2 T N N Y 1 11.6 0.092
MSRAt1 T N N Y 1 11.6 0.191

rmit.scholer zetbodoffff T N N N 25 13.5 0.219
zetanch T N Y N 2 13.6 0.217
zetplain T N N N 2 13.5 0.223
zetfuzzy T N Y N 2 13.6 0.131
zetfunkyz T N Y N 3 13.6 0.207

G
ro

up
Id

R
un

Id

T
op

ic
F
ie

ld
s

L
in

ks
?

A
nc

ho
rs

?

St
ru

ct
ur

e?

Q
ue

ry
T

im
e

(s
)

In
de

x
T

im
e

(h
)

M
A

P

sabir.buckley sabir04td3 D N N N 18 14.0 0.117
sabir04ta2 TDN N N N 9 14.0 0.172
sabir04tt T N N N 1 14.0 0.116
sabir04td2 D N N N 3 14.0 0.121
sabir04tt2 T N N N 1 14.0 0.118

tsinghua.ma THUIRtb5 T N N N 15 32.0 0.244
THUIRtb4 TDN N Y N 55 17.0 0.245
THUIRtb3 T N Y N 9 17.0 0.220
THUIRtb2 TDN N Y Y 18 2.8 0.056
THUIRtb6 T N N N 16 32.0 0.204

u.alaska irttbtl T N N Y 5 30.0 0.009
u.amsterdam.lit UAmsT04TBm1 T N Y Y 90 4.3 0.044

UAmsT04TBanc T N Y N 1 0.3 0.013
UAmsT04TBm1p T N Y Y 90 4.3 0.043
UAmsT04TBtit T N N Y 20 4.0 0.039
UAmsT04TBm3 T N Y Y 90 4.3 0.043

u.glasgow uogTBQEL TDN N N N 46 200.6 0.307
uogTBPoolQEL TDN N N N 46 200.6 0.231
uogTBBaseS T N N N 4 200.6 0.271
uogTBAnchS T N Y N 3 501.7 0.269
uogTBBaseL TDN N N N 28 200.6 0.305

u.mass indri04AWRM T N N N 39 5.9 0.284
indri04AW T N N N 7 5.9 0.269
indri04QLRM T N N N 26 5.9 0.253
indri04QL T N N N 1 5.9 0.251
indri04FAW T N Y Y 52 21.6 0.279

u.melbourne MU04tb3 T Y Y N 0.08 2.5 0.043
MU04tb2 T N Y N 0.08 2.5 0.063
MU04tb4 T Y Y N 0.36 13.0 0.268
MU04tb1 T N N N 0.08 1.7 0.266
MU04tb5 T Y Y N 0.08 2.5 0.064

upisa.attardi pisa4 T Y Y Y 3 16.0 0.103
pisa3 T Y Y Y 3 16.0 0.107
pisa2 T Y Y Y 3 16.0 0.096
pisa1 T Y Y Y 1 16.0 0.050

Figure 9.44: Indexing statistics of all participants of the TREC 2004 Terabyte
track. MPI/TopX runs are prefixed with ’mpi*’.

289

Chapter 10

Conclusions

The TopX engine combines an extended TA-style algorithm with a focus on
inexpensive sorted accesses with a number of novel features: carefully de-
signed, precomputed index tables that help avoiding or postponing random
accesses; a highly tuned method for index scans and priority queue manage-
ment; probabilistic score predictors for early candidate pruning; dynamic
query expansion with incremental merging of index lists; and nested top-k
operators for phrase matching. The thesis presents a suite of novel techniques
for efficient and versatile top-k query processing techniques and tested them
on various real-world and official benchmark collections. We show that, al-
ready in the conservative mode with no approximations allowed, the engine
outperforms previous approaches by a significant margin.

All components are seamlessly integrated in a versatile query proces-
sor and can be gradually plugged into the core engine. For example, the
probabilistic candidate pruning and cost-based scheduling decisions use very
similar assumptions on the underlying score distributions and can easily be
combined as two complementary approaches that nicely supplement each
other (“throw away the bad ones and look up the good ones”). Taking our
very promising results for index access scheduling into account, which are
consistently good over all tested data collections and queries, we consider
the problem of scheduling for top-k query optimization as solved. As for the
query expansion approach, the Incremental Merge technique clearly outper-
formed traditional methods with static expansions, and proved that it can
achieve decent query-result quality while exhibiting very good execution cost
and runtime behavior. Especially in combination with probabilistic score
prediction and candidate pruning, it is a very efficient and effective, scalable
method that could be of interest for industrial-strength search engines.

Our future work will generally aim to combine the best methods from
structured XML querying and non-schematic IR. We believe that the research

290

10. Conclusions

area for top-k query processing is by far not exhausted but still opens a large
variety of open issues and interesting challenges for future work; some of the
most distinctive challenges are briefly picked in the following subsection.

10.1 Open Issues & Future Work

Index Compression & Scalability

The way our full-content index for XML data is organized basically introduces
two dimensions of redundancy. The first factor for redundancy is inevitably
obtained from the definition of our relational schema, i.e., through storing
the pre- and postorder labels along with several redundant attributes per
element and term entry. The second factor is related to the materialization
of our scoring model and is obtained through the redundant full-content text
nodes that we associate with each element. While we consider this to be a
crucial part and basic building block of our scoring model that contributes to
the (probabilistic) justification of our result ranking approach, the first issue
could easily be optimized by any kind of index compression technique pro-
posed in the literature. This would require moving away from the relational
backend, however.

Graph-aware Top-k

The type of XPath evaluations we pursue in the current TopX implementa-
tion is tuned for IR-oriented queries and collections, with reasonable docu-
ment sizes and queries consisting of mostly content-related conditions and a
few location steps. The document boundaries principally bound the range
of our in-memory structural joins, too, which are then very efficient, because
they are mostly hash-based. While our algorithm already successfully deals
with uncertainty in the structure of partly evaluated candidates to enable
mostly sorted access to large, disk-resident index structure, a true graph top-
k algorithm (e.g., querying a single 2-Gigabyte DBLP document) is still an
open issue. In particular, the structural joins might suffer from significantly
larger in-memory and on-disk range scans for large document partitions (e.g.,
using the pre/postorder labeling scheme). This might make the usage of
R-tree-like index structures over these attributes attractive. Moreover, the
efficient support for structured queries across large, interlinked document
graphs seems very challenging.

291

10.1. Open Issues & Future Work

Incorporating Non-Monotonous Score Aggregations

Non-monotonous score aggregations that would also take the proximity of
terms in a keyword query or the compactness of an XML element “as a
whole” into account are a particularly interesting issue from an IR-point-of
view. Incorporating these functions in a true top-k-query processor would
require the engine to keep the upper bestscore bounds of candidates more
generous with regard to some additional scoring component the would be
derived from this holistic score. It is not clear to what extend this would affect
the performance of the engine; in the worst case this might prevent the worst-
and bestscore bounds from converging and, thus, make the engine degrade to
a full merge algorithm. Clever random access scheduling would probably be
key for these extensions. Furthermore, one might try to precompute large,
common query patterns such as frequent term pairs with significantly lower
combined selectivity and thus even exploit positive effects for pruning when
scanning these combined lists.

Instance Optimality

The class of algorithms that we investigate corresponds to the algorithmic
paradigm of threshold algorithms (TA) that has been originally proposed and
most intensively studied by Fagin in [FLN03]. In particular the Combined
Algorithm (CA), with its basic cost model for random access scheduling, has
been proven to be instance optimal for any given data and query within a
constant factor of 4m+ k in the query dimensionality m and the amount of
top retrieved data items k.

Our empirical results of the refined index access scheduling strategies pro-
posed in the present work – moreover the Last-Probing approach (see Sec-
tion 6.4.1) that postpones all random access to a late, more cost-beneficial
phase – strongly indicates we can keep the algorithm very close to the abso-
lute lower cost bound for a wide range of k and in fact even up to a point
where any top-k algorithm would degrade to a full merge. This might lead to
a refinement of Fagin’s instance optimality proof that might even abandon
the k factor from the optimality bound which would of course require a more
formal proof.

Implementation Issues

Our very latest efforts as indicated in the experiments section for the schedu-
ling experiments, investigate the optimization of our implementation, inclu-
ding data structures, index organization, and merge-joining large list blocks

292

10. Conclusions

in-memory. While we already have a brand new C++ prototype that di-
rectly accesses inverted files with a highly specialized and compressed index
organization, reimplementing the XML engine would be very time consum-
ing. A potential cost factor of up to 20 as indicated for the text experiments,
in particular for very large collections where many index lists are spanning
multiple disk tracks, seems very attractive, however.

10.2 Concluding Remarks
TopX has been developed for two years now, and the initial, small proof-of-
concept-like prototype has become a rather complex framework for indexing
and querying all kinds of data collections. We believe that the resulting
publications could achieve a noticeable contribution to this (still emerging)
research area and try to further pursue some of the particularly interesting
challenges as mentioned above.

As for the immediate future, TopX will be the official host for the INEX
2006 topic development phase for both the IEEE and the new Wikipedia
XML collection, the latter extracted and annotated at Laboratoire d’informa-
tique de Paris 6 (LIP6), with more than 600,000 documents and more than
120,000 XML elements which makes the new collection a factor of about 10
larger than the previous IEEE collection. TopX is permanently online and
the publicly available default engine (in the non-approximative mode) for the
INEX topic development and the Interactive track.

293

Appendix A

APPENDIX

A.1 Database Tables & Index Structures (DDL)

A.1.1 Text Schema

Figure A.1 depicts the table and index definitions of the TopX text schema
using Oracle 10g.

A.1.2 XML Schema

Figure A.2 depicts the table and index definitions of the TopX XML schema
using Oracle 10g. Figure A.2 depicts the schema extension for the hybrid
index structures approach described in Section 8.5.1.

294

A. APPENDIX

// Document metadata
CREATE TABLE Documents (
docid NUMBER(8), // Document identifier
URI VARCHAR2(256), // Unified Resource Identifier
... // Extensible list of document metadata
CONSTRAINT Documents_PK PRIMARY KEY(docid)

) ORGANIZATION INDEX COMPRESS;

// Text index
CREATE TABLE TextFeaturesRA (
docid NUMBER(8), // Document idenifier
term VARCHAR2(32), // Term feature
score NUMBER(7,6), // Local score
CONSTRAINT TextFeaturesRA_PK PRIMARY KEY(docid, term)

) ORGANIZATION INDEX COMPRESS;

// Sorted access by term in descending order of score
CREATE INDEX TextFeaturesSA ON
TextFeaturesRA(term, score DESC, docid) COMPRESS;

// Term offset index for phrase matching
CREATE TABLE TermsRA (
docid NUMBER(8), // Document id
term VARCHAR2(32), // Term feature
position NUMER(6), // Term position in document
CONSTRAINT TermsRA_PK PRIMARY KEY(docid, term, position)

) ORGANIZATION INDEX COMPRESS;

Figure A.1: TopX schema definitions for text index structures.

A.2 OpenMaple Scripts for Chernoff-Hoeffding
Bounds

A.2.1 Chernoff-Hoeffding Bounds

Figure A.4 depicts an OpenMaple procedure to compute Chernoff-Hoeffding
bounds for Uniform score distributions assuming feature independence.

A.2.2 Generalized Chernoff-Hoeffding Bounds

Figure A.5 depicts an OpenMaple procedure to compute generalized Chernoff-
Hoeffding bounds for Uniform score distributions assuming limited feature
independence.

295

A.3. Index Access Scheduling

// Full content index for tag-term pairs
CREATE TABLE TagTermFeaturesRA (
docid NUMBER(8), // Document identifier
tag VARCHAR2(32), // Element name
term VARCHAR2(32), // Term in element
pre NUMBER(6), // Pre-order of enclosing element
post NUMBER(6), // Post-order of enclosing element
score NUMBER(7,6), // Full-content score of tag-term pair
maxscore NUMBER(7,6), // Max(score) of tag-term pair per doc
CONSTRAINT TagTermsFeaturesRA_PK PRIMARY KEY(docid, tag, term)

) ORGANIZATION INDEX COMPRESS;

// Sorted access by (tag,term) in descending order of maxscore
CREATE INDEX TagTermFeaturesSA ON
TagTermFeaturesRA(tag, term, maxscore DESC, docid, score DESC, pre, post) COMPRESS;

// Navigational element index
CREATE TABLE TagsRA (
docid NUMBER(8), // Document identifier
tag VARCHAR2(32), // Element name
pre NUMBER(6), // Pre-order of element
post NUMBER(6), // Post-order of element
CONSTRAINT TagsRA_PK PRIMARY KEY(docid, tag, pre)

) ORGANIZATION INDEX COMPRESS;

// Term offset index for phrase matching
CREATE TABLE TermsRA (
docid NUMBER(8), // Document identifier
term VARCHAR2(32), // Term token
position NUMER(6), // Term position in element
pre NUMBER(6), // Pre-order of enclosing element
post NUMBER(6), // Post-order of enclosing element
CONSTRAINT TermsRA_PK PRIMARY KEY(docid, term, position)

) ORGANIZATION INDEX COMPRESS;

Figure A.2: TopX schema definitions for XML index structures.

A.3 Index Access Scheduling

A.3.1 NP-hardness of the Sorted-Access Scheduling Prob-
lem

The KNAPSACK decision problem in general can be briefly formulated as
follows: Given m items Xi (i = 1..m), each with weight wi and utility ui,
and a weight capacity C, decide for a given constant U if there is a subset
S ⊆ [1..m] such that the total utility is at least U ,

∑
j∈S uj ≥ U , and the

capacity constraint
∑

j∈S wj ≤ C is satisfied. As usual, the solution to the
optimization problem (i.e., maximize the total utility) can be derived from

296

A. APPENDIX

The following tables are required for the hybrid index approach only

// DataGuide index containing all distinct root-to-leaf paths in the collection
CREATE TABLE DataGuide (
path VARCHAR2(1024), // Labeled path
bucketid NUMBER(6), // Compact bucket identifier for the labeled path
CONSTRAINT DataGuide_PK PRIMARY KEY(path)

) ORGANIZATION INDEX COMPRESS;

// Navigational element index
CREATE TABLE BucketidsRA (
docid NUMBER(8), // Document identifier
bucketid NUMBER(6), // DataGuide-like bucket identifier
pre NUMBER(6), // Pre-order of element
post NUMBER(6), // Post-order of element
CONSTRAINT TagsRA_PK PRIMARY KEY(docid, bucketid, pre)

) ORGANIZATION INDEX COMPRESS;

// Full content index for bucketid-term pairs
CREATE TABLE BucketidTermFeaturesRA (
docid NUMBER(8), // Document identifier
bucketid NUMBER(6), // DataGuide-like bucket identifier
term VARCHAR2(32), // Term in element
pre NUMBER(6), // Pre-order of enclosing element
post NUMBER(6), // Post-order of enclosing element
score NUMBER(7,6), // Full-content score of tag-term pair
maxscore NUMBER(7,6), // Max(score) of tag-term pair per doc
CONSTRAINT BucketidTermsFeaturesRA_PK PRIMARY KEY(docid, bucketid, term)

) ORGANIZATION INDEX COMPRESS;

// Sorted access by (bucketid,term) in descending order of maxscore
CREATE INDEX BucketidTermFeaturesSA ON
BucketidTermFeaturesRA(bucketid, term, maxscore DESC, docid, score DESC, pre, post)

COMPRESS;

Figure A.3: TopX schema extension for hybrid index structures using
DataGuides and Pre/Postorder labels.

the solution to the decision problem by a binary search over U .
Given an instance of KNAPSACK, we construct the following instance of

the sorted-access scheduling decision problem SAS as follows. We consider
m lists where the ith list has at its first wi −1 positions a constant score of 1
and thus score decrease 0, at position wi a score decrease ui (i.e., a resulting
score 1− ui, and subsequently the same constant score, i.e., no further score
decrease. We claim that (A) a packing for this instance of KNAPSACK
has capacity ≤ C and utility ≥ U if and only if (B) the corresponding SAS
instance has a scan of total depth C and score decrease of ≥ U .
Proof of (A) ⇒ (B) :
Given (A), we have i1, . . . , ik such that wi1+...+wik ≤ C and ui1+...+uik ≥ U .

297

A.3. Index Access Scheduling

uniformbound := proc(delta, higharray, n);
L := 1;
for i from 1 to n do

if higharray[i] > 0 then
f1(x) := 1 / higharray[i];
L1(s) := int(exp(-s * x) * f1(x), x=0..higharray[i]);
L := L * L1(s);

end if;
end do;

bound := exp(-s * delta) * subs(s=-s, L);
limitbound := limit(bound, s=0, right);
diffbound := diff(bound,s);
eq := diffbound=0;
mins := fsolve(eq, s);

if mins < 0 then
bestbound := limitbound;

end if;

if mins >= 0 then
bests := mins;
bestbound := subs(s=bests, bound);
end if;

eval(bestbound);
end proc;

Figure A.4: OpenMaple procedure for Chernoff-Hoeffding bounds.

Then scanning lists i1, . . . , ik to depths wi1, . . . , wik , respectively, yields a
total scan depth ≤ C (and we can get exactly C by scanning a few more
positions without further score decrease in any of the lists) and a total score
decrease of ui1 + ... + uik ≥ U .
Proof of (B) ⇒ (A) :
Given (B), let i1, . . . , , ik be the lists where a non-zero score decrease has been
achieved. List ij has then been scanned at least to depth wij , and therefore
the total scan depth C is at least wi1 + ...+wik . The total score reduction of
these lists is exactly ui1 + ...+ uik, which by (B) is ≥ U . The choice of items
i1, . . . , ik yields a packing that satisfies (A).

A.3.2 Lower Bound for the Index Access Scheduling
Problem

Fagin et al. [FLN03] proved that their CA algorithm has costs that are always
within a (constant) factor of 4m+k of the optimum for an given query, data
set, and monotonous score aggregation function. Recall that m is the number

298

A. APPENDIX

of lists and k is the number of top items we want to see. Note that even for
relatively small values of m and k, the above bound may become fairly large
(e.g., 22 for a typical IR-style keyword query with k = 10 top results required
and m = 3 keywords), and, it seems, way too pessimistic.

We instead compute a lower bound on the cost of individual queries, and
compare these to the costs of our various schemes. The key idea of this
lower bound is as follows. For any scheme, after it has done its last sorted
access, consider the set X of documents which were seen in one at least of
the sorted accesses, and which have a bestscore not only above the current
min-k score, but even above the final min-k score (which the scheme does
not know at this time). If only a fraction of each list has been scanned, this
set X is typically of considerable size. Now it is not hard to see that the
scheme must do a random lookup for every document from X in order to be
correct. (Otherwise, let d be one of the documents that are not looked up,
and consider input lists, where d comes right after where our scheme has
stopped scanning the lists, achieving the maximal score still possible then.
Then d is one of the top-k items, but our scheme will fail to recognize it as
such.)

Therefore, the following construction gives a lower bound on the cost of
any top-k scheme, under the reasonable assumption that random lookups
are done only for documents which have been previously seen under sorted
access [FLN03]: try all possible combinations of scan depths in each of the
input lists, and for each such combination compute the cost of scanning until
this depth plus the cost of the then absolutely necessary random accesses
according to the explanation above. Trying out indeed all combinations of
possible scan depths is, of course, infeasible, but we can restrict ourselves to
scan depths that are multiples of a certain block size. This will give us a true
lower bound for any scheme that indeed proceeds in blocks of this fixed size
(and we consider only such schemes in this paper). But even for an arbitrary
scheme, the optimal cost could be better by at most this block’s size times
the number of input lists.

299

A.4. Customized Queries

A.4 Customized Queries

A.4.1 IMDB Relational Queries
<num> IMDB1
<title> Genre=Western Actor=Wayne_John Actor=Hepburn_Katherine Sheriff Marshall

<num> IMDB2
<title> Genre=Western Actor=Fonda_Henry Outlaw

<num> IMDB3
<title> Genre=Western Actor=Newman_Paul Title=Outrage

<num> IMDB4
<title> Genre=Western Actor=Wayne_John Indians Title=Dorado

<num> IMDB5
<title> Genre=Action Actor=Reeves_Keanu Martial Arts Fight Title=Matrix

<num> IMDB6
<title> Genre=Thriller Actor=Pitt_Brad Actor=Freeman_Morgan Murder Title=Seven

<num> IMDB7
<title> Genre=Thriller Actor=Schwarzenegger_Arnold Robot

<num> IMDB8
<title> Genre=Comedy Actor=Allen_Woody Woman

<num> IMDB9
<title> Genre=Comedy Tom Hanks Vietnam War Title=Gump

<num> IMDB10
<title> Genre=SciFi Actor=Roberts_Julia Alien Space

<num> IMDB11
<title> Genre=SciFi Actor=Ford_Harrison Robot War Title=Space

<num> IMDB12
<title> Genre=Film-Noir Genre=Thriller Actor=Marlowe_Frank Chicago Prohibition

<num> IMDB13
<title> Genre=Drama Actor=Ozari_Romano Title=Nosferatu

<num> IMDB14
<title> Genre=Drama Actor=Seymour_Dan World War

<num> IMDB15
<title> Genre=Thriller Actor=Bogart_Humphrey War Title=Casablanca

<num> IMDB16
<title> Actor=Welles_Orson Rosebud

<num> IMDB17
<title> Genre=Thriller Title=3rd Title=Man

<num> IMDB18
<title> Genre=Horror Actor=Lee_Christopher Coffin Blood Vampire

<num> IMDB19
<title> Genre=Crime Actor=Sims_Joan Marple Paddington

<num> IMDB20
<title> Genre=Action Actor=Dalton_Timothy SPECTRE Title=007

300

A. APPENDIX

A.4.2 IMDB NEXI Queries
<num> X-IMDB1
<title> //movie[about(.//keyword, bank robbery) and about(.//keyword, crime)

and about(.//genres//genre, Drama)]
<num> X-IMDB2
<title> //movie[about(.//keyword, mafia) and about(.//cast//actor//birthplace, Italy)

and about(.//genre, Action)]
<num> X-IMDB3
<title> //movie[about(.//keyword, road movie) and about(.//cast//birthplace, Canada)]
<num> X-IMDB4
<title> //movie[about(.//genres//genre, Action) and about(//title, sea)]

and //cast[about(.//casting//actor//birthplace, California)]
<num> X-IMDB5
<title> //movie[about(//plot, monster)] and //cast[about(.//actor//birthplace, Australia)]

and //genres[about(.//genre, Horror)]
<num> X-IMDB6
<title> //movie[about(.//title, Killer) and about(.//genres//genre, Thriller)]
<num> X-IMDB7
<title> //movie[about(.//cast//casting//actor//birthplace, England)

and about(.//plot, vampire) and about(.//genres//genre, Horror)]
<num> X-IMDB8
<title> //movie[about(., revolution)] and //cast[about(.//actor//birthplace, Africa)]
<num> X-IMDB9
<title> //movie[about(.//title, love) and about(.//cast//casting//actor//birthplace, India)

and about(.//genre, Comedy)]
<num> X-IMDB10
<title> //movie[about(.//cast//actor//name, John Wayne)]

and about(.//cast//actor//name, Kirk Douglas)]
<num> X-IMDB11
<title> //movie[about(.//cast//casting//role, Sheriff)

and //casting//actor[about(.//name, Fonda Henry)]]
<num> X-IMDB12
<title> //movie[about(.//genres//genre, Sci-Fi)]//cast//casting//[about(.//role, Neo)

and about(.//actor//name, Keanu Reeves)]
and //movie[about(.//genre, Action)]

<num> X-IMDB13
<title> //movie[about(.//actor//name, Stan Laurel) and about(.//actor//name,

Oliver Hardy) and about(.//movie, Hollywood) and about(.//genre, Comedy)]
<num> X-IMDB14
<title> //movie[about(.//actor//name, Arnold Schwarzenegger)

and about(.//movie//keyword, nuclear war) and about(.//genre, Action)]
<num> X-IMDB15
<title> //movie[about(.//actor//name, Woody Allen) and about(.//actor//birthplace,

England) and about(.//genre, Drama)]
<num> X-IMDB16
<title> //movie[about(.//plot, Dracula) and about(.//cast//casting//actor//name, Lee)

and about(.//genre, Horror)]
<num> X-IMDB17
<title> //movie[about(.//title, Star Trek) and about(.//movie//plot, planet)]

and //cast[about(.//casting//actor//birthplace, USA)]
<num> X-IMDB18
<title> //movie[about(.//title, Matrix) and about(.//cast//casting//actor//name, Reeves)]
<num> X-IMDB19
<title> //movie[about(.//movie//plot, Enterprise Spock Planet)

and about(.//plot, Captain Kirk) and about(.//genre, Sci-Fi)]
<num> X-IMDB20
<title> //movie[about(.//cast//actor//name, Weaver) and about(.//plot, alien planet)

and about(.//genre, Sci-Fi)]

301

A.4. Customized Queries

A.4.3 Extended GOV (XGOV) Queries

<num> TDEX1

<title> <expansion>mining gold silver coal metal location mineral resources industry

<desc> What can be learned about the location of mines in the U.S., about the extent of mineral resources,

and about careers in the mining industry?

<num> TDEX2

<title> juvenile delinquency youth minor crime law jurisdiction offense prevention

<desc> What are rates of juvenile crime in various jurisdictions, what is the nature of the offenses, how

are they punished and what measures are taken for prevention?

<num> TDEX3

<title> Lewis and Clark expedition historic explore

<desc> What are some useful sites containing information about the historic Lewis and Clark expedition?

<num> TDEX4

<title> wireless communications radio broadcasting transmission electromagnetic waves use research tech-

nology regulations legislative

<desc> Information on existing and planned uses, research/technology, regulations and legislative interest.

<num> TDEX5

<title> pest control safety epidemic contamination quarantine

<desc> Where can I obtain information about safe means of pest control?

<num> TDEX6

<title> physical therapists healer training licensing skills body

<desc> How can I obtain information about training, licensing, and skills needed for physical therapists?

<num> TDEX7

<title> cotton industry growing harvesting cloth silky fiber plant fabric textile material

<num> TDEX8

<title> computer viruses software program malevolent worm trojan bug

<desc> Computer viruses information

<num> TDEX9

<title> genealogy searches family tree lineage bloodline descent ancestry pedigree origin parentage gen-

eration

<desc> How would I begin a genealogy search of my family?

<num> TDEX10

<title> Physical Fitness shape condition body training

<desc> Information on Physical Fitness

<num> TDEX11

<title> folk art folk music ethnic traditional song ballad country western gospel singing

<desc> What are sources for information about US folk art and folk music?

<num> TDEX12

<title> legalization marijuana cannabis drug soft leaves plant smoked chewed euphoric abuse substance

possession control pot grass dope weed smoke <desc> Where can I locate information on the pros and

302

A. APPENDIX

cons of legalizing marijuana?

<num> TDEX13

<title> schizophrenia disorder psychosis distortion reality disturbance social contact

<desc> What is it?

<num> TDEX14

<title> agricultural biotechnology farming cultivation land food grow crops microorganism bacteria in-

dustrial process genetically altered

<desc> Information about agricultural biotechnology.

<num> TDEX15

<title> cell phones cellular mobile hand-held radio transmitter receiver wireless telephone electronic sig-

nal sound

<desc> What does the government say about cell phone use?

<num> TDEX16

<title> Emergency disaster preparedness assistance local state national crisis danger immediate action

catastrophe extreme readiness help aid

<desc> Find information about local, state and national organizations and programs.

<num> TDEX17

<title> Polygraphs requirement exam medical instrument physiological process pulse rate blood pressure

respiration perspiration lie detector

<desc> Need information on polygraphs and polygraph exams including the requirement to take such

exams.

<num> TDEX18

<title> shipwrecks ship wreck accident sea capsizing boat nautical water

<desc> Where can I get information on shipwrecks?

<num> TDEX19

<title> cybercrime internet fraud cyber detection crime

<desc> Information on cyber crime, internet fraud, and cyber fraud.

<num> TDEX20

<title> children’s literature youngster kid book writing novel

<desc> What can I find out about literature written for children?

<num> TDEX21

<title> cartography mapmaking map chart

<desc> Cartography overview.

<num> TDEX22

<title> veteran’s benefits ex-serviceman financial assistance

<desc> Seeking information on veteran’s benefits.

<num> TDEX23

<title> photography picture taking telephotography

<desc> I need information on photography.

<num> TDEX24

<title> airbag air bag safety restraint automobile inflate collision

303

A.4. Customized Queries

<desc> Information on the success of air bags in reducing injuries/death; facts concerning the use of air

bags and how they work.

<num> TDEX25

<title> death penalty execution executing capital punishment hanging electric chair electrocution argu-

ments lawyers

<desc> What are the costs and quality of defense in death penalty cases? What are some arguments

against the death penalty?

<num> TDEX26

<title> nuclear atomic power plants power station power house

<desc> Operational and safety information associated with nuclear power plants.

<num> TDEX27

<title> affirmative action discrimination minority groups

<desc> What are the laws/regulations/policies guiding affirmative action for federal agencies?

<num> TDEX28

<title> early childhood child infancy babyhood education instruction teaching pedagogy

<desc> Looking for pages regarding resources, research, Head Start and similar programs.

<num> TDEX29

<title> asbestos fibrous amphibole asbestosis

<desc> Facts about asbestos.

<num> TDEX30

<title> counterfeit imitation forgery fake false forged money paper coin

<desc> What sites can one go to to learn about counterfeit money and forgery?

<num> TDEX31

<title> deafness deaf hearing loss deaf-mutism deaf-muteness children child kids youngsters preschooler

infant baby anxiety disorder

<desc> Childhood deafness, education, communication, audiology. What can we learn about the education

or communication of deaf children?

<num> TDEX32

<title> wildlife living undomesticated conservation preservation conservancy environment

<desc> Wildlife conservation-environment protection-endangered species (How do government agencies ad-

dress wildlife conservation, and strive to further environmental protection and benefit endangered species?)

<num> TDEX33

<title> food nutrient foodstuff comestible edible eatable eat safety risklessness security

<desc> Food safety (what information is available for consumers interested in food safety?)

<num> TDEX34

<title> literacy center ability read write human skills learn knowledge cognition

<desc> What are some pages to search for literacy related topics?

<num> TDEX35

<title> arctic north-polar north pole exploration geographical expedition discovery

<desc> What kinds of exploration of the arctic are underway, especially of glaciers and ice?

<num> TDEX36

304

A. APPENDIX

<title> global warming increase average temperature earth atmosphere climatic changes planetary world-

wide heating

<desc> What are some causes of global warming or the greenhouse effect and what remedies are proposed

to slow the climate change?

<num> TDEX37

<title> coin collecting numismatics numismatology coin collection

<desc> Coin collecting information?

<num> TDEX38

<title> weather hazards and extremes peril risk jeopardy wind rain snow storm wave

<desc> A study of natural/weather hazards and extremes.

<num> TDEX39

<title> National Public Radio/TV television telecasting broadcasting cable

<desc> What sites give me information about public radio and TV stations?

<num> TDEX40

<title> north korea democratic people’s republic of korea DPRK communist country

<desc> Where can I find basic information about the country of North Korea?

<num> TDEX41

<title> electric automobiles production car research progress fuel

<desc> Need information regarding the progress in producing/developing electric automobiles.

<num> TDEX42

<title> homelessness combat vagrancy wandering livelihood home prevalence

<desc> What is the prevalence of homelessness and how are government agencies and individuals attempt-

ing to combat it?

<num> TDEX43

<title> forest fires woods burn flames dry summer

<desc> Where can I get information about forest fires?

<num> TDEX44

<title> ozone layer environment pollution ultraviolet rays industry

<desc> Interested in any information on the ozone layer.

<num> TDEX45

<title> bicycle trails mountain bike downhill sport offroad nature

<desc> Where can I find trails that bicyclists can exploit?

<num> TDEX46

<title> infant mortality death rate children neonatal

<desc> What are the current trends in infant mortality and what steps have been taken to reduce infant

death rates?

<num> TDEX47

<title> trains railroads travel safety government industry

<desc> What information is available on train travel, safety, and industry government support?

<num> TDEX48

<title> robots artificial machine production lane research

305

A.4. Customized Queries

<desc> What home pages will bring me information on the use of robots?

<num> TDEX49

<title> bilingual education language learning skills school children

<desc> Looking for home pages on bilingual education.

<num> TDEX50

<title> anthrax bacillus anthracis fever disease treatment prevention contagion quarantine

<desc> Info regarding prevention and treatment of the disease anthrax.

306

A. APPENDIX

uniformbound := proc(delta, higharray, n);
totalhigh := 0;
for i from 1 to n do

totalhigh := totalhigh + higharray[i];
end do;
boundarray := array(1..n);
for i from 1 to n do

boundarray[i] := 0;
end do;

chernoffbound := proc (d, h);
f1(x) := 1 / h;
L1 := int (exp(-s * x) * f1(x), x=0..h);
delta1 := d;
bound := exp(-s * delta1) * subs(s=-s, L1);
limitbound := limit(bound, s=0, right);
diffbound := diff(bound, s);
eq := diffbound = 0;
mins := fsolve(eq, s);
if mins < 0 then
bestbound := limitbound;

end if;
if mins >= 0 then
bests := mins;
bestbound := subs(s=bests, bound);

end if;
evalf(bestbound);

end proc;

for i from 1 to n do
if higharray[i] > 0 then
boundarray[i] :=

chernoffbound(
evalf(delta * higharray[i] / totalhigh),
evalf(higharray[i])

);
else
boundarray[i] := 0;

end if;
end do;

maxbound := 0;
for i from 1 to n do

maxbound := evalf(max(boundarray[i], maxbound));
end do;

end proc;

Figure A.5: OpenMaple procedure for generalized Chernoff-Hoeffding
bounds.

307

Bibliography

[AAC+01] Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Para-
boschi, Kotagiri Ramamohanarao, and Richard T. Snodgrass,
editors. VLDB 2001, Proceedings of 27th International Confer-
ence on Very Large Data Bases, September 11-14, 2001, Roma,
Italy. Morgan Kaufmann, 2001.

[AAN01] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F.
Naughton. Estimating the selectivity of XML path expressions
for internet scale applications. In VLDB, pages 591–600, 2001.

[ACDG03] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides
Gionis. Automated ranking of database query results. In CIDR,
2003.

[ACR03] G. Amati, C. Carpineto, and G. Romano. Fondazione Ugo
Bordoni at TREC 2003: Robust and Web Track. In TREC
2003, pages 234–245, 2003.

[AdKM01] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-
space ranking with effective early termination. In Croft et al.
[CHKZ01], pages 35–42.

[AFTU96] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and
Tolga Urhan. Scrambling query plans to cope with unexpected
delays. In PDIS, pages 208–219. IEEE Computer Society, 1996.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continu-
ously adaptive query processing. In Weidong Chen, Jeffrey F.
Naughton, and Philip A. Bernstein, editors, SIGMOD Confer-
ence, pages 261–272. ACM, 2000.

[AKJP+02] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing
Wu, Nick Koudas, and Divesh Srivastava. Structural joins: A

308

BIBLIOGRAPHY

primitive for efficient XML query pattern matching. In ICDE
[DBL02], pages 141–.

[AKYJ03] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish. Querying
structured text in an XML database. In Halevy et al. [HID03],
pages 4–15.

[All90] Arnold O. Allen. Probability, Statistics, and Queueing Theory
with Computer Science Applications, 2nd ed. Academic Press,
1990.

[ARSZ03] Giuseppe Amato, Fausto Rabitti, Pasquale Savino, and Pavel
Zezula. Region proximity in metric spaces and its use for ap-
proximate similarity search. ACM Trans. Inf. Syst., 21(2):192–
227, 2003.

[AvR02] Gianni Amati and C. J. van Rijsbergen. Probabilistic models of
Information Retrieval based on measuring the divergence from
randomness. ACM Trans. Inf. Syst., 20(4):357–389, 2002.

[AYBS04] Sihem Amer-Yahia, Chavdar Botev, and Jayavel Shanmugasun-
daram. TeXQuery: a full-text search extension to XQuery. In
Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E.
Wills, editors, WWW, pages 583–594. ACM, 2004.

[AYFSX03] Sihem Amer-Yahia, Mary F. Fernández, Divesh Srivastava, and
Yu Xu. Pix: A system for phrase matching in XML documents.
In Dayal et al. [DRV03], pages 768–776.

[AYLP04] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank
Pandit. FleXPath: Flexible structure and full-text querying
for XML. In Weikum et al. [WKD04], pages 83–94.

[BBK01] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Search-
ing in high-dimensional spaces: Index structures for improving
the performance of multimedia databases. ACM Comput. Surv.,
33(3):322–373, 2001.

[BC05] Stefan Büttcher and Charles L. A. Clarke. Indexing time vs.
query time: trade-offs in dynamic information retrieval systems.
In Otthein Herzog, Hans-Jörg Schek, Norbert Fuhr, Abdur
Chowdhury, and Wilfried Teiken, editors, CIKM, pages 317–
318. ACM, 2005.

309

BIBLIOGRAPHY

[BCG02] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Top-
k selection queries over relational databases: Mapping strate-
gies and performance evaluation. ACM Trans. Database Syst.,
27(2):153–187, 2002.

[BGM02] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating
top-k queries over Web-accessible databases. In ICDE [DBL02],
pages 369–.

[BJH+05] Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L.
Kersten, Per-Åke Larson, and Beng Chin Ooi, editors. Procee-
dings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005.
ACM, 2005.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic
twig joins: optimal XML pattern matching. In Franklin et al.
[FMA02], pages 310–321.

[BL85] Chris Buckley and A. F. Lewit. Optimization of inverted vector
searches. In SIGIR, pages 97–110, 1985.

[BMS+06] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin
Theobald, and Gerhard Weikum. IO-Top-k: Index-access opti-
mized top-k query processing. In Technical Report MPI-I-2006-
5-002, 2006.

[BMT+06] Holger Bast, Debapriyo Majumdar, Martin Theobald, Ralf
Schenkel, and Gerhard Weikum. IO-Top-k: Index-optimized
top-k query processing. In VLDB, 2006.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks, 30(1-
7):107–117, 1998.

[BSA94] Chris Buckley, Gerard Salton, and James Allan. The effect of
adding relevance information in a relevance feedback environ-
ment. In Croft and van Rijsbergen [CvR94], pages 292–300.

[BSWZ03] Bodo Billerbeck, Falk Scholer, Hugh E. Williams, and Justin
Zobel. Query expansion using associated queries. In CIKM
[DBL03], pages 2–9.

310

BIBLIOGRAPHY

[BV00] Chris Buckley and Ellen M. Voorhees. Evaluating evaluation
measure stability. In SIGIR, pages 33–40, 2000.

[BYRN99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999.

[BYZM+05] Ricardo A. Baeza-Yates, Nivio Ziviani, Gary Marchionini, Al-
istair Moffat, and John Tait, editors. SIGIR 2005: Proceedings
of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Salvador,
Brazil, August 15-19, 2005. ACM, 2005.

[BZ04a] Bodo Billerbeck and Justin Zobel. Questioning query expan-
sion: An examination of behaviour and parameters. In Klaus-
Dieter Schewe and Hugh E. Williams, editors, ADC, volume 27
of CRPIT, pages 69–76. Australian Computer Society, 2004.

[BZ04b] Bodo Billerbeck and Justin Zobel. Techniques for efficient query
expansion. In Alberto Apostolico and Massimo Melucci, editors,
SPIRE, volume 3246 of Lecture Notes in Computer Science,
pages 30–42. Springer, 2004.

[CCS04] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. Overview
of the TREC 2004 Terabyte track. In TREC, pages 78–92, 2004.

[CCS05] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. The
TREC Terabyte retrieval track. SIGIR Forum, 39(1):25, 2005.

[CGM04] Surajit Chaudhuri, Luis Gravano, and Amélie Marian. Optimiz-
ing top-k selection queries over multimedia repositories. IEEE
Trans. Knowl. Data Eng., 16(8):992–1009, 2004.

[CH04] Nick Craswell and David Hawking. Overview of the TREC 2004
Web track. In TREC, pages 78–92, 2004.

[CHKZ01] W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin
Zobel, editors. SIGIR 2001: Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Deve-
lopment in Information Retrieval, September 9-13, 2001, New
Orleans, Louisiana, USA. ACM, 2001.

[CHWW03] Nick Craswell, David Hawking, Ross Wilkinson, and Mingfang
Wu. Overview of the TREC 2003 Web track. In TREC, pages
78–92, 2003.

311

BIBLIOGRAPHY

[CK97] Michael J. Carey and Donald Kossmann. On saying "enough al-
ready!" in sql. In Joan Peckham, editor, SIGMOD Conference,
pages 219–230. ACM Press, 1997.

[CK01] Taurai Tapiwa Chinenyanga and Nicholas Kushmerick. Expres-
sive retrieval from XML documents. In Croft et al. [CHKZ01],
pages 163–171.

[Cla05] Charles L. A. Clarke. Controlling overlap in content-oriented
XML retrieval. In Baeza-Yates et al. [BYZM+05], pages 314–
321.

[CLRC01] Thomas H. Cormen, Charles E. Leiserson, Robert L. Rivest,
and Stein Clifford. Introduction of Algorithms. The MIT Press,
2001.

[CMKS03] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua
Sagiv. XSEarch: A semantic search engine for XML. In Freytag
et al. [FLA+03], pages 45–56.

[CMM+03] David Carmel, Yoëlle S. Maarek, Matan Mandelbrod, Yosi
Mass, and Aya Soffer. Searching XML documents via XML
fragments. In SIGIR, pages 151–158. ACM, 2003.

[CMW03] Byron Choi, Malika Mahoui, and Derick Wood. On the optimal-
ity of holistic algorithms for twig queries. In Vladimír Marík,
Werner Retschitzegger, and Olga Stepánková, editors, DEXA,
volume 2736 of Lecture Notes in Computer Science, pages 28–
37. Springer, 2003.

[CP00] Paolo Ciaccia and Marco Patella. Pac nearest neighbor queries:
Approximate and controlled search in high-dimensional and
metric spaces. In ICDE, pages 244–255, 2000.

[CRZT05] Nick Craswell, Stephen E. Robertson, Hugo Zaragoza, and
Michael Taylor. Relevance weighting for query independent ev-
idence. In Baeza-Yates et al. [BYZM+05], pages 416–423.

[CSF+01] Brian F. Cooper, Neal Sample, Michael J. Franklin, Gísli R.
Hjaltason, and Moshe Shadmon. A fast index for semistructured
data. In Apers et al. [AAC+01], pages 341–350.

[CTZC04] Stephen Cronen-Townsend, Yun Zhou, and W. Bruce Croft. A
framework for selective query expansion. In Grossman et al.
[GGZ+04], pages 236–237.

312

BIBLIOGRAPHY

[CvR94] W. Bruce Croft and C. J. van Rijsbergen, editors. Proceedings
of the 17th Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval. Dublin,
Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum).
ACM/Springer, 1994.

[CwH02] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal
probing: supporting expensive predicates for top-k queries. In
Franklin et al. [FMA02], pages 346–357.

[DBL02] ICDE 2002: Proceedings of the 18th International Conference
on Data Engineering, 26 February - 1 March 2002, San Jose,
CA. IEEE Computer Society, 2002.

[DBL03] CIKM 2003: Proceedings of the 2003 ACM CIKM International
Conference on Information and Knowledge Management, New
Orleans, Louisiana, USA, November 2-8, 2003. ACM, 2003.

[DH04] Amol Deshpande and Joseph M. Hellerstein. Lifting the burden
of history from adaptive query processing. In Nascimento et al.
[NÖK+04], pages 948–959.

[DR99] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic op-
timization of top n queries. In Malcolm P. Atkinson, Maria E.
Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L.
Brodie, editors, VLDB, pages 411–422. Morgan Kaufmann,
1999.

[DRV03] Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayara-
man, editors. Proceedings of the 19th International Conference
on Data Engineering, March 5-8, 2003, Bangalore, India. IEEE
Computer Society, 2003.

[dVMNK02] Arjen P. de Vries, Nikos Mamoulis, Niels Nes, and Martin L.
Kersten. Efficient k-nn search on vertically decomposed data.
In Franklin et al. [FMA02], pages 322–333.

[EM03] Nadav Eiron and Kevin S. McCurley. Analysis of anchor text
for Web search. In SIGIR ’03: Proceedings of the 26th annual
international ACM SIGIR conference on Research and develop-
ment in informaion retrieval, pages 459–460, New York, NY,
USA, 2003. ACM Press.

313

BIBLIOGRAPHY

[Fag99] Ronald Fagin. Combining fuzzy information from multiple sys-
tems. J. Comput. Syst. Sci., 58(1):83–99, 1999.

[Fag02] Ronald Fagin. Combining fuzzy information: an overview. SIG-
MOD Record, 31(2):109–118, 2002.

[Feg04] Leonidas Fegaras. XQuery processing with relevance ranking.
In Zohra Bellahsene, Tova Milo, Michael Rys, Dan Suciu, and
Rainer Unland, editors, XSym, volume 3186 of Lecture Notes
in Computer Science, pages 51–65. Springer, 2004.

[Fel98] C. Fellbaum, editor. WordNet: An Electronic Lexical Database.
MIT Press, 1998.

[FG01] Norbert Fuhr and Kai Großjohann. XIRQL: A query language
for Information Retrieval in XML documents. In Croft et al.
[CHKZ01], pages 172–180.

[FLA+03] Johann Christoph Freytag, Peter C. Lockemann, Serge Abite-
boul, Michael J. Carey, Patricia G. Selinger, and Andreas
Heuer, editors. VLDB 2003, Proceedings of 29th International
Conference on Very Large Data Bases, September 9-12, 2003,
Berlin, Germany. Morgan Kaufmann, 2003.

[FLMS05] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltán
Szlávik, editors. Advances in XML Information Retrieval, Third
International Workshop of the INitiative for the Evaluation of
XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, De-
cember 6-8, 2004, Revised Selected Papers, volume 3493 of Lec-
ture Notes in Computer Science. Springer, 2005.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggre-
gation algorithms for middleware. In PODS. ACM, 2001.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal ag-
gregation algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[FMA02] Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki,
editors. Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin, June
3-6, 2002. ACM, 2002.

314

BIBLIOGRAPHY

[FZ05] Hui Fang and ChengXiang Zhai. An exploration of axiomatic
approaches to Information Retrieval. In Baeza-Yates et al.
[BYZM+05], pages 480–487.

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Opti-
mizing multi-feature queries for image databases. In Amr El
Abbadi, Michael L. Brodie, Sharma Chakravarthy, Umesh-
war Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young
Whang, editors, VLDB, pages 419–428. Morgan Kaufmann,
2000.

[GBK01] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Towards
efficient multi-feature queries in heterogeneous environments. In
ITCC, pages 622–628. IEEE Computer Society, 2001.

[GF05] D. A. Grossman and O. Frieder. Information Retrieval. Springer
Verlag, 2005.

[GGZ+04] David Grossman, Luis Gravano, ChengXiang Zhai, Otthein
Herzog, and David A. Evans, editors. Proceedings of the
2004 ACM CIKM International Conference on Information and
Knowledge Management, Washington, DC, USA, November 8-
13, 2004. ACM, 2004.

[GKP02] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient
algorithms for processing XPath queries. In VLDB, pages 95–
106, 2002.

[GKP03] Georg Gottlob, Christoph Koch, and Reinhard Pichler. The
complexity of XPath query evaluation. In PODS, pages 179–
190. ACM, 2003.

[Gru02] Torsten Grust. Accelerating XPath location steps. In Franklin
et al. [FMA02], pages 109–120.

[GS03] Torsten Grabs and Hans-Jörg Schek. PowerDB-XML: Scalable
XML processing with a database cluster. In Intelligent Search
on XML Data, pages 193–206, 2003.

[GSBS03] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmuga-
sundaram. XRank: Ranked keyword search over XML docu-
ments. In Halevy et al. [HID03], pages 16–27.

315

BIBLIOGRAPHY

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spa-
tial searching. In Beatrice Yormark, editor, SIGMOD Confer-
ence, pages 47–57. ACM Press, 1984.

[GvKT03] Torsten Grust, Maurice van Keulen, and Jens Teubner. Stair-
case join: Teach a relational DBMS to watch its (axis) steps.
In VLDB, pages 524–525, 2003.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: En-
abling query formulation and optimization in semistructured
databases. In Matthias Jarke, Michael J. Carey, Klaus R. Dit-
trich, Frederick H. Lochovsky, Pericles Loucopoulos, and Man-
fred A. Jeusfeld, editors, VLDB, pages 436–445. Morgan Kauf-
mann, 1997.

[HAR75] S. P. HARTER. A probabilistic approach to automatic keyword
indexing. part 1: “on the distribution of speciality words in
a technical literature”, part 2: “an algorithm for probabilistic
indexing”. Journal of the American Society for Information
Science, 26:197–206 and 280–289, 1975.

[HCO03] Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen Oyang. Rele-
vant term suggestion in interactive Web search based on contex-
tual information in query session logs. JASIST, 54(7):638–649,
2003.

[HDS04] Edward Hung, Yu Deng, and V. S. Subrahmanian. TOSS: An
extension of TAX with ontologies and similarity queries. In
Weikum et al. [WKD04], pages 719–730.

[HID03] Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors. Pro-
ceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June
9-12, 2003. ACM, 2003.

[HPB03] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey
Balmin. Keyword proximity search on XML graphs. In Dayal
et al. [DRV03], pages 367–378.

[HS99] Gísli R. Hjaltason and Hanan Samet. Distance browsing in
spatial databases. ACM Trans. Database Syst., 24(2):265–318,
1999.

316

BIBLIOGRAPHY

[HS03] Gísli R. Hjaltason and Hanan Samet. Index-driven similarity
search in metric spaces. ACM Trans. Database Syst., 28(4):517–
580, 2003.

[HT95] David Hawking and Paul B. Thistlewaite. Proximity operators
- so near and yet so far. In TREC, 1995.

[IAE03] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Sup-
porting top-k join queries in relational databases. In VLDB,
pages 754–765, 2003.

[IAE04] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Sup-
porting top-k join queries in relational databases. VLDB J.,
13(3):207–221, 2004.

[IDF] The IDF page. http://www.soi.city.ac.uk/~ser/idf.html.

[INE] INitiative for the Evaluation of XML Retrieval (INEX). http:
//inex.is.informatik.uni-duisburg.de.

[Ioa03] Yannis E. Ioannidis. The history of histograms (abridged). In
VLDB, pages 19–30, 2003.

[IOT] Index-Organized Tables – Oracle9i Data Sheet. http:
//www.oracle.com/technology/products/oracle9i/
datasheets/iots/iot\%_ds.html.

[ISA+04] Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey Scott Vitter,
and Ahmed K. Elmagarmid. Rank-aware query optimization.
In Weikum et al. [WKD04], pages 203–214.

[ITA] The Internet Traffic Archive. http://ita.ee.lbl.gov/.

[JLST01] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava,
and Keith Thompson. TAX: A tree algebra for XML. In Gior-
gio Ghelli and Gösta Grahne, editors, DBPL, volume 2397 of
Lecture Notes in Computer Science, pages 149–164. Springer,
2001.

[JWLY03] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu.
Holistic twig joins on indexed XML documents. In Freytag
et al. [FLA+03], pages 273–284.

317

BIBLIOGRAPHY

[KF93] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In
Bharat K. Bhargava, Timothy W. Finin, and Yelena Yesha,
editors, CIKM, pages 490–499. ACM, 1993.

[KG90] M. Kenall and J.D. Gibbons. Rank Correlation Methods. Oxford
University Press, 1990.

[KKNR04] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F.
Naughton, and Raghu Ramakrishnan. On the integration of
structure indexes and inverted lists. In Weikum et al. [WKD04],
pages 779–790.

[KL05] Gabriella Kazai and Mounia Lalmas. INEX 2005 evaluation
metrics. In INEX, 2005.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. J. ACM, 46(5):604–632, 1999.

[Kwo04] Kui-Lam Kwok. TREC 2004 Robust track experiments using
PIRCS. In TREC, 2004.

[LC01] Victor Lavrenko and W. Bruce Croft. Relevance-based language
models. In Croft et al. [CHKZ01], pages 120–127.

[LCIS05] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and
Sumin Song. Ranksql: Query algebra and optimization for re-
lational top-k queries. In SIGMOD Conference, pages 131–142,
2005.

[Lid20] G. J. Lidstone. Note on the general case of the bayes-laplace
formula for inductive or a posteriori probabilities. In Trans-
actions of the Faculty of Actuaries, volume 8, pages 182–192,
1920.

[LLYM04] Shuang Liu, Fang Liu, Clement Yu, and Weiyi Meng. An ef-
fective approach to document retrieval via utilizing WordNet
and recognizing phrases. In Mark Sanderson, Kalervo Järvelin,
James Allan, and Peter Bruza, editors, SIGIR, pages 266–272.
ACM, 2004.

[LM01] Quanzhong Li and Bongki Moon. Indexing and querying XML
data for regular path expressions. In Apers et al. [AAC+01],
pages 361–370.

318

BIBLIOGRAPHY

[LS03] Xiaohui Long and Torsten Suel. Optimized query execution in
large search engines with global page ordering. In Freytag et al.
[FLA+03], pages 129–140.

[LSCI05] Chengkai Li, Mohamed A. Soliman, Kevin Chen-Chuan Chang,
and Ihab F. Ilyas. Ranksql: Supporting ranking queries in rela-
tional database management systems. In Böhm et al. [BJH+05],
pages 1342–1345.

[LWP+02] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott
Vitter, and Ronald Parr. XPathLearner: An on-line self-tuning
Markov histogram for XML path selectivity estimation. In
VLDB, pages 442–453, 2002.

[LYJ04] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free XQuery.
In Nascimento et al. [NÖK+04], pages 72–83.

[MAYKS05] Amélie Marian, Sihem Amer-Yahia, Nick Koudas, and Divesh
Srivastava. Adaptive processing of top-k queries in XML. In
ICDE, pages 162–173. IEEE Computer Society, 2005.

[MBG04] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluat-
ing top-k queries over Web-accessible databases. ACM Trans.
Database Syst., 29(2):319–362, 2004.

[MS99a] Christopher D. Manning and Hinrich Sch"utze. Foundations of
Statistical Natural Language Processing. The MIT Press, 1999.

[MS99b] Tova Milo and Dan Suciu. Index structures for path expres-
sions. In Catriel Beeri and Peter Buneman, editors, ICDT, vol-
ume 1540 of Lecture Notes in Computer Science, pages 277–295.
Springer, 1999.

[MSB98] Mandar Mitra, Amit Singhal, and Chris Buckley. Improving
automatic query expansion. In SIGIR, pages 206–214. ACM,
1998.

[MTV04] D. Mavroeidis, G. Tsatsaronis, and M. Vazirgiannis. Semantic
distances for sets of senses and applications in word sense dis-
ambiguation. In Proceedings of the Knowledge Mining NEMIS
2004 Final Conference, 2004.

319

BIBLIOGRAPHY

[MTV+05] Dimitrios Mavroeidis, George Tsatsaronis, Michalis Vazirgian-
nis, Martin Theobald, and Gerhard Weikum. Word sense disam-
biguation for exploiting hierarchical thesauri in text classifica-
tion. In Alípio Jorge, Luís Torgo, Pavel Brazdil, Rui Camacho,
and João Gama, editors, PKDD, volume 3721 of Lecture Notes
in Computer Science, pages 181–192. Springer, 2005.

[MZ96] Alistair Moffat and Justin Zobel. Self-indexing inverted files for
fast text retrieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[NCS+01] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng
Li, and Jeffrey Scott Vitter. Supporting incremental join queries
on ranked inputs. In Apers et al. [AAC+01], pages 281–290.

[Nel95] Randolph Nelson. Probability, stochastic processes, and queue-
ing theory: the mathematics of computer performance modeling.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[NO00] Masumi Narita and Yasushi Ogawa. The use of phrases from
query texts in Information Retrieval. In SIGIR, pages 318–320,
2000.

[NÖK+04] Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer,
editors. (e)Proceedings of the Thirtieth International Confer-
ence on Very Large Data Bases, Toronto, Canada, August 31 -
September 3 2004. Morgan Kaufmann, 2004.

[NR99] Surya Nepal and M. V. Ramakrishna. Query processing issues
in image (multimedia) databases. In ICDE, pages 22–29. IEEE
Computer Society, 1999.

[OPE] OpenCyc. http://www.opencyc.org/.

[PF95] Ulrich Pfeifer and Norbert Fuhr. Efficient processing of vague
queries using a data stream approach. In Edward A. Fox, Pe-
ter Ingwersen, and Raya Fidel, editors, SIGIR, pages 189–197.
ACM Press, 1995.

[PFTV92] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge
University Press, 1992.

320

BIBLIOGRAPHY

[PGI04] Neoklis Polyzotis, Minos N. Garofalakis, and Yannis E. Ioan-
nidis. Approximate XML query answers. In Weikum et al.
[WKD04], pages 263–274.

[QF93] Yonggang Qiu and Hans-Peter Frei. Concept based query ex-
pansion. In Robert Korfhage, Edie M. Rasmussen, and Peter
Willett, editors, SIGIR, pages 160–169. ACM, 1993.

[RDH03] Vijayshankar Raman, Amol Deshpande, and Joseph M. Heller-
stein. Using state modules for adaptive query processing. In
Dayal et al. [DRV03], pages 353–.

[RJ76] Stephen Robertson and Karen Sparck Jones. Relevance weight-
ing of search terms. Journal of the American Society for Infor-
mation Science, 27(1):129–146, 1976.

[Rob81] Stephen E. Robertson. Term frequency and term value. In
Carolyn J. Crouch, editor, SIGIR, pages 22–29. ACM, 1981.

[Roc71] J.J. Rocchio Jr. Relevance feedback in Information Retrieval. In
G. Salton, editor, The SMART Retrieval System: Experiments
in Automatic Document Processing, chapter 14, pages 313–323.
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1971.

[RW94] Stephen E. Robertson and Steve Walker. Some simple effec-
tive approximations to the 2-poisson model for probabilistic
weighted retrieval. In Croft and van Rijsbergen [CvR94], pages
232–241.

[RW97] Stephen E. Robertson and Steve Walker. On relevance weights
with little relevance information. In SIGIR, pages 16–24. ACM,
1997.

[RWHB+95] Stephen E. Robertson, Steve Walker, Micheline Hancock-
Beaulieu, Mike Gatford, and A. Payne. Okapi at TREC-4. In
TREC, 1995.

[RZT04] Stephen E. Robertson, Hugo Zaragoza, and Michael Taylor.
Simple BM25 extension to multiple weighted fields. In Gross-
man et al. [GGZ+04], pages 42–49.

[SCC+01] Aya Soffer, David Carmel, Doron Cohen, Ronald Fagin, Eitan
Farchi, Michael Herscovici, and Yoëlle S. Maarek. Static in-
dex pruning for Information Retrieval systems. In Croft et al.
[CHKZ01], pages 43–50.

321

BIBLIOGRAPHY

[SM02] Torsten Schlieder and Holger Meuss. Querying and ranking
XML documents. JASIST, 53(6):489–503, 2002.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan.
Chernoff-hoeffding bounds for applications with limited inde-
pendence. SIAM J. Discrete Math., 8(2):223–250, 1995.

[SSTW02] Sergej Sizov, Stefan Siersdorfer, Martin Theobald, and Gerhard
Weikum. The BINGO! focused crawler: From bookmarks to
archetypes. In ICDE [DBL02], pages 337–338.

[ST06a] Ralf Schenkel and Martin Theobald. Feedback-driven structural
query expansion for ranked retrieval of XML data. In to be
published in EDBT, 2006.

[ST06b] Ralf Schenkel and Martin Theobald. Structural feedback for
keyword-based XML retrieval. In to be published in ECIR, 2006.

[STSW02] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, and Ger-
hard Weikum. BINGO!: Bookmark-induced gathering of in-
formation. In Tok Wang Ling, Umeshwar Dayal, Elisa Bertino,
Wee Keong Ng, and Angela Goh, editors, WISE, pages 323–332.
IEEE Computer Society, 2002.

[SWK+02] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for XML
data management. In Proceedings of the International Confer-
ence on Very Large Data Bases (VLDB), pages 974–985, Hong
Kong, China, August 2002.

[TFP03] Yufei Tao, Christos Faloutsos, and Dimitris Papadias. The
Power-method: a comprehensive estimation technique for
multi-dimensional queries. In CIKM [DBL03], pages 83–90.

[TRE] Text REtrieval Conference (TREC). http://trec.nist.gov/.

[TS04a] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed Ex-
tended XPath I (NEXI). In Fuhr et al. [FLMS05], pages 16–40.

[TS04b] Andrew Trotman and Börkur Sigurbjörnsson. NEXI, Now and
Next. In Fuhr et al. [FLMS05], pages 41–53.

[TS05] Martin Theobald and Ralf Schenkel. TopX & XXL @ INEX
2005. In to be published in INEX 2005, 2005.

322

BIBLIOGRAPHY

[TSW03] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Ex-
ploiting structure, annotation, and ontological knowledge for
automatic classification of XML data. In Vassilis Christophides
and Juliana Freire, editors, WebDB, pages 1–6, 2003.

[TSW05a] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Ef-
ficient and self-tuning incremental query expansion for top-k
query processing. In Baeza-Yates et al. [BYZM+05], pages 242–
249.

[TSW05b] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An
efficient and versatile query engine for TopX search. In Böhm
et al. [BJH+05], pages 625–636.

[TW00] Anja Theobald and Gerhard Weikum. Adding relevance to
XML. In Dan Suciu and Gottfried Vossen, editors, WebDB
(Selected Papers), volume 1997 of Lecture Notes in Computer
Science, pages 105–124. Springer, 2000.

[TW02] Anja Theobald and Gerhard Weikum. The index-based XXL
Search Engine for querying XML data with relevance ranking.
In Christian S. Jensen, Keith G. Jeffery, Jaroslav Pokorný, Si-
monas Saltenis, Elisa Bertino, Klemens Böhm, and Matthias
Jarke, editors, EDBT, volume 2287 of Lecture Notes in Com-
puter Science, pages 477–495. Springer, 2002.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost
based query scrambling for initial delays. In Laura M. Haas and
Ashutosh Tiwary, editors, SIGMOD Conference, pages 130–
141. ACM Press, 1998.

[VMT04] Zografoula Vagena, Mirella Moura Moro, and Vassilis J. Tso-
tras. Twig query processing over graph-structured XML data.
In Sihem Amer-Yahia and Luis Gravano, editors, WebDB, pages
43–48, 2004.

[Voo94] Ellen M. Voorhees. Query expansion using lexical-semantic re-
lations. In Croft and van Rijsbergen [CvR94], pages 61–69.

[Vor04] Ellen Vorhees. Overview of the TREC 2004 Robust retrieval
track. In TREC, pages 69–77, 2004.

[W3Ca] XQuery 1.0 and XPath 2.0 Full-Text. http://www.w3.org/TR/
xquery-full-text/.

323

BIBLIOGRAPHY

[W3Cb] Extensible Markup Language (XML). http://www.w3.org/
XML/.

[W3Cc] XML Path Language (XPath). http://www.w3.org/TR/
xpath/.

[W3Cd] XQuery 1.0: An XML Query Language. http://www.w3.org/
TR/xquery/.

[WIK] Wikipedia, the free encyclopedia. http://www.wikipedia.
org/.

[WKD04] Gerhard Weikum, Arnd Christian König, and Stefan Deßloch,
editors. Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Paris, France, June 13-18,
2004. ACM, 2004.

[WPJ03] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Structural
join order selection for XML query optimization. In Dayal et al.
[DRV03], pages 443–454.

[XC96] Jinxi Xu and W. Bruce Croft. Query expansion using local and
global document analysis. In Hans-Peter Frei, Donna Harman,
Peter Schäuble, and Ross Wilkinson, editors, SIGIR, pages 4–
11. ACM, 1996.

[XPO] XML Pointer Language (XPointer). http://www.w3.org/TR/
xptr/.

[YSMQ01] Clement T. Yu, Prasoon Sharma, Weiyi Meng, and Yan Qin.
Database selection for processing k nearest neighbors queries
in distributed environments. In JCDL, pages 215–222. ACM,
2001.

[ZL04] ChengXiang Zhai and John D. Lafferty. A study of smoothing
methods for language models applied to Information Retrieval.
ACM Trans. Inf. Syst., 22(2):179–214, 2004.

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong
Luo, and Guy M. Lohman. On supporting containment queries
in relational database management systems. In SIGMOD Con-
ference, 2001.

324

