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Kurzfassung  

     Die vorliegende Dissertation behandelt die Entwicklung bioinformatischer Methoden zur 

Untersuchung struktureller und funktionaler Eigenschaften von Transmembranproteinen. 

Zunächst haben wir mit PROPORES eine Software entwickelt, die zur Identifikation von Poren 

sowie porenständigen Residuen bei bekannten Proteinstrukturen verwendet werden kann und 

die im Gegensatz zu den meisten grid-basierten Methoden orientierungsunabhängig 

funktioniert. 

    In einer Fallstudie verwendeten wir PROPORES, um porenständige Residuen von alpha-

helikalen Transmembranproteinen in einem nicht-redundanten Datensatz zu identifizieren. 

Basierend auf diesen Daten haben wir die Software PRIMSIPLR entwickelt, um sequenzbasierte 

Vorhersagen für die besagten Residuen der Proteine zu treffen. 

    Darüberhinaus haben wir mithilfe Brown'scher Dynamiksimulationen die Translokation von 

Protein-ähnlichen Partikeln durch Nanoporen errechnet. Dabei war festzustellen, dass die 

geometrische Einschränkung enger Poren zu einer Anhäufung der großen Partikel am 

Poreneingang führt, was wiederum eine reduzierte Diffusität der Proteinmoleküle im Inneren 

der Pore zur Folge hat. 

    Experimentelle Studien lassen vermuten, dass die Bindung von Cholesterol an den CXCR4 

Transmembranrezeptor eine wichtige Rolle bei dessen Funktion spielt. Da dieser als Corezeptor 

auch bei der HIV-Infektion eine wichtige Rolle hat, verwendeten wir Dockingsimulationen, um 

mögliche Cholesterolbindungsstellen auf der lipidständigen Oberfläche zu identifizieren. 
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Summary 

    In this thesis, we present the development and implementation of computational methods to 

investigate structural and functional properties of transmembrane proteins. To identify pores 

and pore lining-residues of known protein structures, we developed the toolkit PROPORES. 

PROPORES is a grid-based method that avoids the orientation dependence of most grid-based 

approaches. As an application, we used PROPORES to identify pore-lining residues of a non-

redundant set of -helical transmembrane protein structures. Based on this dataset, the tool 

PRIMSIPLR was developed to predict pore-lining residues of -helical transmembrane proteins 

from their sequences. Besides, we performed coarse-grained Brownian dynamics simulations 

for the translocation of protein-like particles through nanopores. We found that the geometric 

constriction by the narrow pore leads to an accumulation of the larger particles at the pore 

entrance, which in turn compensates for the reduced diffusivity of the protein particles inside 

the pore. Docking simulations were also performed to identify possible cholesterol binding sites 

on the lipid exposable surface of the protein CXCR4. Experimental studies show that cholesterol 

binding is important for the function of CXCR4 transmembrane receptor which is a coreceptor 

for HIV infection. We hope these studies can provide useful microscopic details, structural 

features, and suggest possible mechanisms to the experimental biologists working on 

transmembrane proteins. 
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Zusammenfassung 

    Heutzutage stellen bioinformatische Vorhersagemethoden in der Strukturbiologie einen 

etablierten Standard dar. Die vorliegende Dissertation beschreibt die Entwicklung von 

bioinformatischen Methoden zur Vorhersage struktureller und funktionaler Eigenschaften von 

Transmembranproteinen sowie deren Anwendung. Transmembranproteine spielen eine 

wichtige Rolle bei einer Vielzahl von biologischen Prozessen, beispielsweise bei der 

Signalverarbeitung oder in Stoffwechselvorgängen. Als Mediator zwischen der wässrigen 

Umgebung in der Zelle und der hydrophoben Lipiddoppelschicht  in der Membran verfügen 

diese Proteine typischerweise über Poren oder Konkavitäten, die spezifisch Liganden 

aufnehmen oder Substrate durch die Zellmembran hindurch transportieren. Zur Identifikation 

solcher Poren sowie der porenständigen Residuen auf Basis von Proteinstrukturen haben wir 

die Software PROPORES entwickelt.  Mit ihrer Hilfe kann man für den Transmembrankanal 

eines Proteins eine Trajektorie durch den Kanal sowie dessen Radius bestimmen. Diese 

Funktionalität ist vergleichbar mit etablierten Programmen wie PASS, HOLE, und MolAxis. 

Zusätzlich ist unsere Software in der Lage die Konnektivität zweier benachbarter Poren zu 

überprüfen. Zu diesem Zweck können die Residuen an den jeweiligen Porenenden sterisch 

sinnvoll repositioniert werden. PROPORES ist eine Gitter-basierte Methode, und im Gegensatz 

zu den meisten Gitter-basierten Methoden ist unsere Methode orientierungsunabhängig. 

Trotzdem bleibt die exponentiell wachsende Laufzeit bei Verwendung feinerer Auflösungen ein 

zu berücksichtigender Aspekt. Allerdings steckt in der Parallelisierung unserer Methode 

Potential zu deren Performancesteigerung. 
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    Zu Testzwecken haben wir einen Datensatz mit nicht-redundanten Strukturenα-helikaler 

Transmembranproteine  zusammengestellt und die porenständigen Residuen durch PROPORES 

bestimmen lassen. Solche Residuen sind verantwortlich für die Funktion von 

Membrantransportern und -kanälen, weil sie in direktem Kontakt mit den Substraten oder dem 

umgebenden Wasser stehen.  

    Anschließend haben wir die Software PRIMSIPLR zur sequenzbasierten Vorhersage von 

porenständigen Residuen α-helikaler Transmembranproteine entwickelt. Dazu trainierten wir 

eine Supportvektormaschine auf Basis von Features, die aus dem gleichen Datensatz wie oben 

abgeleitet wurden. Diese Features beinhalten evolutionäre Informationen wie die Bewertung 

von Sequenzpositionen und deren evolutive Konservierung. Obwohl hierfür vom 

physikochemischen Standpunkt  aus kein offensichtlicher Zusammenhang bekannt ist bzw. 

festgestellt werden konnte, lieferten diese Features einen entscheidenden Beitrag zur 

Verbesserung unserer Vorhersagemethode. So gelang es auf dem gleichen Testdatensatz 

bessere Ergebnisse zu erzielen als mit der bereits publizierten Methode MEMSAT-SVM. Eine 

Evaluierung der Resultate ergab, dass sich die meisten fälschlich klassifizierten Residuen 

innerhalb der Membran befinden. Um künftig auch solche Residuen korrekt unterscheiden zu 

können, müssen spezifischere und aussagekräftigere Features gefunden und implementiert 

werden. 

    Einen dynamischen Ansatz zur Untersuchung der Proteintranslokation durch Nanoporen 

haben wir mit einer coarse-grained Brown’schen Dynamik-Simulation verfolgt. In diesem 

Modell wurden die Proteine als kugelförmige Einheiten, verbunden durch Federpotentiale, 
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nach dem Vorbild des Cytochroms C repräsentiert. Die Poren wurden als zylindrische Tunnel 

mit verschiedenen Größenverhältnissen modelliert. Die Diffusion haben wir mithilfe eines 

Konzentrationsgradienten über die Membran hinweg angeregt. Um den Rechenaufwand zu 

reduzieren haben wir diesen Gradienten mithilfe zweier virtueller Grenzflächen modelliert, mit 

denen man eine konstante externe Teilchenkonzentration einstellen kann. Die Ergebnisse 

zeigen, dass sich unsere errechneten  Translokationsraten für gefaltete Proteine mit der 

analytischen Lösung von Brunn et al. decken. Darüber hinaus konnten wir feststellen, dass ein 

engerer Porendurchmesser und die damit verbundene geometrische Einschränkung zu einer 

Anhäufung großer Partikel am Poreneingang führt, wodurch ein reduziertes 

Diffusionsvermögen für Proteine innerhalb der Poren kompensiert wird. Das Modell für die 

ungefalteten Proteine zeigte, dass sich hierbei die längeren Polymerketten entlang der 

Porenachse orientieren. Dadurch reduzieren sich die Freiheitsgrade im System und damit auch 

die Translokationsrate der Proteine. Diese Analysen stellen einen ersten Versuch zur 

Untersuchung der Translokation von Proteinen durch biologische Membranen dar. Zukünftig 

ließen sich solche Translokationsprozesse durch die Einbindung weiterer Strukturmerkmale 

realistischer abbilden. 

    Abgesehen von ihrer Funktion als Substrattransporter können Membranproteine allosterisch 

reguliert werden. Diese Regulierung findet durch Wechselwirkungen der Proteinoberfläche mit 

der Membran statt. In experimentellen Studien wurde gezeigt, dass die Bindung von 

Cholesterol eine bedeutende Rolle für die Funktion des CXCR4 Transmembranrezeptors spielt, 

der wiederum ein Korezeptor für eine HIV-Infektion ist. Um systematisch und effizient mögliche 

Bindungsstellen für Cholesterol an der lipid-ständigen Oberfläche von Transmembranproteinen 
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zu finden, haben wir Docking-Simulationen mit einem Divide-and-Conquer Ansatz verknüpft. Da 

die von Autodock verwendete Scoringfunktion ursprünglich für wässrige Lösungen ausgelegt ist, 

haben wir vier Kristallstrukturen von Cholesterol-Proteinkomplexen testweise erneut gedockt. 

Die Resultate bestätigen, dass Autodock zur Identifizierung von Cholesterol-Bindungsstellen – 

auch in der Membran - geeignet ist. Anschließend haben wir das gleiche Docking zur 

Untersuchung der Wechselwirkungen zwischen CXCR4 und Cholesterol angewandt. Die 

vorhergesagte Bindungsstelle mit der höchsten Affinität befindet sich in der Einkerbung 

zwischen den Transmembranhelices 1 und 7 nahe der inneren Membran-Wasser-Grenzschicht. 

Ein nahestehendes Lysin formt eine Wasserstoffbrücke zwischen seiner ε-Aminogruppe und 

der Hydroxyl-Gruppe des Cholesterols. Weitere Interaktionen entstehen durch einen 

Tyrosinring mit der aromatischen Seitenkette des Cholesterols sowie durch weitere 

hydrophobe Kontakte mit unpolaren Seitenketten. Durch Sequenzaligments konnten wir zeigen, 

dass ähnliche mutmaßliche Cholesterolbindungsstellen ebenfalls im CCR5 HIV-Korezeptor zu 

finden sind. Wir vermuten, dass eine Mutation der Cholesterolbindungsstellen bei CXCR4 und 

CCR5 diese Proteine unempfindlich gegen die Cholesterolkonzentration in der Membran 

machen könnten. Diese Erkenntnisse könnten bei der Wirkstoffentwicklung zur Therapie von 

AIDS sowie anderer Krankheiten, bei denen CXCR4 und CCR5 involviert sind, eine Rolle spielen. 

    Im Rahmen der Dissertation wurden verschiedene bioinformatische Methoden zur 

Untersuchung von Transmembranproteinen im Hinblick auf unterschiedliche Aspekte 

entwickelt und implementiert. Ihr Zweck ist es, mikroskopische Details sowie strukturelle 

Eigenschaften und mögliche Mechanismen für die experimentelle Arbeit mit 

Transmembranproteinen aufzuklären.  
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Abstract 

    Computational approaches are now extensively being used in structural biology. We 

developed and implemented computational methods to investigate structural and functional 

properties of transmembrane proteins. Transmembrane proteins play crucial roles in varieties 

of biological processes such as signal transduction and material exchange. To perform these 

specific functions in between the aqueous environment and the hydrophobic lipid bilayer, 

transmembrane proteins usually have concavities or pores to accommodate ligands or to 

transport substrates. We developed a toolkit PROPORES to identify pores and pore lining-

residues of known protein structures. For proteins with long channels inside, our tool can 

depict the trajectory of the channels and provide the radii along the channel. These two 

functions are comparable with well known tools such as PASS, HOLE and MolAxis. Our toolkit 

has a novel function to check the connectivity of two neighboring pores by reposition the gating 

residues in a sterically allowed way. PROPORES is a grid-based method but it avoids the 

orientation dependency of most grid-based approaches. However, the exponential growth of 

running time with finer resolution is still an issue. To parallelize the implementation during pore 

identification is a possible way to improve the performance. 

    As an application, we collected a non-redundant set of -helical transmembrane protein 

structures and used PROPORES to annotate the pore-lining residues of these structures. Pore-

lining residues are crucial for the function of membrane transporters and channels because 

they directly contact the substrates or the water shell surrounding them. We developed a tool 

PRIMSIPLR to make predictions of the pore-lining residues for -helical transmembrane 



 

X 
 

proteins from their sequences. We trained a support vector machine by the features extracted 

from the non-redundant set. The features containing evolutionary information such as position 

specific scores and conservation scores made a substantial contribution for the prediction 

whereas physicochemical properties had no apparent effect. Our prediction method 

outperformed to the tool MEMSAT-SVM on a non-redundant testing set. We found that most 

false classifications are between pore-lining residues and non-pore-lining residues located 

inside the membrane. Finding more specific and representative features to distinguish these 

two types of residues remains a tough challenge for future work. 

    With a dynamic perspective on cross-membrane transportation, we performed coarse-

grained Brownian dynamics simulations of protein translocation through nanopores. Proteins 

were represented as single beads or bead-spring polymers modeled after the protein 

cytochrome c. Pores were modeled as cylindrical holes through the membrane with various 

aspect ratios. Diffusion was driven by a concentration gradient across the membrane. The 

concentration gradient was mimicked by two constant density interfaces what saved a lot of 

computational effort. Our results for the flow rates of folded protein models show good 

agreement with an analytical solution derived by Brunn et al. We also found that the geometric 

constriction by the narrow pore leads to an accumulation of the larger particles at the pore 

entrance, which in turn compensates for the reduced diffusivity of the protein particles inside 

the pore. For the unfolded models, the longer polymers showed stronger orientation 

preference along the pore axis which restricted their motions and reduced the translocation 

rate. The system of this study is a starting point to investigate protein translocation through 
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biological membrane. More structural details can be further added to this system to yield a 

more realistic presentation of protein translocation processes. 

    Beside the transport function related to their pore and pore-lining residues, the function of 

transmembrane proteins may be regulated allosterically due to the interactions on the lipid 

exposable surface of the protein. There are experimental studies showing that cholesterol 

binding is important for the function of CXCR4 transmembrane receptor which is a coreceptor 

for HIV infection. To identify the possible cholesterol binding site on the lipid exposable surface 

of the protein, we performed docking simulations in a divide-and-conquer scheme to have a 

systematic search of binding site in an efficient way. In addition, to validate the scoring function 

of AutoDock which is originally calibrated for protein-ligand interactions in aqueous solution, 

we performed a redocking exercise on four transmembrane protein structures that were co-

crystallized with cholesterol molecules. The redocking results confirmed the suitability of 

AutoDock for finding cholesterol binding sites on the lipid accessible surface of membrane 

proteins. We thus employed the same docking analysis for predicting interactions between 

CXCR4 and cholesterol. The predicted binding site with the highest affinity is located in the 

groove between transmembrane helices 1 and 7 near the inner membrane-water interface. A 

lysine nearby to this region establishes a hydrogen bond between its -amino group and the 

hydroxyl group of cholesterol, a tyrosine ring stacks with cholesterol by its aromatic side chain, 

and several non-polar residues form hydrophobic contacts with cholesterol. Sequence 

alignment analysis showed that a similar putative cholesterol binding site is also present in 

another HIV coreceptor, CCR5. We propose that mutation of putative cholesterol binding 

residues will make CXCR4 and CCR5 insensitive to the membrane cholesterol concentration. We 
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hope that it will be useful in drug discovery for the therapeutic control of AIDS and other 

diseases in which CXCR4 and CCR5 are involved.  

    In this thesis, we developed and implemented multi-scale computational approaches to study 

transmembrane proteins from different aspects. Our purpose is to provide useful microscopic 

details, structural features, and possible mechanisms to the experimental biologists working on 

transmembrane proteins. 
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1 Introduction 

1.1 Biological membranes ( [1] and the references therein) 

    The function of a biological membrane is to separate cellular and subcellular compartments 

from their surroundings. The three key components of the biological membrane are lipids, 

sugars and proteins (Figure 1.1).  

 

 

Figure 1.1 Cartoon representation of a biological membrane (this figure was adapted from [1]). 

 

    Membrane lipids are amphipathic molecules that are composed of both hydrophobic and 

hydrophilic groups. The three main types of lipids found in the biological membrane are 

phospholipids, glycolipids and cholesterol. The chemical structure of a phospholipid (Figure 1.2) 

contains fatty acids and a phosphate group linked to a glycerol. The fatty acid chain can be 
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saturated or unsaturated. An unsaturated fatty acid contains between 1 and 4 double bonds in 

cis form. Another type of phospholipid is sphingo-phospholipids which contain sphingosine 

instead of glycerol to link the fatty acid and phosphate as shown in Figure 1.3. Glycolipids share 

common structural features with phospholipids. The difference between them is that glycerol 

(or sphingosine) links to a sugar group (glucose or galactose) in glycolipids instead of phosphate. 

The structure of cholesterol contains a fused ring structure, a hydroxyl group, and a 

hydrocarbon chain (Figure. 1.4). Cholesterol is found mainly in the mammalian cell membrane. 

 

 
 

Figure 1.2 Phosopholipids are 
composed of a glycerol linked to 
fatty acid chains and a phosphate 
group. 

 



 

3 
 

 

 
 

    The biological membrane is also known as lipid bilayer. The hydrophobic tails of two lipid 

leaflets face inside whereas the hydrophilic head groups face to the outer aqueous 

environments (Figure 1.1). Lipid bilayers behave like two dimensional fluids. For example, the 

lateral diffusion of phospholipids is quite fast and its 2D diffusion coefficient is about 1 m2/s. 

However, the movement of lipids in the normal direction of the membrane (termed flip-flop) is 

a rare event because the hydrophilic head group has to go through a thick layer of hydrophobic 

Figure 1.3 The structure of a 
sphingo-phospholipid contains 
sphingosine instead of glycerol to 
link fatty acid and phosphate. 

 

Figure 1.4 Cholesterol contains a 
fused ring structure, a hydroxyl 
group, and a shorter hydrophobic 
tail.  
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tails. However, the more efficient flip-flop motion of particular lipids may be facilitated by a 

family of transmembrane protein enzymes called flippases. 

    The fluidity of the membrane is also affected by some factors such as temperature, fatty acid 

composition, and cholesterol content. It is obvious that the higher temperature results in a 

higher kinetic energy of the system. The system is more active and the motion (translations, 

rotations, and vibrations) of the lipid molecules becomes faster. This makes the lipid molecules 

more disordered especially the long fatty acid chains. At high temperature, the lipid bilayer is in 

a liquid state and more fluid. In contrast, the lipid bilayer is in the gel state at low temperature 

when the long hydrophobic tails of lipids are close and orderly packed. The temperature where 

gel and liquid states interconvert is called the transition temperature. The fatty acid 

composition also has an effect on the transition temperature of the lipid bilayer. Unsaturated 

fatty acid chains have bends at the positions of double bonds (Figures 1.2 and 1.3) and that 

makes the packing of lipid molecules more difficult and lowers the transition temperature. 

Besides that, shorter hydrocarbon chains of lipids have weaker interactions between each other 

than long chains and this also lowers the transition temperature. The effect of cholesterol on 

the postulated lipid rafts is more complicated. The fused-ring structure of cholesterol interacts 

with the adjacent hydrocarbon chains of phospholipids or glycolipids what makes the lipid raft 

stiffer and less fluid. However, at high concentration, cholesterols disrupt the order packing of 

phospholipids and inhibit the possible phase transition. 

    In addition to the lipids, the other two components of the biological membrane are sugars 

and proteins. Specific functions such as material transportation or exchange are carried out by 

proteins. More details about this will be given in the next section. Sugar groups can attach to 
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either proteins or lipids on the outer lipid raft. It is involved in recognition mechanisms such as 

immune response due to the large number of combinations and varieties of sugar 

(carbohydrates) molecular structures on the cell surface. In recent years, more and more 

research focuses on the carbohydrates on the cell surface and tries implementing therapies for 

cancer and other diseases based on this.  

 

1.2 Transmembrane proteins ( [2] and the references therein) 

    Lipid bilayers form a permeability barrier from the surroundings and also provide the 

structural framework of cells or organelles while sugars play an important role in cell-type 

recognition. The specific functions of cell membranes are carried out by the assistance of 

elaborate membrane protein machineries. These machineries comprise a variety of 

transmembrane proteins such as transporters, channels, receptors and enzymes (Figure 1.5). 

They mediate material exchange or signal transduction across the membrane so that organelles 

or even entire cells can maintain specific concentrations to perform their intrinsic functions. For 

example, G-protein coupled receptors (GPCR) trigger signal transduction pathways inside the 

cell after ligands bind to the extracellular side of the membrane. [3] ATP-binding cassette (ABC) 

transporters utilize the energy from ATP hydrolysis to facilitate the translocation of a wide 

range of substrates from ions to oligopeptides and lipids. [4] The translocon complexes Sec61 

and SecYEG integrate newly synthesized proteins into the membrane or translocate them 

across the membrane. [5] The tetrameric K+ channels regulate electrical potential or maintain 

the balance of electrolytes across the membrane by rapid and highly selective permeation of 

potassium ions. [6] The water-specific membrane channel protein, aquaporin, regulates water 
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homeostasis in different kinds of cells. [7] The trimeric AcrB proteins function as multidrug 

efflux pump in gram-negative bacteria and are associated with the resistance against various 

antibiotics. [8] The malfunction of binding or translocation mechanism of these proteins may be 

related to diseases. On the contrary, a regular transmembrane protein may be used by a virus 

to infect the host cell. For example, as a member of GPCR, the CXCR4 receptor plays an 

important role in cell trafficking triggered by its signaling transduction. However, X4-tropic HIV-

1 uses CXCR4 as a co-receptor to infect CD4+ T cells. [9] All mentioned transmembrane proteins 

and their related diseases are hot topics in the fields of novel therapy and drug discovery. 

 

 

Figure 1.5 Four main types of transmembrane proteins classified by their functions. (This figure 
was adapted from [2]). 

 

    From the structural point of view, two main groups of transmembrane proteins have been 

identified, namely -helical and -barrel transmembrane proteins. An -helical transmembrane 

protein contains one to several transmembrane helices. Each helix is at least 20 residues long 

and the composition is usually dominated by nonpolar residues because of the hydrophobic 

surroundings.  -barrel transmembrane proteins are formed by regular aligned -strands in 
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anti-parallel manner. The residues on a -strand point inward to the ligand or outward to the 

lipids alternatively. This structural property will also be present in the sequence pattern so that 

hydrophobic and hydrophilic residues are in alternating positions if the protein accommodates 

a polar ligand. In contrast, there is no clear pattern when the ligands are nonpolar. 

    The integration of transmembrane proteins into the membrane is mediated by the translocon. 

One of the most studied systems is the SRP-dependent Sec pathway. The SRP (signal 

recognition particle) protein first recognizes and binds to the signal peptide of a nascent 

polypeptide chain emerging from the ribosome. SRP then binds to the receptor on the 

membrane and the ribosome with polypeptide is guided to form a big complex with the 

translocon. The nascent polypeptide chain is threaded into the pore of translocon and the 

process is driven by the energy from hydrolysis of ATP. The function of the translocon is either 

to translocate proteins to the other side of the membrane or to integrate them into the 

membrane. The mechanism of distinguishing between translocation and integration is still not 

clear. One assumption is based on a partition process that the hydrophobic helix tends to be 

integrated into lipids whereas the more hydrophilic helix prefers to be transferred. 

    

1.3 Structure bioinformatics on transmembrane proteins 

    Since X-ray crystallographic data on transmembrane proteins is relatively rare, dozens of 

structural prediction methods addressing various features of these proteins have been 

developed. [10] For example, OCTOPUS [11] and MEMSAT-SVM [12] predict the topology 

(including the positions of transmembrane helices, re-entrant helices and signal peptides) of -

helical transmembrane proteins. Interestingly, Nugent and Jones also developed an extended 
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version of MEMSAT-SVM that predicts pore-lining helices and residues. [13] Tools such as TMX 

[14] and BTMX [15] predict the burial status (residue exposed to lipid bilayer or not) of each 

residue in -helical and -barrel transmembrane proteins, respectively. TMHcon [16] and 

MEMPACK [17] predict the helix-helix contact map of -helical transmembrane proteins. All of 

these methods adopt a common strategy to predict structural features from the protein 

primary sequence. First, they consider evolutionary information of the protein that is typically 

represented by the position specific scoring matrix (PSSM) derived from multiple alignments of 

homologous sequences. Second, all methods use machine learning algorithms such as support 

vector machines (SVM), artificial neural networks (ANN), and hidden Markov models (HMM) to 

build a model according to the features extracted from a set of membrane proteins with known 

3D structures.  

    To have a possible 3D model of an unknown transmembrane protein, we would use a 

sequence alignment algorithm (e.g. BLAST [18]) to find the homologous proteins in the protein 

structure database PDB [19] and build the model based on the found templates. This approach 

is known as homology modeling. If no homologous proteins can be found based on sequence 

similarity, threading or fold recognition methods (e.g. Phyre [20]) provide the possibility to find 

the distantly related protein templates with common fold. The difference between homology 

modeling and fold recognition is due to the scoring matrix used. The scoring matrix used in 

homology modeling is a substitution matrix which describes the observed rate of change 

between residue pairs. However, the scoring matrix used in fold recognition emphasizes on the 

preference of a residue type to take on a specific local structure and the matrix may combine 

the information from evolution, physicochemical properties and even the prediction results of 
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other structural traits. ab initio methods (e.g. Rosetta [21]) are another approach to build a 

protein 3D model if there is no reliable template found by the previous two approaches. It 

predicts the protein structure from sequence based on a force field or a scoring function 

derived from known protein structures. It is noted that the highest accuracy or the best quality 

of the protein model will be obtained by homology modeling whereas the ab initio approach 

seems to be suitable for small peptides up to 60-80 amino acids in length currently. 

    Once the protein structure is resolved, tens of existing algorithms or tools are ready to be 

used to analyze the structural traits of the protein (ex. secondary structures, contact maps, 

electrostatic properties, pore identification and so on). For transmembrane proteins, methods 

such as TMDET [22] and PPM [23] predict the spatial arrangement inside the membrane 

(including position and orientation). For example, TMDET determines the position of a protein 

in the membrane by maximizing the relative hydrophobic membrane exposed surface area. 

PPM optimizes three structural parameters to obtain the minimal transfer energy of the protein 

from water to the lipid bilayer. The parameters are the thickness of the hydrophobic slab, the 

tilt angle between the protein and the membrane normal, and the position of the protein along 

the membrane normal. 

 

1.4 Research topics in this thesis 

    To correctly and efficiently identify pore lining residues in the structures of transmembrane 

proteins, we tested several published software and web servers which will be introduced in 

Section 2.1.  However, some issues (including the orientation dependency of the structure, 

manual determination of the search start point, failure on specific cases) were found in these 



 

10 
 

tools. Thus, we decided to develop a new algorithm that is based on the ideas of two published 

tools. Chapter 3 presents this novel algorithm to identify pores and pore-lining residues of a 

protein 3D structure that resolves the mentioned issues. This tool is then implemented for the 

identification of pore-lining residues in our non-redundant set of -helical transmembrane 

proteins. The first prediction method for pore-lining residues was published by Nugent and 

Jones in 2012. [13] Their training data set seems small and the performance of prediction needs 

improvement. As described in Chapter 4, we compiled a non-redundant, comprehensive 

dataset of pore-containing -helical transmembrane proteins. A machine learning algorithm 

was trained and optimized by features of this dataset and then used to make predictions of 

pore-lining residues for novel protein sequences of -helical transmembrane proteins. Besides 

the properties of pores, we are also interested in the functional mechanism of pores in 

transmembrane proteins. Protein translocation across the membrane is the essential 

mechanism of live cells. However, many simulation studies focus on the translocation of the 

much longer and stiffer double-strand DNA, whereas few simulation studies dealt with the 

behaviors of relatively small and flexible proteins when they move through a pore. So as 

described in Chapter 5, we performed coarse-grained Brownian dynamic simulations for 

protein translocation through nanopores. A variety of pore dimensions and protein particles 

were considered to investigate the phenomenon occurring near the pore entrance. In addition, 

in cooperation with Prof. Ott’s group, we conducted a specific case study of a transmembrane 

protein, CXCR4. CXCR4 had been addressed in many previous studies because of its substantial 

role in HIV infection. Several experimental studies pointed out that cholesterol has an effect on 

the ratio of HIV infection. Thus, we designed a divide-and-conquer docking scheme to 
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thoroughly search the most possible cholesterol binding site on the membrane exposed 

surfaces of CXCR4. This case study is presented in Chapter 6.  

 

1.5 Aims of this thesis 

    We developed and implemented multi-scale computational approaches (from atomistic 

models to coarse-grained models, from the primary sequence to the tertiary structure) to study 

transmembrane proteins. We would like to show how the approaches we adopted including 

simulations, machine learning, and docking can be well implemented in these studies. Our 

purpose is to provide useful microscopic details, structural features, and possible mechanisms 

for experimental biologists working on transmembrane proteins. The theories, motivations, 

main ideas and implementations are presented in detail in the following chapters. The last 

chapter summarizes the main conclusions. 
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2 Theory 

2.1 Brief review of pore identification algorithms 

    Here, we briefly review a few published pore identification algorithms and explain the main 

ideas behind them. Basically, these algorithms can be classified into four categories by the way 

in which they partition the protein structures. 

    The first class encompasses the most popular strategy of grid-based methods and includes 

the programs POCKET [24], LIGSITE [25, 26], dxTuber [27], HOLLOW [28], 3V [29], CAVER [30], 

and CHUNNEL [31]. In these methods, protein structures are projected onto a 3D grid. POCKET 

scans void grid voxels along the x-, y- and z-axes for protein–solvent–protein (PSP) events and 

assigns void grid voxels which belong to two PSP events as pocket grid voxels (Figure 2.1). 

dxTuber converts a set of protein conformations from a molecular dynamics simulation into 

residence probabilities of protein and solvent in grid voxels and then identifies the pockets in a 

similar manner as POCKET. LIGSITE searches four more diagonal directions to reduce the 

orientation dependency of the results. HOLLOW and 3V both use two rolling probes to define 

the internal volume of the protein whereby the larger probe is used for the boundaries of pores 

and the smaller probe determines the resolution (Figure 2.2). The program CAVER was 

specifically developed for finding channels inside protein structures. In CAVER, each void grid 

voxel is assigned a cost value. Dijkstra’s algorithm [32] is then applied to find the lowest cost 

path among void grid voxels and identifies this path as a channel (Figure 2.3). CHUNNEL adopts 

a similar approach as CAVER but automatically specifies the starting point inside the pore 

region from a topological analysis of the protein surface. 
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Figure 2.2 Pockets are identified by rolling probes in HOLLOW and 3V. The van der Waals 
volume of the protein is shown as green area. Red and brown contours show the accessible 
surfaces generated by two sizes of probes while the dashed lines depict the molecular surfaces 
according to the two probes. The blue volume enclosed by two molecular surfaces is 
determined as pore volume. (This figure was adapted from  [29]). 

 

 

Figure 2.1 Pore identification 
strategies used in POCKET, LIGSITE, 
and dxTuber. The protein (grey 
area) is projected onto a grid. Red 
lines indicate the scanning 
directions for protein-solvent-
protein events. Black spots locate 
the volume identified as pore 
region.(This figure was adapted 
from [33]). 
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Figure 2.3 Channel search algorithm adopted by CAVER and CHUNNEL. Grey spheres are protein 
atoms with van der Waals radii. The convex hull encompasses all protein atoms and defines the 
stopping condition of the search algorithm. Each void grid voxel is assigned a cost value 
according to the size of the maximally inscribed ball (open circles). The lowest cost path 
(dashed line) is found by Dijkstra’s algorithm as the channel in the protein. (This figure was 
adapted from [30]). 
 

    The second class of methods utilizes Voronoi Diagrams (or its dual graph Delaunay 

triangulation) such as MOLE [34], MolAxis [35], and CAST [36]. MOLE is an improved version of 

CAVER that is more efficient and precise than CAVER and uses the same algorithm for finding 

lowest cost paths as channels in the protein (Figure 2.4). The MolAxis algorithm is quite similar 

to MOLE except that it approximates the different-sized atoms by clusters of unit spheres. CAST 

partitions a protein into tetrahedra to form a Delaunay triangulation. The vertices of tetrahedra 

are protein atoms. Void spaces in the tetrahedra are then grouped by the discrete flow 

algorithm to form pockets, cavities, or channels. 
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    The third class contains sphere-filling methods such as PASS [37] and SURFNET [38]. The basic 

idea of PASS is based on the geometric relationship of a sphere being placed on top of three 

other given spheres. The protein is carpeted with spheres layer by layer. The carpeting spheres 

are then filtered according to their burial degree by protein atoms. A cluster of carpeting 

spheres represents a pocket (Figure 2.6). PASS is designed specifically for detecting pockets. 

Figure 2.5 Delaunay triangulation 
method used by CAST to 
determine pore volume. Delaunay 
triangles are made according to 
protein atoms. The discrete flow 
algorithm is then used to group 
triangles to a continuous pore 
volume. The flows (arrows) start 
from blunt triangles and end in an 
acute triangle.(This figure was 
adapted from [33]). 

 

Figure 2.4 Channel search 
algorithm adopted by MOLE and 
MolAxis. Protein atoms and the 
convex hull have the same 
definitions as those in Figure 2.3. A 
Voronoi diagram (lines) is applied 
to find the central lines (or facets 
in 3D) between atoms. The optimal 
route (thick line) is also computed 
by Dijkstra’s algorithm as the 
channel in the protein. (This figure 
was adapted from [34]).   
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SURFNET fits suitable spheres between all atom pairs of a protein. The overlapping spheres 

depict the pockets, cavities, or channels (Figure 2.7). 

 

 

Figure 2.6 Pocket detection strategy used by PASS. (A) The protein surface is carpeted with 
spheres layer by layer. (B) The carpeting spheres are then filtered according to their burial 
degree by protein atoms. Each cluster of carpeting spheres represents a pocket. (This figure 
was adapted from [33]). 

 

 

Figure 2.7 Sphere-filling method used by SURFNET. (A) A tangent sphere (blue) is fitted in 
between a pair of atoms and its size is then adjusted to avoid clashes with other atoms (red). (B) 
The overlapping spheres can be grouped and depict the pockets, cavities, or channels. (This 
figure was adapted from citation [33]). 
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    Methods of the last class are slice and optimization methods such as HOLE [39] and 

PoreWalker [40]. HOLE splits a protein into slices along the start vector defined by the user. 

Monte Carlo optimization is used to find the largest sphere that can be squeezed into the gap 

between protein atoms of each slice (Figure 2.8). HOLE generates a channel tunneling through 

the protein. PoreWalker also cuts the protein into slices, but the program is specific for 

transmembrane proteins and takes advantage of the special arrangements of secondary 

structures when defining the initial pore axis. The pore axis is optimized in an iterative way to 

find the channel lined by most residues (Figure 2.9). 

 

 

Figure 2.8 Tunneling method adopted by HOLE. The protein is scanned plane by plane for void 
space inside. In each plane, Monte Carlo optimization is used to find the largest sphere that can 
be squeezed into the gap between protein atoms and that determines the radius of the channel 
at this position. (This figure was adapted from [39]). 
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Figure 2.9 Channel depiction algorithm of PoreWalker. The channel orientation of a 
transmembrane protein is first determined as the averaged orientation of its secondary 
structures and then iteratively adjusted by pore-lining residues through the channel. (This 
figure was adapted from [40]). 

 

2.2 Support vector machine (SVM) ( [41] and the references therein) 

    The support vector machine (SVM) method is a supervised machine learning algorithm for 

the binary classification problem. Supervised learning refers to finding or estimating a 

functional relationship between a large number of examples with input/output pairs. The 

binary classification deals with a learning problem whose target outputs constitute only two 

classes (i.e. yes or no, positive or negative).  

    The basic model of a support vector machine is the maximal margin classifier which works 

only for the linearly separable data. The linear classification of this model is performed by a 

linear function f(x) as Eq. 2.1 where x is an input vector with n dimensions, w and b are 

parameters that determine the function. An input is assigned to the positive class if f(x) > 0 or 

to the negative class if f(x) < 0. 

                  

 

   

   (2.1) 



 

19 
 

    The separating function (f(x) = 0) is the so-called hyperplane. A hyperplane is a subspace of 

dimension n-1 which separate data points into two classes by dividing the n dimensional space 

into two half spaces. The strategy to choose the hyperplane of maximal margin classifier is to 

maximize the minimal margin between data points (both positives and negatives) and the 

hyperplane. The margin can be computed by the geometric distance of two equations (Eqs. 

2.2a and 2.2b) that are derived from the hyperplane where x+ is a positive point which gives a 

minimal margin between positive points and the hyperplane and x- gives that for negative 

points. Eq. 2.3 shows that the geometric margin  is equal to 1/∥w∥2. 

                (2.2a) 

                 (2.2b) 

  
 

 
  

 

    
      

 

    
      

 

    
 (2.3) 

 

    Hence, the classification problem can be formulated as an optimization problem (Eq. 2.4). For 

a given set S of x/y pairs, the problem is to maximize the separating margin  (which is 

equivalent to minimizing ∥w∥2) within the constraints of that both positive and negative 

points will be positioned on their proper sides and no point is located in the margin space. 

                      

Minimize      

Subject to                         

(2.4) 
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    This constrained optimization problem can be transformed into a Lagrangian (Eq. 2.5) which 

introduces the Lagrange multipliers  to combine the original optimization problem and its 

constraints. The stationary points of the Lagrangian can be used to detect solutions. Actually, 

the Lagrange multiplier method allows only equality constraints. It is the Karush-Kuhn-Tucker 

necessary conditions that generalize the Lagrange multiplier methods to allow inequality. 

         
 

 
                      

 

   

      (2.5) 

 

    Eq. 2.5 is called primal Lagrangian and its solutions can be used to obtain the dual form of the 

Lagrangian. The solution of the primal Lagrangian is found by differentiating with respect to w 

and b as shown in Eqs. 2.6 and 2.7.  
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(2.7) 

 

    To substitute solutions into the primal Lagrangian, we obtain Eq. 2.8 and the optimization 

problem is reformulated to the dual Lagrangian as shown in Eq. 2.9.  



 

21 
 

            

 

   

 
 

 
                

 

     

 (2.8) 

                      

Maximize          
 
    

 

 
                
 
      

Subject to       
 
                   

(2.9) 

 

    The optimal solutions *, w* and b* must satisfy the Karush-Kuhn-Tucker conditions (Eq. 

2.10). This necessary condition also implies that i* are nonzero only when the xi/yi pairs 

satisfy either Eq. 2.2a or Eq. 2.2b. All other i* are zero. The weight vector is represented as 

w*=∑yii* xi. Thus, the points xi involved in the weight vector are so-called support vectors. 

  
       

                       (2.10) 

 

    To find the *, the Sequential Minimal Optimization (SMO) algorithm was developed. The 

idea is to optimize only a subset of  at each iteration. The condition ∑yii = 0 in Eq. 2.9 implies 

that the minimal number of that can be optimized is 2. Thus, at each iteration of SMO, two 

elements (i and j) are chosen to be optimized while the others are fixed. To speed up the 

convergence, SMO heuristically chooses the two elements of . The procedure contains two 

separate criteria to choose the first and the second points, respectively. The first point is 

chosen by looking through the training set for the one violating the Karush-Kuhn-Tucker 

conditions. The second point is chosen to cause a large change on the pair of corresponding . 

After finding *, the value of b can be obtained by substituting support vectors and * into Eq. 

2.2. 
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  To deal with real data that is rarely linearly separable, two approaches were developed to 

expand the capability of SVMs. One is the “soft margin optimization” to tolerate the noise or 

outliers. The other one is “kernel-induced feature space” which is used to map the data into a 

higher dimensional space. The linear learning SVM mentioned above has a higher probability to 

separate the data if the data are properly mapped in the new feature space. The following 

paragraphs will introduce the ideas behind these. In practice, these two approaches are often 

combined and implemented in SVM.  

    To avoid the case that the separation of a data set is ruined by a few points (noise), “soft 

margin optimization” was proposed. Here, so-called slack variables  were introduced to 

tolerate the violation of constraints or even tolerate a few misclassifications. Here, we briefly 

describe one of the soft margin algorithms named 2-norm soft margin. The target of 

optimization and the constraints in Eq. 2.4 are extended to Eq. 2.11 while C is the penalty and 

this parameter has to be tuned during the SVM training.  

                      

Minimize          
  

    

Subject to                            

             

(2.11) 

 

The new primal Lagrangian including slack variables is given in Eq. 2.12. 

           
 

 
     

 

 
   

 

 

   

                     

 

   

      (2.12) 
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The solutions of the primal Lagrangian are  

          

  
          

 

   

     (2.13) 

          

  
         (2.14) 

          

  
      

 

   

    (2.15) 

 

Resubstituting the relations of Eqs. 2.13, 2.14 and 2.15 into Eq. 2.12 gives the dual form of the 

Lagrangian (Eq. 2.16). 

  

              

 

   

 
 

 
                

 

     

 
 

  
      (2.16) 

 

Thus, the optimization problem can be reformulated as Eq. 2.17 and the corresponding Karush-

Kuhn-Tucker conditions are given in Eq. 2.18. 

                      

Maximize          
 
    

 

 
                
 
      

 

  
      

Subject to       
 
                   

(2.17) 

  
       

                          (2.18) 
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    The other main approach proposed to improve the performance of SVM is “kernel-induced 

feature space”. It is used to map the original data into a higher dimensional feature space and 

make the data linearly separable in this new feature space. The mapping of a data set is 

denoted as Eq. 2.19. 

                                (2.19) 

 

    The mapping can be performed implicitly because of the dual representation of Lagrangian.  

The kernel function is defined as the inner product of two input vectors in the mapped feature 

space (Eq. 2.20). It is used to replace the original inner product as shown in Eqs. 2.9 and 2.17. 

With the relation of Eq. 2.6 (or Eq. 2.13), the hyperplane in the new feature space is changed 

into Eq. 2.21.  

                   (2.20) 

             

 

   

               

 

   

   (2.21) 

 

  The kernel used in our study (Chapter 4) is the radial basis function kernel (RBF kernel) which 

is defined in Eq. 2.22. g is also an adjustable parameter during the training procedure. Besides, 

the feature space of this kernel has an infinite number of dimensions because the exponential 

function can be decomposed into a polynomial with an infinite number of terms and an 

infinitely large degree (e.g. Taylor expansion). 

                      (2.22) 



 

25 
 

2.3 Brownian motion and Langevin equation ( [42] and the 

references therein) 

    The first description of Brownian motion was given by the botanist Robert Brown in 1827. He 

found under a microscope that the pollen grains in suspended aqueous solution were in rapid 

irregular motion.  After Brown’s finding, several observations and experiments were done and 

published to explain Brownian motion. Their findings can be summarized in the following way: 

1. The motion never ceases; 2. Temperature has an effect of the particle motion; 3. The motion 

is irregular and its trajectory has no tangent; 4. The size of a particle affects the velocity of 

motion. 5. Two particles move independently.   

    In 1905, Albert Einstein explained and formulated Brownain motion by means of probability. 

This was the first quantitative formulation of Brownian motion. He considered the particle 

motion in terms of diffusion. Let us consider one dimensional particle motion as an example. 

P(x,t) and p(∆, ) are probability density functions. The probability of a particle in a unit volume 

between x and x+dx at time t is denoted as P(x,t). p(∆, ) stands for the probability of the net 

flow (particles from neighboring element x’ moving into x or the reverse way) within a small 

time period  where ∆ is x’-x. So after time , P(x,t+) can be written down as Eq. 2.23. 

                          
 

  

 (2.23) 

 

When expanding P(x,t+) in power of t, expanding P(x+∆,t) in power of ∆, and neglecting higher 

order terms of two expansions, Eq. 2.23 can be simplified to Eq. 2.24. 
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      (2.24) 

 

Since the translational diffusion coefficient in one dimension is defined as Eq. 2.25, Eq.2.24 can 

be written as Eq. 2.26.  

  
 

  
      (2.25) 

       

  
  

        

   
 (2.26) 

 

The solution of Eq. 2.26 is given by Eq. 2.27. 

       
 

     
     

   

   
  (2.27) 

 

By calculating the second moment of Eq. 2.27, we obtained the mean square displacement for a 

particle motion in one dimension (x direction here as Eq. 2.28). 

          (2.28) 

 

    In 1908, Paul Langevin formulated Brownian motion in a different way. He considered that a 

single particle in the solution feels two forces exerted by solvent molecules, a frictional force 

and a fluctuating force. The frictional force represents the dynamical friction experienced by 

the particle. The fluctuating force is due to random kicks by solvent molecules. Based on 

Newton’s second law of motion, Langevin wrote down his equation of motion as Eq. 2.29 where 
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 is the coefficient of friction and fr(t) stands for the fluctuating force. Eq. 2.29 is now called 

Langevin Equation. 

 
      

   
   

     

  
       (2.29) 

 

Although fr(t) means random and irregular force, it is still governed by two assumptions (Eqs. 

2.30 and 2.31 where  is the Dirac delta function). Eq. 2.30 means that the ensemble average of 

fr(t) should be zero and Eq. 2.31 shows that fr(t) is independent between different time points. 

              (2.30) 

                                     (2.31) 

 

To derive Eq. 2.29 for the mean square displacement, Langevin firstly multiplied Eq. 2.29 by x(t). 

The following equations (Eqs. 2.32 to 2.37) show the detail of derivation.  

 
      

   
       

     

  
               (2.32) 

 

Eq. 2.32 can be rewritten as Eq.2.33 by substituting the terms of derivative by their equivalent 

forms. 

 

 

 

  
 
      

  
    

     

  
 

 

  
 

 

      

  
           (2.33) 

For the macroscopic view, Eq. 2.33 is changed into the averaged form (Eq. 2.34). 



 

28 
 

 

 

 

  
 
             

  
    

           

  
 

 

  
 

 

             

  
                       (2.34) 

 

The right most term in Eq. 2.34 vanishes because of the assumption of Eq. 2.30. In addition, 

according to the kinetic theory in one dimension (Eq. 2.35), Eq. 2.34 becomes Eq. 2.36.  

 

 
  

           

  
 

 

 
 

 
   (2.35) 

 

 

 

  
 
             

  
  

 

 

             

  
    (2.36) 

 

The solution of Eq.2.36 is given by 

             
   

  
  (2.37) 

 

Eq. 2.37 is consistent with Eq. 2.28 and the Nernst-Einstein Equation (Eq. 2.38) can be obtained 

from these two equations.  

  
  

  
 (2.38) 

 

    The two expressions of Brownian motion (probability by Einstein and equation of motion by 

Langevin) derived an equivalent mean square displacement. However, the Langevin equation 

refers to the motion of a single particle that is based on Newton’s law of motion and obeys the 

law of conservation of momentum. This makes the Langevin equation easier to be implemented 
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in dynamics simulations of particle motions in the form of so-called Brownian Dynamics. We 

can directly introduce external forces or interactions between particles into the Langevin 

equation as described in Section 5.2. In Brownain Dynamics, solvent molecules are considered 

as a mean field with properties of friction, fluctuation and other interactions (ex. dielectric and 

hydrodynamics). That is why we have to use a larger time step in Brownain Dynamics 

simulations. In most cases, it is more efficient than all atom Molecular Dynamics simulations 

which consider the atomic details of the whole system. 

 

2.4 Molecular docking and AutoDock [43-45] 

    Due to the great improvements of computational hardware and algorithms, computer aided 

drug design has become a crucial approach during the discovery or design of new drugs. 

Molecular docking is one of the best developed and most implemented methods in the field of 

computer aided drug design. It is used to compute the proper conformation and orientation 

between a ligand and its receptor. It is also used to estimate the binding affinity or to evaluate 

the fitness of this binding. In this section, we focus on small molecule-protein docking and take 

the popular docking software “AutoDock” as an example to introduce the basic components 

and the ideas of molecular docking. A case study is presented in Chapter 6.  

    The two main components of a docking software are the scoring function and the search 

algorithm. Mimicking the atomistic force field used in molecular dynamics simulations, the 

scoring function of AutoDock contains 5 terms (Eq. 2.39). The developers adopted the Lennard-

Jones potential as van der Waals interaction between atom pairs; a 12-10 potential was used 
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for hydrogen bonding where E(t) is a function of the angle t between the hydrogen bond 

forming atoms; and a Coulombic term for electrostatic interactions. The fourth term is the 

desolvation energy where S stands for the solvent accessible surface area of the ligand and V 

stands for the volume surrounded by protein atoms (or in the opposite way). The last term is 

the estimation of entropy loss upon ligand binding that is proportional to the number of 

rotatable bonds of the ligand. Ws are the weights of each term. The developers performed an 

empirical fit of Eq. 2.39 against the experimental binding affinities from protein-ligand 

complexes with known structures to obtain the optimal weights (30 complexes for AutoDock3 

and 188 complexes for AutoDock4).  

 

    Besides force field based and empirically fitted scoring functions, there are also groups of 

scoring functions developed by different techniques or concepts such as knowledge-based 

scoring functions, machine learning-based scoring functions, and consensus scoring functions. 

The idea of knowledge-based scoring functions is to observe the frequency of occurrence of 

contacting atom pairs in protein-ligand complexes and then convert this frequency into a 

Boltzmann weighted potential by so-called Boltzmann-inversion. Machine learning-based 

scoring functions take the advantage of the nonlinear mapping capability of machine learning 

algorithms to properly map the interactions to docking scores. However, there is unfortunately 

         
   

   
   

   

   
  

   

             
   

   
   

   

   
   

   

       
    

         
   

                  
     

      

   

            

(2.39) 
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no single perfect scoring function or at least it has not been found sofar. This led to the 

development of consensus scoring methods. This approach integrates several existing scoring 

functions by a voting scheme and thus provides a good compromise of different scoring 

functions. [46-48] 

    The search algorithm used in AutoDock is the Lamarkian genetic algorithm. A genetic 

algorithm (GA) is an optimization algorithm that mimics the process of population evolution 

under selection. The feature vector represents a chromosome of an individual. Within a 

generation, each chromosome may suffer from mutations or crossover with another 

chromosome to generate variants. The purpose of these two steps is to enhance the diversity 

of the population. Then, each chromosome is evaluated by a fitness function (in the docking 

problem, the scoring function plays the role of the fitness function) as selection under the 

external pressure. During this step, the individuals with better fitness will proliferate but ones 

with worse fitness will be obsolete. After several iterations of mutation, crossover and selection, 

the population will typically converge to a state with higher fitness than the original one. The 

optimal solution seems to be inside the population in the converged state. The Lamarkian 

genetic algorithm is an extension of conventional genetic algorithms to improve the 

performance of optimization by combining the genetic algorithm and the local optimization 

algorithm (Solis-Wet algorithm [49] is adopted in AutoDock). The local optimization algorithm is 

adaptive and adjusts the step size according to the current condition. Besides GA, several other 

optimization algorithms have been implemented in docking calculations such as simulated 

annealing, Monte Carlo simulation, particle swarm optimization [50], ant colony optimization 

[51] and so on. 
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    Furthermore, AutoDock speeds up the docking calculation by precomputing the interaction 

energies with respect to the protein at each grid point within the user defined grid box by 

different probes of atom types. When evaluating the energies of different ligand conformations, 

the binding free energies can be quickly obtained by summing up the precomputed values of 

component atoms. 

    Instead of the flexible-ligand-rigid-receptor docking scheme mentioned above, the scientists 

in the field were recently more concerned about docking to flexible receptors. AutoDock4 

allows a partial flexibility of the protein. Side chains of pocket lining residues selected by users 

can be treated as flexible ligands during docking simulations in AutoDock4. Other software tools 

such as DOCK6 [52] and GOLD [53] use a rotamer library to generate different conformations of 

the binding pocket to account for receptor flexibility. One further approach is to generate 

conformational ensemble of the receptor by molecular dynamics simulations or by software 

such as CONCOORD and tCONCOORD [54] before performing docking. This is the so-called 

relaxed complex scheme. [55] The advantage of the method is to dock the ligand to the rare 

event of pocket opening and the receptor is fully flexible. However, the relaxed complex 

scheme is much more computationally demand than the other two methods. 
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3 Identifying continuous pores in protein structures with PROPORES 

by computational repositioning of gating residues 

    This work had been published as “Lee PH, Helms V: Identifying continuous pores in protein 

structures with PROPORES by computational repositioning of gating residues. Proteins 2012, 

80(2):421-432”. My own contribution of this work was to design the algorithms of PoreID, 

PoreTrace and GateOpen, to evaluate and compare the performance of our tools to other 

existing tools, to program PROPORES tool package and to write the manuscript for publication. 

 

3.1 Background 

    For functional reasons, proteins often contain concavities such as pockets, cavities, or 

channels. Some biological reactions (ex. functions of GPCR receptors, ABC transporters, 

translocons, K+ channel, aquaporins and AcrB proteins mentioned in the Section 1.2) rely on the 

geometric complementarity between proteins and small molecules, and also on the 

physicochemical properties of the residues that line pockets, cavities, or channels. A 

considerable number of computational methods have been developed, which identify the 

concavities of proteins and describe their properties. The review of these works is presented in 

the Section 2.1. 

 

3.2 Motivation  

        Among all the methods mentioned in Section 2.1, grid-based method such as POCKET, 

LIGSITE, and dxTube sometimes give results with an undesirable orientation dependency. Some 
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of the methods are not automatic and users have to define the starting point (CAVER, MOLE, 

and MolAxis) or starting vector (HOLE) of the search. Some methods are specific for detecting 

pockets (PASS) or channels (CAVER, CHUNNEL, MOLE, MolAxis, HOLE, and PoreWalker). Thus, 

we developed a new toolkit PROPORES (PROtein PORE identification toolS) which includes the 

three programs PoreID for pore identification, PoreTrace for pore axes determination and Gate-

Open for opening the gate between neighboring pores. PROPORES is a grid-based method that 

avoids orientation dependency of the results. It targets all kinds of pores (pockets, cavities, and 

channels) and is automatic so that only the PDB file of the target protein has to be specified by 

the user. The design of the algorithm is presented in the next section. 

 

3.3 Materials and Methods 

3.3.1 PoreID: pore identification 

    The idea of PoreID is based on the POCKET and LIGSITE algorithms. Both methods employ a 

regular Cartesian grid and define all those void grid voxels as pore grid voxels where the grid 

voxel belongs to two perpendicular PSP events (Figure 2.1). The POCKET algorithm scans void 

grid voxels along the three Cartesian axes. As an extension to POCKET, the LIGSITE algorithm 

also searches along the four cubic diagonal directions to improve the pore identification along 

the diagonal direction (45°). Most grid-based methods such as POCKET and LIGSITE show an 

orientation dependency of their results so that, in some extreme cases, different pockets or 

pores may be found for different rotational orientations of the protein. To avoid this problem, 

we adopted an approach inspired by the pore identification method SURFNET.  
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    Here, all atom pairs of a protein (or protein complex) are used as framework for defining PSP 

events. Let us imagine that each atom pair defines the endpoints of the central axis of a 

cylinder. The radius of each cylinder is set equal to the van der Waals (vdW) radius of the 

smaller atom. Although the space inside the cylinder may satisfy the conditions for a PSP event, 

the enclosed volumes do not have to correspond to pores. Two cylinders (Figure 3.1), however, 

that cross at a roughly perpendicular angle certainly determine an enclosed volume which is 

defined as pore region by the POCKET algorithm. Due to the way of construction, this volume is 

constant and independent of the protein orientation. 

 

 

    The implementation of our pore identification method includes the following steps: 

a) Fit all protein atoms into the meshes of a 3D grid of suitable dimensions where each 

protein atom is represented by a set of grid voxels within a sphere of radius equal to its 

atomic vdW radius. Void grid voxels are those voxels that do not have any neighboring 

protein atoms within their vdW radius distances.  

Figure 3.1 Cylindrical scheme for 
pore identification. Gray spheres 
represent protein atoms. Although 
the volume enclosed in either the 
blue or the green cylinders satisfies 
the definition of a PSP event, only 
the volume crossed by both 
cylinders is identified as pore 
region here. 
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b) Scan PSP events along the x-, y- and z-axes for all void grid voxels and label the grid 

voxels by the number of PSP events encountered. Void grid voxels with two or more PSP 

events are classified as pore grid voxels. 

c) Determine all grid voxels which are crossed by one or more of the vectors connecting 

the atom pairs (these grid voxels are termed ‘‘tracing grid voxels’’). Discard those 

vectors whose tracing grid voxels overlap with grid voxels occupied by other atoms. 

Among the remaining vectors, identify the void grid voxels in each cylinder connecting 

the respective atom pairs. Label each void grid voxel by the indices of the vectors that 

enclose the void grid voxel in their cylinders. 

d) Scan all void grid voxels which are not identified as pore grid voxels in Step (b). Check 

the perpendicularity of vector pairs of each void grid voxel. In this step, vector pairs that 

enclose an angle between 85° and 95° are considered as being perpendicular. Void grid 

voxels with perpendicular vectors are also classified as pore grid voxels. 

e) Trim shallow pore grid voxels on the protein surface. Cluster neighboring pore grid 

voxels to form several connected, disjoint pores. Analyze pore volumes, pore-lining 

residues and possible pore axes. The algorithm for determining these pore axes is 

described in the next section. 

    The first two Steps (a) and (b) are similar to the POCKET algorithm. Most of the pore grid 

voxels buried inside the protein, and some on the surface are detected by these two steps. Step 

(c) serves to discard redundant vectors of atom pairs. For this, we introduced the concept of 

crossing cylinders. As shown in Figure 3.2, Vector v2 is redundant for the checking of PSP events 

because v2 overlaps with v1. According to our experience, less than one percent of all vectors 
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remain after Step (c). In Step (d), we only scan void grid voxels which are not identified in Step 

(b), and the vector set is non-redundant. Because of the first three steps, the computational 

effort for Step (d) is substantially reduced. 

 

 

 

3.3.2 PoreTrace: pore axes determination 

    An identified pore consists of a set of pore grid voxels. These pore grid voxels can be 

classified into three categories according to their local environments, namely “grid voxels 

exposed to the surface”, “grid voxels in contact with protein atoms”, and “grid voxels 

surrounded by other pore grid voxels only”. Obviously, the endpoints of any meaningful pore 

axis should be pore grid voxels of the first two cases. Besides, surface patches which are 

composed of “grid voxels exposed to the surface” must be the entrances of the pores pointing 

toward or into the protein if the pores are open. So we cluster all exposed grid voxels to form 

surface patches which resemble lids on holes or pots. Further, there exist three cases of pores 

depending on the number of exposed surface patches involved. These are “pores containing 

two or more exposed surface patches”, “pores containing only one exposed surface patch”, and 

Figure 3.2 Redundant vector in 
pore identification. The 
transparent surface shows a pore 
in the protein. The dashed line 
represents vectors between atom 
pairs. Vector v2 is redundant for 
pore identification because it 
overlaps with v1 whose atom pair 
directly lines the pore. 
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“pores without exposed surface patch”. The implementations of pore axes determination are 

different for these three cases due to the determination of the endpoints of the pore axis. Our 

strategy for determining the pore axes is similar to the one used by the program CAVER that 

applies Dijkstra’s algorithm to search the lowest cost paths as pore axes. Each grid voxel is 

assigned a value of Rsphere by the KD-tree algorithm [56], where Rsphere is the radius of the largest 

sphere that can be fitted at the location of the pore grid voxel without overlapping with a 

protein atom. The details of the implementations are described as follows: 

1) For each pore with two or more exposed surface patches, we define the grid voxels with 

largest Rsphere on each exposed surface patch as the endpoints of the pore axes. Note 

that N exposed surface patches (endpoints) determine C(N,2) pore axes (2-combinations 

from the set of N elements). Lowest cost paths are searched by Dijkstra’s algorithm 

between any pair of these endpoints. The cost of each grid voxel is 1/Rsphere. 

2) For each pore containing only a single exposed surface patch, Dijkstra’s algorithm has to 

be performed twice. First, we define the endpoint on the exposed surface as in Case (1). 

The cost of each grid voxel is set as DCOM/(Rsphere × Lpath
3/2) for the first run of Dijkstra’s 

algorithm. DCOM is the distance from the grid voxel to the center of mass of the protein. 

Lpath is the total length of the path. The purpose of this run is to find the other endpoint. 

Then, the second run of Dijkstra’s algorithm is performed to find the lowest cost path 

between these two endpoints. In this run, the cost is set as 1/Rsphere. 

3) For each pore without exposed surface patch, we have to choose one endpoint of the 

path before applying Dijkstra’s algorithm. For this, we choose the grid voxel with 

maximum distance to the geometric center of the pore. Then Dijkstra’s algorithm is used 
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to search the other endpoint and also the lowest cost path. The cost here is set as 

1/(Rsphere × Lpath
3/2). 

    When the cost of each grid voxel is 1/Rsphere, the lowest cost path for the protein structure 

corresponds to the pore with the largest radii along the path. In Cases (2) and (3), we used the 

additional factor Lpath
3/2 to favor longer pore axes. Otherwise the algorithm will preferentially 

find nearby grid voxels with large Rsphere and the found pore axis will be short and only cover a 

small part of the pore. In Case (2), DCOM is included to favor endpoints deeply buried inside the 

protein. This strategy is motivated by the observation from existing 3D structures of proteins 

that longer and deeper pores of a protein are typically the ones that are functionally relevant. 

As the path found in the first run of Dijkstra’s algorithm is biased due to the weighting factor 

DCOM, the second run with unbiased cost is necessary. 

 

3.3.3 GateOpen: gate opening of neighboring pores 

    It is of great interest to identify cases where two neighboring pores may be connected by 

small conformational changes of the protein side chains. For this, we define pore-lining residues 

of a pore as those residues that have at least one atom assigned to a grid voxel in direct contact 

with a grid voxel belonging to the pore. Any two pores with shared pore-lining residues are 

then defined as ‘‘neighboring pores’’. The shared pore-lining residues are candidates to act as a 

gate between the neighboring pores. To check the connectivity, we try to open the gate by 

rotating the side chains of the gating residues into sterically allowed positions. The dead-end 

elimination algorithm [57, 58], which is commonly used for protein side chain prediction, was 
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adopted to deal with the combinatorial task of identifying the allowed side chain rotations of 

the gating residues. 

    We constructed rotamer libraries for the side chains of 17 amino acids (the small or stiff 

residues glycine, alanine, and proline were excluded). Dihedral angles of each rotatable bond 

were scanned in steps of 30° from 0° to 360°. For each amino acid, the rotamer library contains 

full sets of combinations of dihedral angles of all rotatable bonds. A dihedral combination was 

excluded if it resulted in serious clashes with other atoms in the considered protein structures 

so that two atomic vdW radii overlapped by more than a given threshold (set here to 1.0 Å by 

default). 

    First, the gating residues are mutated to glycine. From a structural point of view, this is 

equivalent to deleting the side chains of the gating residues. Thus the space previously 

occupied by the side chains is freed and one can check whether the two neighboring pores are 

now connected in this mutated protein. If this is the case, then the side chain rotamers of the 

original gating residues are placed back, and the degree of opening of the gate is evaluated. The 

potential energy for the evaluation is 

                   

 

                              

   

 (3.1) 

For rotamer ir, Esphere(ir) is taken as the sum of the radii Rsphere of all side chain atoms. Large 

Esphere(ir) values mean that the rotamer ir is located near the pore axis and the gating residues 

are trying to block the pore. ECA(ir) is the sum of all distances between the side chain atoms 

and the gate center. The gate center is the center of the C atoms of all gating residues. Small 

ECA(ir) values indicate that the side chain atoms are located near the gate center and tend to 
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close the gate. Einteraction(ir,js) is the interaction term for rotamers ir and js. It is taken as the sum 

of the distances between all atom pairs of rotamers ir and js. Small Einteraction(ir,js) values mean 

that these two rotamers are located close to each other and narrow the pore radius of the gate. 

The dead-end elimination algorithm then identifies a combination of rotamers with minimum 

potential energy so that a maximal space surrounded by the gating residues is opened. Finally, 

PoreID is performed on the new structure to check the connectivity of the two neighboring 

pores.  

    The source code, installation instructions, example files, and a short documentation are 

available from http://gepard.bioinformatik.uni-saarland.de/software/poreid/poreid-page. The 

PROPORES software is made available under the GPL license. 

 

3.4 Results and Discussion 

3.4.1 Input, output, and options 

    The program PoreID requires as input the coordinate file of the target protein in standard 

PDB format. Users may either simply adopt the default settings for general cases or specify 

three optional parameters, for example, for sampling at a higher resolution or for detecting 

narrower pores. These parameters are the side length of the cubic grid voxels, the probe radius, 

and the trimming depth for pores on the protein surface. The side length of the cubic grid 

voxels determines the resolution of the pore identification and the default value is set to 1.0 Å. 

In our experience, 0.5 Å is sufficient for generating fine and smooth surfaces of the identified 

pores. An identified pore encloses a volume in which the probe can be freely rolled without 

overlapping with any protein atoms. The default value of the probe radius is taken as 1.2 Å. This 
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value is slightly smaller than 1.4 Å, which is commonly used as a probe for water when 

computing the popular solvent accessible surface area. [59, 60] We adopted a smaller probe 

radius here by considering the possible error due to the specified grid resolution. Shallow pores 

have to be trimmed; otherwise small disjoint pores on the protein surface may be connected by 

shallow pore grid voxels to form a single, large pore which covers a wide area of the protein 

surface. The default value of the trimming depth is taken as 1.4 Å, which means that the pores 

on the protein surface would be trimmed to 1.4 Å in depth. 

    The output of PoreID consists of three files for each identified pore. These are the pore grid 

voxels in PDB format for graphical displays, a list of pore-lining residues and an information file 

that is used as the input for pore axis determination by PoreTrace. PoreTrace has no optional 

parameters to be specified. The output of the PoreTrace program is a file containing pore axes 

represented by grid voxels in PDB format with an additional column for the pore radius. 

GateOpen requires a PDB file of the target protein and the list of the gating residues as input. 

An optional parameter is the tolerance of two overlapping atoms, and the default value is set as 

1.0 Å. The output is a PDB file of the target protein where the side chain conformations of the 

gating residues have been rotated in order to maximize the connectivity of half pores. All 

examples in the ‘‘Case Studies’’ section below were generated by setting the PoreID 

parameters resolution to 0.5 Å, the probe radius to 1.2 Å, and the trimming depth to 1.4 Å. The 

single exception is that we adopted the PASS parameters when comparing the results from 

PoreID and PASS. GateOpen was performed using 1.0 Å for the overlapping tolerance. 
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3.4.2 Performance of the methods 

    For simplicity, all programs were implemented in Perl programming language and are thus 

not optimized for speed. The running times of the three programs (PoreID, PoreTrace, and 

GateOpen) were measured on an Opteron 2.4 GHz CPU. For PoreID, the protein structure of the 

leucine transporter (LeuT; PDB ID: 2A65, 4044 heavy atoms) was used as benchmark. It is a 

common issue for grid-based pore identification that a higher resolution will result in smoother 

pores but this requires longer running times and more computer memory. The discrete 

property of grid-based design is revealed by the running time of PoreID, and this is also the 

reason of the sharp increase between resolutions of 0.5 Å and 0.6 Å (Figure. 3.3A]. For example, 

to scan the grid voxels within 1.7 Å (vdW radius of the carbon atom) in 1D, four operations are 

required for the resolution of 0.5 Å but three operations for 0.6 Å. The probe radius and the 

trimming depth have no considerable effect on the running time. For an identified pore, the 

estimated volume becomes larger by specifying a smaller probe radius. When a larger trimming 

depth is used, the pore on the protein surface will be estimated at a smaller volume or even be 

split into smaller pores. 

    The performance of PoreTrace was evaluated on the largest pore of the structure 2A65. The 

running time increased exponentially for higher resolutions (Figure. 3.3B). On the other hand, 

specifying higher resolutions for PoreTrace resulted in smoother pore axes and more accurate 

radius profiles. According to the analyses of running times of PoreID and PoreTrace, 0.6 Å is a 

recommended value for the resolution by simultaneously considering the accuracy and 

efficiency. GateOpen is not grid-based and its running time is related to the combinations of the 
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rotamers of the gating residues. Usually, it takes less than 3 min to get an optimal combination 

of rotamers for each single gate composed of two or three residues. 

 

Figure 3.3 Performance of PoreID and PoreTrace. The running times of PoreID (A) and 
PoreTrace (B) for the leucine transporter (PDB ID: 2A65) measured for different grid resolutions. 

 

3.4.3 Case study 

 Aquaporin 

    The aquaporin water pores facilitate rapid and highly selective transport of water molecules 

across membranes. The topology of aquaporin is formed by six transmembrane helices and two 

short pore helices in an ‘‘hourglass’’ fold. Here, we analyzed the crystal structure of a yeast 

aquaporin (PDB ID: 2W1P). The water conducting channel of this structure is occluded both at 

the extracellular and cytoplasmic sides. The residues F92 and R227, which are conserved in the 

aquaporin family, function as a selective filter and block the channel at the extracellular side, 

whereas Y31 blocks the channel at the cytoplasmic side. [61] After pore identification by PoreID 

and comparison of pore-lining residues, F92 and R227 were found as the gating residues at the 
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extracellular side of the protein, whereas Y31 and A190 form the gate at the cytoplasmic side 

(Figure. 3.4A). Both gates are closed in this crystal structure so that water molecules cannot 

permeate through the protein. The GateOpen program was then used to open these two gates. 

As shown in Figure 3.4B, the 2 dihedral angle of the F92 side chain was rotated by 61°, and the 

phenyl ring was turned to face the connected pore. The side chain of R227 was flipped toward 

the opposite direction by rotating 1 by 150°. Modifying the positions of the gating residues 

freed the preoccupied space between the pores, so that the neighboring pores at the 

extracellular side became connected. At the cytoplasmic side, the 1 angle of Y31 was rotated 

about 45°. This shifted the side chain of Y31 away from A190 and opened the gate. 

 

Figure 3.4 Water conducting channel of yeast aquaporin. The protein is shown in ribbon 
representation and the gating residues are shown as sticks. Helices at the most front layer were 
made transparent for clarity. (A) The pink meshes represent pores that are separated by the 
upper (F92 and R227) and lower gates (Y31 and A190). (B) The pink surface depicts the path of 
the water conducting channel. Both gates were opened by GateOpen. (C) Radius profiles of the 
opened water conducting channel computed by PoreTrace, HOLE, and MolAxis. 
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    We also applied our toolkit to another member of the aquaporin family from spinach with 

PDB ID 2B5F [62]. In that structure, the main channel is blocked by a single gate and PoreID 

picked F81, H210, and R225 as gating residues. After repositioning the gating residues by 

GateOpen using an overlapping tolerance of 1.0 Å, F81 and H210 showed only small shifts 

whereas R225 was flipped inward the channel similar as found for R227 in the modified 2W1P 

structure (Figure 3.5). In both cases, this happened because GateOpen identified small pockets 

to accommodate the guanidinium group of arginine. However, the conformation of arginine 

seemed to be quite strained which would, in reality, result in a low occupancy unless further 

conformational adaptation takes place. For that reason, we reran GateOpen on the gating 

residues of the 2B5F structure using a more rigorous overlapping tolerance (0.4 Å). Interestingly, 

this resulted in a more relaxed conformation of R225 with a 1 angle of 53° and a similar side 

chain orientation as in the original structure (Figure 3.5). We note that applying such a more 

rigorous overlapping tolerance for repositioning the gating residue may not always result in 

more relaxed conformations. Yet, the degree of opening of the gate can be predicted with 

higher confidence. 

 

 

Figure 3.5 Repositioning of gating 
residues in spinach aquaporin. 
Green conformations are from the 
original protein structure 2B5F. 
The conformations repositioned by 
GateOpen with overlapping 
tolerance as 1.0 Å and 0.4 Å are 
shown in magenta and cyan, 
respectively. The surface 
representation depicts the volume 
of the water conducting channel 
according to the protein 
conformation shown in cyan. 
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    The pore axis and radius profile of the connected pore of the modified 2W1P structure were 

computed by PoreTrace, HOLE, and MolAxis (Figure 3.4C). For fair comparison, we adopted the 

same vdW radii for protein atoms and the same grid resolution of 0.5 Å for all three programs. 

The PoreTrace results are similar to those of the MolAxis and HOLE programs. Especially, the 

trajectories of pore axes obtained from PoreTrace and MolAxis largely overlap. However, 

MolAxis found slightly larger radii along the pore than PoreTrace and HOLE because MolAxis 

approximates each protein atom by using a collection of unit spheres which are the references 

to estimate the pore radii. The radii of the narrower pore region (i.e., radius < 2.0 Å) computed 

by PoreTrace are slightly smaller than those computed by HOLE. This is attributed to the 

resolution of grid-based methods because the trajectory of the pore axis has to be represented 

by the pore grid voxels. The deviation of the pore radii at the cytoplasmic end is due to the 

difference in the definition of the endpoints. PoreTrace defines the endpoints first and then 

searches for the optimal path between the endpoints. The HOLE program tries to search the 

largest pore radius at every slice and stops the search when the considered pore radius last 

matches the given threshold. At an open area where few protein residues surround the pore, 

HOLE prefers to find a larger pore radius. This deviation here is not substantial because the 

pore radii of this region are more than twice the radius of the water molecule and the 

surrounding protein residues are more flexible here. However, in some complicated pore 

regions, the trajectory of the pore axis generated by HOLE may be guided into the branch and 

then go back to the direction of the start vector. This is an issue of the slice and optimization 

methods. When checking these positions in the protein structure, the trajectory of HOLE is 



 

48 
 

fragmented whereas the trajectories of PoreTrace and MolAxis are continuous and thus appear 

more reasonable for this system. 

 

 Tryptophan synthase 

    The enzyme tryptophan synthase catalyzes the final two steps in the biosynthesis of L-

tryptophan. This enzyme is a 22 tetrameric protein complex that is formed from two dimeric 

 enzyme units. [63] The  subunit catalyzes the cleavage of 3-indole-D-glycerol 3’-phosphate 

(IGP) to yield D-glyceraldehyde 3-phosphate (G3P) and indole. The  subunit catalyzes the 

replacement of the hydroxyl group of L-serine by indole. The common intermediate, indole, is 

directly transferred between the active sites of the  and  subunits through a 25 Å long 

channel that is buried inside the protein complex. [64] The substrate channeling phenomenon 

of tryptophan synthase presents a good example of a protein nanomachine. As of March 15, 

2011, there are 50 structures of tryptophan synthase  complexes deposited in the Protein 

Data Bank. In most of them, several residues are missing at the C terminus of the  subunit. To 

avoid that missing residues leave a large cleft that would be identified as a pore, we selected 

the structure 2CLI as the target for this case study, because it contains a more complete C-

terminal loop of the a subunit. 

    First, we applied PoreID to the structure 2CLI and compared the results to those of the PASS 

algorithm using the same probe radius (1.8 Å) and resolution (0.7Å). For the protein interior, 

the results from PoreID are consistent with those from PASS. Most of the pores on the protein 

surface identified by PASS were also found by PoreID. However, a few pores were detected by 

only one method and the discrepancies happened at shallow pores (Figure 3.6). Pore 



 

49 
 

identification of PASS refers to the ‘‘burial count’’ of the probe, which is the number of protein 

atoms surrounding the probe. A pore surrounded only by a few protein residues may not be 

identified by PASS. In contrast, PoreID considers the landscape around the void grid voxel. This 

is why the pores identified by PoreID often cover a larger surface area or volume than those 

detected by PASS. 

 

Figure 3.6 Pore identification by PoreID and PASS on the protein surface of tryptophan synthase 
(PDB ID: 2CLI). The protein surface is shown in gray. Blue meshes are pores identified by PoreID 
and red bead-clusters are pores located by PASS. Blue arrows indicate pores identified by 
PoreID but not by PASS. Red arrows indicate pores identified by PASS but not by PoreID. 

 

    PoreID identified the two largest pores that are responsible for forming the long 

interconnecting channel for indole. One of them is buried in the  subunit. The other one is 

mainly located in the  subunit and opens at the dimerization surface between the  and  

subunits. The pore-lining residues shared by both pores, L188 and F280, appear to be the 

gate of the channel. When GateOpen was applied to L188 and F280, the 1 torsion angle of 

F280 was rotated by 77°, so that the phenyl ring approached Y279. The 1 angle of L188 
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was rotated by 90° to shift the side chain away from F280 (Figure 3.7). The side chain rotations 

of L188 and F280 led to the opening of the gate of the interconnecting channel. 

Subsequently, we compared the orientations of the rotated side chains against those in the 

structure 2CLF. That structure determined at high ligand concentrations contains an open gate 

because a second IGP analog bound near F280. [65] Due to steric hindrance by F279 the 

displacement of the rotated F280 is not as large as that in 2CLF. The side chain of F279 is 

lifted a bit in 2CLF so that the phenyl ring of F280 has more space. F279 and F280 were 

mentioned in [65] as the gating residues of the channel. In our opinion, F280 is the gating 

residue and F279 adopts the role of a door stop wedge which determines the degree of 

opening of the gate. In contrast to F280, L188 has a minor effect on the gate due to its 

smaller side chain. It remains almost in the same orientation in the structures 2CLI and 2CLF. 

 

 

Figure 3.7 Gate opening of tryptophan synthase. The conformations of protein residues colored 
in blue belong to 2CLI, yellow conformations are from 2CLI after rotation by GateOpen and 
residues in cyan are from 2CLF. Magenta meshes are the pores identified by PoreID in the 

structure 2CLI. The left mesh is buried mainly in the  subunit and the right one is in the  
subunit. The yellow mesh depicts the opened interconnecting channel of the structure 2CLI 
modified by GateOpen. 
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 Leucine transporter (LeuT) 

    The LeuT is a homolog of the neurotransmitter sodium symporters that use sodium and 

chloride electrical chemical gradients to transport neurotransmitters through the membranes 

of neuronal and glia cells. Here we used the crystal structure of the bacterial LeuT (PDB ID: 

2A65) [66] as an example. LeuT is a transmembrane protein with 12 transmembrane helices. In 

this structure, the binding site of the substrate (L-leucine) is occluded both at the extracellular 

and the cytoplasmic sides. Ziegler and coworkers have recently described an alternative access 

model how large scale conformational changes of the channel lead to an alternative opening of 

the channel toward either the exoplasmic or the cytoplasmic sides. [67] In particular, it seems 

unfeasible to open the channel in the 2A65 conformation toward the cytoplasmic side without 

large scale conformational changes of the protein. This is, however, beyond the scope of this 

article. Here, we focused on the pores located at the extracellular side and identified the largest 

pore at the extracellular side and the binding pocket of leucine by PoreID. These two pores 

share the lining residues G26, Y108, and F253 (Figure 3.8A). Y108 and F253 were already 

pointed out as gating residues in [66]. Thus, we applied the GateOpen algorithm to open the 

gate between these two pores. Figure 3.8B shows that Y108 was only slightly twisted due to the 

steric hindrance of surrounding residues. Yet, the 1 angle of F253 was rotated by 136° to move 

the phenyl ring away from Y108, and this is the main modification necessary to achieve opening 

of the gate. The PDB also contains a LeuT structure (PDB ID: 3F3A) where the leucine binding 

pocket is open toward the extracellular side. That LeuT structure was also cocrystalized with L-

tryptophan bound in the leucine binding pocket. [68] As shown in Figure 3.8C, the open 

conformation of the leucine binding pocket in 3F3A is due to several backbone rearrangements 
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to accommodate the bulky tryptophan ligand. The root mean square deviation of the 

backbones between the structures 2A65 and 3F3A is 1.18 Å. The side chain orientations of Y108 

and F253 are similar between these two structures. 

 

Figure 3.8 Gate opening of the leucine transporter. The extracellular side of the protein faces 
the reader. Gating residues are shown in CPK. The magenta meshes under the gating residues 
represent the leucine binding pocket. (A) The gate is closed in the structure 2A65. (B) The gate 
is opened by applying the GateOpen algorithm to the structure 2A65. (C) The gate is open in the 
structure 3F3A. 

 

 Acetylcholinesterase (AChE) 

    The important enzyme AChE terminates synaptic signaling by hydrolysis of the 

neurotransmitter ACh into acetate and choline. The catalytic reaction of AChE proceeds at 

nearly diffusion controlled speed and the turnover number is about 7.4 × 105 min-1. [69] 

However, the 3D structure of AChE surprisingly revealed that the catalytic triad is located at the 

bottom of a 20 Å deep gorge. From there, the products likely leave the active site through 

transient backdoors in the protein that were revealed in molecular dynamics simulations. [70] 

Clearly, the substrates and the products have to pass long distances to reach the catalytic 

center and leave the enzyme, respectively. The inward electrostatic field at the gorge explains 
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the guiding mechanism of the substrate. [71] Here, we used the structure of AChE from 

Torpedo californica (PDB ID: 1EA5) as target for studying the backdoor opening. 

    PoreID identified residues V71, D72, E73, S81, N85, P86, and L127 as shared pore-lining 

residues between the long gorge and the outside concavity. These residues form a thin wall in 

between the two pores (Figure 3.9A). The residues responsible for the backdoor (W84, V129, 

and G441) pointed out by the simulation study [70] are, however, totally different from these 

shared pore-lining residues. In the MD study, no opening event was observed in the thin wall 

during 119 ps of MD simulation. When manually assigning W84, V129, and G441 as gating 

residues for the GateOpen operation, the backdoor did not open because M83, which is located 

in front of W84, blocked the exit (Figure 3.9B). This suggests that M83 should be considered as 

a further key residue of the backdoor in agreement with [71]. Thus, we reran GateOpen by 

considering M83, W84, V129, and G441 as gating residues. Now the backdoor opened and the 

observed pore radius of the open backdoor (1.68 Å) is sufficient for a water molecule to pass 

through. It seems that there are two gates for the backdoor. The side chain of M83 was lifted 

up by a 160° rotation of 1 to open the first gate. The side chain of W84 was flipped inward the 

protein by a 153° rotation of 1 to open the second gate (Figure 3.9C). The 1 angle of V129 was 

rotated by 50° toward G441. However, V129 and G441 have only small effects for the opening 

of the backdoor because of their small side chains. 
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3.4.4 Discussion 

    Pore axis and radius profile are provided by PoreTrace as descriptors of an identified pore. 

These descriptors allow a quick look at whether the substrate can or cannot pass through the 

pore and where the bottleneck is. It should be stressed that pore axes are optimal solutions 

Figure 3.9 The backdoor of 
acetylcholinesterase. AChE is 
shown in transparent surface and 
protein residues in sticks. Orange 
meshes depict the long gorge of 
the active site. (A) Protein residues 
in magenta are the shared pore-
lining residues between the gorge 
and the outside concavity. 
Residues in blue are key residues 
of the backdoor. (B) Gating 
residues block the backdoor. (C) 
Opened backdoor by rotation of 
the gating residues. 
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from a geometric point of view and may not be the actual path for the ligand because we do 

not consider the physicochemical properties of the pore-lining residues during pore axes 

determination. On the other hand, biomolecular molecular dynamics simulations allow 

computing accurate potentials of mean force for the passage of solute molecules through 

permanent or transient channels in proteins but, of course, such simulations demand a large 

computational effort. [72, 73] 

    Gating mechanisms play an important role in channel proteins or enzymes for selectivity or 

preventing leakage. [74] PoreID identifies pores and pore-lining residues. Shared pore-lining 

residues are defined as a candidate gate between pores. We can provide this information to 

biologists as guidance for designing enzyme inhibitors or protein mutants. CAVER and MOLE 

also provide additional information about the ‘‘gorge residues’’ which are residues located at 

the narrowest part of the channel. In some crystal structures as in aquaporin, a continuous 

channel may be separated into small pores by gating residues. Sometimes, opening the gate of 

a protein also requires movements of the protein backbone. Mimicking such conformational 

dynamics by computational methods is very challenging. Much easier to model is to sample the 

rotations of the gating residues to sterically allowed regions. Whereas this does not guarantee 

that gate opening is achieved, it is an efficient way to inspect this. The conformation with 

rotated gating residues can be regarded as one snapshot of the conformational ensemble. A 

similar strategy is commonly used in modern docking algorithms that also consider partial 

flexibility of the receptor. Repacking of the specified side chains either by the combination of 

side chain conformations from a rotamer library [75] or sampling the conformational space of 

side chain torsion angles [45] is an efficient way to achieve the goal. GateOpen was designed 
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according to the same concept. In this way, we tried to introduce a limited amount of protein 

flexibility into pore identification and thus provide a more complete view of the pores forming 

inside protein structures. 
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4 PRIMSIPLR: Prediction of Inner-Membrane Situated Pore-Lining 

Residues for -helical transmembrane proteins 

    This work had been published as “Nguyen D, Helms V, Lee P-H: PRIMSIPLR: Prediction of 

inner-membrane situated pore-lining residues for alpha-helical transmembrane proteins. 

Proteins 2014, in press”. My own contribution of this work was to compile the non-redundant 

training set PH90 and testing set Test23, to perform the feature selection and the optimization 

of SVM, to evaluate and compare the performance of our predictor to MEMSAT-SVM, to 

program the standalone version of PRIMSIPLR and to write the manuscript for publication.   

 

4.1 Motivation 

    Pore-lining residues (PLRs) are crucial for the function of membrane transporters and 

channels because they directly contact the substrates or the water shell surrounding them. 

They are thus involved in recognition, desolvation, binding and transportation processes of 

protein-substrate interactions. To our knowledge, there exists so far only the prediction 

method mentioned in Section 1.3 for identifying pore-lining residues developed by Nugent and 

Jones. [13] Their method identifies PLRs located in transmembrane helices of proteins and this 

prediction has been integrated into MEMSAT-SVM as an extension. MEMSAT-SVM first predicts 

the topology of TM helices and then identifies PLRs with respect to the predicted helices. 

Although most PLRs are indeed located in transmembrane helices, a certain portion of PLRs are 

located in loop regions or other locations. In this chapter, we present a single step method to 

predict PLRs of -helical transmembrane proteins from primary amino acid sequences. This 
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method is based on a comprehensive data set termed PH90 and a new SVM classifier (see 

Materials and Methods section of this chapter), and has been tested by stringent cross-

validation. With improved prediction accuracy, this method should be of great use in the 

annotation of genomic sequence data and also provides clues to experimental biologists 

working on transmembrane proteins. 

 

4.2 Materials and Methods 

4.2.1 Preparation of the data set 

    To collect a comprehensive data set of pore-containing -helical transmembrane proteins, 

we accessed the regularly updated database PDBTM [22] (Oct 19th, 2012 version) to obtain the 

list of PDB IDs with chain indices of all -helical transmembrane proteins deposited in the RCSB 

Protein Data Bank [76]. We retrieved PDB files according to this list and filtered out structures 

that were not determined by experimental techniques (i.e. theoretical models). In PDB files, the 

primary sequence is recorded in the “SEQRES” section. However, to facilitate purification or 

crystallization, the protein sequence of the determined structure sometimes differs from that 

of the wild-type protein due to, for example, mutations, non-native amino acids, insertions, 

deletions, tags, fusion protein, and so on. These modifications may be misleading when 

applying sequence identity-based clustering. Hence, we adopted wild-type protein sequences 

taken from the database Uniprot [77] according to their Uniprot IDs recorded in PDB files 

instead of the sequences in the “SEQRES” section. 
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    Protein sequences of 1329 membrane protein structures were then clustered by the program 

BLASTClust requiring length coverage above 90% and sequence identity below 25%. Among all 

members of one cluster, we manually picked the protein with the visually most obvious and 

largest pores inside its 3D structure as the representative (exemplar) of the respective cluster. 

Some structures containing only one transmembrane helix or without any detectable pores 

inside the protein were discarded during this step. 

    We then used the program PoreID of our tool package PROPORES [78] to identify pores and 

to annotate PLRs of the representative structures. However, a pore identification software such 

as PoreID usually provides tens of pores for an input structure. To confirm that the identified 

pores are biologically functional, we reviewed the original articles where the determined 

structures were reported and annotated only the pores mentioned in these articles. Figure 4.1 

shows an example for the glycerol facilitator protein. After the mentioned data processing 

steps, 92 chains from 90 protein structures were retained. This data set with the obtained 

structure based annotations was named “PH90” set. Their PDB IDs and protein names are listed 

in Table A.1 in the Appendix section.  

    From the OPM database and PPM server [23], clear boundaries of the water/lipid interface 

were estimated for each protein. With the annotation of PLRs and the water/lipid boundary of 

the protein structure, we then classified each residue of a protein sequence into four types 

according to its location. The type “P” is used for PLRs in the transmembrane region, “M” 

denotes all other residues in the transmembrane region, “O” is assigned to residues outside of 

the membrane, and “N” are those residues whose coordinates are not contained in the PDB file. 
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Figure 4.2 shows an example of this topological classification for the primary sequence of the 

bacterial glycerol facilitator (PDB ID: 1FX8). The full data set is available at 

http://service.bioinformatik.uni-saarland.de/PRIMSIPLR/. 

 

 

Figure 4.2 Pore annotation of glycerol facilitator (PDB ID: 1FX8).The first two lines are adopted 
from Uniprot. The third line is the annotation of each residue according to its structural 
environment. “P” is for the pore-lining residue inside the membrane. “M” is for the residue 
inside the membrane except pore-lining residue. “O” represents the residue located outside of 
the membrane. N indicates that the coordinates of the residue are not contained in the PDB file. 

Figure 4.1 The cross section of 
glycerol facilitator (PDB ID: 1FX8) is 
shown in surface representation. 
Both magenta and cyan areas are 
pores identified by PoreID of 
PROPORES [78]. Only the magenta 
pore is considered as biological 
functional and annotated in our 
datasets because it is a glycerol 
conducting channel indicated in 
the structure determination work 
by Fu and his colleagues [79]. 
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4.2.2 Machine learning and prediction 

    For each single residue of the protein sequences of the training set as well as for input 

sequences uploaded to our webserver, we generated 24 features as input for the machine 

learning algorithm. The first 20 features are position-specific scores generated by PSI-BLAST 

[18]. This profile captures the conservation pattern of the protein from a multiple sequence 

alignment of homologous protein sequences. Three iterations of PSI-BLAST were run for an 

input sequence against the non-redundant (nr) database and using commonly used parameters 

(i.e. the word size was set to 3, the penalty of gap opening to 11, the penalty of gap extension 

to 1, and threshold to 0.001). The next three further features characterize physical properties of 

the 20 native amino acids, namely hydropathy, polarity and flexibility. As hydropathy scale, we 

used a modified version of the Kyte-Doolittle hydropathy scale proposed by Juretic et al. [80] In 

their study, the hydropathy of tryptophan was increased and that of alanine was decreased 

with respect to the Kyte-Doolittle scale to obtain a better prediction of transmembrane helices. 

The polarity indices for amino acids were taken from the study of Zimmerman et al. They 

approximated the polarity index of an amino acid as the relative electric potential generated by 

the dipole and the charged group of its side chain. [81] Flexibility scales typically account for the 

typical degree of conformational flexibility of amino acid side chains. The flexibility scale of 

amino acids adopted here was proposed by Vihinen et al. to predict continuous epitopes on 

proteins. [82] It was derived by averaging the B-factors of each amino acid type in the PDB files 

of 92 structures. The last feature is the evolutionary conservation score computed by the 

program Rate4Site [83]. Rate4Site implements a Bayesian approach to estimate the position 

specific evolutionary rate of a protein sequence. 
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    The machine learning algorithm applied in this study is support vector classification 

implemented in the software package LIBSVM. [84] The SVM was implemented to classify and 

identify PLRs in the transmembrane region (type P of our annotation) against all other residues 

of the protein structure (types M, N and O). We tested several combinations of features to 

determine how these features affect the performance of the predictions (see Results section of 

this chapter). The performance of each SVM classifier was evaluated by the common measures 

accuracy, sensitivity, specificity and Matthews’s correlation coefficient (MCC). 

 

4.3 Results and Discussion  

4.3.1 Amino acid composition 

    Our non-redundant PH90 dataset consists of 92 structures of -helical transmembrane 

proteins with central pores. 3460 of the 36885 residues were assigned by PoreID as PLR or type 

“P”. The remaining 33425 residues were classified to any of the other types M, N or O. The ratio 

between P and (M, N, O) is 1 : 9.66. N-type residues were included in the group of non-PLR 

residues together with M- and O-type residues. The reason for this is that most of the 

unresolved parts of X-ray structures of TM proteins (residues of type N) are located in N-

terminal, C-terminal or flexible loop regions of transmembrane proteins. Hence, they are very 

unlikely to belong to the group of PLR residues.  

    The amino acid composition for residues of type P, M and O is shown in Figure 4.3. As 

expected, non-polar amino acids such as A, I, L and V are relatively abundant (> 10%) in M-type 

residues because they are either buried inside the protein structure or exposed to the 
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hydrophobic lipid bilayer. Unexpectedly, A, I, L and V are also frequently found as P-type 

residues (>8%). This means that non-polar residues are important components of pores. Even if 

the substrate is hydrophilic, non-polar residues form hydrophobic patches and facilitate 

substrate transportation as in aquaporin. [85] PLR positions (“P” positions) contain larger 

fractions of charged (D, E and R) and polar residues (H, N and Q) than M-type residues because 

they may be involved in contacts with buried solvent molecules in the pore or with the charged 

or polar transported substrates. Amino acids W and Y with aromatic side chains occur slightly 

more often in P-type residues than in the other two cases. These amino acids often function as 

gating residues of channel proteins or transporters as mentioned in Chapter 3. In contrast to 

membrane positions, O-type residues are substantially enriched in charged amino acids such as 

D, E, K and R.  

    When mapping structurally identified PLRs onto the protein sequences, 94.4% of the pore-

lining fragments are shorter than three residues. This is due to the fact that generally only one 

side of pore forming -helices faces the pore and perfect -helices contain 3.6 residues per 

turn (Figure 4.4). One of the exceptions in the PH90 set is the ABC transporter with PDB ID: 

3QF4 chain B. Its longest pore-lining fragment is 17 residues long. This protein is heterodimeric 

and contains a large channel formed between two protomers. This pore-lining fragment is part 

of the transmembrane helix that is not aligned with the other helices and protrudes into the 

central cavity. 

    To characterize the local environment of PLRs in the primary sequence, we also analyzed the 

distribution of neighboring residues of PLRs annotated by PoreID (see Figure 4.5). The pattern 
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of neighboring PLR peaks is consistent with the periodicity of 3.6 residues per turn of an ideal 

-helix. The second and third highest frequency of PLRs was observed at the third and fourth 

positions downstream (+3, +4) and upstream (-3, -4) from the central PLR. This means that a 

PLR located in a TM helix has neighboring PLR residues one helix turn away in both directions. 

Although further peaks of PLR were observed at the 7th and 11th residues, the fraction of non-

PLR (types M and O) in these positions is considerably larger. 

 

Figure 4.3 Amino acid composition of pore-lining residues (type P) and non-pore-lining residues 
(types M and O). 
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Figure 4.4 Length of pore-lining fragments when mapped on the primary sequences 

 

 

Figure 4.5 Distribution of neighboring residues around a central pore-lining residue in the PH90 
set. 
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4.3.2 Training scheme for imbalanced data 

    Our PH90 set is an imbalanced data set that comprises 9.38% of positive data (3460 PLRs) and 

90.62% of negative entries (33425 non-PLRs). In this study, we used the radial basis function 

kernel for all SVM trainings. Training an SVM on the entire PH90 set by either equal costs or 

weighted costs for two classes resulted in high overall prediction accuracy above 90%, a nearly 

perfect specificity (0.99), but a low sensitivity (about 0.3). It showed an obvious bias toward 

non-PLRs and is only slightly better than the naïve prediction that assigns all data points to the 

non-PLR class. Such a classification clearly defeats the purpose of this study which puts a higher 

emphasis on identifying PLRs than non-PLRs. To deal with this issue, we adopted a multiple 

independent random sampling and training scheme shown in Figure 4.6. An SVM was trained 

on all PLRs and a randomly sampled equal number of non-PLRs. Then the predictive power of 

the trained model was evaluated on the entire data set. Training of the random sampling data 

was performed 50 times and the model with highest MCC value was then taken as the model of 

the configuration (features and parameters) for the subsequent prediction process. The idea of 

this approach is to find a balanced and most representative subset of non-PLRs by multiple 

random sampling, training and evaluation. With this training approach, the MCC and sensitivity 

of classification of the imbalanced data was substantially improved whereas some sacrifice of 

specificity is unavoidable. 
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Figure 4.6 Multiple independent random sampling and training scheme for imbalanced data. 

 

4.3.3 Feature and window size selection 

    The PSSM obtained from PSI-BLAST is a frequently used feature in protein structure 

prediction (see Section 1.3). To test whether additional features such as physicochemical 

properties and conservation score improve the prediction of PLRs, we performed SVM model 

training for different window sizes varied over a large range and different combinations of 

additional features and PSSM. Default values of two parameters in LIBSVM (gamma and cost) 

were used in these test runs. Since the parameters used here may not be the most optimal 

ones, we would rather like to compare the overall performance of a profile than a single 

window size to determine the best combination of features. Besides the PLRs annotated by 

PoreID, we also tested the case that includes directly adjacent residues. This strategy was 

suggested by Nugent and Jones to balance the amount of positive and negative data and to 

indirectly account for conformational dynamics that cannot be captured in crystal structures. 
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[13] We termed this PLR-annotation extended set as “PH90ext” to be distinguished from the 

original PH90 set. The PH90ext set contains 6413 PLRs and 30472 non-PLRs. In Figure 4.7, 

PH90ext has higher MCC values than those of PH90 under all combinations of features and 

window sizes. However, sensitivity and specificity are similar in both cases. This means that the 

performances are likewise similar for both cases. Because the number of positive data (PLRs) in 

PH90ext is almost twice as much as in PH90, the higher MCC in PH90ext is mainly due to the 

relatively higher ratio between true-positive predictions and all residues. In both datasets, MCC 

values increased quickly for longer windows up to a window size of 13 where they started to 

gradually converge. Figure 4.7 shows that adding the conservation score computed by 

Rate4Site substantially improves the performance of the SVM predictor for the PH90 and 

PH90ext sets. This is likely the case because Rate4Site considers the relationship between the 

homologous sequences, which is not captured by PSSMs. Rate4Site builds a phylogenetic tree 

for homologous sequences and estimates the evolutionary rates of each position from the 

topology and branch lengths of the phylogenetic tree. On the other hand, the three 

physicochemical properties that were used at the same time to train the SVM models showed 

no clear effect for PH90 (Figure 4.7A) and only a slight improvement for PH90ext. This suggests 

that the PSSMs already contain most information about these three properties in an implicit 

way. The configurations with best MCC were then taken to be further optimized for the gamma 

and cost parameters. For the PH90 set, the best configuration is a window size of 23 with the 

combinations of PSSM and conservation score. For the PH90ext case, a smaller window size of 

19 with all features including PSSM, conservation scores and physicochemical properties was 

used as the start for the optimization of SVM parameters. 
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Figure 4.7 Performance of (A) the PH90 set and (B) the PH90ext set under different 
combinations of features and for different window sizes. “r4s” stands for conservation scores 
generated by Rate4Site. “phyche” is used as abbreviation for physicochemical properties, which 
comprises of hydropathy, polarity and flexibility in this study. 

 

4.3.4 Grid search and cross-validation of optimal SVM training parameters 

    After determining the best window size and features of the training data, we optimized the 

two parameters of SVMs, gamma and cost. Gamma is an adjustable parameter of the radial 

basis function kernel (RBF kernel) that was used for mapping the feature space in the SVM. The 

radial basis function is defined as exp(-gamma*|u – v|2 ) where u and v are two feature vectors. 

Gamma can be set as a positive value no greater than 1. The cost is the penalty of 

misclassification for each data point in the SVM. For both the PH90 and the PH90ext sets, we 

performed a wide ranged grid search for both parameters. The results of the training 

evaluations (MCC values) are shown in Figure 4.8. The results for the two sets follow a similar 
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trend. Larger gamma with higher cost leads to better performances. The least successful 

separation of training data happened when gamma was set between 2-4 and 1 with cost 

between 2-10 and 2-2. In contrast, the red areas show nearly perfect classification when gamma 

is 2-2 and cost is larger than 1. Although Figure 4.8 shows the training accuracies of the entire 

data set, we then estimated the true performance of the predictor by sixfold cross-validation. 

The frame areas in Figure 4.8 mark the (gamma, cost) pairs with MCC larger than 0.5 for the 

PH90 set and larger than 0.6 for the PH90ext set. These pairs were further evaluated by sixfold 

cross-validation. (Note that the MCC values after sixfold cross-validations are not shown in 

Figure 4.8.) For both data sets, we found that the averaged MCCs for the previously perfect 

classification area of entire data set (red areas in Figure 4.8) are only around 0.15 after sixfold 

cross-validation. This means that the model over-fitted the features of the training data and 

this model could not accurately predict cases whose features deviate from those of the training 

data. For the PH90 set, the best prediction emerged when (gamma, cost) were set to (2-5, 28). 

The averaged per residue level MCC is 0.39, accuracy is 0.78, sensitivity is 0.82 and specificity is 

0.77. For the PH90ext set, the best averaged MCC of sixfold cross-validation was obtained for 

(2-5, 26) with averaged per residue level MCC, accuracy, sensitivity and specificity as 0.49, 0.78, 

0.83 and 0.77, respectively. As mentioned in the previous section, the prediction performances 

of both data sets are similar because of close accuracy, sensitivity and specificity. The higher 

MCC of the PH90ext set is due to its higher true positive ratio. Besides, we then checked the 

classification of the entire data sets by a SVM with optimized parameters. We found that the 

percentage of the false positives that are due to type M residues being classed as type P is 

about 74% in both PH90 and PH90ext (about 24% due to O-type residues and 2% from N). 
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Finding more specific and representative features to distinguish these two types of residues (P 

and M) remains a tough challenge for future work.  

 

 

Figure 4.8 Grid search of gamma and cost parameters used in SVM training for (A) PH90 set and 
(B) PH90ext set. MCC values indicate the performance of an SVM that was trained on the entire 
data set. For the (gamma, cost) pairs in the framed areas, performance was also evaluated by 
sixfold cross-validation. Those MCC values after sixfold cross-validations are not shown here 
except for the magenta points that show the optimized parameters with highest averaged 
MCCs after cross-validation. 
 

    For imbalanced data as was used here, the specificity of 0.77 obtained by cross-validation 

contains a considerable fraction of false positives compared to the true positives. Thus, we 

introduced a confidence index for each positive prediction by converting the probabilistic 

output provided by LIBSVM into a discrete scale from 5 to 9. This mapping of an SVM output 

into a probability by a sigmoid function was proposed by Platt. [86] Lin et al. [87] then improved 

the algorithm and implemented it in LIBSVM.. As shown in Figure 4.9, when the threshold of 
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positive prediction was set to tighter values according to the confidence index, accuracy and 

specificity gradually increased whereas the sensitivity sharply decreased. For the PH90 set with 

a threshold of 7, MCC was slightly raised to 0.41 with sensitivity as 0.61 and specificity as 0.89. 

For the same threshold and the PH90ext set, MCC, sensitivity and specificity were 0.48, 0.63 

and 0.88, respectively. Generally, a larger confidence index implies a higher ratio of true 

positives to false positive predictions and provides more reliable predictions for experimental 

biologists whose studies are related to PLRs. 

 

Figure 4.9 The relationship between confidence index and averaged performance of prediction 
in sixfold cross-validation. (A) PH90 set, (B) PH90ext set. 

 

4.3.5 Evaluation on novel protein structures 

    To evaluate the performance of our predictor on a set of novel protein structures that were 

not used during the training of the method, we collected a test set including only structures 

that were submitted to the PDB databank after composing the PH90 set. We compared two 
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lists of -helical transmembrane proteins obtained from PDBTM [22] either on October 19th, 

2012, or on July 26th, 2013, and processed the novel protein sequences and structures by the 

same procedure mentioned in “Materials and Methods” section of this chapter. This resulted in 

23 structures that are only contained in the latter list and that share less than 25% sequence 

identity with any member of the training set. They contain 10251 residues with 693 assigned as 

PLR and 9558 as non-PLR (the ratio is 1:13.8). We named this test set Test23 (details shown in 

Table A.2 of Appendix) and evaluated the predictive power of our PRIMSIPLR method on this 

set. When the threshold of confidence score was set to 7, we obtained a similar performance to 

the cross-validation results reported before with higher sensitivity and slightly lower specificity 

and MCC value (Table 4.1).  

    To have a fair comparison with MEMSAT-SVM, we derived the modified Test23ext set from 

Test23 by extending the PLR labels to directly adjacent residues, as was done for the PH90ext 

set. The same threshold of confidence score was applied when testing our model on the 

Test23ext set. According to Tables 4.1 and 4.2, the optimized models of PRIMSIPLR showed 

equivalent performance for both Test23 and Test23ext. When considering the set of residues 

predicted as PLR (TPs + FPs), about one in four predicted PLR residues is correct for Test23. 

When including next-neighbors of PLRs as is done in Test23ext, about one in two predicted PLRs 

is correct (TP). In addition, our method outperformed MEMSAT-SVM and yielded more than 

10% improved sensitivity and MCC. When considering the performance of each individual 

protein, PRIMSIPLR has better MCC values than MEMSAT-SVM for 19 out of 23 proteins. One of 

the cases where MEMSAT-SVM made better predictions than PRIMSIPLR is the protein 

Magnesium transporter (PDB ID: 4EV6) that was not included in their training set. Remarkably, 
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MEMSAT-SVM gave a nearly perfect prediction with a MCC value of 0.94 compared to 0.65 with 

PRIMSIPLR. 

 

 

Table 4.1 Performance of PRIMSIPLR evaluated on the Test23 set 

 TP TN FP FN accuracy sensitivity specificity MCC 

PRIMSIPLR 469 7862 1221 216 0.85 0.68 0.87 0.37 

TP, TN, FP, FN stand for true positive, true negative, false positive and false negative. MCC is the 
abbreviation of Matthews’s correlation coefficient. 

 

 

Table 4.2 Performance of PRIMSIPLR and MEMSAT-SVM evaluated on the Test23ext set 

 TP TN FP FN accuracy sensitivity specificity MCC 

PRIMSIPLR 962 7358 1079 461 0.84 0.68 0.87 0.48 

MEMSAT-
SVM 

791 7187 1250 632 0.81 0.56 0.85 0.35 

TP, TN, FP, FN stand for true positive, true negative, false positive and false negative. MCC is the 
abbreviation of Matthews’s correlation coefficient. 
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5 Coarse-grained Brownian dynamics simulations of protein 

translocation through nanopores 

    This work had been published as “Lee PH, Helms V, Geyer T: Coarse-grained Brownian 

dynamics simulations of protein translocation through nanopores. J Chem Phys 2012, 

137(14):145105”. My own contribution of this work was to conduct all simulations of this 

project, to analyze the simulation data and to write the manuscript for publication. 

 

5.1 Background 

    Porous membranes have a wide range of applications in medicine, biology, or physics, where 

they are used, for example, for filtration, liquid phase separation, biosensing, or drug delivery. 

[88] As an application for the translocation of proteins through artificial membranes, porous 

membrane filtration is being used extensively for protein separation in dairy industry. [89] In 

that case, microorganisms are filtered out due to their large size compared to proteins and pore 

diameters. Different types of proteins can also be separated by adjusting the pH value of the 

solution or by modifications of the surfaces of the pores in the membrane. Some recent 

applications of protein translocation are biosensing or single molecule analysis. [90] The 

perturbations of the current through a single nanopore within an electrochemical cell exhibit 

distinguishable patterns for different protein types that are correlated with both charge and 

size of the proteins. 

    In biological cells, a very important process is the translocation of newly synthesized proteins 

across cell membranes via the SecYEG and Sec61 translocons. [5] This biological process 
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includes the recognition and delivery of the nascent protein chain as well as energy coupling, 

and requires several molecular machines. [91] Ongoing technological improvements now allow 

the fabrication of artificial porous membranes with similarly small pore diameters of a few 

nanometers as the translocon system. [92] For example, free standing solid state artificial 

membranes can nowadays be produced with a thickness down to 15 nm and average pore 

diameters from 5 to 25 nm. The properties of the membrane surface can further be changed by 

chemical modifications. Thus, artificial membranes can act as simple and more stable models 

for biological membranes containing specialized translocation pores. 

    Actually, polymer translocation is of fundamental interest in polymer physics and chemistry 

and has thus been intensely studied in the fields of statistical and chemical physics. For example, 

several theoretical, experimental, and simulation studies have addressed the translocation of 

DNA strands through nanopores. [93-95] In these studies, the length of the DNA molecule was 

much longer than the membrane thickness, while the diameters of the pore and of the DNA 

fragment were of comparable size. Thus, the relatively stiff DNA molecules could pass the pore 

only in a linear way. It was found that the translocation time τ is related to the length of the 

DNA fragment L by a power law dependence τ ≈ Lα, where different values of the exponent α 

were observed for different setups. The scaling behavior is also influenced by the hydrodynamic 

drag resulting from the external driving force and the length of the DNA molecule. 

    Another focus has been driven polymer translocation, where the driving force can be due to 

an applied external electric field [96, 97] or due to the binding of chaperone proteins on the cis-

side that prevent the back-sliding of the translocating protein. [98] Most work has concentrated 

on long, disordered polymers. The scaling of their translocation dynamics as a function of the 
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chain length for pores of different lengths and diameters was studied by analytical models [99, 

100] as well as by Langevin dynamics simulations similar to the ones reported here. [101, 102] 

In contrast, fewer works have addressed the translocation of protein-like particles through 

nanopores. Compared to DNA polymers, protein molecules are relatively small with respect to 

the dimensions of currently available artificial nanopores and thus can translocate both in their 

folded and unfolded states, as well as in charged or neutral forms depending on the solution 

conditions. For example, molecular simulations using an HP-model have studied the orientation 

and conformational stability of idealized peptides inside of a pore [103] and their diffusional 

properties. [104] In a pioneering study, Moussavi-Baygi and colleagues employed Brownian 

dynamics simulations to study the passage of a decorated cargo particle through a coarse-

grained model of the nuclear pore complex. [105] 

    To further investigate the behavior of proteins permeating through porous membranes, we 

present here results from coarse-grained Langevin dynamics simulations of model proteins 

translocating across a porous membrane. The analysis of these simulations shows and explains 

how the translocation rate is influenced by the characteristics of the model system. The 

investigated parameters include the folding state of the proteins, the pore dimensions, and the 

interaction between the proteins. This study is organized as follows. First, the protein models 

and the propagation algorithm used in the simulations are described. Then, the system setup 

and the corresponding results are presented and we discuss how the diffusion behavior of the 

proteins is influenced by the characteristics of the proteins and the porous membrane. 

 



 

78 
 

5.2 Materials and Methods 

    For the pore translocation simulations of this project, we used a setup that resembled a 

typical experimental scenario where a nano-porous silica membrane separates two reservoirs 

that hold buffer solution with different densities of a water soluble protein. For convenience, 

such experiments often utilize the small electron carrier cytochrome c that can easily be 

detected by light absorption in the visible regime, can be purchased, is relatively spherical and 

stable, and does not agglomerate. Its biological function is to transfer electrons in the 

respiratory or photosynthetic system from the cytochrome bc1 complex to the cytochrome c 

oxidase or the reaction center, respectively. 

    We used a number of different representations for this protein. The most simple one 

consisted of a spherical bead with a radius of 1.66 nm corresponding to the hydrodynamic 

radius of the folded cytochrome c and the respective, experimentally determined diffusion 

coefficient of D = 1.48 × 105 nm2/ps. [106] These particles were termed “Normal” for normal 

sized particle. To investigate particle size effects, also larger model proteins were used with a 

three-fold increased radius, labeled “Triple” in the following, and “Tiny” particles with a 

thousand-fold smaller radius. For these differently sized particles, however, the same diffusion 

coefficient as for the “Normal” particles was used to make the obtained flow rates directly 

comparable. This, of course, is not the scaling behavior that one would have in a real 

experiment. However, in this way the time that the proteins need to diffuse through a pore of a 

given length is independent of the protein size so that the fluxes can be directly compared 

without rescaling. The actual numbers for any experimental system can then be obtained by 

rescaling time and lengths. Furthermore, as we will see further down, the pores are 
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characterized by their aspect ratio, i.e., the ratio between their length and their radius. 

Rescaling only the protein size thus allows us to directly compare the size effects in pores of 

different aspect ratios. 

    Besides the 1-bead model, bead-spring polymers both for the folded and for the unfolded 

states of the protein cytochrome c were implemented, too (see Figure 5.1). We set up a 2-bead 

model of the unfolded protein and 6-bead models of the folded and the unfolded cytochrome c. 

The diffusion coefficients of the individual beads were adjusted to again obtain the same 

center-of-mass diffusion coefficient as the 1-bead models, both for the folded and for the 

unfolded representations. Hydrodynamic interactions between the beads were neglected 

because for the diffusive long-range transport investigated here only the static shape and 

overall orientation of the bead chains is important, but not the short-time internal dynamics or 

the coupling between translation and rotation. [107, 108] The 6-bead polymer model of the 

folded proteins was held in shape by additional springs such that its radius of gyration Rg 

resembled the radius of the 1-bead model. For the unfolded models, the springs were tuned 

such that in the simulations their radius of gyration corresponded to the experimental value of 

Rg of about 3.0 nm, obtained in cytochrome c denaturation experiments. [109] With a spring 

constant of 800 kJ/(mol nm2), the best agreement was obtained when the springs between the 

beads were set to 5.96 and 2.85 nm for the 2-bead and 6-bead unfolded models, respectively. 

These multi-bead models were pre-equilibrated from an initially extended conformation and a 

random snapshot was used as a template for the particle insertion interface (see below). 
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    The effective short-range repulsion between the individual beads was modeled with a 

Lennard-Jones potential as given in Eq. 5.1, where r is the distance between the surfaces of two 

beads. The constant x0 specifies the length scale of the potential, while dr is set such that ELJ = 

1 kBT for r = 0, i.e., when the spheres touch. For the interactions between the proteins and the 

membrane, the same potential was used. In this case, however, r is the distance between the 

surfaces of the protein and of the membrane. 

        
  

    
 
  

 (5.1) 

 

    For the bead-spring models, the beads had a radius of 0.55 nm and the parameters were C12 

= 9 kJ/mol and x0 = 3.0 nm for all protein models, requiring dr = 3.34 nm. The total charge of 

+7.5 e of horse-heart cytochrome c was modeled with a single centered charge on the 1-bead 

models [106], whereas this charge was distributed equally among the beads for the multi-bead 

models. The repulsion between these point charges was described by a shielded Coulomb 

Figure 5.1 Multi-bead protein 
models. The first row shows the 
one- and six-bead models for a 
folded cytochrome c. The green 
sticks represent the springs of the 
bead-spring polymer, while the 
dashed magenta lines indicate 
additional harmonic bonds that 
keep the polymers in their folded 
states. The second row gives 
examples in two different 
representations with two and six 
beads, respectively, of their 
unfolded counterparts. 
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interaction according to Debye-Hückel theory [110] with a Debye length κ = 1 nm 

corresponding to physiological ion strengths (Eq. 5.2). 

 

    
    

         
   
  

 

   

                 
(5.2) 

 

    Here, qi and qj are point charges on beads i and j, and rij is the distance between these two 

charges. Bij is the sum of the burial depths bi and bj of the point charges in their respective 

beads, which were set to the respective bead radii. κ is the inverse Debye length, and є0 and є 

are the absolute and relative dielectric constants for vacuum and aqueous solution, respectively. 

To connect the beads of the multi-bead models, we used harmonic springs (Eq. 5.3) with a 

spring constant kij and a rest length Lij, while the distance between the centers of the beads i 

and j is denoted by Rij. 

        
   
 

 
         

 
 (5.3) 

 

    Apart from the bond lengths that determine how large the multi-bead protein models are on 

average, the actual values of the interaction parameters are not crucial. We ran tests with 

different short-ranged interaction strengths, spring constants, or with and without charges on 

the beads and always obtained very similar results. The used parameter values are a 

compromise between numerical efficiency at soft interactions and an accurate definition of 

radii and pore sizes when hard interactions were used. 
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    To propagate the particles, we used the Langevin propagator recently introduced by Winter 

and Geyer. [111] In this implicit-solvent approach, a particle of mass m experiences three types 

of forces, namely the external force(s), random kicks, and a friction force, which together 

determine how the particle velocity v changes. 

 

 
  

  
            (5.4) 

 

    In Eq. 5.4, the external force term fext combines the short range, electrostatic, and harmonic 

interactions between the beads and between the beads and the membrane as described above, 

whereas the other two contributions are effective interactions that mimic the (implicit) solvent 

molecules. [112] The random kicks fr due to the thermal motion of the solvent molecules are 

distributed according to Eq. 5.5, where kB is the Boltzmann constant and δ is the Dirac delta 

function. [112] The strength of the random kicks is related to the friction coefficient γ of the 

particles. For the friction term, which describes how the solvent molecules are pushed away by 

the moving protein, a linear Stokesian form is used. 

 

                        
                 (5.5) 

 

    For the derivation of the Langevin propagator, it is more convenient to express the random 

kicks in terms of forces [111] instead of the usually given displacements [113]. The Langevin 

propagator is then obtained by an analytical integration of the Langevin equation Eq. 5.4 under 

the assumption that the total force F = fext + fr is constant over a short time interval ∆t. This 
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yields the velocity v(∆t) and the displacement ∆x(∆t) after one time step ∆t when the particle 

had the velocity v0 at the beginning of the time step. 

 

      
 

 
     

 

 
      

   

 
  (5.6a) 

       
 

 
   

 

 
 
 

 
            

   

 
   

(5.6b) 

 

    As the simulations shown here only contained large enough particles of only one size per run, 

we could have also used the conventional Brownian dynamics algorithm that is obtained from 

Eq. 5.6b in the limit of a vanishing velocity relaxation time τ = m/γ . The Langevin dynamics (LD) 

algorithm, however, is numerically not more expensive but allows running the simulations with 

larger integration time steps, because the trajectories are smoothed due to the inertia of the 

particles. 

    The simulation box was constructed as shown in Figure 5.2. Seen from the top, the box is 

quadratic with a side length of 80 nm. The pore-containing membrane is placed at half of the 

height of the box. The thickness of the membrane, and thus the length of the pores, was varied 

from 5 to 40 nm with pore radii of 4, 8, or 16 nm. The heights of the cis and trans 

compartments were 30 nm each. At bulk densities similar to typical experimental conditions, 

the simulation volume contained only a handful of particles. In all simulations, the distances 

between the pores or between the pores and the side walls of the simulation box were much 

longer than the Debye length of about 1 nm or the range of the effective short range 

interactions. Consequently, using periodic boundary conditions was not necessary as tests 
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showed. The large volumes of the cis and trans compartments of an experiment above and 

below the membrane were mimicked with our constant density interfacing algorithm [114] at 

the top and the bottom walls of the simulation box. This interfacing algorithm is based on the 

idea of a virtual boundary, placed in the middle of a volume with Brownian particles, where the 

probability of a particle passing through this virtual boundary at a given density yields the 

probability for injecting particles into the simulation box at a real wall. In the other direction, 

particles that jump across the wall from the inside are removed from the simulation. In this way, 

the particles in the simulation behave as if the simulation box was extended beyond the wall. 

With such particle injection/removal interfaces at the top and at the bottom boundaries of the 

simulation box, the concentration gradient between the cis and the trans compartments could 

be kept constant even with our relatively small simulation volumes above and below the 

membrane. This resulted in large savings of computational effort while still allowing for good 

statistics. A typical simulation contained 10 to 20 particles in the simulation volume on average 

at one time, but the simulations were usually run until about 1000 particles had translocated 

through the pores all the way from the cis to the trans side of the simulation box. 

    The simulations were started with an initially empty simulation box, into which particles were 

inserted from the constant density boundary interfaces. The analysis of the simulations was 

started after the density had equilibrated throughout the simulation volume. 
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Figure 5.2 Cartoon representations of simulation boxes. At the reservoir interfaces, constant 
particle densities were set to model the large bulk volumes of an experiment. Usually, the 
concentration at the cis side was higher such that the resultant diffusive flow of particles 
developed towards the trans side, where the proteins were “swallowed up” and counted at the 
trans side reservoir interface. The figure shows three setups with (A) a single pore with a radius 
of 16 nm in the membrane, (B) four pores of radius 8 nm, and (C) 16 pores of radius 4 nm. In all 
cases, the membrane area was 80 × 80 nm2, the heights of the cis and trans compartments 
were 30 nm, and, in this figure, the membrane had a thickness of 40 nm. 

 

5.3 Results and Discussion 

5.3.1 Verifying the linear regime 

    In a macroscopic picture of non-interacting, freely diffusing particles in the above described 

system of a porous membrane between two reservoirs, the particle flow rate from one 

reservoir to the other linearly depends on the concentration in this reservoir. The flow rate Φct 

from the cis to the trans reservoir, e.g., then depends on the concentration ccis in the cis 

compartment as Φct = a ccis, where the rate a combines the physical parameters such as the 

diffusion coefficient of the particles, the number and area of the pores, and the interaction 

between particles and pores. For a symmetric setup as investigated here, this parameter is the 
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same on both sides of the membrane. An analogous relation exists for the reverse flow rate Φtc. 

The resulting change of the concentration in the trans compartment, ctrans, then also depends 

on its volume Vtrans. 

 

       
  

 
 

      
                (5.7) 

 

With the average concentration c0 throughout the complete volume V0 = (Vcis + Vtrans), we can 

write 

     
  
    

   
      
    

       (5.8) 

 

and obtain the following differential equation for ctrans: 

 

       
  

 
   

          
            (5.9) 

 

which describes how the concentration equilibrates exponentially towards c0 from ctrans(t = 0) = 

0: 

                    
   

          
    (5.10) 
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    The interesting quantity is the pore-translocation rate a that depends non-trivially on the 

pore and on the particle properties when the particle diameters are comparable to the pore 

dimensions as we will show in the following. 

    When deriving the exponential relaxation curve for ctrans(t), we assumed that the diffusive 

flow rate through the pores scales linearly with the concentration difference across the 

membrane and that the net translocation is the sum of the forward and backward flows. Under 

these conditions, the complete relaxation behavior of a given pore setup can be extrapolated 

from the simulated translocation rate at a single density difference. With finite sized particle, 

however, crowding will occur at higher densities and the relation between concentration 

difference and translocation rate will become nonlinear. To verify that our simulation 

parameters are within the linear, non-crowding regime, we ran simulations with a fixed pore 

setup and varying combinations of concentrations on the cis and the trans sides. In these tests, 

the membrane of 20 nm thickness contained a single pore of 16 nm radius. 

    To determine the flow rate Φct from the cis to the trans reservoir, we monitored the 

trajectories of those particles that were inserted into the simulation at the constant density 

interface of the cis side and counted how many of those were taken out of the simulation at the 

trans side interface. For the reverse flow rate Φtc, those particles were counted that were 

inserted at the trans interface and left the simulation volume at the cis reservoir interface. The 

flow rates were then determined from a straight line fit to the respective counts vs. the 

simulation time to account for the initial equilibration phase and to smoothen out the statistical 

fluctuations of the counts. 
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    The relaxation of the particle densities was probed at various intermediate concentration 

ratios (represented as ccis:ctrans) of (100:0), (90:10), (80:20), (70:30), (60:40), and (50:50), where 

100% corresponded to a bulk protein concentration of 1.5 g/L, which is a typical value in 

protein translocation experiments [P. Huber, private communication]. This set of simulations 

can be regarded as the specific conditions at six instantaneous points in a protein translocation 

experiment. The first point (ccis:ctrans = 100:0) corresponds to the initial preparation of the 

experiment when protein solution is injected into the cis compartment while the trans 

compartment contains pure buffer solution. The net flow rate at this time point is the highest 

and then it gradually slows down over time as the concentration difference relaxes. Finally, the 

flows from both directions of the membrane become equal so that the net flow vanishes. 

Shown in Figure 5.3 are the simulated individual flow rates from cis to trans and from trans to 

cis as well as the resulting net flow rates across the membrane for the selected density ratios. 

The individual flow rates Φct and Φtc show a linear dependence on the particle concentration of 

the departure reservoir. By balancing each anti-flow pair, we found that also the net flow rate 

Φnet is linearly proportional to the concentration difference between the reservoirs as expected. 

The results confirm that we can predict the net flow rate of the whole translocation process 

from simulations at any non-equilibrium concentration ratio. Thus, for simplicity, in all 

subsequent simulations of the particle translocation in different system setups, the 

concentration ratio was set to (100:0). 
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Figure 5.3 Diffusive flow rate vs. concentration gradient obtained from simulations with a single 
pore of 16 nm radius and 20 nm length for the “Normal” sized model proteins. The flow from 
cis to trans counts all particles that were inserted at the cis interface and left the simulation on 
the opposite trans interface, while the trans to cis flow counts translocations in the opposite 
direction. The net flow is the difference between these two individual flows. The 
concentrations in the cis and trans compartments are given in percent of the initial 
concentration of 1.5 g/L. Dashed lines are linear fits. The statistical errors of all data points are 
about 3% so that the error bars would be covered by the symbols. 

 

5.3.2 Pore translocation of folded proteins 

    To investigate how the pore geometry affects the protein translocation rate, we ran 

simulations with a single pore on the membrane (Figure 5.2A) where the pore length Lpore was 

varied from 5 to 40 nm in 5 nm increments and its radius Rpore was set to 4, 8, or 16 nm, 

respectively. For the diffusing particles, we used the three differently sized single bead models 

described in Section 5.2. To reduce the complexity of the system, the interactions between the 

protein particles were ignored such that the simulations were effectively run at vanishing 

protein concentration. 



 

90 
 

    In the simplest one-dimensional model for the simulated scenario, the bulk densities extend 

up to the two ends of the pore and a linear gradient develops inside the pore. In that case, the 

resulting diffusive flow rate decreases inversely proportional to the pore length, and increases 

with the pore area Apore = πRpore
2 and the bulk diffusion coefficient D of the particles:  

 

                      
              

     
 (5.11) 

 

    Here, Apore is a scaling factor for the overall system size and D determines the time-scale. 

Obviously, for very short pores (with Lpore → 0), the flow rate diverges. In those cases, one can 

expect that the three-dimensional transport from the bulk to the pore entrance and away from 

the pore exit will determine the translocation rate. This is described in a more realistic model 

that was derived by Brunn et al. [115] via a Green’s function description. This analytical model 

gives the stationary particle density and the resulting flow through a single membrane pore in 

an infinite membrane between two infinite half-space reservoirs. Replacing the dimensionless 

variables of this model by the variables of our setup yields the following equation for the total 

flow rate: 

           
              

      
  
      

 (5.12) 

 

    Here, α is a constant close to unity whose exact value depends on Lpore. For our purposes, it 

can be approximated as α = 1 with a negligible overall error in Φtheo. Similar to the simple model 

of Eq. 5.11, the diffusive flow rate through the pore scales linearly with the pore area, the 
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concentration difference, and the diffusion coefficient of the particles. The interesting 

prediction of this explicitly three-dimensional model is that the diffusive flow rate Φtheo 

decreases not only with the pore length, but that there is an additional radius dependent offset. 

This effect takes care of the fact that, especially for short pores, the density gradient is not 

confined to the pore interior but that the particle density above the ends of the pore is affected 

on a length scale comparable to the pore radius. Consequently, for very short pores, the flow 

rate scales with Apore/Rpore, i.e., it is proportional to the pore radius and not to the pore area. 

Only for very thin or long pores with Lpore >> Rpore, the region above the pore can be neglected 

and both models (Eqs. 5.11 and 5.12) give the same flow rate. For wider pores, the three-

dimensional model of Brunn et al. [115] predicts a smaller finite particle current for short pores 

and a slower-than-inverse decrease of the flux with the pore length. 

    To compare the results from our simulations to the theoretical models, we fitted the 

obtained particle flow rates with the following simplified form of Eq. 5.12 where all scaling 

factors are summarized into C1 and a potential length offset is described by C2Rpore. 

 

     
  

             
 (5.13) 

 

    In the ideal case when the simulations reproduce the theoretical model of Eq. 5.12, C2 would 

be close to π/2 ≈ 1.57 whereas any deviation from this value indicates that our simulations with 

the finite sized particles do not behave exactly like the theoretical continuum model. 

    The results from the simulations are summarized in Figure 5.4, which shows how the particle 

flow rate Φ decreases with the pore length for the different pore radii and particle sizes. For 
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each combination of pore radius and particle size, the decrease of Φ with Lpore can be fitted well 

by Eq. 5.13. The fitting results are given in Table 5.1 together with the values of the expected fit 

constants from Eq. 5.12. There is no result for the “Triple” particles and the small 4 nm pores, 

because in this case the particles are larger than the pore opening. The first observation is that 

the scaling constants C1 obtained from the simulations are, except for one case, larger than the 

theoretically expected values. This is interesting insofar as one might expect that Φ is 

determined by the smaller effective pore area π(Rpore – Rparticle)
2, whereas in our simulations a 

larger particle radius only slightly reduced the observed flow rate. We note that the analytical 

model assumes a continuous density what corresponds to many infinitely small particles. In 

contrast, the particles used in our simulations had radii not much smaller than the pores. For 

the “Tiny” particles having negligibly small radii compared to the pore radius, the obtained fit 

parameters and the flow rates are indeed closer to the theoretical results than for the larger 

particles. 

 

Table 5.1 Fit parameters for the particle flow rates according to Eq. 5.13 for simulations with 
the three single bead models and pores of various lengths and radii. The theoretical values 
were obtained from Eq. 5.12 by inserting the parameters of our system setups. 

Rpore(nm) 16  8  4 

Particle size C1 C2  C1 C2  C1 C2 

Normal 11 1.9  2.8 2.50  0.47 2.5 

Tiny 9.8 1.52  2.4 1.80  0.56 1.8 

Triple 10.3 2.0  2.15 2.90  N/A N/A 

Theoretical value 8.56 1.57  2.15 1.57  0.54 1.57 
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    A similar trend is obtained for the effective length correction factor C2. The values of C2 are 

generally larger than predicted from the analytical model and the deviations increase with 

particle size. This again means that our simulations on the one hand recover the analytical 

model in the limit of vanishing particle size whereas, on the other hand, they provide evidence 

for finite-size effects for small pores on biologically relevant length scales. 

    As mentioned above, one might suspect that the simulation results can be fitted better when 

the particle size is taken into account via an effective pore radius Reff = Rpore – Rparticle and an 

effective pore length Leff = Lpore + 2Rparticle.We therefore also tried to fit the obtained flow rates 

with various combinations of the actual and the effective pore radii and lengths. Although the 

overall results gave a qualitatively similar picture, the parameters were less consistent. These 

results are therefore not shown here. 

Figure 5.4 Decrease of the diffusive 
flow rate with the pore length for 
pores of Rpore = 16 nm (A), 8 nm 
(B), and 4 nm (C), and the three 
differently sized protein models. 
The dashed lines are fitting curves 
according to Eq. 5.13. The 
statistical errors of all data points 
are about 3% so that the error bars 
would be covered by the symbols. 
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5.3.3 Density profiles along the pores 

    When Brunn and his colleagues derived their analytical continuum solution to the diffusive 

current [115], they assumed that the concentration profiles were symmetric with respect to the 

central plane of the membrane. As shown in Figure 5.5, this was not the case in our simulations 

with the finite sized particles. These concentration profiles were determined from the 

trajectories by counting the particles in disk shaped bins of radius 11 nm and 3 nm for Rpore = 16 

nm and Rpore = 8 nm, respectively, stacked along the pore axis. We only analyzed these inner 

parts of the simulation volume so that the inner pore walls and the membrane surface would 

not affect how the radius had to be chosen at each height. According to Figure 5.5, the density 

gradients are roughly linear inside the pore and in the two bulk regions, albeit with different 

slopes. Whereas the analytical theory predicts a continuous and monotonic decrease of the 

concentration from the cis to the trans compartment, in our simulations, interestingly, (i) the 

density around the pore entrance on the cis side was increased and (ii) the resulting steeper 

gradient inside the pore extended slightly beyond the pore exit into the trans compartment. 

These “discontinuities” were smaller for the “Tiny” particles and the wider pores, and more 

pronounced with the larger “Triple” model proteins or a narrower pore. This clearly shows that 

the analytical theory, which assumes a continuum of infinitely small non-interacting particles, 

breaks down when the dimensions of proteins and pore become comparable. In the simulations 

used for Figure 5.5, the particles did not interact, but also with a repulsive interaction between 

the particles we got the same density profiles, at least at the low densities used here. Also 

when the particle-pore potential was changed, the picture did not change qualitatively. This 

effect must therefore be related to the relative sizes of the proteins and the pores. 
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Figure 5.5 Concentration profiles along the pore axis for proteins of different radii and for pores 
with Rpore = 16 nm (upper row) and 8 nm (lower row). In all cases, the pore length was Lpore = 40 
nm, i.e., the pore extends from –20 to 20 nm, the cis-compartment from 20 to 50 nm, and the 
trans-compartment is from –50 to –20 nm. The concentrations were determined within 
cylindrical volumes with a radius of 11 and 3 nm, respectively, centered along the pore axis. 

 

    One possible explanation of this density peak around the pore entrance might be that, even 

without any attraction between the proteins and the membrane, the model proteins 

accumulate close to the membrane and then slide into the pore parallel to the membrane. To 

investigate whether this is the case, we determined the radial density distributions of the 

proteins perpendicular to the pore axis from the simulations. Figure 5.6 presents the results 

from a pore of Lpore = 40 nm and Rpore = 16 nm and the three different particle sizes. Panel (A) 

indicates that the “Normal” particles started to feel the pore wall when their centers were 

more than 14 nm away from the pore axis while this occurred for the larger “Triple” particles 
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already at r = 11 nm [panel (C)]. Only the very small “Tiny” particles could make use of the full 

pore diameter [panel (A)]. These three density distributions illustrate that the density peak 

around the pore entrance is not due to an accumulation of the proteins on the membrane 

surface laterally from the pore entrance, but that the density peak is limited to the volume 

above the pore entrance. A similar particle accumulation can be observed at the pore exit. Here, 

the particles may diffuse away from the membrane more easily towards the ctrans = 0 interface 

than on the cis side, where the higher bulk density pushes them into the pore. Consequently, 

the step at the pore exit is less pronounced. 

    To verify that this is not an artifact of our setup or a bug in the simulation software, we also 

ran simulations in which the values of ccis and ctrans were swapped. From these simulations, we 

obtained the reversed profiles as expected. 

 

Figure 5.6 Radial distributions of the particle concentrations through the simulation box along 
the pore axis. Here, the pore again had Rpore = 16 nm and Lpore = 40 nm. The protein models for 
the three panels are (A) Normal, (B) Tiny, and (C) Triple. The partition along the pore axis 
(vertical axis here) is the same as the horizontal axis of Figure 5.5. The small volume of the 
innermost bins near the pore center resulted in poor statistics, thus the densities are given only 
for radii greater than 2 nm. 
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    We suspected that the increased particle density could result from a locally reduced diffusion 

coefficient. To test this hypothesis, we computed the diffusion coefficients of the particles 

along and perpendicular to the axis of an infinitely long pore. The diffusivity of the particles 

along the pore axis, which is an unconfined dimension in this setup, also represents the 

diffusive behavior of the model proteins in the bulk. In an infinite bulk scenario or under 

periodic boundary conditions, our LD propagation algorithm indeed reproduces the long-time 

diffusion coefficient that was assigned to the particles. For pores of Rpore = 8 and 16 nm radius, 

we compared the one dimensional diffusion coefficients Dx = ∆x
2
(∆t)/2∆t along the pore axis to 

Dyz (which is the average of the extracted Dy and Dz) perpendicular to the pore axis for varying 

observation time intervals ∆t. One expects that the confinement will become visible for longer 

∆t, whereas for short observation intervals, the particles should behave as in the bulk. As 

shown in Figure 5.7, for short ∆t < 100 ps, the particle motion is in the weakly damped, still-

ballistic Langevin regime where the diffusivity increases with the length of the observation 

interval (see Eq. 5.6). For comparison, the velocity relaxation time of the model cytochrome c is 

τ = 1.3 ps and the simulation time step was 1 ps for these tests. When the observation interval 

was longer than 100 ps, the particle motion was in the overdamped regime so that the diffusion 

coefficients converged to the long-time bulk value of 1.48 × 10−5 nm2ps−1. In the unconfined 

direction along the pore axis, Dx remained constant for arbitrarily long intervals ∆t. However, in 

the confined directions perpendicular to the pore axis, the diffusion coefficient decreased with 

∆t because the particles bumped into the inner wall of the pore, effectively bouncing back and 

forth in these directions several times during a long observation interval. This effect sets in 

around ∆t ≈ 104 ps for the larger pore with Rpore = 16 nm and is more pronounced for the larger 
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particles (Figure 5.7A) due to the smaller effective radius (see Figure 5.6C). For the smaller pore 

with Rpore = 8 nm, Dyz decreased already from ∆t ≈ 103 ps on Figure 5.7B. In this smaller pore, 

the particle size makes an even larger difference. 

 

Figure 5.7 Diffusion coefficients of the particles inside infinitely long pores of Rpore = 16 nm (A) 
and Rpore = 8 nm (B) vs. the observation time interval. The one-dimensional diffusion coefficient 
Dx in the direction along the pore axis (filled triangles) is the same for both pore radii and all 
particle sizes. The other three curves (open symbols) give diffusion coefficients Dyz (which are 
the averages of the measured Dy and Dz) perpendicular to the pore axis for the three 
differently sized protein models. 

 

    For very long observation intervals, the motion of the particles inside the pore can thus be 

considered an effectively one-dimensional diffusion since the diffusivity in the perpendicular 

directions approaches zero. On the other hand, the membrane with the pore is still a three-

dimensional system with a finite length. Consequently, the local particle densities are still 

related to the 3D diffusion coefficient D = (Dx + Dy + Dz)/3, which with Dy = Dz = 0 shrinks to a 

third of its bulk value in the central regions of the long pores. In other words, when a particle 

enters the pore from the bulk compartment, the diffusivity in the perpendicular direction is 
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reduced while the diffusivity along the pore axis remains unchanged. This reduction of the 

overall diffusion coefficient effectively traps the particle in the pore, and the local 

concentration increases. This does not occur in the analytical model where the particles are 

negligibly small compared to the pore. 

    We thus find that the geometric confinement by the pore leads to a reduced diffusivity of the 

permeating particles, resulting in an accumulation of particles at the pore entrance. This 

accumulation, in turn, leads to a steeper concentration gradient along the pore and thus to an 

increased diffusive flow rate. This effect is more pronounced for larger particles and longer 

pores. This explains why in our simulation setup the diffusive flow rate decreases not as strong 

for longer pores as predicted by the analytical theory. Another way to view this behavior is that 

the pores appear to be wider than they really are. 

    In our simulations, we had neglected hydrodynamic interactions (HI) between the particles 

and between the particles and the pores. While the omission of the interparticle HI can be 

easily justified from the very low densities of less than 20 particles in the complete simulation 

volume, including the hydrodynamic interactions between the particles and the membrane and 

its pores would certainly affect the results. While there is a formula available for how the 

diffusion coefficient changes next to an infinite planar wall [116], no analytical description 

exists yet for particles inside a cylinder of a finite length. When a particle approaches a fixed 

wall, its diffusion coefficient is reduced due to the no-slip boundary conditions. Similarly, its 

mobility inside of a pore is reduced more strongly for narrow pores. Using the same arguments 

as above, the hydrodynamic interactions between the particles and the membrane surface 

should reduce the probability to first hit the pore opening, whereas the even lower diffusion 
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coefficient inside the pore should lead to an even more pronounced accumulation of particles 

at the pore opening and a corresponding steeper gradient. We expect that this would lead to an 

even stronger compensation for longer pores. Thus, with HI, we expect that the flow rate is 

lower for short pores but that the transmission of longer pores is higher relative to the 

analytical expectations. HI is actually a finite-size effect, too. The diffusion coefficient of a 

particle above the wall is affected on a length scale of about its diameter. This means that the 

infinitely small particles of a continuum description can come arbitrarily close to the membrane 

and the pore walls before they feel any hydrodynamic influence from them. 

 

5.3.4 Translocation of unfolded proteins: Multi-bead models 

    In this section, we show how the folding state of a protein affects its translocation through a 

pore. For this, we performed similar Langevin dynamics simulations as above but with bead-

spring polymers instead of the single bead models. Again, the membrane had a size of 80 × 80 

nm2 and the pore radii were set to 4, 8, or 16 nm. Both to increase the diffusive flow in the 

simulations with the narrow pores (e.g., Rpore = 4 and 8 nm) and to have the same porosity of 

the membrane with the different pore sizes, this time we placed 16 pores (arranged as a 4 × 4 

grid) into the membrane when Rpore was set to 4 nm, 2 × 2 = 4 pores for Rpore = 8 nm, and a 

single pore for Rpore = 16 nm. In these simulations, also non-bonded electrostatic and short-

ranged repulsive interactions between the particles were included. 

    The protein translocation rates obtained from the simulations were again fitted against the 

pore lengths using Eq. 5.13. The respective results are given in Figure 5.8 and Table 5.2. The 

results with the 1-bead model [panel (A)] are, as expected, very similar to the results from 
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Section 5.3.2 with the “Normal” sized particles. For the large 16 nm pore, the same fit constants 

were obtained, whereas for the smaller 8 and 4 nm pores, C2 was slightly larger due to the 

inter-particle interactions. The folded 6-bead model has a slightly larger outer radius, 

correspondingly C1, that determines the total scaling of the flow rate, is lower than for the 1-

bead representation. Interestingly, for the more flexible 6-bead model C2 is closer to the 

theoretical value than with the non-deformable 1-bead proteins. 

 

Table 5.2 Fit parameters of Eq. 5.13 for the multi-bead models. In these simulations, the same 
total pore area was used, but the fit parameter C1 is normalized per pore for comparison with 
the single bead results given in Table 5.1. 

Rpore (nm) 16  8  4 

Particle size C1 C2  C1 C2  C1 C2 

1 bead 11.2 1.9  2.9 3.2  0.47 3.4 

6 beads folded 10.0 1.7  2.5 2.7  0.28 2.1 

2 beads unfolded 10.0 1.7  1.7 1.6  0.15 0.82 

6 beads unfolded 10.4 2.0  1.7 1.8  0.089 0.81 

 

    A different picture was obtained for the bead-spring models of the “unfolded” protein that 

were assigned the same center-of-mass diffusion coefficients as the folded models [panels (C) 

and (D)]. Whereas for the large 16 nm pore the diffusive flow rate was about the same as for 

the “folded” particles, the flow rate was strongly reduced for narrower pores. But not only the 

values of C1 are smaller than for the compact, folded models, also C2 is smaller. For the 

narrowest 4-nm pores, C2 is even smaller than the C2 = π/2 prediction of the continuum model. 

The value of C2 = 0.8 for these narrow pores implies that here the transport of the unfolded 
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protein chain is an essentially one-dimensional process once the protein is inside the pore, 

while the small values of C1 indicate that it is difficult for the Gaussian-chain like proteins to 

thread into the narrow pore opening. For comparison, the 2-bead model of the unfolded 

protein has a length of about 7 nm, whereas the 6-bead model can be extended to a length of 

nearly 15 nm (five bonds of 2.85 nm each plus two bead radii). Consequently, these unfolded 

bead-spring models do not fit into the small 4 nm pores in arbitrary orientations and the 

obtained flow rates are thus three- to fivefold lower compared to the wider pores. 

 

 

Figure 5.8 Diffusive flow rate vs. pore length for various pore sizes and protein models. In all 
scenarios, the same total pore area of a 16-nm pore was used, i.e., 16 pores with 4 nm radius 
and 4 pores of radius 8 nm. The protein models are the folded “Normal”-sized 1-bead model 
[panel (A)] and the 6-bead folded (B), the 2-bead-unfolded (C), and the 6-bead unfolded (D) 
bead-spring representations. The dashed lines are fitting curves according to Eq. 5.13. The 
statistical errors of all data points are about 3% so that the error bars are smaller than the 
symbols. 
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    When the extended length of the unfolded protein is long compared to the pore diameter 

then the polymer chain has to align along the pore. This could be observed clearly in our 

simulations for the 6-bead unfolded model. We found that its averaged radius of gyration of 

about 3 nm did not change substantially even inside the smallest pores of Rpore = 4 nm. 

Although the model had a similar averaged radius of gyration in the bulk and inside the pore, 

this polymer chain model needed more time to find a suitable conformation and orientation to 

enter a pore. Moreover, the geometric confinement inside the pore also affected the 

orientation of the unfolded proteins when they moved through the pore. 

    The orientation of the bead-spring polymer models can be described by the vector pointing 

from the first to the last bead. Figure 5.9 displays the probabilities for a certain angle between 

the pore axis and the vector from the first to the last bead for the 6-bead model in the three 

differently sized pores. In the bulk volume far away from the membrane (at heights between 25 

nm and 40 nm), the polymer chains were oriented randomly. Directly above the membrane, the 

orientation of the polymers was mainly perpendicular to the pore axis because of the 

membrane surface that confines their conformations when they are searching for the pore. 

Then, once inside the pore, the polymer chains were aligned mainly parallel to the pore axis. As 

shown in Figure 5.9, this behavior could be observed for all pore sizes, but was most prominent 

in the narrow 4-nm pores [panel (C)] and hardly noticeable in the wide 16 nm-radius pores 

[panel (A)]. This again shows that for long polymers and narrow pores, the entrance into the 

pore greatly affects the translocation rate. 

 



 

104 
 

 

Figure 5.9 Probability distributions of the orientational preference of the 6-bead unfolded 
protein model inside the pores. The plots give the color coded probability to observe a given 
angle between the pore axis and the vector from the first to the last bead of the protein model 
(vertical axis) vs. the height in the simulation volume (horizontal axis). For each height bin, the 
probabilities were normalized independently. In these simulations, the membrane had a 
thickness of 40 nm and the two compartments above and below the membrane were 30 nm 
high with the trans side on the left and the cis compartment on the right side of the plots. The 
pore radii for the three panels are (A) 16 nm, (B) 8 nm, and (C) 4 nm. The relative fluctuations 
are larger in the trans-compartment because of the lower density. 
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6 Putative cholesterol-binding sites in human immunodeficiency virus 

(HIV) coreceptors CXCR4 and CCR5 

    This work had been published as “Zhukovsky MA, Lee PH, Ott A, Helms V: Putative 

cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5. 

Proteins 2013, 81(4):555-567”. My own contribution of this work was to design and perform all 

docking calculations and to write part of the manuscript (explaining the docking method and 

the corresponding results) for publication. 

 

6.1 Background 

    Human immunodeficiency virus Type 1 (HIV-1) and Type 2 (HIV-2), which are etiologic agents 

of the acquired immunodeficiency syndrome (AIDS), infect human cells via fusion of the virus 

membrane with a host cell membrane. The HIV envelope (Env) glycoprotein is organized as 

trimer. Each protomer consists of two noncovalently bound subunits, a surface subunit (SU) and 

a transmembrane (TM) subunit. The SU and TM subunits of HIV-1 Env are named gp120 and 

gp41, respectively, whereas gp125 and gp36 are the respective SU and TM subunits of HIV-2. 

The fusion process is initiated by interaction of HIV Env with the cellular membrane receptor 

CD4 and one of several coreceptors, usually CXCR4 or CCR5. CXCR4-using HIV strains are called 

X4-tropic, and those using CCR5 are called R5-tropic. [9] 

    CXCR4 and CCR5 are chemokine receptors. Chemokines are a multigene family of cytokines, 

which are small signaling protein molecules that are secreted by cells.  CXCR4, CCR5, and other 

chemokine receptors belong to the rhodopsin family of seven-transmembrane G protein-
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coupled receptors (GPCR). CXCR4 is a receptor for the chemokine CXCL12 (also known as SDF-1). 

CXCR4 plays a role in trafficking of naive lymphocytes, fetal development, migration of several 

types of neural cells, mobilization of hematopoietic stem cells, and synaptic transmission. 

CXCR4 has been implicated in rheumatoid arthritis, in the WHIM (Warts, 

Hypogammaglobulinemia, Infection, and Myelokathexis) syndrome, in different types of cancer, 

and in the immune response during fungal asthma. [9, 117] A crystal structure of human CXCR4 

has been determined recently. [118] CCR5 is a receptor for chemokines CCL3 (also known as 

MIP-1), CCL4 (MIP-1) and CCL5 (RANTES). CCR5 is involved in the migration of Th1 cells, NK 

cells, and monocytes toward an increasing concentration of  chemokines. CCR5 alleles play a 

role in many diseases, including infectious and inflammatory diseases as well as cancer. [9, 117] 

However, the crystal structure of CCR5 was just resolved recently after we conducted this study. 

[119] 

    Cholesterol is an essential component of eukaryotic membranes and has been reported to 

have a modulatory role on the structure and functional activity of many membrane proteins. It 

can modulate membrane receptor function either by direct binding to the respective protein 

and thereby possibly inducing further conformational changes, or in an indirect way by altering 

the physical properties (e.g., fluidity) of the membrane in which the protein is embedded, or by 

a combination of both effects. [120] 

    Depletion of cholesterol from target cells inhibits entry of both X4 and R5 strains of HIV-1 and 

membrane fusion mediated by Env of both X4-tropic and R5-tropic HIV-1. However, the fusion 

activity could be recovered by adding back cholesterol to these cells. Furthermore, binding of 

CXCL12 and of a monoclonal conformation-dependent anti-CXCR4 antibody 12G5 to CXCR4-
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expressing cells was inhibited by cholesterol extraction from these cells. Cholesterol extraction 

from CCR5-expressing cells inhibited binding of CCL4 and anti-CCR5 antibodies to CCR5. 

Reloading cells with cholesterol restored binding of these molecules to CXCR4 and CCR5. Loss in 

ligand binding after cholesterol depletion was suggested to be likely due to conformational 

changes in CXCR4 and CCR5. [121-123] 

    Moreover, oxidation of cholesterol to 4-cholesten-3-one by cholesterol oxidase (CO) inhibits 

binding of CXCL12 and CCL4 to CXCR4 and CCR5 on the cell surface, respectively, resulting in the 

inhibition of chemokine-mediated intracellular calcium mobilization and chemotaxis. [124] CO 

treatment inhibited HIV-1 infection through CXCR4. Moreover, CO treatment induced 

conformational changes in CXCR4 and CCR5 as detected by differential loss in binding of 

epitope-specific monoclonal antibodies. Interestingly, the loading of treated cells with 

cholesterol after CO treatment does not restore the binding of monoclonal antibodies or 

chemokines to chemokine receptors CXCR4 and CCR5. [124] This may be expected, if both 

cholesterol and 4-cholesten-3-one have relatively high affinities and low off rates for 

chemokine receptors in the membrane, and cholesterol stabilizes the native conformations of 

CXCR4 and CCR5, whereas 4-cholesten-3-one does not. Studies on the influence of cholesterol 

oxidation on CXCR4 and CCR5 strongly suggests that cholesterol does not influence these 

receptors through an indirect way by disrupting lipid rafts or by changing membrane fluidity, 

but instead show direct binding of cholesterol to CXCR4 and CCR5. Taken together, all these 

prior data demonstrate that cholesterol is essential for the conformational stability and 

function of CXCR4 and CCR5. [124] 
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    In this study we report the presence of a putative cholesterol-binding site located in a groove 

between transmembrane domains (TMD) 1 and 7 of CXCR4, near the inner membrane-water 

interface. Sequence alignment showed that a similar putative cholesterol-binding site may also 

be present in CCR5. We suggest that these cholesterol-binding sites in CXCR4 and CCR5 are 

responsible for the influence of cholesterol on various properties of these receptors. 

 

6.2 Materials and Methods 

6.2.1 Sequence alignment 

    The amino acid sequences of CXCR4 and CCR5 orthologs were retrieved from the GenBank 

[125] and Ensembl [126] databases. The amino acid sequences given in Table 6.3, Tables A.3 

and A4 (in Appendix) were aligned by the web version of the Clustal Omega software [127] at 

http://www.ebi.ac.uk/Tools/msa/clustalo/. The amino acid sequences of CXCR4 and CCR5 

orthologs represent different species belonging to diverse taxa that possess genes for these 

chemokine receptors. Generally, species in Tables A.3 and A.4 are presented in order from less 

divergent (on the top) to more divergent (on the bottom) from Homo sapiens. The putative 

CRAC motifs [128] in chemokine receptors were manually identified in these alignments. 

 

6.2.2 Docking analysis 

    To find the optimal binding site and binding pose of a single cholesterol molecule on the 

surface of CXCR4, the software AutoDock4 (version 4.2) [45] was used for the docking 

calculations in the rigid protein-flexible ligand scheme. AutoDock4 explores and evaluates 
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ligand conformations according to the receptor structure during the docking simulation. First, 

the structure of the ligand cholesterol was completed by applying the program PRODRG [129] 

to add hydrogen atoms. To determine the partial atomic charges, quantum mechanical 

calculations were performed with the GAUSSIAN 03 program [130] at the Hartree-Fock level 

with the 6-31G* basis set. The program Antechamber from the Amber9 package [131] was used 

to compute the RESP (Restrained ElectroStatic Potential [132]) partial charges of the ligand. The 

web server PDB2PQR (version 1.8) [133] was used to add hydrogen atoms on the X-ray protein 

structures and to assign the partial charges of each atom according to the Amber parm94 force 

field. [134] The python scripts prepare_ligand4.py and prepare_receptor4.py from the package 

AutoDockTools4 [45] were then used to create the united atom models for the ligand and 

protein and prepare PDBQT files for the subsequent docking calculation. 

    It is generally not efficient to perform docking calculations in a huge grid box that encloses 

the whole protein, due to the excessive run time caused by the vast search space. Instead, we 

adopted a divide-and-conquer scheme to solve this problem for all protein docking cases in this 

study. We used a grid box of 50 × 66 × 40 grid points along the three Cartesian axes and a 

spacing between neighboring grid points of 0.375 Å. The only exception is Na+-K+ transporting 

ATPase where a larger grid box (60 × 70 × 50) was adopted due to its larger size. Grid boxes 

were arranged in three layers with each layer containing 12 grid boxes (Figure 6.1). The boxes 

overlap with adjacent boxes and cover the entire transmembrane lipid accessible surface of the 

protein. Because of the relatively small size of each grid box, the docking runs finished in a 

reasonable time (10–20 hours on a 2.8 GHz AMD Opteron core). 
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    The Lamarckian genetic algorithm (LGA) was applied for the optimization processes 

throughout the docking calculation. The population size was set as 250 and the optimization 

was terminated after 5 × 107 energy evaluations which equal about 2.4 × 105 generations. Sixty 

LGA runs were carried out for each grid box and then the obtained ligand conformations were 

clustered using a threshold of 2.0 Å RMSD. 

 

Figure 6.1 Global docking scheme. CXCR4 is shown in surface representation. The structure of 
the attached T4 lysozyme is not shown for clarity. Thirty-six partially overlapping grid boxes 
bounded by frames cover the entire target surface of CXCR4. The left figure shows a side view 
and the right one the top view. 

 

6.3 Results and Discussion 

6.3.1 CRAC motifs in CXCR4 and CCR5 

    An important cholesterol binding motif in proteins is the cholesterol recognition/interaction 

amino acid consensus (CRAC) motif. This motif is defined by the presence of the pattern L/V-X1-
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5-Y-X1-5-R/K, where X1–5 represents between one and five residues of any amino acid. [128] It 

has been proposed that the aromatic ring of tyrosine could stack with one of the hydrocarbon 

rings of cholesterol, and the positively charged residue (arginine or lysine) may interact with the 

hydroxyl group of cholesterol. This motif is present in various proteins that are targeted to lipid 

rafts. CRAC motifs were recently identified in various GPCRs. [135] A conserved CRAC motif 

LWYIK is present in the gp41 subunit of the HIV-1 envelope glycoprotein, adjacent to its 

transmembrane helix, and mutations to this motif arrest HIV infection at the hemifusion stage. 

The LWYIK pentapeptide was shown to interact with cholesterol, whereas a modified IWYIK 

pentapeptide that does not contain the CRAC motif exhibited no preferential interaction with 

cholesterol. [136, 137] 

    We also attempted to identify the CRAC motif in the HIV receptor CD4 and major HIV 

coreceptors, CXCR4 and CCR5. We found that human CD4 does not contain any CRAC motif. 

Motif analysis of major HIV coreceptors identified three CRAC motifs in human CXCR4 and one 

in human CCR5. The CRAC motif that we identified in CCR5 is located in the TMD5 and involves 

residues L208/V209/V211-Y214-K219. The three CRAC motifs determined in CXCR4 are: (1) 

CRAC1 motif contains V59/L61/V62-Y65-K67/K68/R70 and is located partly in TMD1 and partly 

in the intracellular loop 1 that consists of residues 65 to 71; (2) CRAC2 motif is formed by 

V214/L216-Y219-K225 in TMD5; (3) CRAC3 motif involving L297-Y302-K308 is located partly in 

TMD7 and partly in the intracellular C-terminus that starts at residue A303.  

    However, the molecular docking analysis performed in this study showed that the three CRAC 

motifs in CXCR4 do not give rise to energetically favorable docking sites and are, therefore, 
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most probably, not functional. Instead, we identified a putative cholesterol-binding site in 

CXCR4 that is formed ‘‘collectively’’ by the CRAC1 and CRAC3 motifs (see Section 6.3.3). 

 

6.3.2 Reproducing known interaction modes of cholesterol with -helical transmembrane 

proteins 

    The AutoDock4 scoring function we used [138] has been parameterized on globular, soluble 

proteins that bind ligands in an aqueous environment. Here, however, the cholesterol binding 

occurs in the immediate vicinity of a membrane which is a different case. Before applying 

AutoDock4 in a predictive docking scenario to CXCR4, it was necessary to perform a thorough 

benchmark for its ability of reproducing known interaction modes of cholesterol with -helical 

transmembrane proteins. For this, we scanned the PDBTM database [22] for structures of -

helical transmembrane proteins that were co-crystallized with cholesterol. Such a test of 

repredicting known interactions is known in the protein-ligand docking field as a ‘‘redocking’’ 

scenario. PDBTM (latest updated on June 28, 2012) contained only 11 structures of -helical 

transmembrane proteins in complex with cholesterol. Among these 11 structures are 6 

structures of 2-adrenergic receptor, 3 of Na+-K+ transporting ATPase, and one each for 

Acetabularia rhodopsin and mouse -opioid receptor. For the redocking test, we selected one 

case out of the four different groups; their PDB IDs are 2RH1 [139, 140], 3KDP [141], 3AM6 

[142], and 4DKL [143], respectively (Figure 6.2). The 2RH1 contains three bound cholesterol 

molecules per protein protomer; 3AM6 contains two bound cholesterol molecules. In both 

cases, we compared the results of our redocking benchmark against the cholesterol 

conformation in the co-crystal having most contacts or interactions with the protein. 
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Figure 6.2 Redocking to cholesterol-binding sites found at four -helical transmembrane 

proteins. The protein models in each panel are (A) 2-adrenergic receptor (2RH1), (B) 

Acetabularia rhodopsin (3AM6), (C) -opioid receptor (4DKL), and (D) Na+-K+ transporting 
ATPase (3KDP). The proteins are shown in a surface representation and the cholesterol 
molecules as sticks. The cholesterol molecules colored in magenta are the conformations with 
the lowest RMSD produced by our docking calculation, whereas the cholesterol molecules 
colored in cyan were co-crystallized with the proteins. 
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Table 6.1 Redocking of cholesterol to four -helical transmembrane proteins 

  Global docking 
Conformation with the lowest 
RMSD 

PDB ID Protein name 
Number of  
conformation 

Distribution 
of energies 
(kcal/mol) 

Rank / Energy 
(kcal/mol)a 

RMSDfull (Å)/ 
RMSDring (Å)b 

2RH1 2-adrenergic receptor (GPCR) 123 -8.31 ~ -4.43 12 / -7.79 3.08 / 1.50 

3AM6 Acetabularia rhodopsin (GPCR) 119 -9.44 ~ -4.37 7 / -7.17 4.90 / 4.17 

4DKL -opioid receptor (GPCR) 131 -8.73 ~ -3.94 6 / -8.31 4.27 / 4.19 

3KDP Na+-K+ transporting ATPase 143 -10.02 ~ -4.36 17 / -7.93 4.10 / 3.34 

aRank among all conformations obtained by global docking according to estimated binding free 
energies. 
bRMSDfull considers all heavy atoms of the cholesterol molecule whereas RMSDring concerns only 
the fused ring of cholesterol. 
 

    The redocking results are listed in Table 6.1. Also, the cholesterol conformations with the 

lowest root mean square deviation (RMSD) are shown in Figure 6.2. The RMSD is a measure of 

the difference between the target and the reference structures. In each case, more than one 

hundred conformations were generated within the 36 grid boxes of the global docking. The 

estimated binding free energies range between -4 and -10 kcal/mol. Table 6.1 shows that for 

3KDP the conformation of lowest RMSD value against the co-crystallized cholesterol was ranked 

among the best 12% of all conformations according to the estimated binding free energy found 

by global docking. For 4DKL, the conformation with lowest RMSD was even among the best 5%. 

In the cases of 2RH1 and 3KDP, several conformations with lower estimated binding free 

energies than the one with smallest RMSD were docked in ‘‘improper’’ orientations where the 

hydroxyl group of cholesterol is buried inside the membrane or the cholesterol is perpendicular 

to the membrane normal. 
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    Although these results show very convincingly that AutoDock4 is able to correctly identify the 

rough positioning of cholesterol in complex with different -helical transmembrane proteins, 

the lowest RMSD values of 3.1 to 4.9 Å are larger than the values that are typically found when 

redocking small ligands to binding pockets of globular, soluble protein (often less than 2 Å). One 

explanation is that cholesterol has an aliphatic tail and this hydrophobic tail can be stabilized by 

either protein surface or the surrounding lipid environment. As shown in Figure 6.2, the 

aliphatic tails of co-crystallized cholesterol molecules are always positioned roughly parallel to 

the normal direction of the membrane in contrast to several docking conformations. Thus, 

smaller RMSDs of 1.5 to 4.2 Å were obtained when considering only the docking position of the 

fused ring of cholesterol (Table 6.1). Another explanation concerns the orientation of the fused 

ring of cholesterol. In the crystal structures used here, the two protruding carbon atoms (C18 

and C19) in the fused ring can either be directed at the protein surface (in the cases of 3AM6, 

4DKL, and 3KDP) or at the surrounding lipid (in the case of 2RH1). In the docked conformations, 

however, these two protruding atoms always point at the lipid surrounding (Figure 6.2). It 

appears a tough challenge for AutoDock to capture these features at the moment. Due to the 

optimization process of finding the lowest interaction energy between protein and ligand, and 

possibly due to the lacking representation of the lipid environment, the resulting cholesterol 

conformations tend to attach to the protein surface by its flat side but not the protruding side 

because more contacts are formed with the protein in this way. This is likely also the reason 

why the redocking of 2RH1 has the lowest RMSD value among the four cases because, here, 

also the crystal orientation contains outward-pointing C18 and C19 atoms. 
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    We also performed two further tests of docking cholesterol to apo-conformations of 2-

adrenergic receptors (3P0G [144] and 3SN6 [145]) that had no cholesterol bound. The docked 

ligand conformations obtained for these two apoproteins were compared against the 

cholesterol conformation in holo-protein 2RH1 after structural alignment of the proteins. The 

results are shown in Table 6.2 and Figure 6.3. The energy and the ranking are similar to the 

results for 2RH1. To our surprise, the lowest RMSD values were even lower than obtained for 

2RH1. 

 

 

Figure 6.3 Redocking of cholesterol to two apo-conformations of 2-adrenergic receptor 

without cholesterol bound. The PDB IDs are (A) 3P0G and (B) 3SN6. 2-adrenergic receptor is 
shown in a surface representation and the cholesterol molecules as sticks. The cholesterol 
molecules colored in magenta are the conformations with the lowest RMSD. For comparison, 
cholesterol molecules colored in cyan were mapped from the conformations in the co-crystal 
structure 2RH1 according to the structural alignment of proteins. 
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Table 6.2 Redocking of cholesterol to the apo-form of 2-adrenergic receptor containing no 
bound cholesterol molecule. 

  Global docking 
Conformation with the lowest 
RMSD 

PDB ID Protein name 
Number of  
conformation 

Distribution 
of energies 
(kcal/mol) 

Rank / Energy 
(kcal/mol)a 

RMSDfull (Å)/ 
RMSDring (Å)b 

3P0G 2-adrenergic receptor (GPCR) 107 -9.05 ~ -4.98 16 / -7.39 2.12 / 2.02 

3SN6 2-adrenergic receptor (GPCR) 143 -8.83 ~ -4.00 13 / -7.85 1.71 / 1.49 

aRank among all conformations obtained by global docking according to estimated binding free 
energies. 
bRMSDfull considers all heavy atoms of the cholesterol molecule whereas RMSDring concerns only 
the fused ring of cholesterol. 
 

    As mentioned before, the scoring function of AutoDock4 was parameterized based on the 

interactions of ligands and biomolecules in aqueous solution whereas the co-crystallized 

cholesterol molecules on the protein surface are stabilized not only by the protein but also by 

the hydrophobic solvent molecules present in purification and crystallization. When a 

transmembrane protein is functional in the membrane, these cholesterol molecules are 

stabilized by the surrounding lipid molecules. Thus the deviation between the co-crystallized 

cholesterol and the docking result may be attributed to such additional stabilizing interactions 

that are not captured by the scoring function used here. Even though, the AutoDock4 docking 

reproduced the important ligand-receptor interactions and predicted binding positions in close 

proximity to the crystal structures. This encouraging result confirms the suitability of the 

docking analysis for positioning cholesterol on the lipid accessible surface of membrane 

proteins. In the next step, we thus employed the same analysis for predicting putative 

interactions between CXCR4 and cholesterol. 
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6.3.3 Identification of a cholesterol-binding site in CXCR4 using docking analysis 

    The protein structure of human CXCR4 was obtained from the PDB as 3ODU.pdb [118]. To 

identify the binding site and key residues involving in cholesterol binding, we also implemented 

a global docking scheme that covered the entire surface of the CXCR4 structure (see Section 

6.2.2). After clustering, AutoDock4 found 145 cholesterol conformations in the 36 grid boxes 

surrounding CXCR4. The binding free energies ranged from -10.44 to -4.34 kcal/mol. Cholesterol 

molecules were mainly docked in the concavities formed between transmembrane helices 

because these provided good structural complementarity (Figure 6.4). The three CRAC motifs 

mentioned above turned out not to be favorable binding sites because of their low computed 

binding affinities. From the structural point of view, the side chains of L611.55, Y651.59 

(superscripts refer to the Ballesteros-Weinstein numbering), and K68 of the CRAC1 motif align 

roughly in one line and form a ridge that is energetically unfavorable for binding cholesterol. 

The side chains of Y2195.58 and K225 of the CRAC2 motif point to different sides of TMD5, so 

that it seems impossible for cholesterol to reach these two residues simultaneously. For the 

CRAC3 motif, K308 resides on the intracellular C-terminus and is located too far away from the 

other two residues (L2977.48 and Y3027.53) to form a feasible binding site for cholesterol. 
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Figure 6.4 The distribution of predicted binding affinities for cholesterol on the surface of 
CXCR4. No cholesterol molecules were docked to cyan regions. Other surface regions are 
colored according to the most favorable docking scoring for cholesterol. The C terminus of 
CXCR4 (from F304 to Q328) is not shown for clarity. 

 

    The binding site with the highest affinity predicted by AutoDock4 is located in the groove 

between TMD1 and TMD7 near the inner membrane-water interface (Figure 6.5A). In this 

position, the -amino group of K671.61 establishes a hydrogen bond with the hydroxyl group of 

cholesterol, Y3027.53 stacks with cholesterol by its aromatic side chain, and a number of 

residues (T511.45, G551.49, L581.52, V591.53, V621.56, M631.57, C2967.47, P2997.50, I3007.51, A3037.54) 

form hydrophobic contacts with cholesterol (Figure 6.5). Interestingly, these three factors 

(hydrogen bonding, aromatic stacking, and hydrophobic contacts) are consistent with the 

pattern of the CRAC motif. Although these residues do not align in a localized sequence as 

required by the CRAC motif, the binding site is formed ‘‘collectively’’ by the CRAC1 (V591.53, 

V621.56, and K671.61) and CRAC3 (Y3027.53) motifs. These four residues reside on TMD1 and 

TMD7, but they are direct neighbors in three-dimensional space where they shape a feasible 
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binding groove for cholesterol. Besides that, the computed binding free energy with the 

unbound structure of the CXCR4 is -10.44 kcal/mol for this ligand conformation that is much 

more favorable than the -6.89 kcal/mol computed for the 2AR-cholesterol complex based on 

the bound X-ray crystal structure (2RH1). Also, this conformation can be further stabilized by 

the membrane because the hydroxyl group of cholesterol would be located at the same height 

as the hydrophilic groups of the lipid molecules, and the aliphatic part of cholesterol would 

contact the hydrophobic tails of the lipids. All these factors demonstrate the high plausibility of 

the found binding site for cholesterol in CXCR4. 

 

Figure 6.5 The best predicted binding pose and interaction map for cholesterol on CXCR4. (A) 
The protein is shown as ribbon. Cholesterol and the residues interacting with cholesterol are 
represented by sticks. The residues involved in hydrophobic contacts with cholesterol are 
colored in slate blue. The C terminus of CXCR4 (from F304 to Q328) is not shown for clarity. (B) 
Shows the same conformation as in (A) in the representation generated by LigPlot [146]. 
Residues represented as red eyelashes are involved in hydrophobic contacts. A tight ionic 
hydrogen bond is formed between atoms NZ of K671.61 and O of cholesterol with a distance of 
2.59 Å.  

 



 

121 
 

    The second best binding site at the lipid exposed surface of the protein with an estimated 

binding affinity of -8.39 kcal/mol is located at the concavity between TMD5 and TMD6. In this 

pocket, cholesterol forms favorable hydrophobic interactions with several pocket lining 

residues (including L2085.47, I2095.48, G2125.51, I2155.54, L2165.55, V2426.38, I2456.41, L2466.42, and 

F2496.45). However, the hydroxyl group of the cholesterol docked into this concavity is 

positioned near the center of the lipid bilayer so that the hydroxyl group would be surrounded 

by hydrophobic lipid tails. Both the higher binding affinity and the more favorable orientation 

of the hydroxyl group favor the first binding site for cholesterol in CXCR4. 

 

6.3.4 Identification of a putative cholesterol-binding site in human CCR5 using sequence 

alignment 

    Sequence alignment between human chemokine receptors shows that out of twelve CXCR4 

residues forming contacts with cholesterol, nine (G1.49, L1.52, V1.53, K1.61, C7.47, P7.50, I7.51, Y7.53, 

A7.54) are present also in human CCR5, see Table 6.3. Three CXCR4 residues (T511.45, V621.56, 

M631.57) that are not identical to the corresponding residues in CCR5 form hydrophobic 

contacts with cholesterol. In CCR5, the corresponding residues (F431.45, I541.56, L551.57) are 

hydrophobic and, hence, are also able to form hydrophobic contacts with cholesterol. 

Therefore we suggest that in CCR5, similar to CXCR4, the putative cholesterol-binding site is 

present in the groove between TMD1 and TMD7 near the inner membrane-water interface. 

    The putative cholesterol-binding sites in CXCR4 and CCR5 are highly conserved among various 

species as shown in Tables A.3 and A.4 that are multiple sequence alignments of CXCR4 

orthologs and CCR5 orthologs, respectively. 
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Table 6.3 Aligned residues in the putative cholesterol-binding sites in human CXCR4 and CCR5 

Residues (Ballesteros-Weinstein numbering)  

1.45 1.49 1.52 1.53 1.56 1.57 1.61 7.47 7.50 7.51 7.53 7.54 Receptor 

T51 G55 L58 V59 V62 M63 K67 C296 P299 I300 Y302 A303 CXCR4 

F43 G47 L50 V51 I54 L55 K59 C291 P294 I295 Y297 A298 CCR5 

Residues that are not identical in two receptors are shown in boldface. 
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7 Conclusions 

    In Chapter 3, we presented a novel toolkit PROPORES to analyze the concavities of 

biomolecular structures automatically. The toolkit consists of three separate programs 

including PoreID for identifying pores (pockets, cavities, and channels), PoreTrace for 

determining the axes and radius profile of the channel, and GateOpen for opening the gate 

between two neighboring pores. PROPORES was designed as a general method for all classes of 

proteins and all kinds of concavities. PoreID and PoreTrace are grid-based methods whose 

computing time will grow exponentially for finer resolution as shown in Figure 3.3.  A possible 

solution is to parallelize the implementation of PoreID.  In Section 3.3.1, steps (b), (c) and (d) 

work on scanning each voxels for PSP events, scanning vectors for redundancy and for 

perpendicularity, respectively. These scanning processes are independent and are suitable to 

be parallelized. However, it will not work for PoreTrace because Dijkstra’s algorithm 

implements in a serial manner due to the dependency of neighboring nodes.  

    PROPORES provides several types of useful information of pores (volume, lining residues, 

trajectory of pore axis and radius) for known protein structures. One can use the 

physicochemical properties or conservation scores of pore-lining residues as features to predict 

ligand binding sites [26] or analyze the evolution of the pocketome during the course of a 

molecular dynamics simulation of a protein [147]. What we have done is to annotate 

transmembrane pore-lining residues for a non-redundant set of -helical transmembrane 

proteins as described in Chapter 4. 

    In Chapter 4, we presented the new method PRIMSIPLR for predicting of PLRs from the 

sequences of -helical transmembrane proteins. This method was developed on a 
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comprehensive data set containing 90 protein structures. The amino acid composition of the 

data set reflects the expected characteristics of residues in different environments. Residues 

outside the membrane prefer to be charged and polar, whereas pore-lining amino acids have a 

higher content of charged and polar side chains compared to the other residues embedded in 

the membrane. Amino acids with aromatic side chains are crucial for PLRs by virtue of their 

function as gate. The typical length of a PLR stretch and the periodic pattern of PLRs are related 

to the structural trait of the -helix.  

    We trained an SVM with a multiple independent random sampling scheme to account for the 

imbalanced nature of our data set. The evolutionary conservation score calculated by Rate4Site 

[83] gave substantial improvements in the prediction results whereas the three 

physicochemical properties had no apparent effects. Furthermore, we provide a confidence 

index for each positive prediction. A higher confidence index implies a more reliable prediction. 

Our predictor outperforms MEMSAT-SVM on 19 out of 23 non-redundant novel protein 

structures. The most challenging issue is to distinguish 'P' and 'M' residue types inside the 

membrane. More characteristic and representative features are necessary and the key issue to 

be overcome in future work. Additionally, some structures of transporters such as Leucine 

transporter [68, 148], glutamate/GABA antiporter [149] were determined in one of several 

alternative ligand transportation states. For the Leucine transporter, the complete view of PLRs 

can be captured by including multiple structures resolved in different states (i.e., 3F3A [68] is in 

outward-open conformation and 3TT3 [148] is in inward-open conformation). However, the 

glutamate/GABA antiporter [149] was crystallized either in a blocked or in an inward-open state 
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so that the identification of PLRs of these structures cannot present all possible residues that 

form contacts with the substrate. This may have caused some errors in the prediction.  

    In Chapter 5, we presented results of how protein models translocate through a membrane 

with small nanopores based on coarse-grained Brownian dynamics simulations. The latest 

developments of artificial porous membrane indicate that soon artificial membranes will 

become available with comparable size of pores as in biological membranes. Whereas it is 

difficult to control all experimental aspects of protein translocation through biological 

membranes, this can be achieved much more easily with the reproducible properties of 

artificial membranes. Thus, our simulations focused on the behavior of the proteins 

translocating through artificial porous membranes. These non-equilibrium steady-state 

simulations consisted of two constant density interfaces on opposite ends of the simulation 

volume and a membrane of variable thickness in between containing pores. Our model protein 

resembles the electron carrier cytochrome c, which is often used in experiments and 

simulations, both in the folded and unfolded state.  

    When considering a single pore, our simulations reproduced the prediction of an analytical 

continuum model (Eq. 5.12) particularly well for small particles that had a radius thousand fold 

smaller than the pore radius. For the larger particles, however, we found that the decrease of 

the flow rate with the pore length was slower in the simulations than in the analytical model. 

The translocation rate through the smaller pores was larger than expected. This effect could be 

explained by an increased protein density around the entrance of the pore, what leads to a 

steeper gradient through the pore and thus to an increased diffusive current. This density 

increase is due to the geometric confinement of the protein motion in the narrow pores that 
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reduces the overall diffusion coefficient. This is a purely geometric effect and is not related to 

an increased hydrodynamic friction in a confined geometry. In a second set of simulations, we 

found that the longer polymer models in the smaller pore showed a strong orientation along 

the pore axis, which further restricted their motion and thus reduced the translocation rate. 

    In a realistic system, the flow rate and the behavior of the proteins can be affected by many 

more factors such as the surface roughness inside the pore, particle adsorption on the 

membrane and inside the pores, or geometric effects such as the tortuosity of the pores or 

interconnections between adjacent pores. Starting from the simple setup presented here, these 

factors can now be added to the model one by one and investigated in future projects. 

Furthermore, to model translocation processes through structured biological pores and 

channels, additional beads with positive and negative charges can be placed on the pore 

surface or inside the channel to mimic the transmembrane pore proteins in more detail. Also, 

the crowded conditions inside a cell could be described by additional fixed or mobile spheres in 

the bulk regions. Furthermore, the protein models can be refined by adding charges or by 

sequence specific bead sizes and interactions. The model system presented in Chapter 5 is thus 

a starting point to explore the mechanisms of protein translocation and also serves as a first 

step towards the biological translocon mediated transport. 

    In Chapter 6, we report the presence of a putative cholesterol-binding site in the groove 

between TMD1 and TMD7 near the inner membrane-water interface of HIV coreceptor CXCR4 

based on molecular docking studies. The corresponding residues in CCR5 show a similar 

arrangement of cholesterol-binding ability as found in CXCR4. Multiple sequence alignment 

among various species demonstrates that most residues belonging to the cholesterol-binding 
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sites in CXCR4 and CCR5 are highly conserved in orthologous proteins. We suggest that 

cholesterol molecules occupying these binding sites in CXCR4 and CCR5 are crucial for the 

function of these receptors due to the conformational stability. We also propose that mutations 

of the putative cholesterol-binding residues will make CXCR4 and CCR5 insensitive to 

membrane cholesterol concentration. Steroid drugs, that compete with cholesterol for the 

binding sites but do not maintain the native conformation of CXCR4 or CCR5, may become 

useful tools in the therapeutic control of AIDS and other diseases in which CXCR4 and CCR5 

involve. 
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8 Appendix 

Table A.1 List of PDB IDs with chain indices of the PH90 dataset 

PDB ID and chain index Protein name 

1. 2WLM_A KIR channel (K
+
 channel) 

2. 3E86_A NaK channel (K
+
 channel) 

3. 3IFX_A KcsA channel (K
+
 channel) 

4. 3UKM_A K2P1 channel (K
+
 channel) 

5. 1LNQ_A MthK channel (K
+
 channel) 

6. 1ORQ_A KvAP channel (K
+
 channel) 

7. 3LUT_A Kv1.2 channel  (K
+
 channel) 

8. 4DXW_A NaChBac channel (Na
+
 channel)  

9. 3BEH_A MlotiK1: cyclic nucleotide-regulated channel 

10. 3RQU_A ELIC channel 

11. 2XQ3_A ELIC channel 

12. 2IUB_A CorA: metal ion transporter 

13. 3RHW_A GluC1: glutamate-gated chloride channel 

14. 3UM7_A TRAAK channel 

15. 3PJZ_A  TrkH channel  

16. 3S3W_A ASIC1: acid sensing ion channel 

17. 3I5D_A ATP-gated P2X4 ion channel 

18. 2YVX_A MgtE: Mg
2+

 transporter 

19. 3J1Z_P YiiP: Zn
2+

 transporter  

20. 3M73_A SLAC1 anion channel 

21. 2L0J_A Influenza A proton channel 

22. 2KIX_A Influenza B proton channel 

23. 3B8C_A P-type proton pump 

24. 3AQP_A SecDF 

25. 4FG6_A CLC Cl
-
/H

+
 exchange transporters 

26. 1ZCD_A  NhaA: Na
+
/ H

+
 antiporter 

27. 3ZUX_A ASBT bile acid/Na
+
 symporter 

28. 2X79_A Na
+
-Hydantoin Transporter Mhp1 

29. 3QNQ_A Phosphorylation-coupled saccharide transporter 

30. 4GBY_A D-xylose/H
+
 symporter XylE 

31. 2R6G_F MalF subunit of maltose transporter 

32. 2R6G_G MalG subunit of maltose transporter 

33. 2XQ2_A Na
+
/glucose transporter 

34. 3O7P_A Fucose transporter 

35. 2Y5Y_A Lactose permease 

36. 1PW4_A Glycerol-3-phosphate transporter 

37. 4F35_A Na
+
-dependent citrate transporter (NaCT) 

38. 3BHS_A Ammonia transporter 

39. 3C1I_A AmtB: ammonia channel  

40. 3HD6_A RhCG: ammonia transporter 
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41. 4EZC_A Urea transporter 

42. 1FX8_A GlpF: glycerol facilitator 

43. 3TDO_A Hydrosulphide ion channel (formate/nitrite transport 

family) 

44. 2WSX_A CaiT: carnitine/butyrobetaine antiporter 

45. 3QE7_A UraA: uracil transporter 

46. 2C3E_A ADP/ATP translocase 

47. 2YXQ_A SecY subunit of translocon 

48. 2ZQP_Y SecY subunit of translocon 

49. 4APS_A Oligopeptide transporter 

50. 3F3A_A Leucine transporter 

51. 4DJI_A Glutamate-GABA antiporter 

52. 2NWW_A Aspartate transporter 

53. 3OB6_A AdiC: arginine/agmatine antiporter 

54. 3TUJ_A MetNI: methionine importer (ABC transporter) 

55. 3QF4_A TM287 subunit of heterodimeric ABC transporter 

56. 3QF4_B TM288 subunit of heterodimeric ABC transporter 

57. 2NQ2_A Putative metal-chelate-type ABC transporter 

58. 2ONK_C Molybdate transporter (ABC transporter) 

59. 3P5N_A RibU S-component  of riboflavin transporter (ECF type) 

60. 3RLB_A ThiT S-component (ECF type) 

61. 4DVE_A BioY S-component biotin-specific of transporter (ECF 

type) 

62. 3G5U_A P-glycoprotein (multidrug resistence) 

63. 2GFP_A EmrD multidrug transporter  

64. 3MKU_A NorM MATE transporter (multidrug resistence) 

65. 2GIF_A AcrB transporter (multidrug resistence) 

66. 2OAU_A MscS: Small-conductance mechanosensitive channel 

67. 2OAR_A MscL: Large-conductance mechanosensitive channel 

68. 2J58_A Wza 

69. 2WCD_A Cytolysin A 

70. 2LCK_A UCP2: Mitochondrial uncoupling protein 2 

71. 1ZLL_A Phospholamban 

72. 2ZW3_A Connexin 26 gap junction channel 

73. 4AW6_A ZMPSTE24: zinc metalloprotease  

74. 3KP9_A Vitamin K epoxide reductase 

75. 3B4R_A S2P metalloprotease 

76. 3DWW_A MPGES1: Microsomal prostaglandin E synthase 1 

77. 4A01_A H
+
-PPases: H

+
-translocating pyrophosphatase 

78. 4A2N_B ICMT: Methyltransferase  

79. 2PNO_A LTC4S: LTC4 synthase 

80. 2BG9_A Membrane-associated acetylcholine receptor 

81. 3KG2_A AMPA-subtype glutamate receptor 

82. 2Q7R_A FLAP: 5-lipoxygenase–activating protein 

83. 4EJ4_A -opioid receptor (GPCR) 
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84. 3RZE_A Histamine H1 receptor (GPCR) 

85. 4DAJ_A M3 muscarinic acetylcholine receptor (GPCR) 

86. 4AMJ_A 1AR (GPCR) 

87. 2RH1_A 2AR (GPCR) 

88. 3EML_A A2A AR (GPCR) 

89. 3PBL_A Dopamine D3 Receptor (GPCR) 

90. 3V2W_A S1P1 receptor (GPCR) 

91. 3OE8_A CXCR4 (GPCR) 

92. 2LNL_A CXCR1 (GPCR) 
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Table A.2 List of PDB IDs with chain indices of the Test23 dataset 

PDB ID and chain index Protein name 

1. 4BW5_A Trek2 channel (K
+
 channel) 

2. 4H33_A Voltage-gated K
+
 channel 

3. 4EV6_A CorA: Mg
2+

 transporter 

4. 4HKR_A Orai: calcium release–activated calcium 

channel  

5. 4K1C_A Ca
2+

/H
+
 exchanger 

6. 4KPP_A Ca
2+

/H
+
 exchanger 

7. 4HYT_A Na
+
/K

+
-  

8. 3UX4_A Urea channel 

9. 4IU8_A Nitrate transporter 

10. 4J05_A Phosphate transporter 

11. 3J41_A aquaporin 

12. 3ZOJ_A aquaporin 

13. 4IA4_A aquaporin 

14. 3WBN_A MATE transporter (multidrug resistance) 

15. 4HG6_A Cellulose synthase subunit a 

16.  3ZMH_A Rhomboid Protease 

17. 4IL3_A CAAX protease Ste24p 

18. 4GRV_A NTS1: neurotensin receptor  

19. 3VW7_A Human protease-activated receptor 1 (GPCR) 

20. 4IAQ_A 5-HT1B receptor (GPCR) 

21. 4IB4_A 5-HT2B receptor (GPCR) 

22. 4JKV_A Human smoothened receptor (GPCR) 

23. 4L6R_A Human glucagon receptor (GPCR) 
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Table A.3 Multiple sequence alignment of the putative cholesterol-binding sites in CXCR4 from 
various species. 

Residues (Ballesteros-Weinstein numbering)  Isoform Database ID Species 

1.45 1.49 1.52 1.53 1.56 1.57 1.61 7.47 7.50 7.51 7.53 7.54     

                

T G L V V M K C P I Y A   NP_003458.1 Homo sapiens 

T G L V V M K C P I Y A   AAC03718.1 Pan troglodytes 

T G L V V M K C P I Y A   AAF89352.1 Gorilla gorilla 

T G L V V M K C P I Y A   AAF89351.1 Pongo pygmaeus 

T G L V V M E C P I Y A   AAF42991.1 Hylobates lar 

T G L V V M K C P I Y A   AAF89349.1 Hylobates lar 

T G L V V M K C P I Y A   AAC39834.1 Cercocebus atys 

T G L V V M K C P I Y A   O08565.1 Rattus norvegicus 

T G L V V M K C P I Y A   NP_034041.2 Mus musculus 

T G L V V M K C P I Y A   ABX59689.1 Oryctolagus 

cuniculus 

T G L V V M K C P I Y A   NP_001009826.1 Felis catus 

T G L V V M K C P I Y A   ACH54079.1 Panthera leo 

T G L V V M K C P I Y A   NP_001041491.1 Canis lupus familiaris 

T G L V V M K C P I Y A   XP_002927722.1 Ailuropoda 

melanoleuca 

T G L V V M K C P I Y A   NP_776726.1 Bos taurus 
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T G L V V M K C P I Y A   NP_998938.1 Sus scrofa 

T G L V V M K C P I Y A   XP_001490215.1 Equus caballus 

T G L V V M K C P I Y A   XP_003405904.1 Loxodonta africana 

T G L V V M K C P I Y A   XP_001370420.2 Monodelphis 

domestica 

T G L V V M K C P I Y A   XP_001510648.1 Ornithorhynchus 

anatinus 

T G L V V M K C P I Y A   XP_002198314.1 Taeniopygia guttata 

T G L V V M K C P I Y A   ENSAPLT00000001873 Anas platyrhynchos 

T G L V V M K C P I Y A   NP_989948.1 Gallus gallus 

T G L V V M K C P I Y A   XP_003207773.1 Meleagris gallopavo 

T G L V V M K C P I Y A   ENSACAT00000000709 Anolis carolinensis 

L G L V V M K C P I Y A   NP_001090831.1 Xenopus tropicalis 

L G L V V M K C P I Y A   BAA32797.1 Cyprinus carpio 

M G L V V M K C S I Y A   CAB60252.1 Acipenser ruthenus 

L G L V V M K C P I Y A   ACS45337.1 Ictalurus punctatus 

L G L V V M K C P I Y A   ABP48751.1 Scophthalmus 

maximus 

L G L V V L R C P L Y A  CXCR4a ENSORLT00000014201 Oryzias latipes 

L G L V V M K C P I Y A  CXCR4b ENSORLT00000025393 Oryzias latipes 

L G L V V M K C P I Y A   ACN10355.1 Salmo salar 

L G L V V M K C P I Y A  CXCR4a NP_571957.2 Danio rerio 
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L G L V V M K C P I Y A  CXCR4b NP_571909.1 Danio rerio 

L G L V V M K C P I Y A  CXCR4c XP_002663363.1 Danio rerio 

L G L V V M K C P I Y A  CXCR4d XP_002664268.1 Danio rerio 

L G L V V M K C P I Y A   NP_001117814.1 Oncorhynchus mykiss 

M G L V V L R C P L Y A  CXCR4a SINFRUP00000137823 Takifugu rubripes 

L G L V V V K C P I Y A  CXCR4b GENSCAN00000006261 Takifugu rubripes 

V G L V V L H C P L Y A  CXCR4a ENSTNIT00000010907 Tetraodon 

nigroviridis 

L G L V V M K C P I Y A  CXCR4b ENSTNIT00000001795 Tetraodon 

nigroviridis 

L G L V V L R C P L Y A   ADR10240.1 Epinephelus coioides 

L G L I I L T C P V Y A   AAO21209.1 Petromyzon marinus 
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Table A.4 Multiple sequence alignment of the putative cholesterol-binding sites in CCR5 from 
various species. 

Residues (Ballesteros-Weinstein numbering)  Isoform Database ID Species 

1.45 1.49 1.52 1.53 1.56 1.57 1.61 7.47 7.50 7.51 7.53 7.54     

                

F G L V I L K C P I Y A   NP_000570.1 Homo sapiens 

F G L V I L K C P I Y A   AAB62557.1 Pan troglodytes 

F G L V I L K C P I Y A   AAD47648.1 Gorilla gorilla 

F G L V I L K C P I Y A   AAD47664.1 Pongo pygmaeus 

F G L V I L K C P I Y A   AAD47714.1 Macaca mulatta 

F G L V I L K C P I Y A   ADM13528.1 Cercocebus atys  

F G L V I L E C P I Y A   AAD47792.1 Cercopithecus mona 

F G L V T L K C P V Y A   AAD47763.1 Lemur catta 

F G M V I L K C P V Y A   NP_446412.2 Rattus norvegicus 

F G M V I L K C P V Y A   NP_034047.2 Mus musculus 

F G L V I L K C P V Y A   ABD79048.1 Oryctolagus cuniculus 

S G L V I L K C P I Y A   NP_001009248.1 Felis catus 

F G L V I L K C P I Y A   NP_001012342.2 Canis lupus familiaris 

F G L V I L K C P I Y A   NP_001011672.2 Bos taurus 

F G L V I L K C P I Y A   NP_001001618.1 Sus scrofa 

F G L V I L K C P I Y A   ACJ46497.1 Ovis aries 

F G L V I L K C P I Y A   AEA91533.1 Capra hircus 

S G L V V L K C P V Y A   ABG01973.1 Equus caballus 

S G L V V L K C P I Y A   ABP65313.1 Equus grevyi 

S G L V V L K C P V Y A   ABP65312.1 Equus asinus 
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F G L V T L K C P I Y A   ABS86966.1 Loxodonta africana 

F G L V V L K C P V Y A   XP_001379621.2 Monodelphis domestica 

S G L V I L K C P V Y A   XP_001517287.1 Ornithorhynchus anatinus 

F G L V I L K C P V Y A   XP_002198821.1 Taeniopygia guttata 

F G L V I L K C P V Y A  CCR5a ENSACAT00000014112 Anolis carolinensis 

F G L V I L K C P V Y A  CCR5b ENSACAT00000021030 Anolis carolinensis 
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