
Event Structures in Knowledge,

Pictures and Text

Dissertation zur Erlangung des
akademischen Grades

eines Doktors der Philosophie
der Philosophischen Fakultäten der

Universität des Saarlandes

vorgelegt von Michaela Regneri
aus Sankt Ingbert

Dekan der Philosophischen Fakultät II: Prof. Dr. Roland Marti
Berichterstatter: Prof. Dr. Manfred Pinkal

Prof. Dr. Alexander Koller
Tag der letzten Prüfungsleistung: 04. Dezember 2013

Abstract

This thesis proposes new techniques for mining scripts. Scripts are essential
pieces of common sense knowledge that contain information about every-
day scenarios (like going to a restaurant), namely the events that usually
happen in a scenario (entering, sitting down, reading the menu...), their typical
order (ordering happens before eating), and the participants of these events
(customer, waiter, food...).

Because many conventionalized scenarios are shared common sense knowl-
edge and thus are usually not described in standard texts, we propose to
elicit sequential descriptions of typical scenario instances via crowdsourcing
over the internet. This approach overcomes the implicitness problem and, at
the same time, is scalable to large data collections.

To generalize over the input data, we need to mine event and participant
paraphrases from the textual sequences. For this task we make use of the
structural commonalities in the collected sequential descriptions, which yields
much more accurate paraphrases than approaches that do not take structural
constraints into account.

We further apply the algorithm we developed for event paraphrasing to
parallel standard texts for extracting sentential paraphrases and paraphrase
fragments. In this case we consider the discourse structure in a text as a
sequential event structure. As for event paraphrasing, the structure-aware
paraphrasing approach clearly outperforms systems that do not consider dis-
course structure.

As a multimodal application, we develop a new resource in which textual
event descriptions are grounded in videos, which enables new investiga-
tions on action description semantics and a more accurate modeling of event
description similarities. This grounding approach also opens up new pos-
sibilities for applying the computed script knowledge for automated event
recognition in videos.

Kurzzusammenfassung

Die vorliegende Dissertation schlägt neue Techniken zur Berechnung von
Skripten vor. Skripte sind essentielle Teile des Allgemeinwissens, die Infor-
mationen über alltägliche Szenarien (wie im Restaurant essen) enthalten,
nämlich die Ereignisse, die typischerweise in einem Szenario vorkommen
(eintreten, sich setzen, die Karte lesen...), deren typische zeitliche Abfolge (man
bestellt bevor man isst), und die Teilnehmer der Ereignisse (ein Gast, der Kell-
ner, das Essen,...).

Da viele konventionalisierte Szenarien implizit geteiltes Allgemeinwissen
sind und üblicherweise nicht detailliert in Texten beschrieben werden, schla-
gen wir vor, Beschreibungen von typischen Szenario-Instanzen durch sog.
“Crowd-sourcing” über das Internet zu sammeln. Dieser Ansatz löst das
Implizitheits-Problem und lässt sich gleichzeitig zu großen Daten-Sammlun-
gen hochskalieren.

Um über die Eingabe-Daten zu generalisieren, müssen wir in den Text-Se-
quenzen Paraphrasen für Ereignisse und Teilnehmer finden. Hierfür nutzen
wir die strukturellen Gemeinsamkeiten dieser Sequenzen, was viel präzisere
Paraphrasen-Information ergibt als Standard-Ansätze, die strukturelle Ein-
schränkungen nicht beachten.

Die Techniken, die wir für die Ereignis-Paraphrasierung entwickelt haben,
wenden wir auch auf parallele Standard-Texte an, um Paraphrasen auf Satz-
Ebene sowie Paraphrasen-Fragmente zu extrahieren. Hier betrachten wir die
Diskurs-Struktur eines Textes als sequentielle Ereignis-Struktur. Auch hier
liefert der strukturell informierte Ansatz klar bessere Ergebnisse als her-
kömmliche Systeme, die Diskurs-Struktur nicht in die Berechnung mit ein-
beziehen.

Als multimodale Anwendung entwickeln wir eine neue Ressource, in der
Text-Beschreibungen von Ereignissen mittels zeitlicher Synchronisierung in
Videos verankert sind. Dies ermöglicht neue Ansätze für die Erforschung
der Semantik von Ereignisbeschreibungen, und erlaubt außerdem die Mo-
dellierung treffenderer Ereignis-Ähnlichkeiten. Dieser Schritt der visuellen
Verankerung von Text in Videos eröffnet auch neue Möglichkeiten für die
Anwendung des berechneten Skript-Wissen bei der automatischen Ereigni-
serkennung in Videos.

Ausführliche Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit dem automatischen Lernen
sogenannter Skripte. Skripte sind prototypische Ereignisabläufe alltäglicher
Situationen, wie ein Einkauf im Supermarkt oder das Füttern eines Hundes.
Konkret umfassen sie die einzelnen Ereignisse eines Szenarios, deren typi-
sche zeitliche Abfolge, und teilnehmende Personen und Objekte.

Es gilt als gesichert, dass Skripte beim Menschen wichtige kognitive Funktio-
nen haben, weil sie helfen, große Mengen alltägliches Wissen zu organisieren
und effizient anzuwenden. Am deutlichsten wird die Rolle des Skriptwis-
sens im Zusammenspiel mit dem menschlichen Gedächtnis: eine häufiges
Phänomen im Alltag ist z.B. dass man, wenn man ein Haus verlässt, sich
nicht mehr erinnern kann, ob man den Herd ausgeschaltet hat (und aus Si-
cherheitsgründen noch einmal nachsieht). In der überiwegenden Zahl der
Fälle hat man den Koch-Prozess allerdings vollständig und korrekt beendet
und den Herd somit ausgeschaltet. Dies veranschaulicht die beiden Haupt-
Funktionsweisen von Skripten: Bei oft eingeübten Handlungen ist es so, dass
sie sich erstens in ihrer Ausführung dem Bewusstsein entziehen (man erin-
nert sich nicht daran), aber man zweitens meistens die Handlung richtig
ausführt.

Skriptwissen beeinflusst auch viele Aspekte des Sprachgebrauchs. Da Men-
schen mit ähnlichen kulturellen Hintergründen große Überschneidungen in
ihrem Skriptwissen haben, können viele Äußerungen stark abgekürzt wer-
den, ohne die Verständlichkeit der übermittelten Information zu beeinträch-
tigen. In einem Gespräch wäre z.B. auf die Aussage “Ich gehe einkaufen” die
Rückfrage “Hast Du genug Geld dabei?” problemlos verständlich, weil die Tat-
sache, dass ein Einkauf einen Bezahlvorgang beinhaltet für den man Geld
braucht, implizites geteiltes Skriptwissen ist. Ein weiteres Beispiel sind etwa
Straßenschilder mit Warnhinweisen wie “Enge Brücke”, die mit dem stark
abgekürzten Text bei den vorbeifahrenden Lesern eine sehr schnelle und
komplexe Reaktion erzielen. Würden sämtliche Vorsichtsmaßnahmen (wie
langsam fahren, den Gegenverkehr beachten, ggf. anhalten / ausweichen)
explizit auf dem Schild ausgeführt, wäre die Kommunikation für eine zeit-
kritische Umgebung wie im Straßenverkehr viel zu ineffizient. Durch erlern-
te und durch Erfahrung sukzessive erweiterte Skripte kann ein Fahrer solch
einen knappen Warnhinweis jedoch problemlos verarbeiten.

Während Menschen Skriptwissen permanent unterbewusst benutzen, sind

Skripte als Wissensbasis für computergestützte Systeme nur unzureichend
entwickelt. Insbesondere vor dem Hintergrund psychologischer Studien über
Skriptverarbeitung beim Menschen sind sich die meisten Forscher einig dar-
über, dass automatischer Zugriff auf Skripte essentiell wäre, um vollstän-
diges Sprachverstehen zu gewährleisten. Erste Forschungen über Skripte in
der Künstlichen Intelligenz gabe es auch schon seit Einführung des Skript-
Begriffs in den 70er Jahren, allerdings ist der automatische Erwerb und die
Anwendung von Skriptwissen seit dem ein ungelöstes Problem. Die ers-
ten Programme, die Skriptwissen verwendeten um Frage-Antwort-Aufgaben
(“Question Answering”) zu bearbeiten, bezogen ihr Wissen von manuell kon-
struierten, kleinen Datensätzen. Skriptwissen von Hand zusammenzutragen
ist jedoch kein skalierbarer Ansatz, zumal man sowohl eine große Menge an
Szenarien abdecken möchte, als auch möglichst viele Varianten jedes einzel-
nen Szenarios.

Mit den heutigen Methoden des maschinellen Lernens und riesigen Daten-
quellen (im Extremfall dem Internet) sind zwar viele Aspekte des Allgemein-
wissens automatisch erlernbar, jedoch bleiben Skripte in Texten fast immer
implizit. Da jeder Schreiber annehmen kann, dass der Leser mit ihm die
relevanten Skripte teilt, werden beispielsweise in Texten über Restaurantbe-
suche keine selbstverständlichen Ereignisse wie das Lesen der Karte oder
das Essen der Mahlzeit beschrieben. Ebendiese Art von Ereignissen sind es
jedoch, aus denen sich Skripte zusammensetzen. Dieses Implizitheitsproblem
wird komplementiert von einem Abdeckungsproblem, das sich in zwei Facet-
ten spiegelt: Erstens ist es nicht klar, wie viele Szenarien von einer adäquaten
Skript-Datenbank abgedeckt werden müssten. Zweitens ist auch unbekannt,
wie viele Varianten eines Szenarios gelernt werden müssen, um ein Modell
zu erstellen, das sich in zufriedenstellendem Maße der Realität annähert.

Da Skripte aufgrund des Implizitheits-Problems nicht aus Texten erlenbar
sind und manuelles Beschreiben von Skriptwissen nicht sinnvoll skaliert,
schlagen wir Crowdsourcing als Lösung vor. Crowdsourcing bedeutet, dass ei-
ne informationstechnische Aufgabenstellung mit “Schwarmintelligenz” über
das Internet von einer großen Menge von Leuten bearbeitet wird. Da bekann-
teste und wahrscheinlich größte Ergebnis eines Crowdsourcing-Projektes ist
die Online-Enzyklopädie Wikipedia, allerdings kann Crowdsourcing nachge-
wiesenermaßen auch sehr effizient für fokussiertere und insbesondere com-
puterlinguistische Aufgabenstellungen sein. Die von uns genutzte kommer-
zielle Platform hierfür ist Amazon Mechanical Turk, wo Tasks an eine rie-
sige Gruppe von Leuten vergeben und so in kurzer Zeit und verhältnis-
mäßig kosteneffizient erledigt werden. Mit dieser Methode erzeugen wir

mehrere skript-beschreibende Korpora aus sogenannten Ereignis-Sequenz-
Beschreibungen. Der Beginn einer Ereignis-Sequenz-Beschreibung für das
Szenario “im Supermarkt einkaufen” wäre z.B. “1. Einkaufszettel machen, 2.
zum Supermarkf fahren, 3. Einkaufswagen holen 4. ...” usw. Für jedes Szenario
sammeln wir eine Menge solcher Beschreibungen, die stichpunktartig typi-
sche Handlungsabläufe für das jeweilige Szenario ausformulieren. Während
in einer ersten Studie die teilweise unsauberen Daten von Hand mit Hinblick
auf Rechtschreibung und Konformität mit der Aufgabenstellung aufbereitet
wurden, entwickeln wir auch neue unüberwachte Algorithmen für automa-
tische Rechtschreibekontrolle und Anaphern-Resolution auf den verrausch-
ten Daten. Die so erworbenen und vor-verarbeiteten Texte dienen dann als
Grundlage für die Berechnung kompakter Skript-Repräsentationen.

Um aus mehreren Ereignis-Sequenz-Beschreibungen eine Skript-Repräsenta-
tion zu berechnen, müssen in den unterschiedlichen Text-Sequenzen Para-
phrasen für Ereignisse und Teilnehmer gefunden werden. Diese Aufgabe ist
vor allem deshalb schwierig, weil die semantische Ähnlichkeit der Ereignis-
beschreibungen nur bedingt Auskunft über die Ähnlichkeit der beschriebe-
nen Ereignisse im entsprechenden Szenario gibt: im Einkaufs-Szenario be-
deutet z.B. “Produkte aussuchen” und “eine Auswahl treffen” das gleiche, wäh-
rend die beiden Phrasen keine hohe semantische Ähnlichkeit haben, und au-
ßerhalb des Szenario-Kontextes auch keine Paraphrasen wären. Gleichzeitig
überlappen sich viele Ereignisbeschreibungen sehr stark obwohl sie unter-
schiedliche Ereignisse repräsentieren, was durch den gemeinsamen Skript-
Kontext gegeben ist: “einen Einkaufswagen nehmen” und “den Einkaufswagen
ausräumen” hat z.B. eine deutliche höhere Wort-Überlappung als “Produk-
te aussuchen” und “eine Auswahl treffen”, referiert aber zu zwei völlig unter-
schiedlichen Ereignissen, die an entgegengesetzten Zeitpunkten im Einkaufs-
Prozess auftauchen.

Um trotz dieser Problematik szenario-spezifische Paraphrasen zu berech-
nen, machen wir uns die strukturelle Parallelität der Ereignis-Sequenz-Be-
schreibungen zu nutze: Wir können erwarten, dass in Beschreibungen des
selben Szenarios gleiche Ereignisse immer in ähnlichen (temporalen) Posi-
tionen auftreten. Während z.B. “einen Einkaufswagen nehmen” tendenziell im-
mer im ersten Drittel des Einkaufs-Prozesse zu erwarten wäre, sollte “den
Einkaufswagen ausräumen” erst gegen Ende des Prozesses auftauchen. Um
solche strukturellen Informationen auszunutzen, benutzen wir multiple Se-
quenz-Alignierung (MSA). MSA ist ein Verfahren aus der Bioinformatik, das
Elemente in zwei Sequenzen aufeinander abbildet, wenn die summe der Ele-
ment-Ähnlichkeit und der Ähnlichkeit der Element-Kontexte ausreichend

hoch ist. Im unserem Fall sind die einzelnen Elemente Ereignisbeschreibun-
gen, deren Element-Ähnlichkeiten mit einem von uns eigens dafür entwor-
fenen semantischen Ähnlichkeitsmaß bestimmt wird. Gleichzeitig werden
die strukturellen Ähnlichkeiten inhärent im Algorithmus mitberechnet und
mit den elementaren textuellen Ähnlichkeiten kombiniert. Mit diesem neuen
Paraphrasierungs-Algorithmus können wir Ereignisparaphrasen mit hoher
Präzision berechnen und erzielen dabei deutlich bessere Ergebnisse als mit
konventionellen Methoden, die lediglich semantische Ähnlichkeit beachten.

Ein zu den Ereignis-Paraphrasen analoges Phänomen findet sich auch bei
Teilnehmer-Beschreibungen, wie z.B. Hundefutter und Fleisch, die im Szena-
rio des Hund-Fütterns beide als synonym für Futter gebraucht werden kön-
nen. Hier tritt insbesondere das Problem szenario-spezifischer Metonymien
auf: Hundefutter und Dose können z.B. im Kontext von öffnen oder aus dem
Schrank nehmen synonym gebraucht werden. Auch auf dieser Granularitäts-
ebene können wir uns die strukturellen Eigenschaften der Skript-Daten zu-
nutze machen: Wir bewerten grundsätzlich zwei Teilnehmer-Beschreibungen
als synonym, wenn sie in der Summe eine hohe semantische Ähnlichkeit
aufweisen und häufig in Beschreibungen für das gleiche Ereignis auftreten.
Gleichzeitig gibt es eine Dispräferenz zwei Teilnehmerbeschreibungen als
synonym anzusehen, wenn sie in unterschiedlichen Ereignisbeschreibungen
der gleichen Sequenz auftauchen können. Um die Information über Ereignis-
Strukturen zu gewinnen, benutzen wir die im vorherigen Schritt erzeugten
Alignierungen von Ereignis-Sequenz-Beschreibungen. Auch hier zeigt sich
eine signifikante Verbesserung gegenüber konventionellen Methoden, die
keine strukturelle Information für die Paraphrasierung hinzuziehen.

Eine weitere Herausforderung im Zusammenhang mit Skripten ist deren
Anwendung: Eine generische textuelle Anwendung wäre von vornherein
nur mit vollständiger Szenarien-Abdeckung möglich. Weiterhin zeigt sich
hier auch eine weitere Facette des Implizitheits-Problems: Da Skripte in Tex-
ten selten ausformuliert sondern häufig nur von einem einzigen Ausdruck
evoziert und dann vorausgesetzt werden, ist die Verankerung von Skript-
Repräsentationen in tatsächlichen Texten ein weiteres ungelöstes Forschungs-
problem. Da in absehbarer Zeit keine Skript-Datenbank mit vollständiger
(oder auch nur ausreichend breiter) Abdeckung erzeugt werden kann, kön-
nen wir Skript-Repräsentationen vorerst nicht in vorhandene textverarbei-
tende Algorithmen einspeisen und so deren Nutzen zu quantifizieren.

Anstelle einer text-bezogenen Anwendung stellen wir die Skripte in einen
größeren interdisziplinären Zusammenhang und erforschen das Zusammen-
spiel der geschrieben Skript-Daten mit Algorithmen zur automatischen Er-

eigniserkennung in Videos. Diese multimodale Anwendung ist sowohl von
der computerlinguistischen Perspektive als auch von Seiten der automati-
schen Videoverarbeitung her höchst interessant: Einerseits zeigen wir in ei-
nem Pilot-Experiment, wie man Skript-Daten benutzen kann um automa-
tisch Ereignisse in Videos zu Erkennen. Das Prinzip basiert hier auf der Idee,
dass die Identifikation szenario-typischer Objekte und Handlungen automa-
tisch auf das Szenario schließen lässt. So kann man z.B. bei automatischer
Identifikation einer Gurke und eines Gurkenschälers davon ausgehen, dass
im weiteren zeitlichen Verlauf eine Gurke geschält und wahrscheinlich auch
geschnitten wird. Zusammen mit weiteren Identifkationen von Handlungen
wie ein Gemüse reiben kann dann auf das Szenario “Gurkensalat zubereiten” ge-
schlossen werden. Da entsprechende Textdaten als Trainingsgrundlage mit
deutlich weniger Aufwand gesammelt werden können als Videos, bietet die-
ser Ansatz großes Potential für die Skalierung von Algorithmen zur automa-
tischen Ereignis-Erkennung in bewegten Bildern.

Aus computerlinguistischer Sicht bietet die multimodale Verankerung von
Ereignisbeschreibungen in Videos eine neue Perspektive auf Semantik von
Ereignisbeschreibungen. Hierfür erstellen wir das TACoS-Korpus, in dem
Videos und deren Beschreibungen aufeinander abgebildet und mit Hilfe
von Zeit-Stempeln synchronisiert werden. Dieses Korpus bietet die Grundla-
ge für eine neue Berechnung von Ähnlichkeiten zwischen Ereignissen bzw.
deren Beschreibungen, da auch visuelle Merkmale aus den Videos für die
Berechnung der Ähnlichkeiten herangezogen werden können. Die Intuition
hier schließt sich an das Paraphrasierungs-Problem an: Wie bereits ausge-
führt ist die lexikalische Ähnlichkeit zweier Ereignisbeschreibungen nicht
immer ausreichend um die Relation der zugrunde liegenden Ereignisse zu
bestimmen. Beim Hinzuziehen von Video-Daten kann man jedoch auf die
visuelle Informations-Ebene zugreifen, die bei gewöhnlichen text-basierten
Ähnlichkeitsmaßen unzugänglich bleibt. Wir können zeigen, dass schon sehr
einfache multimodale Modelle für Ereignis-Ähnlichkeit sowohl rein text-ba-
sierte Ansätze als auch rein visuelle Maße deutlich übertreffen.

In einer letzten, text-bezogenen Anwendung abstrahieren wir von skript-
basierten Ereignisstrukturen weg und wenden den Paraphrasierungs-Algo-
rithmus, den wir für Ereignis-Sequenz-Beschreibungen entwickelt haben, auf
Standard-Texte an. Grundlage hierfür sind unterschiedliche Zusammenfas-
sungen für die gleichen Folgen einer Fernseh-Serie. Da hier die Handlung
der Serien-Folge die zeitliche Abfolge der beschriebenen Ereignisse vorgibt,
verhalten sich diese Zusammenfassungen sehr ähnlich zu Ereignis-Sequenz-
Beschreibungen. Mit multipler Sequenz-Alignierung und einem generischen,

klassischen Ähnlichkeitsmaß können wir aus diesen parallelen Korpora Pa-
raphrasen auf Satz-Ebene extrahieren. Wir zeigen, dass der Alignierungs-
Algorithmus auch hier hohe Präzision erzielt, und die strukturelle Diskurs-
Information einen wichtigen Beitrag zum Erwerb von Paraphrasen mit ho-
her lexikalischer Varianz leistet. Darüber hinaus demonstrieren wir wie die
Verarbeitung der Paraphrasen auf Satzebene zu kürzeren sogenannten Pa-
raphrasen-Fragmenten indirekt stark positiv von der strukturellen Kompo-
nente beeinflusst wird. Wir weiten damit die klassische distributionelle Hy-
pothese aus, die üblicherweise für Wörter und Phrasen zur Ermittlung von
Bedeutungsähnlichkeiten herangezogen wird: In unserer Anwendung zei-
gen wir, dass die Ähnlichkeit gemeinsamer Kontexte auch für die Paraphra-
sierung von Sätzen im Diskurs-Kontext als wichtige Komponente gesehen
werden muss.

Acknowledgements

During the years in which I worked on this thesis, I received invaluable
support of several people:

My first thanks go to my advisor Manfred Pinkal, who supported me con-
stantly while letting me carry out the research I was interested in. He taught
me incredibly much about keeping the bigger picture in sight, about writing,
about teaching, and simply about doing research. He also took a lot of time
to read earlier versions of this thesis, and some of its chapters multiple times;
his constructive and precise criticism showed me how to turn a collection of
research nuggets into an actual thesis.

I’m equally grateful to my second supervisor Alexander Koller. He devel-
oped and discussed with me many research ideas in this thesis, ranging from
abstract concepts to concrete technical problems. His critical views and alter-
native points of view in general helped my research innumerable times, and
his detailed comments on many of the papers I have written both taught me
a lot and made those papers much better.

Im also indebted to several helpful colleagues that supported my work on
diverse parts of this thesis: Stefan Thater always took time to discuss roughly
everything in this thesis, and he also gave me much practical support with
data for basically each experiment involving semantic similarity. Ines Re-
hbein re-trained a parser that afterwards could cope with my messy data.
Josef Ruppenhofer worked on concepts and annotation for participant min-
ing with me. Dustin Smith from MIT sent me the OMICS corpus in a form
that I could actually process, which increased the size of my input data by a
factor of 5. Asad Sayeed & Prashant Rao helped with the annotation of the
action similarity corpus for multimodal models.

Special thanks go to Alexis Palmer: she provided me with invaluable tech-
nical support for all Mechanical Turk experiments, she annotated the action
similarity data set, she proof-read nearly every paper I published, and she
provided detailed comments on previous versions of this thesis.

Of course I’m grateful to all the people who co-authored research papers
with me. Apart from those mentioned above, I additionally want to thank
Marcus Rohrbach for his kind and extensive support with vision data and
infrastructure, and Rui Wang for resuming the work on paraphrasing, and
for being a so incredibly relaxed and patient friend.

A big thank you goes to all the students who worked with me in the past
years (as research & teaching assistants, interns, or writing their theses) - in
chronological / alphabetical order: Nils Bendfeldt, Uwe Boltz, Jonas Sunde,
David Przybilla, Marc Schmit, Carolin Shihadeh, Jonathan Poitz, Simon Os-
termann, Max Paulus, Carolyn Ladda, Jelke Bloem, Noushin Fadaei, Anto-
nia Scheidel, Torsten Jachmann, the SMILE annotation crew (Oscar Braun,
Katharina Dellos, Erik Hahn, Anne-Julia Hoffmann, Evi Kigaia, Lennart
Schmeling, Marc Schulder, Hannah Seitz and Philipp Wettmann), Dominikus
Wetzel and Nicholas Merritt. All of you helped me (and also this thesis) a
lot, I learned a lot, and I had a lot of fun. I hope at least one of these points
is true for you, too.

I received very important support from my colleagues (and friends) Alexis
Palmer, Andrea Horbach, Annemarie Friedrich and Diana Steffen, whom
I had interesting research discussions with, but who especially made my
workdays so much more fun.

Heartfelt thanks go to my parents and my brother, who helped in many
indispensable ways. I don’t know what I would do without their caring
support, their constant kind encouragement, their willingness to listen to my
complaints and all the fun gatherings we had.

My final deepest thanks go to Thomas, for being there, for giving me the
opportunity to discuss my work when I wanted to, and for distracting me
from work when I needed it, for all the comfort, and for always helping me
with an innumerable number of smaller and bigger things, especially during
the final phase of this thesis. I think a huge part of this thesis was actually
his work, simply because he kept me going during all those years. Thanks
so much for everything.

Contents

1 Introduction 1

1.1 Scripts and Language . 3

1.2 Scripts and Natural Language Processing 7

1.3 The Challenge of Learning Script Knowledge 9

1.4 Scripts and new Applications . 16

1.5 Plan of the Thesis . 19

1.6 Contributions of this Thesis . 21

2 Background on Scripts and Script Processing 23

2.1 Scripts and Human Script Processing . 25

2.2 Script Processing in Machines . 27

2.3 Previous Systems and Script Learning Challenges 39

3 Corpora of Written Script Data 41

3.1 Collecting Script Data with Mechanical Turk 42

3.2 Assembling a Corpus of Common Sense Scripts 43

3.3 Preprocessing . 46

3.4 Corpus Statistics . 50

3.5 A Domain-Specific Corpus of Cooking ESDs 59

3.6 The OMICS corpus . 61

4 Mining Script Representations 63

4.1 Paraphrasing as Sequence Alignment . 65

4.2 Multiple Sequence Alignment . 67

4.3 Semantic Similarity . 69

4.4 Building Temporal Script Graphs . 72

4.5 Evaluation . 74

4.6 Related Work . 85

5 Mining Script Participants 87

5.1 Participants and ESDs . 89

5.2 Participant Computation as Set Partitioning with ILP 89

5.3 Evaluation and Results . 93

5.4 Discussion . 101

5.5 Related Work . 102

6 Domain Generalization and Preprocessing 103

6.1 Coreference Resolution . 104

6.2 Event Splitting . 106

7 Connecting Scripts to the World 109

7.1 Semantic Similarity and Grounding . 110

7.2 The TACoS Corpus . 111

7.3 The Action Similarity Dataset . 118

7.4 Models of Action Similarity . 121

7.5 Evaluation . 123

7.6 Discussion . 124

7.7 Related Work . 125

8 A Text-Based Application: Paraphrase Extraction 127

8.1 Paraphrasing from Monolingual Comparable Corpora 128

8.2 A Corpus with Highly Parallel Discourses 132

8.3 Sentential Paraphrase Extraction . 135

8.4 Extracting Paraphrase Fragments . 139

8.5 Evaluation of Paraphrase Fragment Extraction 143

8.6 Discussion . 147

8.7 Related Work . 147

9 Tying up some Loose Ends 149

9.1 Coverage . 150

9.2 Optimizing Event Paraphrasing . 154

9.3 Advanced Script Models . 158

9.4 Applying Script Data for Video Processing 163

10 Conclusions 165

10.1 Main Contributions . 165

10.2 Outlook . 166

List of Figures 169

List of Tables 171

Bibliography 173

A Details of the Event Sequence Corpus 187

Chapter 1

Introduction

It is often said that humans are creatures of habit. While this saying sometimes carries
a negative connotation related to weak will or laziness, the proverb actually depicts the
essence of our brains’ incredible efficiency: while conducting activities that we repeat
often (like driving to work or cooking something), we can easily get them done without
mistakes, while occupying our minds with something completely different.

The structures in our minds that store information about courses of actions in frequently
trained routines are often called scripts (Schank & Abelson, 1977). Scripts and how we
apply them affect our whole life, every day. This knowledge lets us execute habitual
actions correctly and spares our consciousness the effort to think about how or whether
we did it; it also affects our expectations and our perception of everyday situations;
and it is pervasive in communication, enabling us to utter and interpret very short and
highly ambiguous statements in a situation-specific, unambiguous manner.

Because of this habitual event knowledge, we can listen to audiobooks while driving, or
do anything else that leaves one hand free. And if this wasn’t the case, living would be
extremely tedious: If we had to spend our entire ride to work actively telling ourselves
things like “Stop at the red light - look over your shoulder before you turn - go slowly
on crossroads” and so on, driving would not only be as exhausting as it was in the very
first driving lesson, but we probably also would forget to signal every other turn.

Such internalized actions often even evade our consciousness completely: If somebody
turns at the doorstep because he or she is not sure whether they turned the stove off,
they will mostly find it properly shut down. Because the habit of turning the stove off
after removing a pot is so tightly anchored in our brains (at least those of us who cook
regularly), this task can completely be driven by our subconscious minds, which means
that if nothing out of the ordinary happens, a) we always do it and b) we can never
remember whether or not we did it.

2 Introduction

Apart from tasks that we daily do by ourselves, scripts also cover more complex scenar-
ios like going shopping or eating in a restaurant. Do you remember the details of
the last time you went grocery shopping? It probably was not that long ago. What items
did you buy and in which order did you select them? Most people cannot remember
such things exactly; they can, at best, derive the answer from a mixture of memory and
their default way of going shopping - by imagining in which order they would pass
through the store if they went shopping again. This is the same mechanism that makes
us forget whether we turned the stove off.

Scripts not only help us to do things without effort or conscious awareness and memory,
but also directly affect how we speak and talk, and allow us to communicate much more
efficiently, too: If your spouse says “I’ll meet some colleagues for dinner!”, you can
kindly offer him or her “I’ll get your wallet from the kitchen!” without anybody even
mentioning restaurants, food prices, paying and giving someone money - your partner
will understand, because he shares a lot of script knowledge with you, also about the
restaurant script. At the same time, you could (theoretically) say “I’ll get your wallet
from the kitchen!” after you announced to go shopping by yourself, and probably get a
completely different reaction - but again, the both of you will understand your intentions
without any explanation, because you both also share the script for going shopping.

As indispensable as scripts are for humans, so are they difficult and under-researched
when it comes to computers. If we ever want to construct software that is capable of
basic human-like reasoning, like simply understanding what a human implies by saying
‘I’ll get your wallet from the kitchen!”, we need to bring script knowledge to machines.
While there were some small-scale attempts to make such event structures accessible
for reasoning in machines, the past 40 years of research did not find a solution for
learning script knowledge, not to mention any possibility to actually apply scripts to
computational tasks.

This thesis develops new techniques for the automatic acquisition and application of
scripts, with a particular focus on language-based acquisition methods and multimodal
applications. In this first chapter, we will first explain how standardized event-knowledge
is pervasive in language, and why it is thus essential for full-scale natural language pro-
cessing. The following sections explain what makes script acquisition and application
so challenging, and then give a first overview of our approach to script learning and
multimodal script application.

1.1 Scripts and Language 3

Honey, could you feed
the dog today please?
Here are 5 dollars.

O.k. mom, but I'm
not sure he likes
eating paper...

Figure 1.1: An illustration of (failed) script knowledge application.

1.1 Scripts and Language

Shared event knowledge about everyday scenarios is pervasive in everyday conversation,
and even necessary for efficient communication. The importance of script knowledge
and the way it influences language is best illustrated with an example that shows failed
script-based reasoning in action - like the comic in Figure 1.1.

The utterance in panel one is natural and understandable, because we can easily infer
a connection between the two sentences. Upon reading the text, the reader will assume
that the money will either be used to buy the dog food, or as a reward for the kid that
is meant to take over the dog-feeding duty, or maybe both. Everyone understands that
the mother expects her child to know what the money is meant for, given that the usual
procedures for going shopping, taking over household chores and feeding a dog (with
proper food) is trivial information that everybody of a certain age and background can
be expected to know. The punchline works by introducing a clash between the mother’s
assumption (which the reader shares) and the strange fact that the child does not fulfill
those expectations (or at least pretends not to do so): he or she seemingly does not
know how to feed a dog and what to use the money for, but rather utters the absurd
assumption that the money should be used as dog food.

In terms of knowledge structures, two scripts are evoked here: the script for feeding a

dog, and the script for asking someone a favor. It’s not even important to know exactly
how the money will be used - in both possible scenarios, it is clear that the money will
be an essential part of the process (either for paying for the food, or for rewarding the
kid). Scripts can be evoked either explicitly or implicitly: Saying “Could you feed the dog,
please?” brings up the scenario with a direct mention; the process of asking for this favor
indirectly puts the mother and the child into the relevant situation, and thus also evokes
the respective script. In both cases, any elaboration about the purpose of the money or
the detailed list of things expected from the kid seemingly becomes unnecessary.

4 Introduction

...

...

...

buy dog food

open can

put food
in bowl

take out money

give money
to cashier

give food
to dog

Figure 1.2: Script knowledge triggered by the scenario in Figure 1.1.

If the child in the comic knew about those scripts, he or she could infer which event
involves the money, and which does not. The utterance in the last panel breaks the
script for feeding a dog by inserting a wrong object into a event, more concretely by
exchanging the dog food with the money in the event give food to dog. Similar script-
based mechanisms of punchlines actually form the basis for one of the most prominent
linguistic theories about jokes and humorous effects in language (Raskin, 1985).

Elements of a script

According to most definitions, a script contains several bits of information about a given
scenario (e.g. feeding a dog):

• the events and their typical temporal order (when feeding a dog, one needs to get
dog food first, then open the can, then put the food into a bowl, and so on)

• the participants of the scenario, which comprise all persons, objects or other enti-
ties involved (dog, dog owner, food, can opener,...)

• causal relationships and other constraints on the events (the can needs to be opened
to get the actual dog food)

The joke in Figure 1.1 illustrates what communication could look like if such knowledge
was not shared between users: Instead of inferring that dog food is the only thing one

1.1 Scripts and Language 5

should use to feed the dog, and using the money to obtain the food, the kid’s assertion
skips any script-based inference and combines the instruction of feeding the dog with
the five dollars as a means for feeding the pet. If one does not know which of the events
related to feeding a dog actually involves the money, this might be a valid interpretation;
even if one knows that a dog is usually not fed with money, information regarding how
to actually use the money is still missing.

The kid’s seemingly absurd inference is blocked for normal readers by many connected
pieces of common sense knowledge. One of them is of course that dogs should not be
fed with money, for various reasons - but the actual process of inferring what to do is
commonsense-based script knowledge as pictured in Figure 1.2:

• To feed a dog, one has to get dog food first.

• One can acquire dog food by buying it at a supermarket.

• Buying something at the supermarket involves paying for the goods.

• Paying involves the transfer of money, possibly in cash terms.

Scripts and efficient communication

Figure 1.3: Two road signs illustrating text abbreviation licensed by script knowledge.

Script knowledge allows us to dramatically shorten conversations, like in the (miscon-
ceived) second sentence of the first comic panel. This is not only relevant for everyday
conversation, but even more so for situations where extremely short instructions need
to be processed quickly, like cautions on road signs: warning signs stating “NARROW
BRIDGE” or “WATCH FOR ROCK” (cf. Figure 1.3) would not work at all if a driver
could not within a second infer how to behave in a scenario of driving on a narrow

6 Introduction

bridge, or how and where falling rocks could cause serious damage, and why it does
not make sense to just stare out of the window to watch the rocks. If such inferences
by drivers could not be taken for granted, such signs would have to contain detailed
advice, as in Figure 1.4:

NARROW BRIDGE!
1. drive slowly!
2. look out for other vehicles
3. if you encounter another vehicle, make sure that
 both your vehicle and the other one fit on the bridge
4. if the bridge is too small for you and the
 vehicle you meet, please make sure that either
 the other vehicle stops or let the other vehicle pass

Figure 1.4: A road sign without script knowledge?

Obviously, this warning message is very inefficient and impractical. Signs that abbrevi-
ate such long explanations with just two or three words still fulfill their communicative
purpose, because drivers share script knowledge and can access this knowledge within
a minimal amount of time. Before such information becomes habitual, drivers are taught
in driving lessons, collect some experience, and sometimes use other common sense bits
about the world: by evoking a generic script like driving in dangerous environments,
combined with some reasoning about vehicle sizes, gravity and the stability of metal,
one can omit anything else related to the script and safely put drastically condensed
warnings on signs. Such a warning automatically evokes the relevant scripts, and we
can assume that the reader will infer the more detailed precautions. Additionally, we
can count on drivers to do this inference very quickly, without having to revisit theories
of gravity or driving lessons in their minds. This can only be managed because we have
efficient event knowledge structures which guide us through such situations.

The mere fact that many aspects of everyday communication would fail spectacularly
if humans did not share similar scripts and could not process them so quickly leads to
the conclusion that any computer system that wants to understand, maybe take part in,
or just analyze human-produced communication needs to have access to script knowl-
edge. However, the current state computational understanding would lead to unin-
tended jokes rather than to successful application of scripts, because there is no way for
a computer to generically learn those pieces of common sense knowledge that humans
acquire, apply and extend on a daily basis, with incredibly little effort.

In the following two sections, we will discuss the main challenges for learning and
applying scripts in more detail (Section 1.3 & 1.4), and then outline the solutions we
propose in this thesis (Section 1.5).

1.2 Scripts and Natural Language Processing 7

1.2 Scripts and Natural Language Processing

Although humans apparently use script knowledge all the time, it is not obvious at all in
which tasks a machine could apply it. Up to now, there is no application that uses full-
fledged scripts – simply because there is no sufficiently large resource that provides such
knowledge. Even the few script-based systems that are actually implemented (Culling-
ford, 1981; DeJong, 1982; Gordon & Swanson, 2009) are not particularly good examples
for the application of scripts – they either do not use actual script representations, or
they do not use genuine texts, or both.

However, there have always been showcases for applications that could profit from script
knowledge - if only a sufficient amount of suitable script data was available.

Question Answering

Question answering (QA, see Kolomiyets & Moens (2011) for an overview) is the archetype
application for scripts: shortly after the script concept was introduced in the late sev-
enties, the first proof-of-concept QA systems were implemented. Systems like SAM
(Cullingford, 1981) were capable of some basic inference and could answer questions on
(artificial) texts about restaurants or earthquakes: Given a short text about a restaurant
visit, a user could ask the system a question like Who brought the food to the patron?,
and the system would answer probably the waiter – no matter whether this event was
mentioned in the text or not (see Chapter 2 for more details).

Current question answering systems have access to much more data and much more
computing power, and they yield impressive results for factoid questions like who-,
where- and when-questions. For such tasks, QA systems do not need to exploit deep
script knowledge: to extract an answer for a question like “Who wrote ‘Ulysses’?”, it is
probably not very important to know that authors typically write books, or how the
whole publication process works.

However, processing and answering more complicated why-questions would actually
require deeper reasoning with event relations and causality, which most QA systems
cannot do. Consider the following example for a why-question with its potential answer:

Why did Bradley Manning go to jail?
“He was charged with a number of offenses, including communicating national de-
fense information to an unauthorized source and aiding the enemy”1

The information that a charge (in particular the given one) typically results in arrest,

1http://en.wikipedia.org/wiki/Bradley_Manning

8 Introduction

which means being put into jail, is script information (about a criminal process).
Hajishirzi & Mueller (2012) recently showed an attempt to incorporate some shallow
event-related knowledge into a question answering system, but with regard to generic
why-questions, such “information sources have not as yet developed sufficiently to be
exploited in a QA system” (Verberne et al., 2010).

Other potential applications in language processing

There are more textual applications that have often been imagined as being able to profit
from script knowledge, but which have never actually been implemented in this way.
Such use cases include planning and reasoning about success or failure of a plan (Schank
& Abelson, 1977), and anaphora resolution (McTear, 1987). Gardent & Striegnitz (2001)
later also showed how to generate referring expressions with script knowledge, but did
not actually evaluate this approach - due to the lack of script data.

In the early years of script research, there was neither a sufficient amount of script
data nor a sufficient amount of text data that could have profited from this kind of
common sense reasoning. While we still do not have a comprehensive script resource,
the internet brought a tremendous change concerning textual data for script application:
internet blogs and boards offer a large source for opinionated texts where commonsense-
based reasoning is in fact much more important than for e.g. newspaper articles. In
particular, the very short texts in microblogs often provide good examples where script-
based reasoning may be necessary.

The automated processing of microblog texts is a very new and rapidly growing re-
search area, in particular for marketing-relevant topics like sentiment analysis (Pak &
Paroubek, 2010), user categorization (Pennacchiotti & Popescu, 2011; Burger et al., 2011)
or even stock market predictions (Ruiz et al., 2012). Because microblogs contain highly
condensed information, script knowledge is often required to abbreviate the messages
as far as possible, and thus could be highly useful to analyze them.

Consider for example the following short texts (“tweets”), crawled from Twitter:2

(a) Just made coffee but forgot to put in water.
(b) Made coffee only to realise I don’t have any milk.
(c) Just drank a big mug of coffee and forgot to have decaf. #bedtime #wideawake

Many natural language applications would need script knowledge to process those sen-
tences properly:

2http://twitter.com

1.3 The Challenge of Learning Script Knowledge 9

• Textual Entailment systems should be able to infer whether the writer actually had
coffee: in example (a), there is no coffee, and in example (b), there might be coffee,
but it can’t be prepared in the writer’s preferred way. To do this inference, the
system needs to know that the step of putting water in a coffee machine is essential
for making coffee, while milk is only an optional supplement.

• Sentiment analyzers or mood detectors need to do a similar kind of inference to
determine the writer’s current mood. For this task it is necessary to distinguish
the case in which there is no coffee yet, but can be made soon (a), or there is no
“good” coffee and it’s not available without much effort (b), or there is good coffee,
but it had unexpected and unintended consequences (c).

• Coreference resolution needs to resolve the bridging anaphora for the water as a par-
ticipant in the coffee making process.

• Semantic role labeling might stumble over the ellipsis in the first sentence, because
the water is not put into the coffee, but rather in the (textually omitted) coffee
machine.

To process tweets like this on a large scale, one would need a huge database that ex-
haustively covers many scenarios, and a mechanism to map the scripts to actual texts.
Previous approaches to script mining did succeed in creating such a database, because
they could not overcome the major script learning challenges.

1.3 The Challenge of Learning Script Knowledge

The script knowledge we need for further application are representations for many dif-
ferent scenarios, similar to the example in Figure 1.5: This graph displays a (simplified)
script for the scenario feeding a dog. The script contains the script participants (indi-
cated with icons) and their possible linguistic realizations (in the last row), events that
the participants are involved in (again with different verbalizations), and constraints
between the events. Any two events can have a default sequential ordering (indicated
with arrows from the earlier to the later event), or they can be alternatives to achieve the
same goal (like the first two events that make the food available), or they can both be
necessary, but happen in arbitrary order (like filling the water bowl and trashing the empty
food can).

Acquiring a comprehensive knowledge base of such structures is challenging in several
respects:

10 Introduction

 [can]
[food container]

[open]
[buy]

[take from
 cupboard]

[food]
[dog food]

[m
eat]

[put into]
[scoop in]

[dog dish]
[bow

l]
[w

ater bow
l]

[bow
l]

[dog]
[cupboard]

[eats]
[w

atch eating]

[call (the)]
[dum

p em
pty]

[trash]

[fill]
[put w

ater in]

Figure
1.5:A

script
for

f
e
e
d

i
n

g
a

d
o

g.

1.3 The Challenge of Learning Script Knowledge 11

• Scaling script data collection is the most challenging part. If we needed only 50
scenarios and one description of each, one could simply write down a script col-
lection by hand (as in the early script-based systems). However, it is not clear how
many scenarios there are at all, but there are probably very many. Further, each
scenario bears some degree of structural variance and has many possible linguis-
tic realizations. To capture as many valid scenario variants as possible, one needs
to collect many examples as input data. Because we cannot solve these coverage
problem(s) by creating a script database manually, we have to find a different input
source to leverage - which is then again hindered by a subsequential problem:

• Finding appropriate input data is difficult, due to what we call the problem of im-
plicitness: as we have explained earlier, humans take script knowledge for granted.
They can abbreviate it in any conversation, and thus they also hardly ever write it
down. Even the biggest data sources (like the internet) do not contain all detailed
facets of everyday common sense actions (which often even happen without our
conscious interaction). Humans spell such things only out if they have to - e.g. if
a kid would ask precisely what he or she has to do for feeding the dog.

• Generalization over the input data is the last major challenge: if we in fact found
appropriate input data to compute scripts from, we still need to compute concise
script representations. The challenge here lies in the fact that there are many ways
to verbalize what happens in a scenario (which is also the reason why we want
to enrich script representations with many linguistic variants). When it comes
to mining scripts from data, those variants bear an inherent paraphrasing problem:
How do we map different realizations of events and participants to their abstract
representation in the script?

The remainder of this section discusses these challenges in more detail, and sketches
our proposal for possible solutions.

Collecting input data: the problems of implicitness and coverage

Acquiring source data for mining scripts is challenging in two ways: we need a large
amounts data, and even small amounts of data are hard to find. To begin with, the task
of comprehensively collecting script knowledge is ill-defined: It is not clear how many
relevant scenarios there are, and what they are. There is no exhaustive list of everyday
tasks that everybody knows as a human. This means that we do not know what it would
take to collect a comprehensive script collection in the first place, and there is no specific
set of scenarios to start with, either.

12 Introduction

A second coverage-related problem concerns the variance within a script: It is not suffi-
cient to just find one story describing a particular scenario in order to derive a complete
representation for it – we rather need many valid examples for possible event courses
of a scenario. When feeding a dog e.g., one can have different alternatives for certain
events (buy the dog food or just get it from the cupboard), different event orders (fill the
water bowl either before or after trashing the can), and many verbalization variants for
all events and participants. For new scenarios, it is not clear beforehand how many
examples would be needed to fully grasp all variants of a script. Even though any
computational model is just an approximation of reality, one should at least be able to
estimate how well the collected data represents the important scenario variants.

Up to now, there is only a tentative answer to the question of how many scenarios a
script database needs to cover, and how many variants we need per scenario: As many
as possible.

Previous approaches (Mueller, 2000; Schank & Abelson, 1977; Gordon, 2001, cf. Section
2.2) did not find a satisfactory solution for creating a comprehensive script data collec-
tion: most approaches tried to assemble knowledge bases manually, but this obviously
does not scale up for a comprehensive scenario collection. Further, one sequence by one
annotator only displays one (possibly incomplete) way to execute a script, and we want
to capture reasonably many scenario variants. Previous databases also did not cover
verbalization variants, which are necessary to map scripts to actual texts.

To overcome similar scalability problems, many types of world knowledge have suc-
cessfully be acquired by mining large amounts of text: Several approaches learn diverse
semantic relations and ontologies from big corpora (Buitelaar et al., 2008, among others),
and rapidly growing online-resources like Wikipedia3 are successfully used for gather-
ing detailed information about persons, locations or other named entities (Suchanek
et al., 2007).

When trying to mine script knowledge from text, one faces the problem of implicitness: the
more internalized a script is, the lower is the likelihood of finding it spelled out in text.
Texts that could be used for script learning should contain prototypical sequences of events
that are temporally ordered and attributed to a specific scenario. Children’s journals, for
instance, could be a possible text source for such sequences, like the following (made-
up) example for feeding a dog:

Today I had to feed the dog. First I bought new dog food with the money mom gave
me. At home, I immediately took out a can opener and a spoon. then I opened the
food can and put the food into the dog’s bowl. I called the dog and he was very
hungry.

3http://www.wikipedia.com

1.3 The Challenge of Learning Script Knowledge 13

Texts like this are rather uncommon, probably even for children’s writings. We rarely
find any prototypical episodes in which nothing out of the ordinary happens. Even if
children’s diaries might be an appropriate data source, they are mostly inaccessible, and
not available on a scale that would allow for effective knowledge mining.

Collecting input data: our crowdsourcing approach

We propose a method for data collection that overcomes the problem of implicitness and,
at the same time, maintains scalability: We will use crowdsourcing for data collection.

1. buy dog food
2. open can
3. put meat into bowl
4. call the dog
5. trash can
6. fill water bowl
7. watch dog eating

1. take food from cupboard
2. open food container
3. scoop food in dog dish
4. call dog
5. put water in bowl
6. dump empty food container
7. dog eats

Figure 1.6: Two exemplary event sequence descriptions for feeding a dog.

Crowdsourcing is a currently trending and growing technique for linguistic data acqui-
sition. By asking many people over the internet, one can target all kinds of common
sense scenarios, and still get a reasonable coverage over different scenarios and variants
within a reasonable amount of time. This technique allows us to ask thousands of people
directly for the information we want, so we can circumvent the problem of implicitness
and still maintain a scalable approach. As a crowdsourcing platform, we use Amazon
Mechanical Turk, and ask people what they do when they experience a certain scenario.
The two sequences in Figure 1.6 are two example answers to a question like “How do

you feed a dog?”. (We restrict this running example to two sequences for simplicity.
The actual script learning architecture is designed for much larger datasets.)

Generalizing over input data: the paraphrase problem

Mining global representations from textual scenario descriptions is unfortunately not
straight-forward. Scripts display constraints between abstract event types, and we only
have concrete event verbalizations in our source data. To find out how the (abstract) events
in our scenarios relate to one another, we need to find out which event descriptions in the
source sequences actually refer to the same event, and which of them describe different
ones: we need to solve the paraphrase problem.

14 Introduction

The paraphrase problem is shared by all algorithms that aim to learn common sense
knowledge: Language is vague and ambiguous, thus there are many different ways
of verbalizing the same thing. This is already challenging for far less complex learn-
ing tasks, e.g. acquiring basic semantic relations like meronyms: if, for instance, an
algorithm aims to learn that wheels are parts of cars, it might have to cope with texts
that only contain information on “wheels of automobiles” or “wheels of Ferraris”, and thus
should know that Ferraris are, in fact, cars.

This challenge grows with the size of the unit of interest: while it is already non-trivial
for words, it is even harder for sentences, because there can be infinitely many different
sentences expressing the same fact. Script knowledge acquisition is at the upper end of
the scale for challenging paraphrasing problems: We are considering not just pairs of
words or pairs of sentences, but rather groups of sequences of sentences that describe the
same scenario. If we have multiple descriptions of feeding a dog, we need to find out
which sentences of different descriptions match each other, in order to generalize over
those sequences and recognize the scenario’s variances.

1. buy dog food
2. open can
3. put meat into bowl
4. call the dog
5. trash can
6. fill water bowl
7. watch dog eating

1. take food from cupboard
2. open food container
3. scoop food in dog dish
4. call dog
5. put water in bowl
6. dump empty food container
7. dog eats

Figure 1.7: Event paraphrases in the sequences of Figure 1.6.

Take another look at the example in Figure 1.6. Most events have different realizations in
the two texts, e.g. put meat into bowl and scoop food in dog dish both describe the event of
transferring the food into some container. In Figure 1.7, we repeat the same sequences,
indicating the event paraphrases with colors. Finding those paraphrases is challenging,
because the semantic similarity of the event descriptions does not necessarily indicate
the similarity of the underlying events: different event realizations within the same
scenario share a very narrow vocabulary, simply because they all turn around the same
scenario participants, like put water in bowl and put meat into bowl. Inversely, actual
paraphrases in different sequences are not necessarily highly similar: For example, open
can and trash can overlap more than trash can and dump empty food container. It is often
the case that descriptions of different events, written by the same author, show more
surface similarity than paraphrases in different descriptions from different writers.

1.3 The Challenge of Learning Script Knowledge 15

Generalizing over input data: our structure-aware paraphrasing approach

It is hard to recover event paraphrases from any similarity information we could derive
from the event realizations by themselves. However, we can make use of the inherent
structural similarities of event sequence descriptions: If two people describe the same
scenario, they probably assume similar temporal event orderings. We can thus incor-
porate this information in the paraphrasing process and take two event descriptions as
similar if they are semantically similar, and if they appear in a similar position in the
sequence. In practice, we use a sequence alignment algorithm from bioinformatics for
matching event descriptions according to these semantic and structural criteria. The
result are then groups of event descriptions that refer to the same event in the script
(like the event boxes in Figure 1.5). Using those as events, we can then compute concise
script representations.

1. buy dog food
2. open can
3. put meat into bowl
4. call the dog
5. trash can
6. fill water bowl
7. watch dog eating

1. take food from cupboard
2. open food container
3. scoop food in dog dish
4. call dog
5. put water in bowl
6. dump empty food container
7. dog eats

Figure 1.8: Participant paraphrases in the sequences of Figure 1.6.

Scripts also contain participants, which we want to include into our script representa-
tions. In order to do so, we need to solve the paraphrase problem for participants, too:
like for event descriptions, annotators use different names to refer to the same partici-
pant (like bowl and dog dish), and descriptions of the same participant can have rather
low surface similarity. Building on the structure-aware event paraphrasing approach,
we will present a new algorithm that extracts participant paraphrases that also takes
sequential structure into account (cf. Figure 1.8). In addition to semantic similarity,
this algorithm incorporates two structural heuristics. First, we re-use the event para-
phrase information: if two participant descriptions occur in two event paraphrases, they
are likely to be paraphrases themselves. Second, the same annotator usually refers to
the same participant with the same name, so two different participant descriptions in
the same sequence most likely refer to different participants. The outcome of this step
are participant representations consisting of equivalent participant descriptions (like the
boxes in the bottom line of Figure 1.5).

16 Introduction

1.4 Scripts and new Applications

This thesis presents the first scalable script-mining architecture. We additionally show
two more advanced applications in different disciplines: First, we ground script knowl-
edge in video data and explore the advantages for semantics of event descriptions as
well as action recognition in videos. Second, we focus on text processing and show that
the insights we gained for paraphrasing in script data also bring tremendous advantages
for extracting generic paraphrases from parallel texts.

Multimodal application of script knowledge

We have already reviewed possible applications of script knowledge in natural language
processing. Text processing is by far not the only computational discipline that can
take advantage of script knowledge, though: previous research has already shown that
script-like knowledge is very useful for sorting and retrieving images (Gordon, 2001).
We will bring this connection of scripts and vision to a new level, moving away from
static pictures and grounding script knowledge in video data.

There are multiple aspects that make the connection of scripts and vision interesting:
in computer vision applications, the problem of implicitness does not exist, because
there are no possibilities for any shortcuts with implied events. Talking or writing about
single steps of a standardized procedure seems unnecessary and boring, but the actual
execution of those single steps is still necessary: recording somebody making coffee
necessarily involves watching each single step on the way.

From the other perspective, textual data is a very interesting supplement for computer
vision approaches (Rohrbach et al., 2010), because video data is very hard and tedious
to collect and to annotate. Enhancing visual models with textual data can help to collect
data for many scenarios in a tiny fraction of the time it would take to create recordings
for the same amount of scenarios.

When it comes to applications, grounding scripts in videos is also attractive for both
computational semantics and computer vision: viewed from the computer vision per-
spective, script knowledge can help to predict events in a scenario (cf. Figure 1.9). If an
algorithm has recognized a carrot, a knife, a cutting board, it can use scripts as prior
knowledge to infer that most likely there will be a cut-action (with carrot and knife as
participating objects) soon. For computational semantics, the grounding of textual script
data in visual features offers new possibilities to assess event semantics: we already ex-
plained that the surface similarity of event descriptions often does not correspond with
the surface similarity of the underlying actions. It is intriguing to ascertain whether
visual features are a better way to score event similarities, while textual descriptions for

1.4 Scripts and new Applications 17

carrot

get knife

get carot

get cutting
board

cut carrot

...

PREPARING CARROTS

knife

cutting
board

Figure 1.9: Action recognition in videos with scripts.

18 Introduction

cut carrot

use knife to make stripes

cube carrot

dice carrot chop it up

Figure 1.10: Event description paraphrasing with video data.

1.5 Plan of the Thesis 19

the same event can vary a lot. The hypothesis here is that e.g. the process of turning a
carrot into bite-sized pieces always looks very similar in a video, while descriptions like
cut carrot, use knife to make stripes and chop it up are highly dissimilar from a linguistic
perspective (cf Figure 1.10).

Paraphrasing and event structures in text

We have argued that the paraphrasing problem for script events is nearly impossible to
solve for algorithms that only consider the surface similarity of sentences. To achieve
better results, we propose to consider the parallel sequential structure in event sequence
descriptions and apply a combined measure of structural and semantic similarity.

While we have introduced this paraphrasing technique as a means to an end for script
representation mining, the algorithm itself has more applications. Large paraphrase
collections have many applications in natural language processing, and in consequence,
many algorithm have been proposed to mine such paraphrases automatically (Lin &
Pantel, 2001; Szpektor et al., 2004; Dolan et al., 2004; Ganitkevitch et al., 2013). Monolin-
gual parallel corpora in particular have evolved as a useful resource for extracting such
paraphrases (Barzilay & McKeown, 2001; Bannard & Callison-Burch, 2005; Zhao et al.,
2008).

However, most of those approaches neglect structural similarities in parallel texts, which
misses out on important opportunities: Just like the sequential structure in event se-
quence descriptions can hint on similarity of event descriptions, the similarities of event
structures in parallel texts can help to identify sentences with equivalent meaning. We
will show how to port our paraphrasing technique to standard texts and thus yield
much more precise paraphrases than approaches that rely on semantic similarity alone
and ignore the text structure.

1.5 Plan of the Thesis

This thesis covers several aspects related to script learning and application, organized
in three larger parts:

Part 1: Script learning

The first half of this thesis is concerned with Script Mining: Chapter 2 summarizes pre-
vious work on scripts and script processing. In Chapter 3, we detail how we acquire the

20 Introduction

basic input data using crowdsourcing, showing how this technique overcomes the problem
of implicitness while still being a reasonable choice considering the coverage problem.

Chapter 4 describes how we mine concise script representations out of the acquired
textual input, focusing on the central task of computing event paraphrases. The para-
phrasing algorithm heavily relies on script-inherent structural constraints and applies
them using sequence alignment. To enable more fine-grained reasoning, we also exploit
structural script information for a new algorithm to compute paraphrases for script par-
ticipants (Chapter 5). Chapter 6 shows several preprocessing techniques that guarantee
domain-independence for the script mining system.

Part 2: Applications

We show two potential applications for script data itself and for the algorithms we devel-
oped on the way: Chapter 7 shows a new approach to grounding event descriptions in
video data. We build a corpus of videos and temporally aligned textual descriptions of
the events that happen in those videos. We use this corpus to assess semantic similarity
between the event descriptions, using a combination of visual and textual features. Thus
we provide a new resource for semantic processing of event descriptions, and show how
visual information contributes to the semantics of event descriptions.

Chapter 8 shows how the algorithm we used to compute event paraphrases can be ap-
plied to standard texts for extracting generic sentential paraphrases. Our script-inspired
solution to the paraphrase problem offers a new perspective on text mining as well. While
the texts we are looking at do not contain actual script data, they establish similar struc-
tural properties and thus fit the algorithms we designed for scripts. The outcome is
a new technique for paraphrase extraction as well as a collection of paraphrases and
paraphrase fragments.

Part 3: Outlook

We conclude this thesis with a survey on ongoing work related to script processing
(Chapter 9), showing recent advances concerning data acquisition as well as current
work on applications of scripts for visual processing.

Chapter 10 then provides a summary and highlights some interesting directions for
future work.

1.6 Contributions of this Thesis 21

1.6 Contributions of this Thesis

The main contributions of this thesis cover various aspects of script-related processing
and event semantics:

1. The application of crowdsourcing to collect source data for script mining, and a
corpus with sequences of event descriptions for various scenarios (Chapter 3); joint
work with Alexander Koller and Manfred Pinkal (Regneri et al., 2010).

2. The introduction of structure-aware paraphrasing algorithms for event descrip-
tions within a script (Chapter 4) and script participants (Chapter 5); joint work
with Alexander Koller, Manfred Pinkal and Josef Ruppenhofer (Regneri et al., 2010,
2011).

3. A multimodal corpus of videos and their timed descriptions, and the first account
for action description semantics using textual and visual features at the same time,
outperforming each of the single modes taken by itself (Chapter 7); joint work with
Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele and Manfred
Pinkal (Regneri et al., 2013)

4. The application of the sequence alignment architecture built for script data to stan-
dard texts, as the first discourse-aware paraphrasing algorithm for sentential para-
phrase extraction from parallel corpora (Chapter 8); joint work with Rui Wang
(Regneri & Wang, 2012).

Relevant Publications

The following publications report on parts of the research described in this thesis:

Regneri, Michaela, Koller, Alexander, & Pinkal, Manfred. 2010. Learning
Script Knowledge with Web Experiments. In: Proceedings of ACL 2010.

Regneri, Michaela, Koller, Alexander, Ruppenhofer, Josef, & Pinkal, Man-
fred. 2011. Learning Script Participants from Unlabeled Data. In: Proceedings of
RANLP 2011.

Regneri, Michaela, & Wang, Rui. 2012. Using Discourse Information for Para-
phrase Extraction. In: Proceedings of EMNLP-CoNLL 2012.

Regneri, Michaela, Rohrbach, Marcus, Wetzel, Dominikus, Thater, Stefan,
Schiele, Bernt, & Pinkal, Manfred. 2013. Grounding Action Descriptions in
Videos. Transactions of the Association for Computational Linguistics (TACL), Issue 1.

22 Introduction

Additionally, some preliminary results of ongoing work (cf. Chapter 9) were published
in the following articles:

Bloem, Jelke, Regneri, Michaela & Thater, Stefan. 2012. Robust processing of
noisy web-collected data. In: Proceedings of KONVENS 2012.

Rohrbach, Marcus, Regneri, Michaela, Andriluka, Micha, Amin, Sikandar,
Pinkal, Manfred, & Schiele, Bernt. 2012. Script Data for Attribute-based
Recognition of Composite Activities. In: Proceedings of ECCV 2012.

Chapter 2

Background on Scripts and Script
Processing

Scripts and script-like knowledge are recognized as essential elements of human com-
mon sense knowledge. They came up as interdisciplinary concept in the early seventies,
since which time they have been investigated by both AI scholars and cognitive scien-
tists. Minsky (1974) set a starting point for both lines of research, introducing frames
as a generic concept for cognitive processing: frames are everyday situations (like being
in a kitchen or going to a party) that activate certain associated pieces of knowledge and
guide a human through a situation. The associated knowledge is partially about stan-
dard behavior within the frame (e.g. preparing food), expectations about events one can
encounter (e.g. someone else entering the kitchen to get coffee) or strategies to deal with
violated expectations (e.g. if there is no coffee left, one should prepare new coffee).

Schank & Abelson (1977) specified frames and developed the idea of scripts: according
to their original definition, a script describes a scenario, using typical events in their
typical temporal order, the events’ key players, the whole process’ goal, and causal con-
nections between the individual events. Scripts were designed to model knowledge
structures in human brains, comprehensively showing how we think our way through
everyday situations, as well as adapting our minds to new scenarios. As script knowl-
edge was shown to be pervasive in human behavior, reasoning and language, people
working on computational intelligence wanted to make this knowledge accessible for
computers in order to enable human-like reasoning in machines.

As far as script representations in human minds are concerned, psychologists found rea-
sonable evidence that scripts constitute essential organizational structures for common
sense knowledge, and that human minds process everyday events by recalling regular-
ities they learned from earlier, similar episodes (Graesser et al., 1979, among others).

24 Background on Scripts and Script Processing

There is evidence that children learn scripts from an early point in time, and that their
ability to relate new episodes of a certain scenario to their memorized scripts increases
as their cognitive abilities increase with age. (Adams & Worden, 1986)

The process of script acquisition and application in machines are less well understood.
Shortly after the first script theories arose, several researches developed small sample
programs capable of script-based reasoning – Schank & Riesbeck (1981) provide a sur-
vey of those. Those programs were all developed in the late seventies, when computing
power was still several evolutionary steps behind the current state of the art: there was
no internet, no large data resources, no way to get more than 100 mhz CPU or more
than 1mb of RAM on one machine, and not even desktop computers. From this back-
ground, there was neither the possibility to develop machine learning algorithms, nor
any chance to apply them to large amounts of data. Early systems thus had to take a
very simple approach to script processing: their authors entered 2 to 5 scripts manually
into their machines and then did reasoning based on made-up texts that contained ex-
clusively events from the pre-defined script events. The hope at that time was that if one
could manage to simply enter a representation for each single script into the machine –
no matter how – all script-related problems could be solved. The core problem of get-
ting this data was postponed to some indefinite later point in time, anticipating better
machinery or enough manpower to become available over time.

The next 40 years brought tremendous progress for data-driven research in general. The
available computing power and the amounts of available data from the internet grew
(and still grow) exponentially. However, one old question about script data acquisition
remains unanswered: While we actually do have the machinery to do elaborate data-
driven research, we still don’t know from which data we could learn scripts. As we
already argued, a lot of script information is simply not elaborated in text (cf. Chapter
1). Further, we don’t know which scripts to look for in the first place.

This chapter reports on previous work on scripts, summarizing some literature on cog-
nitive script research and detailing previous script-related approaches in artificial in-
telligence. We first review some details about scripts in general as well as from the
psychological point of view (Section 2.1), drawing a more precise picture of the knowl-
edge we want to acquire. Then we introduce previous approaches to automatic script
processing (Section 2.2), followed by a short analysis of those systems’ capabilities to
approach the main challenges related to script acquisition (Section 2.3).

2.1 Scripts and Human Script Processing 25

2.1 Scripts and Human Script Processing

It is widely agreed that systems targeted at full language understanding need access to
script knowledge, and this assumption is intuitively clear and easy to attest with count-
less examples. However, it is not clear at all which knowledge parts essentially belong
to a script representation, and in particular, which of them could help natural language
processing at all: there is no wide-coverage system that uses script-based inference, sim-
ply because the data for such a system is not available. Without any application-driven
guidance, a natural step is to investigate which kind of script knowledge humans use,
and try to make this knowledge available through automatic learning.

First definition of scripts

Schank & Abelson (1977) introduced scripts as a framework for knowledge organization
in humans that was intentionally designed to be applicable for machines, too. Accord-
ing to their definition, a script describes a certain scenario (or scene), like eating in a

restaurant or feeding a dog, and has the following components:

• A scenario, the underlying type of situation or story for the script (e.g. feeding a

dog); scenarios are mostly everyday life events.

• Goals tied to the script, each one defining an intended outcome of the scenario
(e.g. feeding a dog has the goal of preventing the dog from starving)

• Stereotypical events and their expected temporal order (get dog food→ open the can
→ put the food into a bowl).

• The participants of the scenario, which comprise all persons, objects or other enti-
ties involved (dog, dog owner, food, can opener,...)

• Causal relationships or causal chains of the events, defined by pre- and post-
conditions of each single event (e.g. open can changes the world state such that the
previously closed can is open, and an open can is a precondition for put the food
into a bowl).

Once such a script is internalized, no complicated inference is required to execute it - as
long as nothing extraordinary happens. As a consequence, people can make breakfast
or feed dogs or drive cars without any planning efforts and thus little cognitive load,
because they just do such activities according to their script-manifested habits.

Schank distinguished scripts from specific plans which need to be constructed to achieve
higher-level goals. A script can be part of such a plan, for instance getting to work on

26 Background on Scripts and Script Processing

time and preventing the dog from starving on the same day (= 2 goals) requires (a) to
buy dog food on the day before and (b) to feed the dog before one leaves for work (=
a plan featuring two scripts).

Human script knowledge: some basics

Humans acquire numerous scripts by dealing with everyday scenarios over time. Prac-
tically this means that if we entered our first restaurant, this would be a new experience
for which we would built a new script in our mind. During the next few restaurant
visits, we would notice that the core elements are always the same (there are waiters,
we read the menu, we order, the waiter brings the food...). This would then, after we
gained a little experience with eating out, constitute a script representation for eating

in a restaurant, stored in our minds and recalled whenever we visit any restaurant
(that we have or haven’t been to before). Waiters and ordering won’t surprise us, and
we won’t need to think long about what to do next.

If, after several encounters of the same stereotypical restaurant script, we would find
something not recorded in our internal representation for the restaurant scenario, our
script would still not change dramatically: depending on the importance of the new
event, we would regard it as an exception, or add a new so-called track to the script,
storing an alternative script as a derived variant of the original (like eating in a fast food
restaurant vs. eating in a diner). Psychologists have shown that children in fact develop
a preference for keeping certain scripts as a knowledge backbone and distinguish them
from extraordinary, less frequent exceptions. The ability to differentiate between excep-
tions and recurring script variants increases with age (Adams & Worden, 1986).

Humans script knowledge: more recent evidence

The initial theory of scripts was later revised in several respects.

Concerning the knowledge pieces within a script, recent evidence shows that causality
does not play a crucial role for scripts. This holds for the overall script goal as well
as for single tasks: firstly, humans acquire parts of a script equally well regardless of
whether they contribute to the scripts’ overall goal (Seitz & Watanabe, 2009), so the over-
all plan does not seem to be too important for learning a script in the first place. Second,
humans are not necessarily aware of the ordering constraints they have learned with a
script (Swallow & Zacks, 2008), even though they apply these constraints. Any causal
connections that may restrict the actual event ordering are thus not always relevant for
script processing.

As far as script acquisition is concerned, scripts are internalized as dynamic processes

2.2 Script Processing in Machines 27

(Schank, 1999) rather than strictly constrained structures, and they adapt to every single
new experience. This means that we don’t internalize the one script for going to a
restaurant, but rather grow a more complex mechanism that stores expectations about
new restaurant visits and “awaits” potential updates. According to this theory, each new
encountered episode of a scenario bears the potential to teach us new things which we
then add to our script representations: as long as an episode of a scenario (like eating in

a restaurant) complies with our internal scripts (i.e. everything happens as expected),
we won’t note anything special about this episode. But if there are unexpected events
(e.g. on a holiday trip abroad, a waiter reacts with surprise on being tipped, because it’s
unusual there), they will influence our representation of the respective scripts (tip the
waiter becomes an optional event that is subject to the country one is in). Script learning
is thus an adaptive process, capable of changing with new input.

Humans even seem to acquire meta-knowledge about the expected degree of variance
within episodes of a scenario. For highly conventionalized scenarios (e.g. switching

the light on), we do not expect any notable variation. However, if one encountered
very diverse episodes for the same scenario from the beginning on (like different ways to
set up the dining table depending on meal, guests etc.), one would not even memorize
a prototypically ordered event structure in the first place, but rather anticipate even more
variation to come up (Hudson et al., 1992). Note that the experiments carried out here
were mostly simple lab experiments with children and building-bricks - nothing with
any plan or purpose obvious to the trial subject.

Essentially, we, as humans, acquire script knowledge over time, and not because we
make logical plans, but because we get used to some events happening after one another.
We also develop expectations towards the degree of variation of a script, as a piece of
meta-knowledge. The more script instances we see, the more variance can come into our
internal representations. The specific degree of variance differs according the nature of
the scenario, and the number of script episodes one lives through. Most trivially this
means that our knowledge becomes more complex and more accurate as we learn more
by gaining more experience. Each unexpected experience teaches us new things.

2.2 Script Processing in Machines

This section reviews previous computational approaches to script knowledge collec-
tion and application. We start with two early systems that use manually created script
knowledge bases, which were then applied in proof-of-concept applications for text un-
derstanding. We also show other manually created script data collections which all differ
in size, objective and application. In a last part, we show two more recent corpus-based
approaches to script learning, that create knowledge bases on a much larger scale.

28 Background on Scripts and Script Processing

Early script-based reasoning

Shortly after the introduction of the script concept (cf. Section 2.1), the first script-based
systems were presented. We introduce the two most well-known systems (SAM and
FRUMP) in more detail.

script: restaurant
roles: customer, waitress, chef, cashier
reason: to get food so as to go up in pleasure and go down in hunger

scene 1: entering
 PTRANS self into restaurant
 ATTEND eyes to where empty tables are
 MBUILD where to sit
 PTRANS self to table
 MOVE sit down
scene 2: ordering
 ATRANS receive menu
 MTRANS read menu
 MBUILD decide what self wants
 MTRANS order to waitress
scene 3: eating
 ATRANS receive food
 INGEST food
scene 4: exiting
 MTRANS ask for check
 ATRANS receive check
 ATRANS tip to waitress
 PTRANS self to cashier
 ATRANS money to cashier
 PTRANS self out of restaurant

Figure 2.1: The restaurant script in the SAM system, with the customer as an agent.

SAM

SAM (Cullingford, 1981, Script Applier Mechanism) directly implements the theory of
Schank & Abelson (1977). Figure 2.1 shows a representation of the restaurant script
(from the perspective of the customer) used in SAM. The representation defines the
scenario (named script, here restaurant), the participants (called roles), and goals
that can be fulfilled by executing the script. The actual content consists of four so-called
scenes, which are groups of events that share a setting and participants: They each
have different events in a certain order, classified according to Schank’s Conceptual
Dependency Theory (Schank et al., 1974; Lytinen, 1992, CD Theroy). CD Theroy defines
a hierarchy of action types that categorizes all possible actions. Classification in this

2.2 Script Processing in Machines 29

The local transfer of an object.
The transfer of ownership, possession or control of an object.
The transfer of mental information (i.e. communication).
Movement of a body part of the agent.
Ingesting food, fluids or air.
The construction of a thought or new information by the agent.
Focussing attention on something.

PTRANS
ATRANS
MTRANS
MOVE
INGEST
MBUILD
ATTEND

Figure 2.2: Event types according to Conceptual Dependency Theory.

hierarchy allows for more advanced (automated and human) reasoning on the action’s
outcomes, preferences, and the changes it makes to the world. We show a short reference
for the CD Theroy classifications in Figure 2.2.

Causal connections are not explicitly noted in the script representation: the events are
temporally ordered, and the completion of each action in a scene is taken as a pre-
condition for the next scene to happen.

John went to a restaurant. The hostess
seated John. The hostess gave John a
menu. The waiter came to the table. John
ordered lobster. John was served quickly.
John left a large tip. John left the
restaurant.

Input text:

User: What did John eat?
SAM: LOBSTER.
User: Who gave John the menu?
SAM: THE HOSTESS.
User: Who gave John the lobster?
SAM: PROBABLY THE WAITER.
User: Who paid the check?
SAM: PROBABLY JOHN.

Questions & SAM's answers:

Figure 2.3: Script-based question answering task with the SAM software.

The inference component in SAM solves question answering tasks like the one in Figure
2.3 (cf. Schank & Abelson (1975)): The system is capable of detailed inference within its
scope of knowledge. It identifies the script to apply (eating in a restaurant) and it in-
fers implicit information according to the script content (John ate lobster, because that’s
what he ordered). It even gives script-informed guesses about non-inferable information
(the waiter served John, thus he is supposedly the one who brought the lobster). In its
inference abilities, this system is still to be beaten. Unfortunately, it was designed only
as a proof of concept application, because the required knowledge is manually inserted,
and thus cannot scale beyond a certain (rather low) threshold.

30 Background on Scripts and Script Processing

Schank & Riesbeck (1981) collected results from SAM and four other comparable text
understanding programs that more or less operate in a similar way, but on different
scenarios and with slightly different internal structures. Like SAM, all of them rely on
hand-coded knowledge bases. To the best of our knowledge, there is no script-based
inference system that exceeds the capabilities of SAM or any of the other pioneering
text understanding systems.

FRUMP

$DEMONSTRATION
 Predicted Events:
 1: The demonstrators arrive at the demonstration location.
 2: The demonstrators march.
 3: Police arrive on the scene.
 4: The demonstrators communicate with the target of the demonstration.
 5: The demonstrators attack the target of the demonstration.
 6: The demonstrators attack the police.
 7: The police attack the demonstrators.
 8: The police arrest the demonstrators.

Figure 2.4: A sketchy script for the demonstration scenario used in the FRUMP system.

Another early and famous script-based system was designed by DeJong (1982). His
FRUMP (Fast Reading Understanding and Memory Program) summarization system fo-
cuses on covering diverse scenarios. The main idea was to gain coverage by replacing
the detailed common sense scripts encoded for SAM with a representation that focuses
on essential events of typical newspaper stories. DeJong invented sketchy scripts for this
purpose, and built a knowledge base of them with scenarios like public demonstra-
tion, earth quakes or car accidents. Each scenario was annotated with the events
considered important and expected in reports on new episodes of the a scenario.

In contrast to SAM, FRUMP was designed for general newspaper texts, and thus does
not contain common sense scenarios like feeding a dog.

Figure 2.4 shows a sketchy script for the demonstration scenario. The events are
temporally ordered, the roles remain implicit but can be resolved due to the consequent
naming (e.g. demonstrators are always called demonstrators). Sketchy scripts are the basis
for automatic summarization of newspaper articles by determining which sketchy script
to use, finding the predicted events in the text and summarizing them to one sentence.

FRUMP was designed as a stand-alone component for summarization. It was also suc-
cessfully integrated into an Information Extraction system as a script-based summariza-
tion component (Rau et al., 1989).

2.2 Script Processing in Machines 31

Other manually coded script knowledge bases

During the 90s and early 2000s, there were very few developments around script learn-
ing. However, script-related research never completely subsided. There were some
notable attempts to collect script-like knowledge and make it available for semantic pro-
cessing or more targeted applications like image sorting. Similar to the earliest attempts
at script processing, those knowledge bases were manually coded. They differ from each
other in size, target application and depth of the knowledge applied. In the following,
we summarize the most important examples.

ThoughtTreasure

ThoughtTreasure (Mueller, 2000) is a manually encoded common sense knowledge base
that contains – among other types of facts – 94 scripts for different scenarios. The
scenarios contain plain common sense knowledge (e.g. go for a haircut, grocery

shopping) as well as less common events (us space shuttle flight, meiosis).

Figure 2.5 shows example scripts from ThoughtTreasure that describe the scenario gro-
cery shopping and the related scenarios pay-to and pay-cash (the entry is slightly
shortened for readability).

The script representations provide linguistic information in the form of possible verbal
realizations, like go shopping and shopping for grocery shopping (V and N stand for
the part of speech, z stands for ‘English language’). Each script contains references to
different types of participants and goals, as well as pre- and post-conditions for the
whole scenario.

ThoughtTreasure arranges scripts in a deep hierarchy, not only listing their associated
events but also showing hyponymy and meronymy relations between scenarios: e.g. pay

is an event within the grocery shopping script (meronymy), and it has several possible
instantiations, e.g. pay by check, pay by card and pay in cash (hyponymy, marked with
ako). Those instances then have their own script information (roles, goals and events)
associated with them.

Mueller (1998) shows how the different components in ThoughtTreasure contribute to
different natural language processing tasks, e.g. for automated storytelling and text
understanding.

Gordon’s common sense Activities

Gordon (2001) crafted a large database of 768 common sense activities in order to create
a search index for images. The database was manually created by an expert annotator.

32 Background on Scripts and Script Processing

grocery-shop grocery_shopping-Nz go-Vz go-Vz go-Vz shop-Vz
 [ako grocery-shop necessary-shop]
 [used-for shopping-cart grocery-shop]
 [used-for shopping-bag grocery-shop]
 [used-for shopping-basket grocery-shop]

 [role01-of grocery-shop shopper]
 [role02-of grocery-shop food-store]
 [role03-of grocery-shop checkout-person]
 [role04-of grocery-shop food]

 [goal-of grocery-shop [s-hunger shopper]]
 [goal-of grocery-shop [s-profit food-store]]

 [entry-condition-of grocery-shop [low-on-food shopper]]
 [result-of grocery-shop [stocked-up-on-food shopper]]
 [related-concept-of grocery-shop expensive]

 [event01-of grocery-shop [write-shopping-list shopper]]
 [event02-of grocery-shop [select-from shopper na food]]
 [event03-of grocery-shop [put-in shopper food shopping-cart]]
 [event04-of grocery-shop [goto event02-of]]
 [event05-of grocery-shop [pay-to shopper checkout-person
 financial-instrument]]
 [event06-of grocery-shop [return-home shopper]]
 [event07-of grocery-shop [put-away-in shopper food pantry]]
 [event07-of grocery-shop [put-away-in shopper food refrigerator]]

pay-to payer-Nz pay-Vz pay-Vz
 [ako pay-by-check pay-to]
 [ako pay-by-card pay-to]
 [ako pay-cash pay-to]

pay-cash pay-Vz [ako pay-cash pay-to]
 [role01-of pay-cash buyer]
 [role02-of pay-cash seller]
 [role03-of pay-cash currency]
 [role04-of pay-cash wallet]

 [result-of pay-cash [holding seller currency]]

 [event01-of pay-cash [take-from buyer wallet currency]]
 [event02-of pay-cash [hand-to buyer seller currency]]
 [event02-of pay-cash [collect-from seller buyer currency]]

Figure 2.5: Three scripts from ThoughtTreasure, describing the scenario grocery shop-
ping and its daughters pay and pay with cash.

2.2 Script Processing in Machines 33

Building a snowman

:Events
 Children playing in snow

:Places
 Parks

:Things
 Carrots
 Coal
 Gloves
 Snow
 Snowballs
 Snowmen

:Misc
 Winter

Being abducted by space aliens

:Events
 Experiments
 Interplanetary voyages
 Kidnappings
 Surgery

:Places
 Forests
 Unidentified flying objects

:Things
 Electronic apparatus & appliances
 Extraterrestrial life

:Misc
 Night
 Tall tales

Figure 2.6: common sense activities for Alien Abduction and Building a Snowman

The scenario catalogue is based on the pictures: the annotator assigned one or more
scenarios to each image, and then entered the scenario with its relevant elements into
the database (if it was not present there yet).

Figure 2.6 shows two example activities from this common sense activity set.1 The full
set of activities comprises a wide range of topics reaching from standardized common
sense scenarios (like building a snowman) to fantasy-story content (e.g. being ab-
ducted by space aliens). The representations contain events (without temporal order-
ing), places and things associated with the scenario. Things roughly correspond to partic-
ipants, but usually don’t include the protagonists (like children or space aliens). Gordon
also notes some free associations with the scenario that don’t fit any other category. La-
belled as miscellaneous (Misc), they likely serve to establish commonsense-based (but
script-irrelevant) connections in the image index (e.g. time or season information, like
that alien abductions usually happen at night).

Because the targeted system for image indexing had no linguistic focus at all, the
database itself does not give any information about linguistic realizations of the events.

1http://people.ict.usc.edu/~gordon/downloads/Activities.txt

34 Background on Scripts and Script Processing

FrameNet

Taking up the original frame idea in which scripts have their roots, FrameNet (Baker
et al., 1998) was designed as a semantic database with frames and their associated se-
mantic roles. FrameNet offers a comprehensive set of frames with different degrees of
complexity (like buy, cause motion or get a job).

Is Used by: Importing, Shopping

Commerce Goods TransferPerspective on:

RentingIs Inherited by:

GettingInherits from:

Charges, Court, Jury, Judge, Defendant, Offense, Prosecution, Defense,
Suspect, an Authority

Non-Core FEs:

buy.v, buyer.n, purchase.n, purchase.v, purchaser.n

Buyer, Goods

These are words describing a basic commercial transaction
involving a Buyer and a Seller exchanging Money and Goods,
taking the perspective of the Buyer. The words vary individually
 in the patterns of frame element realization they allow. For
example, the typical pattern for the verb buy:
Buyer buys Goods from Seller for Money.

Lexical units:

Core FEs:

Commerce Buy:

Figure 2.7: Definition of the FrameNet frame commerce buy.

Figure 2.7 shows a FrameNet entry for the Commerce Buy frame. A textual definition
is followed by frame elements (FEs), which are either required in all realizations of the
frame (core) or can be omitted (non-core). In the case of buying something, the process
must minimally name a buyer and the good that is acquired. Additionally, there can be
a seller, money, a manner of buying, and other related frame elements

To anchor frames in texts, each frame defines several lexical units that evoke the frame.
A sentence is taken as a textual instance of a frame if it contains one of its lexical units.

FrameNet arranges the frames in a type hierarchy, and provides semantic relations be-
tween frames: Inheritance means that a frame inherits frame elements from a more gen-
eral one (e.g. Getting is less specific than Buying), or can be re-used as a parent
that passes its element to a more specific frame (Renting is a special case of Buying).
If a frame is another Perspective on a second frame, this roughly corresponds to verbal

2.2 Script Processing in Machines 35

passive-active alternations: Commerce Buy in describes the same scenario as Commerce

goods transfer, but focussing on the buyer’s perspective; Commerce Sell is another
frame with perspective on Commerce Goods Transfer, but with focus on the seller.

FrameNet also contains special frame relations in so-called scenario frames, which ba-
sically encode script knowledge: In a scenario frame, subframes denote partial events
necessary for executing the parent frame. One example for a scenario frame is the frame
Criminal Process, which is (in an abbreviated form) displayed in Figure 2.8:

Arraignment, Arrest, Sentencing, Trial

Charges, Court, Jury, Judge, Defendant, Offense, Prosecution,
Defense, Suspect, an Authority

A Suspect is arrested by an Authority on certain Charges, then
is arraigned as a Defendant. If at any time the Defendant pleads
guilty, then the Defendant is sentenced, otherwise the Defendant
first goes to trial. If the Verdict after the trial is guilty, then the
Defendant is sentenced. In the end, the Defendant is either
released or is given a Sentence by a Judge at the sentencing.

Subframes:

Core FEs:

Criminal Process:

Figure 2.8: Definition of the scenario frame criminal process.

In terms of a script , the parent frame denotes a scenario, the subframes are the events,
and the frame elements correspond to participants. The temporal order between sub-
frames is marked with frame relations: the Trial frame stands in a precedes relation to
sentencing, and in a is preceded by relation with arraignment.

One of the applicational goals underlying FrameNet was the support of diverse text
understanding tasks (Fillmore & Baker, 2001). In connection with automatic semantic
role labelers (see Palmer et al. (2010) for an overview), FrameNet was indeed success-
fully applied to textual entailment (Ben Aharon et al., 2010), generating paraphrases
(Coyne & Rambow, 2009; Ellsworth & Janin, 2007) and question answering (Narayanan
& Harabagiu, 2004; Shen & Lapata, 2007). Like Minsky already noted (Minsky, 1974),
frame application is not restricted to language, and, in fact, FrameNet has been used for
the multimodal application of text-to-scene generation (Coyne et al., 2010).

For general-purpose applications, FrameNet has emerged as a very versatile and precise
resource, which exhaustively covers frames and their lexical realizations. FrameNet also
comprises script information, but scenario frames are very rare in FrameNet, and they
are not systematically marked and thus hard to retrieve at all. We view the FrameNet
approach as complementary to script processing in general, whereas FrameNet’s appli-
cability for script-related tasks remains to be explored in future work.

36 Background on Scripts and Script Processing

Automated script learning

Manual encoding of script knowledge hardly scales up to sufficiently large knowledge
bases. Such expert-annotated resources are restricted to what the annotators can recall,
and it is tedious to create such complex data structures. With the availability of modern
machine learning methods and large corpora to train them with, the idea of learning
scripts automatically offers itself. The following details three approaches that learn
script knowledge from texts: GENESIS, narrative schemas and event n-grams.

GENESIS

The GENESIS system (Mooney, 1990) is an early approach to learning and applying
script-like knowledge. The system uses structures that are very similar to scripts (called
schemas) for text-based reasoning in order to answer questions about short narratives,
similar to SAM. The main difference to the first script-based systems is that GENESIS
can in principle acquire new schemas automatically. The system stores event sequences
from seen texts, and turns them into potential schemas for understanding new texts by
replacing descriptions of participants with variables. The core idea is compelling: GEN-
ESIS can automatically determine which schemas are worth storing, and it can analyze
new texts with deep reasoning by applying the schemas it has learned. However, the
texts that GENESIS works with are not very natural, but rather seem as artificial as the
sample texts from the very first script-based question answering systems. In this respect,
GENESIS replaced the manual annotation of scripts with the manual creation of sample
texts, which is unfortunately not sufficient for scaling up script data collection.

Narrative schemas

Chambers & Jurafsky (2008b, 2009) exploit coreference chains and co-occurrence fre-
quency of verbs in text corpora to extract narrative schemas describing sequences of events
and their participants.2 Because this approach is fully unsupervised, its coverage is in
principle unlimited. Each schema provides a family of verbs and arguments related by
the same narrative context. Roughly speaking, verbs end up together in a schema if they
tend to share the same arguments when mentioned in the same text.

Figure 2.9 shows an example for a narrative schema. The first score gives an overall
confidence value for the output (the schema we show here is the second best schema of
size 6). The events are represented by single verbs, and their order reflects the order in
which the mining algorithm added them to the schema. Events have scores that indicate

2See http://cs.stanford.edu/people/nc/schemas for the data.

2.2 Script Processing in Machines 37

score=16.873066
 Events: sell buy borrow buy_back repurchase own
 Scores: 6.798 5.997 5.981 5.826 4.783 4.361

 [sell-s buy-s borrow-s buy_back-s repurchase-s own-s]
 company 8.056 investor 7.350 trader 5.834 corp 5.742
 enron 5.647 bank 5.481 inc 5.460 government 5.432
 sellers 5.313 itt 5.299 family 5.299 gm 5.289

 [sell-o buy-o borrow-o buy_back-o repurchase-o own-o]
 share 8.817 stock 7.575 stocks 7.193 bond 7.020
 company 7.013 security 6.821 team 6.676 house 6.644
 funds 6.632 land 6.563 property 6.563 dollar 6.562

Figure 2.9: A narrative schema with 6 events & most strongly associated participants.

their association strength with the events that were added to the chain before.

The schema’s fillers correspond to script participants. They are specific to either subject
or object slots in the chain, here abbreviated with s(ubject) and o(bject). In the example,
the fillers in the first set only occur in subject slots, and the ones in the second set only in
object positions (we only noted the first 12 for each slot). In some of the schemas, fillers
can also alternate between the slots (like [ask-s answer-o]). Each filler is labelled with
a confidence value, indicating its association strength with all verbs in the schema in its
slot (subject or object). Fillers are determined independently from any filler in the other
slot; their association scores take only the verbs and their grammatical role into account.

Chambers & Jurafsky provide a temporal classification of the schema events, computed
by an automated temporal classifier (Chambers & Jurafsky, 2008a; Chambers et al., 2007).
Apart from this temporal classification, the relations between the verbs remain under-
specified: Two verbs of a schema might describe the same, different or contradictory
events. The aim here is not to collect data describing predetermined activities, but
rather to establish verb groups that share an (unknown) underlying scenario.

In their format and the scenario coverage, narrative schemas are similar to the “sketchy
scripts” used in FRUMP (DeJong, 1982): both of them target scenarios present in news-
papers, and while the “sketchy scripts” actually do have scenarios assigned, FRUMP’s
inference component does not use those scenario assignments. Consequently, the schemas
can probably, like FRUMP, serve for similar applications to summarization and informa-
tion extraction, but on a much larger scale.

Overall, narrative schemas scale up much more easily than any manual script collection,
which enables their use for general text processing in the first place. Chambers & Juraf-

38 Background on Scripts and Script Processing

sky themselves apply the schemas to predicting missing events in a larger context. The
approach can in principle cover arbitrary scenarios, as long as they are actually elabo-
rated in text – however, the scenarios themselves are not determined. For two different
schemas, it’s not clear whether they describe similar scenarios or even the same one, or
whether they are completely distinct.

The permissive high-coverage algorithm needs no supervision and thus could scale up
easily, but consequently also results in a lot of unfiltered noise: The events within a
scenario are only loosely connected, and the events have only vague relationships to
their participants. This is already evident from the example: The highest-ranking slot-
fillers are company (subject) and share (object), but instantiating the schema with those
two participants does not result in a meaningful event chain, because shares can’t be
borrowed, and the shares that a company typically sells (their own) are not the same
ones they buy (if they buy any at all).

Further, there is no clear assignment of temporal ordering. While the associated tem-
poral classifier assigns ordering constraints for pairs of events, the events named in the
schema do not even have a natural sequential order: buy back and repurchase are syn-
onyms, the order of sell and buy depends on the context, and borrow does not fit into
the chain at all. The noise in the schema collection is the price one has to pay for such
robust unsupervised data collection.

As it stands, the resource does not contain the type of common sense knowledge we are
after, but rather higher-level scenarios like trading events. This is mainly due to the
problem of implicitness: more elementary scenarios simply cannot be learned from text.

The purpose of narrative schemas is not to represent full-fledged script representations
including ordering constraints and precise event-participant-relations. They rather pro-
vide a wide-coverage collection of scenario-based clusters that contain related event and
participant descriptions. The result can still be highly useful, especially because it eas-
ily scales up to many scenarios. For actual script-based application, the schemas would
have to be extended with linguistic variants for events and participants, and they should
provide a clearer assignment of relations between events as well as more accurate event-
participant associations.

Event n-grams

Manshadi et al. (2008) present another corpus-based learning approach: They built an
n-gram model for events, based on sentences found in a large corpus. Similarly to Cham-
bers and Jurafsky, they also successively generate event sequences of verb-complement
tuples. Under this approach, the best follow-up of an intermediate sequence is the
verb-complement tuple that has the highest association value with the previous events.

2.3 Previous Systems and Script Learning Challenges 39

Swanson & Gordon (2008) exploit a related model from the same source dataset in an
automated storytelling system.

There are some essential similarities between narrative schemas and event n-grams:
both approaches operate on corpus data and have a high potential to solve the coverage
problem. At the same time, they are both tied to scripts that are actually elaborated in
text, and to the level of detail that is usually verbalized. Neither approach represents
variances of a scenario in its model, but both approaches bear the potential to extend
their models in such a respect and include sufficient amounts of data to cover more than
one variant for the same scenario.

Apart from their commonalities, the two systems differ in three core points: first, event
associations for n-grams are based on plain co-occurrence rather than coreference chains.
However, the data source for the event n-grams are personal blogs that often contain
stories around one specific protagonist, thus Gordon & Swanson (2009) assume that
there is some participant-based coherence in the n-grams. Second, event n-grams do
not model participants. Events are treated as opaque structures, including the verb
complements. Lastly, the n-gram model treats textual order as temporal precedence,
whereas Chambers & Jurafsky offer a temporal ordering based on a classifier.

A performance comparison between the two approaches is not possible, because they
were applied to completely different domains and completely different tasks.

2.3 Previous Systems and Script Learning Challenges

As we have argued earlier (cf. Section 2.1), a script mining system should ideally learn
representations for known scenarios, consisting of typical events in this scenario, their
typical order, and participants. It would also be desirable to capture as many variants
of a scenario as possible, and, optimally, represent those variants in a concise way along
with lexical variants that allow for anchoring the script representation in text.

Measured by those goals, both manual and automatic approaches suffer from at least
one coverage problem, as well as the problem of implicitness:

Covering many scenarios is easier to achieve for machine learning approaches, because
manual script encoding efforts are tedious and time-consuming. However, automatic
approaches have at the same time the problem of implicitness: very conventionalized
common sense scenarios are typically not realized in standard text, because writers can
assume that each reader knows things like that one needs to open a can for feeding
a dog, and that dog food can also come in bags. So while corpus-based learning en-
ables the creation of much larger databases than manual expert-encoding, neither of the
approaches can lead to a sufficiently big database of common sense scripts.

40 Background on Scripts and Script Processing

Covering many variants of a scenario is a two-fold problem: On the one hand, one needs
data that supports many possible sequential and lexical variants of a scenario, which is
a problem for manually created resources. On the other hand, the final representation
of a script needs to be expressive enough to actually represent different variants. This
has not been attempted for any of the automatic learning approaches, and only partially
tried by the early proof-of-concept systems.

Chapter 3

Corpora of Written Script Data

To compute script representations, we first of all need appropriate input data. The data
we are looking for are descriptions of prototypical event courses for a scenario, from
which we will later compute more general script representations.

We collect such data via crowdsourcing, which means that we distribute our task to a
huge number of people over the internet. This technique is particularly suitable for
acquiring script data, for several reasons:

First of all, the task does not require any expert knowledge, but rather commonsense
knowledge about simple everyday activities, which the largest part of internet users
can describe. Crowdsourcing also allows us to address the problem of implicitness
adequately, because we do not depend on “natural” standard texts but can ask precise
questions about the information we want.

Last but not least, our dataset will associate each entry with its scenario. This comes at
the cost of a little supervision, because we need to pre-determine the scenarios we want
to collect data for. However, corpus-based approaches that extract event sequences from
texts deliver no information on the association of event sequences with scenarios at all,
and it is not clear whether they could easily be extended to accomplish this.

This chapter is structured as follows:we first describe how to collect script data with
Mechanical Turk in general, using scenarios as stimuli and yielding multiple event se-
quence descriptions for each scenario (Section 3.1).

The next three sections report on our first corpus collection, which contains a broad
range of commonsense scenarios and is the basis for all our script mining experiments.
Section 3.2 explains some details on the scenario selection for this experiment and shows
some examples from the resulting data. Section 3.3 outlines how we clean the raw
corpus and how we build new preprocessing systems that fit the idiosyncratic language

42 Corpora of Written Script Data

of the event descriptions. A statistical analysis (Section 3.4) completes the description
of the first corpus and gives some insights on the corpus size, the vocabulary, and
similarities within and between scenarios.

Section 3.5 describes our second data collection which covers one specific domain (the
cooking domain) in depth. At last we give a short description of the OMICS corpus, a
data collection from MIT which is very similar to our corpora (3.6).

Parts of this chapter describe work published by Regneri et al. (2010).

3.1 Collecting Script Data with Mechanical Turk

Mechanical Turk1 (MTurk) is a crowdsourcing platform provided by Amazon. The plat-
form has been used for a variety of language processing related tasks recently, and can
even replace expert-annotations for some tasks (Snow et al., 2008).

In Mturk, any registered requester can upload tasks, and MTurk manages distribution of
tasks to its registered workers. If, as in our case, the same task needs to be done by sev-
eral different people, MTurk will guarantee that the requested number of assignments
is completed by different workers (or at least: different MTurk accounts).

One assignment for one worker is called a HIT (Human Intelligence Task). For each HIT,
the requester decides how much money a worker will earn for completing it. After the
worker is finished, it is up to the requester to either accept or reject the completed
assignment; in case of rejection, the worker will not receive any money; in case of
acceptance, Amazon transfers the money to the worker. The service fee for Amazon
is 10% of the amount paid to the workers (10%).

In a event data collection for a scenario like eating in a fast food restaurant, we ask
the annotators what they usually do in such a scenario. We use two question templates,
What do you do when you...? and How do you...?, which are randomly assigned to the
scenarios and completed with the scenario titles (e.g. What do you do when you eat at
a fast food restaurant?). The annotation interface shown on MTurk is a plain form with
distinct fields for event descriptions (16 fields in our case). The annotators had to enter a
minimum number of events (4 in our case) per scenario, making up a concise description
of a typical event course for the given scenarios. We call the short texts collected in that
way event sequence descriptions (ESDs).

We also present a short annotation guideline and the beginning of an exemplary ESD for
a scenario which is not part of the annotation set. The guidelines advise the annotators
to list the events in sequential order.

1http://www.mutrk.com

3.2 Assembling a Corpus of Common Sense Scripts 43

In order to assess how hard this task is and how difficult certain scenario descriptions
are, we give the participants the option to skip a scenario if they feel unable to enter
events for it. In order to still earn the full HIT compensation, they have to indicate
why the scenario is impossible for them to describe. In the form, they have to answer a
multiple choice question, offering the choice between four options to earn the money:

1. “I described the scenario in the form” is selected by default and means that the anno-
tator needs to provide at least the minimum number of events for the ESD (in our
case: 4).

2. “I don’t know how this works” allowes the annotator to skip the scenario, indicating
that he or she is simply not familiar with the activity in question.

3. “This has no meaningful subevents” is meant for cases in which the granularity of
the scenario is too high or too low to give a prototypical, ordered sequence of at
least 4 events.

4. A third option for skipping requires the worker to explain the reasons in a com-
ment field. The field can also be used to explain one of the other skipping options
in more detail.

We admit only workers that had at least one third of their overall HITs accepted, but
put no other restrictions on the participants. One HIT, i.e. providing one ESD for one
scenario, pays $0.09 upon successful completion.

With this experimental setup, we collect two corpora: the first one was designed to cover
a broad range of common-sense scenarios. We provide a very detailed analysis of this
corpus (Section 3.2 - 3.4), because all follow-up experiments on paraphrasing and script
extraction use this corpus as input data (cf. Chapter 4 & 5).

In a second corpus collection, we aim to thoroughly cover a narrow domain. This
second data collection results in a larger corpus containing fine-grained scenarios from
the kitchen domain (Section 3.5).

3.2 Assembling a Corpus of Common Sense Scripts

In our first corpus collection, we create a corpus that contains a balanced selection of
commonsense scenarios. In this section, we describe how we selected the scenarios for
this corpus and shows some examples from data we obtained.

44 Corpora of Written Script Data

eating in a restaurant eating in a fast food restaurant sending food back (in a restaurant)
taking a bus checking in at an airport flying in an airplane

taking a train taking a driving lesson fixing a flat tire on a bike
going shopping paying (after buying sth.) paying with a credit card

ironing something taking a shower putting a poster on the wall
cleaning up a flat creating a homepage taking copies (with a copy machine)

going for a haircut a wedding ceremony childhood
making scrambled eggs

Figure 3.1: The 22 Scenarios for which we collected data on MTurk.

Scenario Selection

We aimed to create a corpus which is as representative as possible. We manually chose
scenarios, considering the following objectives:

• We targeted common sense scenarios, i.e. scenarios that are usually shared knowl-
edge between humans with the same cultural background. We excluded scenarios
that require expert knowledge (e.g. programming a microcontroller) or cover
very long, standardized processes (like business acquisition).

• Within this scope, we chose scenarios of different complexity. Some require more
specific experience (creating a homepage) and some are presumably easy to de-
scribe (taking a shower). Furthermore, the scenarios differ in the number of
sub-events (paying with a credit card vs. fixing a flat tire) and how conven-
tionalized type and order of their sub-events are (taking a bus vs. childhood).

• We intentionally included some scenario pairs that have certain semantic relations:

– Event hypernyms; paying with credit card is a hyponym of paying, and
eating at a fast food restaurant is a more specific version of eating at a

restaurant.

– Event holonyms: pay is a part of several other scenarios (e.g., going shopping

or eating at a restaurant), and checking in at an airport is a part of
flying in an airplane

– Event sister-terms: Some scenarios are hyponyms of the same more general
process, e.g. taking a bus, taking a train and flying with an airplane

are all ways to use public transportation.

Figure 3.1 shows the final set of 22 scenarios that we used for the first study. One
main objective was to learn which kinds of scenarios were particularly easy or hard to
describe, which lead to particularly similar or dissimilar results, and whether the data
sets of related scenarios are comparable to each other.

3.2 Assembling a Corpus of Common Sense Scripts 45

 1. walk into restaurant
 2. find the end of the line
 3. stand in line
 4. look at menu board
 5. decide on food and drink
 6. tell cashier your order
 7. listen to cashier repeat order
 8. listen for total price
 9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink

1. walk to the counter
2. place an order
3. pay the bill
4. wait for the ordered food
5. get the food
6. move to a table
7. eat food
8. exit the place

1. look at menu
2. decide what you want
3. order at counter
4. pay at counter
5. receive food at counter
6. take food to table
7. eat food

HOW DO YOU EAT AT A FAST FOOD RESTAURANT?

1. enter restaurant
2. go to counter
3. make selection
4. place order
5. pay for food
6. pick up order
7. pick up condiments
8. go to table
9. consume food
10. clear tray

Figure 3.2: Four ESDs describing the scenario of eating at a fast food restaurant.

Results

On Mechanical Turk, we created 25 HIT assignments per scenario, which means that 25
different people got the chance to enter an ESD for a scenario. Annotators could enter
data for all 22 scenarios, but submit only once per scenario. In this first experiment, we
encouraged the participants to use “bullet point style” for event descriptions, which we
pushed further by restricting the length of each event description to 250 characters. We
hoped that these style requirements would lead to short and focussed event descriptions,
which are fairly uncomplicated to analyze later on. We did not precisely define what
“bullet point style” means, but rather gave examples like “1. open door, 2. get into car, ...”
for the example scenario driving somewhere by car.

In total, we collected 493 ESDs across the 22 scenarios. The annotators used the possibil-
ity to skip a form 57 times; the most frequent explanation for this was that they didn’t
know how a certain scenario worked (40 times). The scenario with the highest propor-
tion of skipped forms was creating a homepage (6 Hits, i.e. 25%), whereas making

scrambled eggs was the only one in which nobody skipped an assignment.

Figure 3.2 shows four of the ESDs we collected for eating in a fast-food restaurant.
The example shows that descriptions of the same scenario can differ in various aspects:

• Starting point: Without further specification, is not clear where or when to begin

46 Corpora of Written Script Data

with eating in a fast food restaurant. The event sequence might start at some-
body’s home, or in the restaurant, or anywhere in between. As a consequence,
some people start with walk into restaurant, and others assume that they just came
inside (walk to the counter) or are already standing at the counter (look at menu).

• Endpoint: In the same way the scenario’s starting point is underspecified, there
is also no fixed point at which it ends. Some people finish with exit the place
(regardless whether they mentioned entering it in the beginning), some people
stop after the last action inside the restaurant (clear tray). Probably influenced by
the wording of the question (How do you eat...?), some people immediately stop
after eat food, but even that does not seem to be obligatory (cf. the first sequence).

• Granularity: Script structures are recursive: the events within a script are scenarios
of their own, which have event sequences associated with them. When writing up
ESDs, people thus have the choice to insert a high-level event like pay or insert a
whole ESD that makes this process explicit (like steps 8–11 in the first scenario).

• Wording: Naturally, people have different ways of realizing event descriptions in
natural language. decide on food and drink, decide what you want and make selection
all refer to the same step in the scenario, but they vary largely in their wording.

We show some statistics on commonalities and mismatches of ESDs within the same
scenario in Section 3.4.

3.3 Preprocessing

The texts we obtained were rather noisy, which might partly be due to the fact that we
opposed no restrictions on the MTurk participants. (Admitting only native speakers as
participants or managing the task accessibility with an entrance test could probably help
to filter out people with insufficient language competence.)

Initially, we manually filtered unusable instances and corrected spelling mistakes. For
preprocessing, we later developed an automated spell-checking algorithm for the script
data. Additionally, we built a parsing model capable of processing the idiosyncratic
bullet-point language style.

Manual corrections

For the first experiments, we manually corrected the data for orthography and grammar
mistakes, with the objective of creating a particularly clean corpus. Some of the ESDs
were completely discarded, mainly for one or a combination of the following reasons:

3.3 Preprocessing 47

 1. First i open the bedshit
 2. neetly in the floor
 3. then take a Iron box
 4. then iron box blugged in power
 5. i take a what dress is iron
 6. Iron box is adjusted in what
 7. type of clothes, ex: cotton
 8. Heat is normaly i start iron
 9. i do dresses full side iron
10. then finish the iron power is
11. switch off & removed.
12. Iron the dresses is put the
13. anchor, when want me wearning.

How do you Iron Something? How do you create a homepage?

1. Decide the Web Page
2. Go to tools on the Screen
3. it will show you, which one is presently as a
 home page.
4. Cancel it.
5. Print your Favourite site
6. click ok. and click apply.
7. Now your Fevorite home page is ready to use.
8. you can do it setting path too
9. i explained one of the easy method to make
 home page.

What happens during
a driving lesson?

 1. excited
 2. fun
 3. happy
 4. first time
 5. open car door
 6. sit in drive seat
 7. get a feel of the car
 8. instructor beside you
 9. gives instructions
10. follow them
11. learn how to drive
12. time consuming
13. get a license

How do you send food back (in a
restaurant) ?

1. I MEET MY OLD FRIENDS
2. WE ARE EATING CHAPPATHI
3. THIS RESTURENT WAS LUXARY TYPE
4. SPENT MONEY
5. IN A RESTURENT I SPENT MONEY
6. RESTURENT BOY IS A GOOD MAN

How do you take a shower?

1. nozzle sprays
2. requires water transportation
3. hygenic
4. practical and versatile choice
5. shower curtains

Figure 3.3: Some examples for sequences we discarded manually.

• Incomprehensible language: Sequences that were not correctable or not even under-
standable were discarded.

• Misunderstanding of the scenario: Sometimes the workers mistook one scenario for
another, e.g. eating in a fast food restaurant for eating in a restaurant.

• Misunderstanding of the task: Some annotators either did not understand the task or
intentionally tried to defraud by entering arbitrary words. The results are not in
sequential order, or do not even contain event descriptions but rather associative
sets of nouns, adjectives and verbs.

Overall we filtered around 15% of the ESDs out. Figure 3.3 shows some self-explanatory
examples that we discarded for various reasons.

Scenario-specific spelling correction

Because we are working towards large-scale data collection, we automatized the pre-
processing as far as possible. Spelling mistakes are the most important noise factor in
our corpus. At the same time, the crowdsourced data often contains colloquial terms or

48 Corpora of Written Script Data

domain-specific words that we want to have in our dataset, but which would not be rec-
ognized as correct by standard spell checkers. We developed a spell-checking algorithm
that can capture scenario-specific terminology without the need of external resources.

The algorithm was developed in the context a larger follow-up study to our first exper-
iment: we collected a corpus of ESDs for several cooking scenarios (cf. Section 3.6). The
results were published by Bloem et al. (2012).

In a first attempt to preprocess the event sequence descriptions, we tried to use a stan-
dard spelling correction system (GNU Aspell22) out of the box. Manual inspections
reveal a quite unsatisfying precision of the results: in a manually inspected a set of of
162 automatically corrected instances, Aspell has a precision of only 43%. This is due
to two shortcomings in the spell-checker: at first, many domain-specific or colloquial
words are not in Aspell’s dictionary. Further, Aspell does not rank its suggestions for
spelling corrections; the order in which suggestions are returned is solely based on the
edit distance to the misspelled token, and suggestions with equal distance are randomly
ordered. These shortcomings often leads to implausible edits, sometimes “correcting”
words which were not misspelled at all, or replacing misspelled words with something
that is inadequate in the context.

Because we have for each scenario many texts that describe it, correct words tend to
occur in more than one event sequence descriptions. Leveraging the redundancy in
the parallel data helps us to improve the spell checker’s performance with respect to
the actual identification of misspelled words as well as the choice between different
correction suggestions.

Objective one is to gain more precision for the identification of misspellings: we indi-
rectly expand Aspell’s dictionary with scenario-specific vocabulary. If a word occurs in
at least n other sequences with the same spelling, our system accepts it as correct. (In
our experiment, n = 3 turned out to be a reliable value.)

As a second enhancement, we improve the correction process by guiding the selection of
corrected words. We verify their plausibility by taking the first suggested word that
occurs in at least one other sequence. This makes sure that e.g. the misspelling (credit)
carf, is corrected to card, whereas Aspell might return care or calf as (randomly chosen)
first suggestion.

To evaluate our modifications, we compare our system’s performance to a baseline of
standard Aspell, always picking the first correction suggestion. The gold standard con-
sists of all corrections made for all ESDs from 10 scenarios. Our system has no features
that can change standard Aspell’s recall, so we have not evaluated recall performance.
Fig. 3.3 shows a comparison of both methods using various measures of precision, based

2Available from http://aspell.net/

3.3 Preprocessing 49

System Prec. FPs True Prec. Sem. Prec. corrections

Aspell 0.43 0.28 0.57 0.58 162

Enhanced Aspell 0.58 0.29 0.79 0.76 150

Figure 3.4: Evaluation of the baseline and improved spell-checker.

on manual judgement of the corrections made by the different Aspell versions.

Since Aspell’s spelling error detection is not perfect, some of the detected errors were
not actually errors, as shown in the “False Positives” (FPs) column. For this reason, we
also included “true precision” (True Prec.), which is calculated only over actual spelling
errors. Another measure interesting with respect to later processing is “semantic preci-
sion” (sem prec.), a more loosely defined precision measure in which a correction that
results in any inflection of the desired lemma is considered correct, ignoring grammati-
cality. The last column shows the overall number of errors corrected (reduced by 12 after
the dictionary expansion). Overall, we gain 15% precision, and even 22% by considering
genuine misspellings only. If we relax the measure and take every semantically correct
(and thus processable) lemma form as correct, we gain an overall precision of 18%.

Similar work on spelling correction has been done by Schierle et al. (2008), who trained
their system on a corpus from the same domain as their source text to gain context.
We take this idea a step further by training on the noisy (but redundant) dataset itself,
which makes definition and expansion of the domain superfluous.

Scenario-specific parsing3

For several follow-up analyses, we need syntactic information for our event descriptions
(cf. Chapter 5 & 6). Parsing the descriptions is a challenge, because the data is written in
telegraphic style (cf. Figure 3.2), thus each description is a minimalistic imperative sen-
tence. The subject (typically the protagonist) is frequently left implicit, and determiners
seem to be left out arbitrarily (cf. walk into restaurant vs. walk to the counter).

Similarly to the spelling-correction approach, we first tried to use a pre-trained standard
parsing model, which is trained on newspaper texts. In all our experiments, we use the
Stanford parser (Klein & Manning, 2003). To evaluate the standard model’s performance
on our data, we manually labelled a set of 100 example event descriptions with phrase
structure trees. Used out of the box, the Stanford parser finds the correct parse tree in
59% of the cases. The most frequent and most serious error is misclassification of the
phrase-initial verb (like walk or look) as a noun, which often leads to subsequent errors

3For all experiments related to parser model adaption, we had invaluable support by Ines Rehbein.

50 Corpora of Written Script Data

in the rest of the event description parse.

Our available dataset of event descriptions is much too small to serve as a training cor-
pus of its own. To achieve better parsing accuracy, we combine and modify existing
resources to build a refined parser model. We included three standard corpora in our
training corpus, namely the Penn Treebank (Marcus et al., 1993), the ATIS corpus (Dahl
et al., 1994) and the Brown corpus (Francis & Kucera, 1979). To adapt the model to our
corpus’ bullet-point style language, we additionally put modified versions of ATIS and
Brown into the training data. The modification consists of pruning the standard parse
trees such that they look like our minimalistic imperatives: we deleted all subjects in the
sentences and all the determiners. Re-training the parser’s model on the such adapted
training data raises the rate of correctly computed trees to 72%. All the following ex-
periments that use syntactic information employ parses from the Stanford parser under
this adapted model (if not indicated otherwise).

3.4 Corpus Statistics

In this section we report on our corpus’ size, its contents and their variance. Apart
from purely quantitative benchmarks, we also want to give some intuition on similarity
and variance with respect to the scenario-based sub-corpora. We consider two types
of variance: the first one examines the homogeneity of a scenario, measured by the
(dis-)similarity of ESDs in the respective sub-corpus.

The second aspect concerns (dis-)similarities between different scenarios, which shows
whether the sequences of two different scenarios are different on the surface level, and
to which degree sequences of related scenarios are similar.

Corpus size and vocabulary

Table 3.1 shows some general statistics for the corpus, grouped by scenario (scenario
names are abbreviated for readability). We count sequences, event descriptions and
words for each scenario and for the whole corpus. An event description is one element of
a sequence (a sentence). Content words are words that were tagged as nouns, adjectives
or verbs by the parser. (For word types, the overall sums are not the sum of the scenario
rows, because a word type can occur in more than one scenario.)

Overall, we have a corpus of 386 event sequence descriptions, composed of 6,998 event
descriptions. As the numbers show, the sub-corpora for the different scenarios vary
greatly in size, with making scrambled eggs as the largest one and paying with a

credit card as the one with the fewest sequences. Interestingly, descriptions of the

3.4 Corpus Statistics 51

Scenario ES
D

s

e
v

e
n

t
d

e
s
c

r
i
p
t
i
o

n
s

w
o

r
d

t
o

k
e
n

s

w
o

r
d

t
y
p
e
s

c
o

n
t
e
n

t
w

o
r

d
t
y
p
e
s

restaurant 19 396 609 164 122
fast food 15 268 425 127 96
returning food 15 178 349 136 91
scrambled eggs 24 510 1047 274 193
flying 19 442 724 213 166
airport check in 19 332 651 204 149
taking bus 21 366 650 190 144
taking train 14 248 428 134 109
going shopping 20 360 619 181 133
paying 19 238 424 139 98
credit card 6 68 133 62 42
haircut 23 476 826 261 199
wedding 18 388 701 243 207
taking shower 21 474 759 157 112
fixing tire 19 304 583 164 117
cleaning up 17 312 495 209 165
driving lesson 16 298 502 211 165
ironing 20 360 696 185 133
creating hp 13 192 359 171 126
taking copies 20 342 684 230 154
poster 23 332 697 227 167
childhood 5 114 190 102 83

average 18 318 571 181 135
overall 386 6,998 12,551 1,662 1,586

Table 3.1: Quantitative corpus statistics grouped by scenario. Particularly high values
are marked in bold, minima in italics.

52 Corpora of Written Script Data

wedding scenario contain the widest variety of content words, even though the scenario
has far fewer descriptions (and thus fewer words) than the scrambled eggs scenario.
A possible explanation could be that events within the wedding ceremony are mostly
complex and involve at least two people, so probably most function words were left out
in order to fit more content words into the character-restricted form fields.

Type Count Type Count Type Count Type Count

get 238 take 90 find 74 tire 64
put 140 food 89 pay 73 leave 64
go 130 hair 85 is 72 ticket 57
wait 129 bus 77 turn 72 order 57
check 105 iron 75 eggs 68 remove 56

Table 3.2: The 20 most frequent content words in the corpus.

Table 3.2 shows the 20 most frequent content words of the whole corpus, along with
their absolute frequencies. While some of these words do occur in all scenarios (e.g.
the most frequent five), some others are restricted to a few particular scenarios (hair,
bus,ticket) or even only a single one (iron, eggs, tire). Appendix Table A.1 shows the ten
most frequent content words for each scenario separately.

Scenario homogeneity and variance

A number of features can indicate how homogeneous the ESD set of a scenario is, and
thus help to estimate how hard it will be to compute script representations from those
sequences: highly similar ESDs are much easier to match to each other than sequences
with higher variance. In a later step, we evaluate which of these aspects have the highest
influence on the performance of our script mining algorithm (cf. Chapter 4).

Measures

Table 3.3 shows different statistics for ESD similarity within the same scenario:

• ESDs repeats the number of ESDs per scenario, for reference.

• Events per ESD is the average number of event descriptions per ESD. Longer se-
quences tend to be more diverse and complex. The subsequent column shows the
standard deviation, indicating the range of sequence lengths within a scenario.

• Words Per Event is the average word count per event description (we consider punc-
tuation marks and spaces as word separators). We assume that longer sentences

3.4 Corpus Statistics 53

are harder to process. We also provide the number of content words per event.

• Tokens per type is the number of token realizations of one type within the scenario’s
ESDs, averaged over all types. A small value here indicates a high degree of
wording variance (because there are more different types).

• ESD token overlap, ESD type overlap and ESD synset overlap are the proportions of
words or concepts (counted as tokens, types or WordNet (Fellbaum, 1998) synsets)
shared by each pair of sequences within the scenario. We compute the overlap for
two ESDs s1 and s2 with the Dice coefficient (with words denoting either tokens,
types or synsets):

overlap(s1, s2) =
2 ∗ |words(s1) ∩ words(s2)|
|words(s1)|+ |words(s2)|

For synsets, we consider all possible synsets for each word in the ESD. In all three
cases, the results are averaged over all ESD pairs in the same scenario.

• ESD Reordering is a heuristic to estimate how strictly sequentially ordered the
events in a scenario are. The sequence-based algorithm we use for paraphras-
ing (cf. Chapter 4) assumes that the input sequences are strictly ordered, i.e. that
there is no case in which any two events have a different relative order in different
sequences. In our data, this constraint is often violated, e.g. for making scram-
bled eggs, you can use salt and pepper at any point in time. We try to quantify
such potential reorderings by counting pairs of head verbs from event descriptions
that can occur in arbitrary sequential order.

Let C be a scenario, composed of ESDs {s1, s2, ..., sn}. Any ESD si consists of or-
dered event descriptions {ei,1, ei,2, ...ei,m}. For each event description ei,k, let vi,k

be the head verb of ei,k. C thus has an associated set of ordered verb pairs
pred_pairs(C) = {(vi,j,vi,k)|∃si s.t. ei,j ∈ si ∧ ei,k ∈ si ∧ j < k}.
The potential for reordering scenario C is then computed as follows:

reordering(C) =
|{(v1,v2)|(v1,v2) ∈ pred_pairs(C) ∧ (v2,v1) ∈ pred_pairs(C)}|

|pred_pairs(C)|

We divide the number of head verb pairs that occur in both possible orders by
the overall number of ordered verb pairs. Because we’re actually interested in
concepts rather than concrete realizations, we consider two verbs as equal if they
share a WordNet synset.

The numbers indicate which proportion of head verb pairs can be switched, i.e.
out of all verb pairs in a scenario that occur in the same ESD, how many of them
occur in both possible orders. This is of course only an approximation of the

54 Corpora of Written Script Data

actual event reordering. On the one hand, it misses cases in which equivalent
event descriptions have different head verbs, and on the other hand, it mistakenly
classifies repetitions of head verbs in a sequence as reordering. Empirical assess-
ment of the results shows that our approximative measure differs from the actual
event reordering by a constant factor, which is very similar for all scenarios. In
consequence, this measure is sufficient for comparing scenarios with each other.

Word counts and lexical variance

The results in Table 3.3 show several interesting differences between the scenarios. fly-
ing, taking a shower and childhood have the longest sequences on average. Those
scenarios either have many distinct and well-known steps (flying and shower), or have
no particularly clear definition, or have a long duration (both true for childhood). In
contrast, paying with a credit card is a rather short process.

The ESDs of putting a poster on the wall contain the longest event descriptions,
followed by making scrambled eggs and taking copies. This mirrors the complexity
of the scenarios’ events: In all three cases, diverse objects (e.g. tools or ingredients) have
to be used together in the same event, while in scenarios like eating in a restaurant

mostly one person (the patron or the waiter) performs one action with at most one object
(food, menu, table).

As far as vocabulary variance is concerned, the descriptions for “easier” commonsense
scenarios use a more concise lexicon: eating in a restaurant or eating in a fast food

restaurant as well as taking a shower show the smallest variance in their vocabulary,
measured by their token / type ratio as well as by their sequence-based overlap . On the
other end of the scale, the descriptions of creating a homepage show a very diverse
lexicon. Most of the ESDs for this scenario revealed that their authors are obviously
non-experts who would use different online tools to create such a page, rather than
following a standardized coding process.

The corpus for childhood behaves somewhat idiosyncratically: while there are only a
few tokens per type, sequence-based overlap is above the average. One reason for this
might be that there are comparably few repetitions of words within a sequence (thus
fewer tokens per type), but different annotators use similar vocabulary. However, the
sub-corpus for this scenario is too small to draw any certain conclusions.

Reordering

The results indicating event reordering vary between very few switchable events (taking

a train, 0.03) to almost a fifth of event pairs that can occur in arbitrary order (check-

3.4 Corpus Statistics 55

Scenario ES
D

s

e
v

e
n

t
s

p
e
r

ES
D

e
v

e
n

t
s

s
t
d

.d
e
v

i
a

t
i
o

n

w
o

r
d

s
p
e
r

e
v

e
n

t

c
o

n
t
e
n

t
w

o
r

d
s

p
e
r

e
v

e
n

t

t
o

k
e
n

s
p
e
r

t
y
p
e

ES
D

t
o

k
e
n

o
v

e
r

l
a

p

ES
D

t
y
p
e

o
v

e
r

l
a

p

ES
D

s
y
n

s
e
t

o
v

e
r

l
a

p

ES
D

r
e
o

r
d

e
r

i
n

g

restaurant 19 10.42 3.48 3.08 2.34 3.80 0.23 0.36 0.37 0.10
fast food 15 8.93 2.69 3.17 2.20 3.07 0.31 0.35 0.41 0.08
returning food 15 5.93 1.01 3.92 2.73 2.67 0.2 0.27 0.28 0.05
scrambled eggs 24 10.63 2.99 4.11 2.82 3.72 0.25 0.32 0.33 0.14
flying 19 11.63 3.74 3.28 2.35 3.13 0.27 0.33 0.38 0.10
airport check in 19 8.74 3.83 3.92 2.63 2.93 0.21 0.28 0.38 0.18
taking bus 21 8.71 3.34 3.55 2.46 3.13 0.30 0.33 0.41 0.08
taking train 14 8.86 3.5 3.45 2.47 2.81 0.30 0.35 0.41 0.03
going shopping 20 9.00 3.23 3.44 2.38 3.23 0.23 0.28 0.33 0.14
paying 19 6.26 1.13 3.56 2.62 3.18 0.2 0.25 0.30 0.12
credit card 6 5.67 1.67 3.91 2.71 2.19 0.27 0.31 0.35 0.04
haircut 23 10.35 3.85 3.47 2.58 3.09 0.19 0.25 0.34 0.12
wedding 18 10.78 3.71 3.61 2.80 2.62 0.19 0.27 0.29 0.14
taking shower 21 11.29 3.08 3.2 2.23 4.71 0.30 0.40 0.50 0.15
fixing tire 19 8.00 2.61 3.84 2.72 3.53 0.24 0.29 0.33 0.09
cleaning up 17 9.18 3.52 3.17 2.41 2.28 0.16 0.22 0.27 0.13
driving lesson 16 9.31 3.68 3.37 2.51 2.27 0.18 0.22 0.32 0.10
ironing 20 9.00 3.45 3.87 2.63 3.56 0.26 0.28 0.34 0.10
creating hp 13 7.38 2.06 3.74 2.75 2.10 0.14 0.19 0.17 0.06
taking copies 20 8.55 2.84 4.00 2.89 3.21 0.24 0.29 0.33 0.10
poster 23 7.22 3.1 4.20 2.73 2.71 0.22 0.24 0.23 0.06
childhood 5 11.40 2.27 3.33 2.44 1.67 0.28 0.3 0.44 0.15

average 17.55 8.97 2.94 3.6 2.56 2.98 0.23 0.29 0.34 0.10

Table 3.3: Sequence-based corpus statistics for all scenarios. Particularly high values are
marked in bold, minima in italics.

56 Corpora of Written Script Data

in at airport, 0.18). As one would expect, longer sequences lead to more reordering
possibilities. (correlation between those metrics, measured as Spearman’s ρ, is 0.63).
The other measures do not correlate as clearly with reordering – not even number or
sequences the word overlap.

In general, reordering is often a local phenomenon of two close events; e.g. some people
seem to turn on the water before they enter the shower, other people do it the other way
around. However, we can expect both events to occur close together. The same holds
for stirring and putting eggs into the pan: some people stir their scrambled eggs in a bowl,
others save the dish and stir them directly in the pan.

Other phenomena can cause less predictable reorderings: Some scenarios are generally
vaguely defined (childhood). Other scenarios contain repeated events: When taking a

shower e.g., one can wash or rinse repeatedly. Similar constellations occur in clean up,
where several events can be repeated. Some events can even occur at any arbitrary point
in time (either just once or with a later repetition), like rinsing in taking a shower, but
also add salt and pepper in making scrambled eggs.

Similarities between scenarios

Apart from the variance within scenarios, which directly affect our processing pipeline,
we are also interested in the comparison of different scenarios. One objective here is
to ascertain whether related scenarios (e.g. take a bus and take a train) have similar
event sequence descriptions, considering lexical and structural aspects.

For a crude lexical analysis, we compute word type overlap for all scenario pairs. In a
more fine-grained experiment, we apply the ESD-based similarity measures we used to
compute scenario homogeneity, and thus get an impression of how well two scenarios
can blend: we mix the ESDs of two scenarios at a time, and then show how much
variance we find in these artificial scenario fusions. The results also indicate how easily
the scenario of an ESD could be identified solely from analyzing its lexical content: ESDs
mixed from two different scenarios should theoretically look less homogenous than the
sequences of one single scenario.

Lexical overlap of scenarios

As a basic similarity measure, we compute pairwise word type overlap (using the Dice
coefficient) over the word type sets of the scenarios. Table 3.4 shows the ten scenario
pairs with the highest overlap, along with the 10 least similar ones for reference. Most
results come out as intuitively expected. Finding an average type overlap of 27%, we
identify several scenario pairs which are much more similar than that: half of the vocab-

3.4 Corpus Statistics 57

Scenario 1 Scenario 2 Type Overlap

fast food restaurant restaurant 0.50
airport check-in flying with an airplane 0.48
paying paying with credit card 0.47
taking a train taking a bus 0.47
taking a train flying with an airplane 0.46
going shopping paying 0.44
going shopping fast food restaurant 0.44
taking a bus flying with an airplane 0.42
paying fast food restaurant 0.41
taking a bus airport check-in 0.40

Average (over all scenario pairs) 0.27

cleaning up paying with credit card 0.18
making scrambled eggs creating a homepage 0.18
creating a homepage cleaning up 0.17
making scrambled eggs returning food 0.17
wedding childhood 0.16
wedding cleaning up 0.16
making scrambled eggs creating a homepage 0.16
returning food cleaning up 0.16
childhood putting a poster on the wall 0.15
making scrambled eggs paying with credit card 0.14

Table 3.4: The 10 scenario pairs with the highest vocabulary overlap, and the 10 with
the lowest one.

58 Corpora of Written Script Data

ulary used to describe eating in a restaurant is also used for the fast food restau-
rant descriptions. The other scenario hyponym pair – paying vs. paying with a credit

card – reaches a comparable overlap of 44%, as do the three sister scenarios take a bus,
take a train and fly with an airplane (42 − 46%). Further, scenarios in a part-of
relation seem to be particularly similar, e.g. paying compared with going shopping or
eating in a fast food restaurant (41− 47%). (Table A.2 in the appendix shows the
statistics for all scenario pairs.)

Blending Sequences of Different Scenarios

The lexical overlap of two scenarios unsurprisingly shows that related scenarios are
described with the same words. We want to take a closer look at the sequences within
the scenarios and directly compare their similarities. We mix ESDs of two different
scenarios at a time and check whether the outcome looks comparably homogeneous to
the textual descriptions of just one scenario. We compute two statistics also used in the
scenario-based analysis: ESD-based type overlap, and predicate reordering within the
blended scenarios. We can compare the results directly to the values we computed for
ESDs from the same scenario (given in Table 3.3). For reordering, we also compute an
expected value as reference, which is the average reordering of the two mixed scenarios.
This expected value is in most cases identical with the computed value (on average, they
differ by 0.01), so higher deviations from it can identify interesting outliers.

Table 3.5 shows the scenario pairs with the most similar ESDs. The table notes type over-
lap and mixed reordering, along with the expected reordering in brackets. (We provide
the complete results in the Appendix, shown in Table A.3 for ESD-based type overlap
and in Table A.4 for mixed reordering.) Recall that the intra-scenario ESD type overlap
(cf. Table 3.3) was 0.29 on average, ranging between 0.19 and 0.40. Most scenario pairs
differ much more than that: the average type overlap for ESDs of different scenarios
is only 0.02. However, some sequences share a lot of vocabulary, even though they are
not from the same scenario. While the previous experiment already showed high lexical
overlap between these scenario pairs, the ESD-based overlap indicates that the blended
scenarios are comparably homogenous as if all the ESDs were originally from the same
scenario.

This looks most interesting in combination with the structural similarity measure: ESDs
of two different scenarios are structurally similar if they "blend well", i.e. if mixing their
ESDs does not introduce more reorderings.

The two lexically most similar scenarios are the two restaurant settings (fast food

restaurant and restaurant). However, mixing their sequences also introduces re-
orderings: The proportion of switchable predicates is (at 4%) slightly higher than ex-

3.5 A Domain-Specific Corpus of Cooking ESDs 59

Scenario 1 Scenario 2 ESD
Overlap

reordering
(+ expected)

fast food restaurant restaurant 0.31 0.14 (0.10)
airport check-in flying in an airplane 0.27 0.16 (0.13)
paying pay with credit card 0.27 0.12 (0.11)
taking a train taking a bus 0.25 0.08 (0.08)
taking a train flying in an airplane 0.23 0.11 (0.09)

Average over scenario pairs 0.02 0.12 (0.11)
Average within one scenario 0.29 0.10

Table 3.5: Five exemplary scenarios with high lexical and / or structural similarity.

pected. This is intuitively explainable: one does roughly the same things in both restau-
rant types, but the events differ in their order. In a restaurant, you sit down first, and
then you order, and you eat first and pay afterwards. In a fast food restaurant, you have
to order and pay before you sit down and eat.

The two public transport scenarios taking a bus and taking a train are less easy to
distinguish: they have a fairly high lexical overlap, and blending them introduces no
additional word reordering. This is also intuitively clear: one does similar things in the
same order in both scenarios, just the type of vehicle is different.

Further research on larger corpora is necessary to determine whether or how sequences
from different scenarios can be distinguished. This question is particularly relevant for
unsupervised approaches that collect sequences without associating them to scenarios.

3.5 A Domain-Specific Corpus of Cooking ESDs

In a second data collection, we built a corpus with the objective of reaching high and
dense coverage for one specific domain. For this experiment, we again used the Me-
chanical Turk setup we have described in Section 3.1.

For this domain-specific corpus, we chose to explore the cooking domain in more detail.
Scenarios around kitchen tasks are largely parts of common sense knowledge, and there
are many detailed scenario collections available which we can take as stimuli. Con-
cretely, we adopted a list of scenarios by mining the tutorials on the webpage “Jamie’s
Home Cooking Skills”.4 The 53 tasks in this list are instructions for processing ingredi-
ents or using certain kitchen tools, like cutting an onion or using a speed peeler.

4http://www.jamieshomecookingskills.com

60 Corpora of Written Script Data

1. grab a sharp knife
2. take out the cucumber and place it on a
 chopping board
3. take the knife in one hand
4. stead the cucumber with the other hand
5. make small slices at one side of the cucumber
6. proceed to cut until at the end

1. wash the cucumber in water
2. cut off the ends of the cucumber
3. hold the cucumber length wise
4. using a sharp knife, peel the cucumber
5. peel the cucumber in strips, lengthwise
6. lay the cucumber on it's side
7. carefully cut the cucumber into 1/4 inch slices

1. first, you will peel the cucumber. get the peeler from the drawer.
2. hold the cucumber firmly on one end.
3. put the blade of the peeler on the middle of the cucumber.
4. press down slightly, and push the peeler away from you along the skin of the cucumber.
 always push away from your body, not toward your body.
5. the first strip you peel is the hardest. after you get the first strip off, the rest of them are easier.
6. go all around the cucumber taking the skin off one end.
7. now turn the cucumber around and peel the other end.
8. put the peeled cucumber on a cutting board.
9. get a sharp knife and, being very careful, slice the cucumber into circles about as thick as a pencil.
10. cut each circle into four equal pieces.
11. now the cucumbers are ready to put in the salad.

CHOPPING A CUCUMBER

USING A BOX GRATER

1. place boxgratedr over plate or bowl
2. open item to be grated like cheese
3. choose the side of the grater you want to use.
4. big holes means big shreds
5. push item to be grated against side of grater at top
6. with firm pressure rub food down side of grater
7. move item to top again and repeat
8. carefully lift grated from plate

1. first, make sure you have a flat clean work surface like a counter or a table. don't try to use a
 grater on a squishy surface like a chair cushion.
2. when you use your box grater, shreds are going to come out, so make sure you have a cutting
 board or piece of wax paper something to grate over..
3. turn the grater so the side you want to grate on is facing your dominant hand.
4. (if you are right handed, your right hand is your dominant hand, left handed it's your left)
5. hold the grater down firmly with your non dominant hand and hold the object you want to grate
 in your dominant hand.
6. rub the object up and down against the grater to shred it, change the angle occasionally for easier
 grating.
7. be careful of your fingers, if you grate them into your food, you will ruin it!!!

1. decide what to grate.
2. put grater on a smooth, level surface.
3. carefully move food across grater
 blades.
4. when done, remove food from inside of
 the grater.
5. wash the grater, again being careful. the
 blades are sharp!

Figure 3.5: 6 cooking ESDs for chopping a cucumber and using a box grater.

3.6 The OMICS corpus 61

In terms of corpus size, we scaled up the data collection. We gathered 50 ESDs for
each of the 53 scenarios (compared to 25 ESDs for 22 scenarios in the first experiment).
Figure 3.5 shows 6 of the resulting “cooking ESDs”. In principle the texts are similar to
the ESDs from our first experiment, but with longer event descriptions, more variance
in the description and sequence length. Many people also included non-sequential
events, in particular warnings and special advice for using kitchen equipment. All those
peculiarities are most likely due to the cooking domain and the fact that questions like
how do you cut an onion triggered a recipe-like writing style in many participants.

We did some minor modifications to the Mechanical Turk interface, adapting it to the
domain and to the experience from our first experiment: story-wise, we told the subjects
to put themselves in the position of an immobile elderly lady whose grandson helps her
in the kitchen, but does not know the slightest bit about cooking. The workers should
enter instructions they’d give the grandson in order to complete the cooking tasks. In
order to achieve better language quality, we restricted the workers to participants from
the U.S.. Further, we neither encouraged bullet-point style nor set any restrictions on
the number of characters in a text field this time. Next to the priming by the kitchen
domain, this also contributed to the more verbose writing style.

The restriction to U.S. workers indeed helped to reduce the number of completely unus-
able ESDs, but the texts still contain a lot of spelling mistakes (evident from the example
sequences). Because this corpus is much larger then our first ESD collection, manual
preprocessing was not an option, so we developed the automated spelling algorithm on
this data (cf. Section 3.3). In order to apply our script mining algorithms to the kitchen
corpus, we also developed new algorithms for coreference resolution and clause split-
ting for this corpus (cf. Chapter 6); neither of these steps were necessary for the shorter
bullet-point style event descriptions from the first data collection.

In a multimodal application, we use the cooking ESDs as a basis for some first experi-
ments on automated event-recognition in videos (cf. Section 9.4).

3.6 The OMICS corpus

The Open Mind Indoor Common Sense (OMICS) corpus,5 created at MIT media lab, is very
similar to our data collection. Within the Open Mind Project (Singh et al., 2002), there
is an ongoing effort to develop the OMICS corpus via crowdsourcing. It contains about
170 indoor scenarios, each annotated with several stories (which look like our event
sequence descriptions). The corpus has never been officially released, and we learned
about it when it was referred to by Smith & Arnold (2009). Smith & Arnold actually

5http://openmind.hri-us.com/

62 Corpora of Written Script Data

show a case study in which they compute script representations out of some OMICS
stories. While we use a different approach to compute the scripts themselves, we use
the OMICS data as additional input for our experiments (cf. Chapter 4 and 5).

Chapter 4

Mining Script Representations

Out of the event sequence descriptions we collected for several scenarios (as described
in the previous chapter), we want to compute concise script representations that display
events with their lexical variants as well as temporal constraints learned from the input.

Computing event paraphrases is the necessary first step for mining script representations
from ESDs: we want to represent an event as a set of equivalent descriptions from the
input texts. We thus need to identify all equivalence sets of event descriptions within
ESDs for the same scenario.

While there are a wealth of methods for paraphrasing from standard texts, we face
several challenges particular to mining event paraphrases from ESDs: First of all, our
crowdsourced data contains idiosyncratic language with incomplete sentences where
subjects are missing and determiners used only sporadically. Standard NLP approaches
for computing semantic similarity thus need to be very robust to process these descrip-
tions with any result at all, and we must expect them to deliver less reliable results than
for standard texts.

Further we face what we earlier called the paraphrase problem (cf. Section 1.3): Some event
paraphrases are simply not very similar semantically, and many of them are paraphrases
only with respect to the tiny domain of their scenario. Take the ESDs from the fast

food scenario in Figure 3.2 (repeated in Figure 4.1) as an example: The paraphrased
realizations for the event in which the actor decides what he or she wants to order are
decide on food and drink , decide what you want and make selection. In general, decide on
food and drink does not have the same meaning as decide what you want, but in this very
narrow fast food domain, the two expressions are fully interchangeable. The wording
of the three event descriptions has very little lexical overlap. In particular, the support
verb construction (make decision) in the last ESD does not overlap at all with the other
two phrases (decide on food and drink, decide what you want); they do not even contain

64 Mining Script Representations

 1. walk into restaurant
 2. find the end of the line
 3. stand in line
 4. look at menu board
 5. decide on food and drink
 6. tell cashier your order
 7. listen to cashier repeat order
 8. listen for total price
 9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink

1. walk to the counter
2. place an order
3. pay the bill
4. wait for the ordered food
5. get the food
6. move to a table
7. eat food
8. exit the place

1. look at menu
2. decide what you want
3. order at counter
4. pay at counter
5. receive food at counter
6. take food to table
7. eat food

HOW DO YOU EAT AT A FAST FOOD RESTAURANT?

1. enter restaurant
2. go to counter
3. make selection
4. place order
5. pay for food
6. pick up order
7. pick up condiments
8. go to table
9. consume food
10. clear tray

Figure 4.1: Four ESDs describing the scenario of eating at a fast food restaurant.

synonyms, but still they are perfect paraphrases in this context.

Event paraphrasing is thus a big challenge. On the other hand, we can take advantage
of the inherent structural similarities between ESDs of the same scenario: The sequential
context of an event description is a key feature we leverage for finding its paraphrases.
Consider again the three descriptions verbalizing the meal choice: They all occur im-
mediately before the ordering event occurs, and they are all in the end of the first third
of the sequence. Also, two of them are directly preceded by the look at menu event, and
two of them non-directly by entering the restaurant.

We will show that the sequential structure constitutes an invaluable information source
for this paraphrasing task, and that our system can use it to match paraphrases with low
semantic similarity but highly similar discourse contexts. Inversely, the system is capa-
ble of distinguishing very similar events that occur on opposite ends of the discourse,
like enter restaurant and leave restaurant.

After we have computed event paraphrases, we can mine a graph-based script represen-
tation that uses sets of equivalent textual realizations to represent events, and comprises
partial temporal constraints between these events. The concise graph representation
also allows for some post-processing that filters noise introduced by the paraphrasing
algorithm.

In this chapter, we first give an informal explanation of how we interpret paraphras-

4.1 Paraphrasing as Sequence Alignment 65

ing as sequence alignment (Section 4.1). Then we show in detail how we use Multiple
Sequence Alignment (MSA) to compute event paraphrases (Section 4.2), using a robust
similarity measure (described in Section 4.3). The resulting paraphrase information en-
ables the mining of temporal script graphs (Section 4.4). Finally, we show the evaluation
results, along with some examples (Section 4.5). We conclude the chapter with a short
summary of related work (Section 4.6)

This chapter presents work published by Regneri et al. (2010).

4.1 Paraphrasing as Sequence Alignment

Sequence Alignment is the task of finding the most direct way to re-write one sequence
into another by adding and deleting elements. The most famous application is the
computation of Levenshtein distance: The Levenshtein distance between two words is
just the number of insertions and deletions one has to make to rewrite one word into
the other one.

k

i
t
t
e
n

∅

∅

w
i
t
t

y

∅

∅
∅

k i t t e n
k i t t e
k i t t _
k i t t y
_ i t t y
w i t t y

Figure 4.2: Two ways to display the rewriting of kitten into witty.

Figure 4.2 shows two ways to display an alignment of the words kitten and witty; words
are understood as sequences of letters. The left picture shows a possible process of re-
writing kitten into witty in detail: We delete k,n and e (marked in red) and add w and y
(green). The single steps can be taken in arbitrary order, and the Levensthein distance
would be the overall number of edits (5).

The right part of the figure shows a more concise representation of the re-writing pro-
cess, picturing it as actual sequence alignment. (We will use this kind of representations
in all following sequence alignment diagrams.) Insertions and deletions are signaled by
so-called gaps (marked with �). A gap in the source word (kitten) stands for an insertion,
and a gap in the target word (witty) represents a deletion. The best alignment is always

66 Mining Script Representations

the alignment with the fewest gaps, thus symbolizing the re-writing process with the
fewest edit operations. The exact placing of gaps in an optimal alignment (as depicted
in the right graph) can vary to some degree: the first two lines of the alignment could
simply be switched, which would result in slightly different gap positions, but still in
an optimal alignment. Note that the alignment is symmetric; re-writing witty into kitten
would result in an equivalent alignment, with gaps in the same places. The Levenshtein
distance here is just the number of gaps.

The part of the alignment that is interesting for paraphrasing is the matching part of the
two sequences, marked with the blue box in the example. This is the bit of information
shared by both sequences, which remains unchanged in the rewriting process.

go to restaurant

go to counter
read menu

make choice
wait in line
order food

pay

sit down
eat food

∅

∅ enter restaurant

decide what to eat

make order
pay for food

find free table

enjoy meal

∅

∅
∅

∅

∅

Figure 4.3: Sequence alignment of two ESDs, paraphrases are indicated with colors.

In order to find event paraphrases, we align ESDs as sequences of event descriptions,
and find the parts that are retained when we try to re-write one sequence into a second
one. Figure 4.3 shows an example, with colors marking the matched event descriptions.
The main difference between aligning ESDs and character-wise word alignment is that
we want to match sequence elements that are not completely identical. For letter-based
re-writings, it is clear that only identical letters can be matched. For event descriptions,
we need to match phrases that are somewhat similar (to varying degrees), but almost
never identical. We thus combine sequence alignment with a semantic similarity mea-
sure for finding good matches.

When we compute paraphrases from event sequence descriptions, we need to align more
than two sequences for a scenario. We thus employ Multiple Sequence Alignment, which
generalizes binary sequence alignment to arbitrary many input sequences. The formal
details of standard sequence alignment and MSA are provided in the following section.

4.2 Multiple Sequence Alignment 67

4.2 Multiple Sequence Alignment

Sequence Alignment and Multiple Sequence Alignment (MSA) are well-researched in
bioinformatics, where they are typically used to find corresponding elements in proteins
or DNA (Durbin et al., 1998).

A binary sequence alignment algorithm takes as its input some sequences s1, . . . , sn ∈ Σ∗

over some alphabet Σ, along with a score function sm : Σ× Σ→R for substitutions (or, in
our case, matchings) and gap costs cgap ∈R for insertions and deletions. In bioinformat-
ics, the elements of Σ are nucleotides, and the aligned sequences are DNA sequences; in
our case, Σ contains the individual event descriptions, and the sequences are the ESDs.

A Multiple Sequence Alignment A is then a matrix as in Table 4.1: The i-th column of A
is the sequence si, possibly with some gaps (“�”) interspersed between the symbols of
si, such that each row contains at least one non-gap. If a row contains two non-gaps, we
take these symbols to be aligned; aligning a non-gap with a gap can be thought of as an
insertion or deletion.

Each sequence alignment A can be assigned a score s(A) in the following way:

s(A) = cgap · Σ� +
n

∑
i=1

m

∑
j=1,

aji 6=�

m

∑
k=j+1,
aki 6=�

sm(aji, aki)

where Σ� is the number of gaps in A, n is the number of rows and m the number of
sequences. In other words, we sum up the alignment score for any two symbols from
Σ that are aligned with each other, and add the gap cost (= negative scores) for each
gap. The Needleman-Wunsch-Algorithm computes the optimal pairwise alignments
(i.e. n = 2) in polynomial time (Needleman & Wunsch, 1970). In our case, the optimal
alignment is the alignment A with the highest score s(A) .

Alignment Trees

We use a generalization of the Needleman-Wunsch algorithm for n sequences to com-
pute the MSA. Finding an optimal solution for this problem is NP-complete. In general,
the best MSA is approximated by aligning two sequences first, considering the result
as a single sequence whose elements are pairs, and repeating this process until all se-
quences are incorporated in the MSA (Higgins & Sharp, 1988). The order in which the
sequences are added can be seen as a binary tree with the elementary sequences as its
leaves and the final alignment as root node, so-called alignment trees. We experimented
with two paradigms for computing such a tree, one based on content similarity of the
sequences, and one purely based on the sequences’ length:

68 Mining Script Representations

row
s1

s2
s3

s4

1
�

w
alk

into
restaurant

�
enter

restaurant
2

�
�

w
alk

to
the

counter
go

to
counter

3
�

find
the

end
of

the
line

�
�

4
�

stand
in

line
�

�
5

look
at

m
enu

look
at

m
enu

board
�

�
6

decide
w

hat
you

w
ant

decide
on

food
and

drink
�

m
ake

selection
7

order
at

counter
tellcashier

your
order

place
an

order
place

order
8

�
listen

to
cashier

repeat
order

�
�

9
pay

at
counter

�
pay

the
bill

pay
for

food
10

�
listen

for
totalprice

�
�

11
�

sw
ipe

credit
card

in
scanner

�
�

12
�

put
up

credit
card

�
�

13
�

take
receipt

�
�

14
�

look
at

order
num

ber
�

�
15

�
take

your
cup

�
�

16
�

stand
off

to
the

side
�

�
17

�
w

ait
for

num
ber

to
be

called
w

ait
for

the
ordered

food
�

18
receive

food
at

counter
get

your
drink

get
the

food
pick

up
order

19
�

�
�

pick
up

condim
ents

20
take

food
to

table
�

m
ove

to
a

table
go

to
table

21
eat

food
�

eat
food

consum
e

food
22

�
�

�
clear

tray
22

�
�

exit
the

place
�

Table
4.1:A

M
SA

of
four

event
sequence

descriptions.

4.3 Semantic Similarity 69

s1 s2 s3 s4

A

s1 s2 s3 s4

A

a) Symmetric alignment tree, result
 of Bag of Words aligner

b) Left-recursive alignment tree,
 result of the Length aligner

Figure 4.4: Two exemplary alignment trees.

Bag of Words aligner: One model groups the two most similar sequences together
first, using word overlap to measure similarity. The resulting pair of aligned sequences
is then considered as a single sequence. The final alignment tree often looks similar
to the one in Figure 4.4 (a), in which pairs of elementary sequences are aligned with
each other before they are grouped together with other aligned pairs. The actual tree
structure however depends on the wording of the different ESDs; theoretically, any
binary tree structure is possible.

Length aligner: The second strategy for creating alignment trees orders sequences ac-
cording to their length and builds up the tree by starting with the longest and the
second-longest sequences, successively adding the next longest one (as shown in Fig-
ure 4.4 (b)). The intuition behind this strategy is that the longest sequence tends to be
the most detailed one, and elements of shorter sequences will mostly have a matching
element in the longer one. In consequence, the number of gaps is kept small because
mostly deletions have to be performed, and hardly any insertions.

While both techniques clearly perform better than random alignment, they virtually
never differ in their performance. For the remainder of this work, we use the Bag of
Words aligner as default system.

4.3 Semantic Similarity

In order to apply MSA to the problem of aligning ESDs, we choose Σ to be the set of
all individual event descriptions in a given scenario. The scoring function sm thus needs
to compare event descriptions, which is a much more complex task than comparing
nucleotides (like in bioinformatics) or letters (for computing Levenshtein distance). In
contrast to DNA matching, we are dealing with an infinite set of possible descriptions

70 Mining Script Representations

which we can’t know beforehand, so we cannot simply create a table with substitution
costs for all DNA building bricks. What we of course intuitively want is to prefer the
alignment of two phrases if they are semantically similar, i.e. we should give a lower
score to aligning exit with eat than we would to aligning exit with leave. Thus we take a
measure of semantic (dis)similarity as the score function sm.

Problems with standard similarity measures

We experimented with several standard similarity measures of varying complexity. Sim-
ple word-edit distance and word overlap were too strict and matched only a small part
of the event paraphrases we wanted to find. In our final evaluation (Section 4.5), we use
word-edit distance to compute one of the baselines.

A standard vector-space model (Thater et al., 2011) also resulted in recall problems, but
for different reasons. The training data for this model (and such models in general)
mostly contains standard newspaper text, and applying these models displays another
facet of the implicitness problem: we simply do not find many newspaper texts that de-
scribe events at a fast food restaurant or how to make coffee. In particular, the corpus-
based vectors cannot capture scenario-specific similarities, like the exchangeability of
food and order within the restaurant scenarios. Numerically, the vector-space models
scored about 15-20% worse than the best performing similarity measures we tried (mea-
sured in f-score, cf. Section 4.5), solely due to recall problems. (Section 9.2 describes
our ongoing efforts to improve this performance by creating scenario-specific training
corpora for vector-space models.)

In general, WordNet-based measures performed best for our purposes: starting out from
simple sense overlap, we also tested standard WordNet similarity scores (Lin, 1998) by
either pairing each word in a phrase with its most similar counterpart, or summing up
the scores for all word pairs. All of these measures share one main problem: they count
all similar word pairs with an equal weight. As a consequence, get food and eat food are
scored as being just as similar as wait for food and wait for order. Intuitively, the head
verb of an event description contributes the most to the phrase’s semantics, but such
heuristics can’t be captured by standard WordNet measures.

A robust WordNet-based similarity measure

Using WordNet as a basis, we incorporate some shallow syntactic information to assign
different weights to the different constituents of the event description. With our adapted
dependency parser (cf. Section 3.3), we identify the head verb as pred, the subject (if any)
as subj and all noun phrases (NPs). We record all non-complex NPs as an unordered list

4.3 Semantic Similarity 71

turn turn on add remove go go to stand
walk get take be have put place make

Table 4.2: Verbs with a lower semantic contribution, and a lower α in sim.

of objects ([obj1,obj2, ...,objn]), including NPs which occur inside prepositional phrases.
This helps us to do a reliable shallow matching of support verbs and complex noun
phrases, e.g. when comparing take food to table with take tray with food. (The version of
the similarity measure we noted in (Regneri et al., 2010) used a more shallow, WordNet-
based heuristic to approximate the syntactic information, because the adapted parsing
model was not yet available at that point in time. It turned out that exchanging this
heuristic for a parser eventually made no difference for the performance of the system.)
In addition to using syntactic information, we also optimize the measure so as to fit
well into the MSA: in general, the sequence aligner delivers better results if very similar
elements have a clearly higher score than dissimilar elements. This is, for example, not
given in standard measures ranging between 0 and 1. Instead of such standard numbers,
we chose similarity values from a wider scale, depending on the WordNet relationship
of the syntactic components. This is represented by the following formula for computing
the similarity measure sim on the basis of the flattened parse:

sim = α · pred + β · subj + γ ·
n

∑
i=1

obji

where pred, subj, and obj are the similarity values for predicates, subjects and objects
respectively, and α, β,γ are weights. If a constituent is not present in one of the phrases
to compare, we set its weight to zero and re-distribute it over the other weights (e.g.
if the description contains just one verb, we add α and γ to β. We fix the individual
similarity scores pred, subj, and obj depending on the WordNet relation between the
most similar WordNet senses of the respective lemmas (100 for synonyms, 0 for lemmas
without any relation, and intermediate numbers for different kind of WordNet links).
Setting the similarity scores in this way allows us to directly influence the numerical
differences between different degrees of similarity.

We optimized the values for pred, subj, and obj as well as the weights α, β and γ using
a held-out development set of five scenarios. Our experiments confirmed that in most
cases, the verb contributes the largest part to the similarity (accordingly, α needs to be
higher than the other factors). We achieved improved accuracy by distinguishing a class
of verbs that contribute little to the meaning of the phrase (i.e., support verbs, verbs of
movement, and the verb “get”), and assigning them a separate, lower α. Table 4.2 shows
the full list of lemmas for which we lowered α.

72 Mining Script Representations

s1 s2 s3
enter

restaurant
! enter

restaurant
go to counter walk to

counter
!

! ! look at menu
make selection ! decide what

you want
place an order place order order at

counter

enter restaurant

go to counter
walk to counter

look at menu

make selection
decide what ...

place an order
place order

order at counter

Figure 4.5: A multiple sequence alignment and its corresponding temporal script graph.

4.4 Building Temporal Script Graphs

After combining the MSA algorithm with the semantic similarity measure, we can iden-
tify equivalent elements of event sequence descriptions as event paraphrases. Those
paraphrases enable us to abstract away from the input sequences and built a global
script representation for a scenario, in our case a temporal script graph (TSG). The TSG
includes sets of event paraphrases as nodes representing events, and the sequential or-
dering from the input sequences as temporal constraints, mirrored in the graph’s edges.

Temporal script graphs

A temporal script graph is a directed, acyclic graph, and just as in the other graph-based
representations, its nodes are event description sets, and the edges represent temporal
constraints. If two events occur in the TSG, and there is a directed path between them,
the TSG states that the source event typically happens before the target event. It does,
however, not state which events are obligatory, or how many events should be in a
sequence. The edges also do not imply immediate temporal precedence, but rather a
partial ordering over the represented events. For any two events in the TSG, the existence
of a path between them means the source event of the path usually happens before the
target event happens, with possible other intervening events.

We build the temporal script graph using the matrix of aligned sequences. Figure 4.5
shows a temporal script graph (right) and the MSA it is built from (left). At first we
construct an initial graph which has one node for each row of the MSA (indicated with
colors in the picture). We interpret each node of the graph as representing a single event
in the script, and the paraphrases that are collected in the node as different possible
realizations of this event. We then add an edge (u,v) to the graph iff (1) u 6= v, (2) there

4.4 Building Temporal Script Graphs 73

was at least one ESD in the original data in which some phrase in u directly preceded
some phrase in v, and (3) if a single ESD contains a phrase from u and from v, the
phrase from u directly precedes the one from v. In terms of the MSA, this means that
if a phrase from u comes from the same column as a phrase from v, they are either in
adjacent rows, or there are only gaps between them.

This initial graph contains roughly the same information as the MSA it is computed
from: each node pictures the paraphrasing information from the MSA table, and each
edge means that some event description in the source node directly preceded an event
description in the target node in the original input ESDs.

Postprocessing of the graph

Because the initial graph is a direct representation of the table, it also retains all the
noise introduced during the paraphrasing process. We automatically post-process the
graph in a second step to simplify it and eliminate some of the noise from the sequence
alignment. The goal here is to get rid of nodes that should either not be there in the
first place (e.g. if only one person referred to the specific event), or nodes that duplicate
events, because all their event descriptions should have been merged into another node.
The last case mostly occurs if an event has two different, non-synonymous head verbs
in its lexical variants, like order food and place order. Initially, the node containing order
food might just contain descriptions with order as head verb, and the cluster with place
order could end up in a different, but closely connected node.

As a first step, we prune spurious nodes which contain only one event description, thus
removing event instances with insufficient support from our data.

We then process the graph by merging nodes whose event descriptions should have
been grouped in the first place, but were missed during the sequence alignment. When
doing this, we want to maintain high precision for both the paraphrase information
and the temporal constraints in the graph. We thus need to make sure that we a)
merge only nodes that contain equivalent event descriptions and b) don’t introduce
invalid temporal constraints, in particular cycles. We merge two nodes if they satisfy
the following semantic and structural constraints:

The semantic constraints check whether the event descriptions of the merged node
would be sufficiently consistent according to the similarity measure from Section 4.3.
To check whether we can merge two nodes u and v, we use an unsupervised clustering
algorithm (Flake et al., 2004) to first cluster the event descriptions in u and v separately.
Then we combine the event descriptions from u and v and cluster the resulting set. If
the union has more clusters than either u or v, we assume the nodes to be too dissimilar
for merging.

74 Mining Script Representations

The structural constraints depend on the graph structure. We only merge two nodes u
and v if their event descriptions come from different sequences and one of the following
conditions holds:

• u and v have the same parent;

• u has only one parent, v is its only child;

• v has only one child and is the only child of u;

• all children of u (except for v) are also children of v.

These structural constraints prevent the merging algorithm from introducing new tem-
poral relations that are not supported by the input ESDs.

An exemple temporal script graph

The output of this post-processing step is then the final temporal script graph, picturing
events and temporal constraints of a scenario. An excerpt of the graph we obtain for
our running example (fast food restaurant) is shown in Figure 4.6. One node created
by the merging step was the top left one, which combines one original node containing
walk into restaurant and another with go to restaurant. The graph mostly groups phrases
together into event nodes quite well, although there are some exceptions, such as the
collect utensils node. The temporal information in the graph is pretty accurate, apart
from paths through nodes that show bad paraphrase accuracy (e.g. you can’t pay twice,
as the connection between the pay node and the node around collect utensils suggests).

Perhaps most importantly, our MSA-based algorithm generally manages to abstract
away from surface-level linguistic similarity: Using the sequential structure, the sys-
tem correctly combines make selection and decide on food and drink into the same node,
although they are not similarly worded at all. In the reverse perspective, it can keep
similar phrases like wait in line and wait for my order apart because they are always
separated by other events (like order and pay).

4.5 Evaluation

For our final evaluation, we optimized the gap scores for the MSA (cf. Section 4.2) and
the parameters for the semantic similarity measure (cf. Section 4.3) on a held-out set
of five scenarios (send food back in a restaurant and take a shower from our own
corpus, and answer the doorbell, do laundry and use a microwave from OMICS).

4.5 Evaluation 75

get in line
enter restaurant

stand in line

w
ait in line

look at m
enu board

w
ait in line to order m

y food
exam

ine m
enu board

look at the m
enu

look at m
enu

go to cashier
go to ordering counter

go to counter

i decide w
hat i w

ant
decide w

hat to eat
decide on food and drink
decide on w

hat to order
m

ake selection
decide w

hat you w
ant

order food
i order it

tell cashier your order
order item

s from
 w

all m
enu

order m
y food

place an order
order at counter

place order

pay at counter
pay for the food

pay for food
give order to the em

ployee
pay the bill

pay
pay for the food and drinks

pay for order
collect utensils
pay for order
pick up order

m
ake paym

ent
keep m

y receipt
take receipt

w
ait for m

y order
look at prices

w
ait

look at order num
ber

w
ait for order to be done

w
ait for food to be ready

w
ait for order

w
ait for the ordered food

expect order
w

ait for food

pick up condim
ents

take your cup
receive food

take food to table
receive tray w

ith order
get condim

ents
get the food

receive food at counter
pick up food w

hen ready
get m

y order
get food

m
ove to a table

sit dow
n

w
ait for num

ber to be called
seat at a table

sit dow
n at table

leave

w
alk into the reasturant

w
alk up to the counter
w

alk into restaurant
go to restaurant

w
alk to the counter

Figure
4.6:A

n
extract

from
the

graph
com

puted
for

e
a

t
i
n

g
i
n

a
f
a

s
t

f
o

o
d

r
e
s
t
a

u
r

a
n

t.

76 Mining Script Representations

Evaluating the performance of our script mining approach is not straight-forward: an
end-to-end evaluation is not possible at all, because there are no systems that actually
use common sense script knowledge (cf. Section 1.3). There is also no gold standard
reference for script structures that we could compare our temporal script graphs to,
because all script databases contain just event sequence descriptions rather than abstract
representations. We thus have no direct possibility to show the effect or correctness of
our graphs as complete structures.

Instead we set up intrinsic evaluations for the two core aspects of our system: para-
phrase computation and derivation of sequential order. We create different evaluation
scenarios for both, the paraphrase task to demonstrate how well our system recognizes
descriptions of the same event, and the happens-before task to judge the resulting temporal
constraints over the event descriptions. In a nutshell, we sample pairs of event descrip-
tions from the same scenario, and then create a gold standard with human judgements
about both paraphrasing and temporal relations of the event descriptions. We then eval-
uate the information in the temporal script graphs against this gold standard annotation.

Gold Standard

For the gold standard, we select ten scenarios which were never used for development
purposes. Five of the scenarios are taken from the corpus described in Chapter 3, the
other five from the OMICS corpus (cf. Section 3.6). The stories (≈ scenarios) in OMICS
strongly resemble our ESD collections, but are restricted to “indoor activities" and typi-
cally contain more sequences per scenario than our corpus (around 40 per scenario).

For each scenario, we create two different evaluation sets, a paraphrase set and a happens-
before set. For the paraphrase set, we sample 30 random pairs of event descriptions which
the system classified as paraphrases and 30 other completely randomly selected pairs.
The happens-before set consists of 30 pairs classified as happens-before, 30 randomly se-
lected pairs and additionally all 60 pairs in reverse order. We added the pairs in reversed
order to check whether the raters really prefer one direction or whether they accept both
and were biased by the order of presentation.

We presented each pair to 5 non-experts, all US residents, via Mechanical Turk. For the
paraphrase set, an exemplary question we asked the rater looks as follows (instantiating
the scenario and the two descriptions, of course):

Imagine two people, both telling a story about SCENARIO. Could the first
one say event2 to describe the same part of the story that the second one
describes with event1 ?

For the happens-before task, the question template was the following:

4.5 Evaluation 77

Imagine somebody telling a story about SCENARIO in which the events
event1 and event2 occur. Would event1 normally happen before event2?

In both cases, the annotators had to answer either “yes” or “no”, with the possibility
to add further comments in a text field. We constructed a gold standard by a majority
decision of the raters. An expert rater adjudicated all pairs with a 3:2 vote ratio.

Baselines and Upper Bound

Because there are no comparable script mining systems, we cannot compare our ap-
proach to previous work. To show a meaningful comparison, we implemented two in-
formed baselines that incorporate either the structural MSA component or our semantic
similarity measure, either combined with a less sophisticated similarity measure or with
a structure-unaware clustering component. Additionally, we show the inter-annotator
agreement from our gold standard annotation experiment as an upper bound for both
paraphrase computation and derivation of sequential order.

Clustering Baseline: We use the same unsupervised clustering algorithm that we ap-
ply for node merging (Flake et al., 2004), and feed it all event descriptions of a scenario.
We first create a similarity graph with one node per event description. Each pair of
nodes is connected with a weighted edge; the weight reflects the semantic similarity
of the nodes’ event descriptions as described in Section 4.3. To include all trivial in-
put information from the source sequences, we do not allow for edges between nodes
containing two descriptions occurring together in one ESD. The underlying assumption
here is that two different event descriptions of the same ESD always represent distinct
events.

The clustering algorithm uses a parameter which influences the cluster granularity, with-
out determining the exact number of clusters beforehand. We optimize this parameter
automatically for each scenario by picking the value that yields the optimal result with
respect to density and distance of the clusters: the elements of each cluster have to be
as similar as possible to each other, and as dissimilar as possible to the elements of all
other clusters.

The clustering baseline considers two phrases as paraphrases if they are in the same
cluster. It claims a happens-before relation between phrases e and f if some phrase
in e’s cluster precedes some phrase in f ’s cluster in the original ESDs. This baseline
demonstrates the contribution of MSA, compared to a more standard approach that
does not consider the ESD’s sequential structure.

78 Mining Script Representations

Levenshtein Baseline: This system follows the same steps as our system, but using
Levenshtein distance as the measure of semantic similarity for MSA and for node merg-
ing. This lets us measure the contribution of the more fine-grained similarity function.
We compute Levenshtein distance as the character-wise edit distance on the phrases,
divided by the phrases’ character length so as to get comparable values for shorter and
longer phrases. The gap costs for MSA with Levenshtein were optimized on our devel-
opment set so as to produce the best possible alignment.

Upper bound: We also computed a human-performance upper bound. Because no
single annotator rated all pairs of ESDs, we constructed a “virtual annotator” as a point
of comparison, by randomly selecting one of the human annotations for each pair.

Results

We calculated precision, recall, and f-score for our system, the baselines, and the up-
per bound as follows, with allsystem being the number of pairs labelled as paraphrase or
happens-before, allgold as the respective number of pairs in the gold standard and correct
as the number of pairs labeled correctly by the system.

precision =
correct
allsystem

recall =
correct
allgold

f -score =
2 ∗ precision ∗ recall

precision + recall

Table 4.3 and 4.4 show the results of our system and the reference values; Table 4.3
describes the happens-before task and Table 4.4 the paraphrase task. The upper half of the
tables describes the results from our own corpus, the remainder refers to OMICS data.
The columns labelled sys contain the results of our system, basecl describes the clustering
baseline and baselev the Levenshtein baseline. The f-score for the upper bound is in the
column upper. For the f-score values, we calculated the significance for the difference
between our system and the baselines as well as the upper bound, using a resampling
test (Edgington, 1986). The values marked with • differ from our system significantly at
a level of p ≤ 0.01, ◦ marks a level of p ≤ 0.1. The remaining values are not significant
with p≤ 0.1. (For the average values, no significance is calculated because this does not
make sense for scenario-wise evaluation.)

Happens-before task: In most cases, and on average, our system is superior to both
baselines. Where a baseline system performs better than ours, the differences are not
significant. In four cases, our system does not differ significantly from the upper bound.

4.5 Evaluation 79

S
c

e
n

a
r

i
o

P
r

e
c

i
s
i
o

n
R

e
c

a
l
l

F-S
c

o
r

e

sys
base

cl
base

lev
sys

base
cl

base
lev

sys
base

cl
base

lev
upper

MTurk

p
a

y
w

i
t
h

c
r

e
d

i
t

c
a

r
d

0.86
0.49

0.65
0.84

0.74
0.45

0.85
•

0.59
•

0.53
0.92

e
a

t
i
n

r
e
s
t
a

u
r

a
n

t
0.78

0.48
0.68

0.84
0.98

0.75
0.81

•
0.64

0.71
•

0.95
i
r

o
n

c
l
o

t
h

e
s

I
0.78

0.54
0.75

0.72
0.95

0.53
0.75

0.69
•

0.62
•

0.92
c

o
o

k
s
c

r
a

m
b
l
e
d

e
g

g
s

0.67
0.54

0.55
0.64

0.98
0.69

0.66
0.70

0.61
•

0.88
t
a

k
e

a
b
u

s
0.80

0.49
0.68

0.80
1.00

0.37
0.80

•
0.66

•
0.48

•
0.96

OMICS

a
n

s
w

e
r

t
h

e
p
h

o
n

e
0.83

0.48
0.79

0.86
1.00

0.96
0.84

•
0.64

0.87
0.90

b
u

y
f
r

o
m

v
e
n

d
i
n

g
m

a
c

h
i
n

e
0.84

0.51
0.69

0.85
0.90

0.75
0.84

•
0.66

◦
0.71

0.83
i
r

o
n

c
l
o

t
h

e
s

II
0.78

0.48
0.75

0.80
0.96

0.66
0.79

•
0.64

0.70
0.84

m
a

k
e

c
o

f
f
e
e

0.70
0.55

0.50
0.78

1.00
0.55

0.74
0.71

◦
0.53

◦
0.83

m
a

k
e

o
m

e
l
e
t
t
e

0.70
0.55

0.79
0.83

0.93
0.82

0.76
◦

0.69
0.81

•
0.92

A
v

e
r

a
g

e
0.77

0.51
0.68

0.80
0.95

0.65
0.78

0.66
0.66

0.90

Table
4.3:Evaluation

results
for

the
happens-before

task;sys
=

our
system

,basecl =
clustering

baseline,baselev
=

Levenshtein
baseline,upper

=
upper

bound;significance
of

difference
to

sys:•
:p
≤

0.01,◦
:p
≤

0.1

80 Mining Script Representations

S
c

e
n

a
r

i
o

P
r

e
c

i
s
i
o

n
R

e
c

a
l
l

F-S
c

o
r

e

sys
base

cl
base

lev
sys

base
cl

base
lev

sys
base

cl
base

lev
upper

MTurk

p
a

y
w

i
t
h

c
r

e
d

i
t

c
a

r
d

0.52
0.43

0.50
0.84

0.89
0.11

0.64
0.58

•
0.17

0.60
e
a

t
i
n

r
e
s
t
a

u
r

a
n

t
0.70

0.42
0.75

0.88
1.00

0.25
0.78

•
0.59

•
0.38

•
0.92

i
r

o
n

c
l
o

t
h

e
s

I
0.52

0.32
1.00

0.94
1.00

0.12
0.67

•
0.48

•
0.21

•
0.82

c
o

o
k

s
c

r
a

m
b
l
e
d

e
g

g
s

0.58
0.34

0.50
0.86

0.95
0.10

0.69
•

0.50
•

0.16
•

0.91
t
a

k
e

a
b
u

s
0.65

0.42
0.40

0.87
1.00

0.09
0.74

•
0.59

•
0.14

•
0.88

OMICS

a
n

s
w

e
r

t
h

e
p
h

o
n

e
0.93

0.45
0.70

0.85
1.00

0.21
0.89

•
0.71

•
0.33

0.79
b
u

y
f
r

o
m

v
e
n

d
i
n

g
m

a
c

h
i
n

e
0.59

0.43
0.59

0.83
1.00

0.54
0.69

0.60
0.57

0.80
i
r

o
n

c
l
o

t
h

e
s

II
0.57

0.30
0.33

0.94
1.00

0.22
0.71

•
0.46

•
0.27

0.77
m

a
k

e
c

o
f
f
e
e

0.50
0.27

0.56
0.94

1.00
0.31

0.65
•

0.42
◦

0.40
•

0.82
m

a
k

e
o

m
e
l
e
t
t
e

0.75
0.54

0.67
0.92

0.96
0.23

0.83
•

0.69
•

0.34
0.85

A
v

e
r

a
g

e
0.63

0.40
0.60

0.89
0.98

0.22
0.73

0.56
0.30

0.82

Table
4.4:

Evaluation
results

for
the

paraphrasing
task;sys

=
our

system
,basecl =

clustering
baseline,baselev

=
Levenshtein

baseline,upper
=

upper
bound;significance

of
difference

to
sys:•

:p
≤

0.01,◦
:p
≤

0.1

4.5 Evaluation 81

Regarding precision, our system outperforms both baselines in all scenarios except one
(make omelette).

Paraphrase task: Our system outperforms both baselines clearly, reaching significantly
higher f-scores in 17 of 20 cases. Moreover, for five scenarios, the upper bound does not
differ significantly from our system. For judging the precision, consider that the test set
is slightly biased: Labeling all pairs with the majority category (no paraphrase) would
result in a precision of 0.64. However, recall and f-score for this trivial lower bound
would be 0.

The only scenario in which our system doesn’t score very well is buy from a vend-
ing machine, where the upper bound is not significantly better either. The clustering
system, which can’t exploit the sequential information from the ESDs, has trouble dis-
tinguishing semantically similar phrases (high recall, low precision). The Levenshtein
similarity measure, on the other hand, is too restrictive and thus results in comparatively
high precisions, but very low recall.

Figure 4.7 shows the paraphrases our system identifies for the fast food scenario. One
phrase group represents one line in the sequence alignment. Some clusters show the
remarkable contribution that context similarity provides, aligning paraphrases with very
different wording, like order items from wall menu and tell cashier your order, decide what to
eat and make selection, clear tray and take trash to receptacle or pick up food when ready and
receive tray with order.

However, there remain some errors that are either due to the similarity measure or
related to the non-optimal alignment procedure: look at prices and look at order number
end up with the waiting paraphrases, because look and wait share a Synset in WordNet.
order food and receive food each end up in a singleton group although there are paraphrase
sets with string-identical event descriptions. Errors of that kind can happen using non-
optimal alignment, especially if the remainder of a sequence is somehow dissimilar
compared to other sequences.

Relating scenario complexity & Evaluation Results

In a last evaluation step, we analyze which properties of a scenario and its associated
ESDs have the most influence on the final result. To do so, we will use the statistical mea-
sures we have introduced earlier to asses a scenario’s complexity (cf. Chapter 3). Those
measures asses simple quantities (like sequence and sentence length) and also scenario
homogeneity with respect to the wording variants and possible event reorderings. Mea-
suring the correlation of those numbers with our final results means investigating which
kind of variance in a scenario makes processing most difficult.

82 Mining Script Representations

walk into the reasturant,
walk up to the counter,

walk to the counter

order food

park car

decide what to eat, i decide
what i want, decide on food
and drink, decide what you

want, make selection,
decide what you want,
decide on what to ordergo to ordering counter, go to counter, go to cashier

wait in line to order my food, look at menu board,
look at menu, look at menu, wait in line, look at
menu, examine menu board, look at the menu

stand in line, enter restaurant, stand in line, get in linefind the end of the line

proceed to front counter

walk into restaurant, go to restaurant

count change

order my food, place order, i order it, place
an order, order items from wall menu, tell
cashier your order, order at counter, place
order, order food, order food, order food,

tell cashier your order, place an order

pay for the food, pay for order, pay for the food and drinks, pay for food, pay at
counter, pay for food, pay for food, pay, give order to the employee, pay the bill

listen to cashier repeat order

take a number

get my order, pick up food when ready,
get napkins and condiments, get food,
take your cup, receive food at counter,
pick up condiments, take food to table,

receive food, get condiments, receive tray
with order, get the food

keep my receipt, make
payment, take receipt

wait for my order, wait for food, wait for food, expect
order, wait, look at order number, wait for food to be

ready, wait, look at prices, wait for order, wait for
order to be done, wait for the ordered food

put up credit cardswipe credit card in scannerlisten for total price

stand off to the side

seat at a table, sit down at table,
leave, wait for number to be called,

sit down, move to a table

collect utensils, pick up order, pay
for order, pay for order

recieve food

get your drink, take food to table,
select a place to sit, take food tray

to vacant table, find table

confirm order

dispense soda into cup

eat, eat food, eat the food, eat in the car,
eat food, consume food, eat food, eat

food, eat, eat, eat meal, eat food

go inside

clear tray, take trash to receptacle,
dispose of garbage, dispose of trash

return tray

leave, leave store, leave, leave,
leave, exit the place

put away trays and trash, throw away
the containers, place tray in stack

Figure 4.7: Event paraphrases computed by our final system for eating in a fast food

restaurant.

4.5 Evaluation 83

We introduce an additional feature that subsumes both a structural component and our
semantic similarity measure. Sim first / last computes a score for two ESDs by comparing
the two first event descriptions with each other and the two last ones. The numerical
score is computed with our similarity measure, and averaged over the two pairs of
sequence-initial and -final events. This measure will have higher score if a) a scenario
tends to have fixed starting and endpoints and b) the respective event descriptions are
similar, according to our measure. In this way, this measure assesses a scenario’s homo-
geneity (as indicated by similarity in ESD start- and endpoints), but its accuracy strongly
depends on the performance of the similarity measure.

Concretely, we correlate the f-score of our system for the paraphrasing task with differ-
ent measures for lexical ESD overlap and proportion of predicate pairs without strict
sequential order. We did not calculate the correlations with the happens-before task,
because the paraphrasing task is more difficult in the first place, and actually subsumes
the happens-before task: if we had a perfect paraphrasing algorithm, we could easily
derive all temporal constraints from the input data.

Table 4.5 shows the complexity features we introduced in Section 3.4 along with the
f-scores of our system. Because it is hard to achieve any significant results with a small
sample size (10 scenarios), we also include the five scenarios from our development set
to compute correlation of f-scores with scenario complexity. While it would not be ad-
equate to compare our system’s performance on its own training data to any baselines,
the f-score we reached for those sets can still be used to assess the task’s complexity.

The last row of table 4.5 shows the Spearman correlation coefficient (ρ) of the respective
complexity feature with the system’s f-score. The coefficient is a value between −1 and
1, with 0 meaning that two value distributions do not correlate at all, 1 denoting perfect
correlation (of a distribution with itself, e.g.) and −1 a perfect negative correlation (cf.
also Chapter 3). On this small dataset, we could not get any significant correlation
results. However, the numbers show very interesting tendencies: The best indicator
for a scenario with low complexity is the similarity of the first and last events (ρ =

0.41). This means that scenarios that have well defined start- and endpoints (e.g. make

omelette usually starts in the kitchen, without any ingredients or cutlery) have the
general tendency to be easier to match structurally and lexically. A related and also
important point is the general sense overlap between ESDs (ρ = 0.36). The reason is
simply that we can compute more reliable similarity scores for sequences with high
sense overlap, because we use a WordNet based similarity measure.

The factor with the highest negative influence on our system’s performance is the degree
of reordering within the scenario: the negative correlation (ρ = −0.36) stands out com-
pared to the other factors. Reordering even seems to complicate processing as much
as sense-based similarity of the sequences simplifies it. This is especially interesting

84 Mining Script Representations

S
c

e
n

a
r

i
o

Average Length

Words per Event

Unknown Words

Type Overlap

Token Overlap

Sense Overlap

Sim. First / Last

Reordering

F-Score

p
a

y
w

i
t
h

c
r

e
d

i
t

c
a

r
d

5.67
3.91

0.00
0.37

0.33
0.41

140.11
0.04

0.64
e
a

t
a

t
a

r
e
s
t
a

u
r

a
n

t
10.42

3.08
0.01

0.37
0.25

0.40
187.63

0.10
0.78

i
r

o
n

c
l
o

t
h

e
s

I
9.00

3.87
0.02

0.30
0.28

0.36
110.21

0.10
0.67

m
a

k
e

s
c

r
a

m
b
l
e
d

e
g

g
s

10.63
4.11

0.03
0.33

0.26
0.35

76.82
0.14

0.69
t
a

k
e

a
b
u

s
8.71

3.55
0.01

0.35
0.31

0.43
153.10

0.08
0.74

a
n

s
w

e
r

t
h

e
p
h

o
n

e
3.47

3.66
0.03

0.41
0.37

0.45
127.95

0.04
0.89

b
u

y
f

v
e
n

d
i
n

g
m

a
c

h
i
n

e
4.53

3.44
0.04

0.24
0.22

0.25
50.75

0.07
0.69

i
r

o
n

c
l
o

t
h

e
s

II
5.14

4.67
0.02

0.36
0.35

0.41
45.35

0.06
0.71

m
a

k
e

c
o

f
f
e
e

5.00
4.15

0.07
0.36

0.32
0.39

71.22
0.11

0.65

ACL-10 Data Set

m
a

k
e

o
m

e
l
e
t
t
e

6.16
4.07

0.03
0.30

0.25
0.33

77.68
0.11

0.83

s
e
n

d
f
o

o
d

b
a

c
k

5.93
3.92

0.02
0.29

0.23
0.31

76.13
0.05

0.71
t
a

k
e

a
s
h

o
w

e
r

11.29
3.20

0.03
0.41

0.32
0.52

99.45
0.15

0.78
a

n
s
w

e
r

t
h

e
d

o
o

r
b
e
l
l

3.59
3.74

0.02
0.39

0.38
0.48

145.14
0.02

0.69
d

o
l
a

u
n

d
r

y
5.69

3.97
0.02

0.32
0.25

0.31
41.26

0.17
0.44

Suppl. Data

u
s
e

a
m

i
c

r
o

w
a

v
e

5.03
3.84

0.06
0.40

0.36
0.40

108.56
0.14

0.75

a
v

e
r

a
g

e
6.68

3.81
0.03

0.35
0.30

0.39
100.76

0.09
0.71

C
orrelation

w
ith

F-Score
0.11

-0.30
0.02

0.33
0.24

0.36
0.41

-0.36
(1.00)

Table
4.5:C

orrelation
of

scenario
com

plexity
scores

w
ith

f-scores
from

the
paraphrasing

task.

4.6 Related Work 85

since the measure underestimates the actual re-ordering, because it approximates event-
reordering by counting how many head verb paris occur in both possible orders. The
correlation would most likely be much stronger if we had a statistics that assesses the
true event-reordering within the sequences. The difficulty with scenarios that have a lot
if reordering is actually a price we have to pay for the structural information delivered
by multiple sequence alignment, because MSA cannot cope with reordering of any kind.

Surprisingly, the average sequence length does not have any important influence, so the
system seems to cope equally well with long and short sequences. However, the event
description length bears possible obstacles for processing: Event descriptions with more
words have a tendency to co-occur with lower f-scores (ρ =−0.30). This is probably due
to the fact that the WordNet similarity measure reduces phrases to flat representations
of predicates and noun phrases and discards deeper syntactic information, which leads
to more noise if there are equivalent nouns in different constellations (e.g. get your shirt
and the iron vs. put the iron on the shirt).

Apart from the trivial conclusion that more similar sets of sequences are easier to pro-
cess, this analysis points to interesting directions for future work: first, we should ex-
plore ways to incorporate structural constraints in a less strict manner than MSA, in
order to allow for some treatment of reordering. Chapter 9 sketches our current ex-
periments in that direction. Second, our paraphrasing algorithm can cope surprisingly
well with long input sequences, so we could also consider applying it to more complex
scenarios, or completely different text types, like the texts we used for paraphrasing in
Chapter 8.

4.6 Related Work

There are only a few script learning approaches, and only a small fraction of them have
been systematically evaluated. We already discussed the most prominent systems by
Chambers & Jurafsky (2008b, 2009) and Manshadi et al. (2008) in Chapter 2.

Two approaches that share our main objectives were proposed by Smith & Arnold (2009)
and Finlayson (2009). Smith & Arnold (2009) also use the OMICS corpus to compute
graph-based representations very similar to ours. In effect, their mining technique and
multiple sequence alignment draw on similar ideas. Smith & Arnold give interest-
ing hints on semantic generalization over event descriptions, and they define recursive
structures of script representations that allow an event to be a script graph itself. Smith
and Arnold present their approach mostly as a feasibility study, in which they outline
their theory using a detailed example, but do not apply it to more data. In consequence
we cannot compare our results to theirs in terms of precision or recall, because they did

86 Mining Script Representations

not do any numerical evaluation or system tests with more than the example scenarios.

Finlayson (2009) introduces a similar approach in which so-called story morphologies are
derived from sets of folk stories that share some similar patterns. Such morphologies (or
“topoi”) are plot archetypes that often recur in folk tales. Finlayson builds a Bayesian
model by filtering and merging common parts of related folk tale stories, resulting in one
probabilistic model of story events and weighted temporal constraints over them. The
theory is applied in an extensive manual experiment that demonstrates the extraction
of a morphology from different Shakespeare plays. The proposed modeling account is
very interesting with respect to the level of generalization and in its ability to capture
probabilities in event structures. Unfortunately, there is no discussion of the actual
performance or the degree of supervision that is necessary to actually apply the system.

In a sense, learning event paraphrases also resembles the task of cross-document event
coreference resolution, which means to automatically find different textual realizations
of the same event (mostly newsworthy stories) in different texts. Algorithms dealing
with that problem mostly use standard paraphrasing techniques that do not take any
structural constraints into account (Bagga & Baldwin, 1999; Tomadaki & Salway, 2005).
Jones & Thompson (2003) describe an approach to identifying different natural language
realizations for the same event and considering the temporal structure of a scenario. As
in event coreference resolution, they only target paraphrases for one specific event rather
then computing synchronized sequences.

Barzilay & Lee (2003) also use MSA for learning paraphrases. Unlike Barzilay and
Lee, we do not tackle the general paraphrase problem, but only consider whether two
phrases describe the same event in the context of the same script. Furthermore, the
atomic units of our alignment process are entire phrases, while in Barzilay and Lee’s
setting, the atomic units are words.

There is more work on paraphrasing in general, which we review in Section 8.7.

Chapter 5

Mining Script Participants

We have shown how to mine Temporal Script Graphs as concise script representations
from different event sequence descriptions (cf. Chapter 4). Taking a more detailed
look inside the event descriptions, we also mine script participants as another layer of
information that can enable more precise inference. As for events, we also find many
lexical variants in participant descriptions that refer to the same participant in different
ESDs.

Take the scenario of heating food in a microwave, with the exemplary aligned se-
quences in Table 5.1: the participants are e.g. the food, the microwave, the container
and the actor. In different ESDs, we can find different participant descriptions for some
of them: While the food is always referred to as food, the microwave appears as oven or
microwave, and the container (in which the food is put) can be either a plate or a bowl
or a dish. A special case that we discussed earlier (cf. Chapter 3) is the actor, which
usually remains implicit in this bullet-point style.

Similar to the task for event paraphrasing, finding participant paraphrases is challeng-

ESD 1 ESD 2 ESD3

1 put food on plate put food in bowl put food on dish
2 open microwave open door open oven
3 put plate in put food inside place dish in oven
4 set the timer � �
5 close microwave close door close
6 � enter time select desired length
7 press start push button �
8 ...

Table 5.1: Alignment for the microwave scenario.

88 Mining Script Participants

ing, because knowing the micro-domain of a given scenario already resolves many po-
tential ambiguities for the human reader, so allowing semantically very different de-
scriptions to refer to the same participant. Two phenomena are typical for participant
realization in event sequence descriptions:

• Underspecification: some very ambiguous expressions are disambiguated by the
scenario context or current event, and thus words that are barely semantically
related can often refer to the same thing. For example, time and desired length
in event 6 (the microwave scenario) refer to the same kind of setting, but have
only a small lexical overlap. This phenomenon is often paired with ellipses or
metonymies (like in this case), which leads to references that are easy to resolve
for humans, while the lexical items are almost semantically unrelated. Another
example is e.g. the use of coffee in the scenario make coffee, where coffee can refer
to the package, beans, powder or the fluid - depending on the event context.

• Metonymies: We often find metonymies that are typical for the scenario-specific
language usage and occur in many distinct events. As for all metonymies, the
metonymic expression can in many cases replace the literal source word, but not
in every context: Take for example the event in row 3 (Table 5.1), where food
and dish can be used interchangeably; the dish’s content is used as metonymic
reference for the physical container. We can find the same metonymy in multiple
event descriptions, e.g. put lid on or open, but it’s not valid in all contexts (e.g.
it’s impossible to stir the bowl). Other scenario-typical metonymies are e.g. food /
order in the restaurant context, or envelope / letter in descriptions for maling a

letter. Metonymy processing in general is a hard problem for natural language
processing (Stefanowitsch & Gries, 2006).

Lexical similarity alone seems insufficient to resolve the equivalences. However, we can
again make use of structural information, making two empirically validated assump-
tions: first, participant descriptions occurring in similar positions of equivalent event
descriptions are likely to be equivalent. Second, the same annotator typically uses only
one lexical type to refer to the same participant, so different participant descriptions that
occur within a single ESD are likely to refer to different participants.

As for event paraphrasing, we use a combination of semantic similarity and structural
information for finding equivalent participant descriptions.

In the following, we first explain how we model the problem of participant mining as a
set partitioning problem (Section 5.1). We then formulate this problem as an Integer Lin-
ear Program that includes semantic similarity and structural information as constraints
for the optimization problem (Section 5.2). Finally, we evaluate the system and score the

5.1 Participants and ESDs 89

influence of structural and semantic similarity separately by comparing our system to
several informed baselines (Section 5.3). A discussion of the results (Section 5.4) and a
short survey of related work (Section 5.5) conclude the chapter.

This chapter presents work published by Regneri et al. (2011).

5.1 Participants and ESDs

For computing script-specific participants, we start from the alignment tables from the
multiple sequence alignment that was used to compute event paraphrases. We then
want to find out that plate, bowl and dish of the alignment in Table 5.1 fill the same role
in the microwave scenario. We call a mention of a participant (typically a noun phrase)
in some event description a participant description.

Learning participants from aligned ESDs is done in two steps: first, we identify candi-
date participant descriptions in event descriptions. Then, we partition the participant
descriptions for each scenario into equivalence classes which we call participant descrip-
tion sets (PDSs). The resulting sets correspond to script-specific participants, and their
members are possible verbalizations of the respective participants.

We consider all noun phrases (NPs) in our data set as participant descriptions, and thus
reduce the task of their identification to the task of syntactic parsing. In order to extract
noun phrases, we use an adapted version of the Stanford Parser (Klein & Manning, 2003)
that was specifically re-trained for our bullet point style event descriptions (cf. Chapter
3).

As discussed earlier, the bullet-point style phrases mostly do not realize actors, so we
add the “implicit protagonist” whenever the subject position in the parse tree is empty.

5.2 Participant Computation as Set Partitioning with ILP

The main task consists in the actual learning of script participants. More specifically,
we propose a method that groups participant descriptions occurring in the event se-
quence descriptions for a given scenario into participant description sets that comprise
all different mentions of one participant.

Features for participant paraphrasing

We assume that two token-identical participant descriptions always have the same word
sense and represent the same participant, not only in one ESD, but across all event

90 Mining Script Participants

descriptions within a scenario. This extends the common “one sense per discourse”
heuristic (Gale et al., 1992) with a “one participant per sense” assumption. There are
very few examples for which this results in loss of precision, e.g. in the scenario return

food in a restaurant, there are two participants that are referred to as dish, namely
the original meal and the replacement that the customer gets upon complaining.

Because examples like this are extremely rare, we can safely take participant description
types (PTs) rather than tokens to be basic entities, which drastically reduces the size of
the basic entity set.

To compute equivalence of participant types, we exploit structural information given in
the alignment tables. Intuitively, we can assume equivalent event descriptions to contain
references to the same participants. Taking aligned event descriptions as equivalent, we
consider two PTs that occur in aligned event descriptions as more likely to belong to the
same participant. In the example of Table 5.1, this supports identification of time and
desired length.

A structural feature that signals non-equivalence is based on the empirically confirmed
assumption that one annotator usually uses the same referring expression (or a pronoun)
to refer to the same participant. If two different PTs occur in the same event sequence
description, they are likely to belong to different PDSs.

We complement these structural indicators with semantic similarity information. As
described in the previous chapter, standard corpus-based similarity models trained on
newspaper texts do not perform well on our data, and, as for event paraphrasing, we
obtained the best results by using WordNet-based features. In the example of Table 5.1,
the identification of bowl and dish is e.g. supported by WordNet hyponymy. We use
semantic similarity information in two different ways:

• WordNet synonymy of PTs, as well as synonymy and direct hyponymy of the head
of multiword PTs (like full can and full container) guarantee participant identity

• A WordNet-based similarity score is used as a soft indicator of participant identity

Like for event descriptions, we always compare all possible synsets of two participant
descriptions, and evaluate the features of the ones with the closest relationship.

The set problem as linear program

We combine all information sources by modeling the equivalence-class problem as an
Integer Linear Program (Wolsey, 1998, ILP). An ILP computes an assignment of integer
values to a set of variables, maximizing a given objective function. Additional linear
equations and inequalities can constrain the possible value assignments.

5.2 Participant Computation as Set Partitioning with ILP 91

The problem we want to solve is to determine for each pair pti and ptj in the set of PTs
{pt1, . . . ,ptn} whether they belong to the same equivalence class. We model this in our
ILP by introducing variables xij which can take the values 0 or 1; if xij takes the value 1
in a solution of the ILP, this means that the tokens of pti and the tokens of ptj belong to
the same participant description set.

Objective function

The objective function combines semantic and structural information as soft indicators
for equivalence. The function prefers to classify participant types as equivalent if they
are semantically similar and occur in event paraphrases, and avoids grouping dissimilar
PTs used by the same annotator in a single event sequence description.

Formally, we require the ILP solver to maximize the value of the following linear term:

n

∑
i,j=1,i 6=j

(sim(pti, ptj) · struc(pti, ptj)− θ) · xij (5.1)

sim(i, j) stands for the semantic similarity of pti and ptj and is computed as follows:

sim(pti, ptj) =

{
lin(pti, ptj) + η if pti and ptjare hyponyms

lin(pti, ptj) otherwise
(5.2)

For computing similarity, we use Lin’s (WordNet-based) similarity measure (Lin, 1998;
Fellbaum, 1998), which performs better than several distributional measures which we
have tried. Direct hyponymy is a particularly strong indicator; therefore we add the
empirically determined constant η to sim in this case.

θ is an empirically optimized cutoff. Every pair with a similarity lower than θ adds a
negative score to the objective function when its variable is set to 1. In the final solution,
pairs with a similarity score smaller than θ are thus avoided whenever possible.

struc(i, j) encodes structural information about pti and ptj, i.e. how tokens of pti and ptj
are related in the alignment table. Equation 5.3 defines this:

struc(pti, ptj) =

λbonus if pti and ptj from same row

λpenalty if pti and ptj from same column and unrelated

1 otherwise

(5.3)

This implements the structural constraints we explained earlier. If pti and ptj are
aligned at least once (i.e., their enclosing event descriptions are paraphrase candidates),

92 Mining Script Participants

struc(i, j) takes a constant value λbonus greater than 1, thus boosting the similarity of pti
and ptj. If the tokens of pti and ptj occur in the same column and the two types have no
direct WordNet link (i.e., they are semantically unrelated and used by the same subject
in an ESD), struc(pti, ptj) takes a constant value smaller than 1 (λpenalty) and lowers the
similarity score. Both values are empirically optimized.

Hard constraints

Some features indicate not only a tendency to equivalence, but almost exclusively occur
with actual paraphrases, in particular within the same scenario. Three of those features
refer to semantic similarity (e.g. synonymous terms), two are of purely logical nature
(i.e. symmetry and transitivity), and one concerns a special treatment of the (mostly
implicit) protagonist.

For semantic features, we use the following as hard indicators for equivalence, adding
a constraint xij = 1 for a pair i, j if one of the following conditions holds:

• pti and ptj share a synset in WordNet. In the narrow context of a scenario, two
words that share a synonymous meaning are usually not used to refer to other
readings, simply to avoid unnecessary ambiguity. This is the reverse side of the
fact that even very underspecified terms can be easily resolved by humans in the
scenario context. (E.g. in the scenario feeding a dog, nobody will use the word
canine to refer to a tooth.)

• pti and ptj have the same head, like laundry machine and machine. This “same-head
heuristic” is often applied in coreference resolution and is particularly suitable for
simple noun phrases (without any relative clauses) and phrases from a narrow
domain (Elsner & Charniak, 2010).

• pti and ptj are both multiword expressions, their modifiers are identical and their
heads are either synonyms or hyponyms. This is a modified version of the same
head heuristic, in which we allow strongly related (but not synonymous) heads to
be seen as equivalent if their modifiers are the same.

We introduce a special rule for the implicit protagonist, which rarely gets an explicit
reference, and if so the referent is generally a personal pronoun (I or you). If pti is the
implicit protagonist, we set xij = 1 if ptj is a first or second person pronoun, and xij = 0
otherwise.

Apart from those semantic constraints, we ensure that the ILP groups the participant
types into equivalence classes by enforcing symmetry and transitivity. Symmetry is

5.3 Evaluation and Results 93

trivially encoded by the following constraint over all i and j:

xij = xji (5.4)

Transitivity can be guaranteed by adding the following constraints for each i, j,k:

xij + xjk − xik ≤ 1 (5.5)

This is a standard formulation of transitivity, used e.g. by Finkel & Manning (2008).

5.3 Evaluation and Results

We evaluate our system against a gold standard of 10 scenarios. On average, one sce-
nario consists of 180 event descriptions, containing 54 participant description types real-
ized in 233 tokens. The scenarios are eat at a fast food restaurant, return food (in
a restaurant), pay with credit card, take a shower, feed a pet dog, make coffee,
heat something in a microwave, mail a letter, buy something from a vending

machine, and do laundry. The vending machine and laundry scenarios were used
for parameter optimization. The values we determined were θ = 5.3,η = 0.8,λbonus = 3.4
and λpenalty = 0.4. We solve the ILP using LPSolve (Berkelaar et al., 2004).

Gold Standard

We preprocessed the 10 evaluation scenarios by aligning them with the multiple se-
quence alignment algorithm introduced in the previous chapter. Two annotators then
labeled the 10 aligned scenarios, recording which noun phrases referred to the same
participant. Figure 5.1 and 5.2 show the annotation interface we implemented for this
coreference annotation task. The labelers were shown, in order, the sets of aligned
event descriptions (Figure 5.1, step 1). For instance, for the fast food scenario, they
would first encounter all available alternative descriptions for ordering food. From each
aligned description, the annotators extracted the participant-referring NPs, which were
then grouped into blocks of coreferent mentions (Figure 5.1, step 2). After all sets of
component-event descriptions had been processed, the annotators also manually sorted
the previously extracted blocks into equivalence sets (Figure 5.2).

In case of metonymies (like wait for order instead of wait for food), the coreference was
assigned for the literal reading of the noun phrase (food and order would end up in
separate equivalence classes). However, for later re-use, those cases were marked as
metonymically paired (this marking is not shown in the screen shots). Implicit par-
ticipants, including the implicit protagonist, were annotated, too, and marked as null

94 Mining Script Participants

Step 1: participant description extraction (from one set of event paraphrases),
 to avoid typos, a red background marks tokens that are not part of the
 respective event description

Step 2: sort participant descriptions (from one set of event paraphrases) into equivalence sets

Figure 5.1: Annotation interface for participant annotation (step 1 and 2).

5.3 Evaluation and Results 95

Step 3: sort equivalence sets participant descriptions (from
 one scenario) into larger equivalence sets,

 tooltips for each set show
 the original event descriptions that contained the participant descriptions

Figure
5.2:A

nnotation
interface

for
participant

annotation
(step

3).

96 Mining Script Participants

instantiations (e.g. the implicit mention to food in order food). For the final evaluation, we
include missing subjects but do not consider other implicit participants. Each annota-
tor labeled 5 of the scenarios independently, and reviewed the other annotator’s work.
Difficult cases, mostly related to metonymies, were solved in consultation.

Baseline and Scoring Method

The system sorts participant descriptions into their equivalence classes, thus we evaluate
whether the equivalence statements are correct and whether the classes it found are
complete. Speaking in terms of participant description sets, we evaluate the purity of
each set (whether all items in a set belong there) and the set completeness (whether
another set should have been merged into the current one).

Baselines

We compare our system with three baselines: As a naïve baseline (base), we group
participant descriptions together only if they are string-identical. This is equivalent to
just employing the type-abstraction step we took in the full system and ignoring other
information sources.

Additionally, we show the influence of the structural information with a more informed
baseline (sem): we replicate our full system but just use the semantic similarity including
all hard constraints, without any structural information from the alignment tables. This
is equivalent to setting struc(i, j) in equation 5.1 always to 1.

In order to show that semantic similarity and the alignment indeed provide contrastive
knowledge, we test a third baseline that contains the structural information only (align).
Here we group all noun phrases i and j together if struc(i, j)> 1 and the pair (i, j) meets
all hard constraints.

All parameters for the baselines were optimized separately using the same development
scenarios as for the full system.

Scoring Method

Because the equivalence classes we compute are similar to coreference sets, we apply
the b3 evaluation metric for coreference resolution (Bagga & Baldwin, 1998). b3 defines
precision and recall as follows: for every token t in the annotation, take the coreference
set Ct it is assigned to. Find the set Ct+gold that contains t in the gold standard, and

5.3 Evaluation and Results 97

assign precisiont and recallt:

precisiont =
|Ct ∩ Ct+gold|
|Ct|

recallt =
|Ct ∩ Ct+gold|
|Ct+gold|

f -score =
2 ∗ precision ∗ recall

precision + recall

Unlike in coreference resolution, we have the problem that we compare gold standard
annotations against tokens extracted from automatic parses. However, the b3-metric is
only applicable if the gold standard and the test data contain the same set of tokens.
Thus we use b3

sys, a variant of b3 introduced by Cai & Strube (2010). b3
sys extends the

gold standard and the test set such that both contain the same set of tokens. Roughly
speaking, every token that appears in the gold standard but not in the test set is copied
to the latter and treated as a singleton set, and vice versa (see Cai and Strube for details).

With the inaccurate parser, noun phrases are often parsed incompletely, missing mod-
ifiers or relative clauses. We therefore consider a participant description as equivalent
with a gold standard phrase if they have the same head. This relaxed scoring metric
evaluates the system realistically by punishing parsing errors only moderately.

Results

Scores

Table 5.2 shows the results for our system and three baselines. full marks the complete
system, sem is the baseline without structural information, align uses exclusively struc-
tural information and base is the naïve string matching baseline. The starred scenarios
were used for parameter optimization and excluded from the final average score. (The
average* row includes those scenarios.) In terms of the average F-Score, we outper-
form the baselines significantly (p < 0.05, paired two-sample t-test on the f-scores for
the different scenarios) in all three cases. The system difference to the naïve baseline
even reaches a significance level of p < 0.001.

While the naïve baseline always gets the best precision results, the align-baseline per-
forms best for recall. Because the alignment baseline also incorporates alignment errors,
many mistakenly aligned participant types end up as paraphrases, and the transitivity
constraint then enforces putting nearly all participant descriptions into the same clus-
ter. This often leads to a simple partition of all PTs into two sets, one containing the
protagonist, and one containing everything else.

Our system finds the best tradeoff between precision and recall, gaining 15% recall on
average compared to the naïve baseline and losing only about 6% precision. sem and the

98 Mining Script Participants

S
c

e
n

a
r

i
o

P
r

e
c

i
s
i
o

n
R

e
c

a
l
l

F-S
c

o
r

e

full
sem

align
base

full
sem

align
base

full
sem

align
base

d
o

i
n

g
l
a

u
n

d
r

y
0.85

0.76
0.53

0.93
0.75

0.83
0.89

0.57
0.80

0.79
0.67

0.70
v

e
n

d
i
n

g
m

a
c

h
i
n

e
0.80

0.74
0.57

0.84
0.78

0.83
0.97

0.62
0.79

0.78
0.72

0.72

f
a

s
t

f
o

o
d

0.82
0.65

0.55
0.87

0.82
0.85

0.84
0.70

0.82
0.74

0.66
0.78

r
e
t
u

r
n

i
n

g
f
o

o
d

0.80
0.78

0.53
0.88

0.44
0.52

0.63
0.34

0.57
0.62

0.57
0.49

m
a

k
i
n

g
c

o
f
f
e
e

0.85
0.77

0.53
0.92

0.80
0.81

0.98
0.68

0.82
0.79

0.68
0.78

f
e
e
d

i
n

g
a

d
o

g
0.81

0.67
0.53

0.90
0.88

0.92
0.94

0.57
0.84

0.78
0.68

0.70
h

e
a

t
i
n

g
i
n

m
i
c

r
o

w
a

v
e

0.89
0.78

0.55
0.93

0.84
0.84

0.89
0.70

0.86
0.81

0.68
0.80

p
a

y
i
n

g
w

.
c

r
e
d

i
t

c
a

r
d

0.90
0.82

0.60
0.94

0.54
0.54

0.64
0.40

0.67
0.65

0.62
0.56

m
a

i
l
i
n

g
a

l
e
t
t
e
r

0.92
0.78

0.54
0.96

0.88
0.88

0.93
0.74

0.90
0.83

0.68
0.84

t
a

k
i
n

g
a

s
h

o
w

e
r

0.87
0.79

0.57
0.94

0.83
0.83

0.86
0.66

0.85
0.81

0.69
0.77

a
v

e
r

a
g

e*
0.85

0.75
0.55

0.91
0.75

0.79
0.86

0.60
•

0.79
•

0.76
0.66

0.71
a

v
e
r

a
g

e
0.86

0.76
0.55

0.92
0.75

0.77
0.84

0.60
•

0.79
0.75

0.66
0.71

Table
5.2:

R
esults

for
the

fullsystem
,the

system
w

ithout
structuralconstraints

(sem
),the

system
w

ith
structuralinform

ation
only

(align)
and

the
naive

baseline.Participant
descriptions

w
ith

the
right

head
are

considered
correct.Starred

scenarios
have

been
used

for
param

eter
optim

ization,average*
includes

those
scenarios,the

unm
arked

average
doesn’t.A

black
dot

(•)
m

eans
that

the
difference

to
the

next
low

er
baseline

is
significant

w
ith

p
<

0.05.The
difference

betw
een

fulland
base

is
significant

at
p
<

0.001.

5.3 Evaluation and Results 99

precision

np-matching full sem align base

Gold Tokens 0.92 0.81 0.54 0.97
Matching Head 0.86 0.76 0.55 0.92
Strict Matching 0.82 0.74 0.52 0.91

recall

np-matching full sem align base

Gold Tokens 0.86 0.88 0.96 0.71
Matching Head 0.75 0.77 0.84 0.60
Strict Matching 0.70 0.71 0.77 0.59

f-score

np-matching full sem align base

Gold Tokens 0.89 0.84 0.70 0.81
Matching Head 0.79 0.75 0.66 0.71
Strict Matching 0.74 0.71 0.62 0.71

Table 5.3: Averaged evaluation results for
three scoring methods:
Gold Tokens uses gold standard participant
descriptions rather than automatic extrac-
tion.
Matching Head uses parsing for participant
description extraction, and phrases with
the right head are considered correct.
Strict Matching requires the whole phrase
to match.

naïve baseline differ only moderately. This shows that semantic similarity information
alone is not sufficient for distinguishing the different participant descriptions, and that
the exploitation of structural information is crucial. However, the structural information
by itself is insufficient to distinguish the descriptions: high precision loss makes align
even worse than the naïve baseline.

Table 5.3 compares the same-head scoring metric described in the previous section
(Matching Head) against two other approaches of dealing with wrongly recognized NP
tokens: Strict Matching only accepts two NP tokens as equivalent if they are identical;
Gold Tokens means that our PDS identification algorithm runs directly on the gold stan-
dard tokens. This shows that parsing accuracy has a considerable effect on the overall
performance of the system. However, our system robustly outperforms the baselines
regardless of the matching approach.

Example Output

Figure 5.3 and 5.4 illustrate our system’s behavior showing its output for the microwave

scenario. Each rectangle in Figure 5.3 represents one PDS, which we replace by an icon
in the graph in Figure 5.4. (We omit some PDSs in the presentation for readability
and clarity.) The participant types in the sets are ordered by frequency, starting with
the most frequent. The labels of the sets are manually generated script role labels and
were introduced for readability. Note that the structural alignment information allows

100 Mining Script Participants

button, start
button,

stop, buttons

buttonmicrowave, microwave oven,
oven, open microwave *,
microwave to heat food*,

stop and open microwave *

microwave

protagonist

food, plastic, your food,
hot food, food on in

microwave*, heating food*

food

time, cooking time, time of
how long food needs to be

heated, time to cook, designate
time, item, power level and

time, desired length, input time,
specific time, desired time,

appropriate time

time setting

plate, container, microwave
safe container, dish,

microwavable dish, microwave
dish, bowl, microwave save dish,

microwave suitable bowl,
microwavable safe ware,

safe container*, microwave safe
plate, mcorwave saft plate (sic!)

plate

power level, cooking time and
power level, time power level,

heating level, time and power level

power setting

door, microwave door,
door of microwave

door

setting, appropriate setting
power setting 3

power, time and power
power setting 2

cover, protec-
tive cover

cover

temperature,
desired tempera-

ture, desired length
and temperature

temperature

start

Figure 5.3: Example output of participant description sets for the microwave scenario.
Asterisks (∗) indicate parsing errors, italics mark genuine clustering mistakes.

put
place } in

(7)
(5)}{

select
set

(3)
(2)
(2)
(1)

{

shut
close{ (3)

(6) push
press { (4)

(8)

start

take out
remove from{ }

wait
for
for

until

to cook / heat up
to stop / finish
is over{

(7)
(1)
(1)
(1)
(1)

{select
set

put
place }

in
on{ }{ (4)

(12) open{
(3)
(5)
(1)

(4)

(1)

punch in
set

enter }
start

turn on

{
}

when is up open

put
place }

in
on{ }{ (10)

(4)

}

{

{
{

{
{

{

{ {

1 2

3

4

5

6

8

9

10

7

Figure 5.4: Simplified TSG of the microwave scenario; participant descriptions of the
same PDS are collapsed.

5.4 Discussion 101

us to correctly classify plate and container, and stop and button, as equivalent, although
they are not particularly similar in WordNet. However, especially for rare terms, our
algorithm seems too strict: it does not combine the three power setting PDSs. Also, we
cannot tell start from stop buttons, which is mainly due to the fact that most people did
not distinguish them at all but just called them button(s) (some microwaves just have one
button). The separate grouping of start is also related to parsing errors: start was mostly
parsed as a verb, even when used as object of push.

Figure 5.4 shows an abstract version of the temporal script graph for this scenario, with
all NP tokens replaced by icons for their PDSs. Ten of its nodes are shown with their
temporal ordering, marked by the edges and additionally with encircled numbers. Al-
ternative PDSs are marked with their absolute frequencies.

As the subject is always left out in the example data, we assume an implicit protagonist
in all cases. The figure demonstrates that we can distinguish the participants even
though the event alignment has errors.

5.4 Discussion

In our approach, we combine structural and semantic features to compute script par-
ticipants. As far as the results are concerned, we have a very tough baseline to beat:
clustering identical noun phrases has an f-score of over 0.7, and even over 0.8 if we
assume perfect parses. That lexemes are often tied to one specific sense is also a fact
known from Word Sense Disambiguation, where the most-frequent-sense baseline is ex-
tremely hard to beat (see Navigli (2009) for a survey on the task). We successfully beat
a comparably “naïve” yet strong baseline by combining the structural and the semantic
components, whereas the semantic component by itself does not score much better than
the baseline, and the structural component scores lower than the baseline.

Of course the current results could be further improved. A perfect parser would already
increase the final score by at least 10% (cf Table 5.3). A more sophisticated measure
for semantic similarity, possibly with better awareness of local metonymies, would also
help. To apply the approach to a larger dataset, we would also have to do coreference
resolution, which is not trivial for event sequence descriptions. (Chapter 6 describes our
work towards coreference resolution for our corpus.)

As the evaluation suggests, the task of extracting participants is very similar to coref-
erence resolution, in particular across documents. We therefore believe that in future
work, cross-document anaphora resolution could benefit from combining similar types
of constraints, e.g. semantic similarity and document structure. On the other hand,
we could learn from recent approaches to cross-document coreference resolution that

102 Mining Script Participants

resolve event and entity coreference synchronously (Lee et al., 2012). If we port such a
method to event and participant paraphrasing, both tasks would likely profit from the
bidirectional information flow.

5.5 Related Work

There is very few little on participant computation for scripts: Chambers and Jurafsky
(Chambers & Jurafsky, 2009) extend their narrative chains to narrative schemas which
include events and their participants, which we summarized in Chapter 2.

Integer Linear Programming as a means to globally combine information from diverse
sources has been applied to a variety of problems in NLP (Althaus et al., 2004; Barzilay
& Lapata, 2006; Berant et al., 2010). In particular, there are approaches to coreference
resolution that use ILP as their core mechanism (Denis & Baldridge, 2007; Finkel &
Manning, 2008).

Chapter 6

Domain Generalization and
Preprocessing

In the two previous chapters, we have presented new paraphrasing approaches for script
events and participants. We applied our systems to a rather peculiar corpus of event
sequence descriptions (cf. Chapter 3): The short texts are written in bullet point style,
and individual sentences are rather short, focused descriptions of mostly exactly one
event. Also, the corpus contains very few discourse-related phenomena like anaphoric
references, and very many elliptical phrases.

This special event description language emerged from our experimental setup: we en-
couraged the telegraphic writing style in the instructions for the annotators, and we
also set a length restriction for each event description. If we want to scale up our ap-
proach and apply it to other datasets from different data collections, we will most likely
encounter a different language style that requires different kinds of pre-processing be-
fore we can run our algorithms. One example corpus is the kitchen-related ESD set we
collected (cf. Section 3.6). In this dataset, no length restrictions were imposed on the
event descriptions. Further the kitchen domain, with scenarios like preparing a cu-
cumber, led many annotators to write their texts in a recipe-like narrative style, which
resulted in complex sentences with many pronouns. For these more complex texts, we
consequently need more preprocessing than for the bullet-point style data.

We have already shown how to implement scenario-specific spelling correction (cf. Sec-
tion 3.3). In this chapter, we will show how we exploit domain-specific redundancy for
pronoun resolution, and how we split complex sentences into single event clauses.

This chapter presents work published by Bloem et al. (2012).

104 Domain Generalization and Preprocessing

6.1 Coreference Resolution

Coreference resolution is a standard preprocessing step for texts. In particular, finding
the antecedent for a pronoun is essential for text understanding, but also for computing
semantic similarity. Consider for example the following event sequence description that
describes how to preparing a cucumber:

(1) 1. get a large sharp knife
2. get a cutting board
3. put the cucumber on the board
4. hold the cucumber in your weak hand
5. chop it into slices with your strong hand

To resolve the pronoun it in the last event description, it is important to understand that
the weak hand is not chopped up, but rather the cucumber. For paraphrase computation
it is also essential to know that this sentence (#5) refers to the cucumber as a participant,
e.g. in order to match it with a description like slice the cucumber.

We tried one of the best performing systems for coreference resolution to resolve the
pronouns in our dataset (Raghunathan et al., 2010; Lee et al., 2011). Like most open
source NLP systems, this tool is mostly trained on newspaper texts, and is thus not
designed for our domain. As a consequence, it resolves only 18% of the pronouns in
our dataset correctly.

While the grammatical and domain-specific peculiarities of our dataset obviously add
complications for standard pronoun resolution systems, we can make use of the redun-
dancy in the narrow domain to make up for these complications.

Due to the imperative writing style, first person and second person pronouns always
refer to the subject performing a task. This leaves as unresolved only third person
pronouns, of which possessives are uninteresting for the script learning task – with just
one person active in the dataset, there should be no ambiguity attributable to personal
possessive pronouns (see also our notes on the implicit protagonist in the previous
chapter). There is also a relatively restricted space of possible antecedents due to the
short texts.

We thus propose to use a simple model of selectional preferences for coreference res-
olution. To guide the antecedent selection, we check the head verb of each pronoun
(e.g. chop for chop it), and compute its selectional preferences within the whole kitchen
ESD corpus. For the verb chop, we would find mostly vegetables (like cucumber, onion,
etc.) as complements, apart from a few other direct objects (fingers in fact occurs once
as a complement of chop, in the event description “tuck your fingers in so they don’t get

6.1 Coreference Resolution 105

Model em vector our system

Accuracy 0.18 0.54 0.63

Table 6.1: Evaluation of different selectional preference models for pronoun resolution,
on two scenarios (103 pronouns total).

chopped!”). From a list of potential antecedents for a certain pronoun, our system picks
the one that has the strongest association with the head verb. In the example, this model
would chose cucumber over both hand and board as antecedent for it, because cucumber is
more often encountered as the object of chop than either of the other two others.

Note that this approach is unsupervised in that it includes only our raw dataset in its
selectional preference model, rather than any external corpus or additional annotations.
While the model is computationally rather simple, it takes advantage of our parallel
data.

In the concrete implementation, we first preprocess the whole dataset with an adapted
POS tagger and parser (as described in Section 3.3). As candidate antecedents, we take
the n closest preceding noun phrases before the pronoun within the same sequence (in
our case, n = 3), plus the main theme from the scenario title (for the scenario prepar-
ing a cucumber, this theme would be cucumber). The selectional preference model for
guiding antecedent selection is based on verb associations from in the whole corpus.
Association values are computed with the marginal odds ratio measure on a dictionary
of all head-subject and head-object relations occurring in our data.

We test our model’s performance by comparing it to two baselines: The first is a generic
state-of-the-art pronoun resolver based on expectation maximization (Charniak & El-
sner, 2009, em), which we applied out of the box.

As a second baseline, we use a state-of-the-art vector space model (Thater et al., 2011,
vector) to compute selectional preferences instead of tuning the preferences on our
dataset. For each word or phrase, this model computes a vector representing its mean-
ing, based on a large general corpus. For each candidate antecedent of phrases con-
taining a pronoun like chop it, we compute the model’s vector for the original phrase
in which the pronoun is instantiated with the antecedent (chop cucumber, chop hand, ...).
The candidate vector that is closest to the vector of the original verb, computed as the
scalar product, is taken as the preferred antecedent.

We evaluate our system and both of the baselines in terms of accuracy compared to hu-
man annotation, manually annotating all anaphoric pronouns in ESDs of two scenarios.
The EM system crucially relies on grammatical features to identify anaphoric pronouns,
and therefore it often fails to even identify pronominal anaphora in our idiosyncratic

106 Domain Generalization and Preprocessing

parse trees (recall 0.262). We do not evaluate recall on any of the other systems, because
achieving full recall on third person pronouns is actually trivial. The accuracy results
show that our approach clearly outperforms both baselines. With its simple heuristics,
it is fully adapted to our domain and is robust towards the idiosyncratic language style.
Compared to the vector space model approach we observe a 16% accuracy gain, which
shows the advantage of our unsupervised domain-adaptation.

6.2 Event Splitting

When we collected the kitchen corpus, we ran a slightly different experiment than in
our very first Mechanical Turk experiment (cf. Chapter 3). First we created a tutorial-
like context, telling people that they should imagine giving instructions to a boy who
has never worked in a kitchen. The domain itself also led people to write in recipe-like
style. Further, we did not impose any length constraints on the event descriptions, so
the annotators could enter arbitrarily long texts for each individual event. Consequently,
many people did not split their texts into single event descriptions, but rather into
temporally ordered steps for following a recipe, and they sometimes filled single event
slots with two events that need to happen right after another.

Take the following excerpt from an ESD of the preparing pasta scenario:

(2) 1. fill a pot halfway with water. add a dash of salt and a splash of olive oil
2. turn the stove onto high and boil the water
3. ...

As cooking instructions, the text works perfectly, and the division of steps intuitively
makes sense: actions that have to happen right after one another are combined in one
step. However, in an event sequence description, we actually want sequences containing
descriptions of single events. As a further preprocessing step, we thus develop a shallow
heuristic to split such complex event descriptions. More concretely, we split an event
description either if it contains a sentence boundary, or if it is made up of conjugated
verb phrases.

In example (2), the first sentence simply needs to be split at the sentence border (the
fullstop). In cases like (2.2), two distinct event descriptions are coordinated in the same
sentence: here we need to dismiss the conjunction and treat the two conjugated clauses
as distinct events. Technically, we parse the sentence and separate complete verbal
phrases (VP nodes) that are conjugated with any conjunction (in most cases and).

Our heuristic captures cases that are grammatically clearly recognizable. There are also

6.2 Event Splitting 107

more complex examples that would require deeper logical reasoning, like the following
event descriptions (from different scenarios):

(3) a. pay with cash or credit card

b. put away trays and trash

c. repeat step 4 to 6

None of the above examples refers to exactly one event, but it is not clear how they can
be processed automatically. Disjunctions can’t be represented within a single sequence,
events that happen at the same time can be seen as one or two events, and repetition
mentions need certainly deeper knowledge or more data to be resolved. We ignored
those cases for the time being, given that they are rare and thus have only little influence
overall.

108 Domain Generalization and Preprocessing

Chapter 7

Connecting Scripts to the World

As we have explained before (cf. Section 2.2), scripts are a fundamental part of common
sense knowledge which we apply every day. This fact also affects language, because it
allows us to rely on script-based implications for efficient communication: I made cucum-
ber salad implies by default that the acting person also got cucumbers from somewhere,
probably paid for them, washed them, cut them, put them into a bowl, and so on. For
the very same reason, it is not necessary to make any of those events more explicit in
the normal case; moreover, it would actually violate Gricean Maxims of communication
to spell out unnecessary details.

While this implicitness problem makes it hard to apply scripts to standard texts, we
can exploit the expectation-driving script mechanism when applying scripts to a modal-
ity where implicitness and abbreviations do not exist: we ground event descriptions in
video data. In recordings, events that are usually abbreviated in text do not just disap-
pear: even though it is not necessary to mention that one has to cut cucumbers in order
to make cucumber salad, it is still necessary to do it.

Connecting videos and textual event descriptions comes with benefits for both com-
puter vision algorithms and linguistic computation. Viewed from the computer vision
perspective, event structures can serve as prior knowledge and help to predict events in a
scenario: if an algorithm recognizes a cucumber and a grater, it could use script informa-
tion to infer that most likely the cucumber will be grated, possibly to prepare cucumber
salad. Additionally, using text-based knowledge as training data is particularly appeal-
ing for computer vision problems because textual training data can be acquired much
faster and much more cheaply than videos or video annotations. While this dissertation
focusses on language-related aspects, we sketch some first studies on event sequence
descriptions as prior knowledge for visual computing in Section 9.4.

From a linguistic perspective, the alignment of textual script representations with visual

110 Connecting Scripts to the World

data offers new possibilities to assess event semantics. So far, we have used textual se-
mantic similarity combined with structural event knowledge to compute meaning and
similarity of event descriptions. We have also found that descriptions for the same event
show high lexical variance due to underspecification, metonymies or simple wording
variations. It is thus intriguing to find out whether the visual features of event descrip-
tions behave similarly, or whether instances of the same event always look very similar,
while descriptions for the same event can vary a lot (more).

This chapter describes how we ground action descriptions in video data and explore
new approaches to automated meaning computation with multimodal action similarity.
For this purpose we introduce the TACoS corpus ; TACoS contains videos of common
sense tasks along with temporally synchronized textual descriptions of the events in the
video. This data source enables the computation of multimodal similarity models that
use both visual and textual features. We also present some first experiments in which
we show that the multimodal approach has a much higher correlation with human
judgements than either of the two separate modalities

After a general introduction to semantic similarity (Section 7.1), we describe the creation
of the TACoS corpus, our new multimodal resource (Section 7.2). For our experiments
on action similarity, we create the ASim dataset of event description pairs along with
human annotations of their similarity (Section 7.3). This dataset then serves as a basis
for experiments in which we try to reproduce the similarity rankings of the ASim gold
standard with visual as well as textual similarity measures, both alone and in combina-
tion. Section 7.4 describes the similarity measures, and we report their performance on
the ASim corpus in Section 7.5.

This chapter contains work published in Regneri et al. (2013) and Rohrbach et al. (2012b).

7.1 Semantic Similarity and Grounding

The estimation of semantic similarity between words and phrases is a basic task in com-
putational semantics, not only for paraphrasing. Vector-space models of meaning are
one standard approach. Following the distributional hypothesis, frequencies of context
words are recorded in vectors, and semantic similarity is computed as a proximity mea-
sure in the underlying vector space. Such distributional models are attractive because
they are conceptually simple, easy to implement and relevant for various NLP tasks
(Turney & Pantel, 2010). At the same time, they provide a substantially incomplete
picture of word meaning, since they ignore the relation between language and extra-
linguistic information, which is constitutive for linguistic meaning. In the last few years,
a growing amount of work has been devoted to the task of grounding meaning in visual

7.2 The TACoS Corpus 111

information, in particular by extending the distributional approach to jointly cover texts
and images (Feng & Lapata, 2010; Bruni et al., 2011). The results clearly indicate that vi-
sual information improves the quality of distributional models. Bruni et al. (2011) show
that visual information drawn from images is particularly relevant for concrete common
nouns and adjectives.

A natural next step is to integrate visual information from videos into a semantic model
of event and action verbs. Psychological studies have shown the connection between
action semantics and videos (Glenberg, 2002; Howell et al., 2005), but to our knowledge,
we are the first to provide a suitable data source and to implement such a model.

We offer three new contributions for research on grounded semantic similarity:

• We present the TACoS corpus, a multimodal corpus containing textual descriptions
aligned with high-quality videos. Starting from the video corpus of Rohrbach et al.
(2012b), which contains high-resolution video recordings of basic cooking tasks,
we collected multiple textual descriptions of each video via Mechanical Turk. We
also provide an accurate sentence-level alignment of the descriptions with their
respective videos. We expect the corpus to be a valuable resource for computa-
tional semantics, and moreover helpful for a variety of purposes, including video
understanding and generation of text from videos.

• We provide a gold standard dataset for the evaluation of similarity models for
action verbs and phrases, called ASim. The dataset has been designed as analogous
to the Usage Similarity dataset of Erk et al. (2009) and contains pairs of natural-
language action descriptions plus their associated video segments. Each of the
pairs is annotated with a similarity score based on several manual annotations.

• We report an experiment on similarity modeling of action descriptions based
on the video corpus and the gold standard annotation, which demonstrates the
impact of scene information from videos. Visual similarity models outperform
text-based models; the performance of combined models approaches the upper
bound indicated by inter-annotator agreement.

7.2 The TACoS Corpus

We build a new corpus on top of the “MPII Cooking Composite Activities” video cor-
pus (Rohrbach et al., 2012b, MPII Composites), which contains videos of different ac-
tivities in the cooking domain, e.g., preparing carrots or separating eggs. We extend the
existing corpus with multiple textual descriptions collected by crowd-sourcing via Ama-
zon Mechanical Turk. To facilitate the alignment of sentences describing activities with

112 Connecting Scripts to the World

 896 -1137 wash [hand,carrot]
1145 -1212 shake [hand,carrot]
1330 -1388 close [hand,drawer]
1431 -1647 take out [hand,knife,drawer]
1647 -1669 move [hand,cutting board,counter]
1673 -1705 move [hand,carrot,bowl,cutting board]
1736 -1818 cut [knife,carrot,cutting board]
1919 -3395 slice [knife,carrot,cutting board]

> 890: The man takes out a cutting board.
> 1300: He washes a carrot.
> 1500: He takes out a knife.
> 4000: He slices the carrot.

Videos of basic kitchen tasks

Low level annotations with timestamps, actions and objects
Natural language descriptions

with ending times of the actions

manual low-level annotation Mechanical Turk data collection

timestamp-based alignment

Figure 7.1: TACoS corpus Overview

their proper video segments, we also obtained approximate timestamps, as described in
Sec. 7.2.

MPII Composites comes with timed gold standard annotation of low-level activities and
participating objects (e.g. open [hand,drawer] or take out [hand,knife,drawer]).
By adding textual descriptions (e.g., The person takes a knife from the drawer) and aligning
them on the sentence level with videos and low-level annotations, we provide a rich
multimodal resource (cf. Figure 7.1), the “Saarbrücken Corpus of Textually Annotated
Cooking Scenes” (tacos). In particular, the TACoS corpus provides:

• A collection of coherent textual descriptions for video recordings of activities of medium
complexity, as a basis for empirical discourse-related research, e.g., the selection
and granularity of action descriptions in context

• A high-quality alignment of sentences with video segments, supporting the grounding
of action descriptions in visual information

• Collections of paraphrases describing the same scene, which result as a by-product
from the text-video alignment and can be useful for text generation from videos
(among other things)

• The alignment of activity descriptions with sequences of low-level activities, which
may be used to study the decomposition of action verbs into basic predicates

We expect that our corpus will encourage and enable future work on various topics in
natural language and video processing. In this paper, we will make use of the second
aspect only, demonstrating the usefulness of the corpus for the grounding task.

After a more detailed description of the basic video corpus and its annotation, we de-
scribe the collection of textual descriptions with MTurk, and finally show the assembly
and some benchmarks of the final corpus.

7.2 The TACoS Corpus 113

The video corpus

MPII Composites contains 212 high resolution video recordings of 1-23 minutes length
(4.5 min. on average). 41 basic cooking tasks (or scenarios) such as cutting a cucumber

were recorded, each between 4 and 8 times, with different subjects for each recording.
The cooking scenarios in the corpus are the same ones that we used for our kitchen ESD
corpus (cf. Section 3.6), based on the tutorials from “Jamie’s Home Cooking Skills”1.
The corpus is recorded in a kitchen environment with a total of 22 subjects. Each video
shows one scenario executed by an individual subject; each subject performed on aver-
age about 5 different tasks.

The dataset is labelled with expert annotations of low-level activity tags: each segment
that shows a semantically meaningful cooking related movement pattern is tagged as
one low-level activity. The action in the segment must be more complex than single
body part movements (such as move arm up), and must have the goal of changing the
state or location of an object. (In some cases, this goal is not actually achieved, e.g. if a
person looks for a knife but cannot find it.)

Each low-level activity tag consists of an activity label (peel), a set of associated ob-
jects (carrot, drawer,...), and the associated timeframe (starting and ending points of
the activity). There are 60 different activity labels, denoting the main actions in the
video segment (e.g. peel, stir, trash). Associated objects are the participants of the
respective activity, namely tools (e.g. knife), patients (carrot) and locations (cutting
board). We provide the coarse-grained role information for patient, location and tool in
the corpus data, but we did not use this information in our experiments. The dataset
contains a total of 8818 annotated segments, on average 42 per video.

Collecting textual video descriptions

We collected textual descriptions for a subset of the videos in MPII Composites, restricting
collection to scenarios that involve manipulation of specific cooking ingredients (exclud-
ing e.g. using a box grater or use pestle and mortar). We also excluded scenarios
with fewer than four video recordings in the corpus, leaving 26 tasks to be described.
We randomly selected five videos from each scenario, except the three scenarios for
which only four videos each are available. This resulted in a total of 127 videos.

For each video, we collected 20 different textual descriptions, resulting in 2540 anno-
tation assignments overall. We published these assignments (HITs) on MTurk, using
an adapted version2 of the annotation tool Vatic (Vondrick et al., 2012). In the MTurk

1http://www.jamieshomecookingskills.com/
2github.com/marcovzla/vatic/tree/bolt

114 Connecting Scripts to the World

setting, we required a HIT approval rate of 75% for the annotators. We opened the as-
signments to workers in the US only, in order to increase the general language quality
of the English annotations. Each task paid 1.20 USD. For quality assurance, we man-
ually inspected randomly selected sample annotations. The total cost of collecting the
annotations amounted to 3,353 USD, and we obtained the data within 3.5 weeks.

During the annotation process, the subject saw one video specified with the task title
(e.g. How to prepare an onion), and then was asked to enter at least five and at
most 15 complete English sentences to describe the events in the video. The annotation
instructions contained images of example annotations from a kitchen task that was not
part of our actual dataset.

Annotators were encouraged to watch each video several times, skipping backward and
forward as they wished. They were also asked to take notes while watching, and to
sketch the annotation before entering it into the interface. Once familiarized with the
video, subjects did the final annotation by watching the entire video from beginning to
end, without the possibility of further non-sequential viewing.

For the actual annotation run, the subjects had to stop the video right after an action was
finished, and then enter a description for the event that was just completed. We recorded
pause onset for each sentence annotation as an approximate ending timestamp of the
described action. The annotators resumed the video manually.

We did not define beforehand what an event actually is, but rather showed some exam-
ples and instructed the annotators to take everything as an event that they can describe
easily within one meaningful sentence. The granularity was further guided by the lim-
itation to a maximum of 15 events. Previous work with similar settings has shown that
such loosely guided video segmentation tasks yield high inter-annotator agreements for
event segmentations (Zacks et al., 2009).

Putting the TACoS corpus together

Our corpus is a combination of the MTurk data and MPII Composites, created by fil-
tering out inappropriate material and computing a high-quality alignment of sentences
and video segments. The alignment is done by matching the approximate timestamps
of the MTurk data to the accurate timestamps in MPII Composites.

We discard text instances if people did not time the sentences properly, taking the asso-
ciation of several (or even all) sentences to a single timestamp as an indicator. Whenever
we find a timestamp associated with two or more sentences, we discard the whole in-
stance. Overall, we had to filter out 13% of the text instances, which leaves us with 2206
textual video descriptions.

7.2 The TACoS Corpus 115

l1

l2

l3

l4

s1

l5
s3

s2

el
em

en
ta

ry
 ti

m
ef

ra
m

es

sentences (w
ith noisy tim

efram
es)

s1

s3

s2

l1

l2

l3

l4

l5

el
em

en
ta

ry
 ti

m
ef

ra
m

es

sentences (w
ith refined tim

efram
es)

Figure 7.2: Aligning action descriptions with the video.

For the alignment of sentence annotations and video segments, we assign a precise
timeframe to each sentence in the following way: we take the timeframes given by the
low-level annotation in MPII Composites as a gold standard micro-event segmentation
of the video, because they mark all distinct frames that contain activities of interest.
We call them elementary frames. The sequence of elementary frames is not necessarily
continuous, because idle time is not annotated.

The MTurk sentences have end points that constitute a coarse-grained, noisy video seg-
mentation, assuming that each sentence spans the time between the end of the previous
sentence and its own ending point. We refine these noisy timeframes to gold frames
as shown in Figure 7.2: each elementary frame (l1-l5) is mapped to a sentence (s1-s3)
if its noisy timeframe covers at least half of the elementary frame. We define the final
gold sentence frame then as the timespan between the starting point of the first and the
ending point of the last elementary frame.

The alignment of descriptions with low-level activities results in a table as given in Fig-
ure 7.3. The first five columns display information from MPII Composites (an example
picture from the time frame, start and end frame number, low-level activity tags), and
the last three columns (NL Description X) contain some (Natural Language) descrip-
tions of the videos. Each row corresponds to one segment that has a low-level activity
tag, with different columns for low-level actions and for associated participants. Each
sentence of a textual description is meant to be aligned with the last of its associated
low-level actions.

As a side effect of the temporal alignment, we also obtain multiple paraphrases for each

116 Connecting Scripts to the World

Sample
frame

Start End Action Participants NL Sequence 1 NL Sequence 2 NL Sequence 3

743 911 wash hand, carrot He washed car-
rot

The person
rinses the
carrot.

He rinses the
carrot from the
faucet.

982 1090 cut knife, car-
rot, cutting
board

He cut off ends
of carrots

The person cuts
off the ends of
the carrot.

He cuts off the
two edges.

1164 1257 open hand,
drawer

1679 1718 close hand,
drawer

He searches
for something
in the drawer,
failed attempt,
he throws away
the edges in
trash.

1746 1799 trash hand, carrot The person
searches for
the trash can,
then throws
the ends of the
carrot away.

1854 2011 wash hand, carrot He rinses the
carrot again.

2011 2045 shake hand, carrot He washed car-
rot

The person
rinses the
carrot again.

He starts chop-
ping the carrot
in small pieces.

2083 2924 slice knife, car-
rot, cutting
board

2924 2959 scratch
off

hand, car-
rot, knife,
cutting
board

3000 3696 slice knife, car-
rot, cutting
board

He diced car-
rots

He finished
chopping the
carrots in small
pieces.

Figure 7.3: Excerpt from the corpus for a video on Preparing a Carrot. Example
frames and low-level annotation (Action and Participants) are shown, along with three of
the MTurk sequences (NL Sequence 1-3).

7.2 The TACoS Corpus 117

Verbs Activities Nouns Participants

1 cut move person hand
2 take take out knife cutting board
3 get cut board knife
4 put wash plate counter
5 wash take apart drawer drawer
6 place add half plate
7 rinse shake bowl bowl
8 remove screw egg cauliflower
9 pan* put in orange pan

10 peel peel man spice shaker

Table 7.1: The 10 most frequent verbs, low-level actions, nouns and low-level partici-
pants in the tacos corpus. *pan is often mis-tagged as a verb in the textual descriptions.

sentence, by considering all sentences with the same associated time frame as equivalent
realizations of the same action.

The corpus contains 17,334 action descriptions (tokens), realizing 11,796 different sen-
tences (types). It consists of 146,771 words (tokens), 75,210 of which are content word
instances (i.e. nouns, verbs and adjectives). The verb vocabulary comprises 28,292 verb
tokens, realizing 435 lemmas. Since verbs occurring in the corpus typically describe
actions, we can note that the linguistic variance for the 58 different low-level activities is
quite large.

Table 7.1 gives an impression of the action realizations in the corpus, listing the most
frequent verbs and nouns from the textual data, along with the most frequent low-level
activities and low-level participants. In particular, the most frequent activity (move) and
the most frequent participant (hand) have no counterpart in the list of textual realiza-
tions, and the most frequent noun (person) does not have a corresponding low-level tag.

The corpus shows how humans vary the granularity of their descriptions, measured
in time or number of low-level activities, and it shows how they vary the linguistic
realization of the same action. For example, Figure 7.3 contains dice and chop into small
pieces as alternative realizations of the low-level activity sequence slice - scratch off
- slice. On average, each individual sentence covers 2.7 low-level activities, which
indicates a clear difference in granularity between the natural language descriptions
and the low-level annotation. 38% of the descriptions correspond to exactly one low-
level activity, about a quarter (23%) cover two of them; 16% have 5 or more low-level
elements, 2% more than 10.

The descriptions are of varying length (9 words on average), reaching from two-word

118 Connecting Scripts to the World

phrases to detailed descriptions of 65 words. Most sentences are short, consisting of a
reference to the person in the video, a participant and an action verb (The person rinses
the carrot, He cuts off the two edges). People often specify an instrument (from the faucet),
or the resulting state of the action (chop the carrots in small pieces). Occasionally, we find
more complex constructions (support verbs, coordinations).

As Figure 7.3 indicates, the timestamp-based alignment is pretty accurate; occasional
errors occur like He starts chopping the carrot... in NL Sequence 3. The data contains some
typos and ungrammatical sentences (He washed carrot), but for our own experiments, the
small number of such errors did not lead to any processing problems.

7.3 The Action Similarity Dataset

In this section, we present a manually annotated standard dataset with action similarity
scores, as a basis for the evaluation of visually grounded semantic similarity models.
We call it the “Action Similarity Dataset” (ASim) in analogy to the Usage Similarity
dataset (USim) of Erk et al. (2009) and Erk et al. (2012). Similarly to USim, ASim con-
tains a collection of sentence pairs with numerical similarity scores assigned by human
annotators. However, we asked the annotators to focus on the similarity of the activities
described rather than on assessing semantic similarity in general. We use sentences from
the TACoS corpus and record their timestamps. Thus each sentence in the corpus comes
with the video segment which it describes (these were not shown to the annotators).

Selecting action description pairs

Random selection of annotated sentences from the corpus would lead to a vast majority
of pairs which are completely dissimilar, or in any case difficult to grade (e.g., He opens
the drawer – The person cuts off the ends of the carrot). We constrained the selection process
in two ways: First, we consider only sentences describing activities of manipulating an
ingredient. The low-level annotation of the video corpus helps us identify candidate de-
scriptions. We also exclude rare and special activities, ending up with sentences verbal-
izing the actions cut, slice, chop, peel, take apart, and wash, which occur reasonably
frequently, with a wide distribution over different scenarios. Candidate sentence pairs
thus are pairs of sentences which each include one of these activities in their timespans.
This results in a conceptually more focussed repertoire of descriptions, and at the same
time admits full linguistic variation (wash an apple under the faucet – rinse an apple, slice
the cucumber – cut the cucumber into slices).

Second, we require the pairs to share some lexical material, either the head verb or the

7.3 The Action Similarity Dataset 119

manipulated object (or both). With “object”, we refer to the manipulated ingredient (the
main theme from the scenario); we do not require the ingredient term to be the actual
grammatical object in the action descriptions, but rather use “object” in its semantic role
sense as the entity affected by an action.

In more detail, we composed the ASim dataset from three different subsets:

Same object, different activity: This subset contains pairs describing different types of
actions carried out on the same type of object (e.g. The man washes the carrot. – She dices
the carrot.). Its focus is on the central task of modeling the semantic relation between
actions (rather than the objects involved in the activity), since the object nouns in the
descriptions refer to the same ingredient, and thus the respective video segments show
the same type of object, too.

Same object, same activity: Description pairs of this subset are paraphrases in most
cases. Sometimes, the head verbs that realize the same activity can differ, which then
leads to very similar, but not fully equivalent description pairs. For example, the de-
scriptions realizing peel [onion] are almost all equivalent, while the low-level tag cut
[carrot] can label segments described with she chops up the carrot, or she slices the carrot
or the carrot is cut in halves.

Different object, same activity & verb: Description pairs in this subset share head
verb and low-level activity, but have different objects (e.g. The man washes the carrot. – A
girl washes an apple under the faucet.). This dataset enables the exploration of the objects’
meaning contribution to the complete action, established by the variation of equivalent
actions that are done to different objects.

We assembled 900 action description pairs for annotation: 480 pairs share the object;
240 of which have different activities, and the other 240 pairs share the same activity.
We included paraphrases describing the same video segment, but we excluded pairs of
identical sentences. 420 additional pairs share their head verb, but have different objects.

Manual annotation

Three native speakers of English were asked to judge the similarity of the action pairs
with respect to how they are carried out (rather than how they are described on the
surface level). The annotators were explicitly asked to ignore the actor of the action (e.g.
whether it is a man or a woman) and to score the similarities of the underlying actions

120 Connecting Scripts to the World

Part of Gold Standard Sim Var ρ

Same object, different activity 2.20 1.15 0.73
Same object, same activity 4.19 1.10 0.73
all with same object 3.20 2.08 0.84

Different object, same activity & verb 3.34 0.48 0.43

complete dataset 3.27 1.33 0.73

Figure 7.4: Average similarity ratings (Sim), their variance (Var) and annotator agree-
ment (ρ) for ASim.

rather than their verbalizations. For example, their ratings should indicate that open a
can and open the recipe book are very different actions, whereas putting oil into a pan and
emptying the olive oil bottle into the bowl are very similar.

Each subject rated all 900 pairs, with a score from 1 (not similar at all) to 5 (the same
or nearly the same). The pairs were shown to them in completely random order, with a
different order for each subject.

We compute inter-annotator agreement (and the forthcoming evaluation scores) using
Spearman’s rank correlation coefficient (ρ), a non-parametric test which is widely used
for similar evaluation tasks (Bruni et al., 2011; Erk & McCarthy, 2009). Spearman’s ρ

evaluates how the single datapoints are ranked relative to each other, but discounts the
exact numerical distance between the rankings.

Figure 7.4 shows the average resulting similarity ratings in the different annotation sub-
sets, along with the inter-annotator agreement. The annotators had an average inter-
rater agreement of ρ = 0.73, with pairwise results of ρ = 0.77, 0.72, and 0.69, respectively,
which are all highly significant at p < 0.001.

As expected, pairs with the same activity and object are rated very similar (4.19) on
average, while the similarity of different activities on the same object is the lowest (2.2).
For both subsets, inter-annotator agreement is high (ρ = 0.73), and even higher for both
same object subsets together (0.84).

Pairs with identical head verbs and different objects have a small variance, at 0.48. The
inter-annotator agreement on this set is only half as good as for pairs from the same

object set. This indicates that similarity assessment for different variants of the same
activity is a hard task even for humans.

7.4 Models of Action Similarity 121

7.4 Models of Action Similarity

In the following, we demonstrate that visual information contained in videos of the
kind provided by the TACoS corpus (Sec. 7.2) substantially contributes to the semantic
modeling of action-denoting expressions. In Sec. 7.5, we evaluate several methods for
predicting action similarity on the task provided by the ASim dataset. In this section,
we describe the models used in that evaluation. We use two different models based on
visual information, and in addition two text based distributional models. We employ
the latter models to explore the effect of combining linguistic and visual information
and to investigate which mode is most suitable for which kinds of similarity.

Text-based models

We use two different models of textual similarity to predict action similarity: a simple
word-overlap measure (Jaccard coefficient) and a more refined model based on contex-
tualized vector representations of word meaning (Thater et al., 2011).

Jaccard coefficient: The Jaccard coefficient gives the ratio between the number of (dis-
tinct) words common to two input sentences and the total number of (distinct) words in
the two sentences. Such simple surface-oriented measures of textual similarity are often
used as baselines in related tasks such as recognizing textual entailment (Dagan et al.,
2005) and are known to deliver relatively strong results.

Vector model: We use the vector model of Thater et al. (2011), which “contextualizes”
vector representations for individual words based on the particular sentence context in
which the target word occurs. The basic intuition behind this approach is that the words
in the syntactic context of the target word in a given input sentence can be used to refine
or disambiguate its vector. Intuitively, this allows us to discriminate between different
actions that a verb can refer to, based on the different objects of the action.

We first experimented with a version of this vector model which predicts action simi-
larity scores of two input sentences by computing the cosine similarity of the contextu-
alized vectors of the verbs in the two sentences only. We achieved better performance
with a variant of this model which computes vectors for the two sentences by summing
over the contextualized vectors of all constituent content words.

In the experiments reported below, we only use the second variant. We use the same
experimental setup as Thater et al. (2011), as well as the parameter settings that are
reported to work best in that paper.

122 Connecting Scripts to the World

Video-based models

We distinguish two approaches to computing the similarity between two video seg-
ments. The first approach is unsupervised and extracts a video descriptor before com-
puting similarities between these raw features (Wang et al., 2011). The second (super-
vised) approach builds upon the first by additionally learning higher level attribute
classifiers Rohrbach et al. (2012b) on a held out training set. The similarity between two
segments is then computed between the classifier responses.

Visual raw feature vectors: We use the state-of-the-art video descriptor “Dense Tra-
jectories” (Wang et al., 2011) which extracts visual video features, namely histograms
of oriented gradients, flow, and motion boundary histograms, around densely sampled
and tracked points.

This approach is particularly suitable for our dataset as it ignores non-moving parts in
the video: we are interested in activities and manipulation of objects, and this type of
video feature models only information in activity-related locations (“where something
happens”). In previous experiments with videos from MPII Composites, this particular
descriptor performed better for automated action recognition than commonly used hu-
man pose-based approaches (Rohrbach et al., 2012b). Technically, we use a bag-of-words
representation to encode the features in a 16,000 dimensional codebook. We compute
the similarity between two encoded features by computing the intersection of the two
(normalized) histograms.

Both the features and the codebook are provided in the TACoS corpus data.

Visual classifiers: Visual raw features tend to have several dimensions in the feature
space which provide unreliable, noisy values. A supervised approach can help to elim-
inate noise from the final similarity scores: intermediate level attribute classifiers can
learn which feature dimensions are distinctive and thus significantly improve perfor-
mance over raw features. Rohrbach et al. (2012b) show that using such an attribute
classifier representation yields far better results for composite activity recognition. The
relevant attributes come from the same set of low-level tags of activities and objects that
we have in our corpus; the classifier thus learns to model our “interlingua” between
visual data and textual video descriptions.

For the experiments reported below we use the same setup as Rohrbach et al. (2012b) and
use all videos in MPII Composites and MPII Cooking (Rohrbach et al., 2012a), excluding
the 127 videos used during evaluation. This results in a 218-dimensional vector of
classifier outputs for each video segment. To compute the similarity between two vectors
we compute the cosine between them.

7.5 Evaluation 123

Model same object same verb overall

Jaccard 0.28 0.25 0.25
Textual vectors 0.30 0.25 0.27

t
e
x
t

Text combined 0.39 0.35 0.36

Visual raw feature vectors 0.53 -0.08 0.35
Visual classifier 0.60 0.03 0.44

v
i
s
i
o

n

Vision combined 0.61 -0.04 0.44

All unsupervised 0.58 0.32 0.48

m
i
x

All combined 0.67 0.28 0.55

Upper bound 0.84 0.43 0.73

Table 7.2: Evaluation results for textual models, visual models and the multimodal
approach in Spearman’s ρ. All values > 0.11 are significant at p < 0.001.

7.5 Evaluation

We evaluate the different similarity models introduced in Section 7.4 by calculating
their correlation with the gold standard similarity annotations of ASim (cf. Section
7.3). For all correlations, we use Spearman’s ρ as a measure. We consider the two
textual measures (referred to as “Jaccard” and “Textual vectors”) and their combination
(“Text combined”), as well as the two visual models (“Visual raw feature vectors” and
“Visual classifier”) and their combination (“Vision combined”). We create a multimodal
model from textual and visual features together, in two variants: The first includes all
measurements (“All combined”), the second version only the unsupervised components,
omitting the visual classifier (“All unsupervised”). For any combination of similarity
measures, we simply average their normalized scores (using z-scores).

Table 7.2 shows the scores for all of these measures on the complete ASim dataset
(overall), along with the two subparts, where description pairs share either the ob-
ject (same object) or the head verb (same verb). In addition to the model results, the
table also shows the average human inter-annotator agreement as upper bound.

On the complete set, both visual and textual measures have a highly significant correla-
tion with the gold standard, whereas the combination of both leads to the best perfor-
mance by far (0.55). The results on the same object and same verb subsets shed light on
the division of labor between the two information sources. While the textual measures
show a comparable performance over the two subsets, there is a dramatic difference in
the contribution of visual information. On the same object set, the visual models clearly
outperform the textual ones, whereas the visual information has no positive effect on
the same verb set. This is clear evidence that the visual model captures genuine action

124 Connecting Scripts to the World

Model (Same Object) same action different action

Jaccard 0.44 0.14
Textual vectors 0.42 0.05

t
e
x
t

Text combined 0.52 0.14

Visual raw feature vectors 0.21 0.23
Visual classifier 0.21 0.45

v
i
s
i
o

n

Visual combined 0.26 0.38

All unsupervised 0.49 0.24

m
i
x

All combined 0.48 0.41

Upper bound 0.73 0.73

Table 7.3: Results for sentences from the same scenario, with either the same or different
low-level activity.

similarity rather than the similarity of the participating object.

The numbers shown in Table 7.3 support this hypothesis, showing the two groups in the
same object class. For sentences that share the same activity, the textual models seem
to be much more suitable than the visual ones. In general, visual models perform better
on actions with different activity types, and textual information does better on closely
related activities.

Overall, the supervised classifier contributes a good part to the final results. However,
the supervision is not strictly necessary to arrive at a significant correlation; the raw
visual features alone are sufficient for the main performance gain seen from the integra-
tion of visual information.

7.6 Discussion

The TACoS corpus and our grounding approach advance the state of research in sev-
eral respects. With the tacos corpus, we provide the first resource that contains both
high-resolution recordings and precisely synchronized discourses of sentential event
descriptions. In consequence, we can present the first multimodal semantic similarity
approach for action descriptions: we have shown that visual and textual features have
complementary strengths, and that the combination of both information sources delivers
a more accurate semantic model than either of the single modalities taken by itself.

The TACoS corpus builds on an existing collection of high-quality video material, which
is restricted to the cooking domain. As a consequence, the corpus covers only a limited
inventory of activity types and action verbs. As far as scalability is concerned, it takes

7.7 Related Work 125

only moderate effort to collect corpora containing comparable information: one needs
videos of reasonable quality and some sort of alignment with action descriptions. Some
data sources even provide such alignments for free, e.g. via subtitles in movies, or
descriptions of short video clips that depict just a single action.

The models we applied to our corpus are unsupervised (except for the visual classifier),
and thus can be applied without modification to arbitrary domains and action verbs,
given that they are about observable activities. There are certainly more refined ways to
combine the different modes, as the ones reported by Silberer & Lapata (2012). We leave
the optimization of this combination step for future work.

In order to investigate the grounding of given script data, we plan to port the visual
information to other event descriptions by paraphrasing. In Chapter 3, we described
our data set of event sequence descriptions for several kitchen scenarios. The scenarios
in the TACoS corpus are a subset of those in the kitchen ESD corpus, thus we can
try to match the event descriptions from our text collections to the grounded action
descriptions in the new TACoS corpus (e.g. using the paraphrasing algorithm described
in Chapter 4). In that way, we could compute visually grounded script representations.

7.7 Related Work

There are several multimodal approaches to grounding language, in particular in pic-
tures or videos. The Microsoft Video Description Corpus (Chen & Dolan, 2011, MSVD)
is the most prominent resource providing videos along with their textual descriptions.
It consists of multiple crowd-sourced textual descriptions of short video snippets. The
MSVD corpus is much larger than our corpus, but most of the videos are of relatively
low quality and therefore too challenging for state-of-the-art video processing to ex-
tract relevant information. The videos are typically short and summarized with a single
sentence. Our corpus contains coherent textual descriptions of longer video sequences,
where each sentence is associated with a particular timeframe.

Another large multimodal resource combining language and (static) visual information
resulted from the ESP game (von Ahn & Dabbish, 2004). The dataset contains many
images tagged with several one-word labels each.

Gupta et al. (2009) present another useful resource: their model learns the alignment of
predicate-argument structures with videos and uses the result for action recognition in
videos. However, the corpus contains no natural language texts.

The connection between natural language sentences and videos has so far been mostly
explored by the computer vision community, where different methods for improving
action recognition by exploiting linguistic data have been proposed (Gupta & Mooney,

126 Connecting Scripts to the World

2010; Motwani & Mooney, 2012; Cour et al., 2008; Tzoukermann et al., 2011; Rohrbach
et al., 2012b, among others). Our resource is intended to be used for action recognition
as well, but in this paper, we focus on the inverse effect of visual data on language
processing.

Feng & Lapata (2010) were the first to enrich topic models for newspaper articles with
visual information, by incorporating features from article illustrations. They achieve
better results when incorporating the visual information, providing an enriched model
that pairs a single text with a picture.

Bruni et al. (2011) used the ESP game data to create a visually grounded semantic model.
Their results outperform purely text-based models using visual information from pic-
tures for the task of modeling noun similarities. They model single words, and mostly
visual features lead only to moderate improvements, which might be due to the mixed
quality and random choice of the images. Dodge et al. (2012) recently investigated which
words can actually be grounded in images at all, producing an automatic classifier for
visual words.

An interesting in-depth study by Mathe et al. (2008) automatically learnt the semantics
of motion verbs as abstract features from videos. The study captures 4 actions with 8-10
videos for each of the actions, and would need perfect object recognition from a visual
classifier to scale up.

Steyvers (2010) and later Silberer & Lapata (2012) present an alternative approach to in-
corporating visual information directly: they use so-called feature norms, which consist
of human associations for many given words, as a proxy for general perceptual infor-
mation. Because this model is trained and evaluated on those feature norms, it is not
directly comparable to our approach.

The Restaurant Game by Orkin & Roy (2009) grounds written chat dialogues in actions
carried out in a computer game. While this work is outstanding from the social learning
perspective, the actions that ground the dialogues are clicks on a screen rather than real-
world actions. The dataset has successfully been used to model determiner meaning
(Reckman et al., 2011) in the context of the Restaurant Game, but it is unclear how this
approach could scale up to content words and other domains.

Chapter 8

A Text-Based Application:
Paraphrase Extraction

To compute script representations from event sequence descriptions, we mine event
paraphrases in a first step, which enables the generalization over different sequences. In
the resulting script representation, each event is represented by a set of its realizations
from the input data. These realizations are (scenario-specific) paraphrases of each other,
and they may vary widely on the surface level (cf. Chapter 4).

The paraphrase sets come about merely as a by-product of the script mining process,
but they are also an interesting resource by themselves. Generic paraphrase collections
are commonly recognized as useful resources for applications like document summa-
rization (Barzilay et al., 1999), recognizing textual entailment (Dagan et al., 2005), natural
language generation (Zhao et al., 2010; Ganitkevitch et al., 2011), and machine transla-
tion (Marton et al., 2009). As a consequence, many methods have been proposed for
generating large paraphrase resources (Lin & Pantel, 2001; Szpektor et al., 2004; Dolan
et al., 2004).

Our script-centered collection of event paraphrases stems from a very focused set of
common sense scenarios, which do not provide enough coverage for a direct text-based
application. However, we can apply our sequence-based extraction algorithm to stan-
dard texts, and thus yield a much larger and more general paraphrase resource. The core
insight here is that sets of event sequence descriptions are actually monolingual compa-
rable corpora, whereas the texts (= the ESDs) all have very similar discourse structures
(= the event order). We can then apply the alignment-based model to other corpora of
multiple texts that share comparably sequential structures. Similar to the ESD-based
approach, we assume that sentences with similar discourse contexts can be paraphrases,
even if a semantic similarity model does not consider them to be very similar.

128 A Text-Based Application: Paraphrase Extraction

In our experiments, we create a source corpus containing multiple summaries of indi-
vidual TV show episodes (from the show House), which all describe the events of that
episode in the same sequential order (the same order in which they showed on TV). Our
evaluation results suggest that our system can extract accurate paraphrases, and further
that it clearly beats a baseline which does not consider discourse context.

Long sentences are often an impractical unit for paraphrasing, because their information
is too specific, and they contain context-dependent references. We thus post-process
the paraphrases provided by the sequence alignment and extract so-called paraphrase
fragments. With paraphrase fragments, we refer to paraphrases on a sub-sentential level,
typically phrases or clauses. Our results show that the fragment extraction crucially
depends on the precision gained by adding discourse context to the preceding sentence
matching step.

This chapter is structured as follows: first we summarize previous methods for para-
phrasing and explain how our new method differs from those (Section 8.1). Then we
describe the parallel corpus we collected out of TV-show recaps and compare it to the
script data used for our other experiments (Section 8.2). In the technical part, we first
show how we apply our MSA architecture to these texts and evaluate the results (Section
8.3). The final fragment extraction step is outlined (Section 8.4) and evaluated (Section
8.5) in the following two sections. The chapter concludes with a survey of related work
on paraphrasing in general (Section 8.7).

The work described in this chapter was published by Regneri & Wang (2012).

8.1 Paraphrasing from Monolingual Comparable Corpora

In general, comparable and parallel corpora have emerged as advantageous resources
for finding paraphrases. Several methods have been proposed to extract paraphrases
from different types of source corpora. One line of research uses multilingual corpora
and considers multiple (English) translations of one source language. Paraphrase ex-
traction starts then either from given sentence alignments (Barzilay & McKeown, 2001;
Bannard & Callison-Burch, 2005) or with reproducing such alignments by matching sim-
ilar translations (Zhao et al., 2008). In all three approaches, the matched sentences are
then post-processed to find smaller equivalent units (which we call paraphrase frag-
ments).

Other systems extract paraphrases from monolingual comparable corpora, which means
that they have to find matching sentences without any given alignments to a common
pivot. Such sentential paraphrases are usually extracted by grouping sentences accord-
ing to their surface similarity, e.g. measuring n-gram overlap (Barzilay & Lee, 2003;

8.1 Paraphrasing from Monolingual Comparable Corpora 129

Dolan et al., 2004) or BLEU scores (Wang & Callison-Burch, 2011). Discourse structure
has only marginally been considered for this task. For example, Dolan et al. (2004) extract
the first sentences from comparable articles and take them as paraphrases. Deléger &
Zweigenbaum (2009) match similar paragraphs in comparable texts in a pre-processing
step, which means that they create smaller comparable documents for paraphrase ex-
traction.

Paraphrasing and discourse structure

We believe that discourse structure delivers important information for the extraction
of paraphrases, just like the sequential structure does for event sequence descriptions.
In our experiments, we analyze recaps of TV shows: summaries of the same episode
in fact have the same underlying event sequence (the episode), and thus all have the
same sequential linear discourse structure (which mirrors the event order). Consider
the following (made-up) examples:

(4) (1.1) House keeps focusing on his aching leg.
(1.2) The psychiatrist suggests him to get a hobby
(1.3) House joins a cooking class.

(5) (2.1) He tells him that the Ibuprofen is not helping with the pain.
(2.2) Nolan tells House to take up a hobby.
(2.3) Together with Wilson he goes to a cookery course.

Read as a whole, it is clear that the two texts describe the same three events, in the
same order, and thus, e.g. 1.2 and 2.2 are paraphrases. However, they are not very
similar on the surface level, with varying references (Nolan vs. the psychiatrist; various
pronominalizations), different perspectives (cf. 1.1 & 2.1), different levels of granularity
(the reference to Wilson is omitted in 2.3) and lexical variances (suggest to get vs. tells to
take up, goes to a cookery course vs. joins a cooking class).

Integrating discourse structure would help to identify the matching sentences: a sys-
tem that considers the sequence of events in the two texts and compares not only
the sentences in isolation, but rather considers their discourse context, would have a
much better chance of matching the paraphrases. Further, coreference resolution as a
discourse-based preprocessing step would be essential for finding matching paraphrase
fragments, e.g. to match phrases like suggest him and tells House, or the psychiatrist and
Nolan.

130 A Text-Based Application: Paraphrase Extraction

System overview

We propose to match sentences using multiple sequence alignment, which considers
both their semantic similarity and their position in the discourse. Because sentence
pairs are usually too long and too specific to be used in NLP applications, we will then
extract smaller paraphrase fragments from the matched sentence pairs. The complete
system pipeline is sketched in Figure 8.1:

1. Create a corpus: First, we create a comparable corpus of texts with highly compa-
rable discourse structures. Complete discourse structures like in the RST Discourse
Treebank (Carlson et al., 2002) may be very useful for paraphrase computation,
however, they are hard to obtain. Discourse annotation is difficult and work-
intensive, and full-blown automatic discourse parsers are neither robust nor very
precise. To circumvent this problem, we assemble documents that have parallel
sequential discourse structures by default: we compile multiple plot summaries of
TV show episodes. The textual order of those summaries typically mirrors the un-
derlying event order of the episodes, in the same sequence in which they happened
on screen. We take sentence sequences of recaps as parallel discourse structures.

2. Extract sentence-level paraphrases: Our system finds sentence pairs that are either
paraphrases themselves, or at least contain paraphrase fragments. This procedure
uses our MSA-based architecture, treating the linear discourses like ESDs. For
processing event sequence descriptions, we developed a tailor-made semantic sim-
ilarity measure. In the context of ESDs, this WordNet-based measure outperforms
all standard similarity measures, because it is robust enough for the syntactically
noisy data, and it circumvents problems of scenario-specific equivalences, which
we could not cover with systems trained on standard corpora. In the case of TV
show summaries, we deal with standard texts with complete sentences, and less
specific vocabulary. This allows us to use a state-of-the-art vector space model to
compute semantic similarities for sentence pairs.

3. Extract paraphrase fragments: Sentence-level paraphrases are too specific and
too long for most applications. Further they contain context-dependent Named
Entities (e.g. House) or time references. To show that the advantages we gain from
using sequential structures indeed carry over to the applicational level, we take
a second step and extract finer-grained paraphrase fragments from the sentence
pairs matched in step 2. The resulting matched phrases should be grammatical
and interchangeable regardless of context. We propose and compare different
fragment extraction algorithms.

8.1 Paraphrasing from Monolingual Comparable Corpora 131

episode
recaps of

H
ouse

parallel corpus w
ith parallel

discourse structures

The psychiatrist suggests
him

 to get a hobby

N
olan tells H

ouse to
take up a hobby.

sentence-level paraphrases

 + discourse inform
ation

 + sem
antic sim

ilarity
 + w

ord alignm
ents

 + coref. resolution
 + dependency trees

 get a hobby

take up a hobby

paraphrase fragm
ents

1
2

3

Figure
8.1:System

pipeline
for

paraphrase
extraction.

132 A Text-Based Application: Paraphrase Extraction

8.2 A Corpus with Highly Parallel Discourses

Our quest for a suitable parallel corpus was driven by the idea to find texts that not only
share the same topic, but also the same narrative structure. We specifically searched
for texts of different sources that have the same (external) stimulus, like timelines or
live blogs for events of public interest (e.g. the Academy Awards), reports about the
same sports match, or recipes for the same dish. For several reasons, summaries of TV
shows turned out to be the most promising data source. In the following, we describe
the particular advantages of this text type, how we collected the actual data set, and
compare the TV show corpus to our corpus of event sequences in terms of complexity
(cf. Chapter 3).

TV show summaries as a corpus

Out of all text types we considered, different summaries of the same TV show episodes
seemed the most favorable ones:

• Accessibility: For various TV shows, there are a good number of different sum-
maries on Wikipedia, IMDB and pages by fans all over the web, which are easily
and persistently accessible. This is not the case for e.g. timelines of catastrophes or
articles on terrorist attacks, because such articles often disappear after some time
(except the ones on Wikipedia). Older newspaper stories are often only available
as short executive summaries. More sensitive topics like medical case histories for
the same disease are often restricted to registered and authorized users.

• Variety of domains: There is a huge variety of TV shows, thus the recaps offer texts
of many different more or less specific domains (medical domain, crime-related
domains, kitchen domain, daily life...). Episode recaps thus can serve for domain-
specific paraphrase extraction as well as being a domain-independent source.

• Text length: TV shows (in contrast to longer movies) have a medium length, thus
the recaps can be expected to be productive with respect to paraphrase extraction
but still convenient to process in terms of tractability.

• Parallel discourse structures: The textual order of the recaps is strictly sequential,
and it is usually the exact order of the events as they happened on screen. This
guarantees that different recaps reflect the same sequential order in their sentence
order, and also accounts for a similar length of the recaps. This is not the case e.g.
for news reports of any kind, because partial summaries, subjective commentaries
or related stories intermingle with the actual event descriptions.

8.2 A Corpus with Highly Parallel Discourses 133

Complexity measure House Scripts

Average Length 86.67 8.97

In
a

R
ec

ap

Words per Sentence 15.60 3.60

Type Overlap 0.45 0.29
Token Overlap 0.44 0.23

In
an

Ep
is

od
e

Sense Overlap 0.68 0.34

Table 8.1: Average complexity scores of the House summaries and the script corpus.

As the basis for our data collection, we picked the show House, a famous show (aired
from 2004 – 2012 in the U.S.) that has many fans and thus many different summaries
on the web. We collected summaries for all episodes of Season 6. As a preprocessing
step, we split each summary into single sentences using the “Splitta”1 sentence splitter
(Gillick, 2009), and treating the result simply as a sequence of sentences. If we interpret
the sequential event order as a simple linear discourse structure, the segmented sum-
maries can be treated as event sequence descriptions. Note, however, that the texts are
not instances of the same prototypical scenario, but rather different descriptions of the
same (scripted) scenario instance. This means that all texts share the same underlying
event structure, and we do not expect any reordering in the text sequences.

Corpus statistics

The corpus contains 8 summaries for each of the 20 Episodes in Season 6. This results
in 160 documents, containing 14735 sentences. Table 8.1 shows some more detailed
statistics that describe the corpus complexity in comparison with the script data. The
measures we used are the same we introduced before: the first two features describe the
overall complexity of the recaps, and the last three numbers indicate the similarity of
summaries of the same episode (cf. Chapter 3 for details):

• Average length is the average number of sentences per summary.

• Words per sentence describes the average sentence length.

• Overlap of types, tokens and senses describes which proportion of their lexical
inventory (taken as types, tokens or WordNet senses) two sequences of the same
recap share on average.

House episodes have an intermediate length for a regular TV show (40 minutes), re-
sulting in summaries with a mean length of 87 sentences. An average summary is

1https://code.google.com/p/splitta/

134 A Text-Based Application: Paraphrase Extraction

consequently 10 times longer than an average event sequence descriptions (which have
an upper bound of 16 events per sequence). Additionally, the sentences from the recaps
are about five times longer than the event descriptions, which meets the intuition about
unrestricted sentences compared with the bullet point style. While these two factors
could possibly complicate further processing, everything else indicates that the House
summaries are actually less difficult to handle than the common sense ESDs:

The word overlap features, which were highly indicative for the processing results in
the ESDs, is around twice as high as for the ESD corpus (2 times for sense overlap, 1.6
times for type overlap).

Another important factor is reordering. For the ESD corpus, we approximated event
reordering by counting how many predicate pairs do not have a fixed sequential order
within the scenario corpus. While this was indicative for the short event descriptions,
this measure is not suitable for the House corpus. For House, we have much longer
texts, with many more sentences, and most of them contain more than one predicate.
Further we have many more support verb constructions and dialogues than in the ESD
corpus, and multiple occurrences of have, get or say would all wrongly count as events
without sequential order. However, in contrast to the script data, the text type restricts
the sequential order. While ESDs describe different variants of executing the same sce-
nario, parallel House recaps all describe the same course of events, which is given by the
episode as the one common stimulus. Thus reordering is not an issue, because we can
safely assume that the events on the screen were seen in the same order by all summary
writers.

In our previous evaluation (cf. Chapter 4), we showed that a high type overlap corre-
lates with a very good system performance, while reordering is the biggest obstacle for
multiple sequence alignment. Both of these benchmarks are in favor of the House cor-
pus, because we have more lexical overlap and virtually no reordering. We also showed
earlier that our system works just as well with longer sequences as with shorter ones, so
the text length is not a problem at all.

A relevant difference between event descriptions and sentences from recaps are the sen-
tences themselves. House sentences are much longer and more complex. When compar-
ing two event descriptions, our hand-crafted similarity measure mostly ignores syntactic
structure. This works well for short clauses in bullet-point style, but is unsuitable for
longer sentences with multiple clauses. On the other hand, the recaps consist of gram-
matical sentences with little noise, and the vocabulary is more similar to that found
in standard corpora. Thus we can compute sentence similarities with a state-of-the-art
vector space model (Thater et al., 2011), which takes syntactic structure into account.

With this one modification, we can apply our system directly to the new corpus.

8.3 Sentential Paraphrase Extraction 135

8.3 Sentential Paraphrase Extraction

In a first step, we apply our MSA-based system to the TV show summaries to match
sentential paraphrases. In an intermediate evaluation, we show that the integration of
structural discourse information via sequence alignment leads to considerably better
results for matching equivalent sentences.

MSA with comparable standard texts

We extract sentential paraphrases with the same system we showed in Section 4.2. How-
ever, instead of using the hand-crafted scoring measure, we can apply a state-of-the-art
vector space model to assess semantic similarity. To compute alignment match scores for
sentence pairs, we use the same syntactically contextualized vector space model (Thater
et al., 2011) which we applied to the action descriptions in our multimodal experiments
(cf. Chapter 7).

The remainder of the general alignment procedure is the same as the one we applied
to event sequence descriptions. In particular, we maintain the progressive alignment
that aligns two sequences at a time, always grouping the two most similar sequences of
the current set together. Similarity for the alignment order is determined by the Bag of
words aligner, which takes the lexical overlap of two sequences as similarity indicator (cf.
Section 4.2).

Figure 8.2 shows an excerpt from an alignment table produced for the summaries. Each
column contains the sentences of a summary, and the sentences of the same row are
aligned. Gaps denote insertions or deletions, which means that the respective recap does
not contain a sentence describing the event denoted in the row (or that the sequence
aligner could not match it appropriately).

Evaluation measures and baselines

To evaluate the extraction of sentential paraphrases, we adapt the baselines we used for
aligning event sequence descriptions (cf. Chapter 4) and create a new gold standard. We
compute precision, recall and f-score with respect to the gold standard taking f-score as
follows:

f -score =
2 ∗ precision ∗ recall

precision + recall

We also compute accuracy as the overall proportion of correct category assignments
(paraphrase vs. not paraphrase).

Our main system uses MSA (denoted by msa afterwards) with vector-based similari-

136 A Text-Based Application: Paraphrase Extraction

row
recap

1
recap

2
recap

3
recap

4
recap

5

34
She

gives
Forem

an
one

shot.

C
uddy

tells
Forem

an
he

has
one

chance
to

prove
to

her
he

can
run

the
team

.

�
C

uddy
agrees

to
give

him
one

chance
to

prove
him

self.

Forem
an

insists
he

de-
serves

a
chance

and
C

uddy
gives

in,w
arn-

ing
him

he
gets

one
shot.

35
�

�
�

Forem
an,H

adley,and
Taub

get
the

confer-
ence

room
ready

and
Forem

an
explains

that
he’llbe

in
charge.

Forem
an

gives
the

new
s

to
Thirteen

and
Taub

and
they

unpack
the

conference
room

and
go

w
ith

a
diagnosis

of
C

R
PS.

36

T
hey

decide
that

it
m

ight
be

C
R

PS
and

Forem
an

orders
a

spinalstim
ulation.

�

Forem
an

says
to

treat
him

for
com

plex
re-

gional
pain

syndrom
e

w
ith

a
spinal

stim
ula-

tion.

�
�

···

45

T
hirteen

and
Taub

go
to

see
the

patient,w
ho

thinks
he

has
m

ercury
poisoning

from
eating

too
m

uch
fish.

W
hen

they
talk

to
V

ince,
he

tells
them

thathe
has

been
doing

research
online

and
believes

that
he

has
m

ercury
poisoning.

H
e

suggests
they

give
him

a
blood

test
for

m
ercury

poisoning.

H
e

thinks
he

m
ust

have
m

ercury
poison-

ing
and

w
ants

to
be

tested.

The
m

illionaire
has

checked
on

the
In-

ternet
and

believes
that

he
has

m
ercury

poisoning
caused

by
sushi.

Table
8.2:Excerpt

from
an

alignm
ent

table
for

5
sam

ple
recaps

of
Episode

2
(Season

6).

8.3 Sentential Paraphrase Extraction 137

ties (vec) as a scoring function. The gap costs are optimized for f-score on a held-out
episode, resulting in cgap = 0. (Remember that gap costs directly influence precision and
recall: “cheap” gaps lead to a more restrictive system with higher precision, and more
expensive gaps give more recall. As in the script experiment, we choose f-score as our
objective.)

To show the contribution of MSA’s structural component and compare it to the vector
model’s contribution, we create a second MSA-based system that uses MSA with BLEU
scores (Papineni et al., 2002) as scoring function (msa+bleu). BLEU establishes the aver-
age 1-to-4-gram overlap of two sentences. The gap costs for this baseline were optimized
separately, ending up with cgap = 1.

In order to quantify the contribution of the alignment, we create a discourse-unaware
baseline by dropping the MSA and using a state-of-the-art clustering algorithm (Noack,
2007) fed with the vector space model scores (cluster+vec). The algorithm partitions
the set of sentences into paraphrase clusters such that the most similar sentences end up
in one cluster. This does not require any parameter tuning.

We also show a baseline that uses the clustering algorithm with BLEU scores (cluster+
bleu), which resembles common systems for paraphrase classification based on surface-
level similarity. The comparison of this baseline with the other clustering baseline that
uses vector similarities helps to underline the vector model’s advantage compared to
pure word overlap.

We also show the results for completely random label assignment, which constitutes a
lower bound for the baselines and for our system.

Gold standard

We aim to create an evaluation set that contains a sufficient amount of genuine para-
phrases. Finding such sentence pairs with random sampling and manual annotation
is infeasible: There are more than 200,000,000 possible sentence pairs, and we expect
fewer than 1% of them to be paraphrases. We thus sample pairs that either the system
or one of the baselines has recognized as paraphrases and try to create an evaluation set
that is not biased towards the actual system or any of the baselines. The evaluation set
consists of 2000 sentence pairs: 400 that the system recognized as paraphrases, 400 pos-
itively labelled pairs for each of the three baselines (described in the following section)
and 400 randomly selected pairs. For the final evaluation, we compute precision, recall,
f-score and accuracy for our main system and each baseline on this set.

Two annotators labelled each sentence pair (S1,S2) with one of the following labels:

1. paraphrases: S1 and S2 refer to exactly the same event(s).

138 A Text-Based Application: Paraphrase Extraction

2. containment: S1 contains all the event information mentioned in S2, but refers to
at least one additional event, or vice versa.

3. related: S1 and S2 overlap in at least one event reference, but both refer to at least
one additional event.

4. unrelated: S1 and S2 do not overlap at all.

This scheme has a double purpose. The main objective is judging whether two sentences
contain paraphrases (1-3) or if they are unrelated (4). We use this coarser distinction
for system evaluation by collapsing the categories 1-3 into one paraphrasecoll category.
This category is the reference for all evaluation measures: we take a sentence pair as
paraphrase if it is a member of paraphrasecoll . Secondly, the annotation shows how many
sentences actually fit each other’s content perfectly, and what proportion of the matched
sentences need further processing to extract the sentence parts with the same meaning.

The inter-annotator agreement according to Cohen’s Kappa (Cohen, 1960) is κ = 0.55
(“moderate agreement”). The distinction between unrelated cases and elements of para-
phrasecoll reaches κ = 0.71 (“substantial agreement”). For the final gold standard, a third
annotator resolved all conflict cases.

Among all gold standard sentence pairs, we find 158 paraphrases, 238 containment cases,
194 related ones and 1402 unrelated. We had to discard 8 sentence pairs because one of
the items was invalid or empty. The high proportion of unrelated cases results from the
400 random pairs and the low precision of the baselines. Looking at the paraphrases,
27% of the 590 instances in the paraphrasecoll category are proper paraphrases, and 73%
of them contain additional information that does not belong to the paraphrased part.

Results

Overall, our system extracts 20379 paraphrase pairs. Table 8.3 shows the evaluation
results on our gold standard.

The MSA based system variants outperform the two clustering baselines significantly
(all levels refer to p = 0.01 and were tested with a resampling test (Edgington, 1986)).

The clustering baselines perform significantly better than a random baseline, especially
considering recall. The more elaborate vector-space measure even gives 10% more in
precision and accuracy, and overall 14% more in f-score. This is already a remark-
able improvement compared to the random baseline, and a significant one compared to
cluster+bleu.

Adding structural knowledge with MSA improves the clustering’s accuracy perfor-
mance by 24% (cluster+vec vs. msa+vec), and precision goes up by 39%.

8.4 Extracting Paraphrase Fragments 139

System Prec. Recall F-score Acc.

random 0.30 0.49 0.37 0.51

cluster+bleu 0.35 0.63 0.45 0.54
cluster+vec 0.40 0.68 0.51 0.61

msa+bleu 0.73 0.74 0.73 0.84
msa+vec 0.79 0.66 0.72 0.85

Table 8.3: Results for sentence matching.

Intuitively we expected the MSA-based systems to end up with a higher recall than
the clustering baselines, because sentences can be matched even if their similarity is
moderate or low, but their discourse context is highly similar. However, this is only the
case for the system using BLEU scores, but not for the system based on the vector space
model. One possible explanation lies in picking f-score as the objective for optimization
of the MSA gap costs: for the naturally more restrictive word overlap measure, this leads
to a more recall-oriented system with a low threshold for aligning sentences, whereas
the gap costs for the vector-based system favor a more restrictive alignment with more
precise results.

The comparison of the two MSA-based systems highlights the great benefit of using
structural knowledge: msa+bleu and msa+vec have comparable f-scores and accuracy.
The advantage from using the vector-space model compared to pure word overlap is
nearly evened out when we add discourse knowledge as a backbone. However, the
vector model still results in nominally higher precision and accuracy, thus we consider
the system using MSA with the vector space model (msa+vec) as our main system for
the fragment extraction step.

8.4 Extracting Paraphrase Fragments

Taking the output of the sentence alignment as input, we extract shorter phrase-level
paraphrases (paraphrase fragments) from the matched sentence pairs. The core princi-
ple for fragment extraction is to extract phrase pairs that contain continuous spans of
pairwise equivalent words, similar to phrase table computation for machine translation
(MT). We experiment with different algorithms to find matching phrase pairs of differ-
ent sizes. In the basic case, we extract chunks of pairwise aligned words. Using the
same alignments, we then extend this approach with syntactic information to extract
equivalent verbal and prepositional phrases.

140 A Text-Based Application: Paraphrase Extraction

Preprocessing

Before extracting paraphrase fragments, we first preprocess all documents as follows:

Stanford CoreNLP 2 provides a set of natural language analysis tools. We use the part-
of-speech tagger, the named-entity recognizer, the parser (Klein & Manning, 2003),
and the coreference resolution system (Lee et al., 2011). In particular, the parser’s
dependency structures are used for syntax-based fragment extraction. The output
from the coreference resolution system is used to cluster all mentions referring to
the same entity and to select one as the representative mention. If the representative
mention is not a pronoun, we modify the original texts by replacing all coreferent
mentions in the cluster with the syntactic head of the representative mention. We
apply the coreference resolution to each recap as a whole.

GIZA++ (Och & Ney, 2003) is a widely used word aligner for MT systems. We amend
the input data by copying identical word pairs 10 times and adding them as addi-
tional ‘sentence’ pairs (Byrne et al., 2003), in order to emphasize the higher align-
ment probability between identical words. We run GIZA++ for bi-directional word
alignment and obtain a lexical translation table from our training corpus, as well
as word alignment probabilities for each sentence pair.

Basic fragment extraction

Following the approach by Wang & Callison-Burch (2011), we base our system on word
alignments, for which there are many techniques and tools from machine translation.
Wang and Callison-Burch’s system is a modified version of an approach by Munteanu
& Marcu (2006) on translation fragment extraction. We briefly review the three-step
procedure here and refer the reader to the original paper for more details:

1. For each sentence pair, we first retrieve all word-word alignment probabilities from
GIZA++ (trained on all documents). We don’t use the one best guess that GIZA
produces, but rather compute our own alignment based on the likelihoods GIZA
computes as a second-to-last step.

2. We smooth the alignment considering the association strength of the neighboring
words. For words with 0 alignment probability (i.e. without a match in the other
sentence), we set the alignment probability with words in the other sentence to the
average alignment probabilities of the adjacent words (in a window size of 4 to
both sides). This allows us to match phrases like your book and book of you, which
could not be aligned if of had no matched equivalent in the first phrase.

2http://nlp.stanford.edu/software/corenlp.shtml

8.4 Extracting Paraphrase Fragments 141

Vince
tells

them
to

give
him

a
blood

test
for

heightened
mercury

levels.

He
asks
them
to
run
a
blood
test
to
check
for
mercury.

Figure 8.2: Basic paraphrase fragment extraction.

3. In a final step, we extract fragment pairs using different heuristics, e.g., non-
overlapping n-grams, chunk boundaries, or dependency trees.

After obtaining a lexical translation table by running GIZA++, we compute an optimal
alignment of word pairs by maximizing the sum of alignment probabilities. All word
alignments (excluding stop-words) with positive scores are selected as candidate frag-
ment elements. With a modified longest common substring algorithm, we extract pairs
of longest common word chunks, with common meaning having alignment links. Provided
with those candidate fragment elements, Wang & Callison-Burch (2011) use a chunker to
constrain the boundaries of the output fragments, in order to yield mostly grammatical
fragments with phrasal character. We use the same OpenNLP chunker3 for comparabil-
ity. We discard trivial fragment pairs, such as string-identical ones or complete sentence
pairs that have not been pruned at all.

Figure 8.2 displays the basic fragment extraction. In the picture, the lines denote the
alignments computed in step 1 and 2, and the boxes indicate the fragments extracted
from those alignments (step 3). The post-processing with a chunker avoids the inclusion
of the particle to into the first (red) fragment. In the next step, we replace the chunker
with a dependency parser to determine the fragment boundaries.

Dependency-based fragment extraction

The chunk-constrained fragment pairs are sometimes ungrammatical, and are often too
short to capture meaningful paraphrases. In order to yield a more accurate output,
we add another layer of linguistic information to the extraction mechanism: based on

3http://opennlp.sourceforge.net/

142 A Text-Based Application: Paraphrase Extraction

Vince
tells

them
to

give
him

a
blood

test
for

heightened
mercury

levels.

He
asks
them
to
run
a
blood
test
to
check
for
mercury.

VP VP

give
him

a
blood

test
for

heightened
mercury

levels

to
run
a
blood
test
to
check
for
mercury.

PP
PP

Figure 8.3: Dependency-based fragment extraction.

the dependency parses produced during preprocessing, we extract clauses and prepo-
sitional phrases. In both cases, we match the respective head words of the phrases and
their complements. More precisely, we match two phrases if their respective subtrees t1

and t2 satisfy the following conditions:

• The subtrees mirror a complete subset of the GIZA++ word alignment, i.e., all
words aligned to a given word in t1 are contained in t2, and vice versa. For empty
alignments, we require an overlap of at least one lemma (ignoring stop words).

• The root nodes of t1 and t2 have the same roles within their trees, e.g., we match
clauses with an xcomp-label only with other xcomp-labeled clauses. While para-
phrases can have different syntactic types (like what he decided and his decision), we
found this constraint useful for reducing the number of fragment pairs that are not
equivalent but rather have a one-directional entailment relation (which we called
containment for sentences).

• We restrict t1 and t2 to certain phrase types: they must either contain one verb with
at least one complement (typically verb phrases and subsidiary clauses), or they
must be prepositional phrases. Verbal (para-)phrases mostly account for single
events, and prepositional (para-)phrases are more fine-grained parts of the event.

• Again, trivial pairs that are prefixes or suffixes of each other are excluded.

Figure 8.3 shows a sample sentence pair with two extracted fragment pairs. The algo-
rithm matches the verbal phrases of the sentences as well as the included prepositional
phrase. The main advantage of using dependencies lies in the output’s grammaticality,
because the subtrees always match complete phrases. This method also functions as
a filtering mechanism for mistakenly aligned sentences: If only the two sentence root
nodes are returned as possible matching partners, the pair is discarded from the results.

8.5 Evaluation of Paraphrase Fragment Extraction 143

8.5 Evaluation of Paraphrase Fragment Extraction

Similar to our intermediate evaluation for sentence alignments, we intrinsically evaluate
paraphrase fragments as the final output of our system. Based on a manually annotated
sample, we compute precision of the fragment pairs. Because recall for fragment extrac-
tion is not defined, we instead describe the productivity of the different setups, providing
some intuition about the methods’ quantitative performance.

We compare several system configurations, and we re-use one of the sentence matching
baselines to show the influence of discourse integration on the fragment extraction.

Gold standard

For a gold standard, we randomly sample 150 fragment pairs for each of the five sys-
tem configurations (explained in the following section). Each fragment pair (f1, f2) is
annotated with one of the following categories:

1. paraphrases: f1 and f2 convey the same meaning, i.e., they are well-formed and
good matches on the content level.

2. related: f1 and f2 overlap in their meaning, but one or both phrases have additional
unmatched information.

3. irrelevant: f1 and f2 are unrelated.

This labeling scheme again assesses precision as well as paraphrase granularity. For
precision rating, we collapse categories 1 and 2 into one paraphrasecoll category.

Each fragment pair is labelled by two annotators, who were shown both the fragments
and their whole source sentences. Overall, the raters had an agreement of κ = 0.67 (“sub-
stantial agreement”), and the agreement for the distinction between the paraphrasecoll cat-
egories and irrelevant instances reaches a level of κ = 0.88 (also “substantial agreement”).
All conflicts were adjudicated by a third annotator.

The kappa values suggest that the task was easier than sentence level annotation, which
was to be expected: first, the fragments are much shorter than the sentences, and thus it
is in general easier to judge whether they are equivalent or not. This also shows that the
fragment size is a much more suitable and intuitive category for paraphrase extraction
in general. Another reason for the better agreement is the simple fact that we dropped
one category, because we did not distinguish between entailing and overlapping pairs.
The simplification of the annotation scheme resulted from a very pragmatic decision:
for the time being, we were not planning to use the entailment information, and the
easier annotation task allowed us to meet certain time constraints.

144 A Text-Based Application: Paraphrase Extraction

Overall, the gold standard contains 190 paraphrases, 258 related pairs and 302 irrelevant
instances. Unlike previous approaches to fragment extraction, we do not evaluate gram-
maticality, given that the dependency-based method implicitly constrains the output
fragments to be complete phrases.

Configurations & results

We take the output of the sentence matching system msa+vec (multiple sequence align-
ment with vector model similarities) as input for paraphrase fragment extraction. As de-
tailed in Section 8.4, our core fragment module uses the word-word alignments provided
by GIZA++ and uses a chunker for fragment extraction. We successively enrich this core
module with more information, either by longest common substring (lcs) matching or
by operating on dependency trees (dep). In addition, we evaluate the influence of coref-
erence resolution by preprocessing the input texts with coreference resolution (coref).

We mainly compute precision for this task, as the recall of paraphrase fragments is
difficult to define. However, we do include a measure we call productivity to indicate
the algorithm’s completeness. It is defined as the ratio between the number of resulting
fragment pairs and the number of sentence pairs used as input.

Extraction Method Precision Productivity

msa 0.57 0.76
msa+lcs 0.45 0.30
msa+dep 0.81 0.42

msa+dep+coref 0.84 0.45

Table 8.4: Results of paraphrase fragment extraction.

Table 8.4 shows the evaluation results. The dependency-based heuristic yields the most
precise results, and is still more productive than the LCS method. The grammatical
filter gives us a higher precision compared to the purely alignment-based approaches.
Enhancing the system with coreference resolution raises the score even further.

We cannot directly compare this performance to other systems, as all other approaches
use different input data. However, precision is usually manually evaluated, so the fig-
ures are at least indicative for a comparison with previous work. The most comparable
system is that of Wang & Callison-Burch (2011), which is roughly equivalent to our core
module. They report a precision of 0.67 using parallel news data. Another state-of-the-
art system introduced by Zhao et al. (2008) extracts paraphrase fragments from bilingual
parallel corpora, matching English phrases that have the same translations. They also

8.5 Evaluation of Paraphrase Fragment Extraction 145

reach a precision of 0.67, on a much larger corpus, but for the considerably easier task of
matching equivalent translations. Our approach outperforms both fragment extraction
systems by 17%, reaching similar estimated productivity.

As a final comparison, we show how the performance of the sentence matching methods
directly affects the fragment extraction. We use the dependency-based fragment extrac-
tion system (dep), and compare the performances by using either the outputs from our
main system (msa+dep) or alternatively the baseline that replaces MSA with a cluster-
ing algorithm (cluster+dep). Both variants use the vector-based semantic similarity
measure.

Sentence matching Precision Productivity

cluster+dep 0.31 0.04

msa+dep 0.81 0.42

Table 8.5: Impact of MSA on fragment extraction.

As shown in Table 8.5, the precision gain from using MSA becomes tremendous during
further processing. We beat the baseline by 50% here, and productivity increases by
a factor of 10. This means that the baseline produces on average 0.01 good fragment
pairs per matched sentence pair, and the final system extracts 0.3 of them. Those num-
bers show that for any application that acquires paraphrases of arbitrary granularity,
sequential event information provides an invaluable source to achieve a lean paraphras-
ing method with high precision.

Sample results

Figure 8.6 shows sample results from our system pipeline, using the dependency-based
extraction method with full coreference resolution, applied to the sentence pairs com-
puted with sequence alignment (msa+dep+coref). The results reflect the importance
of discourse information for this task: sentences are correctly matched in spite of rel-
atively low surface similarity, and differences in syntactic structures. Additionally, the
coreference resolution allows us to match the character names Rachel (example 1) and
Wilson (example 5) to the correct corresponding pronouns. All examples show that this
fragment matching technique could even help to make coreference resolution better, be-
cause we can easily identify Cameron with his wife, Lydia with the respective pronouns,
Nash with The Patient or the nickname Thirteen with Hadley, the character’s actual name.

146 A Text-Based Application: Paraphrase Extraction

Sentence
1

[w
ith

fragm
ent

1]
Sentence

2
[w

ith
fragm

ent
2]

1
Taub

m
eets

H
ouse

for
dinner

and
claim

s
[that

R
achelhad

a
pottery

class].
Taub

show
s

up
for

his
dinner

w
ith

H
ouse

w
ithout

R
achel,

explaining
[thatshe’s

ata
ceram

ics
class].

2
H

ouse
doesn’t

w
ant

her
to

go
and

she
doesn’t

w
ant

to
go

either,but
[she

can’tleave
her

fam
ily.]

Lydia
adm

its
that

she
doesn’t

w
ant

to
leave

H
ouse

but
[she

has
to

stay
w

ith
her

fam
ily].

3
Thirteen

is
in

a
cab

to
the

airport
w

hen
she

finds
out

that
[her

trip
had

been
canceled].

H
adley

discovers
that

[her
reservation

has
been

cancelled].

4
N

ash
asks

H
ouse

[for
the

extra
m

orphine].
The

patient
is

ready
[for

m
ore

m
orphine].

5
H

ouse
com

es
in

to
tell

W
ilson

that
Tucker

has
cancer

and
[show

s
him

the
testresults].

H
ouse

com
es

in
and

[inform
s

W
ilson

thatthe
tests

have
proven

positive]:Tucker
has

cancer.

6
Forem

an
tells

him
[to

confide
in

C
am

eron].
W

hen
C

hase
points

out
they

can’t
m

ove
D

onny
w

ithout
alerting

C
am

eron,Forem
an

tells
C

hase
[to

be
honestw

ith
his

w
ife].

7
Thirteen

breaks
[into

the
old

residence]and
tells

Taub
thatshe

realizes
that

he’s
been

w
ith

M
aya.

Taub
and

Thirteen
break

[into
Ted’s

form
er

residence].

8
H

e
finds

[a
darkened

patch
on

his
rightfootnear

the
big

toe].
H

ouse
finally

finds
[a

tum
orous

m
ole

on
his

toe].

Table
8.6:Exam

ple
results;fragm

ents
extracted

from
aligned

sentences
are

bracketed
and

em
phasized.

8.6 Discussion 147

8.6 Discussion

We showed that incorporating discourse information provides important advantages
both for extraction of sentential paraphrases and for finding paraphrase fragments
within those sentences. For this task, we proposed different summaries of the same
TV show episodes as highly parallel input corpora, because they feature both matching
content and matching sequential discourse structures.

It is hard to do a direct comparison with state-of-the-art paraphrase recognition systems,
because most are evaluated on different corpora, e.g., the Microsoft paraphrase corpus
(Dolan & Brockett, 2005, MSR). We cannot apply our system to the MSR corpus, because
we take complete texts as input, while the MSR corpus solely delivers sentence pairs.
While the MSR corpus is larger than our collection, the wording variations in its para-
phrase pairs are usually less extensive than for our examples. Thus the final numbers
of previous approaches might be vaguely comparable with our results: Das & Smith
(2009) present two systems reaching f-scores of 0.82 and 0.83, with a precision of 0.75
and 0.80. Both precision and f-scores of our MSA-based systems lie within the same
range. Heilman & Smith (2010) introduce a recall-oriented system, which reaches an
f-score of 0.81 by a precision of 0.76. Compared to this system, our approach results in
better precision values.

Using multiple sequence alignment as a core component for discourse-based paraphras-
ing, our approach as it stands is restricted to texts with strict sequential order. One can,
however, carry this idea over to more complex discourse structures: while texts do
not necessarily have the same sequential structure, they can have comparable discourse
structures. Shortly after we proposed this extraction method, Métais et al. (2013) showed
how to apply a graph-based system to discourse trees.

In follow-up studies, we have begun to enhance the fragment extraction algorithm, too:
by using semantic dependencies instead of syntactic ones, we can extract less restricted
fragments, even matching phrases with different syntactic categories. At the point of
this thesis’ publication, this extension is still work in progress.

8.7 Related Work

Previous paraphrase extraction approaches can be roughly characterized under two as-
pects: 1) data source and 2) granularity of the output.

Both parallel corpora and comparable corpora have been quite well studied. Barzilay &
McKeown (2001) use different English translations of the same novels (i.e., monolingual
parallel corpora), while others (Quirk et al., 2004) experiment on multiple sources of

148 A Text-Based Application: Paraphrase Extraction

the same news/events, i.e., monolingual comparable corpora. Commonly used (candi-
date) comparable corpora are news articles written by different news agencies within a
limited time window (Wang & Callison-Burch, 2011). Other studies focus on extracting
paraphrases from large bilingual parallel corpora, which the machine translation (MT)
community provides in many varieties. Bannard & Callison-Burch (2005) as well as
Zhao et al. (2008) take one language as the pivot and match two possible translations in
the other languages as paraphrases if they share a common pivot phrase. As parallel
corpora have many alternative ways of expressing the same foreign language concept,
large quantities of paraphrase pairs can be extracted in this way.

The paraphrasing task is also strongly related to cross-document event coreference res-
olution, which is tackled by string-similarity based techniques, just like most available
paraphrasing systems (Bagga & Baldwin, 1999; Tomadaki & Salway, 2005).

As far as output granularity is concerned, most work in paraphrase acquisition has dealt
with sentence-level paraphrases, e.g., (Barzilay & McKeown, 2001; Barzilay & Lee, 2003;
Dolan et al., 2004; Quirk et al., 2004). Our approach for sentential paraphrase extraction
is related to the one introduced by Barzilay & Lee (2003), who also employ multiple
sequence alignment (MSA). However, they use MSA at the sentence level rather than at
the discourse level.

From an applicational point of view, sentential paraphrases are difficult to use in other
NLP tasks, because they are too specific and too long to be matched as a whole opaque
unit. At the phrasal level, interchangeable patterns (Shinyama et al., 2002; Shinyama
& Sekine, 2003) or inference rules (Lin & Pantel, 2001) are extracted. In both cases,
each pattern or rule contains one or several slots, which are restricted to certain type
of words, e.g., named entities (NE) or content words. They are quite successful in NE-
centered tasks, like information extraction.

The research on general paraphrase fragment extraction at the sub-sentential level is
mainly based on phrase pair extraction techniques from the MT literature. Munteanu &
Marcu (2006) extract sub-sentential translation pairs from comparable corpora using the
log-likelihood-ratio of word translation probability. Quirk et al. (2007) extract fragments
using a generative model of noisy translations. Wang & Callison-Burch (2011) extend
the first idea to paraphrase fragment extraction on monolingual parallel and compara-
ble corpora. Our current approach also uses word-word alignment, however, we use
syntactic dependency trees to compute grammatical fragments. Our use of dependency
trees is inspired by the constituent-tree-based experiments of Callison-Burch (2008).

Chapter 9

Tying up some Loose Ends

Ongoing Work and Directions for Future Research

In this thesis, we have presented new approaches to previously unsolved challenges for
script mining: we have use crowdsourcing for data collection to overcome the problem
of implicitness (Chapter 3), and we apply new context-aware algorithms for event and
participant paraphrasing (Chapter 4 & 5). Further, we present more advanced appli-
cations, namely grounding event sequences in videos (Chapter 7) and generalizing the
paraphrasing algorithms to standard texts (Chapter 8).

The work described in this thesis was carried out within the SMILE (“Script Mining as
Internet-based LEarning”) project.1 While this thesis needed to be finished at some point
in time, the research within the smile project of course went on: there are still many
more script-centered topics and open research questions to investigate. Some techniques
and algorithms we have introduced can be extended and enhanced, and some aspects
(like the coverage problem) do not have a solution at all yet. This chapter presents our own
ongoing work and further research directions for different aspects of script processing.

To approach the coverage problem, we are working on a collaborative game that will
help to scale up our crowdsourcing experiments (Section 9.1). In the same context, we
also mine computer games and the web for an appropriate set of scenarios and seed
sequences for game-based data collection.

Several other enhancements concern our component for finding event paraphrases (Sec-
tion 9.2): we are currently experimenting with different alignment algorithms which
find globally optimal alignments, without requiring strict sequential constraints. Fur-
ther, we are developing new semantic similarity measures trained on scenario-specific
corpora. As a more direct approach to finding equivalent event descriptions, we are
working on a game-based mechanism for paraphrasing.

1http://www.coli.uni-saarland.de/projects/smile/

150 Tying up some Loose Ends

With more fine-tuned paraphrasing techniques, we can then also develop new data struc-
tures for script representation (Section 9.3).

Lastly, we are pursuing the goal of applying script data for automated action recognition in
videos, for which we already have first results (Section 9.4).

9.1 Coverage

The coverage problem for script learning has two different dimensions (cf. Section
1.3). First, we need to collect large numbers of event sequence descriptions for each
scenario to cover as many structural and linguistic variants as possible. The second
coverage problem concerns the scenarios themselves: we need a wide-coverage set of
seed scenarios for which to collect data, but it is unclear what “wide coverage” means
for common sense scripts.

We propose new solutions for both coverage problems: for large-scale script data collec-
tion, we develop a collaborative online game that is meant to replace Mechanical Turk as
a crowdsourcing platform. To collect seed scenarios, we leverage a wiki-like collection
of how-to articles, and additionally extract scenarios from a life simulation game.

A game interface for data collection

We have explained earlier why we think that crowdsoucing is the most suitable way
to collect data for common sense scripts (cf. Chapter 3): using crowdsourcing, we can
get corpora for arbitrary scenarios by directly asking people about the scenarios we
target, thus avoiding the problem of implicitness. In our experiments, we used Amazon
Mechanical Turk as a commercial crowdsourcing platform.

In recent years, using games instead of such commercial platforms has become more
and more popular. Once developed, a game can run for a long time with manageable
maintenance effort, and thus deliver more data while needing much less intervention
than similar experiments with Mechanical Turk. As a consequence, game-based data
collection scales up much easier than any other crowdsourcing approach – provided the
game finds a large audience. Further, motivated participants will play the game for fun,
which means that nobody needs to pay them. Having only volunteer players as annota-
tors not only reduces costs, but also reduces the number of fraudulent participants.

A game has also advantages from an ethical point of view. Collecting data with a game
is ethically completely unquestionable, which is not the case for Mechanical Turk. While
we have paid special attention to fair worker treatment in our experiments, supporting
Mechanical Turk with the obligatory fees means supporting an unmoderated platform

9.1 Coverage 151

that often attracts abusive requesters (Fort et al., 2011).

Following earlier examples of crowdsourcing games, we develop a so-called collaborative
game for collecting event sequence descriptions.2 In a collaborative game, several people
solve a task together rather than in competition. Such games rely on the principles of
redundancy and peer-control: if many people answer a question in the same way, the
answer is likely to be valid. The ESP Game (von Ahn & Dabbish, 2004) was the first
game of this style, in which two people were shown the same image and had to enter a
label describing the image’s content. The players gained points if they entered the same
label. Several other collaborative games were modeled on the principle of the ESP game
(von Ahn et al., 2006; Chamberlain et al., 2009).

In the game we are developing, the game story turns around pirates. The pirates have
run out of money and need to find jobs among normal (landlubber) people. Being pi-
rates, they are not very civilized and need to learn how to perform the most elementary
tasks required for living in a normal society. The necessary skills are taught at the pirate
school (Figure 9.1), where a participant is paired with another (fellow pirate) player, and
both need to prove their progress by describing how to behave in everyday situations.
The questions that they need to answer are of the same sort as the ones we used in the
Mechanical Turk setup (e.g. How do you make coffee?). If both players enter very
similar descriptions for one or more sub-events of the scenario, both of them gain ex-
tra points (marked with a treasure chest in the picture). Similarity is determined by a
WordNet-based measure that considers two event descriptions as equal if one of them
contains only words that have a synonym in the other description. (For example taste
coffee and savor the fresh coffee would be scored as matches, because taste and savor are
synonyms in WordNet, and thus the second description contains synonyms for each
token of the first description.)

Internally, the game has two modes: the main mode is genuinely collaborative; at least
two players need to be online at the same time, and they are randomly paired to play
the game together. For the case that an odd number of people (or, in particular, only
one player) is logged in, we develop a fallback single-player mode: in this mode an
automated simulation replaces the second player, so one participant can also play game
without a second (human) partner. To simulate a computer player, we simply match the
human player’s entries with an ESD that was collected in an earlier game run.

It is a challenging task to develop a game for linguistic data collection that is fun,
playable, delivers useful data and consequently has the potential to become popular.
A prototype of the game is finished, but to put it into a releasable state, there are still
technical issues that take some time to be resolved. Most technical difficulties are related

2We worked on concept and implementation together with the students Jonas Sunde, Carolin Shihadeh,
Marc Schmit, Uwe Boltz and Nils Bendfeldt.

152 Tying up some Loose Ends

Figure 9.1: Screenshot of the pirate school game interface for collecting event sequence
descriptions.

9.1 Coverage 153

to configuring a reliable synchronization of the two human players in the main mode.

Seed scenarios & sequences

Apart from the need for many event sequence descriptions, there is a second crucial
aspect to coverage: our crowdsourcing approach needs a little supervision, because we
have to present concrete scenarios to Turkers or players. For creating corpora with
Mechanical Turk, we picked the scenarios manually or explored a well-defined domain
and took a list of scenarios from the web (cf. Chapter 3). In the long run, we can only
scale up our data collection if we find a sufficiently large resource of suitable common
sense scenarios to ask people about.

We set up two experiments to get a list of everyday activities that is as comprehensive as
possible: we mine actions from a life simulation computer game, and we crawl a huge
online collection of how-to articles.

In a first experiment,3 we collected scenarios from “SIMS 2”, a computer game that
simulates real life and contains hundreds of everyday activities that the player can take
part in (like eating, ordering a pizza, showering, and so on). Our data collection
resulted in around 2400 scenarios which vary in their complexity (taking a job offer

vs. lifting an object) as well as in their compatibility with real life (for example, the
game features actions involving vampire muffins).

To extend the list we obtained from the SIMS game with more common sense scenarios,
we are running a second experiment:4 we crawl WikiHow,5 an online collection of how-
to instructions for a huge variety of different tasks. WikiHow features more than 150,000
step-by-step instructions for all kinds of activities, ranging from simple everyday tasks
(How to wash your hands) to very specialized expert knowledge (How to set up a

MySQL sever). Compared to all other scenario sources we have found, WikiHow is
probably as close to a comprehensive list as we can get. In current experiments, we are
testing different filters for the WikiHow data that will separate actual common sense
scenarios from advanced expert knowledge.

Another advantage of WikiHow is that it also provides event sequence descriptions:
each how-to article is basically one event sequence description for its scenario. Crawling
ESDs from WikiHow exclusively is unfortunately insufficient as a basis for script mining,
because each ESD in WikiHow provides only one (linguistic and structural) variant of
a scenario. However, for our data collection, this data can then serve as seed sequences
for the single-player mode of our game, which will later deliver more scenario variants.

3Student project by Marc Schmit.
4B.Sc. Thesis by Jonas Sunde, ongoing.
5http://www.wikihow.com

154 Tying up some Loose Ends

9.2 Optimizing Event Paraphrasing

The first essential step in our script processing pipeline consists in finding paraphrases
that describe the same event in different event sequence descriptions, with possibly very
different words (cf. Chapter 4). Our current approach uses multiple sequence alignment
together with a WordNet-based similarity measure to compute such paraphrases. We
see several possibilities for improvements to our algorithm:

First, we enhance the alignment algorithm itself: we want to apply a globally optimal
sequence aligner instead of using an alignment tree that only approximates optimal
alignment. Further we want to get rid of the strict ordering constraints of MSA in order
to deal with reordering in the input sequences.

As a second major enhancement, we are working on new scenario-specific semantic
similarity measures that we can combine with the sequence alignment algorithms.

Finally, we show a complementary approach to paraphrasing, in which we are integrat-
ing a game interface for paraphrase annotation into our collaborative game.

Optimizing and relaxing MSA

We extend the sequence alignment algorithm in two ways:6

First, we want to apply a globally optimal alignment algorithm. In our current setup,
the order in which we align the sequences is not optimal, but determined by a rather
crude heuristic. First experiments with an optimal MSA algorithm (Althaus et al., 2002)
increased precision by up to 10% compared to our simpler heuristic. While this im-
provement looks promising, the optimal alignment has performance issues when incor-
porating many sequences at one time (in our experiments, it managed up to 15 ESDs).
We are currently developing a cascaded technique that successively feeds the optimal
MSA with tractable blocks of sequences, to compute a partially optimal alignment.

A second enhancement tackles an inherent drawback of standard multiple sequence
alignment: MSA cannot cope with event reordering, which we encounter in almost
every scenario. Take the scenario make coffee as an example: some people put the
water into the machine before they put the coffee powder in, and some people do it the
other way around. Because sequence alignment assumes a strict ordering of all events,
we cannot identify all event paraphrases. Consequently, our current algorithm has the
worst results for scenarios with much reordering (cf. Section 4.5). We are working on
an algorithm that keeps the strong preference to align elements in similar positions in

6The algorithms are developed in collaboration with Ernst Althaus (University of Mainz), and partially
carried out in a student project by David Przybilla.

9.2 Optimizing Event Paraphrasing 155

the sequences but allows for local reordering at a certain costs. The first results look
promising, in particular with respect to recall, but we still need to work out several
efficiency and optimization issues.

Independently from MSA, we investigate a different paraphrasing algorithm that has no
strict sequential ordering constraints in the first place.7 This alternative algorithm mod-
els the task of finding event paraphrases as a constraint solving problem (CSP), which
takes a complementary view on the task compared to the alignment-based approach.
The sequence alignment algorithm mainly orders the sequences according to structural
constraints and enhances this technique with semantic similarity information. The CSP
first groups event descriptions according to their semantic similarity, and then includes
structural information on sequence ordering to refine those groupings. The first re-
sults look promising, but this approach relies heavily on a precise semantic similarity
measure, which is still under development.

In cooperation with the smile project, Frermann (2013):8 developed an approach for
probabilistic script modeling. Her method uses hierarchical Bayesian models to compute
probabilistic script models featuring events, event orderings and participants. As far as
the script mining process is concerned, this system computes event and participant
paraphrases synchronously, rather than applying a cascaded approach (like we do). In
future work, this paradigm could also be applied for other models integrating both
participants and events.

Scenario-specific similarity measures

Our paraphrasing algorithm combines syntactic information (which is inherent in MSA)
and a measure of semantic similarity to find equivalent event descriptions. The semantic
similarity measure we currently use is hand-crafted for our specific purpose, and solely
relies on WordNet. This measure still is superior to all standard measures we tried
(word overlap, standard vector space models). Vector space models are usually superior
to most other semantic similarity approaches, but in our case, their main problem lies
in scenario-specific paraphrases: e.g. the phrases open the door and open the washing
machine are generally not paraphrases, but they are exchangeable within the do laundry

scenario. This is a common phenomenon in event sequence descriptions, which generic
domain-independent vector space models cannot capture. As a consequence, a state-of-
the-art vector model trained on a large newspaper corpus (Thater et al., 2011) performed
much worse than our hand-crafted measure based on WordNet.

The set of ESDs we have for one scenario is too small to serve as a training corpus for

7M. Sc. Thesis by David Przybilla, ongoing.
8Lea Frermann (2013): Generative Modeling of Script Knowledge. M.Sc. Thesis.

156 Tying up some Loose Ends

vector models on its own. To tune vector models to recognize scenario-specific sim-
ilarities, we are working on a way to incorporate scenario-specific training corpora.9

We have already collected such corpora from the web, using specific search terms from
ESDs to retrieve scenario-specific documents. The resulting collection is ranked accord-
ing to the documents’ scenario-specificity. In ongoing work, we use such corpora to
develop scenario-specific vector space models. The remaining steps are preprocessing
of the noisy web documents to extract the actual textual content, and finally training a
vector space model with the cleaned corpora.

A game interface for paraphrasing

With regard to a large-scale data collection, we decided to additionally try an alternative
and rather direct approach to event paraphrasing: within the online game for data
collection, we developed a second game part that integrates paraphrase annotation into
the game.10 In the pirate game story, the pirates are allowed to go on a pirate mission
(with shooting and plundering) from time to time. In the actual interface, two players
are playing collaboratively in a shooter. The players have two types of “weapons”: one
missile is destructive (a bomb or a sword), and the other one fixes things together (a
lock). The players synchronously see the same pairs of sentences moving vertically over
the screen, and they have to shoot at a chain between each sentence pair (cf. Figure
9.2). If they hit the chain with the bomb, the chain will break, which means that the
two sentences aren’t paraphrases. If they shoot using the lock, the chain will be fixed
together, meaning that the sentences are paraphrases.

The players earn points for each annotation decision they agree on (i.e. if they use the
same weapon on the same sentence pair). In order to evaluate the players’ reliability and
to avoid frauds, we also add pairs from a pre-annotated gold standard and compare the
gold annotation with the player decision.

This game setup doesn’t allow for comprehensively annotating big datasets. We can,
however, try to select the event description pairs carefully, such that we get direct anno-
tations for particularly difficult cases. To realize such a selection process, we could e.g.
consider this task as an active learning problem (see Settles (2012) for a survey). Before
the game can be released, we have to overcome the same stability issues that we have
for the data collection game’s multiplayer mode. Further we want to develop a fallback
single-player mode for the paraphrasing shooter, too - but at this point in time, it is not
clear how we can realize this.

9Carolyn Ladda (2012): Automatic Acquisition of Scenario-Specific Corpora. B.Sc. Thesis.
10Student project by Carolin Shihadeh, Jonas Sunde and Marc Schmit.

9.2 Optimizing Event Paraphrasing 157

Figure 9.2: Screenshot of the shooter game interface for annotating paraphrases.

158 Tying up some Loose Ends

1. buy dog food
2. open can
3. put meat into bowl
4. call the dog
5. trash can
6. fill water bowl
7. watch dog eating

1. take food from cupboard
2. open food container
3. scoop food in dog dish
4. call dog
5. put water in bowl
6. dump empty food container
7. dog eats

Figure 9.3: Event paraphrases in two sequences of the feeding a dog scenario.

9.3 Advanced Script Models

Using sets of equivalent event descriptions as a proxy for events enables the generaliza-
tion over the information from the input data: we can mine events with their possible
realizations and valid temporal ordering constraints over them. In the approach de-
scribed earlier (cf. Chapter 4), we introduce temporal script graphs to model scripts.
Temporal script graphs contain sets of event paraphrases as event representations and
partial temporal ordering constraints between the events. We decided to use this kind
of representation because it is very robust towards mistakes in the paraphrasing step.
However, after computing event paraphrases from the input event sequence descrip-
tions, we can also straight-forwardly compute more complex models.

In general, computing more advanced script representation starts with translating the
input sequences of event descriptions into sequences of events, simply by replacing each
event description with the set of all its paraphrases (obtained in the event paraphrasing
step). From these translated sequences, we can then compute arbitrary compact repre-
sentations. As a rule of thumb, the robustness of a modeling approach decreases with
the complexity of the final representation.

The general problem of mining patterns in general, and graphs in particular, from or-
dered sequences is a well-researched topic in computer science (cf. Mabroukeh & Ezeife
(2010) for an overview). Finite state automata and business process models are two
standard ways to represent groups of sequences, but have never been interpreted as
script representations before. In this section we show how these representations can be
applied as script representations, each with its own advantages and disadvantages.

Finite State Machines

Finite state machines (Rabin & Scott, 1959) are well-researched data structures for rep-
resenting regular languages. A finite state automaton (FSA) consists of an alphabet, a

9.3 Advanced Script Models 159

buy dog food

put m
eat into bow

l
scoop food in dog dish

open can
open food container

take food from
 cupboard

dog eats
w

atch dog eating
call the dog
call dog

start

dum
p em

pty food container
trash can

dum
p em

pty food container
trash can fill w

ater bow
l

put w
ater in bow

l

fill w
ater bow

l
put w

ater in bow
l

end

Figure
9.4:A

finite
state

autom
aton

for
f
e
e
d

i
n

g
a

d
o

g.

160 Tying up some Loose Ends

finite set of states with one start state and several final states, and a transition function
that defines valid transitions between pairs of states if a certain element of the language
is encountered. The language produced by an automaton is the set of words (= concate-
nations of alphabet elements) that one can extract by traversing all valid paths from the
start state to an end state.

Apart from representing (possibly infinite) regular languages, automata can also natu-
rally be used to capture a finite set of sequences. A sample FSA that captures the two
sequences for feeding a dog from Figure 9.3 (repeating Figure 1.7) is shown in Figure
9.4. The event description sets are the FSA’s alphabet (indicated by the same colors as
were used in Figure 9.3), and transitions mark the event ordering.

In order to display the automaton as an event-based graph, we choose a non-standard
visualization: the states correspond to events and are labelled with their set of possible
realizations. In a standard FSA, the event description sets would be associated with
transitions rather than states. We can trivially translate our equivalent representation
to the standard variant by moving any state label to the incoming transition of its node
and re-naming the states with unique symbols.

The language defined by the example FSA is the set of all event courses we can derive
from its input data. By translating all valid event sequences into actual event sequence
descriptions, we can derive more lexical sequence variants than we put into the FSA:
if we have mined the event paraphrases properly, we can also generate sequences with
new combinations of event descriptions that inherit sequential constraints from the in-
put data (e.g. by exchanging put meat into bowl with scoop food in dog dish in the first
sequence).

If all paraphrases in the sequences are properly resolved, we can mine an adequate FSA
representation of the underlying script by applying standard algorithms. The infor-
mativity of the resulting script representation crucially depends on the accuracy of the
paraphrases: if no paraphrases are recognized at all (= low recall), we can only infer an
automaton that trivially represents the input ESDs. If wrong paraphrases are matched
(= low precision), say, trash empty food container and open food container, this mistake leads
to a FSA with invalid temporal constraints, like open can can happen after put food in dog
dish, and the order of trash can and put food in dog dish would look arbitrary.

Finite state machines are well understood and frequently used in natural language pro-
cessing, e.g. in computational morphology (Beesley & Karttunen, 2003). They are also
extendable to weighted automata, which allows to incorporate probabilities for event
transitions. A probabilistic automaton e.g. could express how likely it is that somebody
washes carrots before he or she peels them. Such information could be highly useful as
prior knowledge for visual action recognition algorithms (cf. Section 9.4).

9.3 Advanced Script Models 161

Business Process Models

Business process mining (BPM) offers more sophisticated techniques and representa-
tions that fit our task of script mining extremely well: BPM aims to recover a business
process from event logs that emerged from execution of the underlying process. Business
processes contain everything we need to represent scripts. They consist of events in a
certain order, participants, pre- and post-conditions for events and overall goals of the
scenario. The mining algorithms developed in this context are tuned to recognize the
most general, suitable process that captures all important structural variants of the input
data.

A business process (or workflow) is a plan defining standardized procedures that a com-
pany executes regularly. One example could be customer orders a book for an online
book seller. Such a process then defines who takes part in the process (e.g. the cus-
tomer, the sales agent, the packing agent, the delivery service), which resources need to
be present (e.g. online interface, book, money) and which events lead to the final goal of
the process (e.g. clicking on a button, initiating the payment process, processing the customer’s
order). Business processes can capture large variance and underspecified constraints,
e.g. the customer can pay immediately or on delivery, or the customer can optionally
add a gift wrapping, and it does not matter in which order the book is retrieved from the
store and the delivery slip is printed.

Consequently, we can model scripts as business processes, and thus also profit from
the well-researched algorithms (de Medeiros et al., 2003; Dongen et al., 2009) and the
available software (van der Aalst et al., 2009) to compute such a business process out of
sequences that instantiate the process.

One possibility for representing business processes are Petri Nets, which can represent
structural variants like alternatives, concurrent events and loops. Figure 9.5 shows an
example workflow representing the two sequences from Figure 1.6. We won’t repeat the
theory of Petri Nets here, because it is not necessary to understand the mechanisms of
the workflow net, but rather give a high-level description of how it works: similar to a
finite state automaton, the net has a start node and a final node. The circles represent
states, the squares are “task nodes”. Arrows represent valid transitions between the
nodes. A process can be executed by “sending” elements through it; in this case, the
protagonist of the scenario (the dog owner) needs to accomplish certain tasks to complete
the process. An execution of the process generates one valid sequence of events that
instantiates the workflow.

There are several core rules for executing the process represented by a workflow net: 1)
everything that comes into a task node will also move out of the node, 2) no task node
can be passed by more than one element at a time, and 3) elements can be split (i.e. split

162 Tying up some Loose Ends

(dogkeeper)

A
N

D
 split

O
R

 split
O

R
 join

A
N

D
 join

start
end

buy dog food

dog eats
w

atch dog eating
put m

eat into bow
l

scoop food in dog dish

open can
open food container

take food from
 cupboard

call the dog
call dog

dum
p em

pty food container
trash can

fill w
ater bow

l
put w

ater in bow
l

Figure
9.5:A

W
orkflow

N
et

for
f
e
e
d

i
n

g
a

d
o

g.

9.4 Applying Script Data for Video Processing 163

into two states) or joined again (if they have been split before). In consequence, the valid
temporal order of tasks can be either linear (like anything between opening the can and
calling the dog), or have alternatives (the protagonist can either buy dog food or get some
from the cupboard), and there can also be events that need to be accomplished in arbitrary
order, like filling the water bowl and trashing the empty food can.

Originally, business processes were designed with completely different objectives than
e.g. the simpler FSAs: they are not simply models of a language, but also a means to
actually execute processes and monitor the state of process completion, and to evaluate
the reasons why processes fail. As such they include a more complex machinery than
is probably necessary for script processing. In comparison to finite state machines,
workflow nets can represent the same “event sequence languages”, which means that
for generating or validating event sequence descriptions, the two are largely equivalent.
However, workflows can directly represent participants, and they offer more compact
structures for visualizing scripts.

From the algorithmic point of view, BPM offers great possibilities and powerful tools for
work with existing algorithms, but using them would require a lot of source data and
perfect algorithms for event and participant paraphrasing.

9.4 Applying Script Data for Video Processing

We have already shown how to ground action descriptions in video data, which leads
to accurate multimodal representations of event semantics (cf. Chapter 7). In addition
to the benefits this has from semantic point of view, the connection of textual script data
and videos can also help visual algorithms. Just like scripts drive humans’ expectations
about upcoming events, they can also serve as prior knowledge that predicts events
in a video: if an algorithm e.g. has recognized a cucumber and a cutting board, script
information can predict that an upcoming action like cut the cucumber or peel the cucumber
some short time after. In combination with probabilities, one could also decide whether
cutting or peeling the cucumber should be expected first.

We have some first results that show how scripts can serve as prior knowledge for
automated action recognition in videos, reported by Rohrbach et al. (2012b). In this
study, we applied event sequence descriptions for so-called “zero-shot recognition” of
complex events. The algorithm infers which scenario (like preparing a cucumber)
is shown in a video, based on objects (e.g. knife, cucumber, cutting board) and low-level
actions (e.g. wash, grate) recognized. In particular, this algorithm can recognize scenarios
in previously unseen contexts (for which “zero shots” were in the training data): the
classifier that recognizes the low-level actions can be trained on other scenarios, because

164 Tying up some Loose Ends

the different objects, ingredients and actions occur in many kitchen-related videos. This
classifier can then be applied to arbitrary videos with similar thematic context, and we
derive the video’s scenario by querying our script data for the recognized actions and
objects.

On the linguistic side, we used TF-IDF values to find out which objects and actions are
most specific for which scenarios. In the example case, we would e.g. extract the prior
knowledge that cucumber is very specific for preparing a cucumber, and grating is also
a good indicator that the video shows how to prepare a cucumber (and not something
that involves a very similar looking zucchini e.g.). If these features are then recognized
by the visual classifier with a certain confidence, the system can pick preparing a cu-
cumber as the best scenario fit.

This scenario recognition algorithm only uses shallow script information and does not
consider ordering constraints or associations of certain participants and events. In fu-
ture work, we plan to use more elaborate script models as prior knowledge for action
recognition.

Chapter 10

Conclusions

This final chapter summarizes the main results of this thesis (Section 10.1) and points to
possible starting points for future work (Section 10.2).

10.1 Main Contributions

In this thesis, we have presented various new techniques and resources for automated
script and event processing. Our results can be divided into two major parts.

The first part of our contributions is centered around a new system architecture for
script mining (Chapter 2 - 6), and provides new solutions for many script mining chal-
lenges. In the second part (Chapter 7 & 8), we have shown two advanced applications
for script data and our script mining algorithms. First, we have demonstrated how to
ground action descriptions in video data to enhance event semantics, and second, how
to apply the script-targeted paraphrasing algorithms to standard texts.

Script mining

Our script-mining architecture first uses crowdsourcing to collect raw script data (cf.
Chapter 3). The crowsdourcing technique is superior to previous approaches that either
collect scripts from a few expert annotators, which does not scale up, or try to learn
script data from texts, which does not yield sufficient results for common sense scenarios
that usually remain implicit. Using Amazon Mechanical Turk, we collected two corpora
with raw script data.

To enable generalization over the raw data, we developed structure-aware paraphras-
ing algorithms for event descriptions (Chapter 4) and participants (Chapter 5). These

166 Conclusions

algorithms treat event sequence descriptions for the same scenario as parallel texts in
a micro domain. For computing paraphrases, our algorithms use the similar sequen-
tial structures of event sequence descriptions as well as semantic similarity information.
For both events and participants, the inclusion of structural information allows us to
compute more accurate paraphrases and match phrases that have low surface similarity,
but are exchangeable within the narrow context of the scenario. Additionally, we have
developed preprocessing techniques that exploit the inherent redundancy of the parallel
data and thus allow the paraphrasing algorithms to be applied to domains of varying
content and language style (Chapter 6).

Applications

For grounding and applying script data, we have taken a multimodal approach and
grounded event descriptions in video data. As a resulting resource, we have presented
the TACoS corpus, which contains videos and synchronized event descriptions. Based
on this corpus, we have developed the first genuinely multimodal model for action
semantics. In an evaluation against human judgments of action similarity, we have
shown that the multimodal model, which combines lexical semantic information with
visual features, significantly outperforms each of the individual modalities in isolation.

As a textual application of our structure-aware paraphrasing algorithms, we showed
how to use discourse information for paraphrasing. We applied the alignment-based
system to monolingual comparable texts which have highly parallel sequential discourse
structures. The outcome is a new type of parallel corpus along with high-quality sen-
tential paraphrases that have high lexical variance. We also showed that the resulting
paraphrases are a good basis for collecting shorter paraphrase fragments, which are
more suitable than sentence pairs for end-to-end applications.

10.2 Outlook

This thesis has answered some fundamental research questions around script process-
ing, which had been open since scripts were invented in the seventies. Chapter 9 has
discussed some ongoing work on extensions that build directly on the work presented
in this thesis. Most importantly, we have shown methods that can produce script collec-
tions with high coverage of scenarios and inner-scenario variants.

For a longer-term perspective, we think that the script mining ideas we introduced will
have a strong impact on a number of applications:

As soon as script representations are available as a comprehensive resource, they can

10.2 Outlook 167

be applied to diverse text understanding applications, like question answering, reso-
lution of bridging anaphora, textual entailment and processing very short texts, such
as microblogs (cf. Section 1.2). Before we can implement full-fledged script-based sys-
tems, there is still some work to do, and there are still some open research questions
to answer. This thesis lays the groundwork for this future work by introducing basic
strategies for mining scripts on a large scale, and by demonstrating their applicability
in several concrete systems.

It is our hope that the ideas and methods we have introduced will enable the integration
of script processing into the massively data-supported natural language processing of
the 21st century.

168 Conclusions

List of Figures

1.1 An illustration of (failed) script knowledge application. 3

1.2 Script knowledge triggered by the scenario in Figure 1.1. 4

1.3 Two road signs illustrating text abbreviation licensed by script knowledge. 5

1.4 A road sign without script knowledge? . 6

1.5 A script for feeding a dog. 10

1.6 Two exemplary event sequence descriptions for feeding a dog. 13

1.7 Event paraphrases in the sequences of Figure 1.6. 14

1.8 Participant paraphrases in the sequences of Figure 1.6. 15

1.9 Action recognition in videos with scripts. 17

1.10 Event description paraphrasing with video data. 18

2.1 The restaurant script in the SAM system, with the customer as an agent. 28

2.2 Event types according to Conceptual Dependency Theory. 29

2.3 Script-based question answering task with the SAM software. 29

2.4 A sketchy script for the demonstration scenario used in the FRUMP system. 30

2.5 Three scripts from ThoughtTreasure . 32

2.6 common sense activities for Alien Abduction and Building a Snowman 33

2.7 Definition of the FrameNet frame commerce buy. 34

2.8 Definition of the scenario frame criminal process. 35

2.9 A narrative schema with 6 events & most strongly associated participants. 37

3.1 The 22 Scenarios for which we collected data on MTurk. 44

3.2 Four ESDs describing the scenario of eating at a fast food restaurant. 45

170 LIST OF FIGURES

3.3 Some examples for sequences we discarded manually. 47

3.4 Evaluation of the baseline and improved spell-checker. 49

3.5 6 cooking ESDs for chopping a cucumber and using a box grater. . . . 60

4.1 Four ESDs describing the scenario of eating at a fast food restaurant. 64

4.2 Two ways to display the rewriting of kitten into witty. 65

4.3 Sequence alignment of two ESDs, paraphrases are indicated with colors. 66

4.4 Two exemplary alignment trees. 69

4.5 A MSA and its corresponding TSG. 72

4.6 Extract from the graph computed for eating in a fast food restaurant. 75

4.7 Event paraphrases for eating in a fast food restaurant. 82

5.1 Annotation interface for participant annotation (step 1 and 2). 94

5.2 Annotation interface for participant annotation (step 3). 95

5.3 Example output of PDSs for the microwave scenario. 100

5.4 Simplified TSG with collapsed participants 100

7.1 TACoS corpus Overview . 112

7.2 Aligning action descriptions with the video. 115

7.3 Illustrated excerpt from the TACoS corpus 116

7.4 ASim: Similarities, their variance, and annotator agreement 120

8.1 System pipeline for paraphrase extraction. 131

8.2 Basic paraphrase fragment extraction. 141

8.3 Dependency-based fragment extraction. 142

9.1 Screenshot of the pirate school game interface for collecting ESDs. 152

9.2 Screenshot of the shooter game interface for annotating paraphrases. . . . 157

9.3 Event paraphrases in two sequences of the feeding a dog scenario. . . . 158

9.4 A finite state automaton for feeding a dog. 159

9.5 A Workflow Net for feeding a dog. 162

List of Tables

3.1 Quantitative corpus statistics grouped by scenario. 51

3.2 The 20 most frequent content words in the corpus. 52

3.3 Sequence-based corpus statistics for all scenarios. 55

3.4 Scenario pairs with the highest & the lowest vocabulary overlap. 57

3.5 Five exemplary scenarios with high lexical and / or structural similarity. 59

4.1 A MSA of four event sequence descriptions. 68

4.2 Verbs with a lower semantic contribution, and a lower α in sim. 71

4.3 Evaluation results for happens-before task . 79

4.4 Evaluation results for paraphrasing task . 80

4.5 Correlation of scenario complexity scores with f-scores 84

5.1 Alignment for the microwave scenario. 87

5.2 Evaluation results for participant mining 98

5.3 Averaged evaluation results for different participant extraction methods . 99

6.1 Evaluation of selectional preference models for pronoun resolution 105

7.1 Top 10 verbs, actions, nouns and participants in the TACoS corpus 117

7.2 Results for textual, visual and multimodal similarity models. 123

7.3 Results for sentences from the same scenario 124

8.1 Average complexity of House summaries and the script ESDs 133

8.2 Excerpt from an alignment table for 5 sample recaps 136

172 LIST OF TABLES

8.3 Results for sentence matching. 139

8.4 Results of paraphrase fragment extraction. 144

8.5 Impact of MSA on fragment extraction. 145

8.6 Example results with aligned sentences and extracted fragments 146

A.1 The 10 most frequent content words for each scenario. 188

A.2 Inter-scenario word type overlap. 189

A.3 Sequence-based word overlap between ESDs of different scenarios. 190

A.4 Changes in predicate reordering after combining two scenarios. 191

Bibliography

van der Aalst, Wil M. P., van Dongen, Boudewijn F., Günther, Christian W., Rozi-
nat, Anne, Verbeek, Eric, & Weijters, Ton. 2009. ProM: The Process Mining Toolkit.
In: BPM (Demos).

Adams, Lea T., & Worden, Patricia E. 1986. Script development and memory organi-
zation in preschool and elementary school children. Discourse Processes, 9(2), 149–166.

von Ahn, Luis, & Dabbish, Laura. 2004. Labeling images with a computer game. In:
Proceedings of SIGCHI 2004.

von Ahn, Luis, Kedia, Mihir, & Blum, Manuel. 2006. Verbosity: a game for collecting
common-sense facts. In: CHI ’06: Proceedings of the SIGCHI conference on Human Factors
in computing systems. New York, NY, USA: ACM.

Althaus, Ernst, Caprara, Alberto, Lenhof, Hans-Peter, & Reinert, Knut. 2002.
Multiple sequence alignment with arbitrary gap costs: Computing an optimal so-
lution using polyhedral combinatorics. In: Proceedings of the European Conference on
Computational Biology.

Althaus, Ernst, Karamanis, Nikiforos, & Koller, Alexander. 2004. Computing
Locally Coherent Discourses. In: Proceedings of ACL 2004.

Bagga, Amit, & Baldwin, Breck. 1998. Algorithms for Scoring Coreference Chains. In:
Proceedings of LREC 1998.

Bagga, Amit, & Baldwin, Breck. 1999. Cross-document event coreference: annotations,
experiments, and observations. In: Proceedings of the Workshop on Coreference and its
Applications.

Baker, Collin F., Fillmore, Charles J., & Lowe, John B. 1998. The Berkeley FrameNet
Project. In: Proceedings of ACL 1998.

Bannard, Colin, & Callison-Burch, Chris. 2005. Paraphrasing with Bilingual Parallel
Corpora. In: Proceedings of ACL 2005.

174 BIBLIOGRAPHY

Barzilay, Regina, & Lapata, Mirella. 2006. Aggregation via Set Partitioning for Nat-
ural Language Generation. In: Proceedings of HLT-NAACL 2006.

Barzilay, Regina, & Lee, Lillian. 2003. Learning to Paraphrase: An Unsupervised
Approach Using Multiple-Sequence Alignment. In: Proceedings of HLT-NAACL 2003.

Barzilay, Regina, & McKeown, Kathleen R. 2001. Extracting Paraphrases from a
Parallel Corpus. In: Proceedings of ACL 2001.

Barzilay, Regina, McKeown, Kathleen, & Elhadad, Michael. 1999. Information
Fusion in the Context of Multi-Document Summarization. In: Proceedings of ACL 1999.

Beesley, K.R., & Karttunen, L. 2003. Finite State Morphology. Studies in Computational
Linguistics, 3. Center for the Study of Language and Information Publica Tion.

Ben Aharon, Roni, Szpektor, Idan, & Dagan, Ido. 2010. Generating Entailment Rules
from FrameNet. Page 241–246 of: Proceedings of the ACL 2010 Conference Short Pa-
pers. Uppsala, Sweden: Association for Computational Linguistics, for Association
for Computational Linguistics.

Berant, Jonathan, Dagan, Ido, & Goldberger, Jacob. 2010. Global learning of focused
entailment graphs. In: Proceedings of ACL 2010.

Berkelaar, Michel, Eikland, Kjell, & Notebaert, Peter. 2004. lp_solve, a Mixed
Integer Linear Programming (MILP) solver Version 5.0. Website.

Bloem, Jelke, Regneri, Michaela, & Thater, Stefan. 2012. Robust processing of noisy
web-collected data. In: Proceedings of KONVENS 2012.

Bruni, Elia, Tran, Giang Binh, & Baroni, Marco. 2011. Distributional semantics from
text and images. In: Proceedings of GEMS 2011.

Buitelaar, P., Buitelaar, P., & Cimiano, P. 2008. Ontology Learning and Population:
Bridging the Gap between Text and Knowledge - Volume 167 Frontiers in Artificial Intelligence
and Applications. Amsterdam, The Netherlands, The Netherlands: IOS Press.

Burger, John D., Henderson, John, Kim, George, & Zarrella, Guido. 2011. Discrim-
inating gender on Twitter. In: Proceedings of EMNLP 2011.

Byrne, W., Khudanpur, S., Kim, W., Kumar, S., Pecina, P., Virga, P., Xu, P., &
Yarowsky, D. 2003. The Johns Hopkins University 2003 Chinese-English machine
translation system. In: In Proceedings of the MT Summit IX.

Cai, Jie, & Strube, Michael. 2010. Evaluation Metrics For End-to-End Coreference
Resolution Systems. In: Proc. of SIGDIAL 2010.

BIBLIOGRAPHY 175

Callison-Burch, Chris. 2008. Syntactic Constraints on Paraphrases Extracted from
Parallel Corpora. Pages 196–205 of: Proceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing. Honolulu, Hawaii: Association for Computational
Linguistics.

Carlson, Lynn, Marcu, Daniel, & Okurowski, Mary Ellen. 2002. RST Discourse
Treebank.

Chamberlain, Jon, Poesio, Massimo, & Kruschwitz, Udo. 2009. A demonstration of
human computation using the Phrase Detectives annotation game. In: KDD Workshop
on Human Computation.

Chambers, Nathanael, & Jurafsky, Dan. 2008a. Jointly combining implicit constraints
improves temporal ordering. In: Proceedings of EMNLP 2008.

Chambers, Nathanael, & Jurafsky, Dan. 2008b. Unsupervised Learning of Narrative
Event Chains. In: Proceedings of ACL 2008: HLT.

Chambers, Nathanael, & Jurafsky, Dan. 2009. Unsupervised Learning of Narrative
Schemas and their Participants. In: Proceedings of ACL-IJCNLP 2009.

Chambers, Nathanael, Wang, Shan, & Jurafsky, Dan. 2007. Classifying temporal re-
lations between events. In: Proceedings of ACL 2007: Interactive Poster and Demonstration
Sessions.

Charniak, E., & Elsner, M. 2009. EM works for pronoun anaphora resolution. Pages
148–156 of: Proceedings of EACL. Association for Computational Linguistics.

Chen, David L., & Dolan, William B. 2011. Collecting Highly Parallel Data for Para-
phrase Evaluation. In: Proceedings of ACL 2011.

Cohen, Jacob. 1960. A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, 20(1), 37.

Cour, Timothee, Jordan, Chris, Miltsakaki, Eleni, & Taskar, Ben. 2008.
Movie/Script: Alignment and Parsing of Video and Text Transcription. In: Computer
Vision – ECCV 2008. Springer Berlin Heidelberg.

Coyne, Bob, Rambow, Owen, Hirschberg, Julia, & Sproat, Richard. 2010. Frame
semantics in text-to-scene generation. In: Proceedings of the 14th international conference
on Knowledge-based and intelligent information and engineering systems: Part IV.

Coyne, Robert, & Rambow, Owen. 2009. LexPar: A Freely Available English Paraphrase
Lexicon Automatically Extracted from FrameNet. In: Proceedings of the Third IEEE
International Conference on Semantic Computing (ICSC 2009).

176 BIBLIOGRAPHY

Cullingford, R. 1981. SAM. Pages 75–119 of: Schank, R. C., & Riesbeck, C. K. (eds),
Inside Computer Understanding: Five Programs Plus Miniatures. Hillsdale, NJ: Erlbaum.

Dagan, Ido, Glickman, Oren, & Magnini, Bernardo. 2005. The PASCAL Recognising
Textual Entailment Challenge. In: Proceedings of MLCW 2005.

Dahl, Deborah A., Bates, Madeleine, Brown, Michael, Fisher, William, Hunicke-
Smith, Kate, Pallett, David, Pao, Christine, Rudnicky, Alexander, & Shriberg,
Elizabeth. 1994. Expanding the scope of the ATIS task: the ATIS-3 corpus. In:
Proceedings of the HLT-94. HLT ’94.

Das, D., & Smith, N. A. 2009. Paraphrase identification as probabilistic quasi-
synchronous recognition. In: Proceedings of ACL-IJCNLP 2009.

DeJong, Gerald F. 1982. An Overview of the FRUMP System. Pages 149–176 of: Lehn-
ert, Wendy G., & Ringle, Martin H. (eds), Strategies for Natural Language Processing.
Hillsdale, NJ: Lawrence Erlbaum.

Deléger, Louise, & Zweigenbaum, Pierre. 2009. Extracting Lay Paraphrases of Spe-
cialized Expressions from Monolingual Comparable Medical Corpora. In: Proceedings
of the ACL-IJCNLP BUCC-2009 Workshop.

Denis, Pascal, & Baldridge, Jason. 2007. Joint Determination of Anaphoricity and
Coreference Resolution using Integer Programming. In: Proceedings of HLT-NAACL
2007.

Dodge, Jesse, Goyal, Amit, Han, Xufeng, Mensch, Alyssa, Mitchell, Margaret,
Stratos, Karl, Yamaguchi, Kota, Choi, Yejin, III, Hal Daumé, Berg, Alexan-
der C., & Berg, Tamara L. 2012. Detecting Visual Text. Pages 762–772 of: HLT-NAACL.

Dolan, Bill, Quirk, Chris, & Brockett, Chris. 2004. Unsupervised Construction of
Large Paraphrase Corpora: Exploiting Massively Parallel News Sources. In: Proceed-
ings of COLING.

Dolan, W. B., & Brockett, C. 2005. Automatically constructing a corpus of sentential
paraphrases. In: Proceedings of the 3rd International Workshop on Paraphrasing.

Dongen, B.F., Alves de Medeiros, A.K., & Wen, L. 2009. Process Mining: Overview and
Outlook of Petri Net Discovery Algorithms. Pages 225–242 of: Jensen, Kurt, & Aalst,
WilM.P. (eds), Transactions on Petri Nets and Other Models of Concurrency II. Lecture
Notes in Computer Science, vol. 5460. Springer Berlin Heidelberg.

Durbin, Richard, Eddy, Sean, Krogh, Anders, & Mitchison, Graeme. 1998. Biological
Sequence Analysis. Cambridge University Press.

BIBLIOGRAPHY 177

Edgington, Eugene S. 1986. Randomization tests. New York, NY, USA: Marcel Dekker,
Inc.

Ellsworth, Michael, & Janin, Adam. 2007. Mutaphrase: Paraphrasing with
FrameNet. In: Proceedings of the Workshop on Textual Entailment and Paraphrasing.
Prague: Association for Computational Linguistics, for Association for Computational
Linguistics.

Elsner, Micha, & Charniak, Eugene. 2010. The same-head heuristic for coreference.
Pages 33–37 of: Proceedings of the ACL 2010 Conference Short Papers. ACLShort ’10.
Stroudsburg, PA, USA: Association for Computational Linguistics.

Erk, Katrin, & McCarthy, Diana. 2009. Graded Word Sense Assignment. In: Proceed-
ings of EMNLP 2009.

Erk, Katrin, McCarthy, Diana, & Gaylord, Nicholas. 2009. Investigations on Word
Senses and Word Usages. In: Proceedings of ACL/AFNLP 2009.

Erk, Katrin, McCarthy, Diana, & Gaylord, Nick. 2012. Measuring Word Meaning in
Context. CL.

Fellbaum, Christiane. 1998. WordNet: An Electronical Lexical Database. Cambridge, MA:
The MIT Press.

Feng, Yansong, & Lapata, Mirella. 2010. Visual Information in Semantic Representa-
tion. In: Proceedings of HLT-NAACL 2010.

Fillmore, Charles J., & Baker, Collin F. 2001. Frame Semantics for Text Under-
standing. In: Proceedings of WordNet and Other Lexical Resources Workshop. Pittsburgh:
NAACL, for NAACL.

Finkel, Jenny Rose, & Manning, Christopher D. 2008. Enforcing transitivity in coref-
erence resolution. In: Proceedings of ACL 2008: HLT.

Finlayson, Marc A. 2009. Deriving Narrative Morphologies via Analogical Story Merg-
ing. New Frontiers in Analogy Research.

Flake, Gary W., Tarjan, Robert E., & Tsioutsiouliklis, Kostas. 2004. Graph Cluster-
ing and Minimum Cut Trees. Internet Mathematics, 1(4).

Fort, Karën, Adda, Gilles, & Cohen, K. Bretonnel. 2011. Amazon Mechanical Turk:
Gold Mine or Coal Mine? Computational Linguistics, 37(2), 413–420.

Francis, W. N., & Kucera, H. 1979. Manual of Information to Accompany a Standard Corpus
of Present-Day Edited American English, for use with Digital Computers. Department of
Linguistic, Brown University.

178 BIBLIOGRAPHY

Gale, William A., Church, Kenneth W., & Yarowsky, David. 1992. One sense per
discourse. In: Proceedings of the workshop on Speech and Natural Language.

Ganitkevitch, Juri, Callison-Burch, Chris, Napoles, Courtney, & Van Durme,
Benjamin. 2011. Learning Sentential Paraphrases from Bilingual Parallel Corpora for
Text-to-Text Generation. Pages 1168–1179 of: Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing. Edinburgh, Scotland, UK.: Association
for Computational Linguistics.

Ganitkevitch, Juri, VanDurme, Benjamin, & Callison-Burch, Chris. 2013. PPDB:
The Paraphrase Database. In: Proceedings of NAACL 2013.

Gardent, Claire, & Striegnitz, Kristina. 2001. Generating Indirect Anaphora. In:
Proceedings of IWCS-4.

Gillick, Dan. 2009. Sentence boundary detection and the problem with the U.S. Pages
241–244 of: Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, Compan-
ion Volume: Short Papers. NAACL-Short ’09. Stroudsburg, PA, USA: Association for
Computational Linguistics.

Glenberg, A. M. 2002. Grounding language in action. Psychonomic Bulletin & Review.

Gordon, Andrew S. 2001. Browsing image collections with representations of common-
sense activities. JASIST, 52(11).

Gordon, Andrew S., & Swanson, Reid. 2009 (May). Identifying Personal Stories in
Millions of Weblog Entries. In: Third International Conference on Weblogs and Social
Media, Data Challenge Workshop.

Graesser, Arthur C., Gordon, Sallie E., & Sawyer, John D. 1979. Recognition mem-
ory for typical and atypical actions in scripted activities: Tests of a script pointer + tag
hypothesis. Journal of Verbal Learning and Verbal Behavior, 18(3), 319 – 332.

Gupta, Abhinav, Srinivasan, Praveen, Shi, Jianbo, & Davis, Larry S. 2009. Under-
standing videos, constructing plots learning a visually grounded storyline model from
annotated videos. In: Proceedings of CVPR 2009.

Gupta, Sonal, & Mooney, Raymond J. 2010 (July). Using Closed Captions as Super-
vision for Video Activity Recognition. Pages 1083–1088 of: Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence (AAAI-2010).

Hajishirzi, Hannaneh, & Mueller, Erik T. 2012. Question Answering in Natural
Language Narratives Using Symbolic Probabilistic Reasoning. In: FLAIRS Conference.

BIBLIOGRAPHY 179

Heilman, Michael, & Smith, Noah A. 2010. Tree Edit Models for Recognizing Textual
Entailments, Paraphrases, and Answers to Questions. Pages 1011–1019 of: Proceedings
of NAACL-HLT.

Higgins, Desmond G., & Sharp, Paul M. 1988. CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer. Gene, 73(1).

Howell, Steve R., Jankowicz, Damian, & Becker, Suzanna. 2005. A model of
grounded language acquisition: Sensorimotor features improve lexical and grammat-
ical learning. JML.

Hudson, Judith A., Fivush, Robyn, & Kuebli, Janet. 1992. Scripts and episodes: The
development of event memory. Applied Cognitive Psychology, 6(6), 483–505.

Jones, Dominic R., & Thompson, Cynthia A. 2003. Identifying events using similarity
and context. In: Proceedings of CoNNL-2003.

Klein, Dan, & Manning, Christopher D. 2003. Accurate unlexicalized parsing. In:
Proceedings of ACL 2003.

Kolomiyets, Oleksandr, & Moens, Marie-Francine. 2011. A survey on question
answering technology from an information retrieval perspective. Information Sciences,
181(24), 5412 – 5434.

Lee, Heeyoung, Peirsman, Yves, Chang, Angel, Chambers, Nathanael, Surdeanu,
Mihai, & Jurafsky, Dan. 2011. Stanford’s Multi-Pass Sieve Coreference Resolution
System at the CoNLL-2011 Shared Task. In: Proceedings of the CoNLL-2011 Shared Task.

Lee, Heeyoung, Recasens, Marta, Chang, Angel, Surdeanu, Mihai, & Jurafsky,
Dan. 2012. Joint Entity and Event Coreference Resolution across Documents. In:
Proceedings of EMNLP-CoNLL 2012.

Lin, Dekang. 1998. An Information-Theoretic Definition of Similarity. Pages 296–304 of:
ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Lin, Dekang, & Pantel, Patrick. 2001. DIRT - Discovery of Inference Rules from Text.
In: Proceedings of the ACM SIGKDD.

Lytinen, Steven L. 1992. Conceptual dependency and its descendants. Computers &
Mathematics with Applications, 23(2–5), 51 – 73.

Mabroukeh, Nizar R., & Ezeife, C. I. 2010. A taxonomy of sequential pattern mining
algorithms. ACM Computing Surveys (CSUR), 43(1).

180 BIBLIOGRAPHY

Manshadi, Mehdi, Swanson, Reid, & Gordon, Andrew S. 2008. Learning a Proba-
bilistic Model of Event Sequences from Internet Weblog Stories. In: Proceedings of the
21st FLAIRS Conference.

Marcus, Mitchell P., Marcinkiewicz, Mary Ann, & Santorini, Beatrice. 1993.
Building a large annotated corpus of English: the penn treebank. Comput. Linguist.,
19.

Marton, Yuval, Callison-Burch, Chris, & Resnik, Philip. 2009. Improved Statistical
Machine Translation Using Monolingually-Derived Paraphrases. Pages 381–390 of:
EMNLP.

Mathe, S., Fazly, A., Dickinson, S., & Stevenson, S. 2008. Learning the abstract motion
semantics of verbs from captioned videos. In: Proceedings of SLAM08.

McTear, Michael. 1987. The Articulate Computer. Cambridge, MA, USA: Blackwell
Publishers, Inc.

de Medeiros, A.K.A., van der Aalst, W.M.P., & Weijters, A. J. M. M. 2003. Workflow
Mining: Current Status and Future Directions. In: On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes in Computer
ScienceSpringer-Verlag, for Springer-Verlag.

Métais, Elisabeth, Meziane, Farid, Saraee, Mohamad, Sugumaran, Vijayan,
Vadera, Sunil, Bach, NgoXuan, Minh, Nguyen, & Shimazu, Akira. 2013. Lecture
Notes in Computer Science. Vol. 7934. Springer Berlin Heidelberg. Pages 65–76.

Minsky, M.L. 1974. A Framework for Representing Knowledge. Artificial intelligence memo.
Defense Technical Information Center.

Mooney, Raymond J. 1990. Learning Plan Schemata From Observation: Explanation-
Based Learning for Plan Recognition. Cognitive Science, 14(4).

Motwani, Tanvi S., & Mooney, Raymond J. 2012 (August). Improving Video Activity
Recognition using Object Recognition and Text Mining. Pages 600–605 of: Proceedings
of the 20th European Conference on Artificial Intelligence (ECAI-2012).

Mueller, Erik T. 1998. Natural Language Processing with Thought Treasure. Signiform.

Mueller, Erik T. 2000. A database and lexicon of scripts for thoughttreasure. Computing
Research Repository (CoRR), 2000, Article No. 0003004.

Munteanu, Dragos Stefan, & Marcu, Daniel. 2006. Extracting Parallel Sub-Sentential
Fragments from Non-Parallel Corpora. In: Proceedings of ACL.

BIBLIOGRAPHY 181

Narayanan, Srini, & Harabagiu, Sanda M. 2004. Question Answering Based on Se-
mantic Structures. In: COLING.

Navigli, Roberto. 2009. Word sense disambiguation: A survey. ACM Computing Surveys
(CSUR), 41(2), 10:1–10:69.

Needleman, Saul B., & Wunsch, Christian D. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3).

Noack, Andreas. 2007. Energy Models for Graph Clustering. J. Graph Algorithms Appl.,
11(2), 453–480.

Och, Franz Josef, & Ney, Hermann. 2003. A Systematic Comparison of Various Statis-
tical Alignment Models. Computational Linguistics, 29(1).

Orkin, Jeff, & Roy, Deb. 2009. Automatic learning and generation of social behavior
from collective human gameplay. In: AAMAS ’09: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems.

Pak, Alexander, & Paroubek, Patrick. 2010. Twitter as a Corpus for Sentiment Analy-
sis and Opinion Mining. In: Chair), Nicoletta Calzolari (Conference, Choukri,
Khalid, Maegaard, Bente, Mariani, Joseph, Odijk, Jan, Piperidis, Stelios, Ros-
ner, Mike, & Tapias, Daniel (eds), Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10). Valletta, Malta: European Language
Resources Association (ELRA).

Palmer, M.S., Gildea, D., & Xue, N. 2010. Semantic Role Labeling. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers.

Papineni, Kishore, Roukos, Salim, Ward, Todd, & Zhu, Wei-Jing. 2002. BLEU: a
method for automatic evaluation of machine translation. In: Proceedings of ACL.

Pennacchiotti, Marco, & Popescu, Ana-Maria. 2011. Democrats, republicans and
starbucks afficionados: user classification in twitter. Pages 430–438 of: Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery and data mining.
KDD ’11. New York, NY, USA: ACM.

Quirk, Chris, Brockett, Chris, & Dolan, William B. 2004. Monolingual Machine
Translation for Paraphrase Generation. In: Proceedings of the 2004 Conference on Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing.

182 BIBLIOGRAPHY

Quirk, Chris, Udupa, Raghavendra, & Menezes, Arul. 2007. Generative Models of
Noisy Translations with Applications to Parallel Fragment Extraction. In: Proceedings
of MT Summit XI.

Rabin, M. O., & Scott, D. 1959. Finite automata and their decision problems. IBM J.
Res. Dev., 3(2), 114–125.

Raghunathan, Karthik, Lee, Heeyoung, Rangarajan, Sudarshan, Chambers,
Nathanael, Surdeanu, Mihai, Jurafsky, Dan, & Manning, Christopher. 2010.
A multi-pass sieve for coreference resolution. Pages 492–501 of: Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing. EMNLP ’10. Strouds-
burg, PA, USA: Association for Computational Linguistics.

Raskin, Victor. 1985. Semantic mechanisms of humor. Synthese language library ; 24.
Dordrecht [u.a.]: Reidel.

Rau, Lisa F., Jacobs, Paul S., & Zernik, Uri. 1989. Information extraction and text sum-
marization using linguistic knowledge acquisition. Information Processing and Manage-
ment, 25(4), 419 – 428.

Reckman, Hilke, Orkin, Jeff, & Roy, Deb. 2011. Extracting aspects of determiner mean-
ing from dialogue in a virtual world environment. In: Proceedings of CCS 2011. IWCS
’11.

Regneri, Michaela, & Wang, Rui. 2012. Using Discourse Information for Paraphrase
Extraction. In: Proceedings of EMNLP-CoNLL 2012.

Regneri, Michaela, Koller, Alexander, & Pinkal, Manfred. 2010. Learning Script
Knowledge with Web Experiments. In: Proceedings of ACL 2010.

Regneri, Michaela, Koller, Alexander, Ruppenhofer, Josef, & Pinkal, Manfred.
2011. Learning Script Participants from Unlabeled Data. In: Proceedings of RANLP
2011.

Regneri, Michaela, Rohrbach, Marcus, Wetzel, Dominikus, Thater, Stefan,
Schiele, Bernt, & Pinkal, Manfred. 2013. Grounding Action Descriptions in Videos.
Transactions of the Association for Computational Linguistics (TACL), 1, 25–36.

Rohrbach, Marcus, Stark, Michael, Szarvas, György, Gurevych, Iryna, & Schiele,
Bernt. 2010. What Helps Where – And Why? Semantic Relatedness for Knowledge
Transfer. In: CVPR.

Rohrbach, Marcus, Amin, Sikandar, Andriluka, Mykhaylo, & Schiele, Bernt.
2012a. A Database for Fine Grained Activity Detection of Cooking Activities. In:
Proceedings of CVPR 2012.

BIBLIOGRAPHY 183

Rohrbach, Marcus, Regneri, Michaela, Andriluka, Micha, Amin, Sikandar,
Pinkal, Manfred, & Schiele, Bernt. 2012b. Script Data for Attribute-based Recog-
nition of Composite Activities. In: Proceedings of ECCV 2012.

Ruiz, Eduardo J., Hristidis, Vagelis, Castillo, Carlos, Gionis, Aristides, & Jaimes,
Alejandro. 2012. Correlating financial time series with micro-blogging activity. Pages
513–522 of: Proceedings of the fifth ACM international conference on Web search and data
mining. WSDM ’12. New York, NY, USA: ACM.

Schank, R.C., Treusch, B., Lestuzzi, F., Rova, S., Goldman, N.M., Riesbeck, C.K.,
Charniak, E., Debiasi, G.B., Mioni, A.M., Galassi, R., et al. 1974. Working Papers:
Causality and reasoning. Working Papers. Istituto per gli Studi Semantici e Cognitivi.

Schank, Roger C. 1999. Dynamic memory revisited. Cambridge [u.a.]: Cambridge Univ.
Press.

Schank, Roger C., & Abelson, Robert P. 1975. Scripts, plans, and knowledge. Pages
151–157 of: Proceedings of the 4th international joint conference on Artificial intelligence -
Volume 1. IJCAI’75. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Schank, Roger C., & Abelson, Robert P. 1977. Scripts, Plans, Goals and Understanding.
Hillsdale, NJ: Lawrence Erlbaum.

Schank, Roger C., & Riesbeck, Christopher K. (eds). 1981. Inside Computer Under-
standing: Five Programs Plus Miniatures. Hillsdale, NJ: Erlbaum.

Schierle, M., Schulz, S., & Ackermann, M. 2008. From spelling correction to text
cleaning–using context information. Data Analysis, Machine Learning and Applications,
397–404.

Seitz, Aaron R, & Watanabe, Takeo. 2009. The phenomenon of task-irrelevant percep-
tual learning. Vision Res, 49(21), 2604–10.

Settles, Burr. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers.

Shen, Dan, & Lapata, Mirella. 2007. Using Semantic Roles to Improve Question
Answering. Pages 12–21 of: Proceedings of EMNLP-CoNLL 2007.

Shinyama, Yusuke, & Sekine, Satoshi. 2003. Paraphrase acquisition for information
extraction. In: Proc. of the ACL PARAPHRASE ’03 Workshop.

Shinyama, Yusuke, Sekine, Satoshi, & Sudo, Kiyoshi. 2002. Automatic paraphrase
acquisition from news articles. In: Proc. of HLT 2002.

184 BIBLIOGRAPHY

Silberer, Carina, & Lapata, Mirella. 2012. Grounded Models of Semantic Represen-
tation. In: Proceedings of EMNLP-CoNLL 2012.

Singh, Push, Lin, Thomas, Mueller, Erik T., Lim, Grace, Perkins, Travell, & Zhu,
Wan L. 2002. Open Mind Common Sense: Knowledge Acquisition from the General
Public. In: On the Move to Meaningful Internet Systems - DOA, CoopIS and ODBASE
2002. London, UK: Springer-Verlag.

Smith, Dustin, & Arnold, Kenneth C. 2009. Learning hierarchical plans by reading
simple English narratives. In: Proceedings of the Commonsense Workshop at IUI-09.

Snow, Rion, O’Connor, Brendan, Jurafsky, Daniel, & Ng, Andrew Y. 2008. Cheap
and fast—but is it good?: evaluating non-expert annotations for natural language
tasks. In: Proceedings of EMNLP 2008.

Stefanowitsch, A., & Gries, S.T. 2006. Corpus-based Approaches to Metaphor And
Metonymy. Mouton select. Mouton de Gruyter.

Steyvers, Mark. 2010. Combining feature norms and text data with topic models. Acta
Psychologica, 133(3), 234 – 243.

Suchanek, Fabian M., Kasneci, Gjergji, & Weikum, Gerhard. 2007. Yago: A Core of
Semantic Knowledge. In: 16th international World Wide Web conference (WWW 2007).
New York, NY, USA: ACM Press.

Swallow, Khena M, & Zacks, Jeffrey M. 2008. Sequences learned without awareness
can orient attention during the perception of human activity. Psychon Bull Rev, 15(1),
116–22.

Swanson, Reid, & Gordon, Andrew S. 2008. Say Anything: A Massively Collaborative
Open Domain Story Writing Companion. In: Proceedings of ICIDS 2008.

Szpektor, Idan, Tanev, Hristo, Dagan, Ido, & Coppola, Bonaventura. 2004. Scaling
Web-based Acquisition of Entailment Relations. Pages 41–48 of: Lin, Dekang, & Wu,
Dekai (eds), Proceedings of EMNLP 2004. Barcelona, Spain: Association for Computa-
tional Linguistics.

Thater, Stefan, Fürstenau, Hagen, & Pinkal, Manfred. 2011. Word Meaning in
Context: A Simple and Effective Vector Model. In: Proc. of IJCNLP 2011.

Tomadaki, Eleftheria, & Salway, Andrew. 2005. Matching Verb Attributes for Cross-
Document Event Coreference. In: Proc. of the Interdisciplinary Workshop on the Identifi-
cation and Representation of Verb Features and Verb Classes.

BIBLIOGRAPHY 185

Turney, Peter D., & Pantel, Patrick. 2010. From Frequency to Meaning. Vector Space
Models for Semantics. JAIR.

Tzoukermann, E., Neumann, J., Kosecka, J., Fermuller, C., Perera, I., Ferraro, F.,
Sapp, B., Chaudhry, R., & Singh, G. 2011. Language Models for Semantic Extraction
and Filtering in Video Action Recognition. In: AAAI Workshop on Language-Action Tools
for Cognitive Artificial Agents.

Verberne, Suzan, Boves, Lou, Oostdijk, Nelleke, & Coppen, Peter-Arno. 2010. What
Is Not in the Bag of Words for Why-QA? Computational Linguistics, 36(2).

Vondrick, Carl, Patterson, Donald, & Ramanan, Deva. 2012. Efficiently Scaling up
Crowdsourced Video Annotation. IJCV.

Wang, Heng, Kläser, Alexander, Schmid, Cordelia, & Liu, Cheng-Lin. 2011. Action
Recognition by Dense Trajectories. In: Proceedings of CVPR 2011.

Wang, Rui, & Callison-Burch, Chris. 2011. Paraphrase Fragment Extraction from
Monolingual Comparable Corpora. In: Proc. of the ACL BUCC-2011 Workshop.

Wolsey, Laurence. 1998. Integer programming. Wiley-Interscience.

Zacks, Jeffrey M, Speer, Nicole K, & Reynolds, Jeremy R. 2009. Segmentation in
reading and film comprehension. Journal of Experimental Psychology: General, 138(2).

Zhao, Shiqi, Wang, Haifeng, Liu, Ting, & Li, Sheng. 2008. Pivot Approach for Ex-
tracting Paraphrase Patterns from Bilingual Corpora. In: Proceedings of ACL.

Zhao, Shiqi, Wang, Haifeng, Lan, Xiang, & Liu, Ting. 2010. Leveraging Multiple MT
Engines for Paraphrase Generation. Pages 1326–1334 of: Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics (Coling 2010). Beijing, China: Coling 2010
Organizing Committee.

186 BIBLIOGRAPHY

Appendix A

Details of the Event Sequence
Corpus

We provide additional analyses of the event sequence description corpus discussed in
Chapter 3:

• Table A.1 shows the the most frequent content words for each scenario. Content
words comprise adjectives, nouns and verbs. The table shows that the content
word lexicon is partially very scenario-specific (e.g. iron), partially shared across
some scenarios (cf. credit card and pay), and partially common to many different
scenarios (e.g. get).

• Table A.2 shows the inter-scenario word overlap for all scenario pairs in a matrix.
All ESDs for a scenario are collapsed to one bag of words here, and the overlap
is calculated on the basis of those bags. (See Chapter 3 for details.) The matrix
is symmetric with respect to the middle diagonal; both halves contain the same
values.

• Table A.3 shows the sequence-based word overlap for all scenario pairs. These
values indicate how well two scenarios blend with respect to the lexical similarity
of their sequences. The matrix is symmetric with respect to the middle diagonal;
both halves contain the same values.

• Table A.4 shows the reordering values for blended scenario pairs. The values show
how well two scenarios blend with respect to structural constraints. The matrix is
asymmetric; the upper right (grey) half shows the expected reordering, in case the
structural constraints of the blended scenarios would not interact at all. The lower
left (white) half shows the actual re-ordering for the blended scenarios, which is
in some cases much higher than expected (marked in bold).

188 Details of the Event Sequence Corpus

r
e

s
t
a

u
r

a
n

t
f
a

s
t

f
o

o
d

r
e

t
u

r
n

f
o

o
d

s
c

r
a

m
b

l
e

d
e

g
g

s
f
l
y

a
i
r

p
o

r
t

c
h

e
c

k-
i
n

t
a

k
e

b
u

s
t
a

k
e

t
r

a
i
n

food
28

food
32

food
27

eggs
68

plane
28

check
23

bus
76

train
43

order
25

order
30

w
aiter

14
pan

44
check

25
get

21
stop

33
ticket

20
leave

19
w

ait
12

new
14

add
30

go
24

go
20

w
ait

24
get

14
w

aiter
16

eat
12

server
12

bow
l

26
flight

19
gate

17
get

24
station

13
w

ait
16

pay
11

w
ait

8
put

22
airport

19
ticket

14
seat

17
destination

10
eat

16
table

8
problem

7
heat

19
ticket

17
w

ait
11

find
12

go
8

m
enu

15
take

7
plate

7
stir

18
board

14
airport

11
go

9
w

ait
7

w
aitress

14
place

7
is

6
get

15
seat

13
luggage

10
pay

8
seat

7
pay

14
m

enu
7

explain
6

salt
14

luggage
13

counter
10

fare
8

platform
7

m
eal

14
look

7
dish

6
cook

14
boarding

13
boarding

9
look

7
find

7

d
r

i
v

i
n

g
l

e
s
s
o

n
i
r

o
n

c
r

e
a

t
e

h
p

t
a

k
e

c
o

p
i
e

s
p

o
s
t

e
r

c
h

i
l

d
h

o
o

d

car
27

iron
75

add
13

copy
36

poster
54

learn
15

instructor
22

board
26

page
12

copies
30

w
all

37
school

8
get

17
put

16
w

eb
10

m
achine

21
tape

14
go

8
driving

11
ironing

16
hom

epage
8

press
18

put
13

w
alk

5
drive

11
turn

15
im

ages
7

select
16

is
10

talk
5

follow
8

shirt
14

content
7

lid
16

use
9

get
5

start
7

set
14

w
rite

6
original

15
m

ake
9

grow
n

3
seat

7
get

14
use

6
start

13
corners

9
friends

3
practice

6
w

ater
13

upload
6

button
13

sure
8

tooth
2

parking
6

plug
11

find
6

num
ber

12
level

7
start

2

g
o

s
h

o
p

p
i
n

g
p
a

y
c

r
e

d
i
t

c
a

r
d

h
a

i
r

c
u

t
w

e
d

d
i
n

g
t
a

k
e

s
h

o
w

e
r

f
i
x

t
i
r

e
c

l
e

a
n

u
p

item
s

39
card

22
card

13
hair

58
bride

38
turn

34
tire

64
clean

19
store

27
w

allet
20

cashier
7

stylist
32

groom
29

w
ater

33
tube

29
floor

16
go

21
get

17
receipt

6
is

22
vow

s
16

get
32

rem
ove

27
dust

12
get

16
cashier

17
credit

6
get

21
aisle

15
w

ash
28

bike
21

vacuum
11

pay
14

credit
15

w
allet

5
pay

18
guests

13
hair

27
put

18
kitchen

10
car

14
take

12
sign

5
cut

18
father

13
body

25
patch

14
put

9
cart

11
receipt

10
w

ait
3

haircut
17

couple
13

rinse
24

w
heel

13
pick

9
look

9
purse

10
take

3
sit

14
rings

12
show

er
22

air
10

w
ash

8
list

9
hand

9
slip

3
w

ait
13

w
edding

11
soap

20
take

8
m

op
8

leave
9

cash
9

put
3

chair
13

enter
11

dry
19

rim
7

furniture
8

Table
A

.1:T
he

10
m

ost
frequent

content
w

ords
(nouns,verbs,adjectives)

for
each

scenario.

189

restaurant

fast food

return food

scrambled eggs

fly

airport check–in

take bus

take train

shopping

pay

credit card

haircut

wedding

take shower

fix tire

clean up

driving lesson

iron

create hp

take copies

poster

childhood

r
e

s
t
a

u
r

a
n

t
•

0.50
0.35

0.18
0.34

0.31
0.36

0.34
0.36

0.37
0.32

0.36
0.28

0.24
0.22

0.19
0.32

0.26
0.26

0.32
0.21

0.23
f
a

s
t

f
o

o
d

0.50
•

0.26
0.19

0.37
0.35

0.35
0.34

0.44
0.41

0.37
0.33

0.25
0.25

0.28
0.27

0.36
0.30

0.21
0.35

0.26
0.22

r
e

t
u

r
n

f
o

o
d

0.35
0.26

•
0.17

0.21
0.23

0.23
0.19

0.24
0.23

0.21
0.29

0.20
0.21

0.21
0.16

0.24
0.22

0.18
0.24

0.18
0.20

s
c

r
a

m
b

l
e

d
e

g
g

s
0.18

0.19
0.17

•
0.18

0.22
0.19

0.18
0.21

0.19
0.14

0.22
0.18

0.30
0.26

0.23
0.20

0.32
0.16

0.27
0.25

0.14
f
l
y

0.34
0.37

0.21
0.18

•
0.48

0.42
0.46

0.36
0.31

0.24
0.29

0.26
0.23

0.23
0.21

0.33
0.23

0.22
0.29

0.24
0.20

a
i
r

p
o

r
t

c
h

e
c

k
i
n

0.31
0.35

0.23
0.22

0.48
•

0.40
0.35

0.35
0.32

0.26
0.35

0.28
0.29

0.26
0.22

0.31
0.26

0.21
0.33

0.27
0.18

t
a

k
e

b
u

s
0.36

0.35
0.23

0.19
0.42

0.40
•

0.47
0.36

0.32
0.22

0.34
0.26

0.29
0.25

0.20
0.31

0.29
0.24

0.31
0.26

0.21
t
a

k
e

t
r

a
i
n

0.34
0.34

0.19
0.18

0.46
0.35

0.47
•

0.36
0.34

0.35
0.32

0.27
0.26

0.26
0.22

0.31
0.26

0.25
0.30

0.23
0.22

s
h

o
p

p
i
n

g
0.36

0.44
0.24

0.21
0.36

0.35
0.36

0.36
•

0.44
0.36

0.36
0.26

0.28
0.26

0.26
0.35

0.31
0.26

0.35
0.28

0.22
p
a

y
0.37

0.41
0.23

0.19
0.31

0.32
0.32

0.34
0.44

•
0.47

0.30
0.21

0.25
0.26

0.22
0.26

0.26
0.27

0.33
0.26

0.19
c

r
e

d
i
t

c
a

r
d

0.32
0.37

0.21
0.14

0.24
0.26

0.22
0.35

0.36
0.47

•
0.24

0.20
0.26

0.20
0.18

0.24
0.22

0.19
0.23

0.20
0.21

h
a

i
r

c
u

t
0.36

0.33
0.29

0.22
0.29

0.35
0.34

0.32
0.36

0.30
0.24

•
0.27

0.33
0.27

0.22
0.36

0.30
0.26

0.34
0.26

0.19
w

e
d

d
i
n

g
0.28

0.25
0.20

0.18
0.26

0.28
0.26

0.27
0.26

0.21
0.20

0.27
•

0.20
0.19

0.16
0.26

0.22
0.19

0.19
0.18

0.16
t
a

k
e

s
h

o
w

e
r

0.24
0.25

0.21
0.30

0.23
0.29

0.29
0.26

0.28
0.25

0.26
0.33

0.20
•

0.26
0.28

0.30
0.35

0.20
0.31

0.27
0.18

f
i
x

t
i
r

e
0.22

0.28
0.21

0.26
0.23

0.26
0.25

0.26
0.26

0.26
0.20

0.27
0.19

0.26
•

0.23
0.26

0.32
0.21

0.31
0.31

0.19
c

l
e

a
n

u
p

0.19
0.27

0.16
0.23

0.21
0.22

0.20
0.22

0.26
0.22

0.18
0.22

0.16
0.28

0.23
•

0.20
0.29

0.17
0.24

0.25
0.15

d
r

i
v

i
n

g
l

e
s
s
o

n
0.32

0.36
0.24

0.20
0.33

0.31
0.31

0.31
0.35

0.26
0.24

0.36
0.26

0.30
0.26

0.20
•

0.30
0.24

0.32
0.23

0.22
i
r

o
n

0.26
0.30

0.22
0.32

0.23
0.26

0.29
0.26

0.31
0.26

0.22
0.30

0.22
0.35

0.32
0.29

0.30
•

0.23
0.36

0.34
0.22

c
r

e
a

t
e

h
p

0.26
0.21

0.18
0.16

0.22
0.21

0.24
0.25

0.26
0.27

0.19
0.26

0.19
0.20

0.21
0.17

0.24
0.23

•
0.26

0.21
0.19

t
a

k
e

c
o

p
i
e

s
0.32

0.35
0.24

0.27
0.29

0.33
0.31

0.30
0.35

0.33
0.23

0.34
0.19

0.31
0.31

0.24
0.32

0.36
0.26

•
0.38

0.19
p

o
s
t

e
r

0.21
0.26

0.18
0.25

0.24
0.27

0.26
0.23

0.28
0.26

0.20
0.26

0.18
0.27

0.31
0.25

0.23
0.34

0.21
0.38

•
0.15

c
h

i
l

d
h

o
o

d
0.23

0.22
0.20

0.14
0.20

0.18
0.21

0.22
0.22

0.19
0.21

0.19
0.16

0.18
0.19

0.15
0.22

0.22
0.19

0.19
0.15

•

Table
A

.2:
Inter-scenario

w
ord

type
overlap.

The
average

overlap
is

0.27.
Particularly

high
values

(>
0.40)

are
m

arked
in

boldface.

190 Details of the Event Sequence Corpus

restaurant

fast food

return food

scrambled eggs

fly

airport check in

take bus

take train

go shopping

pay

credit card

haircut

wedding

take shower

fix tire

clean up

driving lesson

iron

create hp

take copies

poster

childhood

r
e

s
t
a

u
r

a
n

t
•

0.31
0.16

0.06
0.13

0.11
0.17

0.15
0.15

0.10
0.11

0.15
0.08

0.05
0.06

0.04
0.09

0.07
0.07

0.08
0.07

0.09
f
a

s
t

f
o

o
d

0.31
•

0.17
0.08

0.15
0.13

0.19
0.16

0.18
0.13

0.13
0.16

0.08
0.08

0.08
0.07

0.11
0.10

0.09
0.11

0.09
0.11

r
e

t
u

r
n

f
o

o
d

0.16
0.17

•
0.06

0.09
0.08

0.13
0.11

0.10
0.09

0.11
0.11

0.06
0.06

0.08
0.04

0.08
0.07

0.07
0.08

0.08
0.07

s
c

r
a

m
b

l
e

d
e

g
g

s
0.06

0.08
0.06

•
0.08

0.08
0.09

0.08
0.08

0.07
0.08

0.08
0.06

0.12
0.09

0.05
0.09

0.12
0.08

0.09
0.10

0.08
f
l
y

0.13
0.15

0.09
0.08

•
0.27

0.20
0.23

0.16
0.11

0.11
0.13

0.08
0.09

0.08
0.06

0.12
0.12

0.08
0.10

0.10
0.11

a
i
r

p
o

r
t

c
h

e
c

k
i
n

0.11
0.13

0.08
0.08

0.27
•

0.17
0.19

0.14
0.11

0.11
0.12

0.07
0.09

0.07
0.05

0.10
0.10

0.07
0.09

0.09
0.11

t
a

k
e

b
u

s
0.17

0.19
0.13

0.09
0.20

0.17
•

0.25
0.17

0.13
0.13

0.16
0.08

0.13
0.09

0.05
0.13

0.12
0.10

0.11
0.10

0.12
t
a

k
e

t
r

a
i
n

0.15
0.16

0.11
0.08

0.23
0.19

0.25
•

0.17
0.12

0.13
0.13

0.08
0.11

0.09
0.05

0.12
0.11

0.09
0.11

0.10
0.14

g
o

s
h

o
p

p
i
n

g
0.15

0.18
0.10

0.08
0.16

0.14
0.17

0.17
•

0.15
0.16

0.15
0.07

0.09
0.10

0.06
0.14

0.10
0.10

0.12
0.11

0.12
p
a

y
0.10

0.13
0.09

0.07
0.11

0.11
0.13

0.12
0.15

•
0.27

0.09
0.05

0.09
0.09

0.05
0.10

0.08
0.07

0.10
0.08

0.09
c

r
e

d
i
t

c
a

r
d

0.11
0.13

0.11
0.08

0.11
0.11

0.13
0.13

0.16
0.27

•
0.10

0.06
0.08

0.08
0.05

0.09
0.09

0.07
0.09

0.08
0.10

h
a

i
r

c
u

t
0.15

0.16
0.11

0.08
0.13

0.12
0.16

0.13
0.15

0.09
0.10

•
0.07

0.14
0.08

0.05
0.11

0.10
0.07

0.09
0.09

0.11
w

e
d

d
i
n

g
0.08

0.08
0.06

0.06
0.08

0.07
0.08

0.08
0.07

0.05
0.06

0.07
•

0.05
0.04

0.04
0.06

0.06
0.04

0.06
0.06

0.08
t
a

k
e

s
h

o
w

e
r

0.05
0.08

0.06
0.12

0.09
0.09

0.13
0.11

0.09
0.09

0.08
0.14

0.05
•

0.10
0.09

0.11
0.16

0.06
0.09

0.09
0.08

f
i
x

t
i
r

e
0.06

0.08
0.08

0.09
0.08

0.07
0.09

0.09
0.10

0.09
0.08

0.08
0.04

0.10
•

0.05
0.07

0.10
0.06

0.09
0.11

0.06
c

l
e

a
n

u
p

0.04
0.07

0.04
0.05

0.06
0.05

0.05
0.05

0.06
0.05

0.05
0.05

0.04
0.09

0.05
•

0.04
0.08

0.04
0.06

0.06
0.04

d
r

i
v

i
n

g
l

e
s
s
o

n
0.09

0.11
0.08

0.09
0.12

0.10
0.13

0.12
0.14

0.10
0.09

0.11
0.06

0.11
0.07

0.04
•

0.10
0.08

0.09
0.09

0.12
i
r

o
n

0.07
0.10

0.07
0.12

0.12
0.10

0.12
0.11

0.10
0.08

0.09
0.10

0.06
0.16

0.10
0.08

0.10
•

0.07
0.11

0.11
0.08

c
r

e
a

t
e

h
p

0.07
0.09

0.07
0.08

0.08
0.07

0.10
0.09

0.10
0.07

0.07
0.07

0.04
0.06

0.06
0.04

0.08
0.07

•
0.07

0.09
0.07

t
a

k
e

c
o

p
i
e

s
0.08

0.11
0.08

0.09
0.10

0.09
0.11

0.11
0.12

0.10
0.09

0.09
0.06

0.09
0.09

0.06
0.09

0.11
0.07

•
0.10

0.07
p

o
s
t

e
r

0.07
0.09

0.08
0.10

0.10
0.09

0.10
0.10

0.11
0.08

0.08
0.09

0.06
0.09

0.11
0.06

0.09
0.11

0.09
0.10

•
0.08

c
h

i
l

d
h

o
o

d
0.09

0.11
0.07

0.08
0.11

0.11
0.12

0.14
0.12

0.09
0.10

0.11
0.08

0.08
0.06

0.04
0.12

0.08
0.07

0.07
0.08

•

Table
A

.3:Sequence-based
w

ord
overlap

betw
een

ESD
s

ofdifferentscenarios.The
average

overlap
w

ithin
the

sam
e

scenario
is

0.29.Particularly
high

values
(>

0.25)
are

m
arked

in
boldface.

191

restaurant

fast fd.

return food

eggs

fly

airport

bus

train

shop

pay

credit card

haircut

wedding

shower

fix tire

clean

driving

iron

hp

copies

poster

childh.

r
e

s
t
a

u
r

a
n

t
•

0.10
0.09

0.11
0.11

0.13
0.10

0.09
0.12

0.11
0.10

0.11
0.12

0.12
0.10

0.11
0.11

0.10
0.10

0.11
0.09

0.11
f
a

s
t

f
o

o
d

0.14
•

0.08
0.10

0.10
0.12

0.09
0.08

0.11
0.10

0.09
0.10

0.11
0.11

0.09
0.10

0.10
0.09

0.09
0.10

0.08
0.10

r
e

t
u

r
n

f
o

o
d

0.10
0.07

•
0.09

0.08
0.10

0.08
0.07

0.09
0.08

0.08
0.09

0.09
0.09

0.08
0.09

0.08
0.08

0.07
0.08

0.07
0.08

s
c

r
a

m
b

l
e

d
e

g
g

s
0.12

0.12
0.12

•
0.13

0.15
0.12

0.11
0.14

0.13
0.12

0.13
0.14

0.14
0.12

0.13
0.13

0.12
0.12

0.13
0.11

0.13
f
l
y

0.11
0.10

0.09
0.12

•
0.13

0.10
0.09

0.12
0.11

0.10
0.11

0.12
0.12

0.10
0.11

0.11
0.10

0.10
0.11

0.09
0.11

a
i
r

p
o

r
t

c
h

e
c

k
i
n

0.15
0.15

0.14
0.16

0.16
•

0.14
0.13

0.16
0.15

0.14
0.15

0.16
0.16

0.14
0.15

0.15
0.14

0.14
0.15

0.13
0.15

t
a

k
e

b
u

s
0.12

0.09
0.08

0.11
0.10

0.14
•

0.08
0.11

0.10
0.09

0.10
0.11

0.11
0.09

0.10
0.10

0.09
0.09

0.10
0.08

0.10
t
a

k
e

t
r

a
i
n

0.08
0.07

0.04
0.10

0.11
0.13

0.08
•

0.08
0.07

0.07
0.08

0.08
0.08

0.07
0.08

0.07
0.07

0.06
0.07

0.06
0.07

g
o

s
h

o
p

p
i
n

g
0.14

0.13
0.12

0.15
0.13

0.17
0.13

0.11
•

0.13
0.12

0.13
0.14

0.14
0.12

0.13
0.13

0.12
0.12

0.13
0.11

0.13
p
a

y
0.12

0.10
0.10

0.14
0.11

0.17
0.10

0.07
0.15

•
0.11

0.12
0.13

0.13
0.11

0.12
0.12

0.11
0.11

0.12
0.10

0.12
c

r
e

d
i
t

c
a

r
d

0.10
0.08

0.04
0.13

0.10
0.17

0.08
0.04

0.14
0.12

•
0.08

0.09
0.09

0.07
0.08

0.08
0.07

0.07
0.08

0.06
0.08

h
a

i
r

c
u

t
0.13

0.12
0.11

0.13
0.12

0.15
0.11

0.10
0.13

0.12
0.11

•
0.13

0.13
0.11

0.12
0.12

0.11
0.11

0.12
0.10

0.12
w

e
d

d
i
n

g
0.13

0.12
0.12

0.14
0.12

0.16
0.11

0.11
0.15

0.14
0.13

0.13
•

0.14
0.12

0.13
0.13

0.12
0.12

0.13
0.11

0.13
t
a

k
e

s
h

o
w

e
r

0.12
0.12

0.12
0.15

0.12
0.17

0.11
0.10

0.15
0.15

0.13
0.13

0.14
•

0.13
0.14

0.13
0.13

0.12
0.13

0.12
0.13

f
i
x

t
i
r

e
0.10

0.09
0.07

0.13
0.10

0.15
0.09

0.06
0.13

0.11
0.08

0.11
0.12

0.12
•

0.11
0.10

0.10
0.09

0.10
0.09

0.10
c

l
e

a
n

u
p

0.12
0.12

0.11
0.14

0.12
0.16

0.10
0.09

0.14
0.13

0.12
0.12

0.14
0.14

0.12
•

0.12
0.12

0.11
0.12

0.11
0.12

d
r

i
v

i
n

g
l

e
s
s
o

n
0.11

0.10
0.09

0.12
0.11

0.15
0.10

0.08
0.14

0.12
0.10

0.13
0.13

0.13
0.10

0.12
•

0.10
0.10

0.11
0.09

0.11
i
r

o
n

0.10
0.09

0.09
0.13

0.10
0.14

0.09
0.08

0.12
0.11

0.10
0.11

0.12
0.13

0.10
0.11

0.10
•

0.10
0.11

0.09
0.11

c
r

e
a

t
e

h
p

0.09
0.08

0.06
0.12

0.10
0.15

0.08
0.05

0.12
0.10

0.06
0.11

0.12
0.12

0.08
0.11

0.09
0.09

•
0.09

0.07
0.09

t
a

k
e

c
o

p
i
e

s
0.11

0.10
0.09

0.13
0.11

0.15
0.10

0.08
0.14

0.13
0.10

0.12
0.13

0.14
0.11

0.12
0.11

0.10
0.09

•
0.09

0.11
p

o
s
t

e
r

0.09
0.07

0.05
0.11

0.09
0.12

0.08
0.05

0.11
0.09

0.06
0.10

0.11
0.11

0.08
0.10

0.08
0.08

0.06
0.09

•
0.09

c
h

i
l

d
h

o
o

d
0.11

0.09
0.09

0.14
0.11

0.17
0.09

0.06
0.15

0.13
0.11

0.12
0.14

0.15
0.11

0.14
0.11

0.11
0.10

0.11
0.08

•
a

v
e

r
a

g
e

e
x

p
e

c
t

e
d

0.11
0.10

0.08
0.12

0.11
0.14

0.10
0.08

0.12
0.11

0.09
0.11

0.12
0.12

0.10
0.11

0.11
0.10

0.10
0.11

0.09
0.11

a
v

e
r

a
g

e
0.11

0.10
0.09

0.13
0.11

0.15
0.10

0.08
0.14

0.12
0.10

0.12
0.13

0.13
0.10

0.12
0.11

0.11
0.09

0.11
0.09

0.12

Table
A

.4:
C

hange
of

predicate
reordering

after
com

bining
tw

o
scenarios.

The
grey

part
gives

the
expected

reordering
value

(=average
of

both
scenarios);the

w
hite

partlists
the

actualvalues.Som
e

notable
deviances

from
the

expected
value

(>
+

0.02)
are

m
arked

in
boldface,their

corresponding
expected

values
appear

in
italics.

