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Zusamenfassung 
 
 

Im Rahmen des „SecurePhone-Projektes“ wurde ein multimodales System zur 
Benutzerauthentifizierung entwickelt, das auf ein PDA implementiert wurde. Bei der 
vollzogenen Erweiterung dieses Systems wurde der Möglichkeit nachgegangen, die 
Benutzerauthentifizierung durch eine auf biometrischen Parametern (E.: „feature 
enhancement“) basierende Unterscheidung zwischen Sprechern sowie durch eine 
Kombination mehrerer Parameter zu verbessern. 

In der vorliegenden Dissertation wird ein allgemeines Bezugssystem zur Verbesserung 
der Parameter präsentiert, das ein mehrschichtiges neuronales Netz (E.: „MLP: multilayer 
perceptron“) benutzt, um zu einer optimalen Sprecherdiskrimination zu gelangen. 

In einem ersten Schritt wird beim Trainieren des MLPs eine Teilmenge der Sprecher 
(Sprecherbasis) berücksichtigt, um die zugrundeliegenden Charakteristika des 
vorhandenen akustischen Parameterraums darzustellen.  

Am Ende eines zweiten Schrittes steht die Erkenntnis, dass die Größe der verwendeten 
Sprecherbasis die Leistungsfähigkeit eines Sprechererkennungssystems entscheidend 
beeinflussen kann.  

Ein dritter Schritt führt zur Feststellung, dass sich die Selektion der Sprecherbasis 
ebenfalls auf die Leistungsfähigkeit des Systems auswirken kann. Aufgrund dieser 
Beobachtung wird eine automatische Selektionsmethode für die Sprecher auf der Basis 
des maximalen Durchschnittswertes der Zwischenklassenvariation (between-class 
variance) vorgeschlagen. Unter Rückgriff auf verschiedene sprachliche 
Produktionssituationen (Sprachproduktion mit und ohne Hintergrundgeräusche; 
Sprachproduktion beim Telefonieren) wird gezeigt, dass diese Methode die 
Leistungsfähigkeit des Erkennungssystems verbessern kann.  

Auf der Grundlage dieser Ergebnisse wird erwartet, dass sich die hier für die 
Sprechererkennung verwendete Methode auch für andere biometrische Modalitäten als 
sinnvoll erweist. 

Zusätzlich wird in der vorliegenden Dissertation eine alternative Parameterrepräsentation 
vorgeschlagen, die aus der sog. „Sprecher-Stimme-Signatur“ (E.: „SVS: speaker voice 
signature“) abgeleitet wird. Die SVS besteht aus Trajektorien in einem Kohonennetz 
(E.: „SOM: self-organising map“), das den akustischen Raum repräsentiert. Als weiteres 
Ergebnis der Arbeit erweist sich diese Parameterrepräsentation als Ergänzung zu dem 
zugrundeliegenden Parameterset. Deshalb liegt eine Kombination beider Parametersets 
im Sinne einer Verbesserung der Leistungsfähigkeit des Erkennungssystems nahe.  

Am Ende der Arbeit sind schließlich einige potentielle Erweiterungsmöglichkeiten zu den 
vorgestellten Methoden zu finden.   

 
Schlüsselwörter: Feature Enhancement, MLP, SOM, Sprecher-Basis-Selektion, 
Sprechererkennung  
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Abstract 
 
 

In the context of the SecurePhone project, a multimodal user authentication system was 
developed for implementation on a PDA. Extending this system, we investigate biometric 
feature enhancement and multi-feature fusion with the aim of improving user 
authentication accuracy.  

In this dissertation, a general framework for feature enhancement is proposed which 
uses a multilayer perceptron (MLP) to achieve optimal speaker discrimination.  

First, to train this MLP a subset of speakers (speaker basis) is used to represent the 
underlying characteristics of the given acoustic feature space.  

Second, the size of the speaker basis is found to be among the crucial factors affecting 
the performance of a speaker recognition system.  

Third, it is found that the selection of the speaker basis can also influence system 
performance. Based on this observation, an automatic speaker selection approach is 
proposed on the basis of the maximal average between-class variance. Tests in a variety of 
conditions, including clean and noisy as well as telephone speech, show that this approach 
can improve the performance of speaker recognition systems. This approach, which is 
applied here to feature enhancement for speaker recognition, can be expected to also be 
effective with other biometric modalities besides speech.  

Further, an alternative feature representation is proposed in this dissertation, which is 
derived from what we call speaker voice signatures (SVS). These are trajectories in a 
Kohonen self organising map (SOM) which has been trained to represent the acoustic 
space. This feature representation is found to be somewhat complementary to the baseline 
feature set, suggesting that they can be fused to achieve improved performance in speaker 
recognition.  

Finally, this dissertation finishes with a number of potential extensions of the proposed 
approaches. 
 
 
Keywords: feature enhancement, MLP, SOM, speaker basis selection, speaker 
recognition, biometric, authentication, verification 
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Speech and other biometrics 
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1. Introduction 
 
Biometrics are measurements of an individual’s physical and/or behavioural 
characteristics which can be used to determine his or her identity. Typical physical 
biometrics are DNA, iris and fingerprint, while typical behavioural biometrics are gait, 
online signature and voice quality (see Figure 1-1). Among these biometrics some, such 
as DNA and iris pattern, are unchangeable and unique throughout a human life. Others, 
such as body shape, face and voice are more or less changeable as conditions change in 
dependency on age and health, but still contain a lot of information important for the 
differentiation of people’s identities. Biometric identity recognition uses pattern 
recognition techniques to determine a person’s identity on the basis of biometric 
measurements. 
 

Biometric identity recognition is divided into two basic types of techniques: 
identification and verification (also known as authentication). Identification refers to the 
task of determining who a person is within a given group of candidates. Verification is the 
process of ascertaining a claimed identity. The verification decision is a binary one: the 
correctness of the claimed identity is either accepted or rejected. Note that throughout this 
dissertation we adhere to the widely adopted convention that the terms “verification” and 
“authentication” can be used interchangeably and that identification and verification may 
be referred to collectively with the term “recognition”. 

 
Identification and verification have different applications. Whether identification or 

verification is adopted depends on the goal. To use a credit card system, a client biometric 
profile must be verified, i.e. it must be ascertained that the user is the claimed client. 
When several trials to gain access to a credit card system have failed, it may be useful to 
determine the user’s identity in case prosecution for fraud becomes necessary. An 
identification application could possibly be used in this case to select the impostor from a 
large database containing the biometric profiles of suspects. 
 

Biometric recognition approaches are divided into two classes: unimodal and 
multimodal recognition (Figure 1-1). While unimodal recognition uses only one type of 
biometric information to ascertain an identity, multimodal recognition combines multiple 
modalities. 

 
In applications using a highly reliable biometric like DNA a unimodal system is 
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satisfactory. However, the evidence obtained from individual biometric modalities is 
often unreliable. In such a case, multimodal recognition is an alternative approach which 
combines several biometrics to provide stronger supporting evidence for recognition. 
Multimodal approaches represent an emerging trend whose importance may be expected 
to increase in future research on biometric recognition. 

 

 
 

Figure 1-1: Biometric characteristics used for identity recognition 

 
The remainder of Part I is organised as follows: In Chapter 2, the biometrics most 

commonly used for recognition are introduced. Following this, multimodal biometric 
authentication is overviewed in Chapter 3. In Chapter 4 the goals and structure of this 
dissertation are described. 
 

D
N

A

Signature

Voice quality

H
andw

riting

G
ait

Face

Iris scan

Fingprint

Palm
print

B
ody shape

O
dour

H
and geom

etry

Biometric characteristics 

Physical Behavioural 

K
eystrokes



5 

2. Use of biometrics for identity recognition 
 
2.1 Introduction 

 
Biometric features may be physical or behavioural. The first are a direct reflection of a 
person’s anatomical or physiological characteristics, while the latter are learnt or acquired 
over time and are therefore under the control of the individual. The most frequently used 
physical characteristics include DNA, iris, fingerprint, face, palm print, hand geometry, 
odour, body shape and dental radiography. Among the most commonly used behavioural 
characteristics are gait, signature, handwriting and voice quality.  
 

All biometric-based recognition approaches consist of three basic processing steps: 
data acquisition, feature extraction and verification (including feature modelling and 
decision making). In the first step, biometric data are captured with special devices. In the 
second step, biometric features are extracted from the obtained data. In the third step, a 
biometric template or model is constructed and used to recognise an individual’s identity. 
In the following subsections, a general description and an outline of these three 
processing steps are given for each of the commonly used biometrics. 

 
2.2 Physical biometrics 

 
Biometrics can be used for both identification and verification. However, as verification is 
more widely used, the following sections will focus on verification. 

2.2.1 DNA 

DNA (deoxyribonucleic acid) is present in every living cell and has a double helix 
structure (Figure 2-1). All the information required for the growth of an organism from a 
single cell is contained in its DNA. Humans have 23 homologous (“pairs of”) 
chromosomes (a threadlike body in the cell nucleus that carries the genes in a linear 
order), resulting in a total of 46 chromosomes. It has been discovered that 99.7% of 
human DNA is shared by all human beings and that only 0.3% is variable across 
individuals. These variable regions, called “Short Tandem Repeats” (or STRs), may be 
examined to distinguish one person from another (Soltysiak et al. 2005; Commission 
2005). 
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Figure 2-1: Expanded segment of a DNA helix, the right hand side an STR 

 
Methods for DNA analysis and DNA profile generation are well established 

(Hashiyada et al. 2003; Yen 2004; Walsh et al. 1991, Hashiyada, 2004; Demidov et al. 
2004). 

 
Acquisition: In this first step of DNA extraction, DNA is obtained and isolated from the 
DNA sample. The sample is then amplified, i.e. multiple copies of the “target sequences” 
are created, as will be explained below.  
 
Feature Extraction: An STR, also referred to as a “locus”, is composed of a repeated 
DNA sequence that varies in length between individuals. A repeated unit is called an 
“allele”. Each STR possesses 6 to 19 alleles (Hashiyada et al. 2003). The number of 
repeats at each location can be measured during DNA sequencing, one of the steps in 
DNA profiling. To generate the DNA profile, the number of repeats of these STRs are 
obtained and concatenated into a sequence of decimal numbers, this sequence then 
providing an accurate DNA profile. Soltysiak et al. (2005) computed the odds of two 
people sharing the same profile as about one in a trillion when 13 loci are used. Different 
numbers of STRs are used in different countries, depending on the law applied in each 
case. In Japan, for instance, 17 STR loci are used for paternity tests. The Japanese police 
force formally introduced 10 STR loci for crime investigation in August 2003 (Hashiyada, 
2004). At present, the entire procedure takes between 2 and 3 hours (Demidov et al. 
2004). 
 
Verification: This step of DNA authentication is relatively simple, since only the decimal 
numbers are obtained after feature extraction. Therefore template matching can be 
applied efficiently. 

2.2.2 Iris 

The iris is the part of the human eyeball located between the pupil – a black-looking 
aperture which allows light to enter the eye – and the sclera – the white of the eye which 
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forms part of the eyeball’s supporting wall (Figure 2-2). It is a coloured circular muscle 
that controls the size of the pupil to allow different amounts of light to enter the eye 
depending on lighting conditions. It is pigmented, giving each eye its specific colour. The 
iris has characteristic patterns, described as ridges, flecks, crypts, pigmented dots and 
contraction furrows. Research has shown that these patterns can uniquely determine 
human identity. They are also associated with human personality (Coplan et al. 1998). 
 

 
Figure 2-2: Human eye (the iris is shown between the pupil and the sclera) (Bio-tech-inc 2002) 

The use of iris scans for human identity recognition was proposed in 1936 by 
ophthalmologist Frank Burch, but the method was not applied until the early 1990s when 
algorithms for iris recognition were developed (and patented) (Daugman 1993). 

 
While many approaches have been proposed for iris recognition (Daugman 1993, 

2003, 2004; Wildes 1997; Boles et al. 1998; Ma et al. 2003), the most widely used 
method today is that proposed by Daugman. As all other approaches are variants of this 
method, the following description will relate to Daugman’s approach. 
 
Acquisition: Using standard equipment, a person must be within 1 metre of a camera in 
order for it to obtain a clear image of his iris. If the eye is not positioned at a fixed 
distance, the digital camera used to capture iris patterns must have an auto-focus. An 
auto-focus adjustment algorithm was implemented by Daugman as part of his algorithms 
for iris recognition (Daugman 1993, 2003, 2004). 

 
Feature extraction: Feature extraction comprises four main steps: iris separation, polar 
coordinate conversion, phase information extraction and iris code generation. In the first 
step, the inner and outer iris boundaries are detected in order to separate the iris ring from 
the pupil and sclera. For this, an exhaustive search is carried out for the circles which 
give maximal change of grey level (Daugman 1993, 2003, 2004). The whole iris scan is 
then partitioned into patches (e.g. 32x32 pixels) for further processing. In the second step, 
for each patch the pixel grid (x, y) of Cartesian coordinates is converted into a grid 
( , )r θ of polar coordinates. The isolated iris pattern is then demodulated to extract phase 
information using quadrature 2-d Gabor wavelets, which in fact consist of a pair of bits of 
either 0 or 1. Finally, all the bit pairs from all the patches are concatenated to generate a 
2048-bit iris code (256 bytes). 
 
Verification: Since each individual has a unique iris pattern, template matching works 
efficiently in iris recognition. The matching principle used in identity verification is based 
on the failure of a test of statistical independence of the phase structures of the iris 
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patterns. The Hamming distance (HD) is calculated for a pair of iris codes. A HD less 
than a specific threshold indicates that the iris codes originate from the same source 
(Daugman 1993, 2003, 2004).  
 

While this method has achieved a 0 error rate for successfully enrolled subjects, the 
rate of successful enrolment is only around 85% (Daugman 1993). 

2.2.3 Fingerprint 

The fingerprint is one of the earliest biometric characteristics used in forensic analysis. 
While fingerprints are highly individual, common features exist and several court cases 
are known in which people were mistakenly convicted on the basis of fingerprint 
evidence.  
 

A fingerprint consists of a multitude of ridges and valleys. The ridge endings in 
fingerprints, which can be single or bifurcated, are generally referred to as minutiae. 
There are six basic patterns of minutiae used by a fingerprint recogniser: the arch, the 
tented arch, the right loop, the left loop, the whorl and the twin loop (Figure 2-3). 
 

 

 
(a)     (b)      (c) 

 
            (d)     (e)         (f) 

Figure 2-3: Basic patterns of fingerprint minutiae: (a) arch, (b) tented arch, (c) right loop, (d) left 
loop, (e) whorl and (d) twin loop (adapted from Jain et al. 2000) 

 
Acquisition: Two primary methods exist for capturing a fingerprint image: the inked 
scan (off-line) and the live scan (inkless). An inked fingerprint is obtained from a person 
by putting some ink on his or her finger and pressing it on a sheet of paper. This inked 
fingerprint can be input into the computer with a document scanner. Live scan 
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fingerprints are directly input into computers in digital format by means of a special 
peripheral device which can be designed either optically or electrically. The optical type 
is based on the concept of optically frustrated total internal reflection (FTIR). It uses the 
touching action on the plate to determine the positions of the ridges and valleys. Further 
details can be found in Jain et al. (2003) and Kawagoe et al. (1984). The electrical device 
uses a more recent technique, called capacitance-based solid state live-scan fingerprint 
sensing. This uses an array of electrodes to extract minutiae (Young et al. 1997). A variety 
of fingerprint sensing devices are sold on the market. Among the less expensive devices 
is the ThumbPod (Schaumont et al. 2005). 
 
Feature extraction: Two different methods exist for carrying out fingerprint 
authentication. One is pattern-based (or image-based) and the other is minutiae-based. 
Pattern-based algorithms compare the basic fingerprint patterns of a previously stored 
template with those of a candidate fingerprint. As pixel-to-pixel comparison is used, no 
particular vector-based feature extraction is needed, this resulting in higher computational 
efficiency. However, one obvious drawback of this type of algorithm is that it requires 
images be accurately aligned and have the same orientation, making it vulnerable to noise 
and nonlinear distortion (Tico et al. 2001; Andrew et al. 2003). Minutiae-based 
approaches are more expensive to compute, since vector-based features such as ridge 
directional fields have to be estimated and extracted. On the other hand, this type of 
algorithm is highly robust to distortions such as rotation, translation and scaling and also 
robust to noise. The minutiae approach represents the most important direction in 
research activity today. Therefore, the following discussion will focus on this approach. 
 
Ridge endings and ridge bifurcations (minutiae) from input fingerprint images are used as 
the discriminating features required for fingerprint authentication by (Jain et al. 2003). A 
reliable feature extraction algorithm consists of four components: orientation field 
estimation, ridge extraction, minutiae extraction and post-processing. In order to 
conveniently process it, a fingerprint image is partitioned into a number of 
non-overlapping blocks (e.g. 32x32 pixels). The underlying idea in orientation field 
estimation is to use an analysis of greyscale gradients in the processed block. Typical 
variants of the algorithm using pixel gradients are: averaging (Kavagoe et al. 1984), 
voting (Mehtre et al. 1989) and optimisation (Ratha et al. 1996). In ridge detection, the 
most common approach uses either simple or adaptive thresholding. Pixels can be 
identified as ridge pixels as long as the grey level values on the ridges attain their local 
maxima along a direction normal to the local ridge orientation. Furthermore, the ridges 
obtained are required to be thinned, using a standard thinning algorithm (Jain et al. 2000). 
In the stage of minutiae detection, a simple rule can be applied to detect minutiae: ridge 
pixels with three ridge pixel neighbours are identified as a ridge bifurcation, and those 
with one ridge pixel neighbour identified as ridge endings. Finally, the procedure of 
post-processing is applied to discard noise, spurious minutiae and extraneous minutiae 
using a number of heuristics (Jain et al. 2000). For example, too many minutiae in a small 
neighbourhood may indicate the presence of noise and are therefore discarded. 
 
Verification: Recognition uses template matching. In this step identical procedures are 
followed for both image-based authentication and minutiae-based authentication.  
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2.2.4 Face 

Face characteristics can be captured by both visual images (Figure 2-4a) and infrared 
images (Figure 2-4b). Infrared images record the levels of thermal radiation in the 
infrared spectrum range at 0.7-14.0µm, while visual images measure the electromagnetic 
energy in the visible spectrum range (0.4-0.7µm). As these two modalities are to some 
extent complementary, they can be usefully fused together for face recognition. 
 

 
(a)           (b) 

Figure 2-4: Face image samples: (a) a visual image, (b) an infrared image (adapted from Kong 
et al. 2005) 

 
Acquisition: Automatic face recognition begins with the detection of the facial region 
and then proceeds to normalise it using information about the location and appearance of 
facial landmarks, such as eyes, nose and mouth. Motion and skin colour also provide 
useful clues for face detection. The required algorithms have been described by Wang et 
al. (1997), Satoh et al. (1999), Chai et al. (1999), Carcia et al. (1999), Hsu et al. (2002) 
and Wu et al. (1999). Eye detection plays an important role in face size normalisation and 
also facilitates the localisation of other facial landmarks. Most eye localisation methods 
are template-based approaches, but other approaches such as knowledge-based methods, 
feature invariant approaches and appearance-based methods have also been proposed. 
Details are found in Lam et al. (1996); Huang et al. (1998); Smeraldi et al. (2000), Kong 
et al. (2005). 
 
Feature extraction: Feature extraction seeks information relevant to user-discriminating 
capacity from the detected face region. The performance of this process depends on the 
accuracy of face region detection and lighting normalisation. Two kinds of methods are 
available at this stage – feature-based and appearance-based methods. Feature-based 
approaches capture a set of geometrical facial features such as the shape of eyes, nose and 
mouth and the distances between them. Appearance-based approaches consider the global 
properties of the human face pattern without the detection of fiducial points. Dimension 
reduction approaches such as PCA, LDA or wavelet transform often follow feature 
extraction, since appearance features can be extremely high-dimensional and redundant. 
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Verification: A number of statistical and non-statistical classifiers are employed for face 
recognition. Among the most popular algorithms are eigenfaces by PCA or LDA (Kirby 
et al. 1990; Zhao et al. 1998), local feature analysis (Penev et al. 1996), independent 
component analysis (Bartlett et al. 1997; 2003), line edge map (Gao et al. 2002), elastic 
graph matching (Wiskott et al. 1997), neural networks (Laurence et al. 1997) and hidden 
Markov models (Samaria et al.1994; Nefian et al. 1999). The eigenface is an approach 
which uses a PCA transformation to find principal face eigenvectors, whereas local 
feature analysis focuses on local parameters on the face, such as the position of eyes and 
the shape of nose. ICA is a transformation-based approach, focussing on seeking a set of 
basis vectors which possess the maximum statistical independence of a face image (Kong 
et al. 2005). 

2.2.5 Palmprint and hand geometry 

The palmprint is an image of the texture of the human hand (Figure 2-5a). Hand 
geometry refers to the size and shape of the hand and fingers (Figure 2-5b). Recently a 
system in which the features of the palmprint are fused with those of hand geometry has 
been reported to achieve promising results (Ribaric et al. 2005). 
 

 
(a)        (b) 

Figure 2-5: Palmprint and hand geometry samples 

 
Acquisition: Palmprint and hand geometry images are always simple with a black 
background and are therefore easy to discern. A simple thresholding approach can be 
applied successfully. 
 
Feature extraction: Regarding handprints, prominent palm-line features, the end points 
of these lines, texture, global texture energy as well as a combination of these 
characteristics can be used (Shu et al. 1998; Zhang et al. 2003; Duta et al. 2001; You et al. 
2002; Han et al. 2003). Line feature matching algorithms can be used to extract the 
characteristics of prominent palm-line features (Shu et al. 1998; Han et al. 2003). A 
robust but simple method has been reported using four line detectors or directional masks 
to extract palm-line features (Kumar et al. 2003). In hand geometry, the length and width 
of the hand and fingers are usually used as features (Jain et al. 1999; Sanchez-Reillo et al. 
2000; Golfarelli et al. 1997). Commonly used feature vectors include 4 finger lengths, 8 
finger widths (2 widths per finger), palm width, palm length, hand area and hand length 
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(Kumar et al. 2003). Furthermore, dimension reduction approaches such as PCA or LDA 
can be applied to orthogonalise high-dimensional features (Slobodan et al. 2005). 
 
Verification: At the verification stage, template matching can be used, based on distance 
measures such as Euclidian distance or Hamming distance. Alternatively, it is also 
possible to use statistical modelling such as HMM or GMM. These statistical approaches 
can more powerfully handle a large amount of variation, but the computing load is 
heavier than in the template matching approach. 

2.2.6 Other physical biometrics 

A number of other physical biometrics may be used for authentication, e.g. odour 
(Korotkaya 2004), body shape (Godil et al. 2003) and dental records (Chen et al. 2005; 
Jain et al. 2004). However, these biometrics are not very reliable, as they are easily 
affected by a variety of factors. For example, odour can be altered by contamination with 
different smells, while body shape can be changed by age, illness and stress. Dental 
authentication is also not entirely reliable and is vulnerable to forgery. As reported in 
Chen et al. (2005), top-4 dental matches could only achieve 91% accuracy for 24 subjects. 
In summary, although these biometric data contain useful characteristics, they do not 
form part of the main features used in biometric authentication. They will therefore 
receive no further mention here. 
 
2.3 Behavioural biometrics 

 
Although gait, signature and voice quality partly reflect physical characteristics, they are 
mostly characterised by dynamic, behavioural traits that are learnt and acquired over time 
(Brand et al. 2001). Therefore, these traits are regarded as behavioural biometrics. 

2.3.1 Gait 

Gait is defined as the coordinated, cyclic combination of movements that result in human 
locomotion (Figure 2-6). In gait authentication a salient property, e.g. style of walk or 
pathology, is recognised on the basis of the coordinated cyclic motions that result in 
human locomotion. As was pointed out above, gait is not independent of a person’s 
physical properties like length and weight, but the focus is on dynamic characteristics. 
 
Acquisition: A sequence of images (or a section of video) is captured. 
 
Feature extraction: Moving objects can be identified against their background by static 
region subtraction. The outlining part of a set of obtained pixels representing the region 
of the moving object is important for recognition. This outline, referred to as a silhouette, 
is particularly useful for gait recognition (Bauberg et al. 1995; Wang et al. 2003). A 
motion field, referred to as an optical flow and representing the movement or flow of 
pixel brightness in an image sequence, can also be extracted (Barron et al. 1994). Motion 
energy and a motion history image can be also used as features for gait recognition 
(Davis et al. 1997).  
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Figure 2-6: Image of gait 

 
Verification: By their source of oscillations of the gaits, the algorithms used in 
verification can be categorized according to shape, joint trajectory, self similarity, and 
pixel oscillations. Each of these approaches uses its own designed measures to capture 
the oscillating property of different types of human gaits. For instance, in the shape based 
approach, a system uses optical flow to identify a moving figure in a sequence of images. 
It then describes the shape of the moving figure with a set of scalars derived from 
Cartesian moments (descriptors include the x and y coordinates of the object centroid, the 
x and y coordinates of the object centroid weighted by the magnitude of the optical flow, 
and the aspect ratio of the distribution of pixels). When the duration of the sequence is 
taken into consideration, each scalar forms a time series. The system extracts the 
oscillations from each series and then finds the frequency and phase of the oscillations, 
which are used for gait recognition. Through their evaluation an accuracy of around 90% 
is achieved for a sample size of six. Other methods follow roughly the same approach but 
with different foci. For instance, the joint trajectory approach captures the underlying 
characteristics of a joint trajectory in motion and uses these features for recognition. The 
self similarity approach, by contrast, exploits the property of self similarity characterising 
gaits for recognition. More details can be found in Boyd et al. (2005). 

2.3.2 Signature 

Offline signatures are frequently used to authenticate a writer’s identity (Figure 2-7). 
However, online signatures, which also take account of the dynamics, pen pressure and 
pen angles, are considerably more reliable than offline signatures. Of course, focussing 
on dynamic aspects of the signature does not mean that these are not affected by physical 
characteristics of the writer, e.g. the size of the hand and fingers. 
 
Acquisition: Offline signatures (written on paper) can be acquired by digital scanners. 
Online signatures, in which not only position coordinates, but also time, pen pressure and 
angles may be obtained, can be recorded either with specialised writing tablets or by 
recording input from a touch screen (in which case pen pressure and/or angle is not 
recorded).  
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Figure 2-7: Signature sample 

 
Feature extraction: From the low level features acquired directly from the input device, 
further features may be derived. These include local features, such as pen velocity, 
acceleration and line curvature, or global features, such as shape and spectral features 
(Hamilton et al. 1995; Wu et al. 1998; Matsuura et al. 1996; Kashi et al. 1996; Matsuura 
et al. 1998; Yang et al. 1995; Wirtz, 1995; Nalwa 1997).  
 
Verification techniques: These techniques include dynamic time warping (DTW) (Wirtz 
1995), probabilistic classifiers (Bauer et al. 1995; Kim et al. 1995), hidden Markov 
models (HMM) (Yang et al. 1995) and neural networks (Hamilton et al. 1995; Wu et al. 
1997). If the features obtained for the signature are highly unique, a template-based 
matching approach such as string matching and dynamic programming algorithms may 
be used. Probabilistic classifiers may also be used, modelling the distributional 
characteristics of the feature space. These either include temporal sequence information, 
e.g. by using HMM, or exclude time information (except indirectly, in the form of 
velocity features etc.), e.g. by using GMM. The artificial neural network (ANN) is 
another approach, in which the neural net may be directly used as a classifier. The 
performance of the ANN approach is often only positive in a fairly small sample space. 

2.3.3 Handwriting 

Handwriting recognition is more complex than signature recognition because it is text 
independent. Text-independent, writer-specific writing characteristics are exploited in 
handwriting recognition. As with the signature, physical characteristics of the hand and 
fingers will affect the handwriting dynamics.  
 
Acquisition: Handwriting can be obtained by using special input devices or digital 
cameras, which are similar to ones used in signature acquisition. Nevertheless, the 
devices for handwriting acquisition are generally larger in volume, equipped with higher 
resolution and therefore more powerful than ones for signature acquisition, due to more 
than one word being inputted as required in most cases of handwriting recognition. 
 
Feature extraction: As is the case with signatures, handwriting acquisition can be both 
online and offline. Offline features include position coordinates, angle, shape and 
curvature. Online features permit the use of not only dynamic features but also pen 
pressure and writing sounds (Li, 2004; Mitra et al. 2005; Yu et al. 2004). 
 
Verification: The verification techniques used in signature authentication are also applied 
to handwriting authentication, the only difference lying in the model units. In signature 
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authentication the whole signature is used as a model unit, whereas in handwriting letter 
models are concatenated to form words and sentences using a template or a statistical 
model such as HMM. 

2.3.4 Voice quality 

Voice quality takes up a central place in this dissertation. We shall therefore discuss it in a 
more detail than the previous biometrics. As with the previous behavioural biometrics, 
voice quality has important physical aspects. As described in Laver (1968), the 
quasi-permanent quality of a speaker’s voice derives from two main sources – the 
speaker’s anatomical and physiological structures and the long-term muscular 
adjustments, which are also referred to as ‘settings’. Since these settings are acquired 
idiosyncratically or by social imitation, voice quality is mostly regarded as a behavioural 
biometric. 
 

Speech contains different types of information (cf. Table 2-1), not all of which are 
relevant for biometric recognition. Short-term voice quality is important for the 
realisation of phones, while medium-term voice quality is used by all speakers to reflect 
for instance his attitude or emotion. These cause variation in the speech signal which 
cannot be used directly to distinguish between speakers. Quasi-permanent and permanent 
settings, however, are very relevant for recognising a speaker’s identity. 

 
Permanent voice quality characteristics depend on the anatomy and physiology of the 

speaking organs (i.e. the larynx and the vocal tract) of a speaker and determine their 
potential operating range, while the quasi-permanent, long-term muscular adjustments of 
the speaking organs by speakers determine their habitual range in which these organs 
often work. For example, a singer’s voice may be physically capable of spanning a wide 
pitch range, especially when he sings; in normal speech, however, he mostly speaks in a 
more restricted range within the total possibilities. The speaker’s anatomy and physiology 
thus determine the possible extremes, and voluntary muscular settings, even if the 
speaker is not aware of them, determine the habitual range between those extremes. 
  
 The muscular settings are divided into two groups by Laver (1968): the laryngeal 
settings and the supralaryngeal settings of vocal tract. 
 
 Laryngeal settings are in turn divided into three sub-categories: phonation types, 
pitch types and loudness ranges. Besides ‘normal voice’, phonation types include 
‘breathy voice’, ‘whispery voice’, ‘creaky voice’, ‘falsetto voice’, ‘ventricular voice’ and 
‘harsh voice’, and combinations of these. Pitch ranges within the total possible range in 
any phonation type are evaluated on a five-point scale: ‘very deep’, ‘deep’, ‘medium’, 
‘high’ and ‘very high’. Similarly, loudness ranges are described with a five-point scale: 
‘very soft’, ‘soft’, ‘medium’, ‘loud’ and ‘very loud’. 
 

Supralaryngeal settings of the vocal tract are divided into four groups according to the 
modification of the shape and acoustic characteristics of the vocal tract: longitudinal 
modifications through vertical displacement of the larynx or lip protrusion, latitudinal 
modifications including labialisation and laryngealisation, tension modifications 
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influencing the acoustic damping characteristics of the vocal tract by changing the 
stiffness of the vocal tract walls, and nasalization as well denasalisation’.  
 

Table 2-1: The relation between vocal variables and their marking functions (adapted from 
Laver et al. 1979) 

Signal 
functions informative informative and communitive 

Relation to 
language 

extralinguistic voice 
characteristics 

paralinguistic 
‘tone of voice’ 

phonetic 
realisations of 
linguistic units 

Temporal 
perspectives permanent quasi-permanent medium-term short-term 

Vocal 
variables 

voice features 
deriving from 
anatomical 
differences 
between 
individuals 
influencing 
both quality 
and dynamic 
aspects 

voice settings, 
i.e. habitual 
muscular 
adjustments of 
the vocal 
apparatus 
including voice 
quality settings 
and voice 
dynamic 
settings 

‘tone of voice’ 
achieved by 
temporary use of 
voice settings, 
including 
paralinguistic 
quality settings 
and 
paralinguistic 
dynamic settings 

momentary 
articulatory 
realisations of 
phonological 
units, including 
short-term 
manipulations of 
phonetic quality 
features and 
short-term 
phonetic dynamic 
features 

Marking 
function 

physical 
markers social and psychological markers 

Potential 
control- 
ability 

uncontrollable, 
therefore 
unlearnable 

under potential muscular control, therefore learnable and 
imitatable 

 
As shown in Table 2-1, three types of the sources of indexical information are related 

to the voice qualities described above: biological, psychological and social information, 
where biological information, such as the size, sex, age, medical state and physique of a 
speaker and the size of his larynx and vocal tract, is regarded as the physical biometric 
basis of speaker recognition. But quasi-permanent characteristics which do not directly 
reflect a speaker’s anatomy and physiology are also useful. Psychological information 
related to a speaker such as his personality can also be derived from features of voice 
quality. It is believed, for example, that ‘a harsh voice is correlated with more aggressive, 
dominant, authoritative characteristics and a breathy voice with more self-effacing, 
submissive, meek personalities’ (Laver 1968). Finally, social information about a speaker, 
such as regional origin, social status, social values and attitudes, and profession or 
occupation, can also be partly judged from voice quality, for instance, from his accent. 
These properties are behavioural biometrics which can be used to distinguish between 
speakers. 
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Widely used features in speaker recognition, such as mel-frequency cepstrum 

coefficients (MFCC) and linear prediction coefficients (LPC), reflect all the voice quality 
characteristics in the Table 2-1 (including short- and medium-term properties). This 
emphasises the need to enhance those differences in speakers’ voice quality which can 
help to distinguish them. Their processing details for derivation of the features such as 
acquisition, feature extraction and modelling will be introduced in Part II of this 
dissertation, while Part III focuses on feature enhancement to distinguish speakers on the 
basis of their voice quality. 
 
2.4 Advantages and disadvantages of each biometric 
 
In Section 2.2 and 2.3 the different characteristics of a number of widely used biometrics 
were introduced. Based on their characteristics, we summarise their advantages and 
disadvantages in a table (Table 2-2) to make their characteristics more comparable. To this 
end, the following criteria are suggested to be used, each of which is evaluated with only 
two levels for the sake of clarity: positive (√) and negative (×): 

 Non-changeability (NON-CHANGE), indicating whether or not a biometric is 
unchangeable throughout human life.  

 Uniqueness (UNIQ), indicating whether a biometric is unique to individuals.  

 Accuracy (ACCURACY), indicating performance accuracy. 

 Difficulty of imposterisation, (DIF-IMPOSTER) indicating the capacity to prevent 
imposterisation.  

 Non-Intrusiveness (NON-INTRUSIVE), indicating the degree of non-intrusiveness 
of a biometric used for recognition. 

 Robustness (ROBUST), indicating whether a biometric-based application is robust to 
variation under noisy conditions. 

 Speed (SPEED), indicating the speed of recognition of an application system using a 
biometric.  

 Unawareness (UNAWARE), indicating whether the subjects from whom biometric 
data are taken are necessarily aware of the action of acquisition. 

As shown in Table 2-2 physical biometrics are generally less variable than behavioral 
biometrics, and therefore can distinguish between persons quite reliably. In particular, 
DNA, iris and fingerprint are unchangeable and unique from person to person throughout 
life. DNA analysis is considered very reliable to discriminate between people, but takes 
much time and is computationally intensive. It is normally only used for forensic 
purposes. The fingerprint too has strong forensic connotations, and like iris recognition, it 
is felt as intrusive by users, which makes it unsuitable for many applications. The 
fingerprint and iris can be impostorised fairly easily and therefore require technical 
measures (measurement of fingertip temperature and variation of lighting to induce pupil 
size variation) for aliveness testing. 
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Table 2-2: Comparison of advantages and disadvantages of different biometrics 
 NON- 

CHANGE UNIQ ACCURACY DIF- 
IMPOSTER

NON- 
INTRUSIVE ROBUST SPEED UNAWARE

DNA √ √ √ √ × √ × × 

iris √ √ √ × × √ √ × 

fingerprint √ √ √ × × √ × × 

face × × × × √ × × √ 

palm print × × × × × × × × 

body shape × × × × √ × × × 

odour × × × × √ × √ √ 

keystroke × × × √ × × × × 

gait × × × × √ × × √ 

signature × × × × √ × √ × 

handwriting × × × √ √ × × × 

voice quality × √ √ √ √ × × √ 
 
Other biometrics, particularly behavioural ones, are intrinsically variable and 

therefore require more complex modelling than physical biometrics, which can often be 
verified using simple template matching techniques. The signature and handwriting are 
non-intrusive, but their accuracy is not high enough for discrimination. While the face is 
unique to each person, it is vulnerable to impostorisation (as for instance when an 
impostor wears a facial mask) and its accuracy is affected by changing illumination 
conditions. On the other hand it has the advantage that it can, if necessary, be obtained 
even from non-cooperative persons. This is also true for gait, body shape and odour, but 
these can also be affected by a variety of factors mentioned in Sections 2.2.6 and 2.3.1, so 
that their performance is not very high either. Last but not least, voice is generally 
regarded as the most natural, friendly and non-intrusive among all the biometrics. 
Unfortunately, by current approaches its performance degrades sharply under noisy 
conditions, a point which represents a topic of future research in this domain. 
  

2.5 Applications 
 
Biometric-based technologies have a wide range of applications. There are two main 
reasons for this. Firstly, conventional approaches such as PINs and smartcards are not 
sufficiently secure. Secondly, current security systems are not convenient to use as they 
have a lot of drawbacks. For instance, PINs are easily forgotten, a person having obtained a 
PIN can get free access to private systems, and smartcards can be lost or misplaced. These 
problems can be highly inconvenient for users and cause high financial looses. 
Biometric-based authentication techniques can be used alone or integrated with the 
conventional approaches to provide users with a form of automatic access control which is 
more user-friendly and safer.  
 

The suitability of biometric applications depends on whether the subject is cooperative 
or uncooperative and aware or unaware of being observed, as well as on the requirements 
of the transactions. For instance, if DNA is used for recognition DNA samples must first be 
acquired. People may not agree to this, as DNA carries a lot of sensitive information. By 
contrast, other biometric types such as voice, signature and handwriting are non-intrusive 
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and are part of one’s public identity, this making them suitable for a much wider range of 
applications. 
 

We next give a few examples for each of the two distinct types of biometric application, 
identification and verification. 

2.5.1 Identification systems 

Identification can be applied to scenarios where a subject is required to be identified from 
a given set of known subjects. In such scenarios, although human-based selection can in 
some cases be more accurate than automatic biometric-based identification, the latter is 
greatly advantageous on the aspect of low cost and guarantee of uninterrupted operation. 
Biometric-based identification systems are especially well-suited for applications 
requiring continuous identification, such as surveillance systems.  

2.5.2 Verification systems 

Verification is used more widely than identification. Roughly speaking, identification is 
more relevant to government-related and public issues, whereas verification is more 
commonly associated with private human concerns. Thus, anything relevant to private 
access, such as access control to personal private data, vehicles, bank account information, 
house, office, computer or PDA can be enhanced by employing or integrating 
biometric-based authentication technologies, as binary decisions are required by these 
systems. Typical examples are personal identity (ID) card authentication systems (e-card), 
electrical-government (e-government), electrical-health (e-health) and electrical-banking 
(e-banking). Depending on the biometric which are practically available, the required 
accuracy of the authentication and the cooperativeness of the clients, one or several 
biometrics can be adopted as the carrier of the user’s discriminating information in these 
systems. 
 

The range of biometric applications is already very wide and the number of potential 
applications may be expected to increase as costs are reduced and reliability and ease of 
use improve. Their applications are likely to make a deep impact on a variety of 
commercial and industrial activities and may even completely change their conventional 
modes of working. In future society, with the maturity of biometric-based authentication 
methodologies, their deployment may be expected to become more frequent and wider in 
range. 
 
2.6 Summary 

 
Biometrics can be divided into two different categories: physical and behavioural 
biometrics. The physical biometrics are a direct reflection of a person’s anatomical or 
physiological characteristics, while the behavioural biometrics are learnt or acquired over 
time and are therefore under the control of the individual. A set of physical biometrics 
including DNA, iris, fingerprint, face, palmprint, hand geometry were presented in 
Section 2.2. Behavioural biometrics such as gait, signature, handwriting and voice were 
introduced in Section 2.3. Following the detailed description of each biometric data, the 
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advantages and disadvantages of each were clarified under the same criteria in a table in 
order for comparison. Voice data is generally rated as the most non-intrusive and 
user-friendly biometric feature, albeit of its relative difficulties in processing. Finally, the 
possibilities of the application of biometrics to practical systems were discussed in terms 
of two types of tasks, i.e. identification and verification. 
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3. Multimodal biometric authentication 
 
3.1 Overview 

 
Multimodal identity recognition aims to increase the performance and reliability of 
biometric authentication systems by combining multiple modalities instead of using a 
single one (Indovina et al. 2003; Snelick et al. 2005; Ly-Van et al. 2003; Ross et al. 2003; 
Chang et al. 2004). For instance, state-of-the-art commercial off-the-shelf (COTS) 
fingerprint and face biometrics have been combined to show improved performance 
(Indovina et al. 2003, Snelick et al. 2005). Signature and voice biometrics have been fused 
to achieve the improved performance over the baseline system (Ly-Van et al. 2003). 
Moreover, face, fingerprint and hand geometry have been combined to fully utilise the 
complementary properties of these multiple modalities and also obtained improved 
performance (Ross et al. 2003).  

 
Multi-modal fusion techniques have also been applied to combine different feature 

sources from the same biometric to improve the performance of a uni-modal system. 
Thus, Chang et al. (2004) recognised faces by using 2D, 3D and infrared images for the 
acquisition of fused-face features and achieved better results. This idea has also been 
applied to other systems (e.g. speaker recognition) where different, complementary types 
of features can be combined. SOM features combined with standard MFCCs for speaker 
recognition is another example (Chapter 12). Koreman et al. (2006a) also combined 
different data models using the same feature data (GMMs with different number of 
Gaussians). 
 

As a result, attention has been drawn more and more to the fusion of biometric 
measures for biometric authentication systems. Research in this field represents an 
emerging trend. 

 
3.2 Advantages and disadvantages of multimodal systems 

 
Since unimodal systems rely on the evidence from a single source of information for 
authentication, they often have the problem that a single biometric may not have 
sufficient discriminating capacity to reliably distinguish a large number of subjects, 
especially under noisy conditions. However, providing the different modalities contain 
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complementary information, fusing different sources of information generally improves 
recognition performance. Concretely speaking, a multimodal system is superior to a 
uni-modal system in the following aspects (Ross et al. 2003):  

 
Robustness to noisy data: The probability of simultaneously obtaining noisy data in 
different biometric modalities is much lower than when using only a single biometric 
modality. Therefore, the information lost in one type of noisy biometric data can be 
complemented probably by other types of biometric data. For instance, voice data 
captured under noisy conditions can be complemented by the confirmative information 
obtained from the subject’s face and online signature. The results of fusion experiments 
using speech, face and online signature to enhance system performance strongly support 
this argument (Koreman et al. 2006). 

 
Robustness to intra-class variation: Intra-class variance is the variance within a model 
which is caused by non-relevant factors, for instance, linguistic content for a voice model. 
Though introducing new evidence cannot reduce intra-class variance, additional 
information sources can increase interclass variance, so reducing the relative importance 
of intra-class variance, making a system more robust. 

 
Less inter-class similarity: In a biometric system comprising a large number of users, 
there may be inter-class similarities (overlap) in the feature space of multiple users. 
Golfarelli et al. (2000) have stated that the number of distinguishable patterns in two of 
the most commonly used representations of hand geometry and face are only of a small 
order number (103). However, by adding more different feature sources, inter-class 
similarity can be greatly reduced, since more discriminating evidence is taken into 
consideration. 

 
High accuracy: Accuracy is often increased due to the complementary information 
supplied by each different biometric data source. The more information used by a system, 
the better its performance. 

 
Robustness to impostorisation: Behavioural traits such as signature or long term speech 
characteristics are more vulnerable to impostorisation, since they can be imitated. 
Combination of behavioural traits with non-behavioural biometrics can make 
impostorisation activities much harder.  
 

The multimodality (or multi-expert combination) approach results in recognition 
systems that are more accurate and more flexible, and operate in a wider range of 
conditions. However, implementation complexity is unavoidably increased at the same 
time. This can be a prohibitive factor, especially for handheld devices such as mobile 
phones and PDAs, which have limited computational power and memory. 

 
3.3 Fusion strategies 

 
Three types of fusion strategy have been proposed (Ross et al. 2003, 2004; Jain et al. 
2005):  
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Feature-level fusion: This combines modalities at the earliest stage. While this often gives 
good results (e.g. concatenation of time difference features in speaker recognition), this is 
not always the case. Increasing the size of the feature vector increases the number of model 
parameters and hence the amount of training data required to achieve accurate models. 
Furthermore, most commercial biometric systems do not provide access to the feature sets 
(nor to the raw data). The performance of feature-level fusion is therefore often not as good 
as the other fusion strategies. 
 
Decision-level fusion: In this case, fusion occurs at the final decision stage, i.e 
accept/reject decisions from several experts are combined. This is considered to be rigid 
due to the limited availability of information, since a lot of discriminative information 
contained in different biometric sources is lost in the preceding process stages.  
 
Matching-score-level fusion: This is a compromise between feature-level fusion and 
decision-level fusion strategies. It is generally preferred as it is relatively easy to access and 
combine the scores presented by the different modalities (Jain et al. 2005). Since fusion at 
the matching score level gives the best performance, several fusion rules have been tested, 
such as the simple sum rule, decision tree and discriminant analysis function (Ross et al. 
2003). The simple sum rule was shown to be superior to the other two rules. Other fusion 
approaches, such as the use of GMM, have also been proposed and excellent results were 
obtained (Allano et al. 2006). 
 
3.4 A typical multimodal system: SecurePhone 

 
A typical multimodal application is SecurePhone system, which I present here as an 
example to illustrate the fast development of multimodal biometric authentication 
systems. It was built from 2004 till 2006, in a European project, in which Saarland 
University cooperated with ATOS Origin, Informa, Telefónica Móviles España, Nergal, 
the University of Buckingham and the Groupe des Ecoles des Télécommunications (ENST 
Ecole nationale supérieure des telecommunications and the INT Institut National des 
Télécommunications). The work for this dissertation was carried out within the framework 
of the SecurePhone project1. 
 

SecurePhone is a typical multimodal verification system combining three modalities, 
i.e. voice, face and online signature, to provide enhanced security in user authentication. 
As discussed in the whole Section 2 and Section 3.2, each of biometric data can represent 
in its own format one type of sources of discriminating information for an individual. As 
these different types of information may be complementary to some extent in identifying a 
person’s uniqueness, they can be used in a combinational way so as to improve the 
reliability of the authentication systems. A fusion strategy combining the matching scores 
was used for the scores derived from each of the three modalities. In verification, the three 
scores were concatenated into a vector, which was then passed through a GMM fusion unit 
modelling the client and a set of impostors (as described later). The obtained 
log-probability output from the GMM is the fusion score, which is used as a basis for the 
                                                      
1 http://www.secure-phone.info/. 
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accept/reject decision. Multimodal verification significantly improved user verification in 
comparison to any of the biometrics on its own (Allano et al. 2006). 
 
3.5 Summary 

 
Multimodal systems improve recognition accuracy by combining complementary sources 
of biometric information. With more sources of information being taken into 
consideration by the recognition process, the inseparable cases due to, for instance, noise 
data, less inter-class separability and higher intra-class variations in the uni-modal 
recognition can be possibly converted into separable cases in the multimodal recognition, 
so that the system performance is able to be enhanced. In order to fuse multiple 
modalities, three strategies can be considered: feature-level fusion, decision-level fusion 
and matching-score-level fusion, among which, matching-score-level fusion have nice 
properties of higher performance and less training data required. As a typical example for 
illustrating multimodal biometric applications, SecurePhone project was introduced, 
which combined three user-friendly modalities, i.e. voice, face and online signature, with 
improved performance. 
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4. Goals and structure of dissertation 
 
4.1 Goals 
 
Although this research was conducted in the framework of the SecurePhone project, its 
achievements go beyond the techniques directly applied in this project. For instance, 
MLP-based feature enhancement (Chapter 11) is a generalised approach which can be 
applied in a similar way for any biometric for use in identity recognition.  

 
The same features have been used for speaker recognition as for speech recognition 

throughout many years, although their aims are completely different. Finding the means of 
overcoming this drawback will lead to a significant improvement for both speaker and 
speech recognition in various conditions, viz. in noisy conditions or in low-bandwidth 
telephone speech (cf. Part III). Thus, seeking the speaker-specific features for speaker 
recognition was one of the objectives of this research.  

 
One of possible ways to derive speaker-specific features for speaker processing is 

feature space transformation, as is commonly used in speech recognition. For speech 
recognition, PCA, LDA and NLDA, have been proposed for improving the system’s 
robustness to various real-life conditions. The transformed features were found to be 
superior to the original mel-scaled features even if they were used alone (cf. Chapter 11). 

 
Some of these approaches have also been applied in speaker recognition, but with 

limited success. For instance, Jin et al. (2000) proposed to apply LDA for speaker 
recognition. Heck et al. (2000) and Konig et al. (1998) further suggested the use of NLDA 
implemented by an MLP for speaker recognition. However, LDA can only achieve good 
results with a very small number of testing speakers. Heck et al. (2000) achieved 
consistently positive results by linearly combining the discriminative features with the 
mel-scaled features. 

  
Two reasons may be given as an explanation for the difficulty of using the NLDA 

transformation for speaker recognition. Firstly, speaker features are far more overlapping 
than phonemes in an acoustic space (cf. Chapter 10). Secondly, the number of speakers 
enrolled in an application can be much larger than the number of speech units, i.e. the 
phonemes (which amount to around 60 in English). For these two reasons separating 
speakers is much harder than separating phonemes. Furthermore, the higher number of 
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speakers generally causes learning problems for discriminating classifiers (e.g. LDA or 
MLP) in the training stage due to the low amount of training data per speaker. 

 
In this research it was found that the problem can be solved by automatically selecting 

some “important” speakers (the “speaker basis”) for a discriminating classifier such as an 
MLP to be trained on. Although the MLP-based NLDA approach was already proposed by 
Konig et al. (1998), they trained the MLP with a different purpose. The purpose of their 
method was to deal with microphone mismatching by using approximately 30 speakers 
manually selected to balance the effect of using different handsets. However, their 
approach was consistently effective only when combining their derived features with the 
original MFCC features. In this research we further extend the work of Heck et al. by 
systematically investigating this method. It was found that discriminative features can 
consistently improve speaker recognition performance if they are well learned, even in 
cases where they are applied alone.  

  
Besides discriminative feature transformation, an alternative feature representation 

obtained from a self-organising map (SOM) was also investigated in this dissertation. 
These features were found to contain information complementary to the MFCC features, 
even though they were derived from these features. This is because the phonotopic 
infrastructure of an acoustic space can be captured using SOM processing (cf. Chapter 12). 

 
The contributions of this dissertation are: 

1. A speaker-phone distribution (SPD) describing the structure of an acoustic space 
based on feature space analysis was proposed to provide support to the necessity of the 
application of feature enhancement approaches (Chapter10). 

2. LDA was compared with a linear MLP and NLDA. The discriminative features learned 
by LDA were not very effective for speaker recognition with a large population 
(Section 11.4.6). 

3. It was tested and found that NLDA implemented by an MLP is more powerful than LDA 
for speaker feature transformation (Section 11.4.6).  

4. Different types of MLP were tested for speaker feature transformation and a 
3-hidden-layer MLP was found most efficient among them (Section 11.4.4). 

5. It was established that the number of speakers used for the derivation of discriminative 
features is one of the most crucial factors affecting the performance of MLP-based 
feature enhancement (Section 11.4.4). 

6. Besides the number of speakers, the method of selection of the speaker basis was also 
found to have an effect on system performance. Several methods of speaker basis 
selection in addition to random selection were proposed. One was knowledge-based, 
two others were data-driven. An automatic, data-driven selection method favouring 
boundary speakers was found to be most efficient (Section 11.5). 

7. The essence of our feature enhancement approach was geometrically interpreted as 
stretching the speaker acoustic feature space by maximising the average between-class 
variance (Section 13.2). 
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8. The “speaker voice signature” was suggested as a complementary feature type which 
can be combined with the MFCC features to improve system performance (Chapter 
12). 

 
In summary, this research was especially dedicated to the investigation of new and 

complementary types of speaker-discriminating feature representations for speaker 
recognition. Experiments showed that these new discriminative feature types can be used 
to improve the performance of a state-of-the-art speaker recognition system in various 
conditions. 
 
4.2 Structure 
 
After the previous introduction into widely used biometrics and their multi-modal 
combination, with the SecurePhone project as an example which forms the background to 
this thesis, the rest of this dissertation consists of three parts. 
 

Part II presents the theoretical basis of speaker recognition. State-of-the-art speaker 
recognition technologies are summarised, including the three main stages of a speaker 
recognition system after data acquisition. The rest of this part is organised according to 
these three stages. In the first stage, feature extract approaches are addressed and the three 
feature types most commonly used for speaker recognition are described. After this, 
principal components analysis, linear discriminant analysis and nonlinear discriminant 
analysis, three techniques often used for speech and speaker feature transformations, are 
discussed. In the second stage, conventional data modelling approaches such as 
template-matching, GMM-based and HMM-based approaches are presented. Finally, in 
the decision stage, recognition decision theory and some related score normalisation 
techniques for speaker recognition are summarised. 
 

Part III mainly addresses experimental techniques for feature enhancement. Firstly, 
feature space analysis is conducted on an MFCC-based acoustic space. Based on this 
analysis using different approaches, the speaker-phoneme distribution (SPD) describing 
the clustering structure of an acoustic feature space is used to provide strong evidence to 
support the motivation to develop feature enhancement approaches for speaker recognition. 
Secondly, the approach of NLDA-based data enhancement by MLP is proposed and tested 
in a variety of noisy conditions. Three methods of speaker basis selection are compared in 
experiments. Finally, complementary features by SOM processing are presented. 
 

Part IV is a discussion and conclusion of this dissertation. In the discussion chapter, a 
physical interpretation for MLP-based feature enhancement approaches is given. A 
discussion of SOM processing and fusion-related issues follows. Finally, achievements 
and open issues are addressed in the conclusion chapter. 
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Part II. Speaker recognition 
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5. Introduction 
 
In order to clearly explain the theoretical part of speaker recognition, an overview of a 
conventional speaker recognition system is first given, based on four functional stages of 
processing in recognition systems, i.e. data acquisition, feature extraction, data modelling 
and recognition decision procedures. Following this, we will proceed to a more detailed 
explanation of each stage in the subsequent chapters in this part. 

 
But before outlining these stages in Section 5.2, we first introduce some important 

concepts in speaker recognition research in Section 5.1. An overview of Part II is given in 
Section 5.3. 
 
5.1 Some important concepts 

 
Some important (pairs of) concepts are often referred to in the literature, e.g. speaker 
identification vs. verification, text-dependent vs. text-independent techniques, closed vs. 
open set identification as well as fixed vs. incremental set techniques. The concepts of 
speaker identification and verification do not only apply to speaker recognition, but also 
to other types of biometrics. As they have already explained in Section 2.5, we focus here 
on explaining the other three pairs of concepts. 

5.1.1 Text-dependent vs. text-independent techniques 

Depending on the level of user cooperation and control of the spoken material in an 
application, the speech used for recognition can be either text-dependent or 
text-independent. In a text-dependent application, the recognition system has prior 
knowledge of the text to be spoken and expects the speaker to cooperatively speak that 
assigned text. Examples are a user specific password or a fixed phrase. Prior knowledge 
and constraints of the text can greatly boost the performance of a recognition system. In a 
text-independent application, the system has no knowledge of the text to be spoken, as in 
the case of extemporaneous speech. Text-independent recognition is more difficult but 
more flexible and secure, allowing for example the verification of a speaker while he/she 
is conducting other speech interactions. As speaker and speech recognition systems 
merge and speech recognition improves, the distinction between text-dependent and 
text-independent applications is slowly disappearing. Of these two basic tasks, 
text-dependent speaker verification is currently the most commercially viable and useful 
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technology, although there has been much research conducted on both tasks (Reynolds et 
al. 2002). 

 
The difficulty in text-independent speaker recognition systems is mainly due to the 

variance caused by the content of the speech material. Besides modelling speaker-specific 
information, text-independent speaker recognition is also required to model the other 
types of information, such as linguistic information (Hermansky et al. 1998). As a result, 
text-independent systems need to be able to deal with more variance than text-dependent 
systems, causing more difficulties for the process of recognition. 

 
It is not easy to model linguistic information or speaker-specific information separately. 

Hermansky et al. (1998) have proposed that linguistic information can be modelled by 
using PCA or low-order PLP coefficients. However, they did not achieve satisfactory 
results. Alternatively, an approach using discriminative features (viz. LDA and 
NLDA-based) may be more suitable for this purpose (cf. Chapter 11). 

5.1.2 Closed set vs. open set identification 

In “closed set” identification it is assumed that the subject belongs to a given set of 
registered people and that he will be identified as one of this set. In “open set” 
identification, the task is to identify an individual who may or may not be a member of a 
given set of people. 

5.1.3 Fixed set vs. incremental set 

In “fixed set” recognition, when a new subject is enrolled, all other models which have 
been previously trained have to be retrained. Fixed-set systems are optimal for applications 
in which the number of subjects is fixed. In “incremental set” recognition, by contrast, the 
system only needs to train a new model for the new subject. Algorithms such as the 
MLP-based post-processing approach (Wang et al. 2002), which do not meet these 
requirements, are therefore not practical to use here. However, the set of discriminative 
approaches which we propose in this dissertation conforms to the incremental-set 
attribution. As the data enhancement transformation learnt by the MLP is 
speaker-independent, it can be applied to a system without any retraining when a new user 
is enrolled.  

 
5.2 Stages of processing in speaker recognition 

 
A speaker recognition system consists of at least three functional modules (stages): data 
acquisition, feature extraction, and recognition decision, as in any biometric-based 
recognition system (cf. Part 1). In systems where the extracted features for the biometrics 
are not easily separated, the recognition stage can be further divided into data modelling 
and score matching (decision making). Therefore, these four stages are used to describe 
the current speaker recognition systems (Figure 5-1).  
 

At the first stage of data acquisition, speech signals are acquired with an electric 
device such as a simple PC microphone or an advanced microphone array, which  
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performs the voice signal conversion from analog to digital (A/D) and additional 
information acquisition (e.g. providing the accurate location of a speaker). 

 
At the second stage, the acquired discrete samples are converted into a sequence of 

frames using a shift window (e.g. 20ms window width with 10ms shift). A Hamming 
function is used to alleviate the effect of discontinuity at the frame boundaries. A variety 
of features can be extracted from these windows, e.g. linear prediction coefficients (LPC), 
mel-frequency cepstrum coefficients (MFCC) and perceptual linear prediction (PLP) 
features. These different features contain the underlying speaker-specific characteristics 
of the speech signals, which are then used in modelling and decision making. Therefore, 
feature extraction is crucial for speaker recognition. The quality of the extracted features 
has a significant impact on the overall performance of speaker recognition systems. 
Currently, the most widely used features for speaker recognition are MFCC features. 
However, since they were designed for speech recognition, they may not be optimal for 
speaker recognition. We will return to this point in a later chapter of this dissertation (cf. 
Chapter 10). 

 

 
Figure 5-1: The four stages of speaker recognition 

 
At the third stage, the speaker-specific feature distribution in the acoustic space is 

modelled. By comparing an incoming signal with candidate models, probability scores 
are obtained. At this stage, the vector quantisation (VQ)-based and the HMM-based 
approach are the two most common methods used in current systems. While the 
VQ-based approach models the clustering property of data samples in the acoustic space 
by means of discrete distributions, HMMs model the correlation of the sequential frames 
in the temporal domain by continuous distributions. The GMM-based approach may be 
derived from the HMM-based approach by assigning a single state to HMM, making the 
modelling ignore the temporal dependency in sequential speech frames. GMM is able to 
capture clustering characteristics of the feature space only by means of continuous 
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distributions, i.e. Gaussian distributions, while VQ models them with discrete vectors. 
 
Finally, at the matching stage, a decision is made based on the probability scores 

calculated at the previous modelling stage. Different decision criteria are used for 
different tasks: In closed-set identification tasks, the speaker is chosen as the one from a 
set of speakers who possesses the highest conditional probability given a voice signal X. 
In  verification tasks, a claimed speaker is accepted provided that the ratio of the 
conditional probability for the claimed speaker model to that for its impostor model is 
larger than a particular threshold; otherwise it is rejected (Figure 5-2). 

 

 
Figure 5-2: Block graph of speaker recognition (identification and verification) 

 
5.3 Overview of Part II 
 
The rest of Part II is organised as follows: In Chapter 6, three types of feature extraction 
and selection techniques are presented briefly. In Chapter 7, a number of data modelling 
approaches are discussed. This is followed, in Chapter 8, by a brief outline of decision 
theory.  
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6. Feature extraction 
 
Feature extraction is the first step in speaker recognition. The more speaker-discriminating 
the features are, the better – in terms of robustness and performance – the resulting system 
is. Many different feature types are used in the various different applications of speech 
processing, such as speech and speaker recognition. Among them, linear prediction 
coefficients (LPC), mel-frequency cepstrum coefficients (MFCC) and, more recently, 
wavelet features have been found to be the most efficient features for speaker recognition. 
In this chapter, a brief outline is given of these three feature-types. 

 
A lot of information is contained in speech signals, e.g. speaker-specific and linguistic 

information. While speaker-specific information includes gender, age, dialectal affiliation 
and speaking style (e.g. speaking rate in terms of either slow or fast speed), linguistic 
information relates to phonemes, syllables, syntax and semantics. When a sound is 
articulated, its waveform contains both speaker and linguistic information. As a result, the 
features derived from this waveform also carry both types of information. Since speaker 
recognition aims at extracting speaker-specific information, some transformations such as 
principal components analysis (PCA), linear discriminant analysis (LDA) and nonlinear 
discriminant analysis (NLDA) may be used to capture or enhance this information. These 
are discussed in Section 6.2. 

 
The rest of this chapter is organised as follows: In Section 6.1, a number of feature 

types are described briefly. In Section 6.2, feature enhancement is discussed, following 
which a summary is given in Section 6.3. 

 
6.1 Features for automatic speech recognition 

 
Many types of features are used for automatic speech recognition. The following 
discussion will focus on those features which are widely applied to speaker recognition, i.e.  
LPC, MFCC and the more recent wavelet features. Those feature types, such as PLP and 
RASTA-PLP (Hermansky et al. 1992), which are not suitable for speaker recognition, will 
not be discussed further.  

6.1.1 Linear prediction coefficients (LPCs) 

Linear prediction coefficients or LPC features (Campbell et al. 1997), derived with the 
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help of the autoregression model (AR model), describe certain characteristics of the 
human vocal tract. This model is essentially a linear prediction equation which obtains 
its solution subject to the constraint of least mean square (LMS) errors. Ideally, a signal 
s(n) at the time n can be described as: 
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where u(n) is called the residue, sg is a scaling parameter and p is the prediction degree. 
The p coefficients kα are often used as p-dimensional vectors to represent a speech 
frame, in which case they are called linear prediction coefficients (LPC). It has found 
that the residue also contains a lot of information of use for speaker recognition (Venaz 
et al. 1995). 
 

The prediction coefficients kα can be determined by solving an optimisation 
equation which minimises the LMS errors between the real signal s(n) and its linear 
approximation ˆ( )s n , i.e. 
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where N is the number of observed samples in a frame and 
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This optimisation equation can be solved by using the Yuler-Walker equation. For more 
details, see appendix B. 
 

LPC is a classical speech feature type which has been used for speech and speaker 
recognition for many years. However, given its limited representation capacity due to 
linear prediction, it is generally used less frequently than MFCC features. 

6.1.2 Mel-frequency cepstrum coefficients (MFCCs) 

Mel-frequency cepstrum coefficients (MFCCs) are at present the most popular and most 
successful features for both speech and speaker recognition. They are also intensively 
applied in the baseline experiments of Chapter 10-12. Therefore, the description to MFCCs 
will be in more details in this section. This state-of-the-art feature type is generated with 
the following steps. 

 
A/D conversion: In this method, it is assumed that a given continuous speech signal has 
been digitised at a sampling rate R into a sequence of discrete speech samples 

{ },  1,tS s n N= = . 
 
Pre-emphasis: A window with a fixed width (often 20-25 ms) is used to segment the 
speech signal into frames. The window shift is normally set at half the size of the window. 
The signal is then pre-emphasised by applying a first order difference equation 

1n n ns s ks −
′ = −         (6.4) 
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to the samples S in each window, where k is a pre-emphasis factor valued in the range 
of 0 1k≤ < , usually set to 0.97. To counteract the effect of discontinuities at each window 
boundary, a Hamming window is usually applied 
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Frequency analysis: After the pre-emphasis step, the original signal s becomes s′ but still 
represents a signal in the temporal domain. The temporal domain signal is transformed into 
a frequency domain signal by discrete Fourier transform (DFT), i.e. 
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whereby k=[fL, fH], fL is the lower cut-off frequency, fH the upper cut-off frequency. 
 

Spectral Warping: The human ear resolves frequencies non-linearly across the audio 
spectrum. Empirical evidence suggests that designing a front-end which operates in a 
similar non-linear manner improves recognition performance. Therefore, a similar 
frequency warping is also applied to kf  according to  

10( ) 2595log (1 )
700
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Following this, a conversion to the log-domain is always performed, resulting in 
( )log ( )k km Mel f= .       (6.8) 

 
In practice, a Mel-scaled filterbank is always used to give approximately equal 

resolution on the mel-scale instead of directly applying (6.8). To implement this filterbank, 
the magnitude Fourier coefficients are binned by convolving them with each triangular 
filter. These filters are equally spaced along the mel-scale which is defined by (6.7) with 
the appropriate parameters to achieve an approximation of the effect of (6.8) where k is 
equal to the number of the triangular filters. 
 
Orthogonalisation: After spectral warping, the discrete cosine transform (DCT) is applied 
to orthogonalise the Mel-scaled log filterbank amplitudes in order to eliminate correlations 
among them, i.e. 

1

0

2 cos ( 0.5)
N

k j
j

ic m j
N N

π−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ,      (6.9) 

where k is the number of the triangular filters. 
 
Liftering: One of minor problems with MFCCs is that the higher order cepstra are 
numerically quite small and this results in a very wide range of variances when going 
from the low to high cepstral coefficients. To solve this problem, it is often convenient to 
re-scale the coefficients to have similar magnitudes according to the equation 

(1 sin )
2k k
L kc c

L
π′ = + .       (6.10) 

This step is referred to as “liftering”, where L is the liftering value. 
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The resulting parameters, referred to as MFCC features, contain both linguistic and 
speaker-specific information in a warped spectrum domain. They may therefore be applied 
to both speech and speaker recognition with satisfactory results. However, in a later 
analysis (Chapter 10), it will be shown that the information contained in MFCCs is not 
balanced to represent linguistic and speaker-specific information equally well, but is more 
biased towards phonemes by clustering the acoustic space around phone or phoneme 
classes. 

 
In noisy environments, especially in telephone speech, cepstrum mean subtraction 

CMS (CMS) is often helpful to remove channel noise, i.e. the mean estimated across a 
certain length of signals (online or offline) is subtracted from each speech frame, with the 
hopes to remove the noise in the signals and keep the useful parts remained. This process is 
usually referred to as “feature preprocessing”. For more discussions about it, see Chapter 
11. 

6.1.3 Wavelet-transformed features 

Wavelet transformed features (WAVCs) differ from MFCCs in that they are derived by 
substituting the wavelet transformation for the Fourier transformation addressed in Section 
6.1.2. In particular, (6.6) is replaced by 

, ( )a b
t bt

a
ψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
       (6.11) 

*1( , ) ( ) t bW a b s t dt
aaψ ψ

+∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ,      (6.12) 

whereby , ( )a b tψ is the wavelet function scaled (by a) and translated (by b) from the 
prototype wavelet ( )tψ . The wavelet function used in each case depends on the 
application. While Haar wavelets are often employed in face recognition (Koreman et al. 
2006a), in speech recognition Daubechies wavelets are used more frequently (Sarikaya et 
al. 1998). 
 

A wavelet packet tree is applied to divide the overall frequency range into a number of 
sub-bands. In each sub-band, a number of coefficients are obtained using variably scaled 
and translated wavelets. The energy of each sub-signal in each subband is then computed 
by summing up the squared magnitudes of all the coefficients in that subband, after which 
it is normalized by the number of coefficients. Following this, the DCT or another wavelet 
transformation is applied to eliminate correlations between the energy coefficients 
associated with each subband (Sarikaya et al. 1998). 

 
6.2 Feature enhancement 

 
Feature enhancement uses a transformation to strengthen useful information and reduce the 
harmful disturbances often contained in features. Two classes of transformations are used 
for feature enhancement. One consists of linear transformations such as principal 
components analysis (PCA) and linear discriminant analysis (LDA). The other contains 
nonlinear transformations (also referred to as NLDA) such as transformations 
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implemented by self-organised mapping (SOM) and a multi-layer perceptron (MLP). 
Generally speaking, the linear transformations are not as powerful as the nonlinear 
transformations, as the linear transformations can be regarded as a special case of the 
nonlinear transformations, for instance, LDA vs. NLDA. Furthermore, besides the linear 
vs. nonlinear property of the transformations, different learning criteria, such as objective 
functions for optimisation, which are used in the training of the similar transformations, 
also have a significant impact on system performance. Thus, discriminative training, as 
used in LDA, is generally superior to non-discriminative training of the kind used in PCA.  

 
Although these transformations differ in their capabilities of projection, each has its 

own characteristics and advantages. For instance, PCA is capable of finding a number of 
the maximal variance directions possessed by the overall data set, making it the most 
suitable tool to represent a feature space compactly and precisely. LDA is a transformation 
which is derived by solving an optimisation equation with the help of linear algebra, so that 
a unique solution is found. NLDA, by contrast, implemented by MLP does not possess the 
property of having a unique solution, because of the existence of multiple local minima in 
its training procedure. Therefore, selecting an appropriate initialisation scheme is crucial 
for NLDA training, while LDA training is relatively simple. 

 
In particular, when these transformations are used for speaker recognition, NLDA 

implemented by MLP has been found to achieve better results than LDA (Wu et al. 2005a; 
2005b; cf. Section 11.4.6). Similar results were reported for speech recognition (Somervuo 
2003). 

 
Therefore, in the context of speaker recognition, a brief overview is given in this 

chapter of PCA, LDA and MLP-based NLDA transformations.  

6.2.1 Principal components analysis 

The aim of principal components analysis (PCA) is to find the unit direction vectors (u) 
which (locally) maximise the variance of the distances of the projected data set in the 
direction of (u). These vectors, or principal components, can be shown to be the unit 
eigenvectors of the correlation matrix C (Morris 1992), whereby X is the data matrix with 
a sample as a column vector in it. The distance of each x in X (the data matrix with a data 
sample x as its column vector) along the direction of vector u is: /d = ⋅x u u , so the 
variance to be maximised with respect to (u) is given by: 

( )nr Variance
′⎛ ⎞ ⎛ ⎞⎛ ⎞ ′′ ′ ′ ′ ′

= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠
xxu C uu X u X u X u XX u

u u u u u u u
,   (6.13) 

[ ]
0 / 0 ( )2 ( )2 0

( ) / .
r

λ
′ ′ ′ ′∆ = ⇒ ∆ = ⇒ − =

′ ′⇒ = =
u uu Cu u u u u Cu u Cu u

Cu u Cu u u u u
    (6.14) 

The u’s are the unit eigenvectors of Cxx and their corresponding eigenvalues give the 
variance of X in these directions. 
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As these projection directions are uncorrelated, the PCA-transformed space is more 
compact and orthogonal. Therefore, PCA is often used for speech and speaker 
recognition as a basic approach to dimension reduction, rendering a recognition system 
more compact and occasionally more efficient. 

6.2.2 Linear discriminant analysis 

The simplest approach for deriving discriminative features for speaker (class) recognition 
is by linear discriminant analysis (LDA). LDA is an optimal linear transformation which 
maximises the ratio of the between-class covariance to the within-class covariance. 
Through this projection, some of the variation due to non-speaker (class) information may 
be reduced, while speaker (class) specific properties remain. This enhances speaker (class) 
discrimination. 
 

Given an original d-dimensional feature space X, the goal of LDA is to seek an 
optimal linear transformation tW (m×d) to project the original features into a 
discriminative space Y so that N classes can be more easily separated in the 
m-dimensional space Y, i.e. 

t=Y W X .        (6.15) 
 
Assuming wS%  to be the within-class scatter matrix (m×m) and bS%  the between-class 
scatter matrix in the mapped space Y, wS  the within-class scatter matrix (d×d) and bS  
the between-class matrix in the original space X respectively, then we obtain: 

1 1

1 ( )( )
iMN

t
w ij i ij i

i jN = =

= − −∑∑S y m y m% % % ,     (6.16) 

where ijy is the j-th sample vector in the sequence of class i, Mi the number of samples of 
class i, and im%  the mean vector of class i.  
If we substitute (6.15) for ijy , then we obtain (6.17): 

1 1
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1     ( )( )
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S y m y m

W x m x m W

W S W
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.    (6.17) 

Similarly we obtain bS% : 
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1

1 ( )( )
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∑
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.    (6.18) 

The purpose of LDA is to seek a set of axes iw along which the features in the space X 
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are projected subject to the constraint of maximising the between-class covariance and 
minimising the within-class covariance, which in turn can be described as the ratio of the 
determinant of bS% to that of wS%  (Duda et al. 2001). Although it is difficult to carry out 
the optimisation of such a form, this problem can be solved by seeking a solution along 
each axis iw as follows: 

  
t
i b iw S w  and t

i w iw S w correspond to scalar projections of between-class covariance 
and within-class covariance along the axis iw . Hence, maximising the ratio of these two 
scalar projections as in (6.19) 

max
t
i b i
t
i w i

w S w
w S w

,        (6.19) 

is equivalent to maximising the nominator and minimising the denominator, therefore 
maximising the equation (6.20) by introducing the Lagrange multiplier 

( ) ( )t t
i i b i i w iJ λ= −w w S w w S w .     (6.20) 

Differentiating this equation with respect to iw , we obtain 

b i i w iλ=S w S w ,        (6.21) 
whereby iλ is the eigenvalue associated with the eigenvector iw . 
 

The most significant p eigenvectors are chosen as projection bases with the p largest 
eigenvalues. Since the ranks of Sw and Sb are at most d, the dimensionality of the space Y 
can be no larger than d, so making LDA another approach of dimension reduction. 

 
Therefore, LDA is often used for speech and speaker recognition to project a feature 

space into a discriminative and also compact space. For a discussion of related research 
work, see Chapter 11. 

6.2.3 Nonlinear discriminant analysis 

Although linear discriminant analysis can enhance feature discrimination, there are clear 
limitations to its mapping capacity. When classes are nonlinearly separable, LDA is 
incapable of enhancing class separation and nonlinear transformations are therefore 
required. While there are alternative ways to implement nonlinear transformations (e.g. 
SOM-based transformation), the multi-layer preceptron (MLP)-based approach is one of 
the most powerful and efficient ones. 

 
A multi-layer perceptron (MLP) is a neural net classifier often used in pattern 

recognition (Duda et al. 2001; Fontaine et al. 1997). Initially proposed by Frank 
Rosenblatt in 1958 (Rosenblatt 1962), MLP is a feed-forward network without any loop 
or feedback from a successive layer to any preceding layer. Therefore, it is also called a 
non-recurrent neural net. An MLP consists of any number of layers with any number of 
units in each layer. The first layer of MLP is generally called the input layer, while the 
last layer is referred to as the output layer. Any layer between the input and the output 
layer is referred to as a hidden layer. An MLP with L hidden layers is often called an 
L-hidden-layer MLP, or simply L-layer MLP, or sometimes an “L+2-layer MLP”. Each 
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unit in layer n normally has forward connections to each unit in layer n+1. 
 
Given the varying numbers of hidden layers and unit types in an MLP, both linear and 

nonlinear discriminative transformations can be trained. An MLP without hidden layers 
(Figure 6-1a) is always a linear MLP (LMLP), which is theoretically equivalent to LDA 
(Duda et al 2002). A one-hidden-layer MLP with a sufficient number of hidden units with 
sigmoid activation functions can theoretically approximate any kind of smooth nonlinear 
function. However, with more hidden layers in an MLP, a mapping function can be 
approximated at the same level of accuracy, with smaller weights for each link and less 
hidden units in each layer, while at the same time the MLP can be more efficiently trained 
(Bishop 1995). 

 
The basic approach for MLP training is by error-gradient descent, using the algorithm 

of “error back-propagation”, or simply “back-propagation”. It is a training approach which 
uses gradient descent, which is calculated using a recursive propagation of the error 
gradient calculation backwards from the output layer through each layer in the network. Its 
formulation is given briefly as follows (see also Morris 1992): 
 
Notation: 

Each training example is a pair of input/output pattern vectors, ( , )p px t . 
p is the index of a training example pair. 

pis is the output from unit i for pattern p. 

ijw is the weight at unit j for the link from unit i. 
E is the sum of square errors between the set of output vectors Y actually produced by 

the network and the target set { }pT t= , i.e. 
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This result does not only apply to output units j, when jkw is undefined, but to all other 
units j, pjδ is now obtainable from the sδ  (deltas) for those units which unit j sends 
outputs to. For output units the deltas can be obtained directly as follows: 

( ) ( )2( ) 2 2

2 ( )( )

p pi
pi pi pi pi pj pj

i ipj pj pj

j pj pj pj pj
p p

E s
t s t s t s
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For the commonly used activation function f(x) = 1/(1 + exp(-x)): 
( ) ( )(1 ( )) ( ) ( )(1 ( )) (1 )pi pi pi pi pif x f x f x f net f net f net s s′ ′= − ⇒ = − = −  

If this unit function is used throughout the network, then all sδ  are obtained by: 
2 (1 )( )

(1 )
pj pi pi pj pj

pj pi pi pk jk
k

s s t s

s s w

δ
δ δ

= − −

= − ∑
 

The error gradient with respect to each weight in the network can now be calculated by 
first calculating the deltas for the output layer, then for the layer before this, followed by 
the layer before this, and so on. 

 
The above derivation adopts the least squares cost function (6.22) as the training 

criterion, but this is not the only cost function which can be used. Besides this, other cost 
functions exist, e.g. the cross-entropy cost function as defined by 

( )ln (1 ) ln(1 )p pi pi pi pi
p p i

E E t s t s= = − + − −∑ ∑∑ . 

The training procedure using the cross-entropy cost function is very similar to the 

procedure described above, except that p

pj

E
s

∂
∂

is replaced by the following formula 
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Figure 6-1: Four MLPs (a, b, c, d) types. Each active layer is shown as a [net-input function | 
non-linear activation function] sandwich. Dark sections of each MLP are used in data 
projection, light parts only in MLP training 
 
When an MLP is used for feature transformation, the probabilities learned from the 

input to or output from one of its hidden layers or the input to its output layer, i.e. the 
“pre-squashed MLP outputs” (see Figure 6-12), can be obtained as discriminative internal 
representations (features) for learning targets. MLP (b) is the standard MLP used for 
feature projection in speech recognition (Hermansky et al. 2000), whereas with the 
more-hidden-layer MLPs used for feature projection, the more possibilities are there to 
obtain the optimal internal representations. In order to derive discriminative features, two 
steps are required. In the first step all the layers of MLP are used for training. In the second 
step only parts of it (the dark section shown in Figure 6-1) are used for projection. The 
discriminative features are obtained from these outputs. 
 
6.3 Summary 
 
In this chapter, the three most important approaches used in feature transformation (linear 
and nonlinear transformations) were summarised. Among these, PCA aims to reduce the 
correlated redundancy of a feature space, so that it maps the original feature space to a 
lower-dimensional orthogonal space. LDA tries to separate classes by maximising the 
between-class variance and at the same time minimising the within-class variance. Finally, 
the more powerful nonlinear transformations implemented by MLPs were presented. 
Discriminative features can be obtained from any layer in an n-layer MLP. The detailed 
information will be further discussed in Chapter 11. 

(b) (a) (c) (d) 
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7. Data modelling 
 
7.1 Introduction 

 
Data modelling is a crucial stage in speaker recognition. A model for each person enrolled 
in the speaker recognition system, referred to as a client model, is required to describe the 
distinct distributional characteristics of data from this client. Particularly in verification 
tasks, an alternative model is also needed to represent the distribution of all the non-client 
data.  
 

There are two types of data models, template models and stochastic models, both of 
which may be used for speaker recognition. In template modelling, a template is chosen in 
the recognition process based on the minimal distance between a given sequence of input 
samples and the template’s frames. As it is based on this distance measure instead of 
probability, the template-based matching approach is deterministic. By contrast, the   
stochastic model-based matching approach is probabilistic, as it makes decisions based on 
a measure of the class likelihood, or conditional probability, of the observation given by 
the model. Compared with template modelling, stochastic modelling enables us to capture 
more (or more delicate) information on the distribution of the data samples. Therefore, 
stochastic models are more powerful than template models, especially when used for 
text-independent speaker recognition. But also in text-dependent speaker recognition in 
clean speech, template models achieve only moderate performance. In this chapter, we will 
briefly introduce two template-based matching approaches and two stochastic 
model-based matching approaches (in Sections 7.2 and 7.3).  

 
Verification is a binary classification task in which the claimed speaker or the 

non-claimed speaker is selected. To model the claimed speaker, modelling approaches 
such as those mentioned above can be used, as in identification. However, to model the 
non-claimed speaker, special techniques are required, e.g. universal background modelling 
(UBM) or cohort modelling. In Section 7.4, we will briefly address these techniques. 
 

The rest of this chapter is organised as follows: In Section 7.2, template-based 
matching approaches are addressed. In Section 7.3, stochastic models are overviewed, 
including GMM and HMM. In Section 7.4, verification background modelling is presented, 
followed by a summary in Section 7.5. 
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The following discussions are based in the main on Campbell et al. (1997). 
 

7.2 Template-based matching approaches 
 
Template-based matching uses template models to describe the characteristics of the target 
models. For a given prompt with a sequence of frames{ } ,  1i i N=x K where N is the 
number of frames, the template model for a speaker consists of a template 
sequence { }i=x x with the same length. The template model x can be trained using a set of 
K training vectors 

1

1 K

i i
iK =

= ∑x x .        (7.1) 

In recognition, many different distance measures between the vectors ix and ix  can be 
represented as  

( ) ( ) ( ), T
i i i i i id = − −x x x x W x x ,      (7.2) 

whereby W is a weighting matrix. If W is an identity matrix, the distance is Euclidean. If W 
is an inverse covariance matrix corresponding to mean ix , then it is a Mahalanobis distance. 
The Mahalanobis distance gives less weight to the components with more variance and is 
equivalent to a Euclidean distance on principal components, which are the eigenvectors of 
the original space, as determined from the covariance matrix (Campbell et al. 1997; Duda 
et al. 2001). 
 
When the speaking-rate variability is taken into account, the frame number in the input 
sequence { },  1i i N=x K may not be the same as the number of reference vectors in the 

speaker template model{ } ,  1i i M=x K , where M N≠ . In such a case, the above simplest 
matching process can therefore not be conducted. In order to compensate the effect of 
speaking-rate variability on template-based matching, dynamic time warping is required. 

7.2.1 Dynamic time warping 

Dynamic time warping can solve the above problem, which is caused by time variation in 
human speech. The asymmetric match score z is given by 

( )( )
1

,
N

i j i
i

z d
=

=∑ x x ,       (7.3) 

whereby the template indices j(i) are generally given by a DTW algorithm. On the basis of 
the template vectors and input signals, the DTW algorithm carries out a constrained, 
piece-wise linear search, beginning from a certain point and ending at another (Figure 
7-1). This is a technique of dynamic programming which searches the optimal path in a 
grid labelled with the indices of a given template model and a sequence of data vectors 
(labelled by their time indices) (Figure 7-1).  
 
At the end of time warping, the accumulated distance gives an estimation of the match 
score according to a particular mapping function. This method accounts for the variation 
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over time (trajectories) of the speech features, which are corresponding to the dynamic 
configuration of the articulators and vocal tract. In practice, the Sakoe slope constraints of 
the warp can be used to act as boundary conditions to prevent excessive warping over a 
given segment (Campbell 1997). 
 

 
Time index 

Figure 7-1: Schematic illustration of dynamic time warping  

7.2.2 VQ source modelling 

Another type of template model, referred to as vector quantisation (VQ) source modelling, 
uses multiple templates to represent frames of speech without considering their temporal 
correlation (Campbell 1997). A VQ codebook is created by standard clustering 
procedures for each enrolled speaker using his training data. As the template match score 
is taken as the distance between an input vector and the minimum distance codebook 
vector in the VQ codebook C, this score for L frames of speech is then defined as 

( ){ }
1

min ,
L

iCi
z d

∈=
=∑ x

x x .       (7.4) 

The clustering procedure used to train the codebook may be any one of the standard 
clustering algorithms, such as K-means clustering, which don’t take in consideration 
temporal information contained in a frame sequence. Hence, there is no need to perform a 
time alignment. However, the neglect of the speaker-dependent temporal information that 
is present in the utterance may cause a reduction of system performance. 

 
7.3 Stochastic model based approaches 

7.3.1 GMM-based approach 

GMM is the state-of-the-art data modelling approach for speaker recognition (Reynolds 
et al. 1994, 1995a, 1995b, 1995c, 2000). It statistically models the data distribution by 
means of clustering techniques, followed by expectation maximisation (EM) training 
algorithm. Each cluster in the feature space is described by a Gaussian density function (a 
normal distribution). The overall characteristics of the feature space are then captured by 

Tem
plate index 
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a linear combination of all the Gaussian components. Formally, the GMM-based 
framework for speaker recognition can be expressed as follows. 

 
In GMM training a GMM data pdf p(x|S) (7.5) is trained for each speaker for a fixed 

number of Gaussians M. The GMM models the pdf for a data frame, xt (where t is the 
time index), taking no account of the time order of the data frames in the full speech 
sample X. 

1
( | ) ( | , )M

t i t ii
p S w p G S

=
=∑x x ,    (7.5) 

whereby ( , )i i iG N= µ Σ , where N(.) is the Gaussian or Normal function with the 
mean iµ and a diagonal covariance matrix iΣ , which has 2

iδ as its diagonal components. 

Hence,  

1
( | ) ( | , )M

i t it i
p S w p G S

=
=∑ ∑X x .     (7.6) 

 
The training of a GMM consists of two steps. In the first step, the model parameters (the 
class means) are initialised using the K-means clustering algorithm which captures the 
coarse characteristics of the data clustering from a speaker. Each iδ of iΣ  is initialised 
with a small random value. The mean vector iµ is updated (the j-th updating) by 

( )
( )

1 ,   1
i

j
i j C

i

i K
N ∈

= ≤ ≤∑ x
µ x ,       (7.7) 

where ( )j
iN is the number of samples in class Ci. The class index a sample x belongs to is 

decided according to  
( 1)arg max ( , )j
i

i
i d −= x µ .        (7.8) 

 
In the second step, the expectation maximization (EM) algorithm is applied to optimise 
the model parameters (mixture weights, means and variances) so as to maximise the data 
likelihood P(X|S). 
 
Mixture weights: 
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Variances: 
2

2 21
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x x
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The a posteriori probability for acoustic class i is given by 
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In fact, as the GMM may be regarded as a single state HMM, the temporal correlation 
of the frame sequence cannot be modelled by this technique. Experiments examining the 
performance of HMM and GMM suggest that the temporal information of the frame 
sequence is not important for the distinction between speakers. 

7.3.2 HMM-based approach 

Hidden Markov modelling (HMM) is an alternative modelling approach also used in 
speaker recognition. A continuous left-to-right HMM (Figure 7-2) is normally used to 
capture the temporal characteristics of a sequence of frames from a given prompt, since a 
speech prompt can be modelled through a double stochastic process.  This process is 
characterised by a given number of states with an associated set of transition probabilities 
among them. In each state, a continuous density, a multivariate Gaussian mixture, is used 
to model the emission probability density. The HMM is a finite-state machine in which a 
pdf ( | )t ip sx is associated with each state is . These states are connected by a transition 
network, where the state transition probabilities are ( | )ij i ja p s s= , where i and j are state 
indices. Other topologies for HMM than the continuous left-to-right can also be used (e.g, 
with skip transitions from one state to a later state other than the next one), but they were 
showed not to be superior (Rabiner et al. 1993). 

 
Figure 7-2: HMM topology 

The probability that a sequence of speech frames is generated by this model can be 
determined by means of Baum-Welch decoding (Rabiner et al. 1993). This likelihood 
corresponds to the score for L frames of input speech, given the model 

, 1all state 1sequence

( (1; ) | ) max ( | )
L

t j j j
t

p L S p s a −
=

= ∏x x .     (7.13) 

 
7.4 Verification background modelling 

 
As mentioned earlier, verification is a binary classification problem in which the claimed 
speaker is differed from the non-claimed speaker. As with the techniques used for 
modelling a speaker in identification, the same approaches can be used for modelling the 
claimant data. However, there are different techniques to model the non-claimed model, 
because this model should capture the characteristics to enable to represent all speakers 
other than the claimed one. Two solutions to this problem are universal background 
modelling (UBM) and cohort modelling.  
 

The UBM uses a single, speaker-independent background model to represent 
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impostors in terms of all the claimed speakers. However, the cohort modelling creates a 
background model for each claimant, which represents the population of expected 
impostors for each claimant. Ideally, the number of background speakers should be as 
large as possible to better model the impostor population, but practical considerations of 
computation and storage restrict the number of background speakers. In Reynolds et al. 
(1995a), the number of background speakers was set to ten. Given the size of the final 
background speaker set B, each speaker’s N closest or farthest neighbours were selected 
as his/her “close/far cohort”, according to the pair-wise distance measure 

( | )( | )( , ) log log
( | ) ( | )

j ii i
i j

i j j j

p Xp Xd
p X p X

λλλ λ
λ λ

= +     (7.14) 

for speaker i and j with models ( iλ , jλ ) and training utterances ( iX , jX ). 
 
An alternative distance was suggested by Zigel et al. (2003): 

1 1( , ) log ( | ) log ( | )
2 2i j i i j id p X p Xλ λ λ λ= +     (7.15) 

UBM can also be used for score normalisation as 

( ) ( )( | )( ) log log ( | ) log ( | )
( | )
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UBM

p Xscore X p X p X
p X

λ λ λ
λ

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
. (7.16) 

When the background model is trained by speakers other than the target speakers uttering 
general text-independent utterances (text-independent tasks) or the user’s phrase 
(text-dependent tasks), ( | )UBMp X λ represents a dynamic threshold which is sensitive to 
variations in X from trial to trial (Zigel et al. 2003). 
 
7.5 Summary 
 
Data modelling is one of the crucial steps in speaker recognition. Firstly, in this chapter, 
different techniques for data modelling in speaker recognition were presented. 
Template-based modelling approaches utilise a template pattern to store the necessary 
discriminating information for a speaker. Due to the limited capacity of modelling data 
variations, template-based approaches are more successful in text-dependent applications. 
By contrast, statistical modelling approaches, such as the GMM-based and HMM-based 
approaches, are advantageous in modelling more variations in the data distribution of a 
speaker caused by difficult conditions, e.g. in text-independent applications. Therefore, 
statistical modelling techniques represent the state-of-the-art modelling techniques for 
speaker recognition. The relevant techniques were overviewed in this chapter. Secondly, 
some special modelling techniques for speaker verification were summarised. In speaker 
identification a client model is indispensable for representing the characteristics of the 
speaking style of a given speaker (a client). In verification, besides modelling the claimed 
speaker, the UBM or cohort model is also required for modelling possible impostors. These 
techniques were explained in this chapter as well. 
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8. Decision theory 
 
 

Based on the techniques described in previous chapters, a match score between the input 
speech-feature vector and a given speaker model is derived. Following this, the next 
question is how to make the final decision for recognition. 
 

Bayesian decision theory provides the key to decision making in speaker recognition. 
In this chapter, we will therefore first introduce the relevant aspects of this theory. 
Following this, Bayesian decision theory is applied to derive decision formulae for both 
identification and verification.  
 

With respect to verification, the likelihood ratio test and two types of the resulting 
curves, often met in the literature, are explained. 
 

Score normalisation is also very useful in speaker verification to alleviate the impact of 
different variance scaling in the dataset of each speaker. T-norm and Z-norm are the two 
main methods used for this purpose. In this chapter, we briefly describe the principles of 
these two normalisations. 

 
The rest of this chapter is organised as follows: In Section 8.1 Bayesian decision theory 

is presented. In Sections 8.2 and 8.3, the formulae describing the decision making of 
identification and verification are derived from Bayesian decision rule. In Section 8.4, 
score normalisation techniques are presented, followed by a summary in Section 8.5. 

 
8.1 Bayesian decision theory 

 
Bayesian decision theory is used in both speaker identification and verification. In later 
sections we will show that the decision procedures used are derived by the concrete 
application of the Bayesian decision rule. Therefore, theoretical knowledge of Bayesian 
decision is helpful for an understanding of the essential ideas of the decision procedure in 
speaker recognition. 
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Given a multi-class{ } ,  1i i cω ≤ ≤ , classification problem and the posterior probability 
( | )ip Xω for each class iω and a sample X, the following decision strategy is referred to as 

the Bayesian decision rule (Theodoridis et al. 2003):  
 

decide  if ( | ) ( | )  for all i i jP X P X j iω ω ω> ≠ .    (8.1) 
 
The Bayesian decision rule is the decision with the least average risk (Bayesian risk or 
expected loss), if the risk function is defined by 

0    
( | )        , 1, ,

1    i j

i j
i j c

i j
λ α ω

=⎧
= =⎨ ≠⎩

K ,   (8.2) 

whereby c is the overall number of classes and iα  relates to an action which is always 
interpreted as a decision. If decision iα  is taken and the true state of nature is iω , then the 
decision is correct if i=j, otherwise it is wrong, i.e. i≠j.  
 
[Proof] 
Given a data X, the average decision risk can be defined as  
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∑
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Thus, in order to minimise the average risk for simple classification, it is necessary to select 
the class by the maximum of ( | )iP Xω , which complies with (8.1). 
 

Several theoretical results are also related to Bayesian decision, although they are of a 
more theoretical interest. As is generally known, it is very difficult to analytically check the 
error bound of Bayesian decision. However, in the case of a two-class classification with 
the conditional distribution being a multivariate Gaussian distribution, the error bound can 
be estimated theoretically by the Chernoff and computationally simpler Bhattacharyya 
bounds.  

 
The Chernoff bound is derived as  

1 1
1 2 1 2( ) ( ) ( ) ( | ) ( )   for 0 1P error P P P X P dXβ β β βω ω ω ω β− −≤ ≤ ≤∫ ,   (8.4)  

which states that the theoretical error bound is inferior to a certain value in turn related to a 
variable β . Under normal conditional probabilities, the integral in (8.4) can be evaluated 
analytically, yielding  

1 ( )
1 2( | ) ( | ) kp X p X dX eβ β βω ω− −=∫ ,     (8.5) 

where 
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By setting 1/ 2β = , a computationally simpler but slightly less tight bound can be derived, 
giving the so-called Bhattacharyya bound on the error 
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The Chernoff and Bhatacharyya bounds may still be used even if the underlying 

distributions are not quite Gaussian. However, for distributions that deviate markedly from  
Gaussian ones, the bounds are generally not informative (Duda et al. 2001). 

 
Although the error bounds are rarely useful for practical applications, certain insights 

may nevertheless be obtained by applying Bayesian decision rule to speaker recognition.  
 
Bearing in mind Bayesian decision theory, we now proceed to see how it is applied to 

speaker identification and verification. 
 

8.2 Identification decision procedure 
 

The decision procedure in speaker identification is the outcome of directly applying 
Bayesian decision rule (8.1) by replacing iω by iS . This means that the identified speaker is 
chosen as the one holding the maximum probability among the candidate speaker models 
Si, given a speech input X.  

( | ) ( )arg max ( | ) arg max arg max ( | )
( )

k k
i k k

k k k

p S p SS p S p S
P X

= = =XX X ,  (8.9) 

as ( )kp S and ( )p X same for all k. 
When the maximum probability density is below a fixed threshold 

(i.e. max ( | )ip S θ<X ), no speaker is chosen; Otherwise a decision is made according to 
(8.9). Thus, the decision rule for identification is relatively simple. 

 
8.3 Verification decision procedure 

 
In verification the Bayesian decision rule (8.1) is applied to the two-class case. More 
explicitly, given a speech input X, a claimed speaker model Sc and an impostor 
model impostorS , the decision is to check such a ratio as 
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( | )  
( | )

c

impostor

p S Xratio
p S X

= .      (8.10) 

If   ratio θ≥ (a threshold), the speaker is accepted as the claimant; Otherwise he is 
rejected. 
 

If we apply the Bayesian rule to the above decision criterion(8.10), we obtain 
( | ) ( | ) ( ) ( | )  =

( | ) ( | ) ( ) ( | )
c c c c

impostor impostor impostor impostor

p S X p X S p S p X Sratio
p S X p X S p S p X S

= = , (8.11) 

if ( ) ( )c impostorp S p S= . 
( | )cp X S and ( | )impostorp X S are likelihoods, therefore (8.11) is also referred to as a 

likelihood ratio test. 
 

In practice, verification assigns more flexible costs CFR (cost of false rejection) and 
CFA (cost of false acceptance) to the posterior probabilities in eq. (8.11) in order for the 
service provider to adjust and control the required preference to either low false rejection 
rate or low false acceptance rate or a balance between them, i.e. 

( | )
( | )

c

impostor

p X S CFRratio
p X S CFA

⋅=
⋅

.       (8.12) 

8.3.1 Likelihood ratio test 

Generally speaking, a likelihood ratio test (or hypothesis testing) is a test which relies on a 
test statistic computed by taking the ratio of the maximum value of the likelihood function 
under the constraint of the null hypodissertation (Θ0) to the maximum with that constraint 
relaxed (Θ1). A likelihood function is in fact a statistical model which is often a 
parameterized family of probability density functions or probability mass functions fθ(x). A 
null hypothesis is often stated by saying the parameter θ is in a specified subset Θ0 of the 
parameter space Θ. The likelihood function L(θ) = L(θ| x) ≅ p(x|θ) = fθ(x) is a function of 
the parameter θ given the data x. The likelihood ratio is 
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0

0

sup ( | ) :
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sup ( | ) :
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x
L x

θ θ
θ θ

∈Θ
Λ =
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.      (8.13) 

This is a function of the data x and is therefore a statistic. The likelihood-ratio test 
rejects the null hypothesis if the value of this statistic is below a given threshold (Wikipedia 
2000). 
 

 

p(x) 

x 

p(x|Θ1) p(x|Θ0)



55 

Figure 8-1: Sample of score densities 

Figure 8-1 shows an example of two score pdf’s. The probability of error, minimised by 
Bayesian decision rule, is determined by the amount of overlap in the two pdf’s. The 
smaller the overlap between two pdf’s, the smaller the probability of error. The overlap in 
two Gaussian pdf’s with the mean 0µ , 1µ  and the equal varianceσ can be measured by the 
F-ratio 

( )2
0 1

2F
µ µ

δ
−

= .       (8.14) 

8.3.2 DET vs. ROC curves 

Detection error trade-off (DET) and receiver operating characteristic (ROC) curves are 
often encountered in the literature. We therefore give a short description of these concepts. 
There are two types of errors in speaker verification, false acceptance (FA) and false 
rejection (FR). Either of the two types of errors can be reduced at the expense of an 
increase in the other. A single performance number is therefore inadequate to represent the 
capabilities of a system. Such a system has many operating points (a different point for 
each given value of the false acceptance threshold) and is best represented by a 
performance curve. 

 
The ROC curve plot is one of the approaches used for this purpose. It obtains the alarm 

rate (false acceptance), which is plotted on the horizontal axis, and the correct detection 
rate, plotted on the vertical axis (Figure 8-2a). 

 

 
(a) (b) 

Figure 8-2: (a) Plot of ROC curves for a speaker recognition evaluation. (b) Plot of DET curves 
for the same evaluation data (from Martin et al. 1997) 

The DET curve plot is a more recently applied visualisation of speaker verification 
results. It plots the error rates (false acceptance or false alarm, and false rejection or miss) 
on both axes, giving uniform treatment to both types of error and using a logarithmic scale 
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for both axes. The error rates are spread out across the plot, distinguishing more clearly 
between the different well-performing systems and producing plots that are close to linear 
(Figure 8-2b). 
 
8.4 Score normalisation 

 
Decision scores of different models, derived either from likelihood (8.11) or from 
posterior probability(8.10), always vary in scaling ranges, these differences caused by the 
mismatch between training and test conditions. For instance, in text-independent 
recognition, the linguistic difference between the training and test set often leads to a 
certain mismatch. Background noise changes, such as different types and levels of noise 
as well as crosstalk, also frequently result in a mismatch between training and test 
conditions.  
 

The different scaling ranges between the models under comparison represent an 
impediment to improving model discrimination, because they cause a strong overlap 
between two different pdfs (Figure 8-1). Moreover, the diversity of the scaling ranges of 
the match scores renders the global thresholding scheme less effective. A frequently 
applied solution to this problem uses the techniques of score normalisation. Two widely 
applied score normalisations are zero normalisation (Z-norm) and test normalisation 
(T-norm) (Auckenthaler et al. 2000). 

8.4.1 Z-norm 

Zero normalisation (Z-norm) is a normalisation technique which uses a mean and 
variance estimation for distribution scaling. This normalization has the form 

( | ) I
Norm

I

p SScore µ
σ

−= X ,      (8.15) 

whereby Iµ and Iσ  are the estimated impostor parameters derived from the UBM or 
cohort model (cf. Chapter 7) for speaker model S and NormScore  is the normalised score 
distribution. 
 

By applying Z-norm to the match score ( | )p S X , the distribution of the match score is 
transformed to the same scaling as that of the impostor distribution. Therefore, the 
comparison of the match scores between the claimed distribution and the impostor 
distribution is more effective. 
 

The advantage of Z-norm is that estimations of the normalisation parameters can be 
performed off-line during training. A claimed speaker model is tested against example 
impostor (cohort speaker) utterances and log-likelihood scores are used to estimate a 
speaker-specific mean and variance for the impostor distribution.  

 

8.4.2 T-norm 

Another normalisation method which is also based on mean and variance estimation for 
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distribution scaling is test normalization (T-norm). This type of normalisation is an online 
method which is different from Z-norm in that the impostor model parameters are 
estimated directly from the test set (Z-norm uses the training set). During testing, a set of 
example impostor models is used to calculate impostor log-likelihood scores for a test 
utterance, in a manner similar to a cohort approach. However, unlike the cohort approach, 
both a mean and a variance parameter are estimated from these scores. These parameters 
are then used to perform the distribution normalisation according to (8.15). 
 

The advantage of T-norm over Z-norm is the use of the variance parameter which 
approximates the distribution of the impostor population more accurately. The estimation 
of these distribution parameters is carried out on the same utterance as in the target 
speaker test. Thus, an acoustic mismatch between the test utterance and normalisation 
utterances, possible in Z-norm, is avoided. 
 
8.5 Summary 
 
This chapter focused mainly on decision theory, the last stage of speaker recognition. 
Taking the introduction of Bayesian decision theory as a starting point, Bayesian decision 
rule was applied to the derivation of the decision formulae for speaker identification and 
verification. This fundamentally reflects the essence of the application of statistical 
modelling to speaker recognition not only in the modelling stage, but also in the decision 
stage. In addition, a number of verification related issues, such as likelihood ratio test and 
two useful curves (ROC and DET), were described. Likelihood ratio test is the theoretical 
foundation for the decision process of verification, whereas ROC and DET curves are the 
popular measurements to evaluate the performance of standard verification systems. 
Especially, DET curve is advantageous over ROC in its uniform treatment of two types of 
error rates (false acceptance and false rejection), so that it provides more reasonable 
visualisation to the performance comparison of different verification systems. In the final 
section, score normalisation techniques (Z-norm and T-norm) were addressed. With these 
normalisations, the derived scores can be normalised in a similar range for facilitating a 
more accurate decision. To some extent, T-norm can lead to better system performance, 
since the normalised scores can maximally reduce the mismatch between the training set 
and test set, simply by estimating the normalisation parameters directly on the test set. 
However, its negative effect is that its normalisation parameters have to be estimated 
off-line. 
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Part III. Feature enhancement 
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9. Introduction 
 
With an overview on biometric-based authentication and a theoretical introduction to 
speaker recognition, we have seen a general picture of speaker recognition. This can be 
summarised as follows: With the state-of-the-art techniques described in Part II (GMM and 
MFFCs), speaker recognition works successfully in clean speech (Reynolds et al. 1995, 
2000). Its performance in wide-bandwidth clean speech has been shown to be close to 
100%. This is very beneficial for the practical deployment of speaker recognition 
technologies. 
 

However, the practical scenarios for applications of speaker recognition do not always 
allow clean speech conditions. A variety of noisy conditions, low-bandwidth speech and 
telephone speech all occur frequently in practical applications. Even the most successful 
speaker recognition technologies efficient for clean speech, therefore, meet with 
difficulties in low-bandwidth speech, telephone speech and speech under noisy conditions. 
Consequently, system performance substantially degrades under these conditions, this 
drawback significantly limiting the deployment of speaker recognition technologies for 
practical applications. The purpose of this dissertation is to find ways of improving speaker 
recognition performance in these difficult conditions. 
 
This part of the dissertation is divided into three stages. Firstly, we examine the reasons 
why the performance of state-of-the-art speaker recognition systems degrades under the 
conditions named above by analysing the acoustic feature space in which the 
speaker-phoneme distribution (SPD) describing the acoustic space structure is discussed. 
The special structure of an acoustic space logically explains the difficulties in decision of 
the state-of-the-art speaker recognition systems, especially under noisy conditions. 
Secondly, based on this analysis, a general framework of NLDA-based feature 
enhancement by multi-layer perceptron (MLP) is suggested to reduce the problem. 
Experiments under a variety of conditions have shown the effectiveness of this general 
feature enhancement approach. Thirdly, an alternative feature type derived by SOM 
processing is found to provide complementary information for speaker recognition. 
 
The reminder of Part III is organised as follows: In Chapter 10, an analysis of feature space 
is presented. MLP-based feature enhancement approaches are described in Chapter 11 and 
a complementary feature type generated by SOM processing is presented in Chapter 12.  
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10. Feature space analysis 
 
10.1 Overview 

 
The objective of  feature space analysis presented here is to obtain a clearer understanding 
of the reasons for some of the drawbacks confronted by state-of-the-art speech processing 
systems such as low efficiency under noisy conditions (non-robustness) and the fact of the 
same types of features are used for both speech and speaker recognition. While the analysis 
developed may not directly solve these problems, it can provide us with a sound basis for 
the necessity of using the discriminative features for speaker recognition which will be 
discussed in Chapter 11. 
 

MFCC features especially designed for speech recognition represent the most widely 
used feature type in speaker recognition. This implies that there must be a variety of useful 
information in MFCCs, related to linguistic content, speaker identity, speaker’s gender and 
information pertaining to dialectal affiliation. Although speaker’s gender and dialectal 
affiliation can be considered as a part of speaker identity, they are separate factors which 
can be identified in contributing to variation in acoustic patterns which give the speaker 
identity. The questions pertaining to these different sources of information are: 

A. Which type of information (linguistic, speaker identity, gender and dialectal affiliation) 
is most suitably represented by MFCC features, making the features correspondingly 
suitable for the recognition application? 

B. Based on the question A, how are these types of information represented in feature 
space and what is the representative distributional structure for a feature space? 

C. How can we utilise this structure for a particular recognition application, esp. speaker 
recognition? 

D. Can this structure explain the lack of robustness of these features when they are used 
under noisy conditions? 

 
In this chapter we set out to find the answers to these four questions. The rest of this chapter 
is organised as follows: In Section 10.2, the speaker phoneme distribution (SPD) of a 
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feature space is described and in Section 10.3, four analysis methods are presented. In 
Section 10.4, the data used for analysis are described. The results of the feature space 
analysis are given in Section 10.5, followed by conclusions, presented in Section 10.6. 

 
10.2 Speaker-phoneme distribution (SPD) of a feature space 
 
Throughout this section, an acoustic space corresponds to a voice space before feature 
extraction, while the term a feature space is used for a space after feature extraction. 
 

A sentence with which a meaning is communicated is created by concatenating a 
sequence of phonemes. Phonemes are viewed as the basic sound units in an acoustic 
space. Therefore, a corresponding feature space derived from the acoustic space by 
means of signal processing (e.g. the MFCC feature space) also has phonemes as its basic 
units. Implicitly, the term “basic units” means their units may be separated (Property I).  

 
Speakers can produce all the phonemes of a language. It can therefore be induced that 

speaker data probably contain all the phonemes in an acoustic space (Property II). Any 
feature space derived from an acoustic space may be assumed to also have this property. 

 
Therefore, intuitively, a feature space should possess the above two properties 

(Property I and II), which are summarised and illustrated in Figure 10-1. In this figure, 
we can see the same or similar-sounding phonemes (broad phoneme classes) clustered 
together in a feature space. Within each phoneme (or broad phoneme class) speakers’ 
locations overlap. 

 
Figure 10-1: Speaker-phoneme distribution of a feature space, in which a big circle represents a 
phone cluster, a small circle in the big circles describes a speaker producing that phoneme 
sound 

Although this SPD is simple, it has important implications for the triggering of new 
ideas for speaker recognition if it can be proved valid. Firstly, it is suggested on the basis 
of this model that MFCC features are more suitable for speech recognition than for 
speaker recognition, as phonemes are more easily separable than speakers (answering 
question A and the SPD answers question B). Secondly, more speaker discriminative 
features are required for speaker recognition in order to improve its performance 
(answering question C). Thirdly, the application of GMM to speaker modelling can be 
shown to be a reasonable, natural and valid method, because a Gaussian component is 
assigned within each phoneme (broad phoneme) cluster to model local characteristics of 
each speaker. Fourthly, the non-robustness of GMM can be more clearly understood on 
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the basis of this model. Any other factor causing disturbance in the fine clustering of a 
feature space will have a negative impact on the performance of speaker recognition 
systems (within any phoneme, speaker clusters are already very close, so that any 
disturbance by noise could result in misclassification). Therefore, it is not difficult to 
understand that the performance of the GMM-based recognition systems significantly 
degrades in a variety of noisy conditions (answering question D). 

 
In the following sections, the purpose is to apply different approaches to prove the 

validity of this SPD proposed in this section. 
 
10.3 Methods used in speaker-phoneme distribution analysis 
 
Since a common feature space is high-dimensional, it is difficult to prove the validity of the 
proposed SPD by means of a single analysis: A single analysis can only capture a particular 
characteristic of a feature space from a particular perspective. However, when a number of 
analysis approaches are used simultaneously, combination of the derived different 
perspectives can establish a panoramic view of a feature space. 
 

The following four different approaches will be used here for analysing a feature space 
from different perspectives: visual space analysis, GMM-based analysis, LDA-based 
analysis and Separability-based analysis. Visual space analysis shows a feature space by a 
small dataset (two speakers) giving a realistic example for the feature space. GMM-based 
analysis is used to graphically show the clustering of different classes (e.g. phonemes, 
speakers, gender and dialect regions). LDA-based analysis is used to observe a feature 
space in a linear way. Finally, separability-based analysis is a more general approach to 
analyse a feature space in an analytical and at times nonlinear way. 

10.3.1 Visual space analysis 

Visual space analysis illustrates the structure of a feature space by observing a small 
realistic dataset. The acoustic feature space has a high dimension, so dimension reduction 
to 2 or 3 dimensions must be applied first. Principal components analysis (PCA) is one of 
the most popular means of dimension reduction. Therefore, for visualising the actual 
distribution of a dataset, PCA is first applied to transform this dataset. The two most 
important principal components corresponding to the two largest eigenvalues are adopted 
as the coordinates in a 2-d plane. The generated 2-d plots can show the real structure of a 
feature space visually, a fact which helps to better understand the space structure and the 
feature distribution. 
 

In order to conduct visual space analysis, a small dataset from only two speakers is 
used. A distributional pattern similar to that proposed in the SPD will be illustrated in the 
result section (Section 10.5.1). 

10.3.2 GMM-based analysis 

GMM-based analysis is an approach to show graphically the distribution of the labelled 
classes (phonemes, speakers, genders, dialect regions) by a global GMM classifier. In 
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other words, a GMM classifier is first trained on the full dataset. This is then used to label 
the clustered data by selecting the Gaussian component which gives the maximum 
likelihood for the given data frame. The proportion of data from each class clustered 
within each Gaussian component is used as an indicator to evaluate the separability of 
each type of information concerned with phonemes, speakers, genders and dialect 
regions. 
 

The global GMM classifier is trained by using the K-means clustering algorithm 
followed by expectation maximisation (EM). This procedure is implemented using the 
Torch machine learning API (Collobert et al. 2002) with a variance threshold factor of 
0.01 and a minimum Gaussian weight of 0.05, which are optimal for the used features (cf. 
Section 11.4).  

 
For the classification stage, a frame is classified by selecting the maximum likelihood 

conditioned on a specific Gaussian mixture for a given data frame tx , i.e. 
arg max ( | , )j t j j

j
i w P= ⋅ x µ Σ         (10.1) 

where jw , tµ  and jΣ  are the weight, mean vector and covariance matrix of the j-th 
Gaussian of the global GMM. 

10.3.3 LDA-based analysis 

LDA-based analysis trains an LDA classifier on a training set and uses c linear 
discriminant functions to classify c classes on a test set. The derived correct recognition 
percentage for class division is used as an evaluator for the linear class separability. 
 
Notation: 
d: the dimensionality of a feature space 
n: the number of training samples 
X: an original dataset (d × n) 
Y: an LDA transformed dataset (d × n) 
W: a linear transformation (d ×d) 
 
W is optimized on a training set (see Section 6.2.2), such that 

=Y WX .         (10.2) 
For the classification stage, c discriminant functions are used to classify c classes on a 
test set, i.e. 

,  0T T
i i i c= ≤ <a Y b .       (10.3) 
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For a given number of classes, LDA is obtained for a training dataset. This 

transformation is then used to predict the test data. The prediction correct percentage is 
used as an indicator to describe the degree of separability of the class set, which in turn 
indicates how difficult it is to separate these classes. 

10.3.4 Separability-based analysis 

Separability-based analysis is a more general approach than LDA-based analysis, as it is 
not necessarily linear. Furthermore, separabilitiy-based analysis can be conducted on the 
whole dataset without the requirement of partitioning the training and test set as in the 
case of LDA-based analysis. Therefore, it is more powerful than LDA-based analysis.  

In this analysis, the separability for a given class division D of data set X is denoted 
by ),( XDSep . Sep is an indicator of the class separability. It can be combined with the 
normalised class entropy ),( XDNH (10.5) and the normalised mutual information 

),,( 21 XDDRI  to infer the structure of a feature space. The NH measure is a measure of 
the uncertainty for the class to which a given observation belongs. The RI (relative 
information) measure is a measure of the degree to which any two class divisions are 
related, which is independent of the type of mapping between them. 

• ),( XDSep , the "(class) separability index", for a given class division D of data set X , 
is the ratio of the sum of between-class variances to the sum of within-class 
variances. Sep (10.4) increases as the number of clusters for each class, the 
interlacing of data from different classes, and class boundary complexity decrease. 

)()( wb StraceStraceSep =  (10.4) 

• ),( XDNH , the "normalised (class) entropy", is a measure in [0,1] of the uncertainty 
as to which category in class division D the data in a given set X belongs. NH (10.5) 
gives the proportion of classification perplexity.  

DXDHXDNH 2log/),(),( =  (10.5) 

• ),,( 21 XDDRI , the "normalised (mutual) information", or Relative Information 
(Morris, 2000), (10.6) is a value in the range of [0,1] which tells you how much, for a 
given data subset X , the class in D1 is statistically dependent on the class in D2, and 
vice versa. RI (10.6) is obtained by suitable normalisation of the Chi-squared statistic, 
L (see Appendix A). It makes no assumptions about the mapping between

1D and 2D . 

))),(min(log2/(),,(),,( 212121 DDNXDDLXDDRI e=  (10.6) 

 
The above data set X can be a data subset which satisfies a certain selection criterion. 

For instance, if we are interested in the separability of data within each Gaussian cluster 
(a Gaussian classifier is used to partition data into each Gaussian cluster before this step), 
then X can represent a data subset which falls in a Gaussian cluster. It is helpful to 
analyse the structure of a feature space by calculating the separability in each Gaussian 
cluster.  
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10.4 Data 

 
The TIMIT database is used for all the analyses. Since TIMIT is an excellent, 
phonetic-abundant database, hand-labelled in a precise manner with other speaker-related 
information such as speaker identity, gender and dialect region included, it is highly 
suitable for the present analysis. 

10.4.1 Data features 

All four types of analysis are carried out in the MFCC-based feature space. But the 
analysis results must be valid for any other acoustic feature space. To validate this point, 
a wavelet-based feature space is analysed by using the most powerful approach – 
separability-based analysis. 
 

Both of these feature types were used in (Sarikaya et al. 1998), where it was shown 
that the more recently introduced wavelet based features perform marginally better than 
the standard MFCC features, also used in (Reynolds et al. 1995a). As in (Sarikaya et al. 
1998), all of the Timit signal data was first downsampled to 8 kHz, to simulate telephone 
line transmission, but no further low- or high-pass filters were applied. 

 
MFCC features used 20ms windows and 10ms shift, with a pre-emphasis factor of 

0.97, a Hamming window, 20 Mel scaled feature bands, and all MFCC coefficients 
except c0.  

 
Wavelet-based features were extracted in two steps, as in (Sarikaya et al. 1998). In the 

first step, 32nd order Daubechies orthogonal wavelet filters were used for subband 
decomposition of a 24ms Hamming window with a preemphasis of 0.97 and a window 
shift of 10ms as for the MFCCs. The subband wavelet packet tree was the same as in 
(Sarikaya et al. 1998) and represented a roughly Mel-scaled distribution of the subbands 
across frequency. The log energy in the 24 subbands was decorrelated by DCT, the same 
as for MFCCs, resulting in subband based cepstral parameters. We will denote these 
wavelet coefficients WAVC. 

10.4.2 Data labelling 

Timit contains 630 speakers (438 male, 192 female) from 8 dialect regions in the USA, 
each speaking 10 sentences. Each utterance in Timit is phonetically hand-labelled and 
provided with codes for speaker, gender and dialect region. The features were processed 
as described in Section 10.4.1. A global GMM was trained on the whole dataset as 
described in Section 10.3.2. GMMs with 2, 4, 8, 16 and 32 Gaussians (which we will 
refer to as GMM2 to GMM32, respectively) were trained separately. After feature 
processing and GMM training, each feature frame (x) was labelled with the index of the 
Gaussian (Gi) according to (10.1). Broad phone and speaker classes are also labelled 
because broad class detection can be relatively robust, and in speech or speaker 
recognition an initial broad class identification is often used to either select or condition 
the model used for fine class recognition. A record was therefore compiled for every 
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feature frame, with fields as shown in the table below (Table 10-1). 
Table 10-1: Class divisions with the number of categories 

Partition Num. categories 
phone, P61 61 

speaker, SPK 18, 630 
gender, GEN 2 

dialect region, DRE 8 
broad phone 1, P20 20 
broad phone 2, P07 7 
broad phone 3, P04 4 
Gaussian index, GID 2, 4, 8, 16, 32 

 
Categories P61 (61 phonemes) to DRE (8 dialect regions) above were directly 

obtained from the Timit labelling. In order to visualise the speaker division, a small set of 
speakers (SPK18) was also selected. The full set of speakers (SPK630) contains all the 
630 speakers. P61 was grouped into 3 broad class partitions, Pnn, where nn is the number 
of categories. The categories in P04 are obstruent, sonorant consonant, vowel and silence. 
The categories in P07 are obstruent, sonorant consonant, front vowel, back vowel, central 
vowel, diphthong and silence. P20 consists of 4 stop segment categories: closure_voiced, 
plosive_voiced, closure_voiceless and plosive_voiceless (for closure and release portions 
of voiced and voiceless plosives, respectively; closure can also denote the closure phase 
of affricates); 2 fricative categories: fricative_voiced, fricative_voiceless (including the 
fricative parts of affricates); 1 nasal category; 1 category of liquids; 1 category of glides; 
10 vowel categories: cfv2, mfv, ofv, obv, di, ocv, mbv, cbv, mcv, ccv; 1 silence). Each 
data frame was also labelled with the index of the Gaussian which gave the highest 
probability density. 

 
10.5 Results 

 
The purpose of this section is to validate the SPD proposed in Section 10.2. The different 
types of analysis provide support to this SPD from different perspectives.  

10.5.1 Visual space analysis 

Visual space analysis is conducted on a small dataset containing data from only two 
speakers for simplicity, but it is also applicable to a case of multiple speakers. 
 

                                                      
2 Pos 1: c: central, m: mid, o: open 

Pos 2: f: front, c: central, b: back 
Pos 3: v: vowel 

  di: diphthong 
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Figure 10-2: Subset (2 speakers, all phonemes) feature space represented by two principal 
components 

 
 

(a)          (b) 

Figure 10-3: (a) Smaller subset feature space represented by two principal components marked 
by speaker. (b) Smaller subset feature space represented by two principal components marked 
by phoneme. (MFCCs, three phones /ao/, /iy/, /d/ from the same two speakers) 

We arbitrarily chose two speakers from the TIMIT database, whom are called them 
speaker 1 (speaker label abc0) and speaker 2 (speaker label adc0). Then we used all the 
utterances (19-d MFCCs) from these two speakers and applied PCA transformation to 
them so that PCA projected them from a 19-d space into a 2-d dimensional space by only 
choosing the two largest principal components. In other words, the two principal 

Second component Second component 

Fi
rs

t c
om

po
ne

nt
 

Fi
rs

t p
rin

ci
pa

l c
om

po
ne

nt
 

Second principal component 



71 

components representing the two largest variance directions of these data were selected. 
The resulting graph is shown in Figure 10-2. 
 

Figure 10-2 was plotted by using the frames of all the phonemes from two speakers. 
In this figure, the two speakers are shown overlapping, although in the left bottom corner, 
the data from one speaker occurs more often than that from the other.  

 
In order to observe these data in a clearer way, we only selected three phonemes (/ao/, 

/iy/, /d/) for visualisation, which were arbitrarily chosen. Then, the same figure was 
replotted by using a smaller subset of data with only three phonemes selected from two 
speakers. 
 

It is clearly shown in Figure 10-3b, the samples of the phoneme /ao/ are in the 
separate cluster from those of /d/ and /iy/ and vice versa. However, within each phoneme, 
data from both of speakers overlap (Figure 10-3a). The pattern shown in these two graphs 
strictly complies with the SPD. 

10.5.2 GMM-based analysis 

Visual space analysis was carried out on a two-speaker dataset. In order to analyse the 
characteristics of the overall feature space using as many data samples as possible, 
GMM-based analysis was conducted. 
 

 
Figure 10-4 (a,b): Histograms for data frames falling into each Gaussian in GMM32 for (a) 
gender, (b) dialect region 

The full set of data frames was used by GMM-based analysis for gender, dialect 
regions and phonemes. However, it could not be employed to observe the clustering of 
data for individual speakers (too many speakers cannot be shown in a figure). Therefore, 
the data selected from a subset of just 18 distinctive speakers, consisting of 3 males and 3 
females from each of 3 dialect regions, with 2 sentences per speaker (the two SA 
sentences) were used for speaker analysis. 
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Figure 10-4 shows histograms for gender (a) and dialect region (b), in each Gaussian set 
in MFCC GMM32. Each Gaussian selects a subset of data from a different region of 
acoustic space, which accounts for a different proportion of data from each class division. 
For example, some Gaussians, like 0, 12, 23, 28 of Figure 10-4a clearly separate 
male/female (sonorants in Figure 10-5b), while others, like 3, 15, 21 do not (voiceless 
obstruents and silence). Figure 10-4b shows that each dialect region has almost an equal 
probability of being in each Gaussian, which reflects the results in Table 10-2. 
 

Figure 10-5a shows that most Gaussians have data from most speakers(for a subset of 
18 speakers in the Timit database), although each selects a different proportion of data 
from each speaker, sometimes excluding a number of speakers completely, e.g. Gaussian 
19, which is dominated by a single speaker. If viewed in colour, Figure 10-5b shows that 
vowels and sonorant consonants (which carry more speaker distinguishing information) 
are clearly distinguished from obstruents and silence. Closer inspection of the data 
showed further systematic patterns. For instance, when obstruents and silence frames are 
represented by the same Gaussian, the obstruents are mainly voiceless. 
 

From these figures, we can see phonemes are most discriminately represented by 
Gaussian clusters. Within each phoneme cluster, most the speakers have some data, 
although there is often an unequal amount of data for each speaker. This also complies 
with the SPD. Moreover, almost an equal amount of data from each gender and dialect 
region falls into each Gaussian cluster. This shows that phonemes, speakers, gender, 
dialect regions are separable approximately in this order. This answers the question A, i.e. 
to what extent is each type of information among them (linguistic, speaker identity, 
gender and dialectal affiliation) represented by MFCC features. 
 

 
Figure 10-5 (a,b): Histograms for data frames falling into each Gaussian in GMM32 for (a) 
speaker, (b) phone class 
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10.5.3 LDA-based analysis conditioned on broad phonetic class 

The LDA-based analysis conducted here allows us to inspect the separability of each 
class division (speaker, gender and dialect region) when conditioned on knowledge of 
broad phonetic class.  

Table 10-2: Percent correct speaker, gender and dialect region classification by LDA on data 
within the set belonging to each of the 20 broad phonetic classes in set P20. (nas=nasal, 
opn=open, cen=central, vow=vowel, bre=breathing, vcl=voiceless, plo=plosive, rel=release, 
clo=closure, fri=fricative, bak=back, fro=front, beg=begin, sil=silence). Broad-class rows in 
each column are arranged in order of decreasing identification accuracy. 

Speaker Gender Dialect region 

nas 27.2 opn fro vow 94.7 opn cen vow 22.9 
opn cen vow 25.3 glide 94.3 pau 21.8 
mid bak vow 23.1 clo bak vow 93.8 nas 21.7 
clo bak vow 22.8 mid bak vow 93.7 opn fro vow 21.46 
opn fro vow 20.7 clo cen vow 93.6 clo bak vow 21.6 

diphthong 18.2 opn cen vow 93.0 mid bak vow 21.4 

mid fro vow 15.9 clo fro vow 92.9 opn bak vow 21.4 

epenthetic 
sil 

15.5 mid bak vow 92.6 diphthong 21.4 

opn bak vow 15.0 nas 92.1 mid cen vow 21.0 

clo cen vow 14.0 mid cen vow 92.0 mid fro vow 20.9 

glide 13.5 diphthong 92.0 glide 20.6 

clo fro vow 13.1 opn bak vow 91.7 clo fro vow 20.4 

pau 12.0 liquid 91.2 liquid 20.3 

mid cen vow 11.0 voiced clo 82.6 epenthetic sil 20.1 

Liquid 8.6 voiced fri 81.3 clo cen vow 19.8 

voiced clo 6.3 voiced plo rel 80.7 voiced clo 19.5 

bre 5.4 pau 75.4 voiced plo rel 19.2 

voiced plo 
rel 

4.4 vcl fri 75.0 voiced fri 18.8 

voiced fri 3.6 epenthetic sil 74.7 bre 18.6 

vcl fri 2.5 vcl plo rel 73.6 vcl plo rel 18.2 
vcl plo rel 2.4 bre 71.2 vcl clo 18.2 
vcl clo 2.2 vcl clo 70.9 vcl fri 18.0 
average 10.7 average 80.9 average 18.0 
random 
choice 

0.2 random choice 50.0 random choice 12.5 

 
When data is restricted to one phonetic class, the proportion of inter-speaker acoustic 

variation to other sources of variation is increased, while each speaker is still represented 
by approximately the same amount of data. Broad phonetic class is often more reliably 
estimated than fine class. In some situations, such as text prompted speaker recognition, 
the phoneme sequence is specified a-priori and can therefore be used to condition the 
speaker separation. In this section we perform a systematic analysis of the relative effect 
on speaker, gender and dialect region separability of conditioning on each broad phonetic 
class. 
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As mentioned in Section 10.3.3, each point was projected by LDA trained on the 
training set, either from MFCC features or from its associated log Gaussian probabilities, 
onto a transformed space and then tested on the test set. Because the classification 
performance (correct classification percentage) of these two projections was similar, 
results in Table 10-2 below are reported only for the latter. The broad phonetic classes for 
predicting speaker, gender and dialect region are shown in Table 10-2. 

 
We see in Table 10-2 that dialect region was very little separated at all, even when 

conditioned by the phone class (P20). This suggests that, within this database at least, 
dialect is not well characterised by the short term MFCC features obtained from a 20ms 
window. Gender is better separated by sonorants (top 3 lines) since sonorants contains 
more information about the speaker’s fundamental frequency. Speakers are best separated 
by nasals, which convey the characteristic shape of the nasal cavity by their timbre, as well 
as pitch. All classes are least separated by voiceless sounds, which carry least information 
about vocal tract shape and none about the characteristics of the glottal source.  
 

LDA-based analysis shows that knowledge of broad phoneme class can have a strong 
effect on the separability of speaker, gender and dialect region. Phones such as nasals and 
vowels, which reflect characteristics of the speaker’s vocal tract, carry more 
speaker-discriminating information than oral consonants. From this angle, it also 
complies with the logical corollary of the SPD, i.e. speakers can be discriminated 
differently within each different phone cluster. 
10.5.4 Separability-based analysis conditioned on Gaussian index 

As mentioned above, LDA-based analysis uses a linear classifier trained on a training set 
to obtain the correct classification percentage on a test set. An alternative approach is to 
apply the separability measure used in cluster analysis directly to the full set of data in the 
feature space. 
 

However, here, instead of using phonetic information, the analysis is conditioned on 
the Gaussian index, which is available to a GMM classifier. As the SPD suggests, similar 
phonemes tend to be classed into the same Gaussian cluster (cf. Section 10.5.2). 
Therefore, if what the SPD suggests is true, then the separability of the speakers 
conditioned on Gaussian index should be increased. Furthermore, the more clusters are 
used, the higher the separability of the speakers. In the rest of this section, this will be 
shown with separability-based analysis. 
 

As described in Sections 10.3.2 and 10.3.4, a global GMM was used for clustering 
data. Then Sep and NH values were obtained for every Gaussian within each of GMM2 
to GMM32. We report here the average Sep and NH values over all of the Gaussians 
within each GMM. We also report the RI value for each GMM, because it provides a 
direct measure of statistical dependence. In order to test the sensitivity of the results 
reported to the choice of data features, all tests were repeated for WAVC as well as 
MFCC features. 
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In Figure 10-6(a,b) we see that as the number of Gaussians increases, phone class 
separability for MFCC data decreases by about 50% (overall), while speaker separability 
increases by a factor of about 3. For GMM32, speaker separability is greater than phone 
separability. Approximately the same is true for WAVC data, although the wavelet 
features provide greater speech separability for GMM1 (the raw data without GMM 
modelling). This suggests that within each Gaussian, it becomes much easier to separate 
speakers. By contrast, it is harder to distinguish phones.  
 

 

Figure 10-6: (a) (left) shows speaker separability Sep values for MFCC data against the total 
number of Gaussians. (b) (right) shows same for WAVC features. Classes separated are dialect 
region (DRE), gender (GEN), speaker (SPK), different numbers of broach phoneme classes 
(P04, P07, P20, P61) 

 

 
Figure 10-7: (a) (left) shows speaker normalised entropy NH values for MFCC data against the 

total number of Gaussians. (b) (right) shows same for WAVC features 

In both cases phone entropy is consistently lower than speaker entropy, and decreases 
as the number of Gaussian increases. This suggests that the phonetic information is more 
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and more certain as the Gaussian number increases. In Figure 10-7 it can be observed that 
phone entropy, NH, is lower than speaker entropy for all GMMs, and decreases as the 
number of Gaussians increases. By contrast, both speaker and dialect region entropies are 
close to their maximum possible value (1.0) for every GMM, with little decrease as the 
number of Gaussians increases. This confirms the SPD that, unlike phoneme classes, 
each of which is well clustered and little fragmented, the distribution of speaker data is 
much more 'holistic', being almost invariant with respect to the region of feature space 
sampled. 
 

 

Figure 10-8: (a) (left) shows speaker RI between each of the speech and speaker partitions and 
Gaussian index, for MFCC data, against the total number of Gaussians. (b) (right) shows same 
for WAVC features 

 
Figure 10-9: (a)(left) shows speaker separability Sep values for MFCC data in each Gaussian of 
GMM32, (b) (right) shows NH values for MFCC data in each Gaussian of GMM32  

 

In Figure 10-8 we see that Gaussian index is strongly dependent on phonetic class for 
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all GMMs, and speaker RI increases at first, but levels out at a low level (confirming the 
SPD). RI for dialect region is near to zero throughout, showing that neither MFCC nor 
WAVC features capture any information required for dialect region separation with 
maximum 32 Gaussians. Gender dependence keeps increasing with the number of 
Gaussians in the GMM. This indicates an increasing separation of phonetic clusters into 
separate sets for males and females.  
 

In Figure 10-9 we see that speaker separability varies strongly between Gaussian 
subsets for GMM32, but Sep does not correlate with NH. This suggests that the observed 
differences in speaker separability within Gaussian clusters are mainly due to differences 
in speaker class overlap and/or fragmentation, rather than to differences in speaker 
distribution perplexity (number of different speakers). 

 
10.6 Conclusions 

 
In the above analyses from different perspectives, we identified cluster entanglement, 
rather than perplexity or class overlap, as the major factor limiting speaker separability in 
the Timit speech database. This confirms the proposed SPD. 
 

As mentioned in Section 10.2, with the confirmation of the proposed SPD all the 
questions (A–D) raised in the introduction to this chapter can be answered. The most 
significant conclusion is that MFCC is most suitable for speech recognition, but is not an 
optimal feature type for speaker recognition, due to the entanglement of speaker classes 
within each Gaussian subset. This motivates us to propose the use of a new feature type – 
discriminative features for improved speaker recognition (Chapter 11). 

 
In Section 10.5.3 we used LDA based classification to show that speaker 

entanglement can be reduced by conditioning on broad phonetic class. In Section 10.5.4 
we used the three measures Sep, NH and RI to show that, as the number of Gaussians in 
the GMM increases from 2 to 32, the average speech entropy in each Gaussian decreases, 
while the average speaker entropy remains near constant, with the effect that the ratio of 
speaker to speech separability increases. This suggests that the entanglement of speaker 
classes within each Gaussian subset is significantly reduced, thereby increasing speaker 
separability. 
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11. NLDA-based feature enhancement by 
MLP 

 
11.1 Introduction 

 
In Chapter 10, we analysed the MFCC feature space and found that MFCCs tend to be 
clustered around phonemes rather than speakers. This is a potentially negative factor for 
speaker recognition, because a speaker recognition system would prefer the acoustic 
features to be clustered around speakers, as this would make it easier to discriminate them.  
 

In spite of that, almost all the state-of-the-art speaker recognition systems (both 
identification and verification) use MFCC features to represent speaker-discriminating 
information, although these were specially designed for speech recognition systems 
(Reynolds et al., 1994, 1995a, 1995b). These MFCC features may not be the optimal 
features for speaker recognition, as the purpose of speaker recognition is different from 
that of speech recognition. 

  
One possibility to improve the performance of speaker recognition systems in a simple 

way is to eliminate as much linguistic information in signals as possible, leaving only 
speaker-specific features, such as voice quality parameters characterising, for example, a 
speaker’s nasal cavity or the fundamental frequency of the voice. This would parallel the 
human process by which a speaker can be recognised from his voice without the linguistic 
content being understandable. Linguistic characteristics such as certain idiosyncratic 
phrases or word selection also contain useful information to distinguish speakers, but, 
since they can be relatively easily learnt by impostors or changed by the social 
environment, they are not regarded as essential features to differentiate speakers. In speech 
recognition, the purpose is obviously to extract the linguistic content and nothing else. 
Hence, there is no absolute necessity for speaker recognition to use the same feature type as 
speech recognition does. 

 
Most importantly, the performance of state-of-the-art speaker recognition systems 

significantly degrades in a variety of noisy conditions, although their performance is 
almost 100% in clean speech (Reynolds et al., 1994, 1995a, 1995b). To solve this problem, 
some channel compensation approaches such as cepstral mean subtraction (CMS) (Atal 
1976; Furui 1981), RASTA processing (Hermansky et al. 1992) and Quadratic trend 
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removal (Mistretta et al. 1990) have been applied to deal with noise in the signal. CMS was 
found more efficient than the other two approaches for the King speech database (Reynolds 
et al. 1994; Campbell et al. 1999). Similarly, in Wildermoth et al. (2003) it was also found 
that CMS only works well for the YOHO database, but not for the 16k and 8k sampled 
TIMIT/NTIMIT/CTIMIT (Campbell et al. 1999). Moreover, in Wildermoth et al. (2003), 
the time derivatives showed a negative effect for speaker recognition on 
TIMIT/NTIMIT/YOHO databases. 

 
When the cepstral means are subtracted from the cepstra to remove diverse channel and 

background noises in the CMS, part of the speaker-specific information is also eliminated. 
This may serve as an explaination why CMS does not work for TIMIT testing series. Apart 
from these channel compensation methods, alternative approaches based on discriminative 
training have also been proposed to remove channel noises. For instance, linear 
discriminant analysis (LDA) was applied to NIST (Campbell et al. 1999) and shown to be 
able to improve speaker identification accuracy (Jin et al. 2000); a single 3-hidden-layer 
multi-layer perceptron (MLP) was also applied as a nonlinear transformation preprocessor 
for speaker verification on NIST97 and NIST98 databases to alleviate the effect of 
microphone mismatch and channel noise. A consistent improvement was found when 
discriminative features were linearly combined with the original mel-scaled cepstral 
features (Konig et al. 1998; Heck et al. 2000). In their work, no particular channel 
compensation approach such as CMS was applied. Therefore, the discriminative training 
based approach can be regarded implicitly as having the same function as CMS in dealing 
with channel noise. 

 
Apart from eliminating the effect of microphone mismatch and channel noise, 

discriminative features also possess other advantages over the original cepstra. In fact, they 
are not particularly designed for handling noise, but for enhancing speaker discrimination. 
Noise cancellation is a by-product of the enhancing procedure.   

 
In this chapter, we address a series of questions on how to obtain discriminative 

features to improve speaker recognition. A general framework for speaker discrimination 
enhancement is proposed, and a number of representative speakers (speaker basis), found 
to play a crucial role in the generation of discriminative features are presented. 
Furthermore, an automatic method for speaker basis selection is proposed. These 
approaches are tested on low-bandwidth speech (TIMIT-8k), telephone speech (NTIMIT) 
and low-bandwidth speech with additive noise (TIMIT-8k+Noisex). Substantial 
improvements are found in all these experiments. 

 
The rest of this chapter is organised as follows: In Section 11.2, we first review 

previous related studies. In Section 11.3, a general framework for MLP-based feature 
enhancement is introduced. In Section 11.4, MLP-based feature enhancement on clean 
speech is presented and discussed. In Section 11.5, speaker basis selection approaches are 
proposed, followed by enhancement tests in a variety of noisy conditions, in Section 11.6. 
In Section 11.7, tests are carried out on telephone speech. Finally in Section 11.8, a 
summary is given.  
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11.2 Related research 
 

A number of transformations such as principal components analysis (PCA), independent 
component analysis (ICA) (Potamitis et al. 2000; Kwon et al. 2004), LDA and MLP were 
first applied to phoneme recognition (Hermansky et al. 2000; Kajarekar et al. 2001; 
Somervuo et al. 2003; Shire et al. 2000; Fontaine et al. 1997). These transformations were 
compared on TIMIT database in Somervuo et al. (2003) and shown to outperform the 
baseline system, which consisted of the standard feature representation based on MFCC 
with the first-order deltas, using a mixture-of-Gaussians HMM recogniser. Moreover, it 
was also found that nonlinear transformation MLP generally achieved better performance 
than linear transformations, e.g. PCA, ICA and LDA. PCA and ICA had almost the 
comparable phone errors, but both are superior to LDA. In addition, further improvement 
was gained by forming the feature vector as a concatenation of the outputs of all four 
feature transformations (Somervuo et al. 2003). 
 

The transformation approaches can be applied to speaker recognition as well. In Jin et 
al. (2000), LDA learned on 230 speakers was used to reduce the dimensionality of MFCC 
features on NIST 1999 and a positive improvement over the original MFCCs was found. 
PCA and ICA were applied to the normalised audio spectrum envelope features instead of 
MFCCs achieving the improved results. However, these features were mainly based on 
MPEG-7 descriptors and the system using them didn’t outperform the baseline system 
using MFCC features (Kim et al. 2003; 2004a; 2004b). In Jang et al. (2001), ICA was 
applied to speaker recognition on TIMIT database by substituting the ICA transformation 
for the conventional short-time Fourier transformation and a generalised mixture model for 
GMM. Although the positive results were claimed, the correct percent was lower than that 
of a GMM-based system using MFCC features. A nonlinear transformation based on MLP 
which achieved the best performance in phoneme recognition was also tested for speaker 
recognition (Konig et al. 1998; Heck et al. 2000). However, it was found that system 
performance was only consistently improved by a linear combination of transformed 
features with the original mel-scaled features. This was to some extent in contrast to the 
finding for phone recognition that the transformed features by either of four 
transformations (PCA/ICA/LDA/NLDA) were able to improve performance even though 
they were applied alone (Somervuo et al. 2003). 

 
The reason for the failure of NLDA to consistently improve speaker recognition is 

mainly that the number of classes for discriminative training in speaker recognition is 
much larger than that in speech recognition. For instance, there are normally around sixty 
phonemes (the classes used for discriminative speech training) in English, especially 61 in 
TIMIT database. However, in speaker recognition, the number of speakers is much larger 
than 61. For instance, there are 630 speakers in TIMIT, 138 speakers in YOHO and 500 
speakers in NIST 1998. This large number of training classes may cause a learning 
classifier such as MLP not to be well trained, since each class is assigned to correspond to 
an output in the MLP. The bigger size of the neural net, the more difficult it is to train it 
well. As a result of under-training, discriminative features derived may not be useful for 
discrimination. 

 



82 

To solve this problem, Heck et al. employed a fixed number of speakers (31) with a 
balanced mix of carbon and electret handsets, and balanced across gender to prevent from 
training on too many speakers (Konig et al. 1998; Heck et al. 2000). The purpose of their 
work of using NLDA is to remove the effect of microphone mismatch, as mentioned 
before. However, in our approach, what we are focussing on is the extraction of the 
representative speaker-specific discriminating features, but certainly at the same time, all 
other characteristics that may cause non-speaker-specific variances are also removed, 
such as microphone mismatch, channel noise or linguistic variation.  

 
It is worth noting the difference between our work and Heck et al.’s work. Firstly, the 

purposes of using MLP are different. Heck’s aim is to alleviate the microphone mismatch. 
Our aim is to extract general speaker-specific features. Secondly, as will be described 
later, we found that the difficulty for an MLP to be well trained for speaker recognition 
could be overcome by using a subset of speakers for the MLP training. The learned MLP 
can be also useful for any other class separation. Thirdly, the size of the subset plays a 
crucial role in determining the performance of a system. Only if this size is larger than a 
desired number (which depends on the conditions under which the tested system is built, 
such as the number of enrolled speakers, the level or type of noise, etc.) will the 
preprocessed discriminative features improve the system performance even though they 
are used alone. Fourthly, besides the importance of the number of speakers used for MLP 
training, it is also crucial to decide which speakers are better to be selected than others. 
These more important speakers are referred to as “speaker basis”, which acts like the 
basis of the speaker feature space. An automatic approach to speaker basis selection 
based on the average between-class variance is proposed and shown to be better than the 
other two approaches. Fifthly, based on these original discoveries, a general framework 
of feature enhancement for speaker recognition is presented. This set of approaches is 
expected to be relevant to other pattern recognition applications. Moreover, these 
approaches are tested in a variety of conditions. 
 
11.3 A general framework for MLP-based feature enhancement 

 
The general framework for MLP-based feature enhancement proposed is illustrated based 
on speaker recognition in Figure 11-1. Although the framework illustrated here is based on 
speaker recognition, it may be assumed to be applicable to other pattern recognition 
systems as well.  
 

The framework consists of two basic steps. The first step is speaker (or class) selection. 
The objective of this step is to select the most “representative” speakers (classes) in the 
speaker (class) space, i.e. those who can represent the discriminating characteristics of the 
overall speaker space. As to the question which class is most representative and should 
therefore be selected, see Section 11.5 and 13.2. These selected basis speakers (classes) are 
used for feature enhancement, which is the second basic step. In this step, an MLP-based 
NLDA is trained using the basis speakers (classes) and then used for feature enhancement 
(see Section 11.5). The enhanced features are then used for recognition. The overall effect 
of feature enhancement is illustrated in the left half part of Figure 11-1. With the 
transformation of the trained NLDA, the speaker (class) space is somehow disentangled 
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and stretched further apart to improve the speaker (class) discrimination. For more details 
on this discussion, see Section 13.2. 
 
 

 
 

Figure 11-1: General framework for feature enhancement, illustrated based on speaker recognition 

It is not straightforward to realise the fact that speaker selection is crucial for the 
effectiveness of feature enhancement when the enhancement approach is applied to 
speaker recognition. The initial idea was to use only a small set of speakers for MLP 
training. As more experiments were run, our understanding of the essence of this problem 
was deepened. As a result, we realised the importance of the selection of speaker basis.  

 
Therefore, in the following sections we will trace the course of the investigation 

initially followed in this study. In Section 11.4, a small set of speakers is first randomly 
used to train an NLDA transformation to enhance speaker discrimination. The enhanced 
features are then tested on low-bandwidth clean speech. After this, the question as to 
whether random speaker selection was optimal is raised. In Section 11.5, three 
approaches to speaker basis selection are presented and compared. An automatic 
data-driven method is found to have a consistently better performance. Finally, in Section 
11.6 and 13.7 this set of approaches is tested under different conditions with a variety of 
additive and channel noise.  
 
11.4 MLP-based feature enhancement on clean speech 

 
Our initial idea of using NLDA for speaker recognition was inspired by the success of 
NLDA being used for speech recognition (see Section 11.2). This was achieved by 
training an MLP with one output per phoneme to estimate phoneme posterior 
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probabilities, and then using this MLP to project each data frame onto an internal 
representation of the data which the MLP had learnt (see Figure 11-2). This 
representation may be the net-input values to, or output values from, one of its hidden 
layers or the input to its output layer, i.e. the “pre-squashed MLP outputs” (see Figure 
11-3).  
 

As mentioned in Section 11.2, previous attempts had only limited success, except 
when used in combination with other techniques (Heck et al. 2000; Konig et al. 1998). 

 
There are both practical and theoretical reasons for the lack of success of NLDA based 

enhancement for speaker recognition. From a practical point of view, if the MLP has one 
output for each speaker in the closed speaker set then it requires retraining every time a 
new speaker is added, while from the theoretical point of view, when the number of 
speakers is large, the number of free parameters in the MLP becomes so great that it 
cannot learn to generalise well from the limited training data available. Furthermore, 
while phoneme data is well clustered and relatively easy to classify (Chapter 1), data for 
each speaker is clustered around every phoneme centre and is therefore harder to separate. 
Thus, the MLP classification error remains high, in which case the features it generates 
may reduce, rather than enhance, speaker recognition performance (Konig et al. 1998). 
Reasoning that 

the internal representation which the MLP learns to enhance separation between a 
small number of speakers (covering the required range of speaker types) should 
also be of some use in separating other speakers, 

in this section we train an MLP to recognise (i.e. estimate posterior probabilities for) 
a limited number of speakers selected at random from the population. By limiting the 
number of speakers on which the MLP is trained, both the practical and theoretical 
problems mentioned above are avoided. 
 

Before training the speaker model for each new speaker to be enrolled into the 
GMM or HMM based speaker recognition system, and also before processing the 
data for a speaker to be recognised, each frame of speech data is now projected 
through the first few layers of this MLP onto its discriminative internal representation 
(see Figure 11-2). 

 
In the present experiment, the speakers with which the MLP is trained (which we 

shall refer to as the speaker basis set) are selected from the population by balancing their 
dialect region, since this information can often be easily obtained in a real system. The 
size of the speaker basis set is varied. Within each dialect region, selection of the 
speakers to train the MLP is random. Results for several such random, non-overlapping 
selections are presented. In (Morris et al. 2005) it is shown that an automatic selection of 
the speakers can further enhance speaker identification. It will be further addressed in 
section 11.5. 

 
Further, this section compares the MLP which was successfully applied in (Heck et al. 

2000; Konig et al. 1998) with several other, simpler architectures, to evaluate the gain in 
speaker identification accuracy obtained by adding extra layers. A linear MLP which is 
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theoretically equivalent to LDA is compared with LDA. 
 
Before training the speaker model for each new speaker to be enrolled into the GMM 

based speaker recognition system, and also before processing the data for a speaker to be 
recognised, each frame of speech data is now projected by the MLP onto its 
discriminative internal representation (see Figure 11-2). 
 

 

 

Figure 11-2: Data enhancement procedure. A small random set of basis speakers, B, is selected. 
This is used to train an MLP with several hidden layers to estimate a-posteriori probabilities (P) 
only for speakers in B. All data SX from speakers in the full closed set of speakers to be 
recognised is then passed through the first 2 layers of the trained MLP to produce new data 
features SY, with enhanced speaker discrimination 
The proposed approach to harness the discriminative power of MLPs for speaker 

recognition is a conceptually simpler and more direct application of MLPs for data 
enhancement than in the application of an MLP in speech recognition (Genoud et al. 
1999). 

 
In Section 11.4.1 we present the baseline GMM based speaker identification model 

whose performance we are aiming to improve (Reynolds et al. 1995a). In Section 11.4.2 
we give the procedure used for the design and training of the MLP which we use for data 
enhancement. Section 11.4.3 describes the data features and procedures used for system 
testing, and in Section 11.4.4 we present experimental results. These results show that the 
data enhancement procedure described can give significantly improved speaker 
recognition performance. This is followed by a discussion and conclusion. 

11.4.1 Speaker identification baseline 

A GMM is used to model the characteristics of each speaker (see Section 7.3.1 & 8.2). 
The GMM design, feature data and database used here (32 Gaussians, MFCC features, 
Timit) are taken from (Reynolds et al. 1995a). This simple model gives state-of-the-art 
speaker recognition performance. With Timit (though not with other databases, such as 
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the CSLU speaker recognition database) no gain is found in training speaker models by 
adaptation from a global model. 

 
As in (Reynolds et al. 1995a), GMMs were trained by k-means clustering, followed 

by EM iteration. This was performed by the Torch machine learning API (Collobert et al. 
2002). We used a variance threshold factor of 0.01 and minimum Gaussian weight of 0.05 
(performance falling sharply if either was halved or doubled). 

11.4.2 MLP design and training 

The four MLP types tested are shown in Figure 11-3. Types a,b,c have previously been 
used successfully for data enhancement in ASR (Fontaine et al. 1997; Sharma et al. 2000). 
These are all feedforward MLPs in which each layer is fully connected to the next. The 
“neurons” in each layer comprise the usual linear net-input function followed by a 
non-linear squashing function, which is the sigmoid function for all layers except the 
output layer, which uses the softmax function to ensure that all outputs are positive and 
sum to 1 (Bishop 1995). 
 

Also using Torch (Collobert et al. 2002), each MLP is trained, by gradient descent, to 
maximise the cross entropy objective (i.e. the mutual information between the actual and 
target outputs). We trained in batch mode, with a fixed learning rate of 0.01. The data in 
each utterance was first normalised to have zero mean and unit variance. The estimated 
probabilities are often close to 0 or 1 and data with such a peaked distribution is not well 
suited as feature data. The enhanced features taken from the trained MLP of types a and b 
are therefore usually taken as the net input values in the output layer, prior to squashing. 
For type c they are normally taken as the squashed output from the last hidden layer 
(these values having less peaked distributions than the outputs from the output layer), but 
here we have taken the enhanced features from MLPs c and d both as the net input to the 
second hidden layer.  

 

Figure 11-3: Four MLP types (a-d) tested for data enhancement. Each active layer is shown as a 
(net-input function / non-linear activation function) sandwich. Only the dark sections of each 
MLP were used in data projection. The light parts were used only in training 
In ASR the MLP is trained to output a probability for each phoneme. In the model 

used here we select a random subset of the Timit speakers available for training (the 
speaker basis set) and train the MLP to output a probability for each of these speakers. 

(b) (a) (c) (d) 
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Although none of the MLPs a-d gave a high basis speaker classification score, the test 
results in Section 11.4.4 show that the speaker discriminative internal data representation 
which some of them learn can be very beneficial for GMM based speaker modelling. 

11.4.3 Test procedure 

Our baseline system is taken from the state of the art GMM based speaker identification 
system in (Reynolds et al. 1995b), using the Timit speech database (Fisher et al. 1986), 
GMMs with just 32 Gaussians, and 19 MFCC features. 

1   Baseline feature processing 

As in (Reynolds et al. 1995b), all of the Timit signal data was first downsampled to 8 kHz, 
to simulate telephone line transmission (without down-sampling, GMMs already achieve 
above 99.7% correct speaker identification). No further low- or high-pass filters were 
applied. Also as in (Reynolds et al. 1995b), MFCC features, obtained using HTK (Young 
et al. 2002), were used, with 20ms windows and 10ms shift, a pre-emphasis factor of 0.97, 
a Hamming window and 20 Mel scaled feature bands. All 20 MFCC coefficients were 
used except c0. On this database neither silence removal, cepstral mean subtraction, nor 
time difference features increased performance, so these were not used. 

2   Test protocol 

Timit does not have a standard division into training, development and test sets which is 
suitable for work on speaker recognition. For this we first divided the 630 speakers in 
Timit into disjoint training, development and test speaker sets of 300, 162 and 168 
speakers respectively. The speaker sets are all proportionally balanced for dialect region. 
 

Data enhancement MLPs a-d (Figure 11-3) were trained using a speaker basis set of 
between 30 and 100 speakers, again proportionally balanced for dialect region. Within 
dialect region, the speakers are selected at random from the training set. Only one frame 
consisting of 19 MFCC features was used as input, in parallel to the GMM baseline 
system which also used no information of variation of the features over time. In each case 
the number of units in hidden layer 1, and also in hidden layer 3 in MLP d, was fixed at 
100. The number of units in hidden layer 2 in MLPs c and d was fixed at 19 (the same as 
the number of MFCC features in the baseline system). Performance could have been 
improved by stopping MLP training when identification error on the development test set 
(using GMMs trained on data preprocessed by the MLP in its current state) stopped 
increasing. However, in the tests reported here, each MLP was simply trained for a fixed 
number (35) of batch iterations, after which mean squared error on the training basis 
stopped significantly decreasing. 

 
Each MLP type was tested just once with each number of basis speakers. For the best 

performing MLP (MLP d), test-set tests were made with multiple different speaker basis 
subsets obtained by dividing the training data into as many equal parts as each speaker 
basis size would permit. 
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Timit data is divided into 3 sentence types, SX1-5, SI1-3 and SA1-2. The text 

independent GMM for each speaker to be tested was trained on MLP projected sentences 
of type (SX1-2, SA1-2, SI1-2) and tested on MLP projected sentences of type (SX4, SX5). 
Baseline GMMs were trained on MFCC features. The speaker identification procedure 
was as described in Section 11.4.1. Both training and testing used Torch (Collobert et al. 
2002). 

11.4.4 Results 

Test set speaker identification scores, for MLP type a-d against speaker basis size, are 
shown in Table 11-1 and Figure 11-4. The baseline test set identification error was 3.87%.  

 
 

Figure 11-4: Speaker identification error rate for the 168 speakers in the test set, for data 
enhancement using MLPs a,b,c,d, with varying numbers of basis speakers 

 

Table 11-1: Test set speaker identification error for MLPs a-d in Figure 11-3 against speaker 
basis size 

Speaker 
basis size 30 50 75 100 best % rel. 

error reduction 

MLP a 10.10 7.74 6.25 6.55 -61.5 
MLP b 9.52 5.06 5.36 5.65 -30.7 
MLP c 6.55 5.36 3.27 3.87 15.5 
MLP d 3.27 2.38 1.79 2.38 53.8 

 
The best scoring MLP (MLP d) was then tested many times, for each number of basis 

speakers, also on the test set (Table 11-1). While results for different repetitions for each 
speaker basis size varied considerably, in 28 out of 30 tests the speaker identification 
error was lower than the baseline error. The optimal size of the speaker basis set used for 
training was 100, giving a relative error reduction of up to 77.0 %. 

Number of Basis Speakers

% Test set identification error 

MLP (a) 

MLP (b) 

MLP (c)

MLP (d)

Baseline error
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Table 11-2: MLP d speaker identification test-set % error against speaker basis size. For each 
number of basis speakers, test-set tests were repeated, using disjoint speaker basis sets, as many 
times as were permitted by the number of available speakers (Baseline error 3.87%) 

Repetition \ Basis size 30 50 60 75 100 150 

1 3.57 2.68 2.68 2.37 1.49 2.08 
2 2.98 2.68 1.79 2.08 0.89 1.79 

3 3.87 2.08 2.68 3.57 1.49  

4 2.08 2.08 1.79 2.08  

5 3.27 1.79 1.79  

6 4.76 1.49  
7 2.68  

8 3.27  

9 1.49  

10 3.57  

Mean % error 3.15 2.13 2.15 2.53 1.29 1.93 

Max % rel. err. 
reduction 61.5 61.5 53.7 46.3 77.0 53.7 

11.4.5 Discussion 

Results reported show up to 2.98% absolute (77.0% relative) performance improvement 
over the state of the art baseline on the Timit database. This was achieved with minimal 
fine-tuning and confirms our working hypothesis that the transformation learnt by the 
MLP to separate a random subset of speakers also substantially enhances separability 
between any speakers from the same population. An increase in identification accuracy 
has been found before with LDA when one output was trained for each speaker to be 
recognised (Jin et al. 2000). By contrast, our MLP (a), which performs a linear separation 
equivalent to LDA (Duda et al. 2001), performs on average very badly. However, this 
could be because in our case none of the test speakers are used in training, so that the 
MLP is required to generalise to new speakers. 
 

It appears that the ability of the features provided by the MLP to enhance speaker 
discrimination increases with the number of hidden layers. However, from the application 
viewpoint it would be advantageous to keep the MLP size and data transformation 
complexity to a minimum. It would be interesting to know whether the quality of data 
enhancement can be increased by dividing a given number of neurons into a greater 
number of layers, allowing for a more highly non-linear transformation. 

 
Because of the large search space of possible MLP configurations, our search is still 

far from being optimised. Our decision to alternate large with small hidden layers is 
based on the intuition that the benefits of non-linear vector space expansion and data 
compression should possibly be balanced. Our choice of MLP types a-c for testing was 
also guided by what has been used successfully before in ASR (Fontaine et al. 1997; 
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Sharma et al. 2000), while MLP d was used in (Heck et al. 2000; Konig et al. 1998) for 
speaker recognition feature enhancement. The features it produced did not, however, 
consistently improve speaker verification for shorter test utterances, even though the 
quantity of training data used was at least 4 times larger than in our experiments. In future 
we could try varying layer sizes, and also test the discriminatory power of features from 
every compressive hidden layer, not just the second. So far we have seen performance 
always increasing with the number of hidden layers used in MLP training (while always 
using just three layers for data enhancement). We have yet to find the point where this 
benefit stops increasing. 

 
To reduce the amount of experimentation required, the number of MLP batch training 

iterations was fixed at 35, although it is well known that MLPs tend to overfit to training 
data after the learning curve begins to flatten out. In future we should use cross validation 
testing to permit training to stop when MLP preprocessing maximises speaker 
identification performance on the development set. 

 
Results are only reported here for multiple random but balanced selections of each 

given number of basis speakers. While the number of speakers selected was always large 
enough to guarantee a fairly representative sample from the full speaker population, the 
somewhat erratic variation in identification performance resulting from different random 
speaker bases of the same size suggests that it would be instructive to see whether more 
principled methods could be used for basis speaker set selection. First results in this 
direction are reported in (Morris et al. 2005). 

 
Although the improvement in this section was reported based on identification 

experiments, the similar approach can also be applied to any verification task due to the 
enhanced discriminating property of the transformed features. Some further possible 
improving scheme will be discussed in Chapter 13. 

11.4.6 Comparison between a linear MLP and LDA 

Theoretically, a linear MLP is equivalent to LDA except that a linear MLP is learned by 
gradient descent algorithms instead of matrix calculus. These different learning methods 
result in that fact that LDA has a unique solution whereas a linear MLP often has a 
solution region (Bishop 1995). Moreover, due to the existence of many local extrema, a 
linear MLP may stop its training at any of these points, in which case the performance of 
a linear MLP may be not equal to or even inferior than that of LDA. This point was 
shown on the downsampled TIMIT (TIMIT-8k) database by comparing with the 
performance of transformed systems using a linear MLP and LDA. In addition, in order 
to show the different efficiency of using linear transformations and nonlinear 
transformations (NLDA), the 3-layer MLP described in Section 11.4.2 (100-19-100) was 
compared with a linear MLP and LDA for data transformation.  

 
A series of different numbers of speaker basis (selected by an approach described in 

Section 11.5) were used for training a linear MLP, LDA and a 3-layer MLP. The baseline 
system was described in Section 11.4.1. 
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It can be seen in Figure 11-5 that the LDA-based system was marginally better than 
the linear MLP-based one, whereas both of them were worse than the baseline system. 
The 3-layer MLP-based system achieved the highest accuracy with approximate 45.6% 
relative error reduction compared to the baseline system. 
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Figure 11-5: Performance Comparison between a GMM+MFCC speaker identification system 
(the baseline system) and discriminative feature systems transformed (by LDA, a linear MLP 
and a 3-layer MLP)  

 
From the three comparative results shown in Figure 11-5 it may be inferred that a 

linear MLP is not always equivalent to LDA, although theoretically it should be. As   
mentioned earlier, the reason which causes the different performance between the linear 
MLP and LDA-based systems is the existence of many local optima, at any of which 
points the linear MLP tended to stop its training. It may be seen, for instance, that with  
30, 100 and 150 basis speakers, the linear MLP has clearly stopped the training at local 
extrema, since the performance of the linear MLP transformed system is lower than that 
of the LDA transformed system. However, when using 50 speakers, the performance of 
the linear MLP and LDA-based systems is equal. Unfortunately, in this figure we cannot 
see that the linear MLP works more efficiently than LDA, but nevertheless, this may  
occur, depending on the actual shape of the error surface of the linear MLP training 
(Duda et al. 2001). Finally, it was also shown that when used for feature enhancement the 
non-linear MLP was by far superior to both LDA and the linear MLP, and that the NLDA 
could substantially improve recognition performance. 

11.4.7 Conclusions 

The test results reported here show that the use of MLP based data enhancement for 
speaker identification using different handsets (Heck et al. 2000; Konig et al. 1998) is 
also useful for speaker identification using very limited clean speech data. The number of 
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target speakers which the MLP is trained to recognise must be small enough to avoid the 
classification problem becoming too difficult to train, but large enough to provide a 
feature basis sufficient to separate all speakers within a large population. The internal 
representation learnt by this MLP in separating the small set of basis speakers provides an 
enhanced feature vector which can improve GMM based speaker recognition 
performance. This form of data enhancement can be applied to speaker verification, as in 
(Heck et al. 2000; Konig et al. 1998), as well as to speaker identification. It can also be 
used with growing speaker sets, of unlimited size, with no need for further training as 
new speakers are added. 
 
11.5 Speaker basis selection 
 
In Section 11.4, we investigated the effect of training the MLP to classify different 
speaker basis sizes (i.e. on different numbers of speakers). If too many speakers were 
used the MLP could not learn to separate them. However, we found that if an MLP was 
trained on a moderately sized and suitably selected subset of speakers, a significant 
improvement could be achieved in speaker identification using the MLP-enhanced 
features on their own as input to a standard GMM based speaker recognition system (Wu 
et al. 2005a; Reynolds et al. 1995a). We initially tried random selection. In this case 
speaker identification results on the development test set varied greatly with each 
different random selection. Furthermore, the development test performance was not a 
useful predictor of evaluation test performance. To solve this problem we developed 
several speaker basis selection methods, which we describe in this section. It is shown 
experimentally that one of these approaches achieves consistently better results than the 
others. 

 
In Section 11.5.1 the MLP-GMM system is briefly reviewed. In Section 11.5.2.1 and 

11.5.2.2 we look at random and knowledge-based speaker basis selection. Section 
11.5.2.3 then presents a number of deterministic basis selection methods and describes 
tests and results. This is followed by conclusions. 

11.5.1 MLP-GMM speaker identification 

Speaker identification experiments were carried out on the TIMIT speech database 
(Garofolo et al. 1993). We created our own division into speaker-disjoint training, 
development and evaluation data, with 630, 168 and 162 speakers, respectively. To make 
the speaker identification system text-independent, we used all sentences of type SA1-2, 
SI1-2 and SX1-2 for training, sentences of type SX3 and SI3 for development and sentences 
of type SX4 and SX5 for evaluation. 
 
Figure 11-6 shows the architecture of our MLP-GMM system (Wu et al. 2005a). As in 
ASR, the speaker identification system consists of two stages which work in tandem. The 
input features are first preprocessed by an MLP which has been pretrained to classify a 
given set of basis speakers. As the MLP is discriminatively trained, the transformation 
provided by the MLP gives features which better discriminate between the speakers than 
the original conventional features such as MFCCs. The MLP has three hidden layers. 
Layers 2 and 4 have of 100 nodes, while layer 3 is a compression layer with just 19 nodes. 
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It is the net-input values to each node in this compression layer which comprises the 
enhanced data features. The size of the compression layer was chosen to match the 
number of input features so that the input vectors to the GMM have the same size for 
MFCC and MLP coefficients. This internal representation of the MLP is assumed to 
capture the main signal characteristics which discriminate between speakers (Konig et al. 
1998; Wu et al. 2005a). 

 
The MLP is trained with Torch (Collobert et al. 2002) using a speaker basis set of 

between 30 and 100 speakers selected from the training set as described in Section11.4.2. 
To prevent overfitting, MLP training was stopped when the value of the error-objective 
for the development set started to increase. This was the case after 35 iterations (i.e. 35 
full training epochs, using on-line rather than batch training). 
 

 
Figure 11-6: The fundamental MLP-GMM architecture 

 
As in (Wu et al. 2005a; Reynolds et al. 1995a) the GMMs, using 32 Gaussians, were 
trained by k-means clustering, followed by EM iteration. This was performed by the 
Torch machine learning API (Collobert et al. 2002). We used a variance threshold factor 
of 0.01, a minimum Gaussian weight of 0.05 and the maximum number of k-means and 
EM iterations set to 100. With Timit (though not with other databases, such as the CSLU 
speaker recognition database) no gain was found in training speaker models by adaptation 
from a world model. 
 

This simple baseline GMM model, without MLP feature enhancement, gives 
state-of-the-art speaker recognition performance with 19 coefficient MFCCs (Reynolds et 
al. 1995a). 

11.5.2 Speaker basis selection 

The assumption behind the idea that the preprocessing MLP can be effectively trained, 
for the purpose of open set feature enhancement, by training it to classify a subset of 
speakers is that we can capture the characteristics of the whole speaker space using only a 
small but representative set of speakers. The use of only a subset of speakers for MLP 
training has several advantages. Firstly, by limiting the number of target classes we also 
limit the amount of data which is required in order for the MLP to learn to generalise 
correctly. The training is fast and it can converge to a useful solution even when (as is 
often the case in practice) the amount of training data per speaker is limited. Also, as we 
are training for open set data enhancement, the MLP need not be retrained when new 
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speakers enroll in the speaker recognition system. But an important requirement is that 
the subset of speakers used to train the MLP represent all enrolled speakers. In this 
section, we shall present several speaker basis selection methods, going from random to 
knowledge constrained random and deterministic basis selection. 

11.5.2.1 Random speaker basis selection 

We shall first present results for GMM speaker identification experiments which show 
that performance can vary strongly for different random speaker basis selections. We 
trained the MLP on different random selections of different numbers of speakers, using 
the same test protocol and configuration as tested in (Wu et al. 2005a), except that 
completely random selections of speaker bases are used. The random selection of speaker 
bases are obtained for basis sizes of 30, 50, 60, 71, 100 and 150 speakers. Each speaker 
basis set of a given size is randomly selected from the same group of 300 training 
speakers with replacement, i.e. every time a speaker basis is extracted from the training 
set, they are put back for the second independent random selection. The results are shown 
in Table 11-3. 
 

In Table 11-3, identification error rates of 3 random speaker basis selections for given 
number are reported. Their average and standard deviations are calculated. The variance 
for the different speaker bases at each given size is quite large, so that the particular 
random selection of the speaker basis substantially influences system performance. This 
indicates how important it is to find a reliable method for speaker basis selection. 

Table 11-3: Speaker identification error rates for MLP-GMM for three different random 
speaker basis selections of different sizes 

basis 30 50 60 75 100 150 
1 3.40 3.09 2.47 1.85 2.78 0.93 
2 2.47 3.40 4.01 1.85 2.47 1.85 
3 2.78 3.09 1.85 3.09 4.01 1.54 

mean 2.88 3.19 2.78 2.26 3.09 1.44 
sd 0.47 0.18 1.11 0.72 0.81 0.47 

 

11.5.2.2 Knowledge constrained random speaker basis selection  

For the TIMIT database on which the experiments reported here are carried out, several 
speaker properties are known beforehand. Age, height, race, education level, gender and 
dialect region of the speakers are known. Since the latter two are recognisable from the 
filenames and are likely to cause a large part of the speaker variation, this prior 
knowledge can be exploited for speaker basis selection. The division of gender and 
dialect region is not entirely balanced. TIMIT contains speech from 438 male and 192 
female speakers. Of the eight dialect regions, speakers from dialect regions 2 (Northern), 
3 (North Midland), 4 (South Midland), 5 (Southern) and 7 (Western) are overrepresented 
compared to the other regions (1=New England, 6=New York City, 8=Army Brat). We 
therefore selected several speaker basis sets by proportionally balancing gender and 
dialect region. Speakers within each gender/ dialect region group were selected randomly. 
The aim of this method of speaker basis selection is to use prior knowledge as much as 
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possible. Table 11-4 shows the results for different non-overlapping speaker bases. This 
shows that on average the constrained random selection gives very similar results to pure 
random selection.  
 

For small speaker basis sets (30 speakers), the identification error rates are mostly 
higher than for the baseline GMM system (3.40%). When we compare this with the 
random selection results in Table 11-3, this is somewhat surprising, since there the error 
rates are lower or the same as the baseline. For larger speaker basis sets, the error rates 
are generally lower than the baseline. 

Table 11-4: Speaker identification error rates for MLP-GMM for proportionally balanced 
knowledge-based speaker basis selections of different sizes 

basis 30 50 60 75 100 150
1 3.09 2.78 1.85 2.47 2.16 1.23
2 3.70 2.16 2.16 4.01 2.47 2.47
3 4.32 2.47 3.09 1.23 2.47  
4 4.32 2.47 4.32 3.40   
5 3.40 3.09 4.32    
6 3.70 3.70     
7 3.40      
8 5.86      
9 4.32      

10 3.40      
mean 3.95 2.78 3.15 2.78 2.37 1.85
sd 0.80 0.55 1.16 1.21 1.18 0.88

 
Of course, constrained random speaker basis selection is only possible if the database is 
labelled with the relevant properties related to the main sources of variation in the speech 
signals. Despite the controlled representation of speakers in each of the speaker basis sets, 
there is still considerable variation in the test results. We are forced to conclude, therefore, 
that gender and dialect region still leave a lot of the variation in the speech signal 
unaccounted for. Other variables play an important role for the discrimination between 
speakers. 

11.5.2.3 Deterministic speaker basis selection 

As the results in Table 11-4 show, different speaker bases using knowledge-based speaker 
basis selection can still lead to quite variable speaker identification results, so that it 
would still be necessary to obtain results for several speaker basis selections to find the 
optimal speaker basis. Besides that, most databases are not labelled with variables which 
may be expected to explain a large part of the variation between speakers, and it would 
normally be impracticable to add these labels.  
 

All the above reasons call for an automatic approach for speaker basis selection. In 
this section, we present several such methods. They are all based either on GMM 
separability or on the log likelihoods for each speaker for each test example from the 
baseline GMM speaker identification task on the 2 development sentences for the training 
speakers (300 speakers). These likelihoods indicate the confusions between speakers on 
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the basis of the original MFCC features. Before the automatic speaker basis selection is 
carried out, this log likelihoods matrix is first converted to a matrix of probabilities by 
first converting log likelihoods to likelihoods and then dividing each row by its row sum. 

1. Selection by decreasing speaker pair confusion (M1) 

In the probability confusion matrix, the probability of some confusion is higher than for 
others. By selecting maximally confused speaker pairs for classification in the MLP, we 
aim to reduce confusion between these type of speakers. After sorting the speaker pairs 
according to their confusion probability, the confused speaker pairs with the n highest 
frequency are selected as speaker bases (n is the size of the speaker basis). 

2. By decreasing confusability (M2) 

As M1, but GMM confusability estimated by monte-carlo sampling instead of by closed 
form calculation. 

3. By increasing a-priori separability (M3) 

First generate square speaker separability matrix, using the trained GMM models for each 
speaker and the separability measure trace ( wS + bS ) / trace ( wS ), where bS is the expected 
between-class covariance matrix  

1 2 1 2( )( )b ′= − −S m m m m       (11.1) 
and wS is the expected within-class covariance matrix (Duda et al. 2001, p.p. 119) 

1 2w = +S S S .        (11.2) 

im  and iS  can be easily derived from the GMMs. 
 

This method uses “expected values” calculated from the GMM parameters, so it does 
not make use of the actual test or development data. Pairs of speakers are then chosen in 
the order of increasing separability, i.e. least separable speakers first. 

4. Maximum average distance (M4) 

This method uses the distance between two speaker models. Given a speaker modelled by 
a GMM, i.e., for any test utterance X={xt}, t=1…n, we can easily obtain its likelihood, 
given speaker Sj: 

1

1 1
( | ) ( , , )

n M

j i t i i
t i

p X S w N x µ −

= =
= ⋅ Σ∑∑     (11.3) 

where M is the number of Gaussian mixtures.  
 

From the likelihood, we can easily derive the posterior probability each speaker model 
has by given any test utterance X, i.e. 

1

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )

j j j j
j N

k k
k

p X S p S p X S p S
p S X

p X p X S p S
=

= =
∑

      (11.4) 
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where N is the overall number of speakers.  
 

If we assume the prior probabilities )( jSp  are the same for any speaker model, then 
we obtain the posterior probability given any test utterance: 

1

( | )
( | )

( | )

j
j N

k
k

p X S
p S X

p X S
=

=
∑

     (11.5) 

In fact, posterior probabilities are just the normalised likelihoods across all the speaker 
models; nevertheless it allows us to much more easily derive the distance between any 
two models. 
 
 Define Kullback-Leibler distance  

( )( || ) ( )
( )

P
KL PX

Q

p XD P Q p X dX
p X

= ∫ .     (11.6) 

Define the distance between any two speaker models Sj and Sk by symmetric Kullback- 
Leibler distance as 

( ) ( | )
( , ) ( || ) ( || ) ( | ) ( | ) log

( | )
j

j k KL j k KL k j j k
k

p X S
KL S S D S S D S S p X S p X S dX

p X S
= + = −∫   (11.7) 

This cannot be evaluated in closed form when p(X|Sj) is modelled by a GMM. 
However, provided P(Sj)=P(Sk), 
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j
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KL(Sj, Sk) can therefore be estimated by averaging K(Sj, Sk, X) over the development test 
data, with ( | )jp S X evaluating using (11.4). Then we have the distance between two 
speaker distributions as 

1
,( , ) ( , )

S

j j tk k
t

KL S S K S S X
=

≅∑     (11.8) 

where S is the overall number of utterances in the development test data and Xt is a 
utterance in the development test set. The distance matrix KL is a symmetric matrix 
and ( , ) 0j jKL S S = .  
 

So far, we have obtained the distances ( , )j kKL S S  between any two speaker models 
given a development test set. We can now define the sum distance from one speaker to all 
other speakers as: 

1
( ) ( , )

N

j j k
k

SK S KL S S
=

=∑     (11.9) 
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where N is the number of all the speakers (N includes the speaker model of itself, 
since ( , ) 0j jKL S S = ). 

 
We now select the top-n boundary speakers with the largest average distances to all 

other speakers: 

( )1{ } _ _max ( )n jS S top n SK S=L .    (11.10) 

We refer to this as the maximum average distance (MaxAD) method for speaker basis 
selection. 

Table 11-5: Identification % Error rates of MLP-GMM by automatic speaker basis selections 
(baseline 3.4%) 

Basis selection methods 30 50 60 75 100 150 
1 3.40 2.47 2.78 3.39 4.01 2.47 
2 3.40 3.70 3.40 2.47 2.78 2.78 
3 3.40 3.40 3.40 1.85 2.47 3.09 
4 2.78 1.85 2.16 2.16 2.16 1.85 

Random average3 2.88 3.19 2.78 2.26 3.09 1.44 
 

We summarise the speaker identification error rates of MLP-GMM experiments by 
using the four automatic speaker basis selection approaches in Table 11-5. 

It is shown in Table 11-5 that all four speaker basis selections result in improved or 
equal performance relative to an improvement over the baseline system (equal error rate: 
3.40%), except in one case. This proves the efficiency of using automatic speaker basis 
selection. In particular, method 4 works consistently better than all other approaches, with 
a 45.59% relative error reduction over the baseline system using only 50 speakers to train 
the MLP.  

Moreover, In Morris et al. (2005), it was shown that when each test repeated 10 times, 
MaxAD showed clear advantage over random selection. 

11.5.3 Conclusions 

Discriminative feature enhancement by MLP preprocessing of standard MFCCs for a 
subset of the training speakers (speaker basis) can enhance speaker identification 
substantially. This is true for randomly selected speaker basis sets as well as 
proportionally balanced speaker basis sets. We also proposed several automatic speaker 
basis selection methods. Although these did not always improve the speaker identification 
results, a consistent improvement was found for automatic speaker basis selection when 
method 4 (maximum average distance) was used (lowest equal error rates in Table 11-5). 
This method showed a relative error reduction of 45.59% over the baseline system. 
 
 

                                                      
3 The reported figures are the average error rates obtained by three repeats of random speaker selection, cf. 
Table 11-3. 
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11.6 Feature enhancement on the speech with additive noise 
 

This section, adapted from (Wu et al. 2005c), addresses the issue of robust speaker 
recognition in noise, and in particular investigates the possibility of using a multi-layer 
perceptron (MLP) to enhance discrimination between speakers. Three different, realistic 
types of additive noise were selected and added to the 8kHz downsampled TIMIT 
(TIMIT-8k) clean-speech database (Garofolo et al. 1993) at different signal-to-noise 
ratios (SNRs). 

State-of-the-art Gaussian mixture models (GMMs) for speaker recognition, like 
hidden Markov models (HMMs) in automatic speech recognition (ASR), can achieve 
very good performance in clean speech, but performance degrades strongly in the 
presence of noise (Reynolds et al. 1994). ASR performance in noise can be increased 
significantly by using a feature projection provided by the pre-squashed outputs from a 
one hidden layer MLP, pre-trained to output a posterior probability for each phoneme 
(Sharma et al. 2000). It is not possible to apply an MLP in the same way to speaker 
recognition. The reason is that in speaker recognition there are no fixed target classes like 
phonemes in ASR. For the purpose of speaker recognition, the MLP is trained with a 
representative subset of speakers (speaker basis) as its target classes, comparable to 
phonemes as target classes for ASR. The transformation which the MLP learns for the 
speaker basis has been shown beneficial for any other speaker from the same population 
for clean speech (Wu et al. 2005a). 

Unlike for ASR, a one-layer MLP applied to speaker recognition in clean speech does 
not lead to an increase in the percentage correct speaker identification. This may be 
because speaker data, being clustered around every phoneme, is less easy to partition than 
speech data. But the separating power of an MLP can be increased by using more hidden 
layers. In (Wu et al. 2005a; Heck et al. 2000) an MLP with three hidden layers was 
trained to recognise 31 speakers, and discriminative features were taken as the outputs 
from the central, linear bottleneck hidden layer. The 31 speakers were selected because 
they had been recorded over multiple handsets. It was found that the features obtained 
from the MLP provide a performance enhancement, although not consistently across all 
training and test conditions (Heck et al. 2000) and sometimes only when the feature 
vector was concatenated with the original MFCC features which were used as input to the 
MLP (Konig et al. 1998). The good results may be due to a better compensation for the 
different handsets that were used, or to a better separation of the speakers in the acoustic 
space, even if the speakers were not selected with this aim -- or by a combination of the 
two.  

In tests with TIMIT-8k in (Wu et al. 2005a; Morris et al. 2005) the automatic 
selection of the speaker basis to train the MLP was investigated with the specific aim of 
making an optimal selection of the target speakers for training the MLP. It was shown 
that the performance of the features provided by the MLP leads to good speaker 
identification even for a small number of target speakers used train the MLP. Clearly, the 
good results must be ascribed to the ability of the MLP to enhance discrimination 
between speakers, since no variable noise or channel conditions are present. When only a 
small set of speakers (speaker basis) is used to train the MLP, it is especially important 
that they are selected so as to represent the whole population. It was shown in (Wu et al. 
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2005a; Morris et al. 2005) that even a speaker basis of 50 speakers automatically selected 
on the basis of the GMM confusion matrix for 300 training speakers can lead to improved 
identification of 162 “unseen” test speakers for clean speech. 

Here the effect of different types of additive noise, and the ability of the previously 
applied MLP to enhance speaker discrimination, in matched training and test conditions 
is investigated and compared with the system performance in clean speech (training and 
test) conditions. But in many practical applications, there is a mismatch between training 
and test conditions. Enrollment may take place in fairly clean speech conditions, e.g. 
when a new user has to go to a registration/certification authority so that his identity can 
be confirmed on the basis of official documents he possesses (passport, identity card, 
social security card, etc.). In this case, there will be a mismatch between the training data 
obtained during enrollment and the test data when the user requests verification in a noisy 
environment. We not only investigate the effect of a mismatch, where the training data is 
clean and the test data contain noise, we also evaluate the effect of simply adding several 
additive noise types to the training data, attempting to deal with the presence of noise in 
the test data. 

In this section the effectiveness of data enhancement is tested, using the MLP from 
(Wu et al. 2005a; Morris et al. 2005) for speaker identification in different kinds of 
additive noise at different SNRs. Since MLPs have been shown to be able to deal well 
with noisy speech in ASR (Sharma et al. 2000), we expect they may also enhance speaker 
recognition when noise is present. In Section 11.6.1 we describe the data used in the 
experiments, the MLP used for feature enhancement and the baseline GMM speaker 
recognition system. Section 11.6.2 then describes the results of the experiments for 
speaker recognition in clean speech and noise. This is followed by a discussion of the 
results in Section 11.6.3 and conclusions in Section 11.6.4. 

11.6.1  Method 

1. Data 

The TIMIT-8k (clean) speech database is used in all experiments (Garofolo et al. 1993). 
The reason for choosing this database is that we want to focus our investigations on the 
separation of speakers in the acoustic space first, and then add noise to evaluate its effect 
on MLP feature enhancement. Since the standard TIMIT-8k division does not include a 
development set, we created our own division into speaker-disjoint training, development 
and evaluation data, with 300, 168 and 162 speakers, respectively. The three sets are 
selected such that gender and dialect region have an equal proportional representation in 
the three sets. To make the speaker identification system text-independent, we used all 
sentences of type SA1-2, SI1-2 and SX1-2 for training, sentences of type SX3 and SI3 for 
development and sentences of type SX4 and SX5 for evaluation. Whereas SA1 and SA2 
sentences are always the same for different speakers, SIn and SXn sentences can be 
different ones and the index n only indicates the order as indicated by the numbers in the 
TIMIT database. The strict division optimises text-independence of the speaker 
recognition system. 
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2. Added noise 

To evaluate the robustness of discriminative features for speaker identification in various 
kinds of noise, (stationary) car as well as (non-stationary) factory-1 noise and babble 
from the NOISEX-92 database (Varga et al. 1993) were added to the TIMIT-8k database 
at SNRs of 20, 10 and 0 dB, using the ITU software (ITU recommendation P.56, 1993) to 
determine SNRs (these three types of noise are more related to the application area 
focused in our work, e.g. car environments). These noises are also used in the Aurora 
evaluations for speech recognition in noise. 

3. Feature extraction 

The TIMIT speech data was first downsampled from 16 kHz to 8 kHz. At 16 kHz our 
baseline system (as in (Reynolds et al. 1995a)) obtains 100% correct speaker 
identification. However, the interest here is to work with speech data which is close to 
telephone quality. Using 20ms frames and a 10ms step size, 20 Mel-scaled filterbank log 
power features were extracted, using a Hamming window and a pre-emphasis factor of 
0.97. A DCT was then applied to these to obtain MFCC features, from which the c0 
energy coefficient was dropped. Time difference features were not appended, because 
these did not improve performance with TIMIT-8k. Neither silence removal, dynamic 
features or cepstral mean subtraction were used, since none of these led to any 
performance improvement with TIMIT-8k.  

4. MLP feature enhancement 

When an MLP is trained to map speech feature frames onto their phone class 
probabilities in ASR, not only are the MLP output values useful for deciding which class 
the speech frame belongs to, but the outputs from its hidden layers within the MLP are 
also discriminative for the phone classes which were the targets during training. Each unit 
in a standard MLP has a two stage function. The first stage, the net-input function, is a 
many-to-one linear combination of the neuron’s inputs. The second stage is a one-to-one 
non-linear sigmoid function which squashes the net-input to a value between zero and 
one. From the point of view of using the MLP internal feature representation to provide 
discriminative features, the squashed outputs are not very suitable because they tend to be 
close to zero or one, thereby not complying with the GMM assumption that all features 
have an approximately Gaussian distribution. 

Using Torch (Collobert et al. 2002), discriminative preprocessing is carried out for the 
different noisy conditions with the aim of feature enhancement. Each single frame of the 
standard MFCC features are preprocessed by a 5-layer MLP, as in (Konig et al. 1998; 
Heck et al. 2000). This MLP was found to outperform MLPs consisting of fewer layers 
(Wu et al. 2005). Training the MLP with single frames instead of the usual input vector of 
9 concatenated frames gives the best results for this particular database. The MLP is 
trained, by gradient descent, to maximise the cross entropy objective (i.e. the mutual 
information between the actual and target outputs). We trained in batch mode, with a 
fixed learning rate of 0.01. The data in each utterance was first normalised to have zero 
mean and unit variance. Of the 3 hidden layers, the first and last hidden layer, which are 
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both non-linear, have 100 units and the middle, linear hidden layer has 19 (compression 
or bottleneck layer). The features obtained from the compression layer were used as input 
to a GMM system, as in (Wu et al. 2005a). The assumption behind this is that this simple 
representation, which consists of vectors of the same size as the original MFCC vectors, 
is an internal representation of the acoustic signal which enhances discrimination 
between the target speakers and is generalisable to the speakers in the entire population. 
We used the net input to the second hidden layer as input to GMM modelling. The MLP 
and its application in GMM modelling are represented in Figure 11-6. The MLP was 
trained with a fixed number of iterations (35), after which the error reduction on the 
training and development data in the MLP frame-based recognition was very small. 

Instead of using the 6 training sentences of all speakers to train the MLP, it was 
shown in (Wu et al. 2005a; Morris et al. 2005) that a smaller selection of speakers, the 
speaker basis, is sufficient to obtain a good speaker discrimination. Here, a speaker basis 
consisting of 150 speakers was automatically selected from the training speakers. The 
automatic selection is made on the basis of the confusion matrix obtained from a GMM 
experiment. The confusion matrix is produced by classifying the MFCC features from the 
2 evaluation sentences of the 300 training speakers with the speaker models for these 
speakers trained on the 6 training utterances (cf. next section). The log likelihoods in the 
confusion matrix are converted into likelihoods and then into posterior probabilities, by 
dividing each value by the row sum. The resulting table of posterior probabilities is then 
used to select the speaker basis. 

The speaker basis which we use to train the MLP is selected using the speaker 
posterior probabilities Pji = P(Sj|Xi) for a set of development test data. These probabilities 
are obtained from the test data log likelihoods by dividing the log likelihood for each 
speaker by their sum over all speakers. 

As a distance measure between speaker pdfs we use the symmetric Kullback-Leibler 
distance KL(Sj, Sk) (Theodoridis et al. 2003). This cannot be evaluated in closed form 
when pdfs p(X|Sj) are modelled by GMMs, but in (Morris et al. 2005) it is shown that 
KL(Sj, Sk) is the expected value of K(Sj, Sk, X), where 

( )( )( , , ) ( | ) ( | ) log ( | ) log ( | )j k j k j kK S S X P S X P S X P S X P S X= − −  (11.11) 

KL(Sj, Sk) can therefore be estimated by averaging K(Sj, Sk, X) over the development test 
data. 

( , ) ( , , )
i

j k j k iX testSet
KL S S K S S X

∈
≅∑  ( )( )log logji ki ji kii

P P P P= − −∑  (11.12) 

The resulting speaker-distance matrix can be used in various ways to select a subset of 
speakers for MLP training. The method which gave the best results for clean data in (Wu 
et al. 2005a; Morris et al. 2005) was to choose speakers in order of decreasing average 
distance from every other speaker (Maximum Average Distance). 

5. GMM modelling 

The MFCCs or, alternatively, the enhanced features obtained from the compression layer 
of the MLP (as explained in the previous section) are used as input to GMM modelling of 
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the diagonal covariances using 32 Gaussians, as in (Reynolds et al. 1995a; 1995b). The 
baseline model trained with MFCCs of the 6 training utterances gives state-of-the-art 
speaker recognition performance. With TIMIT-8k (though not with other databases, such 
as the CSLU speaker recognition database) no gain is found in training speaker models 
by adaptation from a global model for all 300 training speakers, so that each speaker 
model was trained from scratch with data for that speaker only. 
 

As in (Reynolds et al. 1995b), GMMs are trained by k-means clustering, followed by 
EM iteration. This is performed by the Torch machine learning API (Collobert et al. 
2002), using a variance threshold factor of 0.01 and minimum Gaussian weight of 0.05 
(performance falling sharply if either was halved or doubled), determined on the basis of 
the development sentences of the development speakers. 
 

Test results are obtained for 162 test speakers (for two test sentences per speaker, cf. 
section 11.6.1-1). Speaker identification for utterance feature data X is performed by 
selecting the speaker Sj with the largest posterior probability, P(Sj|X) (which corresponds 
here to the largest data likelihood p(X| Sj), as all speaker priors P(Sj) ar equal). 

11.6.2  Results 

In this section, the speaker identification results are compared for the different noises and 
at different SNRs. The MLP-enhanced features are compared with the baseline system, in 
which the MFCCs are not preprocessed by the MLP and used as input to GMM directly. 
Table 11-6 shows the results for clean data, and for car, factory and babble noise at SNRs 
of 20, 10 and 0 dB. The conditions presented in Table 1 are all “matched” conditions, in 
which the test data were used with a system trained on data of the same noise type and at 
the same SNR.  

Table 11-6: Speaker identification error for training on matched noise type and level 

car factory Babble 
 

clean
20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 

mean

MFCC baseline 3.40 11.42 18.21 38.89 18.83 43.83 87.35 17.90 36.11 87.65 36.36
MLP-enhanced 1.85 6.48 12.96 26.85 15.74 40.43 82.72 10.80 25.00 81.17 30.40

 

The results show a strong increase in speaker recognition error with decreasing SNR. 
Although still well above chance level, speaker identification is particularly poor for the 
non-stationary noise types (babble and factory noise) at a SNR of 0 dB. Notice that no 
cepstral mean subtraction (CMS) was performed, even for the noisy data, which may 
result in better speaker identification performance. In the clean speech condition CMS 
leads to poorer performance, probably because subtraction of the spectral mean across an 
utterance filters out part of the speaker characteristics. As expected, the best results are 
found for clean speech. 

Preprocessing of the MFCCs by an MLP to enhance speaker discrimination always 
reduces the speaker identification error. The absolute reduction is greatest for the 
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stationary car noise, particularly at the lowest SNR. The positive effect, though present in 
all conditions, is greatly reduced for non-stationary noise types, with the exception of 
babble at an SNR of 10 dB. 

In many applications, the user may want to be recognised in widely varying 
conditions, but the condition in which he must be recognised is not known beforehand. 
Two scenarios are possible. In the first scenario, the speaker enrolled in the system in a 
quiet environment, so that the speaker model (and the MLP) is trained on clean speech. 
But the actual conditions in which the system is subsequently used may vary from one 
occasion to the next. In order to evaluate the performance of our system under these 
mismatched conditions, the test data from all the noisy conditions in Table 11-6 were 
scored with the GMM speaker models (and MLP) trained with clean speech only. (The 
data for clean speech are the same as in Table 11-6 and does not represent a mismatch. It 
is only included in Table 11-7, because it is used to compute the mean percentage error 
for correct speaker identification across all possible test conditions in the right-hand 
column.) 

Table 11-7: Speaker identification error for training on clean speech and testing in various 
conditions 

car factory Babble 
 clean

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean

MFCC baseline 3.40 51.23 72.22 93.52 83.95 98.15 99.07 74.38 88.89 97.53 76.23
MLP-enhanced 1.85 79.63 88.27 96.60 95.37 98.46 99.38 91.05 94.44 97.84 84.29

 

As the results in Table 11-7 show, the mismatch between the noisy test data and the 
clean training data causes a severe deterioration of the performance of the speaker 
recognition system. For some of the conditions, recognition is only just above chance 
level (p=100/162=0.62%, i.e. error=99.38%). The effect, which is present for the MFCC 
features (comparison of first data rows in Table 11-6 and Table 11-7), is even greater after 
MLP enhancement, with only chance level speaker identification for factory noise at 0 dB 
SNR. 

In the case of (known) additive noise, the noises can easily be used to create “virtual” 
data containing this noise before the speaker model is trained. By catering for a variety of 
testing conditions in the training phase, the system is expected to better cope with the 
variability in real test conditions. As the results in Table 11-8 show, the performance in all 
noisy conditions is substantially better than when the GMM speaker models (and the 
MLP) are trained on clean speech only.  

Table 11-8: Speaker identification error for training across all noisy conditions 

car factory Babble 
 clean

20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB 
mean

MFCC baseline 14.20 12.96 19.75 56.48 19.75 36.11 85.19 17.90 25.62 74.69 36.27
MLP-enhanced 14.51 12.35 11.11 33.02 12.65 33.02 83.02 14.51 18.52 70.37 30.31
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In some cases, the speaker identification error is even lower than in the matched noise 
condition in Table 11-6, e.g. for factory noise at 10 dB SNR and for babble at 10 and 0 
dB SNR. In all conditions except for clean speech is the speaker identification error lower 
when MLP-enhanced features are used compared to the baseline system using MFCCs. 

11.6.3 Discussion 

In comparison to the stationary car noise, the speaker identification error is very high for 
non-stationary noises (factory noise and babble) with low SNRs.  

As expected, a mismatch between (clean) training and (noisy) test data always leads 
to a strong deterioration in performance. This deterioration is even greater when an 
MLP-enhancement based on clean speech is performed on the MFCC features, since it is 
not appropriate for the noisy acoustic space. 

Both for matched training and test conditions and for GMM speaker models trained 
across noisy conditions (i.e. using both clean speech and the same signals with added 
noise to train the speaker models), the MLP-enhanced features always outperform 
standard MFCC features.  

The GMM speaker models trained across noisy conditions even outperform GMMs 
trained on the same noise type as used for testing (matched condition). This is particularly 
the case for test signals with added factory noise at 10 dB SNR as well as for added 
babble at 10 and 0 dB SNR. The differences are not just caused by the different speaker 
basis selections for matched (Table 11-6) versus multi-condition models (Table 11-8), 
because the effect is found both for MLP-enhanced and for MFCC features. The effect is 
most likely due to an under-representation of the intra-speaker variance in the limited 
available training data in the matched tests, which is compensated for by the (artificial) 
addition of noisy data in the multi-condition tests. It is well-known in speaker recognition 
that the amount and above all the variety of training data from each speaker is critical. 
But the results do not show a systematic pattern across noise type and SNR, so that 
further investigations are needed to fully understand the observed effect. 

Of course, the MLP preprocessing described here must also be used for other, more 
realistic data, e.g. NIST. This was done by (Konig et al. 1998; Heck et al. 2000), but there 
the speaker basis was selected to contain speakers who used all different handset types, so 
that it is not clear whether the results are due to the MLP performing speaker 
discrimination or compensation for different handset types. The results shown here lead 
us to believe that the MLP can discriminate between speakers. The MLP feature 
enhancement may therefore also be helpful for databases where there is no subset of 
speakers who used all different handset types, but this remains to be verified. 

11.6.4 Conclusions 

In this section, text-independent speaker identification was performed in clean and noisy 
conditions. The performance of GMM speaker modelling using standard MFCC features 
was compared with MLP-enhanced features, where the MLP was trained on a subset of the 
speakers which was not used in testing (hence the feature enhancement is 
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speaker-independent). MLP-enhanced features strongly improve speaker identification 
performance, except when the noise condition of the test data is not represented in the 
training data. It was shown that, as in ASR, speaker identification in matched and 
multi-condition training is considerably better than when there is a mismatch between 
training and test data, both with MFCC and MLP-enhanced features. In some cases, GMM 
speaker models trained across noisy conditions, either with MFCCs or with 
MLP-enhanced features, perform better than speaker models trained in matched training 
and test conditions. An explanation is offered in terms of the amount and variability in the 
training data, but this cannot fully explain the observed results. 
 
11.7 Enhancement test on telephone speech 

 
We have tested MLP-based feature enhancement for the low-bandwidth clean speech 
(Section 11.4) and the speech with additive noise (Section 11.6). In this section, we apply 
this approach to channel noise, which is always present in telephone speech, caused by 
the transmission of speech signals through the telephone lines. Since MLP-based feature 
enhancement was shown to be able to eliminate the variance caused by the non-speaker 
related characteristics (e.g. additive noise), it was also expected to be efficient in the 
alleviation of the effect of channel noise.  
 

A telephone speech database NTIMIT was adopted for this evaluation. In order to 
keep the tests compatible with the ones conducted in Section 11.4, the same training, 
development and testing configurations were used. Regarding the baseline identification 
system, feature generation, MLP training and all other related setups, the same 
procedures and values for the parameters were used as in Section 11.4. 

 
Table 11-9: Percentage correct identifications from an MLP-GMM system for different speaker 
basis sizes, with speakers selected using the Max-AD method (baseline 58.95%) 

 
speaker basis size 30 50 60 75 100 150 

percent 55.56 58.02 57.10 59.88 63.89 59.57 

 

From the above table, it may be seen that, firstly, MLP-based feature enhancement 
approach improves the performance of speaker recognition on telephone speech with 
channel noise. Secondly, it is also worth noting that the transformed system does not 
outperform the baseline system until the number of speaker basis used for discriminative 
training is larger than 75, suggesting that speaker basis for less than this number cannot 
represent the overall distributional characteristics of the speaker feature space, due to the 
presence of the channel noise (more variance caused by the channel noise). Thirdly, 100 
basis speakers are shown as the optimal selection, while a speaker basis of more than 100 
reduces the recognition performance, although it is still superior to that of the baseline 
system.  
 

Based on this section, as well as Section 11.4, 11.5 and Section 11.6, the conclusion 
may be drawn that MLP-based feature enhancement can substantially increase  
between-speaker discrimination by reducing or, indeed, eliminating most of the 
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disturbing variance caused by additive and channel noise. Moreover, this set of 
approaches may be also used for other pattern recognition applications to enhance 
between-class discrimination.  
 
11.8 Summary 
 
In this chapter, the MLP-based feature enhancement approaches were proposed and tested 
for different types of databases: low-bandwidth clean speech, additive noise speech and 
telephone speech. All these tests confirmed the effectiveness of this set of approaches.  
The same approaches may be expected to be applicable to other pattern recognition 
applications.
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12. Complementary features by SOM 
processing 

 
12.1 Introduction 

 
Multi-stream speech processing operates on multiple different representations of the 
speech signal either at the feature level (concatenating them and then treating them as a 
single stream), at the frame level (combining the likelihood of each stream for each frame), 
or at the score level (processing each stream separately and then combining the results) 
(Hagen et al. 2003; Morris et al. 2001). 

While speaker recognition accuracy can be quite high using a single feature stream, it 
is often possible to further enhance the level of accuracy by multi-stream processing. In 
particular, it can alleviate the problem of performance degradation under noisy 
conditions. 

 
The additional benefit provided by each new feature stream in a multi-stream system 

depends on the degree to which the information in the new stream is complementary to 
the information already available.  In this paper we investigate the combination of 
MFCC features, commonly used in speaker recognition systems, with features derived 
through the projection of these MFCC features onto a trained Kohonen self-organizing 
map (Kohonen et al. 1997). In the case of a 2 dimensional SOM, the trace of the cells in 
the map visited throughout the utterance of a short spoken prompt provides a 2D 
trajectory which can be processed in an analogous way to that in which signature 
recognition is usually performed. This would have the additional advantage that, in a 
multimodal system which uses both voice and signature, such as that used in the 
SecurePhone project (Allano et al. 2006), the voice and signature data, after SOM 
projection, can share the same processing. SOM trajectory coefficients (STC), besides 
capturing local information in the SOM coordinates (and their derived features), also 
allow us to model the global shape of the voice “signature”. As in signature verification, 
STC features would consist not simply of SOM trajectory coordinates, but also of 
features derived from these. 

 
In Section 12.2 we describe how we can use a SOM for projecting high dimensional 

speech data down to a low dimensional SOM, demonstrating the tonotpic organisation on 
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the basis of a labelled database. In Section 12.3 we show some visual examples of the use 
of a 2-dimensional SOM to represent the speaker trajectory for a given prompt. In 
Section 12.4 we describe how the SOM coordinates are augmented by the addition of a 
number of derived features in a manner analogous to the processing used in signature 
recognition. In Section 12.5 we present our baseline GMM based system for speaker 
recognition. In Section 12.6-8 we describe the tests we have made, the results of which 
are presented in Section 12.9, both for the concatenation of MFCC with STC (SOM 
trajectory coordinates) features and for MFCC with STC scores fusion. A discussion and 
conclusion follow in Sections 12.10 and 12.11. 

 
12.2 SOM projection 

 
The SOM training procedure (Kohonen et al. 1997, 1996) is a form of unsupervised 
clustering which is in some ways similar to K-means clustering. What distinguishes them 
is that in SOM clustering the cluster centres are arranged in a regular grid (normally in 
two dimensions), in which cluster centres which are close in the grid are also close to 
eachother in the codebook vector space. We will refer to a SOM which has this property 
as being “well organised”. 
 

Although the training procedure for a SOM is well known, it includes a number of 
steps the details of which often differ between implementations. These differences can 
have a significant effect on the outcome of SOM training, so we give here some of the 
details of our implementation. The SOM training procedure was implemented, in C++ 
and with the aid of the Torch API (Collobert et al. 2002), using the algorithm from 
Kohonen et al. (1996). All training (and test) vectors are first normalised to have unit 
length. SOM codebook vectors are initialised to the value of randomly selected training 
data vectors (MFCC speech frames). We will refer to the individual speech feature frames 
xt used in SOM training as training tokens. 

 
Let t be the absolute token count and u the token count within the training set. Let r(t) 

be the update radius and h(t,r) be the learning rate. Let the closest codebook vector to the 
current training token be referred to as the active codebook vector. Let dst be the 
Euclidean distance between the active codebook vector and vector being updated. 

For each training token xt , all codebook vectors mi within grid distance r(t) of the 
active codebook vector are updated according to (12.1) and then renormalized to have 
unit length. 

)).(,( tiii xmrthmm −+=    (12.1) 

The radius r(t) of the update neighbourhood and the learning rate h(t,r) are updated 
once every bsize codebook updates, according to (12.2)(12.3)(12.4). 

bsize
epochsslen ⋅=    (12.2) 

len
tlenrtr )()1)0((1)( −⋅−+=     (12.3) 
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When the trained SOM is used to map a given pattern vector, x, onto the SOM grid, 
we will refer to the SOM grid coordinates of the SOM codebook vector which is closest 
to this vector as the 2D “SOM projection” of x. In this way a trained 2D SOM can be 
used to project a data set with N dimensions onto a corresponding dataset with just 2 
dimensions. 

 
Projection of data onto a 2D SOM is often used as a tool for visualising high 

dimensional data. If the intrinsic dimension of the pattern data has more than two 
dimensions, then the SOM training algorithm will not usually be able to produce a well 
organised 2D map. However, in practice it is quite common for a 2D SOM to organise in 
this way. For example, it is well known that when a SOM is trained on the acoustic 
feature vectors for speech data which is restricted to vowels, it will produce a well 
organised “tonotopic map” (Kohonen et al. 1997) which resembles some symmetry of the 
“vowel triangle” shown in Figure 12-1. 

 
Figure 12-1: Vowel triangle for Am.E. (Handbook, 1999; IPA) 

This results from the fact that, at a first approximation, all vowels are perceived 
according the centre frequency of their two first vocal tract resonances, or “formants” (F1, 
F2). This means that, no matter what type of acoustic features are used to represent the 
speech data, this data always has an intrinsic dimension of 2. In this case, if the sequence 
of vowel sounds pronounced varies continuously in time, then the 2D trajectory of the 
corresponding SOM projection of this speech data will also vary continuously in a 
smooth path moving over the SOM grid. 

 
Figure 12-2a shows a SOM which was trained with all realisations of the vowels /iy, ey, 

aa, ow, uw/ in the TIMIT database (Garofolo et al. 1993). TIMIT was used for this labelled 
SOM instead of the CSLU Speaker Recognition corpus, which is used in the experiments 
in the rest of this paper (Cole et al. 1998), because, unlike TIMIT, the CSLU database is not 
phonetically labelled. Despite the variability in the realisation of each vowel, the acoustic 
similarity between their different realisational variants leads to their self-organisation in 
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large contiguous areas representing each of the vowels. Acoustically more similar vowels, 
e.g. /iy/ and /ey/ or /uw/ and /ow/, are generally closer together in the SOM.  

 
           

 
Figure 12-2: SOM for vowels only (a) (left) and for all phones (b) (right) 

 
In the application of SOM projection which we are investigating in this article we 

should like to be able to project all phonemes onto a single SOM in such a way that all 
speech trajectories are quite smooth. When consonants are represented together with 
vowels in the same SOM, however, its structure becomes somewhat less clear. Figure 
12-2b visualises a SOM based on all the phones in the TIMIT database. As in the vowel 
SOM in Figure 2a, contiguous areas representing the same phone can be recognised. 
Although the phone map has a higher intrinsic dimensionality than the vowel map, we 
can clearly recognise that acoustically similar phones are located close together in the 
SOM. For instance, plosive closures are often close together, like /pcl, bcl, dcl/ in the top 
left-hand corner, labiodental fricatives /f, v/ are close together, syllabic consonant /el, er, 
em, en, eng/ are close to their non-syllabic counterparts /l, r, m, n, ng/ and, as in Figure 
12-2a, acoustically similar vowels are closer together. 

 
12.3 Speaker voice signature 

 
Although it is clear that SOMs can be used to represent speech, as in (Kohonen et al. 1988), 
it is not immediately obvious that the self-organising structure retains the finer distinctions 
between speakers in the way they produce the same phoneme; the discretisation caused by 
the size of the SOM dimensions may not be fine enough to retain speaker differences, 
which are more subtle than the distinctions between phones.  
 

Each time a speaker produces an utterance, a corresponding graphic pattern can be 
visualized by showing the mapping of each MFCC frame for a prompt to the SOM 
coordinates. The resulting graphic pattern is referred to as a Speaker Voice Signature 
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(SVS). It is defined as the speaker-specific trajectory for an utterance visualized by a 
trained SOM classifier, showing some similarity to a written signature. Speaker differences 
for a given prompt are reflected in differences in the trajectories through the SOM space. 
Figure 12-3 demonstrates the trajectories for the speech signal corresponding to “two four” 
from the same prompt spoken by two speakers. Although the intra-speaker differences 
(comparison between left and right figures) are smaller than the inter-speaker differences 
(comparison between top and bottom figures), they are fairly subtle. 
 

 

 
Figure 12-3: Top: Trajectory from 2 repetitions of “two four” by speaker 0038. Bottom: 2 
repetitions of the same prompt by speaker 0040. These trajectories were projected from their 
38-d MFCCs by a SOM classifier trained on the training set of the CSLU database (cf. the 
description in Section 12.6 and 12.7) 

 
The speaker discriminating information is illustrated not only by these trajectories, 

but also by the time duration for which the trajectory stays in a position. A bigger blob 
shown in each position implies that the trajectory stays there for a longer time. In fact, the 
distribution of the time duration can be efficiently modelled by a GMM with the two x-y 
coordinates of the SOM features. The global shape of each SVS can be captured by the 
other six components of the SOM features such as x-y speeds, x-y accelerations and the 
curvature. 
 

Because it is not immediately obvious from the representations in Figure 12-3 that the 
speech signal for “two four” actually leads to a smooth trajectory, the speech signal 
corresponding to the last part of the prompt represented in top left-hand figure is 
represented together with the x-y coordinates for each frame of the signal in Figure 12-4. 
Here it is clear that the trajectory is quite smooth. The trajectories in Figure 12-4 appear to 
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show a large number of sudden jumps in the speech trajectory (indicated by the light 
vertical lines between the x-y coordinates). However, most jumps appear in low energy 
regions where the mapping onto SOM coordinates becomes arbitrary, while slowly 
changing acoustic signals correspond to smooth coordinate paths. 
 

 

 
 

Figure 12-4: Representation of a speech signal for “four” excised from CSLU file 0038aaq1.wav 
(oscillogram + spectrogram) together the with x-y coordinates of the units in the SOM activated 
by each frame 

 

12.4 Computing SOM trajectory coefficients 
 

In on-line handwritten signature verification, the feature vector associated with each pen 
position (x-y coordinates, plus pen pressure and angles) is generally augmented with a 
number of derived parameters before it is submitted for data modelling. These extra 
parameters can be derived from local features associated with the first and second time 
derivatives of the position, including velocity, acceleration, line direction, and curvature. 
They can also be derived from global features, such as the first and second moments, 
which carry information about the overall shape of the trajectory. Exploiting the analogy 
with on-line signature verification, the vector of SOM projection coordinates associated 
with each speech frame (which we refer to as “raw” SOM features) is similarly 
augmented. 

 
In this paper we only look at augmenting STCs with time derivative based features. 

Time difference coordinates for a sequence of points x(t) on a smooth trajectory could be 
estimated simply as x(t+1)-x(t-1). However, a smoothing is normally applied to this 
estimate by estimating the direction of the velocity vector as that of the least squares fit 
straight line between the points x(t-W) to x(t+W) inclusive, for some given smoothing 
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window size, W. Indeed it is clear from Figure 12-3 that SOM trajectories are generally 
not entirely smooth. This is partly because of the discrete nature of the SOM grid 
positions, but it is also partly due to the imperfectly tonotopic mapping which any SOM 
trained on unconstrained speech data will tend to exhibit. If x(t) is any coordinate at time 
t, (12.5) shows the regression formula of order W (Soong et al. 1988; Van et al 2004). 
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As the SOM clustering algorithm can be applied not only to a 2D grid, but to a grid 
with any number of dimensions, we are interested in testing the suitability of SOM grids 
with nor only 2 dimensions, but also 3 or more dimensions.  

The augmented stc(t) feature vector which we derive from the N-dimensional SOM 
coordinate data x(t), are as follows. 

• Position. Handwritten signature coordinates are relative to the signature centre of 
gravity, but the SOM grid position is highly significant, so we use absolute SOM 
coordinates. Let d denote dimension. 

For d = 1..N, use ),( tdx    (12.6) 

• Velocity. For d = 1..N, use 
)),,((),(),( Wtdxreg

dt
tddxtdv ≅=    (12.7) 

• Line angle. For d = 2 to N, use 

( , ) arctan( ( , ) / ( 1, ))d t v d t v d tψ = −    (12.8) 

• Curvature. For d = 2 to N, for arc length s, use 
( , ) ( , )( , ) /d d t d d t dsd t
ds dt dt

ψ ψκ = =    (12.9) 

( ( , ), ) / ( )reg i t W v tψ≅  
Further time derivatives: ( , )d i t

dt
ψ  and ( , )d i t

dt
κ  

For 2 SOM dimensions, stc(t) has 8 coordinates. For N SOM dimensions, stc(t) has 
6N-4 coordinates. 

 
12.5 Baseline speaker recognition system 

 
The speech signals were recorded over a digital telephone line at a sampling rate of 8 kHz 
and with a 16-bit amplitude resolution. From these signals, 20 Mel-scaled filterbank log 
power features were extracted over 20ms frames and with a 10ms step size, using a 
Hamming window and a pre-emphasis factor of 0.97. A DCT was then applied to these to 
obtain MFCC features, from which the c0 energy coefficient was dropped. Cepstral mean 
subtraction (CMS) was applied to the MFCC vector and time difference features were 
appended. Thus, 38-dimensional MFCC vectors were used as the input data for the 
experiments reported in this chapter. 
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Both speaker identification and verification tests use state of the art systems based on 
Gaussian mixture models (GMMs) and MFCC speech features. As in (Reynolds et al. 1995) 
our identification system trained a UBM on data from a large set of speakers who are not 
used in testing. A client GMM distribution is then trained on data from each client, using 
only data for the prompt being tested (in this case the first numbers prompt, “58312”). The 
client model is initialised equal to the UBM, after which the Gaussian means alone are 
updated using MAP adaptation (Mariethoz et al. 2000). In testing, the speaker for each test 
utterance is selected as the person who has the highest speech data likelihood. In 
verification the UBM and client models are trained in the same way, and a test utterance is 
accepted as having the claimed identity if the UBM-normalised data likelihood is above a 
certain threshold, where the value of this threshold is set to give the maximum verification 
score on a development test set.  GMM training and testing used the Torch machine 
learning API (Collobert et al. 2002). 

 
12.6 Speaker recognition experimental protocol 

 
The same 5-digit sequence (“5 3 8 2 4”) spoken by 61 speakers was selected from the 
CSLU Speaker Recognition corpus (Cole et al. 1998). The prompts were recorded in four 
sessions, with four repetitions of the prompt in each session. Because we are particularly 
interested in speaker recognition for very small amounts of data, we only selected three 
sessions per speaker, one for training, one for development and one for testing. Only 
sessions in which all the prompts were produced correctly were selected. For 
identification, one session was used for GMM training for each speaker, one session was 
used for development and one session was used for evaluation. The other session was not 
used. For verification, the experimental protocol was the same, i.e. one session was used 
for GMM training, development and testing. A UBM for each speaker was trained on one 
training session across all the speakers except the claimed speaker in a similar way as it 
was used by Reynolds et al (1995a, 1995b, 2000). 
 

In order to increase the chances of finding a SOM which is well organised for all 
speech sounds together, we experiment with SOMs with dimension from one to seven, 
with different numbers of grid cells per dimension, and using different numbers of 
updating iterations in SOM training. 

 
12.7 Data 

 
These MFCC features were either used as input to the GMM directly (baseline experiment), 
or were used as input to the SOM, which varied in the number of dimensions or in the size 
of the dimensions. After allowing the SOM to self-organize on the basis of the training data 
obtained from a single session, with data from another session being used for optimization, 
it was used to map the MFCC features onto the x-y coordinates of the SOM, from which 
the parameters described in Section 12.4 were then derived. The SOMs that were used for 
MFCC feature projection onto x-y coordinates was varied in the number of dimensions, 
which was varied between 2 and 5, keeping the total number of units in the SOM roughly 
the same. Best results were obtained for 2- and 3-dimensional SOMs, so only these are 
presented here. For the 2-dimensional SOM, the size of the dimensions was also varied 
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(but always the same for each dimension). The speaker’s voice SOM trajectory coefficients 
which derived from x-y coordinates of the trajectory through the SOM was used as input to 
GMM, described in the following section. 

 
12.8 Fusion 

 
The effect of fusion is investigated by comparing early fusion, in which the STC parameter 
vector is concatenated with the MFCC vector before it is used as input to the modelling 
stage, with late fusion, in which the scores of the separately modelled MFCCs and STCs 
were linearly combination. The weights given to each type of scores (speaker recognition 
scores for MFCCs and STCs, respectively) are varied from 0 to 1 in steps of 0.1, with their 
summation equal to 1. 

 
12.9 Results 

 
In this section the results for speaker identification as well as for speaker verification 
experiments are presented. In speaker identification, the system’s task is to determine 
which of the 61 speakers is the most likely to have uttered a given test prompt. In speaker 
verification, the system must accept or reject the claimed identity of the speaker. Only 
results for the optimal smoothing factor (sm.) and MFCC/STC weight are presented in the 
tables. The results of the speaker identification experiments using STCs are presented in 
Table 12-1. The baseline result for speaker identification for MFCCs is 20.9% 
identification error. 
 

Clearly, the STCs obtained from the SOM always lead to a substantially higher speaker 
identification error than the baseline. Also, early fusion does not improve speaker 
identification, and is between 2.9 and 5.7 percent points higher for the SOMs presented. 
Late or score fusion, on the other hand, does lead to a modest improvement in speaker 
identification. The improvement for late fusion of the scores for MFCCs with those of 
STCs obtained from a 20x20 SOM is 1.2 percent points, or 6% relative to the baseline 
speaker identification error. 

Table 12-1: Identification percentage error for STCs alone and in early and late fusion with 
MFCCs, for different SOM sizes and number of dimensions (sm = optimal smoothing factor, cf. 
(12.5)) 

Size num 
cells 

no 
fusion early Late sm. MFCC 

wt 

10x10 100 55.33 23.77 20.08 5 0.7 

20x20 400 47.13 25.41 19.67 4 0.7 

30x30 900 50.82 24.59 19.67 6 0.7 

7x7x7 343 63.52 26.64 20.90 3 1.0 

 
Speaker verification results for the same SOMs as in Table 12-1 are given in Table 12-2. 
The baseline EER for GMM of MFCC parameters is 8.49%. With an absolute difference 
of 6.6 – 11.1 per cent points, STCs perform about twice as poorly as MFCCs. In contrast to 
the speaker identification experiments, early fusion can improve speaker verification (with 
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a 0.8 per cent point improvement for STCs derived from the 20x20 SOM coordinates). For 
late fusion, the EER is always lower than for MFCCs on their own. The 20x20 SOM leads 
to a 0.9 per cent absolute or a 10.2% relative error reduction. 
 

Table 12-2: Verification percentage EER for STCs alone and in early and late fusion with 
MFCCs, for different SOM sizes and No. of dimensions 
 

Size num 
cells 

no 
fusion early Late sm. MFCC 

Wt 

10x10 100 19.63 8.99 8.15 6 0.9 

20x20 400 15.13 7.72 7.62 4 0.5 

30x30 900 16.50 8.23 8.07 6 0.9 

7x7x7 343 18.00 9.20 8.10 3 0.9 

 
12.10 Discussion 

 
The results of our experiments have shown that STCs derived from the x-y coordinates of a 
SOM trajectory can enhance speaker recognition when combined with MFCC vectors. 
This is particularly true when late or score fusion is used to combine the speaker 
recognition results for the two parameter types. For speaker verification an improvement 
was also found for combination by early fusion. 
 

A 2-dimensional SOM with 20x20 units gave best performance, both for speaker 
identification and for speaker verification. It should be noted that the SOMs were trained 
with an extremely small amount of data from each speaker, so that an increase in the 
amount of training data may lead to better results for a larger SOM which can represent the 
acoustic space in finer detail. 
 

Higher-dimensional SOMs, of which results were only given for a 7x7x7 SOM, give 
consistently worse performance, despite a roughly similar number of units as a 20x20 
SOM. Although 2-dimensional SOMS are usually used to visualize the acoustic space, 
there is no intrinsic reason, as discussed in Section 12.6, why this representation should be 
optimal to represent speech. In fact, it is highly unlikely that this is the case. The fact that a 
3-d 7x7x7 SOM does not lead to better speaker recognition performance than a 
similar-sized 2-dimensional SOM does not reflect the intrinsic dimensionality of speech 
data, but may be related to the rough categorization of the data into three dimensions. Here, 
too, more data, allowing for an increase in the number of units in the SOM, may lead to 
better results for a 3-dimensional SOM. For comparison, it would be interesting to reduce 
the feature vector size by PCA to evaluate the optimum length of the vector. 

 
GMM modelling, as used in the experiment presented in this paper, does not reflect the 

concept of a trajectory in the modelling, since a GMM consists of only one state and 
therefore does not reflect time information. Nevertheless, some time information is present 
in the input features to GMM, since the Gaussian mixtures model the voice signatures, 
which consist of x-y coordinates with additional velocity and acceleration parameters as 
well as angle and curvature information at each point. Such vectors gave better results than 
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using the x-y coordinates alone, so that we can conclude that time information in the SVS 
trajectories is useful. Despite large jumps in the SOM space, as could be observed in Figure 
12-3, the trajectories are smooth where there are smooth changes in the acoustic space. 
This was demonstrated by Figure 12-4. This supports the usefulness of considering the 
voice signature as a trajectory.  
 

On the basis of these results, it may be possible to improve the results further by using 
hidden Markov modelling (HMM) instead of GMM. Standard left-to-right HMMs can 
explicitly model time information available in the trajectories by the transition 
probabilities between states. The use of HMM may therefore further improve speaker 
recognition, although it was shown in Morris et al. (2004) that GMM can have equal 
performance to HMM. 
 

The current SOM was trained using all the speakers (61) in the CLSU database. This 
procedure was therefore regarded as speaker-dependent SOM training. However, a 
speaker-independent training strategy if used is also expected to enable to capture the 
general representation of the whole model space with training on a separate subset of 
training speakers. In other words, SOM is trained using only the speakers in the training set. 
It is then used to transform all the samples of the speakers in the test set. The 
transformation learnt by the SOM on the training speakers should be also useful for 
obtaining the complementary features for the test speakers. This can be verified in future 
work. 
 

The method presented here was used to generate a complementary signal 
representation to standard MFCCs. By using complementary information, we attempt to 
counteract the effects of the small amount of data available for modelling. The GMM 
models used, however, still generalize across the data, as would HMMs. Whether 
generalisation is optimal across small amounts of data is questionable. It is possible that an 
exemplar-based approach, in which each trajectory of a speaker’s voice signature is 
compared with a test signal, leads to better results. Such a comparison can be made using 
dynamic programming techniques. 
 

Besides these results being positive, the SOM trajectory should provide a 
representation which is complementary to most other speech parameterisations and can 
therefore be expected to continue to provide a positive contribution, in both speech or 
speaker recognition, when used in combination with most other speech representations. 
 
12.11 Summary 
 
In this chapter, a novel approach to speaker recognition by using the speaker voice 
signature (SVS) was investigated. The SVS is a vector obtained by a parameterization of 
the x-y coordinates in a trained SOM, similar to the parameterization of an on-line 
signature’s x-y coordinates. By combining speaker recognition scores from GMM of 
STCs with those for GMM using MFCCs, speaker identification and verification could be 
improved; in some cases, early fusion by concatenating STCs with MFCCs before GMM 
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modelling also improved speaker verification. The SVS therfore provides complementary 
information to MFCCs which is useful for speaker recognition. Best speaker recognition 
results were found for late score fusion using STCs derived from the x-y coordinates of 
the trajectories in a 20 x 20 SOM. This SOM gave a relative error improvement over the 
state-of-the-art MFCC baseline of 6% for identification and 10% for verification. 

 
Although the improvements obtained are modest, it should be noted that the SOM has 

not yet been fine-tuned. Possible approaches to improve the speaker recognition results 
using the SVS were also discussed. 
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13. Discussion and future work 
 
13.1 Introduction 

 
After the discussion of the approaches proposed in the previous chapters, this chapter 
discusses the approaches in a wider context and suggests a number of possible research 
issues which can be explored in future work. 
 

In Chapter 13 the details of MLP-based feature enhancement as used for speaker 
recognition were described, including the algorithms of MLP training and speaker basis 
selection. These algorithms were tested in conditions with varying types and levels of 
noise and the telephone speech. These experiments have shown the robustness of this 
approach. In the present chapter, we will address a number of questions related to this 
approach which have been left unaddressed hitherto. This discussion will give the reader 
a clearer understanding of MLP-based feature enhancement. 
 

In Section 13.2, we shall first focus on a general geometrical interpretation of 
MLP-based feature enhancement. To begin with, an overall effect of discrimination 
enhancement is presented. Then, based on this principle, the speaker basis selection 
approach described above is interpreted from the perspective of average between-class 
variance. This will show the basic reason why this algorithm of speaker basis selection 
works and why it is crucial for speaker feature enhancement. Following that, an 
alternative method based on convex hull selection is proposed for speaker basis selection. 

 
We shall also suggest how the MLP-based feature enhancement methods developed 

for speaker identification can possibly be used for speaker verification in Section 13.3. 
 

In Section 13.4, the possibility of using symmetric KL distance for other applications 
as well as for cohort speaker selection in speaker verification is considered. The 
symmetric KL distance is suggested to be used as a measure to calculate the distance 
between two statistical distributions, which is the basis of cohort speaker selection in 
speaker verification. 
 

Section 13.5 discusses the use of complementary speech features acquired by SOM 
processing. The most essential aspects of this approach are addressed and clarified. Other 
possible alternative approaches to feature generation are also proposed. 
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Finally, the fusion of different types of biometrics is discussed. As this dissertation 

was developed in the framework of SecurePhone project, the human voice was taken as 
one type of biometric feature for user authentication. As mentioned in the introductory 
chapter, multi-modalities are always helpful to enhance system performance. A number 
of issues related to multi-modalities are therefore discussed in Section 13.6. This chapter 
finishes with a summary in Section 13.7. 
 
13.2 A geometrical interpretation of MLP feature enhancement 

 
The details of the procedures followed in MLP-based feature enhancement were addressed 
in Chapter 11. These procedures were also tested under different conditions, including 
low-bandwidth clean speech (TIMIT-8k), telephone speech (NTIMIT) and noisy speech 
with a variety of types and levels of additive noise (TIMIT-8k+Noisex). All these 
experiments showed the effectiveness of the proposed approach. However, a geometrical 
interpretation of this approach, which may help to understand its essence more deeply, is 
still missing. On the basis of this interpretation, another method for speaker basis selection 
will be suggested. 

 
Figure 13-1: Demonstration of the projection of LDA and a linear MLP (adapted partly from 
Campbell et al. 1997) 

 
First of all, it is well known that the function of LDA (a linear MLP) is to 

simultaneously maximise between-class variance and minimise within-class variance. The 
effect of these two optimisations on an original feature space is a linear discriminative 
transformation, based on which clusters in the projected feature space are more easily 
distinguished. Therefore, the features are enhanced (Figure 13-1). As shown in Figure 13-1, 
the original features are linearly projected onto a hyperplane (a line in a 2-d space). Hence, 
the projected features have a smaller intra-class variance (the data within a class have been 
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squashed) and a larger between-class variance (the between-class distance has been 
stretched).  
 

While in LDA where the projection is onto a hyperplane (or a line), the projection 
direction may be nonlinear in NLDA. As shown in Figure 13-2, the class samples are 
projected onto a curve illustrated in a 2-d space. During this projection, the squashing and 
stretching effects are carried out more successfully than in LDA. Hence, to borrow the 
language of LDA, it may be said that NLDA is a transformation which maximises the 
between-class variance and minimises the within-class variance in a nonlinear way. 

 
Figure 13-2: Demonstration of the projection of NLDA 

 
Therefore, we can clearly draw the conclusion that a feature space transformed by 

NLDA implemented by an MLP is an enhanced and more discriminative space because it 
holds a larger between-class variance and a smaller within-class variance. The overall 
effect of NLDA is as if an original feature space were stretched toward the outside, this 
making  the classes in it more separable, simultaneously squashing data samples within 
each class. 

 

 

Figure 13-3:  Demonstration of speaker basis selection using MaxAD vs. MinAD selection 

 

Maximum average distance (MaxAD). 
Favours outliers 

Minimum average distance (MinAD). 
Favours closest set 

Speaker model mapping centres 

Speaker 1
Speaker 2 
Speaker 3 

NLDA 
transformation 



124 

Based on the above geometrical interpretation, it is easy to understand that given a 
subset of classes used for MLP training to enhance class discrimination, the best selection 
of these classes may be expected to be the ones which are close to or on the boundary of the 
feature space. In Chapter 13, an automatic approach favouring boundary points by 
selecting speakers with maximal between-class variance (14.8) was used to find these 
classes. It can be seen (Figure 13-3) that the projection of the closest speaker set is not 
helpful for the separation of the other speaker models, whereas the projection of the 
boundary speakers may be expected to also benefit the separation of the others. This is the 
essence of basis speaker selection. 

 
Extending this idea further, it can be predicted that selecting the classes on the convex 

hull may lead to a better class separation. The convex hull of a set of points (speaker 
models) is the smallest convex set that includes the points. For a two dimensional finite set 
the convex hull is a convex polygon (red points in Figure 13-4). The convex hull of a set of 
points is the minimum set of points which are closest to the boundary of a feature space. 
Based on the previous two arguments, if a transformation is trained to stretch the speaker 
points on the convex hull towards the outside of the feature space, it may as well benefit the 
separation of other points in the feature space in the most efficient way. Following the 
same idea as in the case of MaxAD to seek a speaker basis, the convex hull approach may 
find the minimum set of speakers, which for training may achieve the same performance as 
using more speakers. Therefore, this approach would be the most economical and efficient 
for MLP training. 

 
In order to find the speakers on the convex hull of a given set of points (i.e. the 

training speakers), such an algorithm can be used as follows: 

 
 
This issue will need to be investigated in future work. 

[Algorithm of seeking the convex hull speakers for speaker basis selection] 
 
(1) The symmetric KL distance is first obtained for any pair of points using (11.6). 

When the distance between any two points is determined, the geometric positions 
of these points in a 2-d plane are then determined according to the method 
described in (2). 

(2) Position all points in a 2-d plane according to the distance between any pair as 
follows: 
a) Pick up the first point x1 randomly and assign it as the origin (0,0). 
b) Take any one x2 from the rest of (n-1) points, assigning it as (d,0), whereby d 

is the distance between x1 and x2. 
c) Take another point x3 from the rest of (n-2) points, positioning it by d1 and 

d2, where d1 is the distance between x1 and x3, d2 the distance between x2 
and x3. 

d) Repeat c) until no points are left. 
(3) Finding the convex hull of a given point set, using a well-established algorithm 

like Thomus et al. (2001) or Preparata et al. (1977). 
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Figure 13-4: The convex hull of a set of points 

 
13.3 Application of feature enhancement to speaker verification 

 
Besides for identification, the approach presented in Chapter 11 can also be applied to 
verification task if a global MLP is trained on basis speakers to transform all the speakers’ 
feature samples as used in identification tasks (Figure 13-5, top). However, as the purpose 
of a verification task is to distinguish only two candidate classes (the claimed speaker and 
his impostors), rather than the whole population, a speaker-dependent variant scheme for 
speaker verification may be expected to be more efficient. In this approach, a separate 
MLP with only two outputs trained on each speaker (or class) and its impostors is used for 
each speaker (or class) (Figure 13-5, bottom).  

 
Figure 13-5: MLP-based feature enhancement in speaker identification and verification 

 
Nevertheless, the separation of all the classes may still help to separate two classes as 

well. Thus, the former (the separation of all the classes) may be a sufficient condition for 
the latter (the separation of two classes). This further idea must be clarified by future work. 
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Of course, this approach is not limited to speaker recognition tasks. It may also be 
expected to be valid for any other pattern recognition task.  

 
13.4 Other applications of the symmetric KL distance 

 
In Section 11.5.2.3, the symmetric KL distance (11.6) was proposed as a method of 
measuring the distance between two pdfs. Although this distance measure was proposed to 
solve the problem of speaker basis selection in speaker identification, it is able to be 
generally used in other cases than speaker basis selection, where the distance measure 
between two pdfs is required, such as in other classification applications and in speaker 
verification. 
 

 
Figure 13-6: The symmetric KL distance between two pdfs 

 
In the case of other classification applications (e.g. face recognition and object 

recognition), the symmetric KL distance can be used to evaluate the distance between two 
class (face or object) distributions (Figure 13-6).  

 

 
Figure 13-7: Applying the symmetric KL distance to cohort speaker selection 

The symmetric KL distance can also be applied to cohort speaker selection in speaker 
verification. As mentioned in Section 7.4, cohort speaker selection is often used to choose 
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impostors for background model training in speaker verification (Figure 13-7). The 
distances (7.14) and (7.15) which are currently used to measure how far two pdfs are 
separated from each other only take their likelihood into consideration, but not the entropy 
(Duda et al. 2001), whereas the symmetric KL distance is derived from the entropy. It can 
therefore more accurately capture the distance between two stochastic distributions. As a 
result, the symmetric KL distance is likely to be a more appropriate distance measure for 
selecting cohort speakers. This may be verified by future work. 

 
13.5 The selection and complementarity of speech features 

 
In Chapter 12, complementary features obtained by SOM processing were discussed. In 
this section a number of additional points relating to this method are discussed. The 
complementary features generated by SOM processing can also be considered as an 
outcome of a nonlinear transformation. However, in contrast to LDA and NLDA, this 
transformation does not have a discriminative objective. Instead, it preserves the global 
shape of a feature space in a 2-dimensional representation. Therefore, SOM-based 
features have much less discriminating power than MLP-based features – a fact which is 
supported by the results of experiments using SOM-based features alone, in which the 
performance was only 56% speaker identification accuracy, which was by far inferior to 
that of NLDA-based features. 

 

 
Figure 13-8: Original features fused with source features (SF) and SOM/PCA/LLE 
transformed features are used for speaker recognition 

 
SOM processing is in fact an approach of dimension reduction except that it preserves 

the topological structure of a feature space. From this point of view, locally linear 
embedding (LLE) may also have the same function (Saul et al. 2000). Moreover, the 
features generated using principal components analysis (PCA) may be more powerful than 
SOM-based features, since they can hold more dimensional components without exploding 
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the complexity of a system as in the case of SOM. All these points are worth investigating 
in future work (Figure 13-8). 

 
Despite the low performance of SOM-based features on their own, they do contain 

some useful information pertaining to speaker characteristics which is complementary to 
the information contained in MFCCs. The combination of SOM-based features with 
MFCC features leads to an improvement of system accuracy. Extending this idea, it 
would be interesting to fuse other types of helpful information to further improve system 
performance. These are too numerous to be discussed in detail here. For instance, the first 
formant (F1) and the second formant (F2) can be fused with the MFCC features to 
improve speaker recognition systems. Moreover, source features such as glottal flow 
parameters can also be combined with MFCC features. These issues can be investigated 
in future research.  
 
13.6 Fusion strategies 

 
Fusion systems always work better than systems using a single feature-type. This has 
been proved by multi-modal authentication systems in which features are usually even 
more complementary. Within the context of the SecurePhone project, fusing voice 
features with face and signature features at the score level achieved promising results. A 
GMM-based fusion scheme at the score level was proposed to give the best performance 
in Koreman et al. (2006). This scheme trains a GMM to model the distribution of the 
joint score vector, each of whose components is derived from the match score obtained 
based on each modality (Figure 13-9, top).  This GMM-based fusion is an unsupervised 
learning approach, since it does not make use of any prior knowelege such as the class 
label of each data sample. An MLP-based fusion strategy at the score level used for 
speaker verification might therefore be expected to achieve better fusion performance on 
the basis of supervised discriminative training, where the fused score is output from the 
single-unit hidden layer (Figure 13-9, bottom). It would be interesting to compare 
GMM-based fusion with MLP-based fusion in future work. 
 

Although the MLP-based fusion at the score level is illustrated for speaker 
verification in Figure 13-9, this fusion can also be applied at the feature level and to 
identification tasks. The MLP-based fusion training scheme used in identification is 
similiar to that shown in (Figure 13-9, bottom), except there will be multiple outputs in 
the output layer. 

 
It is worth mentioning that although the multi-modal approach is more effective, it 

cannot entirely replace the uni-modal approach: Firstly, it must be based on the 
techniques used in the uni-modal approach, and secondly, its complexity is much higher 
than the uni-modal approach. 
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Figure 13-9: GMM-based and MLP-based fusion strategies at the matching score level for 
speaker verification (S1: face score, S2: voice score, S3: signature score) 

 
13.7 Summary 
 
In this chapter, we discussed several issues associated with MLP-based and SOM-based 
feature enhancement approaches. In particular, a geometrical interpretation to MLP-based 
feature enhancement was described to elucidate the essence of this approach. A possible 
extension to speaker basis selection was proposed based on convex hull section. Moreover, 
the possibility of applying feature enhancement to speaker verification was also discussed. 
Following that, other applications of the symmetric KL distance were addressed. Finally, 
in the context of the SecurePhone project, the selection and complementarity of speech 
features and a number of fusion strategies were discussed for future work to improve the 
performance and security of user authentication systems. 
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14. Conclusion 
 
 
The main goal of this dissertation was to investigate speaker recognition from the 
perspective of using discriminative features to improve the performance and robustness of 
biometric recognition systems. A large amount of effort is dedicated to this question. In 
Part I, a general background of speech and other biometrics for human identity recognition 
was outlined. In Part II, state of the art speaker recognition techniques were summarised. 
Following that, experimental techniques were proposed and discussed in Part III. Several 
important achievements are achieved, among which the following:  

 
First, we analysed a realistic feature space (mel-scaled cepstral space), and proposed using 
the speaker-phoneme distribution, i.e. a feature space is organised around phonemes rather 
than speakers, to support the motivative of applying feature enhancement for speaker 
recognition, since this distribution provides an impediment for speaker recognition.  
 
Second, based on the analysis work, feature enhancement approaches were systematically 
investigated. In particular, linear discriminant analysis and several nonlinear discriminant 
approaches implemented by MLPs were compared and analysed. It was found that a 
3-hidden-layer MLP, by which a nonlinear transformation is carried out, outperformed 
linear transformations implemented by LDA and a linear MLP. 
 
Third, a generalised framework for acquiring discriminative features for speaker 
recognition was proposed. Although discriminative features used for speaker recognition 
were not first proposed by us, it was found that the number of speakers used for the MLP 
learning is a highly crucial factor. In fact, a sufficiently large number of speakers is a very 
important factor for an MLP to learn the discriminating information used in feature 
transformation for speaker recognition. If the number of speakers is not sufficient to cover 
all the acoustic characteristics of a feature space, the trained MLP is not efficient enough to 
optimally and discriminatively project an original feature space into another space. 
 
Four, based on the third finding, a further concept, i.e. speaker basis, was proposed to 
optimise the selection of speakers for MLP-based feature enhancement, given a fixed 
number of speakers in a group. It was found that a number of speakers are not all of the 
same importance and only the most important ones (speaker basis) should be selected. This 
approach has two advantages. The first is that it can substantially improve system 
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performance (cf. the experimental part of Chapter 11) and the second is that it can 
significantly reduce the complexity of the training of MLP. 
 
Five, the proposed approach to feature enhancement was anticipated to have wide range of 
applications in non-speech related fields. In principle, it should be possible to apply it to 
any other pattern recognition application. 
 
Finally, a complementary feature type was also proposed, derived from the mel-scaled 
cepstral features by using SOM processing. This type of features was captured from 
speaker voice signatures generated by SOM by means of a feature extraction approach 
analogous to signature recognition. Speaker voice signatures were found to contain a lot of 
distinguishing information complementary to that contained in mel-scaled cepstral features. 
A linear fusion strategy at the score level was found to improve the performance of speaker 
recognition (both identification and verification). 
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Appendix A: notation and standard formulae 
 
 

Notation 
x   a feature data point (vector) 
X   data matrix, with x as rows 
Y   target output matrix, with 0/1 target vectors as rows 

( )if x   Gaussian pdf for GMM cluster (i) 

iG   })()(:{ jixfxfx ji ≠∀≥ , the set of x in Gaussian cluster (i) 
D   speech or speaker class division (e.g. phone, speaker, or gender) 

id   categories within class D (e.g. male, female) 
D   number of categories in class division D  

iX   iGD ∩ , the set of all D  in Gaussian (i) 

iS   covariance matrix for data set iX  

bS   between-class covariance matrix 

wS   within-class covariance matrix 
X   number of data points in set X  

),,( 21 XDDT  contingency table counts of x for class division 1D  against 2D  
ijn   element (i,j) of T 

N   ∑ ij ijn  

Standard formulae 

/
i

i ix C
x Cµ

∈
=∑ , mean of data in category iC  

''' /]))([( iiiiiiii CCCxxES µµµµ −=−−=  , within-class covariance matrix 

i iP C X= , relative frequency of category 
iC  

ii iP∑= µµ , overall data mean 
'))(( µµµµ −−= ∑ iii ib PS , between-class covariance matrix 

ii iw SPS ∑= , overall within-class covariance matrix 
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)(log)()( 2 dPdPDH
Dd∑ ∈

−= , entropy of the probability distribution of D  

∑ −= ij NjninNjninijnDDL )/(2))(()2,1( , Pearson’s large sample (or Chi-squared) statistic 
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Appendix B: The derivation of linear 
prediction coefficients 

 
 

The signal s(t) at time t can be modelled by a linear equation as: 

1

( ) ( ) ( )
p

k s
k

s t s t k g u tα
=

= − +∑ ,      (B.1) 

u(t) is called the residue, sg is a scaling parameter and p is the prediction degree. The p 
coefficients kα are often used as a p-dimensional vector to represent a speech frame, 
when they are called linear prediction coefficients (LPC).   

 
Formula (B.1) can be written in a vector form. Thus we can obtain 

)()1()( tUtXtX +−Φ=        (B.2) 
where 
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,       (B.3) 

[ ]′+−−= )(,),1(),()( tsptsptstX K ,     (B.4) 
 and 

[ ]′+−−= )(,),1(),()( tugptugptugtU sss K .  (B.5) 
From these formulae, we can see that the AR model is a special case of a linear dynamic 
system with the noise term in (B.1) given by the residual.  

 
Solution to the AR model: Let )(~ ne  be the square distance between the true value s(n) 
and its estimate )(ˆ ns , i.e. 

( )2)(ˆ)()(~ nsnsne −= ,       (B.6) 
where )(ˆ ns is obtained by linear prediction according to its past p values, i.e. 
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∑
=

−=
p

k
k pnsns

1
)()(ˆ α .      (B.7) 

The optimisation objective is to minimise the sum E of )(~ ne over the time index n, i.e. 

{ } ( )2

1

ˆarg min ( ) ( )
i

N

i
n

s n s nαα
=

= −∑ ,    (B.8) 

where N is the number of observed samples in a frame. 
 
Differentiating (B.8) with respects to kα , we have 

( ) pkknsnsnsE N

nk

...1  ,0)()(ˆ)(2
1

=∨=−−=
∂
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=α
.   (B.9) 

Substituting (B.7) into (B.9) and rearranging it, it yields 

1 1 1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )
pN N N

j
n n j n

s n s n k s n s n k s n j s n kα
= = = =

− = − = − −∑ ∑ ∑ ∑ ,  (B.10) 

and the left-hand side is referred to as the k-th order of autocorrelation. Thus (B.10) 
leads to  

∑
=

−=
p

j
kjjk RR

1

α .      (B.11) 

Rewriting these p linear equations in matrix form and noting kk RR =− , we have 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

pppp

p

p

R

R
R

RRR

RRR
RRR

MM

L

MOMM

L

K

2

1

2

1

021

201

110

α

α
α

.    (B.12) 

This is called the Yuler-Walker equation. 
 

As shown in (B.12), solving this equation requires the computation of all the p 
autocorrelations and matrix inversion. The matrix inversion problem can be greatly 
simplified because of the symmetric Toeplitz autocorrelation matrix on the left-hand side, 
and the form of autocorrelation vector on the right-hand side of (B.12). Durbin’s 
recursive algorithm can be used to find a solution (B.13). Note that in the process of 
solving the predictor coefficients kα of the order p, the kα for all orders less than p are 
obtained with their corresponding mean square prediction error 0/ REMSE ii =  (B.13). In 
each recursion, the prediction order is increased and a corresponding error is determined. 
This can be monitored as a stopping criterion on the prediction order p. 
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Appendix C: Abbreviations: 
 
 

AMR:  arithmetic mean rule 
ANN:  artificial neural network 
API:  application program interface 
ASR:  automatic speech recognition 
CMS:  cesptrum mean subtraction 
COTS:  commercial off-the-shelf  
DCT:  discrete cosine transform  
DET:  detection error tradeoff 
DFT:  discrete Fourier transform 
DNA:  deoxyribonucleic acid 
EM:  expectation maximization  
FA:   false acceptance 
FR:   false rejection 
FTIR:  frustrated total internal reflection  
GMM:   Gaussian mixture model 
HD:   Hamming distance  
HMM:   hidden Markov model 
ICA:  independent component analysis  
LDA:  linear discriminant analysis 
LLE:  locally linear embedding  
LMLP:  linear multi-layer perceptron 
LMS:  least mean square 
LPC:  linear prediction coefficients 
MaxAD: maximum average distance  
MFCC:  mel-freqency cepstrum coefficients 
MLP:  multi-layer perceptron 
MMLP:  multiple MLPs  
NLDA:  nonlinear discriminant analysis 
PCA:  principal components analysis 
PKI:   public key infrastructure 
PLP:   perception linear prediction 
ROC:  receiver operating characteristic curves 
SNR:  signal-to-noise ratios  
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SOM:  self organisation map 
SPD:   speaker-phoneme distribution 
STC:  SOM trajectory coefficients 
STR:  short tandem repeats 
SVS:  speaker voice signature  
T-norm:  test normalisation  
UBM:  universal background model 
WAVC:  wavelet transform coefficients  
Z-norm:  zero normalisation  
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Index: 
additive noise, 82, 100, 101, 102, 106, 108, 
109, 124, 148 
back-propagation, 42 
between-class covariance, 40, 41, 98, 151 
cepstral mean subtraction, 81, 89, 103, 105 
channel noise, 82, 84, 85, 108 
client model, 47, 52, 118 
cohort speakers, 129 
Daubechies wavelet, 38 
DCT, 37, 38, 70, 103, 117, 157 
DNA, 3, 5, 6, 17, 18, 137, 139, 147, 148, 149, 
157 
dynamic time warping, 48 
feature enhancement, xxi, 25, 26, 27, 35, 39, 
61, 63, 81, 82, 84, 85, 92, 93, 95, 100, 102, 
103, 107, 108, 109, 123, 124, 127, 131, 133, 
134 
feature-level fusion, 23 
fingerprint, 3, 5, 8, 9, 17, 18, 21, 143, 147 
formant, 130 
fusion strategy, 130, 134 
gait, 3, 5, 12, 13, 18 
GMM-based analysis, 67, 73 
gradient descent algorithm, 92 
Haar wavelet, 38 
hand geometry, 5, 11, 21, 22 
handwriting, 5, 14, 17, 18 
hidden Markov model, 11, 14, 101, 121, 145, 
157 
impostor model, 34, 55, 59 
impostorisation, 17, 22 
incremental-set, 32 
internal representation, 44, 86, 87, 94, 95, 104, 
148 
iris, 3, 5, 6, 7, 17, 18, 136, 137, 143, 148 
Kullback- Leibler distance, 99 
LDA-based analysis, 67, 68, 69, 75, 76 
learning rate, 88, 103, 112 
likelihood ratio test, 53, 56, 59 
linear discriminant analysis, 27, 35, 39, 42, 82, 

133, 157 
linear MLP, 26, 42, 86, 92, 93, 124 
linear prediction coefficients, 33, 35, 36, 153, 
157 
mel-scaled cepstral features, 82, 134 
multi-layer perceptron, 39, 63, 82, 101, 157 
multimodal, xxi, 3, 4, 21, 22, 111 
nonlinear discriminant analysis, 35, 157 
normalised likelihood, 99 
palmprint, 11 
PDA, xxi, 19, 142, 143 
physical biometrics, 3, 12, 17 
principal component analysis, 27, 35, 39, 40, 
83, 129, 157 
radius, 112 
regression, 117 
residue, 36, 148, 153 
SecurePhone, xviii, xxi, 23, 25, 111, 124, 130, 
131, 142 
separability-based analysis, 67, 70, 76 
signature, 3, 5, 14, 18, 21, 22, 27, 111, 112, 
114, 115, 116, 117, 121, 130, 134, 149 
SOM trajectory coefficients, 111, 116, 119, 
158 
speaker basis selection, xxi, 26, 27, 82, 84, 85, 
94, 96, 97, 100, 107, 123, 125, 128 
speaker voice signature, xxi, 121, 134, 158 
speaker-phoneme distribution, 27, 63, 133, 
158 
spectral warping, 37 
speech style, 81 
text-dependent, 31, 47, 52 
text-independent, 31, 32, 47, 52, 58, 94, 102, 
107, 135, 141, 148, 149 
T-norm, 53, 58, 59, 158 
uni-modal, 21, 22, 130 
universal background model, 47, 51, 158 
verification system, 135, 139 
visual space analysis, 67 
voice quality, 5, 18, 81 
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vowel triangle, 113 
VQ source modeling, 49 
wavelet features, 35, 77 

within-class covariance, 40, 41, 98, 151 
Z-norm, 53, 58, 59, 158 
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