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Abstract

Models of human sentence processing have paid much attention to three key char-
acteristics of the sentence processor: Its robust and accurate processing of unseen
input (wide coverage), its immediate, incremental interpretation of partial input and
its sensitivity to structural frequencies in previous language experience. In this thesis,
we propose a model of human sentence processing that accounts for these three charac-
teristics and also models a fourth key characteristic, namely the influence of semantic
plausibility on sentence processing.

The precondition for such a sentence processing model is a general model of human
plausibility intuitions. We therefore begin by presenting a probabilistic model of
the plausibility of verb-argument relations, which we estimate as the probability of
encountering a verb-argument pair in the relation specified by a thematic role in a
role-annotated training corpus. This model faces a significant sparse data problem,
which we alleviate by combining two orthogonal smoothing methods. We show that
the smoothed model’s predictions are significantly correlated to human plausibility
judgements for a range of test sets. We also demonstrate that our semantic plausibility
model outperforms selectional preference models and a standard role labeller, which
solve tasks from computational linguistics that are related to the prediction of human
judgements.

We then integrate this semantic plausibility model with an incremental, wide-
coverage, probabilistic model of syntactic processing to form the Syntax/Semantics
(SynSem) Integration model of sentence processing. The SynSem-Integration model
combines preferences for candidate syntactic structures from two sources: Syntactic
probability estimates from a probabilistic parser and our semantic plausibility model’s
estimates of the verb-argument relations in each syntactic analysis. The model uses
these preferences to determine a globally preferred structure and predicts difficulty in
human sentence processing either if syntactic and semantic preferences conflict, or if
the interpretation of the preferred analysis changes non-monotonically. In a thorough
evaluation against the patterns of processing difficulty found for four ambiguity phe-
nomena in eight reading-time studies, we demonstrate that the SynSem-Integration
model reliably predicts human reading time behaviour.
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Zusammenfassung

Menschen verstehen Sprache in den allermeisten Situationen schnell und korrekt.
Manchmal kommt es jedoch durch Verarbeitungsschwierigkeiten zu Verzögerungen
oder sogar zum Scheitern der Verarbeitung, so daß überhaupt keine Analyse für
das Gehörte oder Gelesene gefunden wird. Diese Dissertation behandelt die Model-
lierung des menschlichen Sprachverstehens auf der Ebene einzelner Sätze. Modelle
des menschlichen Sprachverstehens sollen helfen zu erklären, wann und warum es zu
Verarbeitungsschwierigkeiten kommt und wie diese überwunden werden. Während
sich bereits existierende Modelle hauptsächlich mit syntaktischen Prozessen befassen,
liegt unser Schwerpunkt darauf, ein Modell für die semantische Plausibilität von
Äußerungen in ein Satzverarbeitungsmodell zu integrieren.

Vier wichtige Eigenschaften des Sprachverstehens bestimmen die Konstruktion
unseres Modells: Inkrementelle Verarbeitung, eine erfahrungsbasierte Architektur,
breite Abdeckung von Äußerungen, und die Integration von semantischer Plausi-
bilität. Alle diese Eigenschaften sind zentrale Voraussetzungen für die menschliche
Fähigkeit, Sprache schnell und korrekt zu verstehen. Sprachverarbeitung geschieht
inkrementell, das heißt, jedes gehörte oder gelesene Wort wird sofort in die Interpre-
tation der gesamten Äußerung integriert. Bei inkrementeller Verarbeitung müssen
im Falle einer lokalen Ambiguität allerdings oft strukturelle Entscheidungen getrof-
fen werden, bevor desambiguierendes Material erreichbar ist. In solchen Situatio-
nen zeigt es sich, daß das menschliche Sprachverstehen erfahrungsbasiert ist, also
die partielle Äußerung so interpretiert, wie es der häufigsten Analyse in der bisheri-
gen Spracherfahrung entspricht. Dieses Verhalten findet sich auf vielen Ebenen der
Sprachverarbeitung, von der strukturellen bis zur lexikalischen, und hat zur Popula-
rität probabilistischer Modelle beigetragen, die die Präferenzen aus vorhergehender
Spracherfahrung durch Estimierung aus großen Textkorpora simulieren. Probabili-
stische Modelle erlauben auch eine breite Abdeckung ungesehener Äußerungen, die ein
besonders auffälliges Merkmal menschlichen Sprachverstehens ist. Anhand der Verar-
beitung von Ambiguitätsphänomenen zeigt sich schließlich auch, daß die Plausibilität
der alternativen Interpretationen die Verarbeitung ebenfalls beeinflußt.

Während die Eigenschaften Inkrementalität, Erfahrungsbasiertheit und breite Ab-
deckung von vielen Modellen aufgegriffen wurden, gibt es kein Modell, das außerdem
auch Plausibilität einbezieht. Das Fehlen solcher Modelle läßt sich zum Großteil darauf
zurückführen, daß kein generelles Modell für menschliche Plausibilitätsbewertungen
existiert. Daher behelfen sich viele Modelle mit Ansätzen, die sich nicht für breite
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Zusammenfassung

Abdeckung verallgemeinern lassen. In dieser Dissertation stellen wir deshalb ein
generelles Plausibilitätsmodell vor, um es dann mit einem inkrementellen, probabili-
stischen Satzverarbeitungsmodell mit breiter Abdeckung zu einem Modell mit allen
vier angestrebten Eigenschaften zu integrieren.

Unser Plausibilitätsmodell sagt menschliche Plausibilitätsbewertungen für Verb--
Argumentpaare in verschiedenen Relationen (z.B. Agens oder Patiens) voraus. Das
Modell estimiert die Plausibilität eines Verb-Argumentpaars in einer spezifischen,
durch eine thematische Rolle angegebenen Relation als die Wahrscheinlichkeit, das
Tripel aus Verb, Argument und Rolle in einem rollensemantisch annotierten Train-
ingskorpus anzutreffen. Für die naive Implementation dieses Modells stellen mangeln-
de Trainingsdaten ein schwerwiegendes Problem dar, so daß wir mehrere Methoden
der Datenglättung anwenden: Zum einen Good-Turing Smoothing, das die ermittelte
Wahrscheinlichkeitsverteilung re-estimiert und ungesehenen Ereignissen eine geringe
Wahrscheinlichkeit zuteilt, und zum anderen ein wortklassenbasiertes Verfahren, das
von Wörtern hin zu Worklassen generalisiert und daher während der Estimierung
erlaubt, Datenpunkte zusammenzufassen. Die Plausibilitätsvorhersagen des endgülti-
gen Modells korrelieren für eine Reihe verschiedener Testdatensätze signifikant mit
menschlichen Plausibilitätsbewertungen. Ein Vergleich mit zwei computerlinguist-
ischen Ansätzen, die jeweils eine verwandte Aufgabe erfüllen, nämlich die Zuweisung
von thematischen Rollen und die Berechnung von Selektionspräferenzen, zeigt, daß
unser Modell Plausibilitätsurteile verläßlicher vorhersagt.

Unser Satzverstehensmodell, das Syntax/Semantik-Integrationsmodell, ist eine Kom-
bination aus diesem Plausibilitätsmodell und einem inkrementellen, probabilistischen
Satzverarbeitungsmodell auf der Basis eines syntaktischen Parsers mit breiter Abdek-
kung. Das Syntax/Semantik-Integrationsmodell interpoliert syntaktische Wahrschein-
lichkeitsabschätzungen für Analysen einer Äußerung mit den semantischen Plausi-
bilitätsabschätzungen für die Verb-Argumentpaare in jeder Analyse. Das Ergebnis
ist eine global präferierte Analyse. Das Syntax/Semantik-Integrationsmodell sagt
Verarbeitungsschwierigkeiten voraus, wenn entweder die syntaktisch und semantisch
präferierte Analyse konfligieren oder wenn sich die semantische Interpretation der
global präferierten Analyse in einem Verarbeitungsschritt nicht-monoton ändert. Das
Syntax/Semantik-Integrationsmodell ist damit constraintbasierten Ansätzen verwandt,
da es wie diese Präferenzen aus verschiedenen Informationsquellen benutzt, um eine
global präferierte Analyse zu bestimmen, und da es Verarbeitungsschwierigkeiten
vorhersagt, wenn sich die Präferenzen aus den verschiedenen Quellen widersprechen.
Es unterscheidet sich von diesen allerdings durch seine breite Abdeckung und darin,
daß keine Constraints und Gewichte von Hand ausgewählt und definiert werden
müssen. Die abschließende Evaluation anhand von Befunden über menschliche Verar-
beitungsschwierigkeiten, wie sie experimentell in acht Studien für vier Ambiguitäts-
phänomene festgestellt wurden, zeigt, daß das Syntax/Semantik-Integrationsmodell
die experimentellen Daten korrekt voraussagt.
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1. Introduction

Human sentence processing is generally very fast, robust and accurate. In some
cases, however, the human sentence processor displays difficulty or is even unable to
assign an interpretation. In these cases, readers take longer to process an utterance or
encounter conscious difficulty with understanding it.

This thesis is concerned with the modelling of human sentence processing. The task
of a sentence processing model is to process easy and difficult sentences, to identify
when and why processing difficulty is encountered, and to explain how it is overcome.
While existing models have mostly concentrated on syntactic processes, our focus
of attention is on the integration of a model of human plausibility intuitions into a
wide-coverage, experience based model of human sentence processing.

Phenomena that cause the processing system difficulty afford a valuable insight
into the inner workings of the sentence processor. Consider the famous garden path
sentence in (1.1). Such sentences cause most first-time readers processing difficulty or
even lead to processing breakdown.

(1.1) The horse raced past the barn fell.

This sentence is difficult to understand because until the last word, most readers
assume that the sentence is an active clause about a horse racing past a barn. However,
at fell, it becomes clear that the human sentence processor has been led up the garden
path: While raced seemed to be a main verb, it was in fact part of a reduced relative
clause that refers to the horse. The complete sentence can be paraphrased as The horse
that was raced past the barn fell. Given the ambiguity of raced, the processor has initially
subscribed to an interpretation that is not consistent with the complete input sentence.

This example highlights an important property of human language processing:
Processing proceeds incrementally. While processing sentence (1.1) and many other
locally ambiguous sentences, processing difficulty arises from the fact that the human
processor constructs a syntactic analysis and with it a semantic interpretation of its
input immediately upon encountering each new word, without waiting for further
information that disambiguates the intended interpretation in case of ambiguity. In-
crementality of processing is therefore an important desideratum for psycholinguistic
models: The processor appears driven by the desire to assign its input a semantic
interpretation – to understand it – as quickly as possible. This strategy forms the core
of several theories of sentence processing (Pritchett, 1992, Crocker, 1996).
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A first class of models that was proposed to explain the processor’s difficulty with
sentences like (1.1) are principle-based models. We take this term to denote all models
which assume that the sentence processor bases all its structural decisions on a limited
set of processing principles. These can be defined syntactically as in Frazier’s influ-
ential Garden Path model (e.g., Frazier, 1987) or on the basis of immediate semantic
interpretability (Pritchett, 1992, Crocker, 1996). For example, in Frazier’s account, the
main clause interpretation of sentence (1.1) is initially preferred by the principle of
Minimal Attachment, because it requires the postulation of fewer syntactic nodes than
the reduced relative analysis. Garden path sentences incur processing difficulty when
the initial attachment made by the processor proves to be wrong, and the assumed
interpretation of the input has to be revised by a dedicated repair strategy.

Attention in recent years has shifted away from principle-based approaches to
probabilistic, experience-based models that do not stipulate general principles, but
rely only on structural frequencies to account for the processor’s choices. This shift in
emphasis was motivated by experimental results which show that human sentence
processing is sensitive to frequency information on different levels of processing,
including lexical word class membership frequencies (e.g., Trueswell, 1996, Crocker and
Corley, 2002), verb subcategorisation frequencies (e.g., Trueswell, Tanenhaus, and Kello,
1993, Garnsey et al., 1997), and structural frequencies (e.g., Cuetos, Mitchell, and Corley,
1996). These observations can to some degree be integrated into principle-based models,
but are more naturally accounted for by experience-based models and their assumption
that processing is fundamentally guided by preferences accumulated in language
experience (see, e.g., Jurafsky, 1996). A probabilistic formulation of experience-based
models accurately captures the existence and strength of structural preferences. We
therefore posit a probabilistic approach as another desideratum for psycholinguistic
models.

Probabilistic models typically estimate lexical and structural preferences from large
corpora of naturally occurring utterances to model human language experience. This
makes it easy to construct models which robustly and accurately process unseen input.
This wide coverage of unseen input, which is a fundamental characteristic of the
human sentence processor, is another desideratum for sentence processing models.

The probabilistic account for the processing of sentence (1.1) rests on the processor’s
preference for more frequent alternatives. First, main clauses are overall more frequent
than reduced relative constructions, and second, raced is used in the simple past tense
more often than as a past participle (as in the reduced relative interpretation). For these
two reasons, probabilistic models predict the sentence processor to prefer the main
clause interpretation.

Processing in probabilistic models usually is parallel, that is, they construct all or at
least a number of possible analyses for the input. Parallel models do not require the
stipulation of an explicit reanalysis strategy. A structural interpretation that becomes
impossible, like the main clause interpretation of sentence (1.1) when reaching fell,
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is simply replaced with the most probable remaining alternative, and difficulty is
predicted to be caused by the replacement process.

Probabilistic models are implemented in a number of different architectures, from
connectionist networks and approaches based on statistical parsers to constraint-
integration models, which formulate the processor’s decision about which structural
analysis to prefer at each point as the integration of evidence for or against the analyses.

For a large number of difficulty phenomena, it has been demonstrated that the
semantic plausibility of the alternative syntactic analyses has an effect on processing
(see also the review of experimental results for four phenomena in Chapter 5). While the
majority of psycholinguistic theories and models of sentence processing assumes that
the human sentence processor makes use of plausibility information, fewest approaches
specify this aspect more precisely. This thesis is especially concerned with modelling
human plausibility intuitions and the influence of plausibility on sentence processing.
Other semantic effects exist, for example an influence of discourse context on ambiguity
processing (e.g., Altmann and Steedman, 1988), which are not treated here.

To illustrate an effect of plausibility, consider a second example. Sentences (1.2)
and (1.3) from McRae et al. (1998) contain the same local ambiguity as sentence (1.1).

(1.2) The doctor cured by the treatment had developed it himself.

(1.3) The patient cured by the treatment had been diagnosed as terminal.

Sentence (1.2) causes readers more processing difficulty at and after the by-phrase
than sentence (1.3). Since the structure of both sentences is identical up to had, which
disambiguates the local ambiguity, the difference between the sentences must lie with
the words in the subject NP. Indeed, doctors are likely curers, which points the human
sentence processor towards a main clause interpretation in which the doctor is a curer.
Patients, on the other hand, make less good curers in the main clause interpretation,
but good curees in the alternative reduced relative interpretation. This plausibility bias
towards the ultimately correct analysis facilitates reading the disambiguating main
verb. This example underlines the influence of plausibility information in sentence
processing. A fourth desideratum for models of human sentence processing is therefore
to account for this factor, as well.

1.1. Plausibility in a Wide-Coverage Sentence Processing
Model

We have identified four desiderata for a model of human sentence processing: In-
crementality, wide coverage, a probabilistic architecture, and the incorporation of
plausibility. This list is of course not exhaustive of all conceivable desiderata, but it
helps to outline the types of models we are interested in. The first three desiderata have

3



1. Introduction

received considerable attention in the modelling literature, but there are few accounts
that specify the integration of plausibility, and none that conform to all four desiderata.

The lack of incremental, wide coverage, probabilistic models that also integrate
plausibility is due at least to some extent to the fact that no general model of human
plausibility intuitions exists. In this thesis, we propose such a model, and then inte-
grate with it an incremental, wide coverage, probabilistic account of human sentence
processing to create a sentence processing model that conforms to all four desiderata.

We propose a model of semantic plausibility that accounts for human intuitions about
verb-argument relations. From the many available characterisations of plausibility, we
choose the level of verb-argument relations both because it captures the basic who-
does-what-to-whom information in a sentence, and because this is the typical level
of plausibility manipulations in the experimental studies we will use to evaluate the
model.

Recall the plausibility manipulation demonstrated by sentences (1.2) and (1.3). It
relies on creating verb-argument pairs which are more plausible in one of the alternative
relations made available by local ambiguity than in the other. To account for this kind
of plausibility effect, a plausibility model has to identify the two possible relationships
between doctor and cured that can be paraphrased as the doctor cured versus the doctor
was cured, and then evaluate the plausibility of seeing doctor in either of these relations
to cure.

The strategies employed in psycholinguistic modelling to account for plausibility
all lack the potential for a wide-coverage model. A first strategy directly integrates
human judgements for the doctor cured versus the doctor was cured into the model (e.g.,
McRae et al., 1998, Narayanan and Jurafsky, 2002). This approach does account for the
influence of human plausibility intuitions in processing, but its reliance upon actual
human judgements precludes the development of a general, wide-coverage model.

The second approach, used by connectionist models, is to approximate the plausi-
bility of a verb-argument relation by learning the distributional behaviour of verbs
and arguments (e.g., Elman, 1990, Rohde, 2002). This approach is limited because it
requires large amounts of training data to account for the plausibility of verb-noun co-
occurrences. Therefore, it is hard to apply to realistic vocabulary sizes: Even very large
corpora of naturally occurring language data by Zipf’s law contain many lexical items
that are too infrequent to allow robust inferences about their distributional behaviour.

In computational linguistics, there are two tasks that are relevant to predicting
plausibility and that have been addressed with wide-coverage models. The first task is
semantic role labelling. It consists of assigning verb-argument pairs in syntactic context
the appropriate thematic roles that semantically characterise their relation. Defining
the two possible relations between doctor and cured in the garden path sentence (1.2)
by assigning the appropriate thematic roles – the doctor being the curer or the curee
– is the first step towards estimating how plausible the verb-argument pair in each
relation is. The task of semantic role labelling can thus be seen as a subtask of predicting
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human plausibility judgements. Semantic role labelling has been a popular research
area recently, since role annotated corpora have become available for training (see, e.g.,
Carreras and Márquez, 2004, 2005). Therefore, the task is well understood and models
perform on free text with increasing accuracy. However, most models heavily rely on
syntactic properties of the whole input sentence, that is, they are neither incremental,
nor do they pay much attention to the identity of the argument, because syntactic
features are likely to be less sparse than information about specific arguments, and
therefore have more generalisation power.

Selectional preference models take up where role labellers leave off and address
the task of estimating the plausibility of a given relation for a verb-argument pair
(Resnik, 1997, Li and Abe, 1998, Clark and Weir, 2002). They model the fit between
a verb and its argument given a specified relation by comparing the similarity of the
current argument and typical arguments for the verb in the relation, as seen in a large
corpus. The models overcome the problem of sparse training data and unseen test
instances by pooling observations using semantic classes. However, such models are
somewhat too coarse for our purposes because they use the syntactic relationship
between verb and argument to characterise their relation, rather than the thematic role.
This characterisation is not sufficiently fine-grained to distinguish between the two
possible relations between doctor and cured in The doctor cured. . . : Both the agentive and
the passive reading are realised with doctor as a syntactic subject or external argument
of cured.

In sum, while there are related approaches in computational linguistics that address
similar tasks to those of a plausibility model and achieve wide coverage, none are
directly suitable as a plausibility model. We propose a semantic plausibility model that
borrows from the computational linguistics approaches by using corpus resources, rely-
ing on thematic roles to characterise the relationship between a verb and its argument,
and by pooling data using semantic classes. It differs from the computational linguistics
approaches, however, in that it simultaneously identifies all possible relations between
verb and argument and estimates their plausibility. In Chapter 4, we show that our
semantic plausibility model outperforms both related approaches from computational
linguistics.

We use a corpus-based model on the assumption that the frequency of verb-argument
relations in a corpus can be used to predict the plausibility of the verb-argument
relations in unseen utterances. The approach gives the semantic plausibility model
wide coverage of unseen verb-argument pairs (within the limits of the available training
data) and ensures its compatibility with the probabilistic experience-based model with
which it is combined.

We integrate the semantic plausibility model with an incremental, wide-coverage,
probabilistic model of syntactic processing to construct a new model of human sen-
tence processing that fulfils all modelling desiderata. The Syntax/Semantics (SynSem)
Integration model transparently combines the syntactic preference predictions by a
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statistical parser-based model and the semantic preferences based on plausibility eval-
uations of the proposed analyses. It predicts difficulty either if syntactic and semantic
preferences conflict, or if the assumed interpretation of the input changes. The pre-
diction of conflict cost reveals the SynSem-Integration model’s close relationship to
constraint-based accounts. Chapter 5 demonstrates that the SynSem-Integration model
correctly accounts for the experimental results of processing difficulty found in eight
reading-time studies.

1.2. Organisation of the Thesis

Chapter 2 discusses in more detail the three classes of probabilistic experience-based
models that have been proposed in the literature and demonstrates that none of them
meets all modelling desiderata. We therefore go on to propose the SynSem-Integration
model and, as a precondition, the semantic plausibility model.

Chapters 3 and 4 focus on the semantic plausibility model. Chapter 3 discusses
different approaches to estimating and smoothing the model and describes the selection
of the best model instances. These instances are evaluated in Chapter 4, where we show
that the semantic plausibility model predicts human plausibility judgements from a
range of different studies.

Having established a plausibility model which is a reliable predictor of human
plausibility judgements, we go on to present the SynSem-Integration model in more
detail in Chapter 5, where we also discuss the implementation of the cost functions
and parameter selection. Finally, in Chapter 6, we introduce four phenomena from
the psycholinguistic literature that cause the human sentence processor difficulty and
show that our model predicts patterns of human processing difficulty as observed for
these phenomena in eight experimental studies. Chapter 7 concludes and gives an
overview of future work.

6



2. Computational Models of Sentence
Processing

In Chapter 1, we have argued for an incremental model of human sentence process-
ing that accounts for the influence of human semantic plausibility intuitions and
exhibits broad coverage of both psycholinguistic phenomena and the large range of
easily-processed naturally occurring utterances. We have identified a probabilistic,
experience-based architecture as a plausible basis for such a model. This chapter first
briefly discusses the basic assumption made by this architecture, namely that process-
ing preferences can be induced from structural frequencies in text, and then describes
existing, implemented computational models of sentence processing from the three
most prominent classes of probabilistic models: Connectionist models (described in Sec-
tion 2.2), probabilistic grammar-based models (Section 2.4) and constraint-integration
models (Section 2.3). We review each type of model with respect to our require-
ments and identify both shortcomings of the existing models, but also aspects which
contribute to our own proposal. We introduce this proposal, the Syntax/Semantics
(SynSem) Integration model, in Section 2.5. It accounts for syntactic preferences and
semantic effects in human sentence processing in a transparent way, while preserving
wide coverage of both experimental phenomena and naturally occurring language. The
review of existing models shows that those models that integrate a notion of semantics
usually rely on costly human judgements. In contrast, the SynSem-Integration model
includes an experience-based model of human plausibility intuitions.

2.1. Assumptions of Probabilistic Models

Probabilistic models implement an experience-based approach to human sentence
processing which assumes that the sentence processor prefers those structural and
lexical interpretations of the input that it has encountered frequently during previous
experience. Probabilistic models are motivated by the observation that all levels of
human sentence processing are sensitive to frequency information (see, e.g., Jurafsky,
2003, for a comprehensive overview). Frequency effects have for example been found
for lexical word class membership frequencies (e.g., Trueswell, 1996, Crocker and
Corley, 2002), verb subcategorisation frequencies (e.g., Trueswell et al., 1993, Garnsey
et al., 1997), or structural frequencies (e.g., Cuetos et al., 1996). Probabilistic models
account for these preferences by estimating lexical and structural preferences from large
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corpora of naturally occurring utterances. This approach makes the crucial assumption
that frequencies observed in corpora will reliably reflect the preferences of the human
processing system.

The predictive power of corpus frequencies for processing preferences is intensively
discussed in the literature. In general, correlations between corpus frequencies and
processing preferences are found, but usually only when a number of factors are
carefully controlled. For example, while Cuetos et al. (1996) found a preference in
English and Spanish to attach relative clauses in the way most frequently encountered
in corpora, Mitchell and Brysbaert (1998) found that this is not the case for Dutch.
Desmet, Brysbaert, and de Baecke (2002) and Desmet, de Baecke, Drieghe, Brysbaert,
and Vonk (2005) in turn showed that readers did prefer the more frequent attachment,
once animacy and concreteness of the first attachment site were taken into account.

A similar picture emerges for the correlation between verb subcategorisation prefer-
ences extracted from corpora and those found in production (completion studies) and
comprehension (reading-time experiments). Merlo (1994) and Gibson, Schütze, and
Salomon (1996) provide evidence against a positive correlation. However, it appears
that there are several important factors that need to be controlled in the determina-
tion of subcategorisation preferences: Rather than being defined per verb lemma, a
verb’s subcategorisation preferences change by sense (Roland and Jurafsky, 2002, Hare,
McRae, and Elman, 2003). Hare, McRae, and Elman (2004) demonstrate that the amount
to which corpus-extracted verb-sense specific subcategorisation preferences correspond
to the preferences assumed by experimenters in a number of studies predicts whether
an effect of verb bias was found experimentally or not.

Hare et al. (2003) also find that preceding context can bias comprehenders to prefer
one of the senses of ambiguous verbs, and Keller and Scheepers (2006) show for German
that the subcategorisation preferences even of unambiguous verbs vary depending
on preceding context. Finally, genre- and discourse type-dependent usage may also
determine a verb sense’s subcategorisation preferences (Roland and Jurafsky, 1998).
This allows the hypothesis that verb subcategorisation preferences extracted from a
large, balanced corpus that contains evidence of many different types of language
data should yield more reliable subcategorisation preferences. Indeed, Lapata, Keller,
and Schulte im Walde (2001) show that verb subcategorisation preferences extracted
from the BNC (Burnard, 1995), a balanced corpus, are significantly correlated with the
human norming results from four experimental studies.

In sum, it appears justified to assume that frequencies from a sufficiently large
corpus correlate well with human preferences both in production (e.g., completion
tasks) and comprehension. However, it is clear that this correlation holds only when
additional variables such as verb sense or animacy of a possible attachment site are
carefully controlled. These variables are also important indications of the grain size
of experienced events to which the human sentence processor takes recourse, and the
influence of factors like animacy point to more than purely structural events.
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Figure 2.1.: Schematic diagram of an SRN: Input and output layer with intervening
hidden layer and context layer, which stores the hidden layer’s activation
and feeds it back at the next time step.

2.2. Connectionist Models

Connectionist models (also known as neural networks) are inspired by the neural
architecture of the brain. These models have been used to investigate how the structure
and meaning of language can be learnt from exposure to language data in a cognitively
plausible way. They are especially qualified for this task because they exhibit similar
properties to the human language system in several respects: They are very good at
detecting associations and structure in their training data, are robust to noisy input
and show graceful degradation (as opposed to abrupt failure) in the case of damage.
Since they require long training times and become very complex with increasing size,
scaling up to cover a realistic amount of language phenomena and to process free text
has been a great challenge that has only begun to be addressed recently.

All connectionist models consist of layers of nodes linked by weighted connections.
Input information is usually specified to a separate input layer, and the models’ output
is read off an output layer. Any layers between the input and output layers are called
hidden layers. Hidden layers allow the network to develop its own encoding of the
input information which typically consists of activation patterns across all nodes in
the layer. These representations allow generalisation through the creation of similar
representations for similar concepts and robust processing in case of noise or damage.

Activation propagates through the network along the weighted connections. The
activation that a node receives through its input connections is summed and passed
on through all outgoing connections. Scaling ensures that small amounts of activity
are suppressed and that large amounts are capped. The weights of the connections are
incrementally adapted during many rounds of training to shape the network’s output
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reaction to an input more like a specified target output.
For incremental language processing, a sequence of inputs over time has to be

encoded. This is facilitated by a type of model called the Simple Recurrent Network
(SRN, Elman, 1990), which is the basis for most models of sentence processing. SRNs
encode previous context through a feedback loop, which stores the state of the hidden
layer at the last time step and feeds it back into the hidden layer together with the new
input, as shown in Figure 2.1. In this way, the model uses both new information and
the interpretation of the input at the last time step to arrive at an interpretation for
the current time step. This provides the model with extended memory of previously
processed input and allows it to learn structural information encoded in the order of
input events, which is a typical feature of language.

There are two typical training regimes for connectionist models that entail different
test tasks. Elman (1990) introduced the next-word-prediction task which is often used
both for training and for the evaluation of trained models. The model is presented
with input incrementally and has to predict the next word or next category. The model
thus has to learn to associate input word strings and possible lexical continuations.
When used in training, the task provides the model with an implicit training signal by
comparing the actual next word to the prediction. Note, however, that Steedman (1999)
characterises this task as equivalent to part-of-speech tagging rather than syntactic
parsing, because the SRN does not arrive at a structural analysis of the input.

Alternatively, models can be trained in a completely supervised fashion by presenting
the input signal together with an explicit target output. The target output is usually a
semantic encoding of the language input (see, e.g., McClelland, St. John, and Taraban,
1989, Mayberry, 2003). The network’s task is to associate the correct input and output
patterns so that it can also correctly build semantic representations for novel input
combinations. During testing, the accuracy with which the model produces the correct
output is evaluated.

This task aims overtly at learning to understand language input, which is arguably
more similar to a human language learner’s task than next-word prediction. However,
it also requires an explicit teacher signal which specifies the correct interpretation
of the input. Such an extremely reliable signal is usually not available in human
language learning, where there is scope for misunderstanding the relationship between
an utterance and its intended meaning.

2.2.1. Early Models

One of the first connectionist models of sentence processing was developed by St. John
and McClelland (McClelland et al., 1989, St. John and McClelland, 1990) to demonstrate
that the syntax and semantics of language can be learnt simply through exposure to
event representations and language input.

Their model was trained on a corpus of 630,000 sentence/event pairs. The sentences
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were active or passive declaratives and contained a number of lexical items that were
vague (e.g., someone) or ambiguous (e.g., ball). During training, the model received
a sequence of sentence constituents as input and an encoding of the corresponding
events as thematic role relations between entities and actions as target output. In its
hidden layer, it incrementally built a representation for the complete input sentence,
using a feedback loop similar to that of an SRN (but feeding back the activation of the
output rather than the hidden layer). Once a representation for the sentence, termed the
sentence gestalt, was constructed, the model could be queried about its understanding
of the sentence in terms of thematic role relations between events and protagonists.

The trained model was able to answer probes about roles and fillers after processing
(partial) input. It performed semantic tasks like correctly assigning thematic roles,
finding the correct concept instantiation for vague descriptions, or inferring a thematic
role and filler that was not mentioned in the input, for example an instrument role.
The model also learnt syntactic generalisations, which enabled it to construct the same
semantic representation for alternative syntactic realisations of the input, such as active
and passive voice or the double-object diathesis alternation.

The model thus demonstrated that information about syntactic structure and se-
mantic relations can be learnt from combinations of linguistic input and situation
information without any innate structural knowledge about language, only by extract-
ing regularities from a large number of input sentences.

Elman (1990) showed that a true SRN model trained on short sentences using the
next-word prediction task can induce a representation for the lexical material according
to its syntactic class and semantic properties, even if no explicit thematic role infor-
mation is given. Clustering the hidden layer representations for the input words after
training showed that verbs were represented separately from nouns, and subdivided
by argument frames. Nouns were clustered, for example, according to animacy and
being human. This hierarchy had fallen out from the usage of words in the training
corpus, for example the fact that the verbs were always used with a specific argument
frame or that only animates could take the argument position of certain verbs. With
this clustering of similar words, the model’s representations for the items in its lexicon
are structured in a similar way as those of the human mental lexicon (see Section 2.5.1).

Finally, Elman (1991) presented results for training an SRN model on more complex
sentence structure. The training data for this model encoded verb-argument agreement,
argument structure preferences (such as transitive and intransitive verbs) and relative
clauses which raise the complexity of processing agreement and allow recursion.

The network was trained and evaluated on the next-word prediction task, where
accuracy was determined by comparing the activation pattern for the predicted next
words to the statistical distribution of next words in the training data. The test set
was novel, but not guaranteed to contain only unseen sentences. The model correctly
accounted for verb agreement and verb subcategorisation preferences, even in complex
sentences involving relative clauses. Inspection of the model’s state space shows that its
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representation of the syntactic structure of relative clauses and main clauses generalises
over similarities between them. The model thereby showed itself capable of processing
input with internal structure and of representing this structure directly in its hidden
layer.

2.2.2. Approaching Realistic Coverage

The early models introduced above proved that recurrent networks are able to infer
syntactic structure of the input and even learn some lexical semantic information
such as selectional preferences from the distribution of words in the training data.
However, they were small proof-of-concept studies with restricted coverage of syntactic
constructions and vocabulary. More recently, the focus of research has been to build
models that demonstrate a much wider coverage of constructions and that can process
naturally occurring text. These models aim to account for human adult performance as
well as for the language learning process.

Rohde (2002) for example describes an SRN model of sentence comprehension and
production that covers a greater range of syntactic constructions. The model either
generates sentences from a given semantic representation or, in comprehension mode,
predicts the next input word. It covers a large spectrum of syntactic constructions,
such as sentential complements and subordinate clauses, relative clauses of different
kinds, prepositional phrases and coordination. In addition, the training data contains a
relatively large lexicon of nouns, adjectives and verbs in different tenses, with some
instances of lexical ambiguity. While its training data is not yet naturally occurring text,
the statistics of the training corpus correspond broadly to those of the Penn Treebank
corpus of English (Marcus, Santorini, and Marcinkiewicz, 1994).

The model is of special interest to us as the evaluation on the comprehension task
includes the prediction of reading times for a range of ambiguity phenomena. Reading
time predictions are based on the combination of two measures of comprehension
difficulty encountered by the model. Difficulty is represented on the one hand by
the amount to which the next input word is predicted by the model and on the other
hand by the amount of change taking place in the semantic representation of the input
sentence. The measure thus reflects both the syntactic and semantic expectedness of
the current input word, which accounts for lexical and structural frequencies involved
in the different possible analyses, and the amount of semantic processing necessary to
integrate the new input, which consists of a more or less drastic change of the semantic
representation of the complete input.

Comparison to reading time is done for four well-studied ambiguity and memory-
load phenomena. Because the model cannot directly process experimental items from
the literature, its predictions of reading time effects are computed on a controlled
set of input sentences that manipulate the appropriate factors (e.g., thematic fit of an
argument) in the context of the training data. Consequently, the model also cannot
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exactly predict the results of any one reading study, but is evaluated on predicting the
general reading-time profile found by a range of studies for the same phenomenon.

Across all phenomena, the model proves that it is sensitive to the manipulation of the
experimental factors. The model generally predicts similar patterns of difficulty to those
found experimentally for local ambiguity phenomena. However, it fails to correctly
predict comprehenders’ preferences for different types of relative clause, which appears
to be due to specifics of training and to the distribution over structures in the training
language. Overall, the model is clearly able to match human experimental results even
in a quite indirect evaluation. Rohde’s model thus constitutes a model of adult human
sentence comprehension (and production) on a still restricted, but relatively realistic
scale.

Mayberry (2003) takes a further step towards a wide coverage model by training
and testing on actual corpus data. He uses the Redwood Treebank (Oepen, Flickinger,
Toutanova, and Manning, 2002), a corpus of about 5,000 sentences of spoken language
that were transcribed and annotated with parse trees and semantic representations in
the Minimal Recursion Semantics (MRS) format (Copestake, Lascarides, and Flickinger,
2001). Mayberry’s model learns to incrementally build the MRS representation of
the input string. Evaluation thus focuses on understanding the input, which makes
correct acquisition of syntactic structures and a mapping to the corresponding MRS
representations necessary as a pre-condition.

Using MRS as a semantic representation introduces the problem of representing
graph structure in the network. This is solved by the co-operation of a series of com-
ponents: The first, an SRN model, reads in the input and retains a representation of it.
Then, a second hidden layer called a Frame Map processes this representation to gener-
ate the nodes of the corresponding MRS structure. The Frame Map is self-organised,
i.e., different areas specialise to encode different types of nodes like determiners, verbs
or nouns. The arcs that link the different nodes into a graph are represented in the node
representations as pointers from the Frame Map region that encodes the current node
to other regions. Finally, the MRS representations are decoded into the output layer.

The trained model is able to reliably parse a completely unseen treebank test set. The
main source of errors is that pointers tend to be slightly inaccurate and not indicate the
correct target but a neighbouring node. Since similar nodes are generally represented in
similar regions of the hidden layer, their confusability is indeed high. The model reacts
robustly to the introduction of noise, both as pauses and dysfluencies in the input from
the raw transcripts of the treebank sentences, and to noise directly introduced into the
model’s weights. The network also accounts for ambiguity in the input utterances,
which is quite high in the treebank, where three quarters of sentences have more than
one acceptable parse. The network represents alternative analyses by activating the
corresponding MRS representations to different degrees, with the preferred analysis
activated most strongly. In sum, the trained model is capable of correctly processing
noisy, ambiguous naturally occurring language data, while also accounting for the
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learning process that leads to fully competent language processing through the self-
organised acquisition of semantic representations in the Frame Map. However, unlike
Rohde’s model, it has not been applied to the prediction of experimental reading time
data.

2.2.3. Summary

Connectionist models of human sentence processing have demonstrated how it may
be possible for children to acquire the structure and meaning of language simply from
listening to utterances in a situation context, without any prior knowledge (other than
the assumptions encoded in the model architecture). Furthermore, Rohde (2002) and
Mayberry (2003) have constructed models that realistically account for adult language
processing. The models mirror human processing effects in the psycholinguistic litera-
ture and account for comprehension of unseen, noisy naturally occurring utterances,
respectively.

The most serious problem with connectionist models is that scaling them up to
processing realistic language utterances makes them grow extremely complex and
difficult to train. Therefore, further extending the existing relatively large-scale models
remains a challenge. A related problem is that the emerging representations in large
models are complex and opaque, which makes it harder to assess why and how the
model arrives at its generalisations. Finally, the need to derive a representation for
an input word exclusively from its distributional profile amplifies the sparse data
problem: A data point presented only a few times does not influence the model’s
connection weights sufficiently to be well represented. This makes full-scale, realistic
input models especially vulnerable to the sparse data problem inherent in every realistic
task. In consequence, no model has yet been used to make predictions of processing
difficulty for individual studies. Mayberry’s model is the only one so far which is
able to process free text, but given the relatively small size of its training corpus, it
presumably would encounter a serious problem with unknown words when processing
actual experimental items.

The representation of semantic information is also subject to the scaling problem.
Connectionist models can acquire information about the distributional properties of
lexical items that can be taken to represent their semantics, but for this they require a
large amount of training examples. Therefore, full-scale semantic representations for a
large input vocabulary can only be learnt through an intensive training regime.

2.3. Constraint-Integration Models

Constraint-integration models share the assumption that the preferred analysis at
each processing step is determined by the immediate and simultaneous interaction
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Figure 2.2.: Schematic diagram of the Competition-Integration model (adapted after
McRae et al. (1998)). Constraints and example levels of support for alterna-
tive analyses.

of a number of constraints of different strength. Typical constraints are based on
lexical biases like verb subcategorisation preferences, or on structural preferences like a
general bias towards more frequent structures over infrequent ones. Each constraint
is integrated into the analysis as soon as it becomes available. Constraint-integration
approaches therefore account for the influence of semantic plausibility by simply
positing it as an additional constraint.

Such models further assume that processing difficulty is directly related to the time it
takes the processor to integrate conflicting evidence for which of the possible analyses
should be preferred. If many strong constraints point to one analysis, the processor can
decide easily and quickly, but it will take longer to reach a decision if all alternatives are
about equally supported. Processing difficulty is therefore linked to the time it takes
for a model to settle on a preferred analysis. Constraint-integration models differ from
probability distribution parser models in that they predict a preferred analysis at each
processing step. In contrast to ranking parser models, they make graded, stimulus-
specific difficulty predictions. Constraint-integration models borrow the metaphors of
weighted connections and spreading activation from connectionist networks.

There is a number of theoretical proposals for constraint-integration models (e.g.,
Bates and McWhinney, 1989, MacDonald, Pearlmutter, and Seidenberg, 1994, Boland,
1997) and an even larger number of publications which support the idea of constraint-
based processing without proposing models in full detail. One of the few implemented
accounts, the Competition-Integration model (Spivey-Knowlton, 1996, Spivey and
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Tanenhaus, 1998) uses the competition approach to distinguish between possible analy-
ses of the input, which are assumed as given. The model computes how much support
each analysis receives from the range of weighted constraints, and iterates until a
critical activation threshold is met by one of the analyses.

Figure 2.2 shows a schematic diagram of the model, based on the description in
McRae et al. (1998). Two alternative analyses of the input, I and II, are supported
by two constraints via weighted connections. Constraint A supports interpretations
I and II almost equally, while Constraint B strongly supports interpretation I and
only weakly supports interpretation II. During each iteration, a feedback mechanism
serves to re-calculate each constraint’s support for the analyses depending on the
connection weights and the respective activity of each analysis. Since a constraint’s
support for the alternatives is normalised to sum to 100, strengthening its support
for the more active analysis at the same time weakens its support for the less active
analysis. The model thus moves towards preferring one analysis in the normal case.
To ensure termination of the iterative cycle and to put an upper bound on the number
of iterations, the activation threshold for settling is lowered at each iteration. Thus,
the model will eventually settle on one alternative even if both analyses are supported
equally strongly. In the Competition-Integration model, the number of iterations until
settling is assumed to be linearly related to processing difficulty as reflected in longer
reading times.

Tanenhaus, Spivey-Knowlton, and Hanna (2000) present several simulations of
syntactic ambiguities that are influenced by thematic fit and context effects. The
simulations demonstrate that the Competition-Integration model accounts for different
types of data patterns that have often been interpreted as evidence against this type
of model. However, the model encounters a methodological problem: The set of
constraints to be used for modelling and the point in processing at which they are
assumed to be available to the human processor have to be determined manually.
This compromises the wide coverage of each individual model instance. Further,
constraint strengths are usually inferred based on evidence from corpus or norming
studies, which introduces the danger of finding inconsistent preferences (see, e.g.,
Roland and Jurafsky, 1998). Constraint weights must either be set by hand, or fit
to off-line completion studies (see McRae et al., 1998). Spivey-Knowlton and Sedivy
(1995) suggest using regression analyses or a connectionist network to learn the weight
settings.

The integration of plausibility information in the shape of human judgements elicited
in rating studies is at the same time an advantage of the Constraint-Integration model
and another restriction of wide coverage, because the ratings have to be elicited anew
for each new set of experimental data.

A related model proposed by Tabor, Juliano, and Tanenhaus (1997) aims to avoid
the necessity of selecting constraints altogether. Their model draws on ideas from
dynamical systems theory and describes the parsing of an input sequence as the
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trajectory of an object through a metric space, past attractors that represent distinct
processing states and correspond to decisions in a grammar-based parser. Reading
times are predicted by the speed with which the object is drawn to one of the possible
analyses, which depends on the force exerted by the attractors and their proximity.
Tabor et al. use the clusters of similar syntactic analyses that emerge during training of
a connectionist network as competing processing states. Thus, no constraints have to be
specified by hand, and the strategy also allows Tabor et al. to give a tentative account of
how linguistic classifications may emerge that are treated as given in non-connectionist
models. However, the model inherits the poor scalability of neural networks to wide
coverage (recall Section 2.2). For example, Tabor and Tanenhaus (1999) demonstrate as
a proof of concept that the model is able to also learn thematic fit constraints, but they
use a very restricted set of training data. In order to induce a more general account of
thematic fit in the model, an impractically large amount of training data presumably
would be needed.

2.3.1. Summary

The Competition-Integration model, as an implemented representative of a large num-
ber of constraint-integration models, provides a natural way of integrating semantic
information into a processing model. However, used across different phenomena,
it constitutes a consistent modelling architecture rather than one specific model of
sentence processing, in that it requires a new set of constraints, biases and weights to
be chosen for each ambiguity that is to be modelled. Consequently, individual model
instances are unlikely to generalise to new constructions without further changes. The
use of costly human judgements to model the influence of plausibility further restricts
wide coverage of unseen input data. A second problem is that the constraint weights
often are estimated from a diverse, potentially conflicting set of sources, for example
various corpus studies as well as rating and completion studies (e.g., McRae et al., 1998).
In addition, the Competition-Integration model does not account for the creation of syn-
tactic analyses. Instead, the way it decides between given interpretations is considered
an abstract characterisation of information integration during sentence processing. This
characteristic however compromises its wide coverage, as the syntactic alternatives
presented by the input have to be known beforehand for every input string.

An alternative proposal based on dynamic systems theory by Tabor et al. elegantly
avoids the selecting of constraints and estimating of parameters by training a connec-
tionist model. However, in this way it inherits problems from connectionist models,
for example poor scalability to realistic input.

In sum, the simple integration of various sources of information into a single
constraint-integration model is balanced by methodological and practical disadvan-
tages such as lack of coverage and the necessity to hand-select constraints or manually
set parameters.
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2.4. Probabilistic Grammar-Based Models

While connectionist networks exclusively rely on the language structure they can
infer from their training data, probabilistic grammar-based models (parser models)
are presented with structural information in the form of annotation to the input and
only need to learn the distribution over the given structure over the input data. Thus,
parser models share with connectionist models the idea of learning from language
experience, but they do so in reference to a given grammar that overtly specifies
the structure of the input data. Therefore, parser models do not give an account of
the acquisition of structural knowledge about language, but they do account for the
acquisition of structural preferences. Since probabilistic grammars are a standard tool
of computational linguistics, models can profit from developments in that field, which
allow them accurate, wide coverage of unseen language data. For example, smoothing
mechanisms can be employed to alleviate the problem of sparse training data.

Typically, parser models use a Probabilistic Context-Free Grammar (PCFG) to com-
pute the probability of each possible structural analysis of an input sentence. A PCFG
consists of a set of context-free rules. These define which daughter nodes in a phrase
structure tree a mother node may have. Each rule is annotated with a probability which
represents the likelihood of expanding the mother node into the daughter nodes. These
rule probabilities are usually extracted from large corpora with syntactic annotation.

The annotation of grammar rules with probability information allows the ranking of
generated tree structures by their probability according to the grammar: The probability
of a syntactic structure (parse tree) is defined as the product of the probabilities of
all rules applied in generating it. Parser models usually base their predictions on
either the most probable parse tree generated by a grammar or on the probability
distribution over all generated parse trees. For a more in-depth introduction to parsing
with probabilistic grammars, see Section 5.1.1.

2.4.1. The Ranking Approach

One approach taken by probabilistic grammar-based models to account for human
sentence processing is to predict processing difficulty and parsing preferences on the
basis of a ranking of the best syntactic analyses of the input. In the ranking approach,
the most probable syntactic analysis at each incremental processing step is predicted
to be the one preferred by humans. Processing difficulty is linked to the processing
effort made when a previously preferred analysis suddenly becomes dispreferred as
more input is processed. Ranking models assume that a number of different analyses
is entertained in parallel. Since the number of possible structures rises with the size of
the grammar, human memory limitations are usually modelled using a search beam
which contains only the most likely analyses.

The first, highly influential instantiation of a ranking model was introduced by
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Jurafsky (1996). His model proposed a unified account of lexical and syntactic disam-
biguation on the basis of lexical and structural grammar rule probabilities. The model
accounts elegantly for frequency effects on different levels of processing: A preference
for the more frequent lexical category of a word is modelled through probabilistic lexi-
con entries which list all possible categories and the probability with which the word
is realised as each. Structural preferences are captured by grammar rule probabilities.
Jurafsky combines word-driven bottom-up information and rule-driven top-down
information in a Bayesian reasoning system. This strategy in principle allows for the
inclusion of a great number of constraints, for example semantic plausibility, but only
lexical and syntactic information is considered in the examples. By making indepen-
dence assumptions, the combination procedure can be simplified to multiplying the
probabilities of top-down and bottom-up evidence, just as in a PCFG parse tree. Later
work uses the Bayes net reasoning mechanism for combination and does not further
require the independence assumption (Narayanan and Jurafsky, 1998).

The model thus takes both structural and lexical category preferences into account in
computing the tree probability for each syntactic analysis. At each step in processing,
the model exhaustively computes all syntactic analyses of the current input that are
monotonic extensions of analyses in the search beam, but only analyses within a certain
probability range are kept. Processing breakdown for difficult garden path sentences
is linked to a situation where the correct analysis of the input is not contained in the
search beam because it was too unlikely at some previous point in processing.

Recall the sentence The horse raced past the barn fell that induces processing failure
in most comprehenders. In Jurafsky’s model, the ultimately correct reduced relative
analysis corresponding to The horse that was raced past the barn would be assigned only
a small probability at raced because reduced relative clauses are relatively infrequent
and because raced is biased towards the intransitive, active interpretation. The correct
reduced relative analysis therefore drops out of the beam of accessible parses at raced
and cannot be retrieved any more when fell is encountered. The model, like most
readers, therefore cannot assign the sentence a correct syntactic analysis any more.

Thus, Jurafsky’s model accounts both for human parsing preferences and for process-
ing breakdown by one mechanism, which involves constructing probabilistic sentence
analyses, predicting the most likely one to be preferred and discarding the least likely
ones. One obvious restriction of this model is that it does not account for processing
difficulty with phenomena that do not lead to complete processing breakdown, or
for processing difficulty in unambiguous sentences (for example center-embedded
relative clauses). Also, the grammar covers only a fragment of English, while the rule
probabilities are established from a range of corpora. This introduces the danger of
finding inconsistent preferences (see, e.g., Roland and Jurafsky, 1998).

Another ranking model, the ICMM (incremental cascaded Markov model) account
described in Crocker and Brants (2000), avoids the problem of restricted coverage and
makes predictions also for ambiguities that do not cause processing breakdown. The
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model is an incremental probabilistic parser which extracts both its grammar and the
rule probabilities from the Penn Treebank corpus data. This ensures wide coverage of
language data and robust processing of unseen data. Input is processed by a sequence
of Markov models, a type of probabilistic sequence model. Beginning at the word
level, the first model assigns sequences of lexical categories to the input words. A
second model determines probable sequences of syntactic categories given the lexical
categories, and so on. Processing is fully parallel, such that all possible parse trees could
in principle be considered, but a search beam pruning mechanism is used to improve
runtime while hardly compromising accuracy (Brants and Crocker, 2000). This beam is
however not used in the prediction of processing difficulty, as in Jurafsky (1996) above.
Instead, difficulty is predicted if the preferred analysis changes from one processing
step to the next, a situation generally termed termed a flip. This prediction function
also accounts for difficulty with ambiguity phenomena that do not cause processing
breakdown, since it allows for a new preferred analysis to be entertained after a flip
has occurred and only punishes the change in preferred interpretations.

The ICMM achieves good accuracy and coverage on completely unseen sentences
from the Penn Treebank. This behaviour accounts for the ease with which humans
comprehend the vast majority of utterances, while the model also makes correct predic-
tions of human behaviour for a variety of psycholinguistically interesting phenomena
(Crocker and Brants, 2000). It correctly predicts the preferred analyses for lexical cat-
egory ambiguities, due to the probabilistic assignment of lexical categories during
parsing. It also proves able to model structural and verb preferences through syntactic
rule probabilities encoded in the grammar.

2.4.2. The Probability Distribution Approach

A second type of probabilistic parser-based model, the class of probability distribution
models, has a slightly different focus from the other models reviewed here, as it
predicts not ambiguity resolution preferences, but processing load on the reader, which
is then linked to elevated reading times. Probability distribution models monitor the
incremental changes in the probability distribution over all parses for the input to
predict cognitive load, assuming fully parallel processing and making no predictions
about preferred structures.

The model proposed in (Hale, 2001) computes the total probability of finding any
parse at all for the current (partial) input string, the string’s prefix probability. This
probability is assumed to be inversely related to the cognitive load encountered in
processing the input string: Processing a highly probable string causes little load,
processing an improbable one causes much more. Hale (2001) defines the cognitive
load spent on processing a particular word as the ratio of the prefix probability of the
input before seeing the word over the prefix probability of the input including the
word. The logarithm of this measure, termed the surprisal, thus captures the amount
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of change in the set of possible parses in terms of the total probability of the set. High
surprisal is assumed to be mirrored in longer reading times. If, for example, a word is
encountered that causes a previously highly probable analysis to become impossible,
that analysis will drop out of the set of possible parses and the prefix probability
of the input string will be much lower than before, causing high surprisal for the
word in question and making a similar prediction to the ranking models. However,
high surprisal can also be caused by the abandoning of a large number of relatively
improbable analyses, a case in which ranking models would not predict difficulty.
Hale’s model is thus sensitive to the amount of restriction on the set of alternative
analyses that each word places and does not resort to beam search or explicit reanalysis.

Hale demonstrates his approach using a small, hand-written grammar with rule
probabilities extracted from the Penn Treebank. Levy (2005) shows that surprisal as
computed by a wide-coverage probabilistic parser using a grammar and rule probabili-
ties extracted from a syntactically annotated corpus of German (Skut, Brants, Krenn,
and Uszkoreit, 1997) correctly predicts processing difficulty observed in reading Ger-
man verb-final clauses. In addition, Levy derives an equivalent information-theoretic
formulation for the surprisal measure which is defined more generally over input string
probabilities instead of prefix parse probabilities, which always depend on a given
grammar. The particular grammar used for parsing is reduced to a mere source for
deriving the string probability and is equivalent to any other grammar that defines the
same probability distribution over strings. In this way, the predictions of the surprisal
approach become independent from any particular grammar formalism.

A related model, the Entropy Reduction Hypothesis (Hale, 2003) relies on measuring
the uncertainty about the interpretation of a given partial input at any moment in
processing. This uncertainty is measured in terms of the entropy of the probability
distribution over all possible analyses. A distribution with many equally probable
parses shows a larger entropy than one which clearly favours a single parse. The
intuition that a tie between several analyses should cause processing difficulty is
similar to the approach of constraint-integration models (which however still aim
to identify a preferred analysis from the set of possible alternatives). Since entropy
reduction is not bound to ambiguity, Hale’s model is able to account for processing
difficulty in unambiguous sentences.

Again, processing load per word is computed by the ratio of the entropy at the
last processing step over the entropy of the current processing step. The Entropy
Reduction Hypothesis predicts that any uncertainty reduction is linked directly to
reading times, with large uncertainty reductions causing longer reading times due to
higher processing load.

Hale (2003) demonstrates that this model correctly predicts a difference in reading
time for two related syntactic structures that was found by Sturt, Pickering, and Crocker
(1999), and models the processing difficulty associated with different types of relative
clauses as well as predicting processing difficulty with multiple central embeddings.
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2.4.3. Integration of Plausibility

Since all parser models rely only on probabilistic grammars and structural frequency
information to make predictions about human sentence processing, neither the rank-
ing nor the probability distribution models reviewed so far incorporate a notion of
plausibility. This shortcoming is addressed explicitly in work by Narayanan and Juraf-
sky (2002), which integrates syntactic and semantic factors through a combination of
Bayesian belief nets (a formalism for reasoning about events based on partial proba-
bilistic information). The Bayesian architecture incrementally integrates a probabilistic
grammar-based parsing model with lexical preferences and thematic fit information
in a mathematically clean and consistent way. The parser is cast as a set of belief nets
representing the possible syntactic analyses, which have to be pre-specified. Each net
computes the structural probability of the parse it represents, incrementally updating
its estimate as more input is encountered. A second belief net integrates thematic fit and
lexical (verb tense/voice and valence) probabilities to compute the support for each
alternative analysis from lexical and semantic evidence. The predictions of the nets
are combined into a single probability value for each structure. Processing difficulty
is predicted using the flip measure, by predicting a constant amount of difficulty if a
previously preferred syntactic analysis becomes no longer tenable with the next word
of the input.

The Narayanan and Jurafsky model thus demonstrates how to cleanly integrate
semantic information into a probabilistic parser model. However, the model still
encounters a methodological difficulty, because, as for constraint-integration models,
the sources of information to be integrated have to be chosen by hand for each new
phenomenon that is to be modelled. Also, the approach inherits several weaknesses
of the Jurafsky (1996) model. One is that the necessary conditional probability values
usually are determined from a range of different resources, for example different
corpora or, in the case of semantic plausibility, human judgements elicited in rating
studies. The approach therefore runs the risk of incorporating conflicting preferences if
corpus resources with different or even conflicting biases are used.

Finally, wide coverage of the model is compromised by two restrictions: First, again
as in the Constraint-Integration model, costly human judgements are used to model
the influence of plausibility. Another problem inherited from the original model is that
a grammar with restricted coverage is used. Since the parser implementation assumes
that Bayes nets corresponding to all relevant syntactic analyses are available before
processing can begin, it would be hard to use this model for processing free text. While
addressing the lack of plausibility information is parser models, the Narayanan and
Jurafsky approach thus lacks wide coverage, another vital requirement for a model of
human sentence processing.
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2.4.4. Summary

In sum, probabilistic grammar-based models are well suited to model processing by a
fully-developed language processing system. Those models that extract both grammars
and rule probabilities from large corpora exhibit wide coverage of language material
and robust processing of unseen data, just like the human language processor.

Rank and probability distribution model differ for example in their difficulty predic-
tions for unambiguous phenomena which induce processing difficulty. Ranking models
only predict processing difficulty for the processing of ambiguous input because they
rely on a change in the preferred analysis of the input, which does not take place in
unambiguous contexts. Probability distribution models also can account for difficulty
in unambiguous constructions, for example in cases of multiple center-embeddings of
relative clauses.

Another important difference between the probability distribution and ranking ap-
proaches to modelling is that the ranking approaches more easily account for how a
semantic interpretation of the input is incrementally constructed during parsing. Since
the ranking approaches predict one syntactic structure to be the preferred one, the
semantic interpretation of the input can simply be assumed to be the interpretation
licensed by the preferred structure. This interpretation is either maintained and ex-
tended with further input, or has to be abandoned and replaced if the underlying
syntactic analysis becomes untenable. Probability distribution approaches cannot nat-
urally explain the construction of a semantic interpretation of the input in this way,
because they do not pay attention to individual parses. The argument made in Levy
(2005) even assumes that the set of possible parses does not need to be enumerated as
long as the corresponding probability distribution can be inferred.

A crucial deficit of most probabilistic grammar-based models, be they ranking or
probability distribution models, is that they do not incorporate a notion of the semantic
plausibility of the analyses they arrive at. While connectionist models can learn an
approximation of a word’s meaning through its distribution in the training data or
through direct association with a semantic representation and constraint-integration
models specify plausibility constraints, probabilistic grammar-based models focus their
predictions only on syntactic analyses of the input. The single exception is the model
described in Narayanan and Jurafsky (2002), which integrates thematic fit information
with a probabilistic parser. However, we noted above that this model encounters
methodological problems and does not achieve wide coverage of naturally occurring
language data, which is generally a strength of probabilistic parser models.

23



2. Computational Models of Sentence Processing

2.5. The SynSem-Integration Model: A Wide-Coverage
Model of Syntactic and Semantic Preference

In Chapter 1 we identified four desiderata for a model of human sentence processing:
wide coverage, incrementality, an experience-based, probabilistic framework and the
integration of semantic plausibility. The review of existing models of human sentence
processing above has demonstrated that while all models are capable of incremental
processing, and to varying degrees rely on corpus frequencies for parameters, only
some explicitly account for the influence of plausibility, and there is no model to date
that simultaneously satisfies all four desiderata. We have argued that connectionist
models are well suited to modelling the language acquisition process through their
ability to learn syntactic and semantic properties of language from large amounts of
input data. However, connectionist models capable of wide-coverage processing of
realistic utterances are extremely complex and therefore opaque with regard to their
predictions. Also, learning reliable generalisations about the plausibility constraints
on a realistic vocabulary requires very large amounts of training data as well as large
amounts of training time.

Constraint-integration models distinctively include plausibility constraints for mod-
elling, and usually determine the strengths of their probabilistic constraints from
corpora. However, no wide-coverage implementation has been proposed. The majority
of theoretical proposals require an individual set of constraints to be chosen by hand
for each phenomenon, which makes it hard to achieve wide coverage of phenomena
(or natural utterances) with any one model instance. An alternative implementation
avoids these problems by relying on a connectionist network for constraint selection
and strength setting, but it also inherits scalability problems from connectionist net-
works.

Finally, probabilistic grammar-based models can easily achieve wide coverage by
estimating all their parameters from syntactically annotated corpora. They are also
extremely transparent with regard to the reasons for their predictions, but to date
lack any treatment of semantic plausibility. The one parser model which allows the
integration of plausibility information (Narayanan and Jurafsky, 2002) does not have
wide coverage because the set of admissible structures must be modelled individually.
In addition, we have found that those constraint-integration and parser models that do
integrate semantic plausibility rely on human judgements (Narayanan and Jurafsky,
2002, McRae et al., 1998); no model exists of human plausibility intuitions.

We therefore propose the SynSem-Integration model, which combines an incremen-
tal, probabilistic grammar-based syntactic model with a semantic model of human
plausibility estimates trained on corpus data. As shown in Figure 2.3, this semantic
model computes the plausibility of the verb-argument relations in each syntactic struc-
ture proposed by the syntactic model. The plausibility predictions are integrated with
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Figure 2.3.: The architecture of the SynSem-Integration model

the syntactic probability of the structures to determine the globally preferred structure.
The syntactic and semantic models also each identify a preferred structure given the
ranking of structures by their respective evaluation measure. Predictions of difficulty
in human sentence processing are made by transparent cost functions defined over the
preferences of both models in relation to the globally preferred structure.

The SynSem-Integration model thus overcomes the limitations of pure parser models
by integrating an explicit source of semantic plausibility estimates. At the same time,
the model does not require the stipulation of constraints, and the vast majority of
parameters in the syntactic and semantic models can be learnt automatically from
corpus data (Chapter 3 discusses the setting of the remaining parameters for the
semantic model). Learning both the semantic and the syntactic model from corpora
also gives the SynSem-Integration model broad coverage both of structures that are
processed effortlessly as well as those that cause disruption. This allows the model to
cover a range of different psycholinguistic phenomena without requiring modifications.
Finally, the SynSem-Integration model operates strictly incrementally, integrating each
word into the syntactic representation immediately and making plausibility estimates as
soon as a new verb-argument pair is encountered. It therefore fulfils all four desiderata
identified in Chapter 1.

The syntactic model is instantiated by an off-the-shelf incremental PCFG-based
parser using a grammar and rule probabilities extracted from a large corpus. The
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syntactic model is used to incrementally predict the possible syntactic analyses of
the input and their probabilities. We follow the ranking approach to probabilistic
grammar-based modelling and rank the explicitly enumerated parse alternatives by
their syntactic probability.1 The semantic model has the task of evaluating the plausi-
bility of each of the syntactic parse alternatives and ranking them by their plausibility
scores. Section 2.5.1 discusses how we propose to construct such a model and account
for human judgements of semantic plausibility based on language data in a large
corpus. Section 2.5.2 describes when and how cost predictions are made on the basis of
syntactic and semantic preferences.

2.5.1. Modelling Semantic Plausibility

Within the SynSem-Integration model, the role of the semantic model is to evaluate the
semantic plausibility of the syntactic analyses of the input proposed by the syntactic
model. Since a full evaluation of all semantic and pragmatic meaning aspects is
clearly impracticable, we restrict the scope of the semantic model to the level of verb-
argument relations (which we operationalise below) in the input. This level furnishes
the basic who-does-what-to-whom information necessary to roughly evaluate and
compare the plausibility of the described event. Further, the verb-argument level of
analysis corresponds to the level of typical plausibility manipulations in experimental
psycholinguistics, where plausibility is usually operationalised as the fit of an argument
to a verb in a specified relation. Finally, recall that the task of the semantic model is to
compare the plausibility of different analyses of the same input string. This means that
lexical material is the same in all analyses and that relevant differences in plausibility
between the analyses are caused by different attachment decisions that may lead to the
stipulation of different verb-argument pairs.

Thematic Roles Instantiate Verb-Argument Relations

Several possible instantiations for verb-argument relations could be considered. One
is the grammatical function that characterises the syntactic relationship between a
predicate and its argument. This approach has been used by models of verb selectional
preference, which solve a related task to our semantic model (e.g., Resnik, 1996, Clark
and Weir, 2002, Li and Abe, 1998), to approximate verb-argument relations. This instan-
tiation is maximally close to the syntactic analysis that yields the verb-argument pairs
in the first place. However, while grammatical functions are a source of information
about the verb-argument relation, they do not yield enough semantic generalisation to
be useful for the evaluation of plausibility. The existence of regular verb diathesis (see
Levin, 1993) demonstrates that the syntactic relationship between two words does not

1For details about the implementation of the syntactic model, see Section 5.1.2.
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determine their semantic relationship. Instead, the same semantic relationship between
a verb and its argument can often be expressed by a range of syntactic relationships.
Grammatical functions are thus often indicative of a semantic relation, but they do not
define the relation unambiguously.

We choose thematic roles instead to describe the relationship between a verb and its
argument. Thematic roles characterise the semantic nature of the syntactic relationship
between the assigning verb and the receiving argument or adjunct. Thus, they are
both defined close to the observed syntactic relationships and introduce a semantic
interpretation of the relationship between a verb and its argument.

Thematic roles have long been relied upon as a pivotal link between syntactic and
semantic processing in psycholinguistics. Carlson and Tanenhaus (1988) for example
gave an influential characterisation of thematic roles as a level of preliminary semantic
analysis that allows the processing system to make fast semantic commitments that
can be retracted at relatively low cost if they later turn out to be incorrect. A number
of theories and models of sentence processing like Pritchett (1992) or Crocker (1996)
even explain the human processor’s strategies from a desire to interpret the input
by assigning thematic roles as early as possible, attributing processing difficulty of
different severity to the re-assignment of thematic roles in different situations.

Using thematic roles, the semantic plausibility model proceeds as follows to evaluate
the plausibility of different sets of verb-argument relations corresponding to different
syntactic analyses: First, the syntactic relationships in each set are semantically charac-
terised by thematic roles. Then, the plausibility of each verb-argument-role triple is
evaluated by estimating the goodness-of-fit of the argument as a bearer of a specific
thematic role assigned by the verb. The more plausible syntactic analysis is the one
that gives rise to the more plausible verb-argument-role triples.

A Probabilistic Model

To support wide coverage in the SynSem-Integration model, the semantic model should
cover as many verb-argument relations as possible after a single training session,
and should not require retraining for individual sets of test data. Therefore, the
semantic model cannot rely on human judgements as do many existing models that
integrate semantic information. Eliciting enough human judgements to allow the
model acceptable coverage is far too costly. Rather, we propose a probabilistic model
of human plausibility intuitions that is estimated from corpus data. The probabilistic
approach allows fast and cheap estimation, while yielding a model that is experience-
based and has far broader coverage of verb-argument relations than what can be
reasonably achieved with human judgement elicitations. Two large corpora annotated
with thematic roles exist: FrameNet (Ruppenhofer, Ellsworth, Petruck, and Johnson,
2005) and the Proposition Bank (PropBank, Palmer, Gildea, and Kingsbury, 2005). We
compare both corpora as training data in Chapter 3.
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The doctor cured the patient Verb lemma: cure Verb sense: healing
Argument lemma: doctor Grammatical function: subj

Figure 2.4.: Factors in the semantic model

The semantic model will be used to identify all possible thematic roles that can
link a given verb-argument pair in sentence context, estimate the plausibility of all
verb-argument, and assign the most plausible thematic role as the humanly preferred
one. This thematic role and its plausibility estimate are the basis for the comparison
between the overall plausibilities of different syntactic analyses of the input material.
We identify a number of factors that are relevant for the tasks of identifying possible
thematic roles and estimating their plausibility. As an example, consider the sentence
The doctor cured the patient.

• Verb and argument head lemmas The identity of the verb and the argument
head, cure and doctor, are obviously important to determining their relationship
and its plausibility.

• Verb sense Polysemous verbs normally assign a completely different set of the-
matic roles in each of their senses. For example, the preserving sense of cure
assigns roles that can be paraphrased as preserver and preserved, while the heal-
ing sense assigns a healer and a healed. Therefore, it is the verb sense rather than
the verb lemma that finally determines the thematic roles applicable to syntactic
relations.

• Grammatical function The grammatical function that links verb and argument
does not determine the semantic relation between verb and argument, as argued
above, but is an important factor in inferring the intended thematic role: The
doctor in the syntactic subject position of cured is intended to fill a different role
than if it is realised as a syntactic object.

As an example, the complete set of factors for the relation doctor–cure in the sentence
The doctor cured the patient is listed in Figure 2.4.

We propose to equate the plausibility of a verb-argument-role triple with the proba-
bility of seeing the thematic role with the verb-argument pair. This approach ensures
that the model’s plausibility estimates reflect the observed frequency distribution in
the training corpus. Modelling plausibility of events through language data implies
some crucial assumptions, which we discuss below.

We formulate a generative model of the probability of assigning a thematic role to
a verb-argument pair. Generative models attempt to estimate the joint probability
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distribution that underlies (or generates) the co-occurrence of the input factors (here,
the four influential factors we have identified) and the output factors (in our case the
thematic role). This enables them to predict missing input or output values on the basis
of the joint distribution, a property we use both for the prediction of thematic roles and
the treatment of missing input values (see discussions below and in Section 3.1.4).

The plausibility of seeing a thematic role with a verb-argument pair is thus computed
as the joint probability of seeing together the argument head a, the verb v in its sense s,
the grammatical function gf of a and the role r in Equation 2.1.

Plausibility(v, r, a) = P (v, s, a, gf , r) (2.1)

To predict thematic roles for verb-argument pairs, we use the model to enumerate all
possible thematic roles for the verb-argument pair and their plausibilities and choose
the most plausible one, as in Equation 2.2.

assigned role(verb, argument) = argmax
role

Plausibility(verb, role, argument) (2.2)

We determine the plausibility of a syntactic analyses by assuming independence be-
tween the different verb-argument pairs it gives rise to and multiplying the plausibility
estimates for all pairs. This assumption is necessary due to data sparseness, but it is
overly strong, as there is a dependency between thematic roles assigned to different
arguments of the same verb. We take this fact into account in the implementation of
the model by positing the constraint that each role can be assigned only once, and
then optimising the probability of the set of assigned roles given this constraint (see
Section 5.2.1 for details).

The plausibility model specified in Equation 2.1 has a number of properties worth
discussing. First, it allows us to deal easily with missing variable values, because it is an
instance of a generative model. Treating unknown values appropriately is important,
since the values of the five model variables are never all known when a plausibility
prediction has to be made. For example, the appropriate sense of a polysemous verb is
never specified in the input to the semantic model. Since the verb sense determines the
set of thematic roles that the verb can assign, the verb sense has to be disambiguated to
make plausibility predictions. The generative formulation of the model allows us to
elegantly incorporate this disambiguation task into the prediction process: We allow
the model to generate role and plausibility predictions for all applicable verb senses
and for each thematic role choose the sense value that leads to the highest plausibility
prediction. The verb sense used to predict the most plausible role is the one the model
assumes to be appropriate for the verb-argument pair.

Second, the model operates incrementally over verb-argument pairs, which is a pre-
condition for its use in the SynSem-Integration model. As soon as an analysis from the
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syntactic model contains at least one verb-argument pair, the plausibility model assigns
each pair a thematic role and plausibility estimate. Through the independence as-
sumption between pairs, the plausibility of each partial syntactic structure is computed
incrementally. The model as defined here has a tendency to assign lower probability
values to sentences with more verb-argument pairs. This runs counter to the intuition
formalised in several theories of sentence processing that the human processor is eager
to make as many role assignments as possible (see, e.g., Pritchett, 1992). This model bias
is addressed in the implementation by a normalisation procedure (see Section 5.2.2).

Modelling Plausibility Using Corpora

In our discussion of modelling human plausibility intuitions, we have so far identified
the level of verb-argument-relation triples as the appropriate one in the context of mod-
elling experimental results on human sentence processing. We have also determined
thematic roles to be the best way of defining the relations between verb and argument,
and have argued for the use of a probabilistic model. To induce such a model, corpora
annotated with thematic role information can be used.

However, the fundamental assumption of this approach is that plausibility informa-
tion can be modelled using frequency patterns in linguistic utterances. This assumption
is certainly justified if the plausibility of a verb-argument-role relation is a linguistic
property deriving from the admissibility of using the verb and argument in the given
role. In this case, information about acceptable combinations can be derived from
corpus data just as information about acceptable syntactic structures can be derived
for a model of syntax. At least some aspects of the plausibility of verb-argument-role
triples are certainly linguistic, for example the set of thematic roles that a verb may
assign, and its preference for how to realise these roles syntactically.

However, it is unclear to which degree the plausibility of a specific argument, such
as doctor, as a role filler for a verb, such as the healer role of cure, is determined linguis-
tically and to which degree world knowledge is necessary to predict the plausibility of
the described event. It appears likely that the larger share falls to world knowledge,
because even frequency patterns observed in language use such as the existence of
typical role fillers are to a large extent caused by speakers’ frequent references to plau-
sible real-world events and therefore reflect world knowledge. Therefore, we have to
assume that some amount of world knowledge in addition to linguistic knowledge is
necessary to predict the plausibility of verb-argument-role triples.

In this case, using corpora to train a probabilistic model of the plausibility of verb-
argument-role relations is useful only to the degree to which corpus frequencies of
verb-argument-role triples reflect the plausibility or frequency of events in the world.
We cannot assume the parallelism between the frequency of events and the frequency
of utterances about events to be perfect, because humans usually make utterances with
the goal of communicating information to a hearer. Infrequent events may be perceived
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Events Corpus Model

Utterances

Figure 2.5.: Modelling the plausibility of events via the frequency of utterances about
the events, as represented in a corpus.

as more informative or interesting and therefore more worthy of being communicated,
which may cause them to be discussed disproportionally more often than they are
experienced. By the same logic, frequent events may be perceived as less newsworthy
and therefore be mentioned less often than they occur. Also, while we can choose a
corpus resource that is as balanced as possible with regard to the provenance and genre
of utterances, we can never be sure that the corpus frequencies are a reliable sample
from the distribution of all utterances.

However, in addition to the intuition that information such as the existence of
typical role fillers reflects facts about the plausibility of real-world events, there is
some experimental evidence that corpus data is indeed a useful training source for
a plausibility model: A rating study investigating the plausibility of verb-argument-
relation triples (see Section 4.1.2) shows that triples that were seen in a corpus are rated
as significantly more plausible than unseen triples made up of the same verbs and
arguments, but an admissible unseen relation. This suggests that a plausibility model
can make useful predictions if it assigns a higher probability to verb-argument-relation
triples that are seen or even typical in the training data than to triples that are atypical
or not attested at all.

In sum, it appears that a plausibility model trained on corpus data should be able to
capture both linguistic and extra-linguistic information necessary to predict the plausi-
bility of a verb-argument-role triple. Figure 2.5 illustrates our modelling approach: In
order to model the plausibility of events in the world, we rely on both linguistic and
extra-linguistic information encoded in utterances made about the events. However,
we do not base our plausibility model on the complete set of utterances ever made
about any event, but rather use a corpus, which samples a subset of the utterances. The
model uses linguistic knowledge such as the set of roles a verb may assign like a filter
that rules out verb-argument-role triples that cannot be expressed in the language, such
as cure-doctor-ingestor, while the knowledge about plausible real-world events induced
from utterances about the world allows the model to predict the respective plausibility
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of linguistically admissible verb-argument-role triples such as cure-doctor-healer and
cure-patient-healer.

Estimating the Semantic Model

We estimate the joint-probability model introduced above from the training data using
Maximum Likelihood (ML) estimation, which defines the probability of an event as
its relative frequency in the training corpus (see, e.g., Manning and Schütze, 1999).
However, this approach immediately encounters a problem: The model contains
five variables (verb, sense, argument head, role and grammatical function), most
of which have a large number of different values. It is clear that the variable co-
occurrences observed in any training corpus can only cover a small amount of all
possible combinations of these variables. While many of the unseen cases will be
“grammatical zeroes” reflecting implausible combinations, the semantic model will also
be unable to make predictions for a large number of plausible unseen cases.

The semantic model therefore requires a smoothing strategy that allows it to infer
plausibility estimates even for unseen input combinations. Experience-based models
of syntax alleviate the data sparseness problem by abstracting away from lexical items
to abstract categories like part of speech or phrase type. ML estimates are then made
on the basis of abstract categories instead of lexical items. This class-based smoothing
approach, simplified, allows syntactic models to estimate the probability of seeing a
noun phrase in the subject position of a verb phrase, instead of estimating directly how
likely it is that doctor occurs as a subject of cure. In this way, syntactic models pool
similar observations. This allows them to base their predictions on a broader data basis,
making them more robust and reliable.

For a model of semantic plausibility, class based smoothing can be employed in a
similar way. The generalisations we are interested in are necessarily semantic, however.
Grouping together words with similar meaning (and similar syntactic behaviour, in
the case of verbs) enables the semantic model to pool co-occurrence information and
use frequent observations to make inferences about the behaviour of infrequent class
members. In computational linguistics, for example, models of selectional preferences
that estimate the goodness-of-fit between a verb and its argument in a specified relation
use noun classes for smoothing (see Section 4.3).

From a cognitive perspective also, using semantic classes for making generalisations
about verb-argument plausibility is a natural approach, since semantic categories are
a much-researched basic tool for human reasoning about the world (see, e.g., Medin
and Aguilar, 1999, for a short, high-level overview). Human semantic categories group
together words that are similar by criteria relevant to the reasoning task at hand. The
exact grouping mechanisms are still controversial: Are human semantic categories
defined by similarity, or is similarity between concepts a sign of a shared category? It is
clear, however, that classes of similar words play a large role in human reasoning about
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the world and therefore presumably also in making plausibility judgements. Class-
based smoothing can therefore be seen as an approximation of this human strategy,
although we restrict ourselves to one constant set of word classes and do not attempt
to re-define semantic classes for each prediction task.

There is evidence for the existence of semantic classes also at another level of human
cognition, namely as an organisational principle of the human mental lexicon. Evidence
from priming studies, which measure the processing speed of a target word after a
prime word has been presented, suggest that the representations of words and their
meaning are grouped in semantic fields, such that the presentation of a prime from the
same semantic field as the target facilitates processing. This evidence is supported by
clinical studies which show that semantic fields can be selectively damaged or spared
in patients whose language faculty is partially impaired. Within these semantic fields,
words are assumed to be linked through conceptual similarity (including superordina-
tion and antonymy), frequent co-occurrence or shared word class. The stronger these
links are, the more the words are evocative of one another in production (association
naming) and perception (priming) (see, e.g., Aitchison, 2003, for an overview). A set
of conceptually similar words of the same word class therefore can be assumed to be
connected by strong associational links in the mental lexicon and therefore be evocative
of one another to comprehenders.

Counteracting data sparseness with semantic classes is thus justified on the basis
of both computational and cognitive criteria: From a computational point of view,
grouping words together into classes allows for more robust probability estimates than
looking at each word individually. In cognition, semantic categories are pervasive both
in the organisation of the human lexicon and in reasoning about the world, which
is a task similar to the one set for the semantic model. Chapter 3 is dedicated to
further discussing smoothing methods and selecting the best smoothing regime for the
semantic model.

2.5.2. Predicting Difficulty

In isolated sentences with syntactic ambiguities, processing difficulty may be observed
in two regions: During the processing of an ambiguous region, where several syntactic
analyses of the input are possible, and at the point of disambiguation towards one of
the alternative analyses. We attribute the difficulty observed in these two situations to
two separate effects: Conflict and revision. These explanations for processing difficulty
have been identified previously by constraint-integration and ranking parser models,
respectively. Constraint-integration models attribute all occurrences of processing
difficulty to a conflict of constraints, while ranking parser models only predict difficulty
due to a revision of the preferred structure. We argue here, however, that the factors
are complementary to one another in the context of our sentence processing model and
that only a combination of both leads to the correct prediction of difficulty.
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• Conflict arises during the processing of an ambiguous region if there is conflict-
ing evidence concerning which syntactic analysis to prefer. In these situations,
either the syntactic or the semantic model does not agree with the globally pre-
ferred structure. Since conflict does not necessarily lead to a change in preferred
structure, the revision measure does not account for this source of processing
difficulty.

• Revision occurs at the point of disambiguation if the analysis that was preferred
during the ambiguous region is rendered impossible by the disambiguation. In
contrast to parser-based models, we define revision as a semantic process, which
allows us to abstract away from the exact syntax of the preferred analyses.

Difficulty due to revision can be captured by a conflict-based measure if it is assumed
that the evidence for the previously preferred, but disconfirmed structure continues
to be available. This evidence then conflicts with the strengthened evidence for a
previously dispreferred analysis. However, at a point of disambiguation, this is not
always the case in our model. Recall that the SynSem-Integration model operates on
the set of possible syntactic analyses of the input. If syntactic disambiguation rules out
the preferred analyses of the previous time step, its semantic interpretation is often
no longer available to compete with the interpretation of the confirmed alternative
analysis. This ensures that every semantically preferred analysis is also syntactically
compatible with the input. Therefore, the conflict measure alone cannot account for
difficulty due to revision, because at the point of disambiguation, only one possible
analysis of the input may remain.

In sum, we attribute processing difficulty to two separate factors, neither of which
suffices to predict difficulty on its own. The occurrence of one of these factors does not
necessarily exclude the occurrence of the other, however: It is possible in the SynSem-
Integration model that conflict and revision co-occur, whenever the situation that leads
to the revision of the globally preferred structure does not completely rule out the
previously preferred structure and leaves its semantic interpretation to compete with
that of the new preferred structure. In such cases, we treat conflict cost and revision
cost as additive.

The SynSem-Integration model predicts difficulty based on these two factors in the
following way: First, it computes the globally preferred syntactic analysis, which is
predicted to be the one that humans assume. This analysis is found by interpolating the
syntactic and semantic evaluation for each candidate syntactic structure predicted by
the syntactic model, and by ranking the structures according to the resulting goodness
score. Cost is predicted according to two cost functions: Conflict cost is incurred when
the preferred structure predicted by the syntactic or semantic model conflicts with
the globally preferred structure. Revision cost is predicted when the interpretation of
the globally preferred structure changes non-monotonically. The SynSem-Integration

34



2.5. The SynSem-Integration Model

model’s final cost prediction for the processing of an input region is the sum of all
conflict and revision cost predicted for the test stimuli in this region, normalised over
the number of stimuli. In Chapter 5, we discuss different implementations of the
two cost functions and select the best-performing ones as well as the best-performing
interpolation factor on a development set.

In predicting cost, we have a choice between three levels of granularity for difficulty
predictions: Qualitative predictions are binary flags for the existence of difficulty (for
example, as in ranking parser models), near-quantitative predictions specify the relative
size of processing difficulty (as in constraint-integration models), and truly quantitative
predictions directly link a model’s output to reading times in milliseconds.

In practice, quantitative predictions are hard to make since a number of factors like
word length, word frequency and predictability also influence reading times (Just and
Carpenter, 1980, MacDonald and Shillcock, 2003). Qualitative predictions, on the other
hand, carry only a limited amount of information. The SynSem-Integration model’s
predictions are therefore defined to be near-quantitative. This is achieved by summing
predictions for individual stimuli and normalising by the number of all stimuli. In
consequence, the model can make near-quantitative predictions even if the individual
difficulty predictions are made on a qualitative level, because the overall prediction
depends also on the number of stimuli for which difficulty is predicted: Conditions
with few qualitative difficulty predictions are predicted to be easier to process than
conditions with many qualitative difficulty predictions.

2.5.3. Cognitive Claims

The strength of implemented models of human sentence processing is that they specify
exactly how each aspect of sentence processing is modelled and therefore make testable
predictions. However, the process of creating a fully specified model is bound to lead
to some design choices that serve simply to create a running implementation, but do
not have the same status as the architectural claims that underlie the model and that
are to be tested. In this section, we discuss which properties of the SynSem-Integration
model make claims about the architecture of the human sentence processing system,
and which are due to implementational design decisions.

Architecture The implemented SynSem-Integration model consists of a syntactic
and a semantic model, which co-operate to determine a globally preferred analysis of
the input. The semantic model is assumed to operate on the output of the syntactic
model. This modular architecture is an implementational choice, not a claim about the
architecture of the human processing system. What the SynSem-Integration model does
claim is that the input is analysed with regard to its syntactic structure and semantic
plausibility, and that the degree of consistency between the results of these analyses
influences processing ease. We do not address the question whether this analysis takes
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place in a modular or integrated fashion in the human brain. Note, however, that even
given no explicitly modular architecture it is still plausible that semantic analysis takes
place on the result of syntactic analysis, under the assumption that syntax serves to
communicate semantics.

Mechanisms underlying syntactic and semantic processing The syntactic and
semantic models are derived from annotated corpus data and operate on the assump-
tion that phenomena frequently encountered in corpora are preferred by the human
sentence processor in its incremental construction of a syntactic and semantic interpre-
tation of the input. The underlying assumption of all probabilistic experience-based
models, and therefore also of the SynSem-Integration model, is that human syntactic
processing takes a similar approach. This is motivated by the overwhelming evidence
for frequency effects in sentence processing, for which an experience-based architecture
can elegantly account.

However, we do not claim that humans evaluate the semantic plausibility of verbs
and their arguments only on the basis of their linguistic experience. Rather, we use
the frequency of utterances about an event as an approximation of the typicality of
real world experiences, assuming that there is a strong link between the frequency and
therefore plausibility of a real-world event and the frequency with which it is mentioned
in utterances about the world. The implementation of the semantic model therefore
should be understood as a modelling device, not a claim about human reasoning about
the world.

Difficulty prediction mechanisms The SynSem-Integration model makes predic-
tions by determining a globally preferred parse and then evaluating the semantic and
syntactic models’ output with regard to this parse. This mode of operation also con-
tains some assumptions about the mechanisms involved in human sentence processing.
The first is that humans incrementally form a clearly defined preferred analysis of the
utterances they encounter. This assumption is supported by the more basic assumption
that sentence processing aims at constructing a complete semantic analysis of the input
that immediately integrates each new word as it is encountered. Predicting a specific
preferred analysis of the input at each processing step explains how an incremental
analysis of the semantics of the input can be constructed by comprehenders: They
simply rely on the interpretation of the preferred structure.

Second, the SynSem-Integration model’s two cost functions make few explicit claims
about the processing mechanisms of the human mind, but they are compatible with as-
sumptions made by other models. In conflict situations, constraint-integration models
attribute longer processing times to competition for activation or processing resources
between two roughly equally supported analyses, which delays processing until one
analysis is decided on (Spivey and Tanenhaus, 1998, Tabor et al., 1997). The competition
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view can easily be applied to the SynSem-Integration model, as well: Difficulty can
be attributed to the existence of a conflicting interpretation that uses up processing
resources and therefore slows down processing. Note that this interpretation does not
entail a change in the preferred structure.

The second source of cost, revision of the preferred analysis of the input, is compati-
ble with the predictions of all models reviewed above. Constraint-integration models
quantify this cost by predicting competition between the still highly-activated previ-
ously preferred analysis and a now better supported alternative. In this situation, we
argue, however, that a disproven analysis immediately drops out of competition, and
we therefore attribute difficulty more abstractly to a change in the preferred analysis
like ranking parser models do. The difficulty prediction measure for connectionist
networks proposed by Rohde (2002) similarly takes changes in his model’s semantic
interpretation into account, and probability distribution parser models base all their
predictions on the amount of change in the probability distribution over all parses,
which is bound to be large if a highly probable analysis suddenly drops to a very low
probability. In sum, the prediction that abandoning a highly preferred analysis should
incur cost is the least contentious claim about the SynSem-Integration model’s cost
prediction mechanism.

2.6. Summary

In this chapter, we have reviewed probabilistic models of human sentence processing.
We have demonstrated that none of the existing models fulfils the four desiderata for a
model of human sentence processing that we have identified in Chapter 1: Wide cover-
age, an experience-based probabilistic framework, incrementality and the integration
of semantic plausibility.

We therefore proposed the SynSem-Integration model, which fulfils all the desiderata
by integrating a wide-coverage model of human plausibility intuitions about verb-
argument-thematic role triples with a ranking parser model. Two cost functions defined
over the output of the models predict processing difficulty due to two different pro-
cessing situations: One is the conflict cost function, which applies if the syntactic
and semantic models prefer a different analysis during an ambiguous region. The
other, revision cost, applies if the semantic interpretation of the input changes between
processing steps, for example at the point of disambiguation.

As a precondition for the SynSem-Integration model, we also proposed a probabilis-
tic, experience-based model of the semantic plausibility of verb-argument-thematic
role triples. The semantic model aims to capture the frequency and thereby plausibility
of events in the real world by estimating the frequency of utterances about these events,
collected in a corpus.

The SynSem-Integration model shares characteristics with two classes of compu-
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tational models: It incorporates a parser model and uses the idea of difficulty being
caused by revision of the preferred analysis, but on the other hand, the conflict cost
function borrows from the idea of processing difficulty due to conflicting constraints in
constraint-integration models. The resulting model is most similar to constraint-based
architectures, in that it combines the preferences of the syntactic and semantic models at
each processing step to arrive at a globally preferred analysis and to predict processing
difficulty.

The SynSem-Integration model however avoids the drawbacks of both parser models
and constraint-integration models. By incorporating semantics, but retaining wide
coverage, it extends parser models without compromising their advantages. By speci-
fying models that can be to a large part automatically estimated from corpus data, the
SynSem-Integration model avoids problems with selecting and setting constraints for
individual constructions and is able to account for a number of different phenomena
with a single model instance.

We finally have argued that the architecture of the model and the claims it makes
about the human sentence processor are compatible with experimental findings about
human processing.
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In Chapter 2, we have motivated the SynSem-Integration model of human sentence
processing that incorporates a wide-coverage, probabilistic model of human intuitions
about verb-argument plausibility. This chapter focuses on this plausibility model,
which we term the semantic model to contrast it with the syntactic component of the
SynSem-Integration model. In this chapter, we discusses in detail how the semantic
model presented in Section 2.5.1 is best estimated. This question requires special
attention, since any attempt at deriving the model from training data without applying
smoothing techniques immediately faces a severe sparse data problem. We discuss
the origins of this problem in Section 3.1 and motivate the use of two orthogonal
smoothing methods to alleviate it. One method uses semantic generalisations based on
semantic word classes to yield more data points in estimation, while the other applies
to the estimated probability distributions and assigns some probability mass to unseen
combinations.

From the set of possible model instances that use the smoothing methods on their
own or in combination, we select the best-performing model based on its ability to
predict human plausibility judgements in Sections 3.2 to 3.5. The validation of the
selected model in Section 3.6 shows that we need to combine both smoothing methods
to allow the semantic model to make accurate predictions of human data with good
coverage of unseen verb-argument pairs.

The final model is evaluated more thoroughly with regard to its ability to predict
human data across data sets with different characteristics and compared to existing
related approaches in Chapter 4. Chapter 5 describes its integration into an imple-
mentation of the SynSem-Integration model, including two extensions that allow it to
process free text.

3.1. Sparse Data and Smoothing

This section discusses the semantic model’s need for smoothing and the methods
used to alleviate the sparse data problem. We first introduce an equivalent alternative
formulation of the semantic model in Section 3.1.1, which we will use throughout
the chapter. We then discuss the conceptual sources of the sparse data problem the
semantic plausibility model is faced with in Section 3.1.2, and then describe the ways in
which different smoothing methods contribute to alleviate the sparse data problem, and
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the way they profit from the decomposed model formulation in Section 3.1.3. Finally,
we discuss restrictions on our strategy of generating missing values in the context of
smoothing (Section 3.1.4).

3.1.1. Alternative Formulations of the Semantic Model

Recall our proposal to estimate the plausibility of a verb-argument-role triple as the
joint probability of the argument head a, the role r, the verb v in its sense s and the
grammatical function gf that links v and a. For the sake of concise presentation, we
collapse the variables for verb lemma and verb sense into vs. Equation 3.1.1 repeats
Equation 2.1 for convenience.

Plausibilityvs,r,a = P (vs, r, a, gf ) (3.1)

In this and the following chapters, we use a decomposed formulation of this model,
which we derive using the chain rule. Since we do not make independence assumptions,
the formulation in Equation 3.2 is equivalent to the joint formulation.

Plausibilityvs,r,a = P (vs, r, a, gf )
= P (vs) · P (gf |vs) · P (r|vs, gf ) · P (a|vs, gf , r) (3.2)

We make this decomposition for two reasons: First, the decomposed model formula-
tion allows a more intuitive understanding of what kind of information about verbs,
arguments and their relations the semantic model uses to make plausibility predictions.
The model subterms can be interpreted as yielding linguistically relevant information
about the verb-argument pair. For example, the P (gf |vs) term captures information
about the verb’s syntactic subcategorisation preferences when used in sense s: It re-
flects the probability of seeing an argument realised in each possible grammatical
function. The P (r|vs, gf ) term shows how the verb prefers to realise its thematic role
fillers syntactically. Finally, the P (a|vs, gf , r) term is similar to the term estimated by
selectional preference models, which perform a task related to that of the semantic
model, as discussed in Chapter 1. The only difference is that our term is more specific:
It pays attention to verb sense, and uses the thematic role linking verb and argument
in addition to the grammatical function.

The second, practical reason for decomposing the joint probability model is that
this formulation has advantages in combination with the application of smoothing
methods, since variables are introduced in the order of their expected sparseness in the
training data, from least sparse to sparsest. We discuss in Section 3.1.3 how smoothing
approaches can profit from this formulation.
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3.1.2. Sparse Data

The most straightforward way of estimating a probability distribution like the ones
involved in the joint and decomposed semantic model formulations from training data
is by Maximum Likelihood Estimation (MLE). This method estimates the distribution
so that the likelihood of seeing the training data is maximised. This is done by equating
the probability of each event in the training corpus to its relative frequency. To estimate
the joint probability model, for example, we therefore compute the relative frequency
of seeing each specific combination of an argument head, a verb in a specific sense,
a grammatical function and a role in the corpus. In this way, MLE ensures that
the estimated model is as faithful to the training data as possible, and no further
assumptions about the shape of the estimated distribution are necessary. However, no
probability mass is assigned to unseen events. This is problematic, because, in practice,
the semantic model estimated with MLE suffers considerably from a lack of training
data: At most 7% of verb-argument-role triples in both the development and test set
used later in this chapter have been seen together during training, and therefore are
covered by the unsmoothed semantic model.

There are three reasons for this large sparse data problem: One is quite simply that all
corpora are limited. This means that we cannot be sure to find any given combination
of a verb and argument in a corpus, and the more variables we introduce into a model
(such as the thematic role or grammatical function that link them), the less likely it
becomes that we will find the combination. Second, words in corpora are distributed
in a Zipfian manner, so that very few very frequent words make up a large portion of
the corpus, while the majority of covered words is very infrequent. Therefore, even if a
word is present in a corpus, it is very likely to be represented only a few times, with few
arguments. The third reason for the sparse data problem is specific to our combination
of test and training data: We train the semantic model on annotated corpora of financial
news text or general written language data, and test it on sets of psycholinguistic
stimuli that have been constructed by experimenters to show very specific plausibility
characteristics (see Section 3.2.2). We have to expect a difference in vocabulary between
the two data sets, and possibly also in the type of world knowledge that they cover.
Furthermore, probabilistic models generally have difficulty when training and test
data come from different domains. To give one recent example for a related task,
this problem was encountered for systems participating in the CoNLL shared task of
semantic role assignment (Carreras and Márquez, 2005).

To counteract the sparse data problem, smoothing methods have been developed. For
models of syntax, the sparse data problem is alleviated by the use of abstract categories
(like part of speech or phrasal category), as discussed in Section 2.5.1. Categories allow
the estimation to abstract away from the specific lexical material and pool individual
lexicalised occurrences into evidence for the abstract category. In Section 3.4, we will
evaluate following the same approach for semantic estimation, by classing verbs and
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arguments together into more abstract groupings that represent some semantic concept.
However, the use of semantic classes does not per se eliminate the problem of no or
too little evidence of word co-occurrences in the training data. The model’s inability to
make predictions for unseen combinations of input values can be addressed if necessary
by standard smoothing algorithms, which re-estimate the probability distribution
determined by MLE and assign small amounts of probability to still unseen events.
This allows predictions to be made even for unseen events.

While class-based and re-estimation smoothing methods also address the problem of
differences between training and test data, they do not completely eliminate it: When
we test the semantic model on a data set that is more similar to the training data in
Section 4.1.2, we do indeed find better coverage and even more reliable predictions for
that data set than for test sets that are more dissimilar to the training sets. However,
evaluation results throughout Chapter 4 show that while the semantic model does
better on data from the training domain, it is still able to make reliable predictions for
test items from different domains.

3.1.3. Smoothing Approaches

The considerations in Section 3.1.2 have demonstrated the need for smoothing methods
and have touched upon two different types of smoothing: Class-based estimation and
re-estimation of the probability distribution derived from data. Class-based smoothing
applies directly to the MLE process and is therefore orthogonal to the strategy of re-
estimating a term’s already-induced probability distribution in order to assign a small,
uniform probability to unseen co-occurrences. This section discusses how the two
different smoothing methods affect the proposed semantic model to demonstrate what
kind of performance increases we can expect from them.

We begin by considering smoothing by re-estimation in case the target combination
of verb, role, argument and grammatical function is unseen in the training data. Using
only MLE, the semantic model cannot make a plausibility prediction in this case. If a
smoothing method that re-estimates the MLE results and assigns a small probability to
unseen events is applied, the model can assign at least a smoothed plausibility estimate.
This estimate is always the same in the case of the joint probability formulation of
the semantic model. However, if we use the decomposed model formulation from
Equation 3.2, we can do better.

Plausibilityvs,r,a = P (vs, r, a, gf )
= P (vs) · P (gf |vs) · P (r|vs, gf ) · P (a|vs, gf , r) (3.3)

Equation 3.3 repeats Equation 3.2 for convenience. Recall that r denotes the role, gf
the grammatical function linking verb and argument, vs the verb in its sense s and a
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the argument head. We chose the formulation in Equation 3.3 for two reasons: One is
that the subterms can be interpreted as capturing linguistically relevant information
about the verb-argument pair. The second reason for decomposing the joint probability
model in this way, which is more relevant here, is that variables are introduced in
the order of their expected sparseness: The verb in some sense is expected to be the
least sparse variable, followed by the grammatical function seen together with the
verb. Since there is no one-to-one correspondence between roles and grammatical
functions, triples of verb, grammatical function and role are presumably sparser than
verb-grammatical function tuples. Finally, the argument head is introduced, which is
expected to be sparsest, because many different argument heads can fill a thematic role
in a specific syntactic realisation, but only few of the potential fillers can be expected to
be present in the training corpus.

The decomposed model formulation in combination with smoothing by re-estimation
improves the semantic model’s predictions over those of a smoothed joint formulation
in the following way: First of all, the first three model subterms (P (vs), P (gf |vs) and
P (r|vs, gf )) now contain fewer variables than the joint probability formulation and
therefore should be less sparse in the the semantically annotated training data and
less require smoothing. This means that in many cases of data sparseness, only the
P (a|vs, gf , r) term has to be substituted by a smoothed estimate. In these cases, the
overall probability prediction is still significantly influenced by the known verb prefer-
ences for the sense, the grammatical function and the role encoded in the first three
model terms. This linguistic information about the verb is a helpful heuristic for the
plausibility of the verb-argument pair if the argument is unknown. For example, the
plausibility prediction will be higher for a role that the verb preferentially assigns than
for one it assigns infrequently. In consequence, the model’s plausibility predictions are
much more specific to the input values than a uniform smoothed value output by the
smoothed joint model formulation. If other model terms apart from P (a|vs, gf , r) are
also sparse, less and less specific information is available, but only if the verb is unseen,
the smoothed estimate is as unspecific as for the joint formulation. We evaluate the
use of the Good-Turing smoothing method with and without linear interpolation as an
instance of re-estimation based smoothing in Section 3.3.

We can address the lack of argument-specific information due to unseen argument
heads independently by applying class-based smoothing to the P (a|vs, gf , r) term.
Intuitively, this approach supplements (possibly sparse) information about a word
by using information about semantically similar words. For example, when making
a prediction for the plausibility of <cure1, doctor, healer, agt>, we can also consider
information about the co-occurrence of <cure1, physician, healer, agt> if we know that a
doctor and a physician are similar. This similarity information is supplied by semantic
classes, which group together similar nouns and thereby abstract away from the lexical
items to a higher-level semantic concept (for example person with advanced medical
training), as discussed in Section 3.1.2. Using semantic classes affects the estimation
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process directly: Instead of estimating how likely a noun is given a verb, grammatical
function and role, we estimate the likelihood of seeing any member of the noun’s
semantic class in this position. The P (a|vs, gf , r) term thus becomes P (classa|vs, gf , r),
which allows us to pool the co-occurrence counts for all nouns from a semantic class.
This increases both coverage of lexical items, because a noun class may be seen in the
training corpus while a class member is not, and the accuracy of predictions, because
probability estimates become more reliable the less sparse they are.

Such semantic generalisation on the basis of classes of similar concepts can be made
for verbs as well as for nouns. The crucial parameter for the class-based smoothing
method is of course the choice of semantic class, both in terms of class size and in terms
of the semantic generalisation the class makes. We describe an in-depth evaluation of
different types of verb classes and two choices of noun class granularity in Section 3.4.

In sum, using a re-estimation smoothing approach allows us to fully cover the test
data, because it allows predictions to be made for any unseen event. Combining it with
a decomposed version of the semantic model allows us to make the best possible use
of plausibility information in the training data for these predictions. The class-based
smoothing approach is orthogonal to re-estimation smoothing: It affects probability
estimation directly by making semantic generalisations. It both increases coverage of
lexical items, thus often avoiding the need for re-estimation smoothing, and allows
more accurate predictions for both seen and unseen variable value combinations. Its
performance however immediately depends on the semantic classes used.

3.1.4. Restricted Generativity

One important requirement for the semantic model is the ability to deal with incomplete
input in the form of unspecified values. For example, in all evaluation tasks below,
only the verb lemma is given and the verb sense is left unspecified. If an input value
is unspecified, the model, thanks to its formulation, is able to generate the value that
allows the most probable prediction by exhaustively substituting all seen values for
the unknown value. This model feature allow us to make predictions in real-world
settings where not all input values are known, and integrates in a natural way typical
pre-processing tasks like word-sense disambiguation or the specification of possible
roles for a verb-argument pair.

In some contexts, it is however preferable to restrict the generation of possible values.
One such case is the treatment of unspecified input values, specifically of unknown
grammatical functions, and the other is given by the interaction of the generative model
formulation and smoothing.
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Unspecified Values

The current implementation of the semantic model allows to specify input values for
the verb lemma, the verb sense, the argument head and the grammatical function. The
verb and argument lemmas have to be specified, while the thematic role that links verb
and argument always remains unspecified – the model exhaustively generates all roles
which are consistent with the specified values, ranked by plausibility.

If any other input value is unspecified, our general strategy is to generate the value
that allows the most plausible role predictions. This is for example always applied
to missing verb sense information, which determines the appropriate set of thematic
roles to be used. However, for the treatment of missing grammatical functions another
strategy is more promising. If no grammatical function is specified, we generate
predictions using all seen grammatical functions and sum them, which amounts to
dropping the grammatical function feature from the model. The motivation for this
strategy is that the grammatical function that links verb and argument is a useful
indication for which thematic roles are plausible, but if it is not specified, there is little
advantage in generating the most frequent syntactic realisation if we can instead drop
the grammatical function information altogether and derive our plausibility predictions
from a more robust data set that pools syntactic realisations.

We apply the same strategy if a grammatical function is specified, but unseen with the
verb. Since most roles can be syntactically realised in different ways, we assume that the
exact value of the grammatical function feature is less crucial to the prediction of roles
and plausibility ratings than for example the verb or argument lemma. Therefore, it is
preferable to drop the grammatical functions feature and make verb- and argument-
specific predictions than to output a smoothed estimate for an unseen input value
combination.

Consistency of Predictions

The generative nature of the semantic model and its ability to deal with incomplete in-
put information interacts with the application of smoothing methods. The unsmoothed
plausibility model only instantiates missing values with values that have been seen
in the training data together with the specified parts of the input, because unseen
combinations have zero probability. Smoothing in principle allows us to generate
predictions for any combination of values by supplying a smoothed probability esti-
mate for unseen combinations. This would on the one hand enable the model to make
predictions for value combinations that are unseen in our limited training data, but on
the other hand it can lead to the prediction of plausibility estimates for inconsistent
value combinations, for example for verb senses that are inconsistent with the specified
verb lemma or roles that are incompatible with the verb sense. Additionally, it would
also dramatically increase the search space for the optimal prediction. To keep search
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Verb Argument Role Rating
cure doctor agent 6.8
cure doctor patient 3.8
cure patient agent 1.4
cure patient patient 6.1

Table 3.1.: Test item: Verb-argument-role triples with ratings on a 7-point scale from
McRae et al. (1998). 1: Implausible, 7: Plausible

manageable and in particular to ensure consistent predictions, we conservatively allow
predictions to be made only for seen value combinations. Therefore, any smoothing
that allows predictions for unseen events is applied only to the sparsest P (vs, r, gf , a)
model term. We apply the re-estimation smoothing method also to the other model
terms, but there it serves not to allow predictions for unseen value combinations, but
to smooth the noise-prone estimates for seen events with low frequency.

3.2. Training and Evaluating Model Instances

Our goal in this chapter is to select the optimal estimation and smoothing approach for
the semantic model. Section 3.2.1 explains how we compare different instances of the
semantic model using different smoothing approaches by their performance in task-
based evaluation. The objective function we wish to optimise is the reliable prediction
of human plausibility judgements. Section 3.2.2 describes the training, development
and test data.

3.2.1. The Judgement Prediction Task

The task we use for evaluation is the prediction of human intuitions about the plausi-
bility of predications. Intuitions can be measured in terms of plausibility judgements
for verb-argument-role triples. An example item from McRae et al. (1998) is presented
in Table 3.1 (an item is a complete set of stimuli showing all manipulations, in this
case argument and role identity). The ratings reflect the judges’ intuitions that doctors
typically cure instead of being cured, while the reverse is true for patients. The judge-
ments also reflect the fact that it is possible for doctors to be cured by assigning a rating
towards the middle of the scale for cure-doctor-patient.

We evaluate the quality of the predictions made by different instances of the semantic
model by correlating the predicted plausibility values (probabilities ranging between
0 and 1) and the human judgements (average ratings ranging between 1 and 7). The
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judgement data is not normally distributed, so we use Spearman’s ρ (a non-parametric
rank-order test). The ρ value ranges between 0 and 1 and indicates the strength of
association between the two variables. A positive value that is significantly different
from 0 indicates that the semantic model’s predictions are significant predictors of
human intuitions.

We compare model performance to human agreement on the judgements. The inter-
agreement between human judges, computed as the average correlation between a
single judge’s ratings and the average ratings of all other judges, is usually around 0.7
(see Section 4.1.2 and Keller and Lapata, 2003). Thus, humans do not agree perfectly on
the plausibility judgements.

We also report coverage of the tested data points as the percentage of data points for
which a prediction was made. Since the semantic model only generates predictions for
combinations of verb, argument, role and grammatical function that have been seen in
the training data (see Section 3.1.4 above), it is possible that it does not make predictions
for all verb-argument-role triples in the test data, and that coverage is imperfect.

The judgement prediction task is very hard to solve if the verb is unseen during
training. Backing off to syntactic information or a frequency baseline is problematic for
both available training corpora: In both resources, thematic roles are specific to verb
senses, which makes it impossible to assign theoretically meaningful roles to unknown
verbs. We therefore exclude items with unseen verbs from the development and test
data.

3.2.2. Training, Development and Test Data

This section describes the training data used to estimate the semantic model instances,
both during model selection in this chapter and during evaluation of the final model in
Chapter 4. We also introduce the development set used for model selection and the test
data on which we evaluate the final model in Section 3.6, to ensure that the semantic
model makes appropriate predictions also on an unseen test set.

Training Data

To train the semantic model, we require language data with thematic role annotation,
as motivated in Section 2.5.1. To date, there are two main efforts to semantically
annotate corpora: PropBank (PB, Palmer et al., 2005) and FrameNet (FN, Ruppenhofer
et al., 2005). The two approaches have substantially different goals and characteristics:
PropBank annotates a corpus of running text, while FrameNet compiles references of
verb behaviour for a lexicographic approach to verb semantics. Figure 3.1 gives an
example of PB and FN style annotation. We train models on both corpora and compare
their performance in this chapter and Chapter 4. Details on data preparation and the
extraction of relevant features for training can be found in Appendix A.1.
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PropBank The PropBank annotation project aims at creating a large corpus of English
with both syntactic and semantic role annotation. The PropBank adds a layer of
semantic annotation to the Wall Street Journal section of the Penn Treebank (Marcus
et al., 1994). It contains c. 120,000 propositions and covers c. 3,000 verbs. Arguments
and adjuncts are annotated for every verbal proposition in the corpus. A common
set of argument labels Arg0 to Arg5 is used for each frame set of each verb, but
argument labels are interpreted as verb sense specific in order to avoid difficulty
with defining a closed set of thematic roles, and are not semantically defined. Some
consistency in mapping has been achieved, so that agents are generally labelled Arg0
and patients/themes Arg1, as in Figure 3.1. For adjuncts such as location and manner,
ArgM roles are used that generalise across verbs.

There are no explicit verb groupings.1 Each verb can have a number of senses defined
by syntactic usage. These are indicated by different frame sets, i.e. sets of syntactic verb
frames and the thematic roles tied to them that belong to the same syntactic verb usage.
A new frame set is created for each role profile a verb exhibits. For example, decline
has two frame sets: One for the reject sense, with a role for the agent and theme of the
rejection, and one for the fall sense, which lacks the possibility of expressing theme,
but allows a starting point, end point or extent of the falling event to be specified.
Frame sets often, but not always, correspond to semantic sense distinctions. Thus,
the PropBank sense distinctions and role labels are defined on a level that is very
close to syntax. This means that they can often be correctly inferred by the syntactic
configuration of verb and argument, but also that few semantic generalisations across
verbs or roles are available.

FrameNet The FrameNet annotation project is primarily concerned with the lexical
semantics of verbs (and other role-taking word classes), characterised by their different
senses and the thematic roles they assign to their arguments. Consequently, FrameNet
groups verbs with similar meanings together into frames (i.e., descriptions of proto-
typical situations). A frame then introduces a set of frame-specific roles for typical
participants in these situations. In Figure 3.1, these are a Healer and a Patient in the
Cure frame. Frames can also introduce non-core roles like Location or Duration that
are the same across all frames and that generally apply to adjuncts. All verbs within
a frame must be able to realise all of the frame’s roles. In this criterion, a weak link
to Levin’s verb classification on the basis of patterns of argument realisation (Levin,
1993) is evident. Across frames, the same role name often, but not always indicates
similar role semantics. Both the definition of frames as semantic verb classes and the
semantic characterisation of frame-specific roles introduce semantic generalisations

1The VerbNet groupings have been used to some extent, for example such that the functions of roles
numbered higher than 1 generally correspond between members of the same VerbNet class. We
evaluate the use of VerbNet classes for class-based smoothing in Section 3.4.2.
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PropBank heal.01 [The doctor Arg0] cured [the patient Arg1]
FrameNet Cure [The doctor Healer] cured [the patient Patient]

Figure 3.1.: Example thematic role annotation: PropBank (above) and FrameNet (be-
low).

into FrameNet annotation that are not present in PropBank.
The FrameNet resource (release 1.2) contains c. 57,000 verbal propositions and c. 2,000

verbs. FrameNet is thereby about half the size of PropBank. There are additional data
sets for nouns and adjectives that can take arguments. Corpus annotation proceeds by
frame, identifying frame members and then annotating example sentences extracted
from the British National corpus (BNC, Burnard, 1995). The annotation aims to present
each verb with all roles and in all syntactic diatheses, which in general yields good
coverage even of non-core roles. Apart from the smaller size of the FrameNet corpus,
there are two more caveats: Since the annotated corpus is constructed to serve lexico-
graphic uses, only some senses of a verb may be present, and word frequencies in the
FrameNet corpus may not be representative of English.

Development and Test Data

Our development and test sets for the evaluation of the smoothing methods come from
the judgement data reported in McRae et al. (1998). Four example data points from
this set were given in Table 3.1: One verb is paired with two arguments and two roles
each. This data set was chosen for two reasons: First, each of the two arguments for
each verb is highly plausible in one of the rated roles and implausible in the other.
This means that the set is unbiased with regard to an overall preference for one role,
ensuring that the semantic model can only correctly predict the judgements if it uses
semantic plausibility information. Second, the human ratings the model has to predict
are clearly distinct, which makes the model’s task as straightforward as possible at this
first model selection stage.2

A third reason for choosing this data set is that, at 160 data points, it is the largest
argument role data set from the literature that is available to us. This allows us to split
it into a 60 point development and a 100 point test set. The split was done randomly,
with the constraint that all data points containing the same verb had to be in the same
data set, to ensure that the data sets are truly independent.

The plausibility judgements for this data set were gathered by asking raters to assign
a value on a scale from 1 (not plausible) to 7 (very plausible) to questions like How

2We test data sets with somewhat less distinct plausibility judgements in Chapter 4.
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common is it for a doctor to cure someone? and How common is it for a doctor to be cured?,
that prompted the agent and patient role for each argument.

All test pairs were hand-annotated with FrameNet and PropBank roles following
the specifications in the FrameNet on-line database and the PropBank frames files, and
using the FrameNet and PropBank corpora for reference in cases of doubt. If the verb
sense appropriate to a verb-argument pair was not attested in FrameNet or PropBank,
we could naturally not assign roles. Instead, the verb-argument pair received roles
None1 and None2 for the two readings. For example, the verb lift is only attested in the
FrameNet training data with senses body movement and theft. Therefore, we could
not assign appropriate roles to the verb-argument pair lift-infant with the intended
sense of move object, and assigned None roles instead. The roles were annotated by a
single annotator only, but results on Inter-Annotator Agreement both in the PropBank
project (Palmer et al., 2005) and in the Salsa project (FrameNet annotation of a German
corpus Burchardt, Erk, Kowalski, and Pado, 2006) are high (> 85% for Salsa annotation,
κ = 0.91 for PropBank). This indicates that annotators generally agree very well on the
role labels they assign. It therefore appears justifiable to use only one set of annotations.

In Section 3.2.1, we have argued that no meaningful predictions can be made for
items with unseen verbs. We therefore test only items with verbs seen in the training
data (regardless of whether the seen sense is correct for the test item). On the McRae
development set, 48 out of 60 data points remain for the FrameNet training data, and
56 out of 60 for the PropBank data. On the test set, the picture is similar with 92 data
points for the PropBank model and 64 for the FrameNet model (both out of 100). The
verb-argument-role triples from both the development and the test set are generally
unseen in training: A completely unsmoothed model trained on either training corpus
covers one data point of the development set and two of the test set.

3.3. Good-Turing Smoothing

In this section, we evaluate the use of re-estimation smoothing with the decomposed
model (see Equation 3.2) which allows us to make verb-based predictions in case of
sparse data. We use the Good-Turing (GT) method (Good, 1953, Manning and Schütze,
1999, for an introduction) to smooth the distribution of co-occurrence counts that we
estimate from the training data and to assign a small probability to unseen events.

GT smoothing relies on re-estimating the frequency of seen and unseen events based
on knowledge about more frequent events. Events are collected in classes according
to the frequency with which they have been observed, and each class is assigned a
proportion of the total number of occurrences observed for the next more frequent
class. Thus, the class of unseen events is assigned some observations that have been
“borrowed” from the frequency estimates for the more frequent classes.

Technically speaking, the GT method re-estimates the number of observations N
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made of all events with observed frequency r as

r∗ = (r + 1)
Nr+1

Nr
(3.4)

where the re-estimate r∗ is computed as the ratio of the number of events with r + 1
observations over the number of events with r observations. The r + 1 factor adjusts
for the fact that there are much fewer highly frequent events than infrequent events.

GT re-estimation is usually only applied to the lowest values for r, since the classes
of low-frequency events are largest and the counts therefore are most accurate. Also,
for the largest r, no observations exist for r + 1, of course. We apply GT smoothing for
r ≤ 2.

The re-estimated observation frequencies are used to compute probabilities by divid-
ing by the total number of observed events, as with the MLE method. Since the total
number of events in the training data is unaffected by the re-estimation, those observed
frequencies to which no smoothing has been applied are discounted to ensure that
the resulting probabilities form a distribution which sums to 1. The most important
difference between the resulting distribution and the distribution reached by the pure
MLE method is that the former assigns probability mass to unseen events, as desired.
It also differs in the re-estimated probabilities for smoothed infrequent events and in
the proportionally somewhat lower probabilities to highly-frequent events, caused by
the re-estimation and discounting.

3.3.1. Evaluation

Method

We estimated the probabilities for the semantic model from both the PropBank and the
FrameNet training corpora and subsequently applied GT smoothing. The predictions of
the smoothed model for the development set were correlated to the human judgements
for the same verb-argument-role triples.

Results and Discussion

Table 3.2 lists the results of the Good-Turing smoothing (GT) model. For comparison,
we also give coverage numbers for the completely unsmoothed model. For this model,
a correlation cannot be computed because there are too few data points covered.

In comparison to the unsmoothed result, GT smoothing clearly allows satisfactory
coverage of the test items. For PropBank, predictions can now be made for every
development set data point, while for FrameNet, coverage is high, but not perfect.

3Levels of significance are specified in all tables in this chapter for two-tailed tests and follow the usual
conventions: ns : not significant, ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001
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Train Smoothing Coverage ρ

PB
None 2% –

GT 100% 0.188, ns

FN
None 2% –

GT 96% 0.150, ns

Table 3.2.: Good-Turing (GT) smoothing. Coverage and correlation strength (Spear-
man’s ρ) for PB and FN data on the development set.3

Recall that our semantic model is restricted to making predictions only for roles seen
with the target verb and that we do not exclude items where the verb is only seen in
inapplicable senses. For such items, the model is often unable to predict the correct
role.

Regarding the correlation of predictions to human judgements, it is obvious that
Good-Turing smoothing makes imperfect predictions of plausibility. This is not un-
expected, since the verbs in the development set appear with one good agent and
one good patient each, and virtually all verb-argument-role triples are unseen (as is
clear from the unsmoothed coverage). Recall that the smoothed model in this case
makes predictions based only on the verb’s co-occurrence with roles and grammatical
functions. These predictions are necessarily the same for both unseen role fillers, so
that we cannot expect this model to account for plausibility effects that depend on the
identity of the role filler.

3.3.2. Adding Linear Interpolation

We also experimented with adding a second smoothing method, Linear Interpolation
(LI), which is typically used for smoothing n-gram models (Manning and Schütze,
1999). This approach allows the use of less fine-grained probability information to
form a more accurate estimate of (possibly sparse) probability distributions. It re-
estimates the probability of the n-gram in question as a weighted combination of the
n-gram, the n-1–gram and the n-2–gram. To ensure that a probability distribution is
returned, the weights (usually denoted with λ) need to sum to 1. For our model, the LI
re-estimate of, for example, the model term P (a|vs, gf , r) is computed as a combination
of interpolation terms (which are estimated using MLE):

PLI (a|vs, gf , r) = λ1PMLE (a|vs, gf , r) + λ2PMLE (a|vs, r) + λ3PMLE (a|vs) (3.5)

This approach thus allows us to use more general knowledge about the co-occurrence
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of the argument just with the verb and the role in order to estimate our sparsest model
term. If the argument is altogether unseen, this is of course not helpful, but if it was
seen with the verb in some combination (for example realised in a different grammatical
function or with a different role), the interpolation method, unlike the pure GT method,
allow us to take this information into account. Abstracting away from the grammatical
function probably will however not make much difference in a model that allows the
grammatical function to be unspecified in the input and in such cases drops it through
marginalisation. Therefore, the largest gain we can expect is in predictions for roles
that are unseen with an observed verb-argument combination.

We constructed an LI model instance in which we re-estimated the model terms
using the linear interpolation technique. Each of the semantic model’s four conditional
probability terms (see Equation 3.2) requires three λ values, as shown in Equation 3.5.
The optimal λ values were estimated separately for each conditional probability term
on the training data. We used five-fold cross-validation and set the λ terms to maximise
the likelihood of the held-out fold. The final λ values are the average of the results
across the five folds.

Evaluation shows that using LI on its own fails completely on our test data, because
our sparse data problem is so serious that verbs and arguments are virtually never
seen together, neither in the target role relation or any other. This means that for most
data points, the P (a|vs, gf , r) term remains zero after interpolation, which precludes
probability predictions.

We evaluated the LI method again after first applying GT smoothing to all model
and interpolation terms both for λ estimation and evaluation. The combined model did
not outperform the pure GT model (PB: ρ = 0.156, ns, FN: ρ = −0.002, ns). Inspection
of the λ values for the P (a|vs, gf , r) term for the combined model shows why: Even
after the application of GT smoothing, the training data is so sparse that the estimation
process de-emphasises the sparsest (and most specific) λ term in order to maximise the
likelihood of the test fold. In the extreme case (for FrameNet), P (a|vs, gf , r) is weighted
at 0.075, P (a|vs, r) is weighted at 0.001, and P (a|vs), the least specific term, is used
almost exclusively, at 0.924. These λ values mean, however, that the all-important
argument-specific information is not used efficiently on the judgement prediction task,
even when it is available. It therefore appears that maximising the data likelihood
during λ estimation does not approximate our final task well enough. A better solution
might be to use the correlation task directly as a λ estimation criterion, but this is much
more complex, requiring us to estimate all λ terms simultaneously.

In sum, we conclude the LI method does not appear to be particularly suited for our
task and our data sets, and its application indeed does not add anything beyond using
the GT method. We will therefore restrict ourselves to using GT smoothing below.
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3.4. Class-Based Smoothing

Good-Turing smoothing allows us to make predictions for almost all data points.
However, the predictions are verb-specific at best if the argument is unseen, which is
clearly reflected in the evaluation results. Therefore, we evaluate the use of class-based
smoothing to improve the amount of argument-specific predictions the semantic model
can make.

Class-based smoothing affects the estimation process by generalising from word to-
kens to word classes. The method is therefore especially appropriate for alleviating the
sparseness of lexical items. By substituting word classes for both nouns and verbs, we
maximise the number of verb-argument co-occurrences we can consider for estimation.
We apply class-based smoothing to the P (a|vs, gf , r) term of the decomposed model
to counteract the sparseness of the argument head variable and improve the amount
and quality of argument-specific plausibility predictions. When the verb and argument
head lemmas are substituted with their semantic classes, the term we estimate becomes
P (classa|classv, gf , r). In case a verb or noun is a member of several classes, we choose
the class that allows the highest plausibility prediction.

There is a difficulty with estimating the class-based term using the MLE method if
words can be members of more than one verb or noun class, which we want to explicitly
allow to account for polysemy. If a word is a member of several classes, the training
observations it occurs in are counted several times to establish co-occurrence counts for
different class combinations. This means that the total of co-occurrence counts differs
from N , the total of observations. To illustrate this problem, assume that the data point
<cure1, doctor, healer, agt> has been seen five times in the training data. If we assume
that doctor belongs to four semantic classes and cure1 belongs to two, there are eight
combinations of classes that add the five observations of co-occurring class members
to their total co-occurrence count. The total number of observed word co-occurrences
is still only five, however. This makes it impossible to apply MLE and be returned a
well-formed plausibility distribution over class co-occurrences.

There are two strategies to avoid this problem and ensure that P (classa|classv, gf , r)
remains a probability distribution: Either, observations can be split among classes
that lay claim to them, effectively adding partial counts to class co-occurrence totals.
Alternatively, counts that are used multiple times can be added multiple times to N to
ensure that the MLE method returns a well-formed probability distribution where all
probability values sum to 1.

We cannot use the count-splitting method here, because it is not compatible with GT
smoothing and therefore makes it impossible to cleanly combine class-based and GT
smoothing (see Section 3.5 for our combination strategy). GT smoothing is defined for
integer co-occurrence counts (recall that it is based on grouping together events with the
same observed frequency). Apart from binning observations together, which requires
the setting of arbitrary bins, there is no way to adapt GT smoothing to the continuum
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of real-valued co-occurrence counts that are the result of the splitting method.
Therefore, we adjust the total number of counts. We add counts to the total as many

times as there are class combinations that use the counts. In the above example case, we
would adjust the total number of data points by adding another seven times five counts
to the actually observed total of five data points. This artificially inflates the amount of
training data, but relative frequencies are maintained just as with the count-splitting
strategy, and co-occurrence counts remain integers.

The success of the class-based smoothing approach hinges on the nature of the
semantic word classes used. These classes need to reliably group together words
with similar meanings, while covering as many words as possible from the training
corpus and grouping them with other known words to maximise the coverage gain for
smoothing. The need for reliability points towards using hand-created lexicographic
classes from resources like WordNet or VerbNet. However, the need for good coverage
of the training data and for grouping known verbs suggests inducing word classes
from the training corpora.

We experiment with both types of semantic classes for verbs, but restrict ourselves
to lexicographic classes for nouns both for reasons of time efficiency and because we
assume nouns to be sparser than verbs in a corpus, which makes it harder to infer
meaningful classes. We first discuss the induction of verb classes in Section 3.4.1 and
then compare induced versus lexicographic verb classes in Section 3.4.3, combining
both with lexicographic noun classes of different granularities.

3.4.1. Induced verb classes

Inducing verb classes from the training data allows us to group verbs together according
to semantic dimensions that are relevant for our task. In order to form semantic verb
classes, we cluster verbs according to linguistic context information. This is feasible
already using purely syntactic information: Levin (1993) has demonstrated that verbal
subcategorisation and diathesis patterns allow the formation of verb classes that are
broadly semantic as well as syntactic. Korhonen, Krymolowski, and Marx (2003) and
Schulte im Walde and Brew (2002) demonstrate that similar verb classes can be induced
automatically by clustering verbs according to subcategorisation information acquired
from large corpora.

In our case, however, we also wish to exploit the semantic role annotation in our
training data. This will allow us to induce classes of verbs that realise similar roles in
similar ways, a type of information that is not always equivalent to realising similar
argument structure. Only such verb classes allow meaningful class-based smoothing
for the task at hand. We did not employ complete subcategorisation frames exactly
because we are especially interested in the behaviour of verbs with regard to specific
roles and argument heads.

We extract three types of features for each instance of a verb-argument pair: Semantic,
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S

NP [Healer]

DT

The

N

doctor

VP

V

cured [Cure]

. . .

Feature Value
Verb sense Cure
Role Healer
Path NP-up-S-down-VP
Path-Role Healer/NP-up-S-down-VP
Arg Head doctor

Figure 3.2.: Clustering features: Syntactic parse tree with [FN semantic annotation] and
corresponding feature set.

syntactic and lexical. Figure 3.2 shows the complete set of features for the verb-
argument pair doctor-cured, assuming FrameNet semantic annotation. There are two
semantic features: Verb sense and argument role. These are inferred directly from
the semantic annotation. The sense feature gives information about human-drawn
sense distinctions between verb usages, and the role feature tells which roles a verb
realises. There are also two broadly syntactic features. The first is a description of
the path through the parse tree from argument to verb. The sample parse tree in
Figure 3.2 shows that a syntactic subject position is characterised as moving from an
NP node up to the S node and down again to the verb’s parent VP. The path feature
thus gives similar information as a grammatical function feature, but also contains
some information about the phrasal categories headed by verb and argument. We
also use a combined feature of role and syntactic path, which specifies which role was
realised as which syntactic argument, making linking information explicit. Finally, the
lexical feature, the argument head lemma, yields some information about typical role
fillers, but is expected to be sparse. These features are closely related to the features
used to estimate the semantic model (namely verb lemma, verb sense, grammatical
function, role and argument head). This ensures that we group verbs according to
features that are relevant for the prediction of plausibility. We explore the relative
importance of each of these features in Section 3.4.1.

To induce verb classes, we employed two soft clustering algorithms in the imple-
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mentation of Marx (2004)4, the Information Bottleneck method (Tishby, Pereira, and
Bialek, 1999, previously used for verb clustering by Korhonen et al. (2003)) and the
closely related Information Distortion algorithm (Gedeon, Parker, and Dimitrov, 2003).
Unlike hard clustering approaches, these algorithms allow a verb to be a member of
several clusters, thus making it possible to account for different senses of one verb.
A description of the clustering algorithms and can be found in Appendix A.2, in
Section A.2.1.

We varied three parameters for the induction of verb classes: The clustering algo-
rithm, within that, the amount of smoothing during clustering, and the number of
clusters. We compared the resulting sets of verb classes by task-based evaluation,
measuring the performance of the semantic model on the judgement prediction task
(Section 3.2.1) when each set of classes was used for class-based smoothing. Only
sets of verb classes that allow the model to reliably predict human judgements on the
development set were chosen. See Section A.2.2 in Appendix A.2 for a detailed account
of the selection of the best-performing sets of verb classes.

Table 3.3 contains the most successful sets of verb classes identified in Appendix A.2
and for each set specifies the values of the two most informative of the three varied
parameters, the clustering algorithm used and the number of clusters for each set.
Each set is further identified for reference in later sections by the training set used
for induction and a number. We present several verb classes for each training set
to demonstrate that the smoothing performance of the verb class sets generalises
across several different parametrisations. The results suggest the conclusion that the
Information Distortion algorithm does somewhat better for FrameNet data, while the
Information Bottleneck method works better for PropBank data.

As discussed in Appendix A.2, reliable verb classes could be induced for the Prop-
Bank training set only after the input data had been reduced to covering only NP
arguments.5 This measure strongly restricts the set of roles seen with each verb, so
that the Arg1 and Arg0 roles, which allow most semantic generalisation, are seen
almost exclusively. After the adaptation, it was possible to identify stable class sets
for PropBank, as well. Those sets tend to be smaller than the FrameNet sets, however.
Section 3.4.1 helps to explain this difference by giving some insight into the importance
of different clustering features for the different sets of training data.

Finally, the coverage and correlation ρ numbers in Table 3.3 (for performance on
the development set) confirm that the selected sets of verb classes indeed allow the
semantic model to make reliable predictions of human data. While coverage is relatively
low, it is still much increased from the unsmoothed model, which which covers only 2%
of the development data (cf. Table 3.2). The correlation of predictions to observations is

4Many thanks to Zvika Marx for generously providing his software, and for interesting discussions
about the outcome of the experiments.

5Model estimation is still done on the full argument data.
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Corpus Verb Classes Algorithm # of Clusters Coverage ρ

PB
PB 1 ID 3 16% 0.700, *
PB 2 IB 11 25% 0.563, *
PB 3 IB 7 11% 0.943, *

FN
FN 1 ID 11 15% 0.847, *
FN 2 ID 13 21% 0.790, *
FN 3 ID 13 21% 0.790, *

Table 3.3.: Induced verb class sets for both training corpora. Class set identification for
reference below, algorithm, number of classes and smoothing performance
(coverage and Spearman’s ρ) on the development set.

generally strong at values around ρ = 0.8 or even above.
We will combine these induced sets of verb classes with lexicographic noun classes

in Section 3.4.3 and compare their performance to that of hand-created lexicographic
verb classes.

Feature Evaluation

During the class set selection process, differences in performance between the FrameNet
and PropBank corpora were observed. We now investigate the contribution of each
feature to the clustering performance to gain an insight into the reason for the very
different results.

Recall the set of features for each verb-argument occurrence from the example in
Figure 3.2 in Section 3.4.1: There are two semantic features, namely the argument
role and the verb sense, one lexical feature, namely the argument head lemma, and
two syntactic features, namely the syntactic path between verb and argument and
the combination of path and role, which encodes linking information, are syntactic
features.

Method We test each feature’s contribution to the overall clustering result by leaving
it out during clustering and comparing the smoothing performance of the resulting
classes to the performance for classes induced with the standard feature set. We report
example results for the parametrisations of verb class sets PB 2 for PropBank and FN 3
for FrameNet.

Results and Discussion Table 3.4 first gives the performance for using sets of verb
classes induced with the full feature set and then the performance when each feature is
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FN PB
Features Coverage ρ Coverage ρ

All 21% 0.790, ** 25% 0.563, *
No role 19% 0.745, * 23% 0.683, *
No sense 21% 0.657, * 38% 0.183, ns
No arg head 21% 0.790, ** 23% 0.298, ns
No path 21% 0.414, ns 21% 0.420, ns
No path-role 19% 0.711, * 11% 0.722, **

Table 3.4.: Testing the importance of features: Development set performance for the
judgement prediction task using FN 3 and PB 2 verb class sets for smoothing.
Coverage and correlation strength (Spearman’s ρ) on the development set.

left out at a time. Both models show significant correlations to the human judgements
data when all features are used.

FrameNet Looking at the feature classes in turn, we find that indeed, as expected,
semantic information is important to forming useful semantic verb classes: The absence
of the verb sense and role information causes a drop in correlation ρ. This is not
surprising given that the FrameNet frame distinctions are an explicit semantic grouping
of verbs and the roles also carry abstract semantic information because they are mostly
frame-specific, but similar role names still often have similar meaning across frames.
Note that the induced FrameNet classes do not mimic the distinctions between all nearly
300 FrameNet frames present in the training data, but make further generalisations
over these frames into only 13 classes.

Despite the availability of informative semantic features, the group of syntactic
features still has the strongest influence on cluster formation. No significant correlation
is reached without the path feature, and the absence of linking information also causes
a noticeable drop in correlation ρ. This underscores the claim that the syntactic and
linking information are instrumental to the forming of semantic classes.

Finally, we see that the argument head feature has no impact on the smoothing
results at all. It is not surprising that the argument head feature is not used, since its
values are unlikely to generalise well.

PropBank The PropBank results differ noticeably from the FrameNet pattern. The
one similarity is that the absence of the syntactic path feature causes problems: Prop-
Bank clustering also relies strongly on syntactic generalisations. The differences are
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interesting: The role and path-role features contribute some generalisations (see the
drop in coverage), but the classes induced without them perform better, so the general-
isations seem to add noise, as well. Interestingly, this is the case although we restricted
the input data to contain mostly Arg0 and Arg1 roles, which do allow some semantic
generalisation across verbs. Possibly, the small number of semantic roles introduces a
tendency to over-generalise, however, which would explain the results for leaving out
the role-related features.

Very interestingly, also, the features that allow fewest generalisations have a large
impact: Leaving out the PropBank sense feature and the argument head feature severely
affects the clustering result. This happens despite the fact that PropBank senses do
not allow generalisations across verbs and that the argument head feature is bound to
be sparse for the overwhelming majority of verbs and argument heads. The reliance
of the clusterer on these sparse features shows that the rest of the feature set (for
example the path feature or the role feature) do not allow a strong grouping of verbs
that would override the arbitrary signals of the non-generalisable features in the
optimisation procedure of the clustering algorithm. This strongly suggests that the
semantic information contained in the PropBank annotation does not yield strong
hints towards a semantic grouping of verbs, and that the syntactic cues on their own,
although important, do not allow a strong grouping, either. This may again be in part
the result of restricting the input data to only NP arguments, which are bound to have
similar path information. Recall, however, that no useful clusters could be induced at
all using all arguments.

Summary In sum, we conclude that for both sets of training data, syntactic informa-
tion is the backbone of grouping verbs together into meaningful classes, even if explicit
semantic role and sense annotation are available. Another important insight is that
the semantic content of the FrameNet annotation clearly facilitates the formation of
clusters much more than the intentionally more shallow PropBank annotation. The
induced FrameNet verb classes rely largely on syntactic and semantic information,
while the shape of the PropBank verb classes proves to be influenced also by features
that allow no or very little semantic generalisation, like the PropBank verb sense or
the argument head. This observation suggests a larger susceptibility of the PropBank
classes to overfitting the development set used for class selection, while the FrameNet
classes can be hoped to generalise well across test sets due to their more robust reliance
on features that allow generalisation.

3.4.2. Lexicographic Classes

Hand-created semantic noun and verb classes should be especially accurate and reli-
able. However, depending on their granularity and the similarity criteria, they may
contain too many or too few alternatives, or many alternatives that are unseen in the
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training data and therefore do not help the estimation process. We therefore compare
lexicographic verb classes to our induced classes, and evaluate two instantiations of
lexicographic noun classes at different levels of granularity.

Noun Classes

We extracted noun classes from WordNet 2.0, a hierarchical lexicographic data base
(Fellbaum, 1998). In WordNet, nouns are grouped together in synonym sets (synsets)
representing specific concepts. The synsets are linked into a graph structure by hy-
pernymy relations. There are 25 unique beginner sets that each form the root of a
WordNet subgraph. These have been grouped together into a top-level ontology of
eleven supersets by making some further generalisations, such as grouping animal,
person and plant together under organism.

We tested two sets of noun classes with different grain size. One is the top-level
ontology, which we modified slightly by undoing the last level of generalisation for
the two most frequent classes, entity and physical object, in an attempt to avoid over-
generalisation by the resolution of both of a verb’s argument to these classes. This
set of noun classes is extremely general and may cause overgeneration of semantic
alternatives.

The second set of classes is the lowest level of generalisation, the noun synsets
themselves, which contain only synonyms of the target word. These noun classes are
expected to make extremely reliable generalisations, but probably will not increase
coverage greatly. We did not attempt to further optimise the level of generalisation
made by the noun classes to keep the evaluation practicable. While our semantic
model’s performance compares favourably to that of a set of selectional preference
models that go to great lengths to select the correct level in the WordNet hierarchy
(see Section 4.3), it is conceivable that model improvement may be gained by further
exploiting the WordNet noun hierarchy.

Verb Classes

We use verb classes from two resources: WordNet and VerbNet. Verbs in WordNet are
arranged in a top-level ontology of 15 semantic fields represented by unique beginners
that head subtrees of verb sets. Example classes are stative verbs, as well as verbs of
motion, perception and communication. Verbs are organised in synonym sets, which
tend to be small as true verb synonymy is rarer than noun synonymy. As a test of
synonymy, only verbs that have similar selectional restrictions are entered into a synset.

The synsets are organised in a hierarchy according to troponymy, a form of entailment
that also shares characteristics with meronymy. It captures the observation that many
meaning distinctions between verbs relate to some kind of change in manner. A test of
troponymy is that “V1 is to V2 in a specific way”, e.g., to amble is to walk in a specific way.
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The verb hierarchy is relatively shallow (generally not more than four layers deep),
and synsets are small, so we used the top-level classification as verb classes.

We also used verb classes from VerbNet (Kipper, Dang, and Palmer, 2000, Version
2.0,), which is a verb classification based on the Levin classes. While the Levin classes
organise verbs by the types of diathesis transformations they can undergo, VerbNet
makes the semantics of each verb class explicit by characterising the shared meaning
components of the member verbs. VerbNet also links the arguments of each verb in
a class to a thematic role and specifies selectional restrictions both for classes and, if
necessary, specifically for each verb. Each sense of a listed verb corresponds to mem-
bership in the appropriate class. VerbNet adds further layers to the Levin classification
by making more fine-grained syntactic and semantic sub-divisions. We used the most
general verb classification, which corresponds to the most general level of Levin classes.

3.4.3. Evaluation

The coverage and accuracy improvements yielded by class-based smoothing hinge on
the verb and noun classes used for generalisation. To evaluate this smoothing approach,
we therefore create model instances using a number of different verb and noun classes.
The results give an insight both into which kinds of classes perform best and into what
coverage and what quality of predictions class-based smoothing allows the semantic to
reach.

Method

To evaluate the class-based smoothing approach, we combine lexicographic and in-
duced verb classes with both levels of lexicographic noun classes. We create different
instances of the semantic model by using the different combinations of verb and noun
classes during the estimation of the semantic model’s probability terms. We then corre-
late the model’s predictions for the development set items to the corresponding human
plausibility judgements. For interesting comparisons, we test for significant differences
between the correlation ρ values in this section and below using the method described
in Raghunathan (2003). This method allows missing values in either underlying data
set and therefore allows us to compare correlations on the FrameNet and PropBank
data sets, which each contain only a subset of the original McRae development set due
to the exclusion of items with unseen verbs. Note, however, that in general, significance
is hard to reach even for numerically large differences in ρ values if the size of the
underlying data sets is very different. This is an instance of the usual phenomenon that
small sample sizes do not allow to make inferences with great certainty in significance
testing.
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Synsets Toplevel Classes
Train Verb Classes Cov. ρ Verb Classes Cov. ρ

PB

WN 96% 0.092, ns WN 96% 0.043, ns
VN 96% 0.125, ns VN 96% 0.043, ns
PB 1 25% 0.469, ns PB 1 96% -0.034, ns
PB 2 45% 0.423, * PB 2 96% -0.020, ns
PB 3 18% 0.774, ** PB 3 96% -0.044, ns

FN

WN 29% 0.042, ns WN 96% -0.002, ns
VN 2% – VN 96% -0.017, ns

FN 1 19% 0.678, ns FN 96% -0.042, ns
FN 2 37% 0.572, * FN 96% -0.025, ns
FN 3 37% 0.572, * FN 96% -0.024, ns

Table 3.5.: Lexicographic versus induced verb classes and WN synsets versus top-level
noun classes. Coverage and correlation strength (Spearman’s ρ) for PB and
FN training data on the development set.

Results and Discussion

Table 3.5 gives an overview of the results in terms of coverage and correlation strength.
For comparison with unsmoothed performance, recall that only 2% of the development
set are covered without smoothing for either training set. Most combinations of
lexicographic classes reach very good coverage results that are near the perfect GT
smoothing coverage (Section 3.3). However, high coverage numbers generally come
with low ρ values. The lexicographic models appear to overgenerate alternative words
to the point where predictions become arbitrary.

• Lexicographic Noun Classes The results in Table 3.5, especially those for com-
bining the induced verb classes with both levels of noun classes, support our
hypotheses about the performance of the noun classes. Relatively low coverage
figures show that the noun synsets do not generate as many alternatives as the
top-level classes, but they apparently lead to more accurate predictions than the
top-level classes: The combinations of induced verb classes and noun synsets
even lead to significant correlations of predictions and human judgements. The
top-level noun classes in contrast allow almost full coverage for all verb classes,
but the small, and even negative correlation coefficients show that their gener-
alisations over-generate alternative nouns to the point of making the model’s
predictions arbitrary.
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3. Estimating the Semantic Model

• Lexicographic Verb Classes The contribution of verb classes to the overall per-
formance is most easily seen in the combinations with noun synsets, because the
noun top-level classes lead to uniformly high coverage, but unreliable predictions
in combination with all verb classes. On FrameNet, the lexicographic verb classes
perform disappointingly: Coverage is below 30% for the WordNet verb classes,
and the correlation ρ is close to zero. The result of using the VerbNet classes even
corresponds to using no smoothing at all.

For PropBank, the lexicographic verb classes generate enough alternatives for
almost full coverage even when used with the noun synsets. Apparently, the
vocabulary and class size of these resources is much better suited to generate
alternative verbs for the PropBank training data. However, the low correlation
coefficients imply that the lexicographic verb classes do not propose the right
verbs to make accurate plausibility predictions. Also, VerbNet and WordNet
classes do not differ in performance, although VerbNet classifications were used
in the creation of PropBank verb senses and role definitions (see Section 3.2.2).

• Induced Verb Classes The combinations of induced verb classes and noun
synsets numerically, though not significantly, outperform the combination of
lexicographic verb classes and noun synsets. These combinations are the only
ones to achieve significant correlations to the human data. They do not per-
form significantly differently from the combinations of lexicographic verb classes
and noun synsets mainly because they cover only a relatively low number of
data points, which makes it harder to establish with certainty that performance
differences are not due to chance.

The reason for the nonetheless good quality of the predictions made by the
induced classes is that they were selected for grouping together the seen observa-
tions so that coverage and prediction of human data are optimised. In a sense,
these classes make the most of the semantic and distributional information in the
training data. While they reach much lower coverage values than most of the
lexicographic classes, they allow the model to solve its task. The WordNet and
VerbNet classes appear to capture a level of generalisation that is less useful for
our task and data. This supports concerns about the grain size of lexicographic
classes and their ability to generate semantic alternatives that are both present
and relevant in the current data set.

The significant correlations to human data for the induced verb classes prove that
the class-based smoothing approach, unlike the GT smoothing method, allows our
semantic model to make predictions that capture the argument-specific plausibility
judgements. These predictions are made solely on the basis of smoothed estimates, as
only one data point in the development set has been seen for either training set.
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Verb Classes for Final Evaluation

Given the observations above, we select our induced verb classes for final class-based
smoothing. With regard to noun classes, we have clearly identified the highly accurate,
but small WordNet synsets as more useful for class-based smoothing than WordNet
top classes, which yield good coverage, but do not provide informative probability
predictions. We will therefore combine our induced verb classes and the WordNet
noun synsets as semantic classes for the class-based smoothing approach below.

As noted above, smoothing with different sets of induced verb classes creates dif-
ferent instances of the semantic model. We continue to evaluate all models based on
different induced class sets to demonstrate that the model performs robustly across
different sets of induced sets of verb classes.

3.5. Combining the Smoothing Methods

We have seen in Section 3.3 that GT smoothing allows the model to make predictions
for almost all data points, but that these predictions at best take the verb’s preferences
for roles and grammatical functions into account. In Section 3.4, we have demonstrated
that class-based smoothing leads to accurate predictions that are specific to both the
verb and the argument. Class-based smoothing also serves to increase coverage, but not
quite to the desired level. We therefore test now whether a combination of class-based
smoothing and GT smoothing will do better than either of the smoothing methods on
its own.

Equation 3.6 illustrates our strategy to combine class-based and GT smoothing: GT
smoothing is always applied to the first three model terms. Since we do not allow
predictions for events that are unseen in these three terms (see Section 3.1.4), GT
smoothing mainly serves to smooth the counts for events that only appear once in the
training data, because these are prone to noise.

The final, sparsest model term P (a|vs, gf , r) is estimated in a series of backoff steps,
given in Equation 3.7.

Plausibilityv,r,a = PGT (vs) · PGT (gf |vs) · PGT (r|vs, gf ) · PBO(a|vs, gf , r) (3.6)

where

PBO(a|vs, gf , r) =


PCB (classa|classv, gf , r) if fCB (classa, classv, gf , r) > 0
PCB (classa|classv, r) if fCB (classa, classv, gf , r) = 0

and fCB (classa, classv, r) > 0
PGT (classa|classv, r) else

(3.7)
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Train Smoothing Coverage ρ

PB
PB 1 + Syn + GT 100% 0.276, *
PB 2 + Syn + GT 100% 0.305, *
PB 3 + Syn + GT 100% 0.251, ns

FN
FN 1 + Syn + GT 96% 0.254, ns
FN 2 + Syn + GT 96% 0.260, ns
FN 3 + Syn + GT 96% 0.260, ns

Table 3.6.: Combining Class-Based and GT smoothing. Coverage and correlation
strength (Spearman’s ρ) for PB and FN data on the development set. Induced
verb classes, WN synsets (Syn) as noun classes.

First, we try to estimate P (a|vs, gf , r) using class-based smoothing. If a combination
of classes, grammatical function and role is unseen, we apply class-based smoothing
again, but drop the grammatical function term.6 Recall that in Section 3.1.4 we have
argued that the grammatical function is less crucial to our plausibility predictions than
the other terms, and that we can therefore drop the grammatical function information
from the model to be able to make more robust predictions based on all syntactic
realisations of a role if necessary. If class-based smoothing fails entirely, we back off to
a GT estimate of seeing an unknown combination of classes. Note that Equation 3.7 is
simplified for ease of exposition. In order to ensure that a probability distribution is
returned by the backoff sequence, the backoff terms have to be weighted appropriately.
See Section A.3 in the Appendix for details of the weighting regime.

3.5.1. Evaluation

Method

Using the backoff approach introduced above, we realise model instances (with varia-
tions due to the different sets if induced verb classes used) by estimating the probability
terms of the semantic model using a combination of class-based smoothing and GT
smoothing. We then correlate the resulting models’ predictions for the development
set to the corresponding human plausibility judgements.
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Results and Discussion

Table 3.6 contains the results of evaluating the combined smoothing methods on the
development set. Coverage of the combined approach is of course the same as for the
GT method, at the desired level of full or almost full coverage of the development set.
Correlation ρs of the combined model are numerically, though not significantly, higher
than for the GT method alone, where they are below 0.200 for both the FrameNet data
and PropBank data (see Table 3.2). Additionally, there are significant correlations for
two of the three PropBank models. These models perform slightly better than the
FrameNet models, and they have the further advantage of a larger development set (56
data points as opposed to 48), which makes it easier for the PropBank ρ values to reach
significance. The combination of smoothing methods therefore clearly performs better
than pure GT smoothing.

The combined model’s ρ values are numerically much lower than those seen for pure
class-based smoothing. However, in comparing the ρ values of the combined approach
and pure class-based smoothing, the large difference in coverage between the two
models has to be taken into account. Indeed, the combined results are not significantly
different from the values seen for just class-based smoothing (with the exception of the
PB 3 model, p < 0.05, one-tailed). At the same time, the combined models have much
higher coverage than the models using only class-based smoothing.

In sum, combining pure GT smoothing and class-based smoothing is our best attempt
yet at reaching both good coverage and reliable predictions. In Section 3.6 below, we
evaluate our semantic model using the combination of GT smoothing and class-based
smoothing on the test set to ensure that the semantic model is able to make reliable
predictions of completely unseen human data.

3.6. Validation of the Final Model

We now present results on the test set using the estimation strategy of combining
GT and class-based smoothing that we selected as optimal in Section 3.5 above. We
have seen during model selection that class-based smoothing alone furnishes reliable
predictions, but with generally low coverage. Adding GT smoothing, we were able
to also achieve satisfactory coverage on the development set. The PropBank model
reached significant correlations to the human data on the development set.

6This is only relevant if a known grammatical function is specified. Recall that if the grammatical
function is unseen with the verb or unspecified, we drop the grammatical function term from the
model completely.
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Train Verb Classes Coverage ρ

PB
PB 1 98% 0.098, ns
PB 2 98% 0.097, ns
PB 3 98% 0.105, ns

FN
FN 1 88% 0.278, *
FN 2 88% 0.364, **
FN 3 88% 0.415, **

Table 3.7.: Validating the Final Model. Coverage and correlation strength (Spearman’s
ρ) for PB and FN data on the test set. Induced verb classes, WN synsets as
noun classes.

Results and Discussion

Table 3.7 presents the results of correlating the final model’s predictions for the test set
with human plausibility judgements.

On the larger test set, the performance of the models is reversed: The FrameNet mod-
els all significantly predict the human judgements and numerically clearly outperform
the PropBank models, which are far from reaching significant correlations. 7

The reason for the performance difference observed for the PropBank models be-
tween the development and test sets appears to be largely sparse data: The verbs in the
test set are much sparser in PropBank than the verbs in the development set. In the
development set, twelve of the 14 verbs are present in the PropBank corpus more than
30 times, but out of the 23 verbs in the test set, only 13 were this frequent. This results
in less influence of reliable predictions from class-based smoothing: On the test set,
only 21% of data points can be predicted using just class-based smoothing (as opposed
to 45% on the development set). FrameNet does not show these coverage differences
between development and test data, and the FrameNet models consequently perform
much better than the PropBank models. In addition, it may be that the PropBank
models overfit the development set and fail to generalise well to the test set, as pre-
dicted from the results of the evaluation of clustering features in Section 3.4.1. We will
continue to test models for both training sets in Chapter 4 to ensure a fair comparison
over several test sets.

Coverage of the test data is good, but not perfect: Recall that our semantic model can
only assign roles seen with the verb in the training data. This means that for sparsely
attested verbs or verbs only seen in inapplicable senses, no prediction can be made.

7The FrameNet models’ correlation ρs do not significantly differ from the PropBank models’ due to the
large difference in test set size (92 data points for PropBank, and 64 for FrameNet).
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3.7. Summary and Discussion

In this chapter we have evaluated two smoothing approaches intended to alleviate
the sparse data problem encountered by the semantic model. Good-Turing smoothing
re-estimates the model distributions and assigns a small probability to unseen events.
In combination with decomposing the joint probability model, this smoothing approach
ensures full coverage of the test data, but makes at best verb-specific predictions.

We also evaluated class-based smoothing, which is geared especially at overcom-
ing the sparse data problem for argument heads, which are the sparsest variable in
the semantic model. Class-based smoothing affects the model estimation process by
substituting verb and noun classes for the argument head and verb lemmas. This gener-
alisation allows better coverage and higher accuracy of predictions than an unsmoothed
model.

We evaluated lexicographic and induced verb classes, and found that the induced
verb classes perform best, because they capture generalisations that are relevant to the
training data and the task. Especially for the FrameNet training data, the lexicographic
verb classes appear to make generalisations on the wrong level of abstraction. We also
evaluated two sets of lexicographic noun verb classes. One, the top-level ontology of
WordNet, proved to over-generate alternative nouns to the point at which the semantic
model’s predictions cease to be meaningful. The other, the set of synonyms for each
word, yield few generalisations with high accuracy and therefore performed better.
Class-based smoothing with a combination of induced verb classes and WordNet
synonym sets enables the semantic model to make predictions that are significantly
correlated to human data. However, the model does not achieve full coverage.

Optimal model performance is reached by combining class-based smoothing and
Good-Turing smoothing. Validation on an unseen test set shows that the resulting
model’s predictions are significantly correlated to human plausibility judgements and
that the semantic model reaches full coverage.

On the test set, as throughout the chapter, models with induced verb classes trained
on FrameNet outperformed models trained on the PropBank corpus. An analysis of
the verb class induction process suggests that FrameNet semantic annotation leads to
the formation of more informative classes than the more shallow PropBank annotation.
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4. Evaluation of the Semantic Model

In this chapter, we present a thorough evaluation of the semantic model formulation
selected in Chapter 3. This is the model that combines GT smoothing and class-based
smoothing (using induced verb classes and WordNet noun synsets). We continue to
estimate versions of the semantic model both from the PropBank and the FrameNet
training corpus and to present results for three model instances per training corpus
to demonstrate the model’s robustness across different verb classes for class-based
smoothing.

As in Chapter 3, the evaluation task is predicting human semantic plausibility judge-
ments. The first set of experiments, in Section 4.1, tests the semantic model’s predictions
of human semantic judgements across several new data sets. We also explore model
performance on seen and unseen data points to verify the appropriateness of the
smoothing methods and to demonstrate that the model is able to differentiate within
the sets of generally plausible and generally implausible data points.

The second set of experiments compares the semantic model to models that solve two
related tasks from computational linguistics, namely semantic role labelling (Section 4.2)
and the induction of selectional preferences (Section 4.3). Our evaluation shows that the
model reliably predicts human judgement data over a variety of test sets and performs
better at this task than the related approaches.

4.1. Predictions on Different Test Sets

The first part of our evaluation will demonstrate that the semantic model performs well
across three previously unseen sets of judgement data with different characteristics:
One, similar to the test set in the previous chapter, consists of items from the literature
that were chosen by experimenters to exhibit extreme role preferences (Section 4.1.1).
The items of the second test set were extracted from the training corpora, making them
more similar in vocabulary to the training data of the model (Section 4.1.2). Also, for
this set, role biases are less pronounced. Finally, in Section 4.1.3, we look at a third
data set with judgements for adjunct roles, in contrast to all previous data sets, which
contained verbs and their arguments. This data set again contains ratings on the full
range of the scale. We also explicitly address the semantic model’s performance on
seen and unseen verb-argument combinations in Section 4.1.2.
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Verb Argument Role Rating
throw ball agent 1.4
throw ball theme 6.2

Table 4.1.: Example item from Trueswell et al. (1994): Pair of verb and inanimate argu-
ment with FN roles. Ratings for the agent and theme role on a 7-point scale.
1: Implausible, 7: Plausible

4.1.1. Trueswell Materials: Arguments

The first test set we consider is taken from Trueswell et al. (1994). Table 4.1 shows an
example item: Verbs are paired with one argument and rated in two roles. As for the
McRae test set used in Chapter 3, for each verb-argument pair, one of two rated roles is
highly plausible, but the other is implausible. Therefore, the distribution of plausibility
ratings is heavily biased towards points on the high and low ends of the scale. We use
this test set to ascertain that the semantic model is able to predict human judgements
for more than one data set from the literature.

Method

We test on 76 data points from Trueswell et al. (1994), which consist of verb-argument
pairs where the argument is highly plausible as an object (in a patient or theme role),
but implausible as a subject (in an agent role). This is achieved by using only inanimate
arguments, a manipulation which has a strong effect because many verbs require
plausible agents to be animate. The data were gathered in the same rating study as the
McRae et al. data, so we can assume consistency of the plausibility ratings on a 1− 7
scale across the two studies. However, the data set crucially differs from the McRae et
al. set in that it contains only one argument per verb and lacks ratings for plausible
agents. Therefore, models with a bias towards preferring patient or theme roles have
an advantage in predicting the judgements from this data set.

After eliminating items with verbs unseen in PropBank, 72 data points remain. 54
data points are covered by the FrameNet corpus. Out of these, three are seen the
FrameNet training data, while the PropBank training data contains 12 out of the 72 test
data points. We correlate the predictions of three models per training corpus with the
human judgements using Spearman’s ρ. As in Chapter 3, for interesting comparisons
we test differences between ρ values for significance using the method described in
Raghunathan (2003).
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Training Verb Classes Coverage ρ

PB
PB 1 100% 0.306, **
PB 2 100% 0.350, **
PB 3 100% 0.334, **

FN
FN 1 81.4% 0.397, **
FN 2 81.4% 0.427, **
FN 3 81.4% 0.522, ***

Table 4.2.: Trueswell materials: Coverage and correlation strength (Spearman’s ρ) for
FN and PB training corpora.1

Results and Discussion

For both training sets, the semantic model achieves good coverage and significant
correlations to human data (see Table 4.1.1). Coverage for the FrameNet models
is below 100% because of our model’s restriction to predicting only seen roles (see
Section 3.1.4).

On the Trueswell test set, both the FrameNet and PropBank models achieve signif-
icant correlations to the human data, which are not significantly different from each
other in strength. The good result for the PropBank models, which is in contrast to
their performance on the McRae test set in Chapter 3, could be due to the much larger
percentage of test data points seen in the PropBank training data (17% of the Trueswell
data points, in comparison to 2% of the McRae data points). Generally, the more data
points are seen, the better our model tends to perform (see Section 4.1.4). However, the
models’ predictions for just the twelve seen data points are not significantly correlated
to human judgements (ρ < 0, ns), so the good correlation results must be caused by
another factor. The most likely reason for the significant correlation is a bias towards
the Arg1 role in the training data. This is the most frequent role in the PropBank corpus,
as it applies to both patients and themes (e.g., the subjects of motion verbs). Therefore,
the models often prefer it in the absence of argument-specific information. This is a
successful strategy for predicting the Trueswell ratings, which reflect that all arguments
are plausible patients, but implausible agents. Therefore, the good performance of the
PropBank models has to be taken with a grain of salt.

The FrameNet models also achieve somewhat higher ρ values on the current data
set than on the McRae test set, where the highest value was ρ = 0.415. Since the
percentage of seen data points is the same for the Trueswell set as for the McRae test

1Levels of significance are specified in all tables in this chapter for two-tailed tests and follow the usual
conventions: ns : not significant, ∗ : p < 0.05, ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001
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set at 6%, this probably also reflects a small bias for patient-type roles in FrameNet.
However, the large number of frame-specific names for patient- and theme-type roles
in FrameNet makes a strong overall bias like the one observed in the PropBank training
data impossible. The small bias we observe here most likely stems from a general
syntactic bias to see more object than subject arguments with the test verbs, because
subjects are not always realised, for example in passive constructions.

4.1.2. Padó Materials: Arguments

Our second experiment explores the semantic model’s performance on items which
were extracted from corpus data rather than constructed by experimenters to show
certain plausibility properties. Stimuli that are strongly biased towards plausibility
in just one role, as in the McRae and Trueswell materials, might make the model’s
task easier because it can achieve good results by strongly preferring one role and
dispreferring all others. We therefore gathered our own test set that reflects a less
extremely biased distribution of ratings. This data set further addresses the lack of
verb coverage of FrameNet-trained models by ensuring complete coverage of the verbs
by the FrameNet training set. Finally, the data set is more similar to the training data
in vocabulary, thereby eliminating some of the sparse data problems caused by genre
differences (recall Section 3.1.2).

Material Acquisition –Method

Materials To ensure that all the verbs in the new test set are covered in our training
data, we used 18 verbs that appear in both FrameNet (release 1.1, largely a subset of
the data in release 1.2 which we use for training) and PropBank. To vary the type of
thematic roles assigned by the verbs to their subjects and objects, we chose six verbs
each from three verb classes: Experiencer verbs like hear that assign an experiencer and
a stimulus, Patient verbs like hit that assign an agent and a patient and Communication
verbs like tell that assign a speaker and an addressee. The verbs were selected for the
thematic roles they assign according to VerbNet.2 This resource was chosen because it
defines thematic roles, but is (at least to some degree) independent of FrameNet and
PropBank.

For each verb, we extracted six arguments from each corpus: The three most frequent
arguments in the preferred subject role and the three most frequent arguments in the
preferred object role. Table 4.3 shows an example for the verb hit, which is presented
with one filler each for the subject and object roles from each training corpus. In
total, for each verb, there were usually six arguments from each corpus, and twelve
arguments altogether. We constructed verb-role-argument triples by combining each

2Communication verbs assign an agent and a recipient in VerbNet.
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FN Arguments PB Arguments
Verb Argument Role Rating Verb Argument Role Rating
hit man agent 5.6 hit player agent 5.6
hit man victim 4.9 hit player victim 5.7
hit baby agent 6.2 hit ball impactor 5.7
hit baby victim 3.6 hit ball impactee 6.1

Table 4.3.: Example Padó stimuli: Verb-argument-role triples for hit. Arguments from
FrameNet and PropBank, FrameNet roles, seen roles in bold face. Ratings
on a 7-point scale, 1: Implausible, 7: Plausible.

verb-argument pair with both roles, obtaining 24 verb-role-argument triples per verb.
In this way, we elicited ratings for both roles, regardless of the argument’s original
role in the corpus. In all, there are 414 verb-role-argument triples instead of the full
24× 18 = 432, because some arguments were seen in both corpora or roles.

Procedure We collected ratings for the verb-argument-role triples on the World Wide
Web (using the WebExp package, www.webexp.info). To avoid participants rating
the same stimuli in both the subject and object interpretation and due to the large
number of stimuli, we presented four separate lists of stimuli that were assigned
randomly to participants. Participation in the experiment was voluntary, but restricted
to native speakers of English. The raters were recruited through postings to mailing
lists and Usenet.

Participants 106 raters completed the experiment. We excluded five participants
because they did not supply a valid email address (which we took as a sign of partici-
pation in earnest) and one non-native speaker. From the remaining 100 (25 participants
per list), we excluded one more participant who had rated only one item. 99 partici-
pants remained, approximately half of whom were from Great Britain. 40 were from
the United States, and another 12 from Canada, Ireland and Australia.

Normalisation and Annotation To minimise noise, we excluded ratings that were
more than 2 points from the stimulus median. The average number of ratings per
stimulus was 21.

Annotation of the verb-argument pairs with the appropriate roles as described
in Section 3.2.2 was mostly unproblematic, apart from the annotation of one verb
with FrameNet roles. For raise in the sense of affect the value of an item on some scale,

75



4. Evaluation of the Semantic Model

FrameNet specifies the roles of Attribute (scale along which the item ranges in value,
for example price, amount or height) and Item (entity whose position on the scale is
changed). This ontological distinction is often hard to make in practice, even for the
FrameNet annotators. It turned out that in the FrameNet corpus, raise never occurs
with Item. Instead, many arguments that should clearly be Items are labelled Attribute.
For many of our verb-argument pairs, Item was however clearly the correct role for the
object reading (e.g., for raise-dividend). We therefore annotated the correct, but unseen
role at the cost of coverage.

Material Acquisition – Results and Discussion

Even though our verb-argument pairs were not selected to be extremely plausible in
one of the two roles and implausible in the other, we cannot exclude the presence of
biases. First, we test for a bias for the Arg1 role when testing on the PropBank data set
to exclude a confound of role bias in the training data with the predictions, as observed
for the Trueswell data set in Section 4.1.1. A Wilcoxon’s independent sample rank-sum
test shows that there is no difference in the mean ratings for the 173 occurrences of Arg1
and the mean ratings for the 241 occurrences of other roles (mostly Arg0 and Arg2)
(W = 18808, p > 0.8). We therefore do not expect the PropBank model’s predictions of
our ratings to be confounded with a model bias for the Arg1 role.

Another possible bias in the data that we have to be aware of stems from the sampling
process: It is likely that seen combinations of verb, argument and role are rated more
to be more plausible than unseen ones. While unseen combinations do not have to
be implausible, seen combinations were used by some author to describe a state of
the world and should therefore be plausible to raters in most cases. Indeed, for both
FrameNet and PropBank, verb-argument-role triples seen in the training set were rated
higher than unseen triples (Wilcoxon’s independent sample rank-sum test: FrameNet
W = 24602.5, p < 0.001, PropBank W = 24323.5, p < 0.001, both two-tailed). This
makes it more likely that a probabilistic model that assigns higher probabilities to seen
triples will be able to model the seen data points correctly. However, note that far from
all triples were seen in the training data. For FrameNet, only 112 out of the 414 data
points were seen, leaving roughly 75% of the test data points unseen. For PropBank,
the number of seen data points is not much higher at 135. Thus, the model’s task is
easier for this data set than for the preceding ones, but it still is not trivial.

Finally, a typical property of the literature data sets is the skewed distribution of
human judgements, because the verb-argument pairs are selected to be highly plausible
in one of the tested roles, and implausible in the other. We note that our data set contains
many more intermediate ratings than the experimenter-chosen biased data sets. The
ratings for our data set range from 1.0 to 6.9, with 32% of all ratings at and between 3.0
and 5.0, two points away from the extremes of the scale. In comparison, the Trueswell
set (testing the PropBank model) shows a range of 1.0 to 6.6 with 17% of all ratings at
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Training Verb Classes Coverage ρ

PB
PB 1 100% 0.270, ***
PB 2 100% 0.250, ***
PB 3 100% 0.286, ***

FN
FN 1 96.9% 0.514, ***
FN 2 96.9% 0.521, ***
FN 3 96.9% 0.515, ***

Table 4.4.: Padó materials: Coverage and correlation strength (Spearman’s ρ) for FN
and PB training corpora.

and between 3.0 and 5.0 and the McRae set (again testing the PropBank model) has a
range from 1.0 to 7.0 with 13% of all ratings at and between 3.0 and 5.0. This means that
for our own data set, our semantic model has to make more appropriate intermediate
predictions in order to model the data correctly. Making consistently high predictions
for seen and consistently low predictions for unseen pairs is not enough.

Evaluation – Method

The construction of the experimental stimuli ensured that all verbs are covered in
both training corpora. We therefore test all 414 verb-argument-role triples. As men-
tioned above, for FrameNet, 112 out of the 414 data points were seen, and 135 for
PropBank. Again, we evaluate by correlating the models’ predictions to the human
judgements using Spearman’s ρ, as, even for this data sets, human ratings are not
normally distributed.

For this data set, we can compute the inter-rater correlation as a plausible comparison
mark for correlation ρ. This measure shows how well the ratings of the human judges
agree. We compute it by correlating the ratings of each judge to the average ratings
of the remaining judges and averaging the result over all judges. High inter-rater
correlation signals high agreement about the plausibility of the rated stimuli. The
inter-rater correlation reaches ρ = 0.68, which is reasonably high, but far from a perfect
correlation of 1.

Evaluation – Results and Discussion

Table 4.4 contains the results of correlating the semantic models’ predictions to the
judgements from the Padó set. Despite the careful choice of the test items, coverage
is still slightly below 100% for the FrameNet models, which is mostly due to the
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idiosyncrasy of the training data with regard to raise described above. However, these
cases are rare in comparison to other test sets, and we did not exclude items a priori.

The human data is clearly significantly predicted by both the PropBank and the
FrameNet models. This time, the PropBank models’ performance does not stem from a
role bias, since the materials lack any object bias (see above). The PropBank models’
results however still stay significantly below the FrameNet models’ (p < 0.001 one-
tailed comparing FN 1 and PB 3), in keeping with the prediction we have made in
Section 3.4.1 that the FrameNet models should generalise better to unseen data sets.
Indeed, the correlation ρ of the FrameNet models to the human data are the highest seen
so far. Neither model however quite reaches the level of human rater inter-correlation
of ρ = 0.68

Not surprisingly, the higher percentage of seen verb-argument-role triples and the
greater similarity of the test items to the training data indeed make it easier for the
models to correctly predict human judgements. For a more in-depth discussion of the
models’ coverage of seen and unseen triples see also Section 4.1.4 below. There, we find
that the models’ performance is not carried by accurate predictions for the seen data
points alone, but that performance is still reliable for the unseen verb-argument-role
triples. The present results thus also indicate that the models’ performance does not
depend on the existence of an extreme bias towards the ends of the plausibility scale
in the human judgements, but that they are also able to predict data sets with a larger
number of intermediate ratings.

4.1.3. Ferretti Materials: Adjuncts

We are also interested in the semantic models’ performance on roles that are normally
realised as adjuncts. These roles do not belong to the verb-specific role inventory, but
can be assigned by all verbs, for example to a prepositional phrase specifying place or
instrument.

Instrument and location roles are annotated with ArgM roles in PropBank, which
are separate from the verb-specific roles in that they can apply to all verb senses.
In FrameNet, adjuncts are generally assigned non-core roles that are also identical
across frames, but frames may or may not allow the assignment of specific non-core
roles. While FrameNet annotation does not focus on non-core roles, the project aims at
providing at least one annotated instance of each possible role for the verb, so adjunct
roles may be less frequent in the corpus than core roles, but will generally be attested.
PropBank annotates running text, so coverage for ArgM roles can be expected to be
more uneven across verbs.

We test the models’ predictions on norming data for instruments and locations kindly
provided by Ken McRae. These are the complete sets of ratings gathered for the study
presented in Ferretti, McRae, and Hatherell (2001), including typical and less typical
instruments and locations. Judgements on a 7-point scale are for one role only.
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Test Verb Classes
FN PB

Coverage ρ Coverage ρ

Instruments
1 45.8% 0.258, * 81.4% -0.011, ns
2 45.8% 0.232, * 81.4% 0.019, ns
3 45.8% 0.248, * 81.4% 0.006, ns

Locations
1 65.4% 0.183, ns 63.3% -0.003, ns
2 65.4% 0.259, ** 63.3% -0.001, ns
3 65.4% 0.202, * 63.3% 0.002, ns

Table 4.5.: Ferretti materials: Coverage and correlation strength (Spearman’s ρ) for FN
(left) and PB (right) training corpora and Instrument and Location test sets.

Method

For FrameNet, we test only items with verbs in frames that specify a role for instruments
and locations (many of the experiencer verbs do not allow these non-core roles). As
before, a verb is tested even if it seen only in frames that do not describe the sense it is
used in. Out of the 278 data points for instruments, the models are tested on the 162
stimuli with known verbs; for the locations, predictions for 156 out of 249 data points
are tested. 14 data points are seen for instruments and eleven for locations.

PropBank covers 242 of the 278 instrument ratings and all 249 location data points.
For each test set, two data points are seen in the training data.

Results and Discussion

While both coverage and correlation ρs are lower for the adjunct roles than for the argu-
ment roles for both models, the FrameNet models still achieve significant correlations
with human preferences for both test sets. For FrameNet, coverage of the location data
is higher than of the instrument data, which points to a lower frequency of role-labelled
instruments than locations in the training corpus. If a verb is unseen with adjunct roles,
this precludes predictions under our conservative strategy for ensuring prediction
consistency. Sparseness in the training corpus is also the reason for the relatively low ρ
values. Even where they are present, adverbial roles are much less frequent per verb
than other roles, which makes class-based smoothing harder due to a lack of role fillers
available for generalisation.

The PropBank models reach much higher coverage values for instruments than
the FrameNet models, reversing the coverage trends for FrameNet. Obviously, the
PropBank strategy of annotating running text results in more annotations for these
roles. However, the correlation ρs are extremely low at around zero. The role fillers
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observed in PropBank do not seem to allow useful generalisation to the test data, which
was suggested already by the low number of seen location and instrument data points
in comparison to the numbers for the much smaller FrameNet corpus. Due to the large
difference in coverage for the instrument test set, however only the performance of the
best-performing FrameNet model (FN 1) is significantly better than the performance
of the best PropBank model (PB 2, p < 0.05, one-tailed), while for the location data
even the lowest-performing FrameNet model (FN 1) significantly outperforms the
best-performing PropBank model (PB 3, p < 0.05, one-tailed).

In sum, while the plausibility of adjunct roles proves harder to predict for both
corpora, the FrameNet models still succeed in reaching a significant correlation to
human judgements. Although fewer adjunct roles are attested with FrameNet verbs
than with PropBank verbs, the role fillers for the FrameNet verbs appear to allow
better semantic generalisation to the test data. The lower coverage of adjunct roles in
FrameNet may point at genre differences between the source corpora or, more probably,
at biases in the FrameNet corpus caused by the annotation strategy, which focuses on
argument roles.

4.1.4. Seen and Unseen Verb-Argument Combinations

After successfully evaluating our models on three new data sets, we now explore their
behaviour with regard to seen and unseen data points in greater detail. For two of the
test sets discussed above, almost all data points were unseen, so we can already attest
the semantic model instances good coverage of unseen data (especially when using the
FrameNet corpus). Now, we take a closer look at the models’ behaviour for seen and
unseen data points within one test set. The Padó data set (see Section 4.1.2) lends itself
especially well to this comparison as approximately half the verb-argument pairs are
unseen for each training corpus.

Method

We split the Padó test set into the seen and unseen verb-argument pairs for each
training corpus and evaluate both subsets separately. A seen verb-argument pair is
defined as a verb-argument pair from the relevant training corpus with both the role
that it originally appeared with as well as the other role for which we have elicited
a judgement. For FrameNet, out of the 207 verb-argument pairs corresponding to
414 stimuli, 108 verb-argument pairs were seen and 99 unseen. For PropBank, 123
verb-argument pairs were seen and 84 unseen.

Out of the 108 pairs seen in FrameNet, 112 verb-argument-relation triples are covered
without smoothing in FrameNet. This means that for four pairs, verb and argument
were seen with both roles. For the PropBank corpus, 27 verb-argument pairs were seen
with both roles. Since only these very low numbers of verb-argument-role triples were
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Training Test Verb Classes Coverage ρ

PB

Seen
PB 1 100% 0.377, ***
PB 2 100% 0.312, ***
PB 3 100% 0.400, ***

Unseen
PB 1 100% 0.305, ***
PB 2 100% 0.328, ***
PB 3 100% 0.313, ***

FN

Seen
FN 1 96.8% 0.568, ***
FN 2 96.8% 0.572, ***
FN 3 96.8% 0.569, ***

Unseen
FN 1 96.9% 0.374, ***
FN 2 96.9% 0.390, ***
FN 3 96.9% 0.383, ***

Table 4.6.: Seen and unseen data: Coverage and correlation strength (Spearman’s ρ) for
FN and PB training corpora and seen and unseen data from Padó test set.

also attested with the “unseen” role in the corpora, we expect to see a bias for assigning
higher probability to the “seen” role. Recall also from the discussion of the data set
in Section 4.1.2 that the ratings are biased to be higher for seen verb-argument-role
triples. We therefore also expect a stronger correlation for data sets containing many
seen verb-argument-role triples. The truly interesting question then is how well the
models predict the unseen data points, which generally tend to be rated less plausible,
but some of which still receive high plausibility ratings. As always, we correlate the
models’ predictions to the human judgements using Spearman’s ρ.

Results and Discussion

Table 4.6 lists the results of correlating the semantic model predictions and the human
data for the seen and unseen data points. The PropBank model covers 100% of the test
set, while the FrameNet model stays slightly below that mark for the seen and unseen
test sets, again due to the idiosyncrasies of the training data for one verb, as described
in Section 4.1.2.

Clearly, the models reliably predict human data both for seen and unseen data points.
Generally, as expected, the correlations for seen data are stronger than those for the
complete data set, and as before, the correlation ρs are larger for the FrameNet models
than for the PropBank models.

The separate analysis of the PropBank models’ predictions for unseen data points
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achieves better correlations to the human data than the overall result (see Table 4.4);
the magnitude of the difference however appears to be largely an artefact of the rank
correlation measure since it is vastly reduced if Pearson’s r, a parametric correlation
test, is employed. Note, however, that Pearson’s r assumes a normal distribution of the
data points, which is why it is not generally applied here.

Overall, the PropBank ρs for seen and unseen data are more homogeneous than
the FrameNet ρs, which differ significantly between the seen and unseen data sets at
p < 0.05, one-tailed. The PropBank models profit from seen verb-argument-role triples,
but their performance for unseen triples is about the same as their overall performance
for the complete data set. The large difference in the FrameNet models’ performance for
seen and unseen data presumably stems both from generally better performance for the
seen data points and from some difficulty covering the unseen PropBank vocabulary,
which causes lower performance on the unseen data set than on the complete data.
Despite this difficulty, the FrameNet models still predict the unseen data on about the
same level of ρ vales as the PropBank models predict the seen data.

It is clear from the significant correlations to both seen and unseen data points that
both types of model do not just assign uniformly high or uniformly low predictions
respectively, but that the smoothing methods we employ enable them to differentiate
within the seen and unseen data points and predict graded human judgements.

4.1.5. Summary

Our experiments in Sections 4.1.1 to 4.1.3 have demonstrated that the FrameNet-
based models, using the estimation and smoothing strategies determined in Chapter 3,
reliably account for human judgements across a range of different data sets. Results
for the PropBank models were either significantly less reliable or stemmed from a
confound with test set biases. This fits well with the prediction based on the evaluation
of clustering features in Section 3.4.1 that the PropBank verb classes could be prone to
overfitting the development set.

The FrameNet models performed well for the Trueswell data, a literature data set
with extreme plausibility properties and biased distributions of ratings, as well as for
the Padó set of materials that were extracted from the training corpora and show a
more balanced rating distribution. The Ferretti data set showed that the FrameNet
models make reliable predictions also for adjunct roles, although their performance is
higher for argument roles, which are more frequently attested in the training corpora.

The experiments also show that especially the FrameNet models generalise well to
unseen data. The only precondition is that the verb has to be known, since thematic
roles are assumed to be verb-specific in both sets of training data and therefore, no
role-specific predictions can be made for unseen verbs. The models perform best for
seen stimuli from the same genre as the training materials. This is not surprising,
since the models are probabilistic and assign higher probability to more frequent, i.e.
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seen, data points. The models are however able to differentiate within sets of seen and
unseen data, demonstrating that class-based smoothing allows them to make graded
predictions.

4.2. Comparison Against a Standard Role Labeller

We now turn to our second evaluation, the comparison of our semantic model with
models that address two related tasks in computational linguistics. First, we consider a
standard semantic role labeller. The assignment of thematic roles to verbs’ arguments
is a subtask of predicting the plausibility of verb-argument-role triples. In addition to
defining the possible relations between a verb and its argument by assigning thematic
roles, models trained on this task could in principle be able to also predict whether
an argument is a plausible or implausible role filler by assigning the role with high
confidence for plausible fillers and with less confidence for implausible fillers. In
this section, we therefore compare our semantic model to a standard thematic role
labeller, evaluating the models both on the task of assigning the preferred role to the
verb-argument pairs in our test set and on the task of predicting verb-argument-role
plausibility.

4.2.1. Semantic Role Labelling

The availability of sufficient amounts of annotated training data in the form of the
FrameNet and PropBank corpora has allowed the application of supervised machine
learning methods to the task of assigning the correct semantic roles to a verb’s argu-
ments.

Beginning with work by Gildea and Jurafsky (2002), who showed on an early, smaller
release of FrameNet that automatic semantic role labelling was feasible, influential
research by Surdeanu, Harabagiu, Williams, and Aarseth (2003) or Xue and Palmer
(2004) explored useful features and established modelling procedures. There has been
a large community interest in the task, as evidenced by its adoption as a shared task in
the Senseval-III competition (FrameNet data, Litkowski, 2004) and at the CoNLL-2004
and 2005 conferences (PropBank data, Carreras and Márquez, 2004, 2005). Participants
in these competitions have explored a range of machine learning models, information
sources and pre- and post-processing procedures, further consolidating our knowledge
about the task.

The task of assigning thematic roles to a verb’s arguments is usually split into several
steps. First, there may be a word sense disambiguation stage at which the correct verb
sense is chosen. This is especially important for FrameNet annotation, of course. In
the next step, a second model identifies the verb’s arguments. This non-trivial task
ideally requires a syntactic analysis of the input sentence and knowledge about the

83



4. Evaluation of the Semantic Model

Syntactic Features Lexical Features
path argument – target verb target verb token
voice target verb word class
position target verb/argument lemma
target verb subcategorisation first/last word in argument phrase
argument phrase type lemma+phrase type
argument governing category target verb lemma+argument head
preposition head of PP voice+position
target verb/argument POS

Table 4.7.: Features used for the Standard Labeller.

verb’s subcategorisation preferences to choose the correct nodes in the parse tree from
the overwhelmingly large number of incorrect ones. Finally, the identified arguments
are assigned a thematic role by a third model. Since the errors of probabilistic systems
are additive along this pipeline, model performance can be drastically improved by
specifying the correct verb sense and argument boundary information. However, a
system operating on free text of course needs to perform well all stages.

In addition to a standard way of breaking up the task, a standard set of useful features
has emerged. These features are mostly syntactic and lexical in nature, capturing
regularities in the way a verb (in a certain sense) preferredly realises its arguments.
There are global features describing the syntactic configuration of verb and argument,
such as the path through a syntactic parse tree from the argument to the verb, the
sentence voice (active or passive), the argument’s position with regard to the verb or
the verb’s overall argument structure. More local features for each argument describe
its phrase type and governing category or the preposition head of a PP. Finally, a set
of lexical features describes the verb’s and argument’s parts of speech, as well as the
lemmas of the argument head and the verb. This is the only type of feature that allows
a standard role labeller to account for argument-specific role predictions.

4.2.2. The Standard Labeller

We base our standard role labelling system on the labeller described in Giuglea and
Moschitti (2004) (see Giuglea and Moschitti (2006) for more recent results). At the time
of the experiments, this was the only of the best-performing labelling systems made
freely available by its authors upon request.3 The labeller uses an SVM (support vector
machine) learner, a group of learners that have proven well-suited to the role-labelling
task (e.g., Pradhan, Hacioglu, Krugler, Ward, Martin, and Jurafsky, 2005). Another
asset is the integration of a feature extraction tool which makes it easy to adapt the
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original feature set to our requirements.
The labeller separates argument recognition and argument labelling as outlined

above. Since we are aiming at building an un-tuned, standard labelling model, we
restrict the feature space to the standard features that we described above; see Table 4.7
for a complete list of the features. Note especially that we do not use the additional
features introduced by Giuglea and Moschitti which are based on the combination of
information from PropBank and VerbNet for FrameNet classification.

The features listed in Table 4.7 are used to train a classifier for the final role labelling
step only, since for our test set, the argument heads are provided directly and do not
need to be automatically recognised. Note that we did not specify the verb sense for
the labeller model. This is partly out of fairness towards our semantic plausibility
model, which performs word-sense disambiguation itself, and partly because we test
all verbs covered in the training data, even if they are not observed with the correct
sense, so there is not always a correct sense available to be specified. If no verb sense
is given, the labeller considers all possible roles for a verb-argument pair, because it
cannot constrain the role set to the correct verb sense. This gives the labeller freedom
to generalise in cases of sparse verb data, but on the other hand increases its risk of
making inappropriate predictions.

The argument-labelling classifier is formed by a set of role-specific classifiers, one
for each role, that decide whether an argument does or does not carry their role. The
classifiers output a score with their decision, and the role with the highest positive
score is selected as the role prediction for the argument.

The performance of thematic role labellers is usually given in terms of F score, which
is a measure combining the labeller’s accuracy, which is the percentage of correct role
assignments in all assignments made, and its recall, which is the percentage of correct
assignments in the number of input arguments, and differs from accuracy only if the
labeller does not process all input arguments. F score is defined as the harmonic mean
of precision and recall, as in Equation 4.1.

F =
2 · Precision · Recall
Precision + Recall

(4.1)

The standard labeller’s F score on an unseen 10% of FrameNet data is F = 80.5
(using gold argument boundaries). This is a reasonable result given that the average
F score achieved in the Senseval-3 competition by models employing more than the
standard features was F = 85, also using gold boundaries. We also trained the labeller
on the PropBank data, resulting in an F score of F = 96.2 on Section 23, the standard
test set, and again using gold boundaries. Again, this is a good result compared to
recently-published systems, which reach up to F = 98.7 on the role labelling task using
(probably lower-quality) system boundaries (Che, Zhang, and Liu, 2006).

3Many thanks to Alessandro Moschitti and Ana-Maria Giuglea for the software and their friendly help.
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4.2.3. Evaluation

Method

We evaluate the models on the McRae and Padó test sets. The Trueswell test set is
not used because of its inherent bias towards the object role discussed in Section 4.1.1.
The McRae and Padó sets are more informative of the models’ ability to assess the
plausibility of verb-argument-role triples.

To keep the results table as concise as possible, we compare the role labeller to the
two best-performing instances of our semantic model (on the McRae test set) using the
PB 3 PropBank model and the FN 3 FrameNet model.

We set two tasks: Role labelling and judgement prediction. In the role labelling task,
the models have to predict the correct role for each verb-argument pair. We define the
correct role label to be the one with the higher plausibility judgement. We assume the
predicted role to be the most probable one in the semantic model and the one with the
highest score for the standard labeller.

We formulate frequency baselines for role labelling based on our training data. For
PropBank, always assigning the most frequent Arg1 role results in F = 45.7 on the
McRae test set and in F = 38.6 on the Padó set. For FrameNet, we assign each verb-
argument pair the most frequent role given the verb, which places the baseline at
F = 34.4 for the McRae set and at F = 28.5 for the Padó set.

For interesting comparisons, we test the difference between F scores for significance
using a randomisation test. This type of test was advocated for F score significance
testing by (Yeh, 2000), because it avoids certain independence assumptions. We use an
implementation by Sebastian Padó, www.coli.uni-sb.de/~pado/sigf.

We also evaluate the models on the correlation task. Our semantic model’s predic-
tions for each of the two target roles are correlated to the human judgements as above.
For the labeller, we normalise the role scores across all roles and then correlate the
normalised scores for the target roles to the human ratings.

Recall that the labeller heavily relies on features extracted from parsed input. Also,
it does not process its input incrementally. Therefore, we had to present the verb-
argument pairs from the test set in full sentences to be able to extract all features for role
labelling. However, in using sentence contexts, we potentially bias the standard labeller
towards the label corresponding to the role which is implied by the syntactic structure.
A reduced relative structure implies an object role, while a main clause structure implies
a subject role. We therefore created both a reduced relative and a main clause sentence
context for the verb-argument pairs (The doctor cured by the ... and The doctor cured the
...) and present the results for comparison. Recall that for our own model, we have
never needed to specify the grammatical function linking verb and argument, which
is the only model feature referring to the syntactic relationship between the verb and
the argument. If no grammatical function is specified, the semantic model drops the
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Train Test Model Coverage ρ Labelling Cov. Labelling F

PB

McRae

Baseline – – 100% 45.7
SVM (subj) 100% 0.001, ns 100% 45.7
SVM (obj) 100% -0.003, ns 100% 45.7

PB 3 98% 0.105, ns 100% 52.2

Padó

Baseline – – 100% 38.6
SVM (subj) 100% 0.081, ns 100% 54.6
SVM (obj) 100% 0.061, ns 100% 49.3

PB 3 100% 0.286, *** 100% 59.4

FN

McRae

Baseline – – 100% 34.4
SVM (subj) 88% 0.056, ns 100% 40.6
SVM (obj) 88% 0.116, ns 100% 34.4

FN 3 88% 0.415, ** 100% 59.4

Padó

Baseline – – 100% 28.5
SVM (subj) 99.5% 0.103, * 100% 49.8
SVM (obj) 99.5% 0.205, *** 100% 43.0

FN 3 96.9% 0.515, *** 100% 57.9

Table 4.8.: Standard SVM role labeller and semantic model. Coverage, correlation
strength (Spearman’s ρ), labelling coverage and labelling F score for PB and
FN data on the McRae and Padó test sets, best results in bold face.

grammatical function feature and bases its predictions only on the specified verb and
argument (see Section 3.1.4).

Results and Discussion

Table 4.8 shows that our semantic model always performs as well or better than the
SVM role labeller, both on the labelling and the judgement prediction task.

McRae set On the labelling task, our FrameNet semantic model outperforms the
baseline and the role labeller by at least 18 points F score. For the PropBank data, the
semantic model still numerically outperforms the standard labeller, even though the
labelling performance of all models is more similar and close to the baseline. Due to
the small number of stimuli in the McRae set, all differences in F score are however not
significant.

The performance of the SVM labeller confirms the strong influence of syntactic
features: On the PropBank test set, it assigns the Arg0 label in the majority of cases if
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the argument was presented as a subject and mostly the appropriate ArgN label if the
argument was presented as an object. This results in F scores similar to the frequency
baseline. On FrameNet, performance is better for the subject condition, where there is
also a clear trend for assigning agent-style roles. (The object condition is less clear-cut.)

On the judgement prediction task, the labeller fails to achieve significant correlations
with human data for either the PropBank or the FrameNet training set. Its role scores
do not predict human plausibility judgements. Our FrameNet-based model reliably
predicts the McRae test data, as above, and not surprisingly significantly outperforms
the labeller at p < 0.05, one-tailed.

Padó set On the Padó test set, the labeller clearly profits from the larger amount of
seen test stimuli. Despite the lower frequency baselines, its labelling F scores are better
than those for the McRae set, and all the FrameNet and PropBank labeller models
significantly outperform the baseline (p < 0.001, one-tailed). Both instances of the
FrameNet-trained role labeller even achieve a significant correlation to human data on
the judgement prediction task. It is likely that the FrameNet role labelling model makes
greater use of the lexical features due to the general sparseness of all features. This
would allow the FrameNet labeller to make use of the proportion of seen verb-argument
pairs in the test data.

The semantic model still outperforms the labeller in both tasks, however. The
PropBank model significantly predicts the human data where the labeller does not, and
the FrameNet model’s correlation ρ is significantly higher than the labeller’s (p ≤ 0.001,
one-tailed). Even on the labelling task, both semantic models’ F scores are significantly
higher than those of the labellers with the object role bias (FN: p < 0.01, PB: p < 0.05,
both one-tailed).

Discussion The role labeller’s performance both on the judgement prediction task
and on the labelling task is clearly worse than our semantic model’s. The labeller’s
F scores are much lower on the McRae and Padó test sets than on the standard role
labelling test sets because of its strong reliance on syntactic cues, which may be unre-
liable during the processing of local syntactic ambiguities, as they were for our test
data. Since the labeller uses no features that efficiently take word-specific plausibility
into account, it usually assigns the same role to both arguments of a verb, precluding a
significant correlation with the human ratings. The reliance on global syntactic features
also makes the role labeller unsuitable for incremental processing, as roles can only be
assigned once the complete sentence is known.

The success of our semantic model both on the labelling and on the judgement
prediction task stems partly from the absence of global syntactic features that bias
the standard labeller strongly. Instead, our semantic model successfully relies on
argument-specific plausibility estimates furnished by class-based smoothing. It is
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also able to make predictions for incomplete sentence structures during incremental
processing. Our joint probability model has the further advantage of being conceptually
much simpler than the SVM labeller, which relies on a sophisticated machine learning
paradigm, and of requiring the computation of only about one-fifth of the number of
SVM features.

4.3. Comparison to Selectional Preference Models

A second task from computational linguistics that is related to plausibility prediction is
the inference of verb selectional preferences. Selectional preference models characterise
the role fillers or classes of role fillers that verbs prefer for each of their argument slots.
This task exactly corresponds to estimating the plausibility of a verb-argument-relation
triple once the relation has been specified. This suggests combining a selectional
preference account with a role labeller to solve the judgement prediction task; in our
comparison, we specify the gold target roles, which allows us to estimate the upper
bound of such a combined model’s performance.

Argument slots in selectional preference models are normally defined by grammatical
functions, which we have argued above are too coarse-grained to capture the possible
relations between verb and argument. For comparison to our semantic model, we train
the selectional preference models using the more fine-grained thematic roles as labels
for the argument slots.

Evaluation results against human data from Resnik (1996), Keller and Lapata (2003)
and, for German, Brockmann (2003) have shown that selectional preference models
can successfully predict human plausibility ratings when using large amounts of
training data and defining verb slots as grammatical functions. In contrast, in our
evaluation, we define verb slots by thematic roles, which are more fine-grained, and at
the same time have less training data available. Our evaluation will show how well the
selectional preference models perform at deriving preferences for more fine-grained
relation distinctions from less training data. We test the selectional preference models
on three test sets with different characteristics: We first compare model performance
on the McRae and Trueswell test sets. The Trueswell plausibility manipulation rests
on animacy, a high-level concept that defines a large set of plausible and a large set of
implausible fillers and that is implicitly represented in the concepts of the WordNet
hierarchy that the selectional preference models use for smoothing. This data set should
therefore be easier to model for selectional preference models than the McRae data
set, which requires the identification of much smaller classes of acceptable arguments
which may be sparsely represented in the training data. Finally, we evaluate the role of
data sparseness in model performance by testing on the Padó set with its larger amount
of seen test stimuli.
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4.3.1. Selectional Preference Models

Models of selectional preference learn which sets of arguments a verb prefers in each of
its argument slots in order to determine how well a new argument fits into a specified
slot. This amounts to evaluating the fit of a verb-argument-relation triple for a given
relation. Generally, selectional preference models define a verb’s preference for specific
arguments over word classes instead of words, for reasons of efficiency and sparse
data. Therefore, the first step in inferring preferences is to identify a relevant set of
argument classes. Then, the verb’s preferences over this set of classes are induced,
which specify for each class how well its members fit the verb as arguments in a
specified relation. Finally, the fit of a verb-argument-relation triple is computed by
identifying the correct word class for the argument and then using the knowledge
about relation- and verb-specific preferences for that class.

The majority of models uses the WordNet noun hierarchy to furnish the word classes,
while differing in how the relevant subset of classes is determined. This is the class of
models that we focus on here. One of the earliest and most influential approaches to
modelling selectional preferences is Resnik (1996). To specify verbs’ constraints over
their arguments, Resnik first computes the selectional preference strength of a verb
(i.e., the amount of constraints it puts on its arguments overall) and then specifies how
much of that selectional strength applies to each possible argument class in WordNet.

The selectional preference strength S of a verb is quantified as the difference (in
terms of the Kullback-Leibler divergence) between the prior distribution of argument
classes when no verb is taken into account (p(c)) and the distribution of argument
classes given the verb (p(c|v)), as shown in Equation 4.2.

S(v) = D(p(c|v)||p(c))

=
∑

c

p(c|v)log
p(c|v)
p(c)

(4.2)

A predicate that imposes strong constraints on its arguments will have a probability
distribution over argument classes that strongly diverges from the prior distribution.

The selectional association A(v, c) between a verb and an argument class is the ratio
of the verb’s selectional preference strength for this class normalised over the verb’s
overall selectional preference strength, as shown in Equation 4.3.

A(v, c) =
p(c|v)log p(c|v)

p(c)

S(v)
(4.3)

The selectional association specifies how much of a verb’s overall preference strength
is contributed by the class c, and thus helps identify strongly preferred classes. The
selectional association between a verb and a class can be negative, which indicates that
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the class contains a dispreferred set of arguments.
The selectional preference between a verb and a specific argument head is taken

to be the selectional association between the verb and the WordNet class that is the
most strongly associated parent class of the argument. Refinements to this approach
have been proposed by Abney and Light (1999) and, more successfully, Ciaramita and
Johnson (2000), who address the handling of ambiguous nouns during the inference of
the argument class distributions.

Li and Abe (1998) propose an alternative approach that focuses on pre-selecting a
subset of WordNet classes for the computation of argument fit instead of considering all
WordNet classes like Resnik’s approach. The selection aims to balance the conflicting
constraints of generality of the classes, which allows smoothing, and specificity, which
is a bias towards retaining fine-grained class distinctions and thereby helps to avoid
over-generalisation.

Li and Abe treat the WordNet class hierarchy as a tree and prune away subtrees, using
the leaf classes of the resulting tree as the classes over which the verb’s preferences are
defined. The set of leaf classes to be chosen is determined by applying the information-
theoretic principle of Minimum Description Length (Rissanen, 1978), which states
that the best probability model given a data set is the model for which the encoding
of the model and of the data is shortest in the number of bits used. The probability
model in this case is the probability distribution over the set of leaf classes given
a verb and relation. The description length of the data is minimal if the model is
maximally specific, while the description length of the model is minimal if the class set
is maximally general. The optimal set of tree classes given these conflicting constraints
is found by simultaneously minimising the description length of both the model and
the data, which leads to a solution that balances generality and specificity.

Once the relevant set of classes is found, the fit of a verb and argument head can be
determined by computing the conditional probability of the argument’s parent class in
the set given the verb and relation, and uniformly distributing this probability over all
nouns in the class.

Finally, we consider a method proposed by Clark and Weir (2002) which, unlike
the other two, does not intend to accrue abstract information about which WordNet
classes contain preferred relation fillers for a verb. Rather, it solely aims at estimating
as accurately as possible P (argument|verb, relation), the fit of verb slot and argument
given the training data. Consequently, Clark and Weir use the WordNet hierarchy
primarily for smoothing. They aim to select the most general class for each argu-
ment, with the constraint that the distribution of the class members must still well
approximate the argument’s co-occurrence with the verb slot. Since more general
classes have more members and therefore are able to furnish more co-occurrence
counts for probability estimation, P (classa|verb, relation) then is used as an estimate
of P (argument|verb, relation) which is less noisy and more reliable than the estimate
based on the co-occurrence of only the argument lemma with the verb. The selected
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class is not assumed to be the optimal level of abstraction at which to describe the
verb’s preferred arguments. It is only used because it allows the fit estimate between
verb, argument and relation to be as faithful to the evidence from the training data as
possible.

The optimal class is determined as follows: The algorithm moves up the hierarchy
from the leaf class containing the argument to more general classes, and tests whether
the member concepts in the current class are still distributed in the training data in
a similar way as the argument. The search stops immediately once the concepts in
the current class are distributed significantly differently, and the last class that was a
good approximation of the argument’s distribution is used to estimate the selectional
preference of the verb for the argument in the specified relation. Both the statistical test
used for significance testing and the assumed level of significance are parameters of
this method.

4.3.2. Evaluation

Method

We compare the semantic model’s performance on the judgement prediction task to
the three WordNet-based selectional preference models introduced above, defining the
verb relations as thematic roles. We use an adapted implementation of the three models
from Brockmann (2003)4, who was able to show that the selectional preference methods
significantly predict human judgements for verb-argument-role triples extracted from
a German corpus.

We train all models both on the FrameNet and PropBank corpora and evaluate
using three test sets. The McRae and Trueswell test sets (see Sections 3.2.2 and 4.1.1,
respectively) allow us to gauge the models’ ability to capture selectional preferences of
different fineness. The Trueswell data can be predicted by a model that differentiates
between animate and inanimate arguments, while the McRae data can only be predicted
by a model that captures preferences for smaller, more constrained classes of arguments.
In addition, by using the Trueswell set we attempt to replicate results from Resnik
(1996), who showed that his model significantly predicts the human ratings in this set.
Finally, the Padó set (Section 4.1.2) shows how the models perform once more seen test
stimuli are available.

The parameters of the Clark and Weir method were set on the McRae development
set. We use the χ2 test at a significance level of p = 0.005 for PropBank and p = 0.3 for
FrameNet. As always, only verbs seen in the training data were tested.

Unlike our semantic model, the selectional preference models do not generate predic-
tions for the verb’s whole role set, but are trained to make predictions for a given role.
They were consequently trained to predict the likelihood of the argument filling either

4Many thanks to Carsten Brockmann for kindly making his software available.
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of the two rated roles. As above, we compare against the semantic model instances
PB 3 and FN 3.

Results and Discussion

Table 4.9 shows that the selectional preference models achieve good coverage of all three
test sets: The Trueswell set seems difficult to cover given the FrameNet training data,
but using just carefully selected noun classes for smoothing, the selectional preference
models generally cover only slightly fewer data points than our semantic model does
due to GT smoothing. We have seen the semantic model reach similar coverage when
using the WordNet top-level ontology as noun classes for smoothing, but at the cost
of low prediction quality (see Section 3.4.2). The selectional preference methods in
contrast do achieve significant predictions at least for some test sets. We now turn to
evaluating their performance on the plausibility prediction task, first for the Trueswell
and McRae sets and then for the Padó set.

Trueswell and McRae Sets Comparing the Trueswell and McRae results, all models
clearly perform better on the Trueswell set, which only requires the identification
of a preference for the large class of inanimate nouns. The Resnik model achieves
significant correlations to this data set for both training corpora, and the Clark and Weir
as well as the Li and Abe models significantly predict the human data when trained
on the PropBank. The overall better performance of the PropBank-based models is
probably partly due to the larger size of the PropBank resource (see also the discussion
of performance on the Padó set below) and partly to the bias towards the object role in
both the PropBank and the Trueswell data (recall the discussion in Section 4.1.1).

Our models also significantly predict the human judgements for the Trueswell data,
with a higher correlation ρ for the FrameNet-based model, which suggests that they
are able to cope better with the smaller training set and the absence of a general role
bias than the selectional restriction models. The PropBank-trained semantic model
performs much the same as the Clark and Weir and Li and Abe models, numerically
below the Resnik model. The difference in correlation ρ between the semantic model
predictions and the Resnik model results is however not significant for either training
corpus.

Our evaluation on the Trueswell set replicates the evaluation in Resnik (1996), where
the selectional preference model was trained on data from the Brown corpus (Francis
and Kučera, 1964) and where argument slots were defined as grammatical functions.
Predictions were found to be correlated to the human data with r = 0.46, p < 0.02,
at about 90% coverage. Using the PropBank training data, Resnik’s model achieves
comparable results to the original evaluation, even though we tested on the finer-
grained thematic role slot labels instead of grammatical functions. The Resnik model’s
somewhat lower performance using FrameNet again is probably due to FrameNet’s
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Training Test Model Coverage ρ

FN

Trueswell

FN 3 81% 0.523, ***
Resnik 61% 0.382, *

Clark&Weir 74% 0.154, ns
Li&Abe 76% 0.102, ns

McRae

FN 3 88% 0.415, **
Resnik 81% 0.025, ns

Clark&Weir 81% -0.038, ns
Li&Abe 88% -0.056, ns

Padó

FN 3 97% 0.515, ***
Resnik 93% 0.031, ns

Clark&Weir 93% 0.165, **
Li&Abe 97% 0.112, *

PB

Trueswell

PB 3 100% 0.334, **
Resnik 93% 0.504, ***

Clark&Weir 97% 0.338, **
Li&Abe 96% 0.289, *

McRae

PB 3 98% 0.105, ns
Resnik 85% 0.047, ns

Clark&Weir 100% 0.157, ns
Li&Abe 89% 0.202, ns

Padó

PB 3 100% 0.286, ***
Resnik 96% 0.227, ***

Clark&Weir 98% 0.254, ***
Li&Abe 100% 0.217, ***

Table 4.9.: Selectional preference methods and our semantic model (verb class set 3
PB/FN). Coverage and correlation strength (Spearman’s ρ) for both training
corpora on the McRae, Trueswell and Padó test sets, best result in bold face.
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smaller size and the absence of a strong bias towards object roles as in PropBank.
The model however still copes much better with these disadvantages than the other
selectional preference models.

None of the selectional preference models, however, is able to capture the more
fine-grained selectional restrictions used to manipulate filler plausibility in the McRae
test set. Using PropBank for training, none of the four models achieves a significant
correlation with the human data. Our FrameNet semantic model is the only one
to significantly predict the McRae data. It significantly outperforms the selectional
preference models, which all show correlation ρs around zero (p < 0.05, one-tailed).

Padó Set Examining the predictions of the selectional preference methods for the
McRae and Trueswell sets item by item, we find that the models fail because they
routinely predict the same noun class for both arguments of a verb, which causes
them to make exactly the same plausibility prediction for the arguments. This is
probably a problem of sparse data, which precludes the learning of verb preferences
for small, highly constrained sets of role fillers. The results on the Padó set support
this hypothesis: The Clark and Weir and Li and Abe models consistently perform well,
independent of the training set. Since the Padó set does not show a pronounced role
bias, this good performance is probably rather due to the relatively large portion of
seen test stimuli present in the test set.

The relatively large proportion of seen test stimuli even allows the selectional restric-
tion models to significantly predict the human judgements, even for the FrameNet data,
despite the smaller size of the resource that seems to preclude similar performance for
sparser test sets. However, the FrameNet-trained semantic model still significantly
outperforms the Clark and Weir model, which is the best of the selectional restric-
tion models trained on FrameNet (p < 0.001, one-tailed), while the PropBank-trained
semantic model performs indistinguishably from the selectional preference models.

The Resnik model, which yielded comparably high correlation coefficients for the
Trueswell set with both training corpora, however performs noticeably worse on the
Padó data. For PropBank, its performance on the Padó set is close to that of the semantic
model, but for FrameNet, the correlation ρ is around zero, as for the McRae data. This is
probably the case for two reasons: First, the Padó set, like the McRae set, does not vary
plausibility on the animacy level, but requires models to learn preferences for smaller
sets of arguments. The Resnik model appears to have difficulty capturing selectional
preferences at this level. Second, the Resnik model performs well on completely
unseen test sets when the selectional restrictions are relatively coarse-grained or when
the larger PropBank training set is used. This suggests that it is dependent on the
availability of large amounts of training data, and more specifically that its estimation
method profits more from a lot of training evidence for the verb’s preferred argument
classes than from having encountered a specific test stimulus during training.
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Discussion The semantic model appears to make better use of the limited amounts
of training data than the selectional preference models which perform noticeably better
when trained on the larger PropBank training set than when trained on FrameNet.
The reverse is true for the semantic model: It performs on a par with the selectional
restriction models when trained on PropBank, but much better than the selectional
restriction models when trained on FrameNet.

The semantic model’s good performance is carried mainly by smoothing using
induced verb classes. These appear to generalise better when induced from FrameNet
data, which also explains the performance gap between the two versions of the semantic
model. Unlike the selectional preference models, the semantic model hardly relies on
noun generalisations, since we use only the lowest available level of noun classes that
furnishes very sparse, but also very specific and reliable information. Using the noun
classes increases the correlation ρs by only about 0.02. This underlines the effectiveness
of the verb generalisations, but given that the selectional preference models reach good
coverage and acquire coarse selectional preferences with a careful selection of noun
classes only, it could be worthwhile to refine the noun class selection for our semantic
model in future work.

We found that existing selectional preference methods show some ability to predict
selectional preferences for large argument classes like animates, but that they are largely
unable to identify more fine-grained selectional restrictions for verbs’ role fillers. The
most striking example for this result is the Resnik model, which achieves the highest
correlation ρ of all PropBank models for the Trueswell data set, but performs much
worse for the Padó and McRae sets given either training set. The most consistently
performing selectional preference models are those by Li and Abe and Clark and Weir,
trained on PropBank.

Since we have specified the correct thematic roles to the selectional preference models,
these results constitute an upper bound for the performance of a combined plausibility
model that uses a role labeller to specify which relations between a verb and argument
a human might assume and a selectional preference model to evaluate the plausibility
of the verb-argument-role triples. Clearly, such a model does not promise superior
performance than our semantic model. In addition, the tasks of identifying a set of
applicable thematic roles for a verb-argument pair and estimating their plausibility are
mutually dependent, which means that it advantageous to employ a model like ours
which solves them simultaneously.

4.4. Summary and Discussion

In this chapter, we provided comprehensive evaluation of the semantic model, showing
that it reliably predicts human data across a range of different data sets and that
it outperforms two existing related approaches on the judgement prediction task.
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Throughout the evaluations, we observed that the semantic model performs much
better when trained on FrameNet data than when trained on PropBank. Therefore, we
will only use the FrameNet model below. This pattern of performance is not surprising
given the insights from the evaluation of clustering features in Section 3.4.1, where we
concluded that the FrameNet classes are based on more robust semantic generalisations
than the PropBank classes. We predicted those to be susceptible to overfitting the
development set due to their reliance on sparse and non-generalisable features.

Section 4.1 showed that the FrameNet model is able to predict argument roles from
test sets with different characteristics as well as adjunct roles, while correlation ρs were
generally higher for the argument roles, which were more frequent in the training data.
We also ascertained that the model makes correct predictions for unseen verb-argument
combinations, and that its performance does not rest on assigning invariably high
probabilities to seen triples and invariably low probabilities to unseen triples, as could
be expected from a purely probabilistic model. This behaviour is made possible by our
class-based smoothing approach, which allows the semantic model broad coverage of
unseen triples as long as the verb in the triple is known. Otherwise, the correct set of
verb-specific roles cannot be determined.

We compared our semantic model to a standard role labeller in Section 4.2. Our
model showed more ability to take plausibility into account and was less dependent on
syntactic features, which allowed it to easily outperform the labeller on the judgement
prediction task (again when trained on FrameNet). On the labelling task, the semantic
model performed better or at least as well as the labeller, which did much worse on
our test set than on an unseen split of the training data because of its reliance on global
syntactic features and, in consequence, its inability to account for semantic plausibility
of role assignments.

The comparison to a range of selectional preference methods in Section 4.3 showed
that the semantic model also easily outperforms the selectional preference approaches
when trained on FrameNet data, and still performs as well as the selectional preference
approaches on PropBank data. The selectional preference methods showed some ability
to learn coarse selectional preferences that differentiate between the large classes of
animate and inanimate arguments, but they did not reliably learn preferences for
smaller argument classes. Sparse data appeared to be the main reason for this problem,
since the models generally performed better on the Padó data set that contains more
seen stimuli. We therefore conclude that our model makes better use of the limited
training data.

We have also argued that the conceivable strategy of combining a labelling and
selectional restriction model cannot lead to better performance than that which we
have seen for the selectional preference models alone, and that it is therefore no viable
alternative to our model. In sum, the semantic model has proven to robustly predict
human judgement and is clearly better suited as a tool for solving this task than either
of the related approaches, alone or in combination.
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5. The SynSem-Integration Model

Having introduced and evaluated the semantic model in Chapters 3 and 4, we de-
scribe in this chapter how it is combined with a syntactic parser to form the SynSem-
Integration model proposed in Chapter 2. The SynSem-Integration model’s syntactic
model is realised by an incremental probabilistic parser, which we describe in Sec-
tion 5.1. In Section 5.2, we outline how the semantic model is extended to enable the
processing of whole sentences with multiple arguments for the same verb. We restrict
ourselves to using the FrameNet-trained version of the semantic model, since it has
proven superior the PropBank model during evaluation.

The SynSem-Integration model uses the syntactic and semantic models to evaluate
possible analyses of the input, find a globally preferred analysis and explain observed
processing difficulty. In Section 5.3, we formulate several possible implementations
of the conflict and revision cost functions, which were outlined in Chapter 2. We then
describe the parameter selection process for the SynSem-Integration model, in which
we choose the interpolation factor for combining the syntactic and semantic evalua-
tions of an analysis into a global preference ranking, as well as the best-performing
combinations of the cost functions.

In Chapter 6, we will evaluate the SynSem-Integration model against experimental
observations for four sentence processing phenomena: The Main Clause/Reduced
Relative (MC/RR) ambiguity, the NP object/Sentential Complement (NP/S) ambiguity,
the NP object/0 (NP/0) ambiguity and the PP Attachment ambiguity.

5.1. The Syntactic Model

In Chapter 2, we have proposed to instantiate the syntactic model within the SynSem-
Integration model with a parser that uses a probabilistic context-free grammar (PCFG).
This parser should incrementally assign syntactic analyses to the input and rank
them by their probability, to provide an instance of a probabilistic grammar-based
model (Jurafsky, 1996, Crocker and Brants, 2000). We first give a short introduction
to relevant aspects of syntactic parsing in Section 5.1.1 before describing the parser
we use (Section 5.1.2) and evaluating different model parametrisations in Section 5.1.3.
There, we ascertain that the syntactic parser assigns correct analyses to unseen test data,
and especially that it correctly treats the syntactic structures involved in the ambiguity
phenomena we will model in Chapter 6.
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S → NP VP 1.0 V → saw .8
NP → DT N .6 V → shot .2
NP → DT N PP .4 DT → the 1.0
VP → V NP PP .3 N → cop .4
VP → V NP .7 N → crook .3
PP → PRP NP 1.0 N → gun .2

N → telescope .1
PRP → with 1.0

Figure 5.1.: Example of a PCFG: LHS → RHS rules annotated with rule probabilities.

5.1.1. Syntactic Parsing

Currently, the majority of computational approaches to wide-coverage syntactic parsing
relies on probabilistic context-free grammars (PCFGs). A PCFG consists of a set of
terminal symbols (i.e., words) T , a set of non-terminal symbols (i.e., part-of-speech
tags and phrase symbols) NT and a set of context-free rules of the form shown in
Equation 5.1:

NT → (NT | T )+ (5.1)

A non-terminal on the left-hand side (LHS) of a rule can be rewritten as a sequence
of non-terminals and terminals on the right-hand side (RHS) of the rule. Each of
these grammar rules is annotated with a probability P (RHS |LHS ). This probability
represents the likelihood of expanding the category on the LHS to the categories on the
RHS. In order to obtain a mathematically sound model, the probabilities for all rules
with the same left hand side have to sum to one. An example for a PCFG covering a
tiny fragment of English is given in Figure 5.1.

Given a grammar and an input sentence, a parser can derive a syntactic analysis
of the input. Figure 5.2 shows two example tree structures for the input sentence The
cop saw the crook with the gun. In the parse trees, the application of a grammar rule
corresponds to a tree node and its daughter nodes: The S → NP VP rule is reflected in
the top node S and its daughter nodes NP and VP . This correspondence can also be
used to induce rule probabilities from syntactically annotated corpora using the MLE
approach.

Each parse tree is associated with a probability that is derived from the grammar
rules involved in creating the tree. The tree probability P (T ) is the result of multiplying
up the probabilities of all applied rules, as shown in Equation 5.2:

P (T ) =
∏

rule∈T

P (rule) (5.2)
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P (T1) = 1.0 · .6 · 1.0 · .4 · .3 · .8 · .6 · 1.0 · .3 · 1.0 · 1.0 · .6 · 1.0 · .2
= 0.0007
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P (T2) = 1.0 · .6 · 1.0 · .4 · .7 · .8 · .4 · 1.0 · .3 · 1.0 · 1.0 · .6 · 1.0 · .2
= 0.002
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Figure 5.2.: Trees with tree probabilities generated by the example grammar
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Figure 5.2 also gives the tree probabilities associated with the parse trees given the
rule probabilities in Figure 5.1.

Structural Ambiguity and Human Preferences

With any grammar of practicable coverage, a large number of alternative parse trees
can be derived for any input sentence. Using a probabilistic grammar, we can however
predict which of the many syntactic analyses is the best one by simply selecting the
tree with the highest probability, as shown in Equation 5.3.

Preferred Tree = argmax
tree

P (tree) (5.3)

The preferred tree is likely because it contains grammar rules with high probabilities.
If the grammar rule probabilities were induced from an annotated corpus, high rule
probability indicates a frequently used rule.1 Choosing the tree with the highest
probability therefore amounts to choosing a tree that uses structures which were
frequent in prior language experience.

The fact that probabilistic grammars allow us to rank analyses and select a preferred
one can be exploited for psycholinguistic modelling under the additional assumption
that the rule probability information in the grammar correlates to human structural
preferences. It may not be altogether unproblematic to make this assumption, since
the grain size of grammatical frequency information that humans employ may not
exactly correspond to that of PCFGs, which are restricted to accruing information solely
on the level specified by the grammar rules and cannot easily take larger chunks of
structure or non-structural information into account (recall Section 2.1 and also see
Mitchell, 1987, for an early discussion). However, the success of PCFG-based models
like Jurafsky (1996) or Crocker and Brants (2000) relativises this concern.

In order to make the rule probabilities of a PCFG-based parser as similar to human
structural preferences as possible, grammar rules and probabilities are induced from
large syntactically annotated corpora. This approach also has the advantages of quickly
yielding grammars with good accuracy and large coverage of unseen data points, and
has therefore become a default practice in computational linguistics, independent of
psycholinguistic considerations.

Disambiguation through tree probabilities is illustrated by the two parse trees derived
for the input sentence The cop saw the crook with the gun shown in Fig 5.2. The two
readings (the correct one in T2, where the PP modifies the crook and an incorrect one,
where the PP modifies the verb) involve different grammar rules and therefore differ in
their overall probabilities. The NP attachment reading T2 is correctly predicted to be

1Note that, all else being equal, the number of grammar rules involved also plays an important role. It
follows from Equation 5.2 that trees with fewer rule applications are more likely than larger trees.
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preferred over the verb attachment reading T1 because the grammar encodes a general
bias against PP modification of the verb (P(VP → V NP ) > P(VP → V NP PP )). Note
that this relatively coarse bias does not consider preferences introduced by the lexical
material involved, for example syntactic subcategorisation preferences of the verb
(Jurafsky, 1996) or semantic plausibility of the analysis. The grammar would still prefer
the NP attachment reading for input like The cop shot the crook with the gun, where verb
modification is presumably preferred due to the verb’s subcategorisation preferences,
and it would also prefer the NP attachment for The cop saw the gun with the telescope,
where plausibility introduces a strong bias towards the verb attachment.

Including Lexically-Specific Information

There are several strategies that make it possible to integrate lexically-specific infor-
mation into PCFGs. Two of these are lexicalisation of the grammar (Jelinek, Laerty,
Magerman, and Roukos, 1994, Collins, 1996) and the addition of grammar subcate-
gories (Johnson, 1998, Klein and Manning, 2003). We apply the latter strategy primarily
to addresses the lack of verb subcategorisation information, but can be used more
generally to avoid making unjustified independence assumptions between rule appli-
cations in PCFGs. The former strategy annotates grammar categories with their head
words and allows the general use of co-occurrence information between head words in
the grammar. For English at least, it yields such an improvement over unlexicalised
grammars that it has become a quasi-standard. Given coverage in the training data,
head-head co-occurrence can be used to make plausible attachment decisions and
can therefore possibly act as a substitute for semantic evaluation of the attachment.
Recall, however, that at least for our test data in Chapter 4 direct co-occurrence of verb
and argument head was extremely rare. This is underscored by the results of Gildea
(2001), who found that eliminating bi-lexical dependencies from a lexicalised grammar
hardly hurts performance, especially on test data that is different in genre from the
training data. In sum, a lexicalised parser cannot be expected to make valid plausibility
decisions based on head-head co-occurrences due to data sparseness. Therefore, the
SynSem-Integration model employs an independent, carefully smoothed semantic
model for the semantic evaluation of syntactic structures.

Figure 5.3 demonstrates the two strategies. Lexicalisation of the grammar (top)
extends each grammar rule by adding the lexical head to each left-hand side and
right-hand side non-terminal (only demonstrated for a subset of heads for concise
presentation). This drastically increases the number of grammar rules, but allows the
grammar to capture fine-grained lexical preferences for each head, including head-head
co-occurrence.

The addition of subcategories (Figure 5.3, bottom) codes lexical preferences, for
example for subcategorisation frames, in the pre-terminal grammar symbols. This
strategy allows each verb in the example to select the verb category that encodes its
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S[see] → NP[cop] VP[see] 1.0
S[shoot] → NP[cop] VP[shoot] 1.0
VP[see] → V[see] NP[crook] PP[gun] .3
VP[see] → V[see] NP[crook] .7

VP[shoot] → V[shoot] NP[crook] PP[gun] .7
VP[shoot] → V[shoot] NP[crook] .3

V[see] → saw .3
V[see] → sees .2

...
S → NP VP 1.0

VP → VNP,PP NP PP .6
VP → VNP NP .4

VNP,PP → saw .3
VNP → saw .7

VNP,PP → shot .7
VNP → shot .3

...

Figure 5.3.: Extending PCFGs: Lexicalisation (top), addition of subcategories (bottom).

preferred subcategorisation frame. In the other rules, the grammar generalises across
all verbs that show similar subcategorisation preferences, which is not immediately
possible in the lexicalised grammar.

Both lexicalisation and the addition of grammar subcategories enlarge the number
of grammar rules, which makes careful smoothing necessary. This is especially true for
lexicalised grammars, where many head-head dependencies encountered in the input
will be unseen in the training data. A standard approach to solving this problem is back-
off smoothing, which allows the parser to back off to a less specific (e.g., unlexicalised)
grammar rule in case no lexicalised rule exists. Another very efficient way of smoothing
a grammar is Markovisation (Collins, 1997). This approach computes the probability
of a rule’s left-hand side given its right-hand side as a Markov chain of conditional
probabilities, where for each daughter only the mother node and a specified number
of sisters is considered, and the Markovian independence assumption is made with
regard to the other sisters. In this way, grammar rules can be generated “on the fly”
even for unseen sequences of daughters, as long as the sequence is reasonable given
prior experience of partial daughter sequences.
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5.1.2. The Parser

As outlined in Section 2.5, we wish the syntactic model to fulfil three requirements:
Wide coverage of unseen utterances, the derivation of the model from language data
and the ability to process input incrementally. A number of highly accurate, wide-
coverage syntactic parsers that use corpus-derived grammars have been proposed and
implementations are available. Two standard models are, for example, those of Collins
(1997) and Charniak (2000). However, these parsers do not support word-by-word
incremental processing, but rather rely on the availability of the complete input string
when processing begins.2 Therefore, we use the incremental parser proposed by Roark
(2001)3. It is able to incrementally output syntactic analyses for partial input, and
its grammar and lexicon are induced from a large corpus, which makes it both an
experience-based model and gives it wide coverage of unseen text.

Roark’s parser employs a top-down parsing strategy, where a parse tree is con-
structed by expanding the grammar rules left to right, starting with an S rule. With this
parsing strategy, normally structure is generated predictively even if no input supports
it yet. For example, the expansion of the VP → V NP PP rule from Figure 5.1 to parse
a verb seen in the input predicts the existence of two syntactic arguments that are not
yet supported by the input (and possibly never will be, if the input turns out not to
contain a PP).

The parser achieves incremental processing without prediction of such unsupported
structure by grammar factorisation, such that a rule expansion can leave the rightmost
daughter or daughters unspecified until they are supported by more input. To return
to the example, this means that the parser initially stipulates only the V child of the
VP rule, effectively leaving the choice between the two VP rules underspecified until
more input is encountered.

The top-down parsing strategy is known to get caught in an infinite loop if the
grammar contains left-recursive rules like NP → NP PP which can be applied over
and over again to expand their own right-hand sides. To avoid this problem, a second
grammar transformation allows the parser to selectively treat recursive cases in the
way a left-corner parser would, namely by combining the inference of structure from
the input words with top-down structural prediction. This strategy limits the number
of times a recursive rule can be applied because predicted top-down structure is
immediately validated against the input.

Roark (2001) reports optimal parser performance when using a lexicalised grammar
with Markovisation for smoothing. The left-corner transformation in practice only has
to be applied to the grammar rules that cover NPs.

2Stolcke (1995) shows how such parsers can compute incremental output, but no implementation is
available for the Collins (1997) and Charniak (2000) parsers.

3We would like to thank Brian Roark for kindly making his software available and even adding function-
ality for us.
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From a psycholinguistic point of view, parsing strategies differ with regard to their
cognitive plausibility. A plausible strategy should require little memory for processing
structures that people read easily, and much memory for structures that are difficult for
people. The human pattern of difficulty is that left- and right-recursive structures, such
as examples (5.4) and (5.5), but that deeply centre-embedded structures like (5.6) are
hard.

(5.4) (((Tom’s) mother’s) house)

(5.5) (This is the man who found (the cat that ate (the mouse that died)))

(5.6) (The man (whom the dog (that the cat chased) hated) slept)

While pure top-down parsing has high memory requirements for both left-recursive
and centre-embedded structures, left-corner parsing4 is a cognitively plausible parsing
strategy because it encounters high memory load only for centre-embedding materials
(Abney and Johnson, 1991, Resnik, 1992). By selectively using a left-corner strategy to
avoid infinite memory requirements for left-recursion, Roark’s top-down parser thus
shows the same memory load profile as human readers.

For our experiments, we prefer to work with a parser that does not use head-head
co-occurrence information to ensure that decisions about semantic plausibility are only
made by the semantic model. No large drop in performance is expected in compari-
son with a fully lexicalised model according to Gildea (2001), since the the parser is
trained on a newspaper genre training corpus, but finally used on psycholinguistic
experimental items.

5.1.3. Evaluation

We compare two instantiations of a parser without bilexical dependencies: The No Bilex
parser is partially lexicalised in that it uses head information of the current category
when proposing non-terminal sister categories, but it contains no bilexical depen-
dencies that would for example link to the heads of sister categories. This restricted
lexicalisation still provides information about verb subcategorisation preferences and
other information that conditions on the current head word.

The Unlex SC parser introduces verb subcategorisation information by adding rel-
evant grammar subcategories. All verb POS tags in the training data are annotated
with the currently realised subcategorisation frame before training a completely un-
lexicalised parser on the extended grammar. This strategy ensures that the parser
has information about each verb’s subcategorisation frame preferences via its tagging
preference.

4More precisely, arc-eager left-corner parsing, which immediately links found and predicted nodes.
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We also include a fully lexicalised parser (Lex) and an unlexicalised parser (Unlex)
as an upper and lower bound for performance.

Training data

The standard training data for syntactic parsers consists of sections 2-21 of the Wall
Street Journal section of the Penn Treebank (WSJ). We add the data from section 24,
which is often used as a held-out development set, to gain as much lexically-specific
information as possible.

A second training set, referred to as the restricted set below, was extracted from the
full WSJ training data to control more carefully the structures covered by the grammar
in order to reduce noise present in the large data set and grammar. The restricted
training set was created using tgrep2 queries (Rohde, 2001) to extract simple examples
of the structures involved in the MC/RR, NP/S, NP/0 and PP Attachment ambiguities.
We extracted main clauses with transitive and intransitive verbs, reduced relatives and
sentences with initial adverbial clauses. No complex NPs or additional embedded
clauses were allowed in the structures. The resulting training corpus contains only
12,600 sentences, but the frequency relations between the structures in the WSJ corpus
are approximately maintained.

The Penn Treebank annotation allows the identification of of passive by-phrases (as
opposed to, e.g., locative by-phrases) through the annotation of a function tag. This is
helpful for the processing of the MC/RR ambiguity. Since the parser does not support
the use of these function tags, we added a preterminal grammar category to retain the
distinction between different types of by-phrases. Traces were removed because the
parser has no special mechanism to account for them, and sentence-final punctuation
was also deleted because the sentences in the restricted corpus are often subclauses
and therefore show little evidence of sentence-final punctuation.

Test Data

Two different sets of test data are available. The first is Section 23 of the WSJ data set,
the standard test data for syntactic parsers trained on the WSJ data. A second test
set is made up of example experimental items for the ambiguities modelled below to
ensure that the parser covers their syntactic structures correctly. We used the materials
from McRae et al. (1998) (MC/RR ambiguity), Pickering et al. (2000) (NP/S and NP/0
ambiguities) and Rayner et al. (1983) (PP-Attachment). On this test set, we report the
number of stimuli that are parsed correctly in all critical regions investigated in the
literature, since only such analyses are useful for the SynSem-Integration Model.
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Full WSJ Restricted WSJ
Parser Recall Precision F Cov. Recall Precision F Cov.
Lex 86.47 86.65 86.49 100% 69.70 68.66 69.18 99.5%
No Bilex 86.17 86.31 86.29 100% 68.69 69.76 69.22 99.5%
Unlex SC 85.47 85.59 85.61 100% 67.73 67.54 67.63 99.5%
Unlex 85.48 86.01 86.15 100% 69.36 68.28 68.82 99.5%

Table 5.1.: Bracketing Recall, Precision, F and Coverage on WSJ Section 23 for different
parser instances.

Results: Parsing F Score

We report the parsing F score, bracketing precision and recall over all sentences in sec-
tion 23 of the WSJ. Recall from Section 4.2.2 that F score is defined as F = 2·Precision·Recall

Precision+Recall .
For the recall measure, we count a parse as failed if all the lexical nodes are immediate
daughters of the top tree node. All parser instances were trained both on the standard
WSJ training set and the restricted corpus.

Table 5.1 shows results for all parsers trained on both the full WSJ training set as
well as the restricted training corpus. All parsers trained on the full WSJ training set
perform reasonably close to standardly used parser implementations (Charniak, 2000,
F = 89.5), with complete coverage of the test data. The difference in performance
between the lexicalised and No Bilex parsers on the full WSJ training set is very small,
as expected.

The completely unlexicalised parser somewhat unexpectedly also performs very
similarly to the lexicalised parsers, but the introduction of subcategorisation informa-
tion into the unlexicalised grammar does not appear to increase performance. Instead,
precision drops by about half a point F score for the Unlex SC parser in comparison to
the Unlex parser.

When training on the restricted corpus, performance is overall much lower due to
a lack of training data. However, coverage of the WSJ test corpus is still very high
at 99.5%, which underscores the effectiveness of the smoothing strategies used in
the parser. Using the restricted training corpus, the difference between lexicalised
and unlexicalised parsers is again very small, which is not unexpected given a small
training corpus. Under these conditions the No Bilex parser’s precision is even higher
than the lexicalised parser’s, presumably because it uses only the least sparse level of
lexicalisation. Extending the categories of the unlexicalised grammar however leads
to an abrupt drop in performance, especially in recall. The reason is probably that
a distribution over even more variables has to be learnt from extremely sparse data,
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Full WSJ Restricted WSJ
Parser NP/0 NP/S MC/RR PP NP/0 NP/S MC/RR PP
Total 50 32 80 24 50 32 80 24
Lex 70.6% 84.8% 56.8% 91.6% 0% 75.8% 51.9% 54.2%
No Bilex 70.6% 84.8% 56.3% 90.5% 0% 75.8% 51.9% 54.2%
Unlex SC 57.1% 78.8% 46.8% 87.5% 70.6% 75.8% 51.9% 62.5%
Unlex 54.9% 84.8% 56.8% 87.5% 0% 75.8% 53.1% 50.0%

Table 5.2.: Percentage of sentences correctly parsed throughout for different parser
instances.

while smoothing is not optimised for this training strategy. Also, of course, many
verbs in the test set are unseen in the training set, so that the assignment of a wrong
fine-grained verb tag may do a lot of damage.

For our experiments, the lexicalised version of the parser without bilexical depen-
dencies seems to be the best choice so far (given that we do not wish to use the fully
lexicalised parser, which uses head-head co-occurrence information). It easily outper-
forms the unlexicalised parser with subcategorisation information, and, when using
the restricted training corpus, even the lexicalised parser.

Results: Parsing Experimental Items

The second step of evaluation compares the parsers’ performance on one set each of
actual experimental items for the MC/RR, NP/0, NP/S and PP Attachment ambiguities.
Table 5.2 presents the percentage of correctly parsed sentences for each test set, where
a correctly parsed sentence is one with correct incremental analyses for all critical
regions. An incremental analysis is correct if it corresponds to one of the (usually two)
analyses that are assumed in the literature to give rise to the ambiguity. Again, the
parser instances trained on the full and restricted WSJ corpus are compared. The first
line in the table contains the total number of sentences parsed.

On the experimental items test set, the first interesting comparison is between parsers
trained on the full and restricted corpus. The restricted corpus was constructed with
the aim of ensuring noise-free and correct coverage of the structures involved in the
ambiguity phenomena of interest. However, as for the WSJ test set, the parsers trained
on the restricted corpus are generally at a disadvantage. Coverage is clearly lower
than for the parsers trained on the full corpus, most drastically so for the PP and the
NP/0 sentences. The striking success of the Unlex SC parser at parsing the NP/0
sentences arises only because it practically always predicts one fine-grained verb POS
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tag which allows the assignment of correct structure. Given the size of the training
set, it is more likely that this preference is due to sparse data than to subcategorisation
preferences evident in the training data. Thus, the restricted training set appears to be
too sparse to allow reliable coverage. The parser instances trained on this set frequently
encounter unknown words in the sentences, which leads to parsing problems and
incorrect assumptions about subcategorisation preferences.

When the full WSJ is used for training, the experimental items are generally parsed
accurately, with the MC/RR set proving hardest. The lexicalised and No Bilex parsers
are virtually indistinguishable and easily outperform the unlexicalised parsers. The
Unlex SC parser again performs slightly worse than the unlexicalised parser.

Thus, on the experimental items just as on the WSJ test set, the No Bilex parser
outperformed the Unlex SC parser. The grammar extension strategy probably did not
interact well with the smoothing routines of the parser, which are not intended for this
kind of manipulation. Also, the small, but clean restricted training corpus has not led
to accurate parses of the experimental items as intended, but has rather proven too
small for the induction of lexical subcategorisation preferences. The No Bilex parser
trained on the full WSJ corpus is therefore used as the syntactic model in our overall
architecture.

5.2. The Semantic Model: Extension to Multiple Arguments

We use one of the two most consistently-performing FrameNet-trained instances of
the semantic model in the implemented SynSem-Integration model, namely the FN 3
model. It numerically outperforms the other well-performing model, FN 2, on the
McRae test set, but in the context of the SynSem-Integration model, no advantage on
the McRae data set is gained by using FN 3 rather than FN 2.

However, two extensions to the semantic model are necessary, because thus far,
it has been used to make predictions only for isolated verb-argument pairs. In the
experimental items to be modelled in Chapter 6 below, however, role assignments to
all arguments of a verb must be evaluated. This section describes two extensions to the
semantic model that allow it to process multiple arguments for one verb.

After extracting all verbs and their prospective arguments (NPs, sentential comple-
ments and PPs) along with their grammatical functions from the parser output, the
semantic model finds the optimal sequence of role assignments to the verb-argument-
grammatical function triples as described in Section 5.2.1. Section 5.2.2 describes the
normalisation strategies that help the semantic model overcome its preference to assign
as few roles as possible which is due to the probabilistic formulation of the model and
the independence assumption for role assignments.
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5.2.1. Dealing with Multiple Role Assignment

In sentence contexts, there are usually several arguments to each verb. In this situation,
the semantic model assigns roles to each verb-argument pair independently, and the
plausibility of the whole sentence is computed as the product of the plausibility ratings
for the individual verb-argument pairs. However, we wish to further control the role
assignments made by the model by positing two common-sense restrictions: First of
all, we posit the unique-sense constraint, which requires all roles assigned by the same
verb to be legitimate for the same verb sense. This constraint simply ensures that the
same verb meaning is assumed for all role assignments to arguments of the same verb.
The second constraint is the unique-role constraint, which states that each role can only
be assigned to one argument.5

Given the unique-role constraint, the optimal role assignment for each argument is
influenced by role assignments to additional arguments. For example, when people
read a sentence like The doctor cured by the dentist. . . , they will initially assign the doctor
the agent role of cure, but when the by-PP is encountered, they reassign this role to
the dentist and assign the doctor the patient role instead. In order to correctly model
human processing, the semantic model needs to do the same. Recall, however, that
the semantic model makes role assignments only to one argument at a time without
considering other arguments for reasons of sparse data, and that we also make an
independence assumption between the arguments of a verb in computing the total
plausibility of a sentence for the same reason.

Thus, when processing verbs with more than one argument at a time, we need
to ensure that role assignments by the same verb assume the same sense, that each
role is assigned only once and that the model outputs the optimal sequence of role
assignments, that is the one that has the highest possible probability, while still making
the assumption that each role assignment to a verb-argument pair is independent from
other assignments.

The problem of verb sense consistency can be solved quite simply by determining the
optimal role assignments individually for the set of roles licensed by each verb sense
and then choosing the sense that allows the most likely set of assignments. To solve the
latter two problems, we use a graph-based optimisation strategy to choose the globally
optimal role assignment to each verb-argument-grammatical function triple given the
unique-role constraint. That is, instead of choosing the role assignment for each triple
that is most likely locally, we choose the role assignment that maximises the probability
of the whole set of role assignments. This strategy allows us to keep the independence
assumptions in role prediction and overall plausibility computation, because the prob-
ability associated with each role assignment is still computed independently of context.

5This constraint is somewhat relaxed in the annotation of FN and PB semantic roles to account for
non-contiguous argument phrases, for example the message argument of a statement verb that may be
split and surround the verb.
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At the same time, this strategy allows for co-dependency between role assignments as
motivated in the example sentence above. Using the global optimisation strategy, the
semantic model is able to revise all role assignments to find the optimal assignments
for the encountered arguments at each incremental processing step.

Our optimisation problem can be phrased as a Linear Assignment problem (LAP),
which requires us to find the optimal matching for a bi-partite graph. Figure 5.4 shows
an example bi-partite graph with two distinct node sets. A matching is an assignment
of links from all nodes on one side of the bi-partite graph to the the nodes on the other
side such that each node is linked to exactly one partner (bold-face links in Figure 5.4).
Taking the set of all arguments as one set of graph nodes and the set of all roles proposed
for any argument as the other, as shown in the figure, this constraint ensures that each
role is assigned to exactly one argument. In addition, we can construct weighted
edges between all nodes on either graph side, which allows us to add information
about the likelihood of a role assignment to be made. If a role was not proposed for
an argument, the edge weight will be zero, otherwise, it will have the value of the
plausibility corresponding to the role assignment made by the semantic model. The
algorithm that computes the optimal matching uses these weights to find the matching
that yields the highest product of assignment probabilities.

It is possible in our problem setting that the two sides of the bi-partite graph have
a different number of nodes (usually, the number of possible roles proposed by the
semantic model is larger than the number of arguments). In this case, the smaller
graph side is filled with dummy nodes which allow all role assignments with very
low probability (i.e., which have low weights on the outgoing edges). Such a case is
shown in Figure 5.4, where the role-assignment model also proposed the role Affliction
for one of the arguments, which makes the set of proposed roles larger than the set of
arguments.

We use the shortest augmenting path algorithm by Jonker and Volgenant (1987)6

to solve the linear assignment problem and select the role assignments (graph con-
nections) that optimise the overall score and at the same time obey the unique role
constraint. Role optimisation is done incrementally and on a verb-by-verb basis. If a
sentence contains several verbs, the probabilities of their optimised role assignments
are multiplied.

5.2.2. Eliminating the Few Role Bias

When processing the test input incrementally, it is possible that some syntactic analyses
allow the assignment of more roles than others. In this case, the semantic model has a
strong bias towards assigning the fewest possible roles because longer role sequences

6An implementation by the authors is available at http://www.magiclogic.com/assignment.
html.
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cure doctor

cure dentist

cure with-drug

Patient

Healer

Medication

Afflictiondummy

Figure 5.4.: A bipartite argument/role graph.

involve the multiplication of more assignment probabilities and therefore are less
probable than short sequences. This behaviour however runs counter to the strong
intuition that readers process utterances incrementally and aim to incorporate new
material as soon as possible (Pritchett, 1992, Crocker, 1996). We therefore employ two
strategies to normalise the probabilities and eliminate this bias.

The first strategy consists of filtering role combinations on the basis of their frequency
of appearance with the verb. The prediction for each role combination is weighted by
the probability of seeing this combination with the verb. We term this the preferred role
set bias. It usually places assignments with few roles (e.g., just a role assigned to the the
syntactic subject) at a disadvantage, because the training data contains more evidence
for larger role sets for most verbs. For unseen combinations, a low, smoothed value is
assumed because unseen combinations can either indicate a highly unlikely prediction
or very sparse training data. Giving an advantage to analyses that support a verb’s
preferred role set both places an emphasis on assigning roles to incoming possible
arguments until the verb is saturated and at the same time ensures that plausible role
sets are preferred by the semantic model. This sets the preferred role set bias off from
another possible bias that just puts more weight on role sets the larger they are.

In addition to introducing this bias, we also compute the geometric mean of the role
probabilities that make up the overall prediction. This normalisation takes into account
the number of roles in each prediction and therefore further reduces the advantage of
predictions with few roles.

5.3. Parameter Setting in the SynSem-Integration Model

As outlined in Section 2.5, the SynSem-Integration model predicts processing difficulty
as follows: For each syntactic analysis returned by the syntactic model, the model
computes an overall probability which is an interpolation of the probabilities assigned
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to it by the syntactic and semantic models.7 As other parser-based models, we restrict
the beam of available syntactic analyses to ensure computational tractability and model
human memory restrictions. We set the beam dynamically by admitting only analyses
with syntactic probability values within two orders of magnitude of the probability of
the top-ranked analysis.

The syntactic analyses are then ranked by this overall probability, and the highest-
ranked analysis (with its semantic interpretation), the globally preferred structure,
is predicted to be the one preferred by people. Recall from Section 2.5.2 that the
SynSem-Integration model characterises difficulty in processing by two kinds of cost:
Conflict cost, which predicts difficulty due to conflict between syntactic and semantic
preferences, and revision cost, which predicts difficulty due to the revision of the
assumed analysis of the input. For each region, the amount of predicted difficulty is
computed as the sum of predicted conflict and revision cost normalised across the
number of stimuli.

In this section, we introduce several alternative ways of computing the cost terms
and describe the selection of the best-performing cost functions as well as the setting of
the syntax-semantics interpolation factor used to compute the global probabilities for
syntactic analyses.

5.3.1. Interpolation Factor

The global plausibility score for the candidate analyses is computed by interpolating
the syntactic and semantic scores, as shown in Equation 5.7.

Global score(si) = fSyn(si) · (1− f) Sem(si) (5.7)

The interpolation factor f ranges between 0 and 1. The larger this factor, the more
the syntactic probability of an analysis dominates its global score, which is used to
determine the globally preferred analysis.

Note that the interpolation of the probability estimates from the syntactic and se-
mantic model yield only a score, not a probability distribution, because the event
space of the two models differs. The syntactic model is defined over input strings, the
semantic model over verb-argument pairs. This means that the semantic model does
not make predictions for all input strings, but only for those containing at least one
verb-argument pair according to the syntactic model.

5.3.2. Conflict Cost

Conflict cost is computed by ranking all structures separately in the syntactic and
semantic models and then comparing the syntactic and semantic ranks of the globally

7The syntactic and semantic probabilities for all analyses are separately normalised to sum to 1.
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preferred structure. Cost is incurred if one of the models prefers a different structure
than the globally preferred one. Since the global ranking is computed on the basis of
the syntactic and semantic rankings, this is equivalent to saying that the syntactic and
semantic ranks of the globally preferred structure disagree. The second formulation in-
stantiates the idea that processing takes longer when syntactic and semantic constraints
disagree than when they agree, as supported by McRae et al. (1998).

There are several options for computing the amount of conflict cost. Take rank syn and
rank sem to denote the syntactic and semantic rank of the globally preferred analysis gp.
Note that analyses with identical scores are assumed to share a rank, so there can be
two equally preferred analyses. In these cases, as long as one of the equally preferred
analyses corresponds to the globally preferred one, no difficulty is predicted. In the
order of fineness of granularity, the cost functions then are

• Fixed Cost: costconflict =

{
1 if rank syn(gp) 6= rank sem(gp)
0 else

Fixed Cost predicts binary difficulty by assigning a cost of 1 if the rank of the
globally preferred analysis differs in the syntactic and semantic models.

• Rank Cost: costconflict = abs(rank syn(gp)− rank sem(gp))

Rank cost computes the conflict cost as the difference between the ranks assigned
to the globally preferred analysis by the two models. For this function, no cost
is incurred if the globally preferred analysis is ranked first in both models, and
growing amounts of cost are assigned the lower the globally preferred analysis
is ranked in a disagreeing model. Thus, the cost function captures the strength
of the disagreement between the models and thereby allows somewhat more
graded predictions than the fixed function.

• Ratio Cost: costconflict =


psyn (lp)
psyn (gp) if rank sem(gp) > rank syn(gp)
psem (lp)
psem (gp) if rank syn(gp) > rank sem(gp)

0 else

Ratio cost is the ratio of the probability assigned to the the highest-ranked struc-
ture in a disagreeing model (the locally preferred structure lp) and the probability
assigned by that model to the globally preferred structure (gp). In this way, even
more gradedness can be achieved than with the rank function, such that a struc-
ture that is dispreferred in the disagreeing model by a small margin incurs less
cost than one that is much less likely than the locally highest-ranked analysis.
Predicted cost larger than zero is scaled by the logistic function 1

1+e−cost to values
between 0.5 and 1 to avoid an explosion of cost if the locally preferred analysis is
much more likely than the globally preferred analysis.
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5.3.3. Revision Cost

We also identify three revision cost functions that apply when the semantic interpre-
tation of the globally preferred analysis at the current processing step has changed
from the last step. We take this to be the case when the set of verb-argument pairs
in the current semantic interpretation is not equal to or a monotonic extension of the
set derived from the preferred semantic analysis at the last time step. Note that we
do not pay attention to the roles assigned to the verb-argument pairs, because role
re-assignment does not incur cost as long as the syntactic structure remains the same
(cf. He loaded the truckGoal, which is easily reanalysed into He loaded the truckTheme onto
the boatGoal, upon encountering onto the boat, e.g., Pritchett, 1992). set(gpt) denotes the
set of verb-argument pairs associated with the globally preferred syntactic structure gp
at time step t, and psem(gpt) denotes the semantic plausibility of gp at t.

• Fixed Cost: costrevision =

{
1 if set(gpt) 6⊇ set(gpt−1)
0 else

Fixed cost again assigns a fixed penalty of 1 if the set of verb-argument pairs in
the globally preferred parse at t is not a monotonic extension of the semantic
representation of the globally preferred parse from the previous time step.

• If-Worse Cost: costrevision =


1 if set(gpt) 6⊇ set(gpt−1)

and psem(gpt) < psem(gpt−1)
0 else

The If-Worse function is a modification of the Fixed cost function. It only assigns
a fixed revision cost if the set of verb-argument pairs in the globally preferred
structure has changed and the semantic analysis of the globally preferred parse is
less probable than the preferred one at the last time step. The intuition behind
this function is that a semantically equal or more acceptable interpretation should
be adopted more readily than one that is less satisfying to the comprehender than
the previously preferred one.

• Ratio Cost: costrevision =


psem (gpt−1)

psem (gpt)
if set(gpt) 6⊇ set(gpt−1)

and psem(gpt) < psem(gpt−1)
0 else

The Ratio cost function makes the amount of cost assigned by the if-worse func-
tion variable by assigning the ratio of the semantic probabilities of the last pre-
ferred analysis and the current preferred analysis. Cost is then scaled by the
logistic function (see Ratio conflict cost) to avoid an explosion of cost if the
current best analysis is much less likely than the last preferred analysis.
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5.3.4. Method

The parameters of the SynSem-Integration model are set so that the model predicts an
experimentally found pattern of human processing difficulty with maximal accuracy.
We use the No Bilex syntactic parser model introduced in Section 5.1.3 as the syntactic
model and the FrameNet-trained FN3 model with the extensions outlined in Section 5.2
as the semantic model.

Development Set

We use one of the available sets of experimental results on human processing difficulty
as a development set for parameter setting. Since we have most data available for
the NP/S ambiguity, we choose a set from this pool that shows significant effects of
thematic fit, so that the SynSem-Integration model is optimised to predict a statistically
significant difference in difficulty. An additional choice criterion is the number of
stimuli that are processed correctly by the syntactic model and that contain verbs
covered by the training data for the semantic model.

The data set with the largest number of processable stimuli is the data set corre-
sponding to the equibiased verbs in the Garnsey et al. (1997) reading time study: We
have 11 implausible and 12 plausible stimuli available that were parsed correctly by
the syntactic model and for which the verbs in the ambiguous region are covered by
the FrameNet training data for the semantic model. In this study, processing difficulty
is identified by subtracting the reading times for the ambiguous stimuli from those for
disambiguated versions. The difference is assumed to indicate processing difficulty
caused by the processing of the ambiguity. See Section 6.3.3 for further details on the
materials and results of Garnsey et al. (1997).

The development data set consists of four data points, namely measurements for two
thematic fit conditions on two sentence regions. The experimental observations and
the SynSem-Integration model’s predictions are scaled (as proposed in Narayanan and
Jurafsky, 2005) to indicate the percentage of difficulty contributed by each region, since
our model does not intend to directly predict reading times or reading time differences,
but more abstractly the occurrence of difficulty due to processing mechanisms.

Evaluation Metric

We evaluate the different parameter combinations according to the quality of pre-
dictions that they allow the SynSem-Integration Model to make. Parameter settings
that cause the model’s predictions to exhibit a different pattern from the observed
data are rejected. We further differentiate between the parameter settings that lead
to qualitative acceptable predictions by the size of the correlation coefficient between
predictions and observations (although we are aware that only four data points are
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Conflict Cost Revision Cost
Good Predictions

for f range
Fixed Fixed –
Fixed If-Worse 0.7–1
Rank Fixed –
Rank If-Worse 0.7,0.8, 0.9,1
Ratio Ratio 0.9,1

Table 5.3.: Best-performing interpolation factors for different cost function combina-
tions. Best result in bold face. 1: syntax only, 0: semantics only, –: No correct
predictions

not a sufficiently large basis for computing a correlation analysis and therefore do not
report the significance level for the correlation).

The number of different options for implementing cost functions and the need to
simultaneously select the best options and set the weighting parameter for syntax and
semantics lead to a relatively large model space. Of the nine possible combinations of
conflict and revision cost functions (3× 3), we explore only a subset of five. We do not
evaluate the combinations of the conflict and revision Ratio cost functions with any
of the non-ratio cost functions, because the ratio functions make predictions of vastly
different grain size. We evaluate each of the five combinations of cost functions with
ten values for the weighting parameter (in 0.1 steps from 0 to 1).

5.3.5. Results and Discussion

Table 5.3 gives an overview over parameter values that allow good qualitative predic-
tions of the pattern of difficulty in the development data. The conflict and revision
cost functions are the ones introduced in Sections 5.3.2 and 5.3.3. Table 5.3 also gives
the range of values for the interpolation factor f that lead to qualitatively correct
predictions. All specified values of f lead to a correlation coefficient of Pearson’s
r ≥ 0.95 between the predicted and observed data points. f values in bold face denote
parameter settings that lead to especially good predictions (Pearson’s r > 0.99).

Several observations are interesting:

• Only models using the probabilistic or If-Worse revision cost function make
qualitatively correct predictions. This indicates that it is important to assign
revision cost only if the new preferred semantic analysis is less plausible than the
old one was.
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• The probability ratio approach, though appealing through its fine grain size, does
not allow us to predict the correct distribution of difficulty as well as the coarser-
grained approaches: It predicts a somewhat too even distribution of difficulty
to match the observations. This is possibly due to noise, as the development
set is still relatively small at a maximum of fourteen stimuli. Note that the
development set is however relatively large in comparison to other test sets used
for evaluation below, so this problem is expected to persist for other test sets.
Despite this disadvantage, the probability ratio cost functions however still allow
qualitatively correct predictions.

• The well-performing parameter settings all favour the influence of syntax for the
computation of the global ranking, with performance improving with the size
of the weighting factor. For all successful model instances, predictions became
more like the observed development data the larger the interpolation factor was.
However, the range of f for which the non-probabilistic functions qualitatively
predict the experimental observations is relatively wide. This shows that the
model is quite robust as long as the syntactic model has more weight in deciding
the global ranking.

Figure 5.5 shows the model predictions and experimental results for the best-performing
parametrisation which uses the Rank/If-Worse combination of cost functions and f = 1.
The SynSem-Integration model captures the general trend of more or less equal diffi-
culty in both measured regions for the good object condition as well as the fact that in
the bad object condition, less difficulty is observed at the main verb (MV).

In the evaluation in Section 6 below, we will plot the predictions of this model.
To show that the model’s predictions are robust across the well-performing model
instances, we will also report numerical evaluation results for the other two successful
parametrisations, Fixed/If-Worse with f = 1 and Ratio/Ratio with f = 1.

5.4. Summary and Discussion

In this chapter, we have introduced the incremental probabilistic parser used as the
syntactic model, discussed two extensions that enable the semantic model to process
sentences with multiple arguments per verb and described the parameter setting for
the SynSem-Integration model.

We compared two strategies of introducing verb subcategorisation information
into the probabilistic parser: Limited lexicalisation and the introduction of grammar
subcategories. The lexicalised parser clearly outperformed the parser with the extended
set of grammar categories both on the standard parsing test set and on the syntactic
structures relevant for the evaluation in Chapter 6. It also became clear that the parser
profits from large amount of training data. Using the standard parser training set led to
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Figure 5.5.: Model predictions and experimental results for the best-performing
parametrisation on the development set: Rank/If-Worse 1. Development
set: Equibiased verbs from Garnsey et al. (1997). GO: Good Object, BO: Bad
Object.

much better model performance than training on a small, but very clean data set that
contained only structures relevant to the test phenomena.

The partially lexicalised parser model trained on the full WSJ training set is an
incremental, experience-based model of human sentence processing. Parsing results
on unseen test data underscore its wide coverage and the correctness of its structural
predictions for unseen input.

The semantic model needed two extensions to allow it to process multiple arguments
per verb and thus be fully usable within the SynSem-Integration model. We introduced
a selection strategy for the best set of role assignments that ensures that two conditions
are satisfied: The unique-frame constraint that demands the same verb sense to be
used for role assignments to different arguments and the unique-role constraint, which
allows each role to be assigned at most once. We also added a normalisation procedure
for plausibility predictions to eliminate the bias towards small role sets inherent in the
semantic model.

Finally, we proposed different implementations of the conflict and revision cost
functions and selected the best-performing combinations. We also selected the optimal
values for the interpolation factor f for each combination of conflict and revision cost
function. Three cost function combinations allowed predictions that were qualitatively
appropriate for the development data: The Rank/If-Worse combination, the Fixed/If-
Worse combination and the Ratio/Ratio combination. The former two combinations
performed somewhat better than the Ratio/Ratio combination, presumably due to
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5.4. Summary and Discussion

noise in the Ratio/Ratio predictions that had a large impact given the limited number
of stimuli.

The different instances of the SynSem-Integration model performed quite consistently
across different values for f . This indicates that the model is robust against small
differences in the parameters. Crucially, however, all three successful model instances
assign revision cost only if the semantic plausibility of the globally preferred analysis
drops after a revision. Cost functions that always predict difficulty due to revision
were not able to correctly predict the pattern of results of the development set.
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6. Evaluation of the SynSem-Integration
Model

We have selected three instances of the SynSem-Integration model in Chapter 5 that
qualitatively predict the pattern of human processing difficulty on the development
set. In this chapter, we turn to evaluating the SynSem-Integration model in detail
by comparing the model’s difficulty predictions to the patterns of human processing
difficulty observed experimentally.

We test the model predictions for four sentence processing phenomena: The Main
Clause/Reduced Relative (MC/RR) ambiguity, NP object/Sentential Complement
(NP/S) ambiguity, NP object/Clause Boundary (NP/0) ambiguity and PP Attachment
ambiguity. We compare our model’s predictions to the patterns of difficulty observed in
reading-time studies, where processing difficulty is taken to cause lengthened reading
times for the ambiguous and disambiguating regions. Difficulty is usually quantified
by comparing the conditions with the interesting manipulation to unambiguous control
conditions. Any difference in difficulty is then attributed to the manipulation. Compar-
ing this difference across conditions or regions gives an impression of the distribution
of processing difficulty across the utterance.

Section 6.1 describes the general method followed in the evaluations described in
Sections 6.2 to 6.5. In these sections, we start by introducing the experimental findings
for each ambiguity and then present the SynSem-Integration model’s predictions in
comparison to the findings. We carry out a quantitative analysis of all predictions
made for each phenomenon, and in Section 6.6, also pool the data from all studies
and compute the correlation for all predictions and observations. This is a stringent
test for model performance, as we group together the observations from four different
phenomena and a total of eight studies. Finally, we discuss the model’s properties and
evaluation results in Section 6.7.

6.1. Method

We evaluate the predictions of three instances of the SynSem-Integration model using
three different combinations of conflict and revision cost functions. These are the
Rank/If-Worse, Fixed/If-Worse and Ratio/Ratio combinations. We plot the predictions
made using the Rank/If-Worse instantiation of the model that uses the rank-difference

123



6. Evaluation of the SynSem-Integration Model

conflict cost function and the if-worse semantic cost function, but we report numeric
evaluation results also for the Fixed/If-Worse and the Ratio/Ratio models. We use the
FN 3 semantic model from chapter 3 and instantiate the syntactic model with the No
Bilex parser from Section 5.1.3.

From each reading-time study, we test only those items that can be processed cor-
rectly by the syntactic and semantic model to avoid making noisy predictions due to
misanalyses. An item counts as being processed correctly by the syntactic model if in
all critical regions, the best analysis assigned by this model corresponds to one of the
analyses assumed in the literature.

An item can be processed correctly by the semantic model only if the verb in the
ambiguous region is present in the FrameNet training data. We accept unknown verbs
in the disambiguating regions to ensure that enough stimuli are covered. If a verb
is unseen, the semantic model assigns the verb-argument pair a dummy role (since
the admissible verb-specific role set is unknown) and predicts a smoothed probability
estimate. Using a smoothed value for the role assignment made by an unknown main
verb amounts to labelling the main verb-argument relation as not specifically plausible,
but acceptable. This is enough for our purposes since the plausibility of main verbs and
their arguments is never manipulated in the experimental studies and since there is no
comparison of plausibility across stimuli, only within the analyses for one stimulus.

We generally require at least 10 covered stimuli per condition to reduce the likelihood
of spurious predictions due to noise as much as possible, but in several cases, we have
to relax this requirement slightly.

To show how the introduction of a semantic model affects the predictions and give a
performance baseline, we also report the performance of a syntax-only model, namely
the fully lexicalised Lex model introduced in Section 5.1.3 that makes use of head-head
lexical dependencies and thereby is in principle able to use co-occurrence information
to reflect the likelihood of the verb-argument pairs in the syntactic parses it constructs.
This model predicts difficulty through the “flip” cost function (Crocker and Brants,
2000) that predicts difficulty whenever the best syntactic parse at the current time step
is not a monotonic extension of the best parse at the last time step.

Different experimental paradigms yield different measures of reading times. For
self-paced reading studies, in which the participants reveal new material by button-
presses once they have finished reading, the time between button presses is reported.
In eye-tracking studies, where reading time is established by tracking the participants’
eye movements, a number of different measures is available. We compare the SynSem-
Integration model’s predictions to the results for the total-time measure, which collects
all fixations on the region in question and thereby reflects all effects of reading and
re-reading visible in fixation durations. Recall that the model’s difficulty prediction
for each critical region is the sum of conflict and semantic cost incurred in the region,
normalised across all covered stimuli.

The experimental observations and the predictions of the SynSem-Integration model
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6.2. Main Clause/Reduced Relative

as well as the syntax-only baseline are scaled to indicate the percentage of difficulty
contributed by each region (as proposed in Narayanan and Jurafsky, 2005). This is
more appropriate than using unscaled predictions and observations, since neither
model intends to directly predict reading times or reading time differences, but more
abstractly predicts the occurrence of relative difficulty due to processing mechanisms.
We scale by summing the observed or predicted difficulty over all regions for each
condition and by normalising each region’s difficulty by the total. In the case of
negative observed difficulty, we first move all observations for the affected condition
into positive space by adding a constant value chosen to bring the lowest negative
value to 1. This transformation preserves the relative position of the data points and
allows us to apply the standard scaling procedure.

We evaluate the SynSem-Integration model’s predictions by comparing the predicted
and observed patterns of difficulty quantitatively and qualitatively. For each individual
data set, only the qualitative comparison is available, since each study only furnishes
up to six data points for comparison. This means that the number of data points is
generally too low for a meaningful correlation analysis of predicted and observed data.
Therefore, we pool the data from all studies that investigated the same phenomenon
and carry out a per-phenomenon analysis of the correlation of the predictions made by
the SynSem-Integration model and by the syntax-only baseline to the observed pattern
of difficulty.

6.2. Main Clause/Reduced Relative

The Main Clause/Reduced Relative (MC/RR) ambiguity arises for verbs which realise
the simple past and past participle by the same form, like cured in sentences (6.1)
and (6.2).

(6.1) The doctor cured the patient.

(6.2) The doctor cured by the treatment had invented it himself.

For the sentence prefix the doctor cured, there are two possible continuations: The
main clause continuation as in (6.1), which interprets the verb being in the a simple past,
and the reduced relative continuation as in (6.2), which interprets it as a past participle
beginning a reduced relative clause that modifies the doctor. The two analyses also vary
in the thematic roles assigned to the first NP: In the case of a reduced relative, doctor is
assigned a patient role by cured, while in the case of the main clause continuation, it is
assigned an agent role.1 The ambiguity continues until the input is consistent with only
one interpretation. This point of disambiguation which ends the ambiguous region is

1Different verbs of course assign different roles, but no verb assigns the same role to the first NP in both
readings.
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6. Evaluation of the SynSem-Integration Model

reached at the patient in (6.1) and in (6.2) at the latest at had, which is the true main verb
of the sentence.

Note that the by-phrase in sentence (6.2) is often interpreted as already disambiguat-
ing the sentence towards the reduced relative reading. However, though a by-phrase
undeniably introduces a strong bias for the reduced relative clause, its ability to disam-
biguate depends largely on the semantics of the embedded NP, because by-phrases can
also be interpreted as specifying locations or manner.

For this ambiguity, there is a general syntactic bias towards the main clause interpre-
tation over the much rarer reduced relative interpretation. Readers therefore experience
processing difficulty at the by-phrase or the disambiguating main verb of stimuli like
sentence 6.2. The experimental logic of most studies involves testing whether the
influence of syntactic or semantic factors in the ambiguous region cancels out this
processing difficulty or at least makes processing noticeably easier. The regions of
interest are usually the ambiguous verb, where some studies already find effects of a
plausibility manipulation of the first NP, and the point of disambiguation, which may
lie at the completion of a by-PP or, at the latest, at the main verb.

6.2.1. Experimental Evidence

In the literature, a number of lexical and syntactic factors which influence the pro-
cessing of this ambiguity have been identified. They can generally be grouped under
the headings of syntactic factors, such as verb form frequency or subcategorisation
preferences, and semantic factors, such as the influence of thematic fit or referential
effects like NP definiteness and context (e.g., Crain and Steedman, 1985, Spivey and
Tanenhaus, 1998). We are concerned with the the former three factors here.

Syntactic Factors

A first factor that influences the processing of the MC/RR ambiguity is lexical verb form
preference: Trueswell (1996) showed that the frequency with which the ambiguous verb
is used as a past participle influences readers’ preference for adopting a reduced relative
clause. Verbs with low past participle frequency, which presumably bias the reader
towards a main clause interpretation, lead to difficulty at the point of disambiguation,
when the main clause reading becomes impossible. Verbs with a high past participle
frequency, however, cause as little disruption at the point of disambiguation as an
unambiguous control verb. These verbs thus bias the reader towards a reduced relative
interpretation early on.

Another factor is the availability of plausible alternative analyses licensed by dif-
ferent subcategorisation frames. MacDonald (1994) demonstrated that the number of
acceptable syntactic analyses of the material up to the main verb influences processing
difficulty before and at the disambiguating region. When many analyses are possible,
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as in the dictator fought, which allows interpretation as a main clause with or without a
direct object in addition to the reduced relative analysis, processing was difficult. In
cases where fewer analyses were possible, readers experienced less difficulty at the
point of disambiguation.

MacDonald also demonstrated the influence of post-verbal material in the ambiguous
region. Material like a by-phrase immediately and strongly points towards a reduced
relative analysis, but the presence of an adverbial phrase can delay constraining infor-
mation, causing readers to entertain a strong main clause hypothesis for longer. This
increases processing difficulty at the disambiguation.

Thematic Fit

Even more than syntactic influences, the influence of the thematic fit of the first NP
with the verb has been intensively studied. The first study to ask whether thematic
fit influences processing in the MC/RR ambiguity, Rayner et al. (1983), compared the
processing of reduced relative sentences with good and bad agents for the verb to the
processing of two unreduced control structures. Using eye-tracking, they found that
both types of reduced relatives were harder than the unambiguous control sentences,
and that the use of the implausible subject NP in one of the control structures did not
cause difficulty, either. This evidence led them to conclude that thematic fit does not
influence processing, at least not in its the early stages.

After these results, research was continued using animacy manipulation, a somewhat
stronger variant of thematic fit manipulation. Ferreira and Clifton (1986), in another
eye-tracking study, contrasted unreduced controls and reduced relative clauses with
animate and inanimate first NPs. They found again that animacy information of the
first NP does not suffice to cancel out the difficulty at the by region for reduced relatives
in comparison to the unreduced relatives. However, they also found that readers had
difficulty at the verb of a reduced sentence after reading an inanimate first NP which
made the main clause interpretation less likely. Thus, even though readers did not seem
to profit from the animacy information at the point of disambiguation, they obviously
did react to it.

Trueswell et al. (1994) identified a number of problems with the items and presenta-
tion method employed in the Ferreira and Clifton study. Most importantly, the animacy
manipulation in their materials in about 50% of cases did not exclude a plausible main
clause continuation of the sentence. Trueswell et al. therefore manipulated animacy
while ensuring that main clause continuations were excluded. Also using eye-tracking,
they found a strong effect of animacy that practically eliminated difficulty at the by-
phrase in items with inanimate first NPs. Re-processing effects (measured by second
pass reading times) also showed numerically longer processing times at the verb for
inanimate first NPs, similar to the effects observed in Ferreira and Clifton (1986). These
results suggest that thematic fit information does play an early and important role
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during the processing of the ambiguous region.
Clifton, Traxler, Mohamed, Williams, Morris, and Rayner (2003), in an eye-tracking

replication of the Trueswell et al. experiment, did not find the same extreme effect
of thematic fit. Instead, in their experiment, readers did show difficulty for reduced
relatives with inanimate first NPs in comparison to the unreduced control. Still, read-
ing times at the by-phrase for inanimate NPs were numerically, but not significantly,
lower than for animate NPs. Additionally, using an eye-tracking measure that is sen-
sitive to difficulty in initial processing and to difficulty in recovery from misanalysis,
they found no difference between animate and inanimate first NPs in the by-phrase.
Instead, significantly longer durations for animate first NPs on the main verb were
found in one experiment and an interaction of animacy and ambiguity in the second
experiment. Clifton et al. conclude that animacy information does not help readers to
avoid processing difficulty, but that it does influence the time needed to recover from
misanalysis.

In contrast to the Clifton et al. study, and in keeping with the Trueswell et al. study,
McRae et al. (1998) found effects of thematic fit before the disambiguating main verb.
They held animacy constant and varied general thematic fit, controlling the plausibility
properties of their combinations of first NP nouns and verbs in a norming study. The
McRae et al. self-pace reading study found an interaction of reduction and thematic
fit in the verb+by region and at the disambiguating main verb, such that sentences
with good agents were easier to read than good patient sentences at the verb+by region
and harder at the disambiguating verb. Thematic fit did not eliminate difficulty at
the verb+by region, but sentences with good patients were read as quickly as the
unreduced controls at the disambiguating main verb. This clearly points towards an
immediate use of thematic fit in processing that helps determine the assumed sentence
structure.

This result is corroborated by a study by Tabossi, Spivey-Knowlton, McRae, and
Tanenhaus (1994), who tested the influence of graded thematic fit on the processing of
the MC/RR ambiguity. Using the same method and regions as McRae et al., they chose
items with varying thematic fit within the larger classes of good agent and good patient
items. Consequently, they did not find reliable interactions of reduction and thematic
fit in reading times, but they were able to show that agenthood/patienthood ratings
correlated with the size of the reduction effect in all three regions (marginally so at the
verb+by). The difference between agenthood and patienthood ratings also predicted
the reduction effect on the agent NP and at the main verb. This study indicates that
relatively subtle changes in the thematic fit variable may have a graded influence on
processing. The marginal prediction of the reduction effect by agenthood ratings at the
verb again suggests that thematic fit is used rapidly.
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Summary

A number of factors for processing the MC/RR ambiguity has been identified in the
literature: Verb form frequency, subcategorisation preference and post-verbal context
form a group of syntactic constraints. These factors can be modelled through lexical and
grammatical preferences encoded in the probabilistic grammar of the syntactic model.
Thematic fit is unanimously found to have some influence on processing, although the
literature reviewed above does not agree on whether it is used to guide the construction
of the initial analysis, as implied by the results of Trueswell et al. (1994), Tabossi et al.
(1994), McRae et al. (1998) and also MacDonald (1994) or not, as argued in Rayner
et al. (1983), Ferreira and Clifton (1986), and, more recently, Clifton et al. (2003). The
influence of this factor is accounted for by the semantic model.

6.2.2. Data Selection and Evaluation Method

For each of the studies reviewed above, we determined (a) how many experimental
stimuli were parsed correctly by our syntactic model and (b) how many of the correctly
parsed stimuli were covered by FrameNet, such that the verb in the stimulus was seen
in the training corpus. We required at least 10 stimuli per condition that were covered
by the syntactic and semantic model. Two studies (nearly) met this requirement:
MacDonald (1994) and McRae et al. (1998).

Note that we do not model the results of Tabossi et al. (1994), because they investi-
gated the influence of a fine-grained thematic fit manipulation on reading times, while
two of the three best-performing instances of our model make only relatively coarse-
grained predictions for individual stimuli that cannot capture Tabossi et al.’s effects,
and the third has been shown to suffer from noise for small test sets and therefore also
for individual stimuli.

6.2.3. McRae et al. (1998)

Experimental Setup

We used the plausibility ratings for the verb-argument-role triples from McRae et al.
(1998) in Chapter 3. Now, we are interested in the effects the plausibility manipulation
has on reading times. The self-paced reading study presented two words at a time
and measured reading times at three regions: At the verb and by, at the agent NP in
the by-phrase and at the disambiguating main verb. This mode of presentation was
chosen since Trueswell et al. (1994) found that short function words such as by are
generally not fixated during reading, but processed parafoveally, that is, when fixating
the preceding verb. Thus, during natural reading, the by may influence the analysis
process already when reading the verb. Indeed, the presentation of by with the verb
or on its own seems to modulate the appearance of a thematic fit effect in self-paced
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reading (Burgess, 1991). Clifton et al. (2003) found no such effect in eye-tracking when
varying the availability of parafoveal preview of by, but it is possible that the effect is
strengthened in self-paced reading by the artificial segmentation of the input.

The study found an interaction of ambiguity and thematic fit at the verb+by and at
the disambiguating main verb, such that ambiguous sentences with good agents were
easier to read than ambiguous good patient sentences at the verb+by region and harder
at the disambiguating main verb. At the agent NP, there was a main effect of thematic
fit and one of ambiguity, but no interaction between thematic fit and ambiguity.

Materials

The materials consist of 80 stimuli, formed by 40 verbs paired with two first NPs each
as shown in sentences (6.3) and (6.4).

(6.3) The patient cured by the treatment had been diagnosed as terminal.

(6.4) The doctor cured by the treatment had invented it himself.

One of the NPs is a good patient (but bad agent) of the verb as in (6.3), and one is the
inverse, a good agent (but bad patient) as in (6.4). The plausibility of verb-argument
pairs was established in a norming study, the results of which we have been using in
Chapter 3. Unambiguous controls were created for the stimuli by inserting that was
before the ambiguous verb.

24 of the 40 stimuli with a good agent first NP and 21 of those with a good patient
first NP were parsed correctly. Of these, 17 good agent stimuli and 14 good patient
stimuli were covered by the FrameNet training data and were used as the basis for
predictions. The predictions of the lexicalised syntactic baseline model were based on
27 correctly parsed good agent stimuli and 24 correctly parsed good patient stimuli.

For this study, the average reading times per stimulus were kindly made available
by Ken McRae. We can therefore use the average reading times for the covered stimuli
instead of the average reading times for all stimuli to compute reading time differences.
Both the full and the covered data set show a very similar pattern of results.

Results and Discussion

For this data set, we made predictions for the verb and for by separately, since both
words contain cues for the processing system. The model (dashed blue lines in Fig-
ure 6.1) predicts that stimuli with good patients should be harder to read at the verb
than stimuli with good agents, where there is a conflict between the syntactic preference
for the main clause reading and the semantic preference for the reduced relative. At
by, both conditions are equally difficult, but from the agent NP on, our model predicts
more difficulty for the good agent sentences than for the good patients. This reflects the
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Figure 6.1.: McRae et al. (1998): Experimental results and model predictions for the
MC/RR ambiguity. GA: Good agent first NP, GP: Good patient first NP

revision of the previously well-supported main clause readings as the disambiguating
region unfolds.

We find these predictions mirrored in the experimental results (solid red lines), but
one region late. First of all, recall that the first experimental region combines the first
and second region for which our model makes predictions (verb+by). In this long
region, we see the difficulty with good patient sentences that was predicted by the
model to be encountered at the verb. In the next region, difficulty for good agent
and good patient sentences is relatively similar (the difference is not significant in
the experimental results), as predicted by our model. Finally, good agent sentences
prove to be significantly harder than good patient sentences. The discrepancy in timing
between the model predictions and the observed data are presumably caused by two
factors: First, the conflation of verb and by in the measurements, which does not allow
to exactly time the onset of the difficulty with good agents, and second a spillover
effect, a phenomenon frequently found with self-paced reading data, where effects
show up a region or two after their hypothesised onset.

The syntactic baseline (dotted yellow lines) in contrast makes exactly the same
predictions for both plausibility conditions. It predicts a large amount of difficulty
at the by-phrase followed by a smaller amount at the main verb. This distribution
clearly reflects the difficulty encountered in purely syntactic processing: After an initial
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preference for the more frequent main clause interpretation, most stimuli are analysed
as containing a reduced relative at by, and the remainder switches the preferred analysis
towards a reduced relative at the disambiguating main verb.

In sum, our model correctly predicts the pattern of experimental results. The one-
region lag between the model predictions and the observations can be explained by the
choice of the regions and the use of self-paced reading as experimental method. The
syntactic baseline fails to account for the influence of the thematic fit manipulation and
therefore does not account for the experimental findings.

6.2.4. MacDonald (1994)

Experimental setup

MacDonald (1994), in her Experiment 2, varies both thematic fit of the first NP and the
amount of information the post-verbal context in the ambiguous region yields with
regard to the correct analysis. This makes the study very interesting for us, because it
allows us to test whether the SynSem-Integration model correctly predicts the interplay
of syntactic and semantic constraints. Sentences (6.5) to (6.8) show a complete item
with all manipulations.

(6.5) The news stated that the microfilm concealed inside the secret passageway was
discovered. Good/Good

(6.6) The news stated that the microfilm concealed most of the night was discovered.
Good/Poor

(6.7) The news stated that the spy concealed inside the secret passageway was
discovered. Poor/Good

(6.8) The news stated that the spy concealed most of the night was discovered.
Poor/Poor

Thematic fit was varied by manipulating animacy: In a good thematic condition,
an inanimate first noun pointed towards a reduced relative continuation as in (6.5)
and (6.6), and in a poor thematic condition, an animate first noun pointed towards a
main clause continuation as in (6.5) and (6.6).

The manipulation of post-verbal material consisted of varying the point at which the
post-verbal phrases excluded a transitive main clause continuation of the sentences,
thereby promoting the reduced relative meaning. Good materials as in (6.5) and (6.7)
made this obvious at the first word. Poor materials as in (6.6) and (6.8) reliably excluded
the transitive main clause only at the third or fourth word (most of the could still be
continued to be a direct object, for example as most of the documents), giving the reader
more time to entertain a strong main clause hypothesis.
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The experiment used self-paced reading, presenting the first NP, then the verb
together with the post-verbal material and finally a two-word region starting with
the disambiguating main verb and followed by the rest of the sentence. MacDonald
found that a combination of good first NP and good post-verbal material (pointing
towards the reduced relative) eliminated the difficulty at the disambiguating main
verb. When the two information sources pointed into different directions, she found
difficulty effects at the disambiguation that were significant only in one of the subject or
items analyses. When both information sources pointed towards a main clause, readers
had significant difficulty at the disambiguating main verb.

Materials

The stimuli consisted of 128 reduced relative sentences. Each item was made up of
four versions of each sentence combining good and poor first NPs and post-verbal
information, as in sentences (6.5) to (6.8).

Sentence (6.5) shows both good NP and post-verbal information, both of which
points towards the ultimately correct reduced relative reading. In contrast, both types of
information point towards the main clause interpretation and thus are poor indications
of the ultimately correct interpretation in sentence (6.8). The other two stimuli combine
one good and one poor indication of the reduced relative interpretation. Unambiguous
controls were created for the items by inserting that was before the ambiguous verb.

Out of the four conditions, the two conditions with poor post-verbal material caused
the syntactic model most problems. It appears that the post-verbal adverbial phrases
used in the materials not only give information about the possible analyses late, but
that they are also relatively infrequent and therefore poorly attested in the training
data.

After we replaced most of the four-word phrases with two or three constructions that
were parsed correctly, the parser correctly processed 17 stimuli in the Poor NP/Poor
post-verb condition and 18 in the Good NP/Good post-verb condition. In the Poor
post-verb conditions, 21 stimuli each with poor and good NPs were parsed correctly.
Sparseness in the FrameNet training corpus excluded all but 9 stimuli in the Poor
NP/Good post-verb condition and 10 in the Good NP/Good post-verb condition.
7 stimuli are covered in the Poor NP/Poor post-verb condition and 8 in the Good
NP/Poor post-verb condition. This means that only one condition meets our require-
ments for the minimum number of stimuli, and generally, there are very few stimuli in
each of the conditions that we can base predictions on. We will nonetheless present
predictions for all four conditions, with the caveat that the Poor post-verb conditions
are rather underrepresented.

The baseline predictions are based on 21 stimuli each in the Good post-verb condi-
tions and 15 stimuli each in the Poor post-verb conditions.
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6. Evaluation of the SynSem-Integration Model

Method

In the reading-time study, measurements were taken at the end of the ambiguous region
(i.e., the last word of the post-verbal material), and at the two-word region starting
with the disambiguating main verb. We sampled the model predictions at the same
regions as for the McRae data, but summed the difficulty predictions from the first verb
up to the last word of the post-verbal material to capture the individual predictions
for all interesting sub-regions of the long ambiguous region. Below, the conditions
are named according to the goodness of the first NP followed by the goodness of the
post-verbal material.

Results and Discussion

Figure 6.2 shows the model predictions and the experimental results for the MacDonald
study. The model (dashed blue) predicts that the Poor NP/Poor post-verb (P-P) condi-
tion where both the first NP and the post-verbal material point towards a main clause
to be easiest during the ambiguous region, but hardest at disambiguation. Inversely,
the G-G condition, where both information sources point towards a reduced relative,
is hard in the ambiguous region and easy at disambiguation. The P-G condition is in
the middle between the other two, but harder to process during the ambiguous region
than at disambiguation.

All these predictions are correct: During the ambiguous region, processing is harder
the more strongly the thematic fit information and post-verbal material point towards
a reduced relative construction. At the disambiguation, readers have a more difficult
time to accommodate the reduced relative reading the more thematic fit and post-verbal
constraints pointed towards or at least allowed a main clause reading.

However, the model makes an incorrect prediction for the G-P condition, which
it predicts to be hardest during the ambiguous region and easiest at disambiguation.
Recall that the G-P condition yielded only 8 stimuli for analysis. For this relatively
limited amount of stimuli, no difficulty at all was predicted at disambiguation, which
leads to the extreme scaled predictions. While the predictions for the P-G condition
are almost perfect despite the low number of available stimuli, the result for the G-
P condition justifies our general requirement for a minimum number of stimuli by
demonstrating that predictions made on the basis of few stimuli can be unreliable.

The predictions of the syntactic baseline are plotted separately for the Good NP and
Poor NP conditions for clarity. Figure 6.3 shows that the baseline model predicts that
the G-P condition should be harder to process during the ambiguous region than the
G-G condition, which does not correspond to the observed pattern. For the Poor NP
conditions plotted in Figure 6.4, the baseline model predicts that the P-P condition
should be harder than the P-G condition in the ambiguous region and easier at the
disambiguation, which is also not correct.
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Figure 6.2.: MacDonald (1994): Experimental results and model predictions for the
MC/RR ambiguity, all conditions. Thematic Fit–Postverbal Material: G: Point-
ing towards RR, P: Pointing towards MC
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Figure 6.3.: MacDonald (1994): Experimen-
tal results and model predic-
tions for the Good NP condi-
tions.
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The syntactic baseline generally predicts that more changes to the preferred parse are
made in the Poor post-verb conditions during the ambiguity and in the Good post-verb
conditions at the disambiguation. This contradicts the intended effect of the post-verb
manipulation, where good post-verb constraints are supposed to disambiguate towards
a reduced relative reading during the ambiguous region, leaving no reason to change
the preferred parse at the disambiguation, while poor post-verb constraints should
postpone the disambiguation for as long as possible. The reason for this apparent
contradiction is that many of the Poor post-verbal constraints allow two switches in
preferred structure that both correspond to a main-clause reading, thus not excluding
the main-clause reading but incurring difficulty by the “flip” measure. The prepositions
used in the post-verbal materials can first be interpreted as a quantifier for an object
NP (as in about three kilos) and then as beginning an adverbial preposition modifying
an intransitive verb (as in about a week ago) before the disambiguation towards a reduce
relative takes place at the main verb. Thus, two changes of preferred analysis are
predicted during the ambiguous region versus just one at the disambiguation. For the
good post-verbal conditions, only one switch takes place for some stimuli during the
ambiguous region and possibly another one at the disambiguation.

In sum, the SynSem-Integration Model again makes correct predictions of difficulty
observations. Incorrect predictions for one condition were linked to a sparseness of
available stimuli. The syntactic baseline model predicts small differences between
conditions based on the manipulation of post-verbal material, but the predicted pattern
of difficulty points in the wrong direction, reflecting parser difficulty with the poor
post-verbal stimuli.

6.2.5. Numerical Evaluation

In addition to the qualitative evaluation of the model’s predictions of the McRae et al.
and MacDonald results, we also evaluate quantitatively. Since each study on its own
yields rather few data points for a meaningful correlation analysis, we pool the data
for the two MC/RR studies. We correlate the scaled model predictions to the scaled
experimental findings.

For the correlation analysis, we sum the model’s predictions for the verb and by
regions in the McRae et al. study to ensure that the number of predictions and ob-
servations corresponds and re-scale. We use Pearson’s r to test for correlation, since
the data are normally distributed according to a one-sample Kolmogorov-Smirnov
test. The model predictions are significantly correlated to the experimental results
with Pearson’s r = 0.792, p < 0.001. The Fixed/If-Worse model performs simi-
larly at r = 0.818, p < 0.001, and the Ratio/Ratio model does somewhat worse at
r = 0.641, p < 0.02, but still reaches a robustly significant correlation. For comparison,
the syntactic baseline does not achieve a significant correlation to the observations
(r = 0.199, ns).
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These results corroborate the qualitative analysis and show that our model, unlike the
syntactic baseline, correctly and reliably predicts difficulty in processing the MC/RR
ambiguity.

6.3. NP object/Sentence Complement

The NP/S ambiguity results from the possible interpretation of an NP as a direct object
or the subject of an embedded sentence complement. In the example sentences (6.9)
and (6.10), the ambiguity occurs at The criminal confessed his sins, where two continua-
tions are possible.

(6.9) The criminal confessed his sins and reformed.

(6.10) The criminal confessed his sins harmed too many people.

In sentence (6.9), his sins is as a direct object in a main clause, but in the sentence
complement reading shown in (6.10), the NP is not an immediate argument anymore,
but becomes part of the embedded sentence, which as a whole is a complement of the
verb. Accordingly, in the main clause reading, the NP receives a role directly from
the first verb, but in the embedded sentence reading, it only forms part of a larger
role-bearing argument of the matrix verb and directly receives a role only from the
embedded verb, harmed.

The ambiguous region in this construction comprises the second NP (his sins), with
the disambiguation towards the sentence complement reading following immediately
at the next word. In this ambiguity, readers usually interpret the second NP as the
direct object of the main verb and show difficulty at a disambiguation towards the
sentential complement interpretation. The experimental logic is therefore to see whether
information like verb subcategorisation or thematic fit can eliminate this difficulty
partially or completely. Comparison is usually to versions of the experimental items
where the complementiser that before the NP eliminates the ambiguity.

6.3.1. Experimental Evidence

The most important factors that have been found to influence the processing of the
NP/S ambiguity are verb subcategorisation and the thematic fit of the NP as a direct
object.

Verb Subcategorisation

The influence of verb subcategorisation preference, a bias of the verb for taking an NP
or sentential complement (SC) argument is controversial. Among the studies that argue
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6. Evaluation of the SynSem-Integration Model

against an effect of verb subcategorisation is Pickering et al. (2000). This eye-tracking
study held verb bias constant at a strong preference for SC arguments. However, the
results still showed a reaction to the plausibility of the ambiguous NP as a direct object:
In eye-tracking measures that reflect later stages of processing, implausible object NPs
in ambiguous stimuli were harder to read than plausible ones. Also, ambiguous stimuli
with plausible object NPs caused difficulty at the main verb in one of five measures.
This seems to indicate that verb preference does not rule out the construction of a direct
object reading even for verbs that are strongly SC biased.

Ferreira and Henderson (1990) also found no effect of verb bias using eye tracking.
Rather, readers adopted the NP object analysis regardless of verb type and experienced
difficulty at the disambiguation for ambiguous stimuli. In a replication using self-paced
reading, there was however an interaction between ambiguity and verb type in the
total time measure for the disambiguation, such that ambiguous stimuli with SC-biased
verbs were read faster than ambiguous stimuli with NP-biased verbs.

These somewhat conflicting findings may be explained by the observation in Hare
et al. (2004) that for the items used in Ferreira and Henderson (1990), the assumed
subcategorisation preferences of the verbs differ substantially from corpus counts that
differentiate by verb sense. This means that their results may have been compromised
by inaccurate estimates of verb preferences. However, a recount of verb preferences
on the basis of the Hare et al. data did not reveal such a tendency for the Pickering et
al. study, so this observation cannot explain the apparent momentary formation of a
direct object analysis even for strongly SC-biased verbs.

An early piece of evidence for the influence of verb bias comes from an self-paced
reading study reported in Holmes, Stowe, and Cupples (1989) which varied verb bias
and thematic fit of the NP. In this study, readers clearly experienced difficulty at the
disambiguation region for ambiguous stimuli with NP-biased verbs.

Trueswell et al. (1993) point out that the verb bias used by Ferreira and Henderson
(1990) was relatively weak and many of the NPs were implausible objects for the NP-
biased verbs. Also, they identify an alternative explanation for the longer reading times
in ambiguous SC-biased stimuli: Since many SC-biased verbs have a strong preference
for being followed by that, readers may be surprised or misled by the absence of the
complementiser. Since the ambiguous NPs in the Ferreira and Henderson study were
very short (one word), such a complementiser effect may well show up only in the
next region, the disambiguation, obscuring any differences between SC- and NP-biased
verbs due to misanalysis. No analysis of complementiser preference has been carried
out for the Pickering et al. study, so the possibility exists that their effects were caused
or enhanced by the absence of a complementiser when it was strongly expected, which
may have cued readers to prefer the direct object analysis.

Trueswell et al. (1993) ran a self-paced reading with more strongly controlled verb bi-
ases and ensuring that NPs were plausible objects. This study showed that participants
were sensitive to verb information in that they only showed processing difficulty at the
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disambiguation after an NP-biased verb without a complementiser. This result was
also replicated in an eye-tracking study. There was also a disruption effect on the NP
for SC-biased verbs without a complementiser, the strength of which was correlated to
the preference with which the verbs took a complementiser. Consequently, this effect
(and also similar small effects in the eye tracking study) was attributed to the lack of an
expected complementiser. First fixation durations however revealed the same pattern
that was found with this measure in Ferreira and Henderson: Reading times were
longer in the absence of a complementiser regardless of verb type.

Garnsey et al. (1997) note that in the Trueswell et al. (1993) items, the ambiguous NPs
now were much more plausible objects for the NP-biased verbs than for the SC-biased
verbs, which might have inflated the observed influence of verb bias. However, they
generally replicated the Trueswell et al. (1993) results in an eye-tracking experiment
that varied both verb bias and the plausibility of the NP as a direct object. There
was a disruption effect at the disambiguating region for NP biased verbs only, with
only hints at an influence of plausibility. For SC-biased verbs, neither ambiguity nor
plausibility had an effect at the disambiguation. This pattern was reliable also in first
fixation durations, which it had not been for Trueswell et al. However, the effect of
complementiser preference found by Trueswell et al. wasn’t replicated.

The effects at the disambiguation were replicated in a self-paced reading study. In
that study, readers however were slower reading a plausible NP after EQ-biased verbs
instead of faster, as expected and as shown in the eye tracking experiment. Garnsey
et al. attribute this to the large number of sentential complement analyses in the
experiment and the experimental paradigm used.

Pickering et al. (2000), who found that even for SC-biased verbs, an object interpreta-
tion seemed to be initially constructed, as noted above, argue that Garnsey et al. found
no evidence for this for SC-biased verbs due to a lack of power and a short ambiguous
region, while Pickering et al. found the clearest results on the words after the NP.
Further, they note that the evidence even for plausibility effects with NP-preferring
verbs is relatively weak (see below for more details). This implies that a similar effect
for SC-preferring verbs may not have been detected by the experiment.

In sum, there is no consensus in the literature about the role of subcategorisation
information. Holmes et al. (1989) and Pickering et al. (2000) find no influence of subcat-
egorisation preference on readers’ preferences to construct a direct object interpretation
of the ambiguous NP, while Ferreira and Henderson (1990) find a facilitating effect of
subcategorisation information on the disambiguation, and Trueswell et al. (1994) as well
as Garnsey et al. (1997) find that readers do not construct a direct object interpretation
for SC-biased verbs.
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Thematic Fit

A number of the studies introduced above also varied thematic fit. The results clearly
establish influence of thematic fit on processing the NP/S ambiguity. The only excep-
tion is Holmes et al. (1989), where no effect of plausibility was found, except on the
ambiguous NP for NP-biased verbs only using the grammaticality judgement task.
This task has however been criticised for changing readers’ processing strategies and
reactions, which is probably the reason why this effect did not show up in self-paced
reading without the grammaticality judgement task.

Garnsey et al. (1997) found no effect of plausibility on SC-biased verbs, but verbs
that were equibiased between an NP and SC preference were processed faster at the
disambiguation when they had implausible objects that seemed to bias readers towards
the SC interpretation. Also, at the NP of ambiguous items, there was processing
difficulty for NP-biased verbs when the NP was implausible as a direct object, and
total times showed some indication for difficulty at the disambiguation after reading
plausible NPs.

Pickering et al. (2000) found effects of plausibility both at the ambiguous NP and at
the disambiguation, so that implausible NPs in ambiguous items were hard to read
and ambiguous stimuli with plausible object NPs caused difficulty at the verb, even
though all verbs were SC-biased.

Finally, Pickering and Traxler (1998), in an eye-tracking experiment that only manip-
ulated thematic fit, also found a clear influence of thematic fit in that readers found
it harder to process an implausible object NP in ambiguous stimuli, and showed dis-
ruption at the embedded verb for ambiguous stimuli with plausible object NPs. If the
NP was implausible, difficulty was found in only one measure at the disambiguation
(total time). Thus, implausible object NPs did not completely eliminate processing
difficulty at the disambiguation, but they greatly reduced it. While verb bias was not
manipulated, it can be assumed that verbs were biased towards taking an NP argument,
as this is the largest subgroup of verbs that can take both NP and sentence complement
arguments.

Other Factors

In the studies cited above, some additional factors were found to be of importance:
Holmes et al. (1989), in a third experiment, found an interaction of NP length with
ambiguity, such that long NPs were harder to process at the disambiguation of reduced
items containing SC-biased verbs. It is conceivable that there is a syntactic preference
for subjects of sentential complements to be short, so that long NPs signal a direct
object.
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Summary

In sum, we have discussed several factors that influence the processing of the NP/S
ambiguity: Verb subcategorisation, although disputed in the literature, thematic fit,
and, as a side note, the length of the ambiguous NP. The SynSem-Integration model
accounts for thematic fit by its semantic model and can model effects of NP length via
preference information coded in the grammar of the syntactic model. The influence
of verb subcategorisation information is accounted for by lexical preferences in the
probabilistic grammar, while the SynSem-Integration model shows a bias for the direct
object interpretation, because this analysis involves fewer grammar rule applications
and is therefore more likely than the sentential complement analysis. This small tree
bias is inherent in all PCFG-based parsing models. Following Crocker and Brants (2000),
we propose to interpret this bias as implementing a preference for simple structures.
The smaller direct object analyses have the additional advantage of being immediately
semantically interpretable. When the parser adopts the sentential complement reading,
the plausibility of a role assignment to the sentential complement has to be delayed
until the sentential complement verb is encountered.

Due to the small tree bias, our syntactic model is prone to initially prefer a direct
object analysis, as argued for by Holmes et al. (1989), Ferreira and Henderson (1990)
and Pickering et al. (2000). On the other hand, strong lexical preferences can in principle
override this bias and result in an immediate preference for the sentential complement
analysis, as found by Trueswell et al. (1994) and Garnsey et al. (1997). Therefore, it is
conceivable that our model can account for both opposing views, depending on the
properties of the stimuli.

6.3.2. Data Selection and Evaluation Method

We model the experimental results from Garnsey et al. (1997) and from Pickering and
Traxler (1998), because only for these two studies, the required amount of at least 10
stimuli per condition was covered by both the syntactic and semantic model. Note
that for one of the three verb conditions in the Garnsey et al. study, the condition
with DO-biased verbs, only seven stimuli were covered per plausibility condition. We
present predictions for this condition alongside predictions for the SC-bias condition
for the sake of completeness. Recall that the equibiased condition in this study was
used as a development set for parameter setting (Section 5.3).

The required amount of stimuli was also covered for the Holmes et al. (1989) study,
but since no effect of thematic fit was found there, we do not make a formal comparison
of the model’s predictions and their results. Our model does however predict the null
effect of thematic fit as well as the effect of verb bias.

We make predictions for the critical noun and verb regions in the modelled exper-
iments, ignoring post-nominal and post-verbal regions. These regions are used to
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capture evidence of processing difficulty that is delayed for physiological or experimen-
tal design reasons, while our model predicts difficulty without delay. Furthermore, the
syntactic model often has difficulty to correctly process post-nominal or post-verbal ma-
terial, and the amount of covered stimuli can be increased by excluding these regions.
Our predictions are for the last word in each of the critical regions. If no significant
results were found in the critical verb and noun regions, we compare our predictions
to the findings for the post-verbal or post-nominal region.

During processing, the semantic model has to decide whether the NP following
the first verb is a direct object or the subject of a sentential complement. In the direct
object case, the NP directly receives a role from the seen verb, but in the sentential
complement case, it indirectly receives the role assigned to the sentential complement.
We therefore compare the probability of the NP directly receiving an object role to the
probability of assigning a sentential complement role with an as-yet unseen verbal head.
This comparison allows us to take into account the verb’s preferences for taking direct
objects versus sentential complements. Since the head of the sentential complement
is unseen, the probability prediction for this role assignment depends on smoothing.
Recall, however, that smoothed plausibility predictions are the rule rather than the
exception, since few role fillers are actually encountered with the verb in the training
data.

6.3.3. Garnsey et al. 1997

Experimental Setup

Garnsey et al. (1997) varied the plausibility of the ambiguous NP and verb bias on
three levels: They used verbs that prefer a sentential complement (SC verbs), verbs
that prefer an NP argument (DO verbs) and verbs that are equibiased (EQ verbs).
Preferences were established by a norming study.

An eye tracking study and a self-paced reading study were conducted. We model
the total times measured in the eye-tracking experiment, using the reported length-
corrected residual reading times. For this measure, Garnsey et al. found no effect of
plausibility on SC-biased verbs, but verbs that were equibiased between an NP and
SC preference were processed faster at the disambiguation when they had implausible
objects. For DO verbs, there was difficulty at the disambiguation for ambiguous
stimuli with plausible NPs (interaction of ambiguity and plausibility significant by
participants). For all three conditions, processing was slowed at the NP for ambiguous
stimuli, regardless of plausibility.

The EQ condition is the development set on which we optimised syntactic and
semantic cost computation and the interpolation factor between syntax and semantics.
We will therefore not present the model’s predictions for this condition.
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Materials

The materials consisted of 32 stimuli per verb condition, formed by 16 sentences with
two versions of the ambiguous NP each. Verb biases and the plausibility of the NPs as
objects and as subjects of the sentence complement were established through norming
studies. Sentence (6.11) shows an example stimulus with a plausible ambiguous NP
and sentence (6.12) one with an implausible ambiguous NP.

(6.11) The editor printed the article had been slanderous to him.

(6.12) The editor printed the media had been slanderous to him.

The example stimuli are for a DO-preferring verb. Verbs were classified as DO or
SC if they were completed twice as often with the respective argument than with
the other. EQ biased verbs occurred approximately the same number of times with
both continuations.2 The plausibility ratings for plausible and implausible object NPs
differed at least by 2.5 points on a 7 point scale. The plausibility ratings for the NPs as
subjects of embedded clauses also made a plausibility confound unlikely. Unambiguous
controls were created for the items by inserting the complementiser that after the first
verb.

Of the 32 stimuli in the DO condition, eight were correctly parsed and seven also
covered by FrameNet for each plausibility condition. As mentioned above, we will
still present the predictions for this condition for the sake of completeness. Of the
32 SC stimuli, 13 were correctly parsed for both conditions, and 12 also covered by
FrameNet. The predictions of the syntactic baseline are based on 16 stimuli each in the
SC conditions and 13 stimuli each in the DO conditions.

Results and Discussion

Figures 6.5 and 6.6 show the predictions and observed data for the SC and DO verb
conditions. For both data sets, the baseline predicts the vast majority of the difficulty
to be encountered at the disambiguating region, reflecting the parser’s preference for
the direct object interpretation. This prediction is the opposite of the findings for the
SC data set. For the DO set, it also predicts the majority of the difficulty to lie at the
disambiguation, but in addition, it predicts a small difference between the thematic fit
conditions, such that the good object nouns to be somewhat harder to process than the
bad object nouns, which again is the opposite of the findings.

In contrast, our model’s predictions are a very good fit to the data. For SC verbs,
where no significant effects were found, our model correctly predicts the complete
absence of difficulty at the disambiguation for stimuli with implausible objects, and

2Garnsey et al. report that two verbs were misclassified with regard to their subcategorisation preferences.
The stimuli in question were not covered by our training data, so we do not consider them.
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Figure 6.5.: Garnsey et al. (1997): Experimental results and model predictions for the
NP/S ambiguity, SC verbs. GO: NP is plausible direct object, BO: NP is
implausible direct object

medium amounts of difficulty in both regions for stimuli with plausible objects, with a
tendency towards less difficulty at the disambiguation than at the NP.

For the DO verbs, our model (Figure 6.6) correctly predicts the clear crossover pattern
in scaled observed difficulty, such that stimuli with plausible NPs were much easier to
process at the NP than at the disambiguation, with a reverse pattern for stimuli with
implausible first NPs. Again, we see very accurate predictions made on the basis of
very few stimuli (as in Section 6.2.4).

6.3.4. Pickering and Traxler (1998)

Experimental setup

Pickering and Traxler (1998) varied only the thematic fit of the ambiguous NP as a
direct object of the verb, without controlling verb bias. As discussed above, their
eye-tracking study found a clear influence of thematic fit, replicated in a second study
using the same materials and adding a one-sentence prior context to make reading
more natural. We model total reading times per critical region in the eye-tracking
study without context presentation. For this measure, effects were found both on the
ambiguous NP and at the disambiguation. Implausible ambiguous NPs are harder to
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Figure 6.6.: Garnsey et al. (1997): Experimental results and model predictions for the
NP/S ambiguity, DO verbs. GO: NP is plausible direct object, BO: NP is
implausible direct object

read than plausible ones, both across all items and within the ambiguous items. The
disambiguation is harder to read after seeing a plausible ambiguous NP than after
seeing an implausible one, as expected. Also, ambiguous stimuli with implausible
NPs are easier to read at the disambiguation than their unambiguous controls. The
interaction between plausibility, ambiguity and region is significant by subjects.

Materials

The materials consisted of 48 stimuli. Verb-object pairs were constructed out of 24 verbs
so that every verb was paired with a plausible and an implausible object, as shown in
sentences (6.13) and (6.14).

(6.13) The criminal confessed his sins harmed too many people.

(6.14) The criminal confessed his gang harmed too many people.

Sentence (6.13) contains an plausible object NP, and sentence (6.14) an implausible
object NP. In a norming study, plausible verb-object pairs elicited a judgement of 5.0 or
higher on a 1-7 scale, and implausible verb-object pairs elicited a judgement of 2.0 or
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Figure 6.7.: Pickering and Traxler (1998): Experimental results and model predictions
for the NP/S ambiguity. GO: NP is plausible direct object, BO: NP is
implausible direct object

lower. A second norming study ensured that all objects made plausible subjects for
the sentential complement continuations of the stimuli. Unambiguous controls were
created for the items by adding the complementiser that after the first verb.

Of the 24 stimuli for each condition, 15 stimuli with plausible objects were parsed
correctly, out of which 13 are covered by FrameNet. 17 stimuli with implausible objects
were parsed correctly, yielding 15 stimuli covered by FrameNet. The syntactic baseline
predictions are based on 14 stimuli in the good object condition and 16 stimuli in the
bad object condition.

Results and Discussion

The SynSem-Integration Model predictions (dashed blue), baseline predictions (dotted
yellow) and the observed difficulty (solid red) are presented in Figure 6.7. For this data
set, the syntactic baseline predicts all the difficulty to be encountered at the verb, which
reflects again the parser’s preference for a direct object interpretation of the items. The
baseline model also predicts a small difference between the thematic conditions, which
however is at odds with the observations. For this data set, our model predictions are
quite similar to the baseline predictions for this data set: The model clearly predicts
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most of the difficulty to lie at the main verb, with somewhat more difficulty at the noun
phrase for bad objects and at the disambiguation for good objects. The trend of these
predictions is indeed correct, as the experimental data show bad objects to be harder
to read at the noun phrase and easier at the disambiguation. However, the model
obviously overestimates the amount of difficulty encountered at the disambiguation,
and differs only slightly from the syntactic baseline.

A detailed analysis of the model predictions shows that the reason lies not so much
with the model, but with a property of the items for this data set. In the Pickering
and Traxler items, the disambiguation consists of a full verb in the majority of cases,
whereas in the Garnsey et al. items, the disambiguation begins with an auxiliary. Many
of the full verbs, unlike the auxiliaries, can be interpreted as the beginning of a reduced
relative clause modifying the ambiguous NP. Thus, the stimulus The biologist proved the
theory explained can be constructed to be consistent with the continuation by his colleague
was correct, which is not intended in the experiment, as well as with all the unclear data, as
intended by the experimenters. The semantic model systematically prefers the reduced
relative reading over the embedded clause reading, reflecting a bias for the direct object
interpretation of the NP. Consequently, the syntactic and semantic preferences often
diverge at the point of disambiguation, causing the prediction of much difficulty in this
region. Despite this effect, the number of stimuli that are interpreted as intended by the
experimenters is high enough to predict the correct trend for the differences between
the thematic fit conditions.

6.3.5. Numerical Evaluation

We again also present a quantitative analysis of the model’s predictions for the NP/S
ambiguity. Again, we pool the data from the two studies to have sufficient N for
a correlation analysis. We enter scaled observed difficulty data for the DO and SC
conditions from the Garnsey et al. study and for the Pickering and Traxler study into
a correlation analysis with the model’s predictions for these data sets. The resulting
correlation coefficient of Pearson’s r = 0.688 is significant at the p < 0.02 level (Fixed/If-
Worse: r = 0.780, p < 0.01; Ratio/Ratio: r = 0.737, p < 0.01). This is true despite
the model’s qualitatively poor predictions for the Pickering and Traxler data, which
suggests that the reliable correlation rests on the results for the Garnsey et al. data (but
see also Section 6.6).

The baseline model again does not achieve a significant correlation to the observed
data. At r = −0.165, the correlation coefficient is even negative due to the incorrect
predictions for the Garnsey et al. results.
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6.4. NP object/0

The NP/0 ambiguity shares some characteristics with the NP/S ambiguity, because
again the interpretation of an ambiguous NP is affected. This NP can either serve as a
direct object to the verb in an adverbial clause, as in (6.15), or as the subject in a main
clause, as in (6.16).

(6.15) While the woman was editing the magazine it started to rain.

(6.16) While the woman was editing the magazine amused the reporters.

Accordingly, in the direct object reading, the NP receives a role from editing, but
in the main clause reading, it only receives a role once the verb in the main clause,
amused, is encountered. The difference to the NP/S ambiguity described above is that
in the NP/S ambiguity, the NP as part of the verb’s sentential complement is still in the
argument domain or θ domain (Pritchett, 1992) of the verb. In the NP/0 ambiguity, the
NP in the main clause is completely independent of the verb in the adverbial clause,
which motivates the characterisation of this alternative as the 0 interpretation.

The ambiguous region in this structure comprises the NP, with the disambiguation
following immediately at the next word. In this ambiguity, readers usually interpret
the ambiguous NP as the direct object of the verb and show difficulty when it is
disambiguated towards the subject of the main clause. The experimental logic is
therefore usually to see whether information like verb subcategorisation preference or
thematic fit can eliminate this difficulty partially or completely. Comparison is usually
to versions of the experimental items where a comma (or non-object material) before
the NP eliminates the ambiguity.

6.4.1. Experimental Evidence

In the literature, three factors were the focus of investigation for the NP/0 ambiguity:
Verb bias, animacy of the subject NP (which can modulate verb bias) and the thematic
fit of the ambiguous NP as an object of the verb. In addition, an effect of introducing
disambiguating prepositional phrases or adverbials after transitive verbs has been
found.

Verb Bias

An early, influential paper on the NP/0 ambiguity is Mitchell (1987). His self-paced
reading study varied only verb subcategorisation bias, using transitive and intransitive
verbs. Readers had more trouble at and after the disambiguation point after reading
verbs with a transitive bias than after reading intransitive verbs: Apparently, they
assumed the NP to be a direct object, and had trouble accommodating the main clause

148



6.4. NP object/0

subject reading at the disambiguation. However, reading the ambiguous NP after
the intransitive verbs took longer than reading it after the transitive verbs, which
indicates a possible reanalysis process after initially attaching the NP as an object to
the intransitive verb.

These results were refuted by Adams, Clifton, and Mitchell (1998) in an eye-tracking
study aimed at excluding an influence of presentation mode in the self-paced reading
study, but replicated in a subsequent eye-tracking experiment by van Gompel and
Pickering (2001), which used longer noun regions to catch spillover effects and which
also analysed measures based on regressive eye movements.

Pickering et al. (2000) confirmed the interpretation that a direct object analysis is
initially assumed even for verbs with a strong intransitive bias by showing in an
eye-tracking study that the implausibility of the ambiguous NP as an object for the
transitive-biased verbs disrupted processing (see also the discussion of thematic fit
manipulations below).

Verb Bias Induced by Animate Subject

A number of studies have investigated the effect of varying animacy information of the
subject NP with verbs that can be used as causative transitives or ergative intransitives,
such as stop. The general result is that animate subject NPs like police bias readers
towards adopting the causative, transitive reading of the verb, while inanimate subject
NPs like truck bias them towards adopting the ergative, intransitive reading. Thus, they
would prefer the police stopped to be continued by a direct object to stopped, while in the
context of the truck stopped, stopped would be preferably interpreted as intransitive.

This effect was shown for example by Stowe (1989) in an influential study using
self-paced reading combined with a grammaticality judgement task. Ambiguous NPs
were plausible objects in a transitive reading of the verbs. Readers showed difficulty
only if sentences were ambiguous and the subject NP was animate, showing clearly
that animate subjects made the verbs behave like transitives and inanimate subjects
made them behave like intransitives, for which there is no need for reanalysis at the
disambiguation. Stowe did however not report any significant effects at the ambiguous
NP, thus not replicating Mitchell’s result regarding intransitive verbs.

Clifton (1993) replicated Stowe’s result for the disambiguating region in an eye-
tracking study. Animacy of the subject NP clearly influenced readers’ preference to
analyse the ambiguous NP as a direct object. For ambiguous NPs that were plausible
direct objects, Clifton also replicated Mitchell’s result: The NP was harder to read
when the verb was interpreted as an intransitive (in inanimate subject conditions).
This again probably indicates that readers did initially misanalyse the NP as a direct
object, but recovered quickly. For this condition, Clifton even found some disruption
at the disambiguation which shows that the object analysis was often not abandoned
immediately. There was no evidence for this in either Mitchell’s or Stowe’s study.
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Plausibility of the Ambiguous NP

Regarding the influence of plausibility of the ambiguous NP as a direct object for the
verb, the picture emerging from the literature is again clear: Plausibility information
has an effect, both on reading the ambiguous NP, and on reading the disambiguation.

At the Ambiguous NP Stowe (1989) crossed verb valency with the plausibility of the
ambiguous NP as an object. At the ambiguous NP, it became clear that implausible
ambiguous NPs are always difficult to read, a result which again can be interpreted as
evidence that an object interpretation of the NP is constructed initially for both transitive
and intransitive verbs. This is replicated for verbs with a transitive interpretation by
two eye-tracking studies which both used transitive verbs (with optional intransitivity)
and varied the plausibility of the ambiguous NP (Pickering and Traxler, 1998, Lipka,
2002). Findings by Pickering et al. (2000) furnish the replication for verbs with an
intransitive bias.

Clifton (1993) came to slightly different results across two eye-tracking studies in
which animacy information determined verb valency. When the ambiguous NP was an
implausible object, he also found uniform difficulty for both verb conditions. However,
in a second experiment in which the ambiguous NP was a plausible object, difficulty
occurred for verbs that were treated as intransitive. This has not been found in any
other study, and Clifton attributes his result to a reanalysis effect due to the insufficient
plausibility of the ambiguous NP.

At the Disambiguation An effect of NP plausibility as an object is uniformly found
at the disambiguation. In the Stowe (1989) study, readers had difficulty if the verbs
were biased towards a transitive reading. There also was an interaction of animacy
and plausibility, such that the transitive-implausible condition was faster than the
transitive-plausible condition. Implausibility of the object appears to allow readers
to recover from assuming the direct object reading early on. For intransitive verbs,
reading times are slower after reading an implausible direct object. This finding is
somewhat surprising, as the transitive verb bias together with the implausibility of
the direct object interpretation should bias readers towards the ultimately correct new
clause interpretation, making it easy to read the disambiguation.

Clifton (1993) found a more expected pattern: Readers showed difficulty for verbs
with a transitive interpretation, but not for verbs with an intransitive interpretation,
regardless of plausibility (since plausibility was varied not within, but between experi-
ments, the direct influence of plausibility on difficulty cannot be assessed). Pickering
and Traxler (1998) as well as Lipka (2002) also found that for transitive verbs, the
disambiguation was harder to read after plausible objects, with only hints at difficulty
for implausible objects at or after disambiguation.
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For verbs with intransitive bias, Pickering et al. (2000) also found more disruption
after plausible direct objects than after implausible ones, which is the reverse of Stowe’s
result.

In sum, it seems clear that implausible object NPs are harder to read after both
transitive and intransitive verbs, while plausible object NPs are easy to integrate and
cause no difficulty. At the disambiguation, the picture reverses and readers show
difficulty after reading a plausible object NP. The difficulty is most pronounced for
transitive verbs, but has also been shown to exist for intransitives.

Non-NP Material after the Verb

Some of the studies introduced above added non-NP material such as a prepositional
phrase (PP) or an adverb after the verb of the adverbial clause (just before the am-
biguous NP) to disambiguate their materials towards the new clause reading: PPs
and adverbs typically do not intervene between a verb and its objects, so they all but
rule out a transitive verb reading and indicate that the adverbial clause is closing.
This strategy has however been shown to cause disruption for items with a transitive
preference, presumably because an expectation for a direct object is disappointed.

Mitchell (1987), for example, added a PP after the verb to disambiguate his items. He
found that the PP made it hard to read the ambiguous NP after transitive verbs. After
reading intransitive verbs and the PP, processing of the NP was faster. Adams et al.
(1998) found a similar effect with an adverb that was also used for disambiguation:
There were both indications of difficulty for transitive verbs on reading the NP after
the adverb and clear indications that the adverb itself was read more slowly following
a transitive verb. Stowe (1989) also used prepositional phrases for disambiguation, but
found no effects in the NP region.

Summary

We have seen that the thematic fit of the ambiguous NP as a direct object have direct
bearing on the processing of the NP/0 ambiguity: Thematic fit of the ambiguous NP
facilitates or hinders the integration of the NP as a direct object, as revealed by reading
times both at the NP and at in the region of disambiguation. This semantic factor is
accounted for in principle by our semantic model.

Verb subcategorisation preferences, be they global or invoked by a biasing subject
NP as for ergative/causative verbs, seem to have a limited influence on the process-
ing of the NP/0 ambiguity: A number of studies has found difficulty effects at the
ambiguous NP even for intransitive verbs, suggesting that readers construct a direct
object interpretation at least briefly. As for the NP/S ambiguity, our semantic model
can account for this object preference through the small tree bias which prefers a direct
object interpretation even if the verb is biased against this subcategorisation frame.
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The SynSem-Integration model can in principle also account for the influence of
the first NP on the subcategorisation bias for ergative/causative verbs through the
plausibility evaluation of the semantic model.

In addition, introducing disambiguating prepositional phrases or adverbials after
transitive verbs can cause processing difficulty in addition to disambiguating the
ambiguity, possibly because an expectation for a direct is disappointed. In these cases,
both the syntactic and semantic model predict lower probabilities for a transitive verb
that is usually seen with an object to suddenly lack one, so our model is able to account
for this effect.

6.4.2. Data Selection and Evaluation Method

We model the experimental results from Pickering and Traxler (1998) and from Picker-
ing et al. (2000), again because only for these studies, the required amount of at least 10
stimuli per condition were available. We make predictions for the critical noun and
verb regions in the modelled experiments, again ignoring post-nominal and post-verbal
regions, as justified in Section 6.3.2.

6.4.3. Pickering and Traxler (1998)

Experimental Setup

Pickering and Traxler (1998) varied the thematic fit of the ambiguous NP as a direct
object of the verb, using verbs that can be assumed to have a bias for the transitive
reading. As discussed above, their eye-tracking study found a clear influence of the-
matic fit, generally replicated in a second study using the same materials and adding
a one-sentence prior context to make reading more natural. We model total reading
times per critical region in the initial study without context presentation. For this
measure, effects were found both on the ambiguous NP and at the disambiguation.
First, implausible ambiguous NPs were harder to read than plausible ones. The disam-
biguation was harder to read after seeing a plausible ambiguous NP than after seeing
an implausible one, for both ambiguous and unambiguous sentences. After seeing an
implausible ambiguous NP, there were no traces of disruption in the total time measure:
Ambiguous items were read as fast as unambiguous ones. In addition, the three-way
interaction between ambiguity, plausibility and region was significant.

Materials

The materials consisted of 48 stimuli. Verb-object pairs were constructed so that
every object was paired with two verbs, one for which it was a plausible and one
for which it was an implausible object, as demonstrated by sentences (6.17), which
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shows the plausible verb-object combination, and (6.18), which shows the implausible
combination.

(6.17) As the woman edited the magazine amused all the reporters.

(6.18) As the woman sailed the magazine amused all the reporters.

In a norming study, plausible verb-object pairs elicited a judgement of 5.0 or higher
on a 1-7 scale, and implausible verb-object pairs elicited a judgement of 2.0 or lower. A
second norming study ensured that all objects made plausible subjects for the sentential
complement continuations of the stimuli. Verbs and objects were counterbalanced to
create identical critical regions across conditions. Unambiguous controls were created
by simply adding a comma after the verb in the adverbial clause.

To increase coverage of the syntactic parser, we to standardised the initial adverbial
clause. The parser assigns the correct structure to sentences with adverbial clauses of
the form while the X was Ying. . . , but does not correctly close the adverbial clause at the
ambiguous NP or after disambiguation for other forms of adverbial clauses such as
after the X had Yed. . . . We therefore standardised all adverbial clauses to the while type
using the past progressive tense.

Note that the re-formulation does not affect the analyses yielded by the semantic
model. While human readers show more difficulty at the disambiguation of past-tense
NP/0 structures than past progressive structures (Frazier, Carminati, Cook, Majewski,
and Rayner, 2005) and thus react to cues of tense, our semantic model only evaluates
pairs of verb-argument lemmas and has no representation for the semantics of tense. It
therefore makes the same predictions for the original and the adapted formulation of
the items. The re-formulation also does not affect the syntactic analysis of the items
other than allowing the parser to assign the correct sentence structure more often.

Of the 24 stimuli for each of the two conditions, 14 stimuli were parsed correctly,
out of which 10 stimuli each were covered by FrameNet. The baseline predictions are
derived from 13 stimuli in each condition.

Results and Discussion

For this data set, the syntactic baseline again predicts all difficulty to be encountered at
the disambiguating main verb, with no difference in difficulty between the semantic
conditions. As shown in Figure 6.8, our model only correctly predicts a difference in
relative difficulty for the conditions in each region: On the ambiguous NP, it predicts the
bad object NPs to be harder to read than the good object NPs. On the disambiguation,
it predicts more difficulty after reading a good object NP. However, the difference
between the predictions for each condition is very small, and the model drastically
over-estimates the difficulty encountered at the disambiguation.
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Figure 6.8.: Pickering and Traxler (1998): Experimental results and model predictions
for the NP/0 ambiguity. GO: ambiguous NP is good object, BO: ambiguous
NP is bad object.

This result again hinges partially on the formulation of the experimental items, just
as for the Pickering and Traxler NP/S data set discussed in Section 6.4.3 above. Again,
the items allow a reduced relative interpretation of the main verb that was intended to
disambiguate the ambiguity, and the semantic model prefers this unintended reading
over the correct analysis, causing the prediction of difficulty at the disambiguation.
However, there is a second factor: For this ambiguity, the bias towards interpreting the
ambiguous NP as a direct object is even stronger than for the NP/S ambiguity, as the
semantic model has a bias towards preferring analyses that contain frequently seen role
sets for each verb (recall Section 5.2.2). Since transitive verbs are seen more frequently
with a subject and object in the training data than in an intransitive reading with just a
subject, the semantic model is biased towards preferring analyses that assign an object
role to the ambiguous NP instead of making it the subject of another transitive verb
(momentarily) without an object.

Since the model thus strongly disprefers the correct analysis at the disambiguation for
this data set, there are hardly any stimuli for which the intended analyses are preferred.
This leads to the uniform prediction of extreme difficulty at the disambiguation, which
is not mirrored in the data.
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6.4.4. Pickering et al. (2000)

Experimental Setup

Pickering et al. (2000) used optionally transitive verbs with a strong intransitive bias.
They varied the thematic fit of the ambiguous NP as a direct object of the verb. They
did not create control items by inserting a comma, but used the plausible condition as
a comparison for the implausible one and vice versa. We model the total time findings
from their eye-tracking study for each region, which were as follows: On the NP, total
time was longer for implausible objects, and on the verb, total time was longer for
plausible object stimuli. The interaction of plausibility and region was also significant.

Materials

The materials consisted of 52 stimuli. 26 verbs were chosen that had a strong intransitive
bias, both in free sentence production and in a gated completion task. Verb-object pairs
were then constructed so that every verb was paired with two objects, a plausible and
an implausible one, as demonstrated by sentences (6.19), which contains a plausible
object, and (6.20), which contains an implausible object.

(6.19) While the pilot was flying the plane stood over by the fence.

(6.20) While the pilot was flying the horse stood over by the fence.

In a norming study, plausible verb-object pairs elicited a rating of more than 5.0
on a 1-7 scale, and implausible verb-object pairs elicited a rating of less than 2.0. A
second norming study ensured that all objects made plausible subjects for the sentential
complement continuations of the stimuli.

The materials contained a post-nominal region consisting of a two-to-four word
noun modification (relative clause or prepositional phrase). Again, as for the materials
in Section 6.4.3, the post-nominal material created difficulty for the parser and was
deleted. Also, we again standardised all adverbial clauses to the while type using the
past progressive tense. Recall that this re-formulation has no effect on the semantic
analysis of the items by the semantic model or on the syntactic analyses (other than
higher accuracy).

Of the 26 stimuli for each of the two plausibility conditions, 13 stimuli each were
parsed correctly. 11 of these were also covered by FrameNet. The predictions of the
baseline model are based on 14 stimuli in the good objects condition and 13 stimuli in
the bad objects condition.

Results and Discussion

Since there are no unambiguous controls in this study, Pickering et al. compare the
reading times for the good object conditions to the reading times for the bad object
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Figure 6.9.: Pickering et al. (2000): Experimental results and model predictions for the
NP/0 ambiguity. GO-BO: Difficulty as difference in reading times between
good objects (GO) and bad objects (BO).

conditions. The plot of observed and predicted difficulty in Figure 6.9 therefore shows
the relative difficulty of good objects as opposed to bad objects. It was constructed by
plotting the scaled results of subtracting the reading times for good object sentences
from the reading times for bad object sentences.

For this data set, the syntactic baseline again predicts no difference in difficulty
between the semantic conditions. This manifests as a straight line on the abscissa. Our
model correctly predicts that good objects are easy to read in comparison to bad objects
at the ambiguous NP, and that bad objects in contrast are hard to read in comparison
with good objects at the disambiguation.

Note, however, that the Pickering et al. items again show the same characteristic
as the Pickering and Traxler sets of items with regard to an unintended ambiguity
arising at the point of disambiguation. In addition, the model again strongly disprefers
the correct analysis of the items at the disambiguation. The correct predictions are
reached again through a small number of stimuli that are processed as intended by
the experimenters. For this data set, the large amounts of difficulty predicted for the
disambiguating region in both conditions equal each other out when the predictions
for the bad object condition are subtracted from those for the good object condition,
which leads to the accurate model predictions plotted in Figure 6.9.
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6.4.5. Numerical Evaluation

For this data set, a numerical evaluation is difficult even for the pooled data: the
Pickering and Traxler study yields four data points, and the Pickering et al. study only
two. For six data points, Pearson’s r has to be at least 0.754 for the correlation to be
significant. It is therefore not unexpected for the correlation between observed and
predicted difficulty to be not significant (p > 0.1) for all models. In addition, however,
r is low at about r = 0.3 for the If-Worse models (r = 0.2 for the Ratio/Ratio model)
because of the models’ failure to estimate the relative difference across regions for each
condition for the Pickering and Traxler data. However, the syntactic baseline still does
not outperform our model: The correlation to the observed data is also not significant,
and at r = −0.260, the correlation coefficient is even negative, because the syntactic
baseline predicts no difference at all between the conditions.

6.5. PP Attachment

A PP attachment ambiguity usually arises in utterances like (6.21) and (6.22), where the
attachment of the PP is possible both to the main verb and to the object NP.

(6.21) The cop saw the crook with the binoculars.

(6.22) The cop saw the crook with gun.

In the example sentences, the attachment is disambiguated by semantic plausibility:
Sentence (6.21) is more plausible as a verb attachment, while sentence (6.22) is more
plausible as an NP attachment. There is no syntactic disambiguation for the PP attach-
ment ambiguity, and if the semantics of the PP do not allow clear disambiguation, a PP
attachment ambiguity can even remain completely unresolved, globally ambiguous,
for example as in The cop chased the crook in a car.

The experimental logic of the studies reviewed below is to test whether an experi-
mental factor (for example, verb subcategorisation preference) influences attachment
preferences. Readers’ attachment preferences are determined by comparing reading
times for the alternative attachments (where the intended attachment is semantically
disambiguated). Note that the PP Attachment ambiguity cannot incur revision cost in
our model, because the set of verb-argument pairs for each analysis is only extended
at the noun in the PP. If the the attachment previously assumed on the basis of only
the verb and changes at this point, the change is therefore not reflected in the set of
verb-argument pairs, and no revision cost is incurred.
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6.5.1. Experimental Evidence

A large literature exists on the PP attachment ambiguity. In addition to the strong
influence of semantic plausibility of the attachment, which is used for disambiguation
in all studies reviewed below, the influence of several factors on attachment preferences
have been discussed. The PP Attachment ambiguity has for example been used inten-
sively to investigate effects of referential context (e.g., Altmann and Steedman, 1988,
Rayner, Garrod, and Perfetti, 1992, Britt, 1994, Liversedge, Pickering, Branigan, and van
Gompel, 1998), and effects of NP definiteness have been found (e.g., Spivey-Knowlton
and Sedivy, 1995). We are more concerned here however with the proposed influence of
parsing principles versus verb preferences and effects hinging on the argument versus
adjunct status of the PP.

Parsing Principles versus Verb Preference

As proponents of the influence of parsing principles, Rayner et al. (1983) present evi-
dence from an eye-tracking study that the parsing principle of Minimal Attachment
(construct the analysis that requires the postulation of fewest syntactic nodes) deter-
mines initial attachment. They find an attachment preference to the verb, which is
indeed the analysis requiring fewest nodes under the grammar assumed by Rayner
et al. This result is confirmed by an eye-tracking and a self-paced reading study in
Clifton, Speer, and Abney (1993).

However, there is evidence that this effect may have been caused by verb preference
rather than by the application of a parsing principle. For example, Spivey-Knowlton
and Sedivy (1995) analyse the set of temporally ambiguous with-PPs occurring in the
Brown corpus and find that there is a reliable preference for verb attachment across
all PPs, but that an analysis by verb type reveals a preference for NP attachment for
some verb types, for example verbs describing psychological states or perception. For
such verbs, a self-paced reading study confirmed a preference for NP-attachment also
during on-line processing. Taraban and McClelland (1988) came to a similar result:
While they replicated Rayner et al.’s results in a self-paced reading study, they also
demonstrated in rating and completion studies that the Rayner et al. materials were
biased towards the VP reading. They then constructed materials with verbs biased
towards NP attachment and showed that for these materials, the pattern of results
found by Rayner et al. was exactly reversed. These findings clearly argue against
the application of a fixed processing strategy as proposed by Rayner et al. (1983) and
Clifton et al. (1993).

Finally, van Gompel, Pickering, and Traxler (2001) add some interesting results for
the case where the verb is unbiased with regard to PP attachment. They show that
for cases of unbiased attachment, readers read a globally ambiguous condition fastest
and show difficulty in both disambiguated conditions. These results also cannot be
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reconciled with the existence of a general parsing principle that decides the attachment
even when no subcategorisation preference is available. Instead, it is more plausible to
assume that readers as a group initially decided for each attachment analysis about half
the time in the absence of a verb bias. Thus, either semantic attachment disambiguation
caused some difficulty across all readers, while the globally ambiguous analysis was
always consistent with readers’ initial decisions and thus caused no difficulty. These
results however do not allow any conclusions about whether individual readers had
overall initial attachment preferences or whether each reader decided for each of the
analyses about half the time.

As a final observation regarding verb-specific attachment preferences, Taraban and
McClelland (1988) also investigated whether violation of the expected thematic role of
the PP has an effect over and above violation of the expected attachment. They found
that reading a PP which conforms to the verb’s preferred attachment but introduces an
unexpected thematic role (e.g., a co-subject instead of an instrument as in clean with
the manager instead of clean with a broom) causes as much difficulty as encountering
a violation of the preferred verb attachment. When both the thematic role and the
attachment of the PP go against the verb’s preferences, little additional difficulty is
observed. Taraban and McClelland take this to indicate that verbs not only specify their
general preference for or against attachment, but also a specific preferred thematic role.

PP Argument Status

There are other arguments in the literature that assume that the verb-specific attachment
preference effect is not caused by verb subcategorisation preference, but by expectations
about the PP’s argument status. This has been investigated for example by Clifton
et al. (1993), Schütze and Gibson (1999) and Boland and Blodgett (2006) and Liversedge
et al. (1998). Clifton et al. (1993), as discussed above, found an initial preference for
attachment to the VP, but later in the sentence also observed that argument attachments
to the VP and the NP were read faster than adjunct attachments. This implies that
the status of the PP has an influence beyond the verb’s subcategorisation preference.
However, it appears that argument status, PP length and plausibility were not carefully
controlled in their items.

A preference for arguments over adjuncts was also found by self-paced reading
experiments in Schütze and Gibson (1999), who used items of a very similar form as
Clifton et al., but unlike the latter controlled very carefully for argument status and
plausibility. They found a preference for argument attachment (which was always to
the NP) over modifier attachment (always to the verb), thus showing a preference for
NP attachment instead of replicating the verb attachment preference found in Clifton
et al. (1993). A large caveat with this study is that the verbs’ attachment preferences
were not pre-tested. Therefore, the NP (argument) attachment preference may also
have been modulated by verb preference.
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Boland and Blodgett (2006) in an eye-tracking study used verbs with a tendency
to prefer PP attachments, and argument attachment could be either to the noun or
to the verb and verbs had a preference for verb attachment of the PPs. They found
that argument attachments were always easier to read than adjunct attachments, and
some indications that verb attachments were still easier than noun attachments. This
latter effect, if real, would indicate that verb preference has a separate influence from
argument preference.

Another corroborating result for argument preference comes from an eye-tracking
experiment in Liversedge et al. (1998), which used by-PPs that are ambiguous between
an argument reading (agent in a passive clause) or an adjunct reading (locative). The
study found a general preference to process a by-PP unambiguously attached to the VP
as an argument (namely the agent) rather than an adjunct in isolated passive sentences.

Interestingly, the preference to interpret PPs as arguments rather than adjuncts also
appears to depend on the preposition in the PP. In the PropBank corpus, which is a
more representative sample of written English than FrameNet, role-bearing PPs appear
approximately the same amount of the time as arguments and as adjuncts (c. 27,000
argument occurrences vs c. 24,000 non-argument occurrences). Two prepositions that
are often used in the investigation of PP Attachment, with and by, are however seen
vastly more often as arguments than as adjuncts: 85% of by-PPs and 64% of with-PPs
are arguments.

Summary

We have reviewed the literature on the influence of a number of syntactic and semantic
factors on the processing of the PP attachment ambiguity. The influence of parsing
principles like Minimal Attachment has been clearly disproven by a number of experi-
ments. Rather, it appears that verb-specific information such as verb subcategorisation
preferences or even a preference for a specific thematic role is used. Furthermore,
there appears to be preference to interpret PPs as arguments rather than adjuncts, but
it is not quite clear how these factors interact. Since no syntactic disambiguation of
the PP Attachment ambiguity exists, all studies use thematic fit to disambiguate the
attachment.

Our model accounts for this semantic disambiguation by the plausibility predictions
of the semantic model. Verb subcategorisation preferences are covered by the syntactic
model. The preference for argument role assignment over adjunct role assignment
can also be modelled to the extent that it is reflected in the training data. Recall that
FrameNet focuses on providing corpus samples for argument roles, so that adjunct
roles are generally infrequent in the corpus. Note that we do not account for role
assignment by nouns, however, and therefore cannot account for NP complements.
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6.5.2. Data Selection and Evaluation Method

We model the experimental results from two studies that varied PP attachment and
verb preferences. Only the items from the studies by Rayner et al. (1983) and Taraban
and McClelland (1988) were sufficiently covered by our syntactic and semantic models
to allow modelling.

We make predictions for the last word in each of the critical regions in the modelled
experiments. Since there are no syntactically unambiguous control materials in either
study, we use the difference in reading times for verb and NP attachment as indication
of difficulty.

6.5.3. Rayner et al. (1983)

Experimental Setup

Rayner et al. (1983) varied the plausibility of PP attachment, making either verb or
NP attachment semantically more plausible. They measured reading times in two
regions: The ambiguous region made up of the object NP and preposition, and the
disambiguation, made up by the NP in the PP and following material. We model total
times from their eye-tracking study. With this measure, they found an interaction of
plausible attachment site and region: Readers took longer to read the noun in the PP if
it was biased towards NP attachment rather than verb attachment. This also caused
significantly longer reading times overall for NP-attachment biased sentences.

Materials

There were 48 stimuli, created from 12 sentences by manipulating the thematic fit of
PP attachment (biasing towards verb attachment or NP attachment) and by manip-
ulating the length of the NP. Thematic fit and verb attachment preference were not
normed. Sentence (6.23) shows a bias for verb attachment and contains a short NP,
while sentence (6.24) shows a bias for NP attachment.

(6.23) The spy saw the cop with binoculars, but the cop didn’t see him.

(6.24) The spy saw the cop with a revolver, but the cop didn’t see him.

We only used the 24 stimuli with short NPs, because no effect of NP length was
found and the syntactic parser had previously shown problems with complex noun
phrases (cf. the deletion of the post-nominal region for NP/S and NP/0 data, above).

From the twelve stimuli in each condition, ten each were parsed correctly. Nine
stimuli each were covered by FrameNet. Again, this falls only slightly short of the
minimum number of stimuli. The baseline predictions are based on eleven stimuli in
the verb attachment condition and twelve in the NP attachment condition.
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Figure 6.10.: Rayner et al. (1983): Experimental results and model predictions for the
PP Attachment ambiguity. NA-VA: Observed/predicted difficulty as
difference between NP attachment and verb attachment conditions.

Results and Discussion

Since there are no unambiguous controls, we use the difference between the attachment
conditions as an indication of relative difficulty with the conditions. The plot in
Figure 6.10 shows the difference between predicted or observed difficulty in the NP
attachment condition and predicted or observed difficulty in the verb attachment
condition.

The syntactic baseline model predicts that when the NP within in the PP is read,
NP attachment will be much easier than verb attachment, leading to a large negative
difference in difficulty. Scaling moves both this negative difference and the difficulty
prediction of zero for the NP+Prep higher into positive space. This prediction comes
about because the parser only predicts difficulty for one stimulus at the noun in the
PP in the verb attachment condition. Compared to no difficulty at all in all other
conditions, this chance prediction means that the majority of difficulty is predicted for
verb attachment.

The SynSem-Integration model similarly predicts that there should be little difference
in difficulty between the conditions on the NP+preposition material that is identical
in both conditions. Once the noun in the PP is read, the model however predicts that
the NP attachment condition should cause more difficulty than the verb attachment
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condition, as indicated by the positive direction of the plotted predictions. The SynSem-
Integration model’s predictions thus correspond almost exactly to the pattern found in
the data, while the baseline model’s predictions are the opposite of the observations.

6.5.4. Taraban and McClelland (1988)

Experimental Setup

In their Experiment 1A, Taraban and McClelland (1988) replicate the results from
Rayner et al. (presented above) in a self-paced reading task, and also test their own
stimuli. Taraban and McClelland identify a bias towards verb attachment in a com-
pletion test of the Rayner et al. items, and therefore offset those items with an equal
amount of items with verbs that show a bias towards NP attachment. This study thus
varies verb attachment preference in addition to manipulating attachment plausibility.
Attachment preference and plausibility were normed for all items, including the Rayner
et al. items.

Taraban and McClelland replicate the results from Experiment 1A in their Experiment
1B, where the sentences are continued beyond the ambiguous PP. Note that since we are
only interested in effects on the critical regions, and since the results of the experiments
were comparable, there is no difference between the experiments for our purposes. We
model reading times from Experiment 1A, where the Rayner et al. items were read
faster when the PP attachment was disambiguated towards verb attachment, as in
Rayner et al.’s study. The Taraban and McClelland items, however, were read faster
when the PP attachment was disambiguated towards NP attachment. Measurements
were taken only for the noun phrase in the ambiguous PP.

Materials

The items from Rayner et al. (see Section 6.5.3) were used in addition to 18 new stimuli
with the same structure. The effect of the plausibility manipulation was pre-tested in
a rating study, and the effect of the verb preference manipulation across the stimuli
subsets was pre-tested in a gated completion pre-test.

Taraban and McClelland found that one of the stimuli from Rayner et al. was not
interpreted as intended under the plausibility manipulation. The corresponding item
was excluded from the study, such that only eleven Rayner et al. items were used.

From the 29 stimuli per plausibility condition, 20 verb-attachment stimuli and 19
NP-attachment stimuli were parsed correctly. Of those, 10 Taraban and McClelland
NP attachment stimuli and 11 Taraban and McClelland verb attachment stimuli were
covered by FrameNet. Nine stimuli each from Rayner et al. were covered by FrameNet.

The baseline model uses 14 Taraban and McClelland stimuli in each condition, and
the same number of Rayner et al. stimuli as above.
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Figure 6.11.: Taraban and McClelland (1988): Experimental results and model predic-
tions for the PP Attachment ambiguity. VA-NA: Observed/predicted
difficulty as difference between verb attachment and NP attachment con-
ditions

Results and Discussion

For the Taraban and McClelland (1988) study, we only have one set of measurements at
the noun phrase in the ambiguous PP. We subtract the reading times (and difficulty
predictions) for the verb attachment condition from those for the NP attachment
condition to arrive at indications of relative difficulty. Scaling of observed and predicted
difficulty for this data set is done across conditions: Predictions and observations sum
to 1 over the values for the Taraban and McClelland and the Rayner et al. data sets.

Figure 6.11 shows that for both the SynSem-Integration model predictions and
observed data, there is vastly more difficulty for the Rayner et al. stimuli (bias for noun
attachment) than for the Taraban and McClelland stimuli (verb attachment bias). This
is caused by more difficulty being encountered for verb attachment in the Taraban
and McClelland set of items, which leads to a negative difference. For the Rayner et
al. set of items, noun attachment is much harder than verb attachment, which leads
to a positive difference. Scaling preserves the large difference in observed difficulty
between the two conditions, but places the Taraban and McClelland results in positive
space.

For this data set, the baseline model again makes the inverse prediction because it
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Model All Data No Garnsey et al.
Baseline r=-0.223, ns r=-0.229, ns
Rank/If-Worse r=0.700, *** r=0.690, ***
Fixed/If-Worse r=0.737, *** r=0.661, ***
Ratio/Ratio r=0.639, *** r=0.577, **

Table 6.1.: Correlations between model predictions and observations for all studies and
excluding the Garnsey et al. data points. ∗∗ : p < 0.01, ∗ ∗ ∗ : p < 0.001

does not predict any difference between the semantically defined attachment conditions
for the Taraban and McClelland stimuli. The negative difficulty predicted for the
Rayner et al. stimuli is therefore large in comparison, and still points in the wrong
direction. The baseline model’s predictions thus again do not differentiate between the
semantically defined attachment decisions, and the chance prediction of difficulty in a
single condition leads to altogether incorrect predictions overall.

6.5.5. Numerical Evaluation

For this data set, a numerical evaluation is again impossible, because we only have
four data points available: Two for the Rayner et al. data (one for each region) and
another two for the Taraban and McClelland data (one for each set of items). For only
four data points, no correlation analysis can be meaningfully computed. However, the
qualitative data patterns clearly speak to the reliability of the model predictions, and
the two unplotted models perform very similarly to the plotted Rank/If-Worse model.

6.6. Correlating All Predictions and Observations

As a final quantitative analysis, we pool the data from all experiments discussed above
and correlate all predicted data to all observations. The results are given in Table 6.1.
All three instantiations of the SynSem-Integration model make predictions that are
strongly and highly significantly correlated to the observations. Over all 36 data points,
the Rank/If-Worse model (which furnished the plotted data) and the Fixed/If-Worse
model perform very comparably, while the Ratio/Ratio model lags behind a little,
presumably due to the influence of noise over the relatively small sets of test stimuli.
The correlation is significant for all three models on the p ≤ 0.001 level. In contrast, the
syntactic baseline model does not achieve a significant correlation with the observed
data and even shows a negative correlation coefficient, which reflects the fact that the
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baseline model predicted the exact opposite of the observed data for some test sets and
failed to correctly predict the observation patterns for the other data sets.

One reservation about this analysis might be that it includes the Garnsey et al. SC
and DO data sets, which come from the same study as the development set. One
might argue that optimising on one data subset from a study makes it likely that
the other data subsets from the study will also be indirectly optimised. Therefore,
we repeated the correlation test for the pooled data without using the Garnsey et al.
data sets (see the right side of Table 6.1). The correlation coefficients drop by about
0.04 for the If-Worse models, but the correlations remain significant on the p < 0.001
level. For the Ratio/Ratio model, the drop is a little larger, because this model makes
extremely accurate predictions for the Garnsey et al. data sets, but the correlation also
remains significant. Even without the data sets that are arguably most similar to the
development data, the models thus still achieve a highly significant correlation to the
observed data at little cost in correlation coefficient.

We have demonstrated that the SynSem-Integration model’s difficulty predictions
are reliable predictors of human processing difficulty, both for individual data sets
(where they were large enough) and across all modelled data points. The If-Worse
models performed very similarly, while the Ratio/Ratio model did somewhat worse
due to noise. All three instantiations of the SynSem-Integration model however clearly
outperform the baseline model based on a lexicalised parser, which does not achieve a
correlation to the test data and even shows a negative correlation coefficient.

6.7. Discussion

The experiments in Sections 6.2 to 6.5 and the overall analysis in Section 6.6 have
demonstrated that the SynSem-Integration model reliably predicts patterns of difficulty
observed in human reading across a number of different ambiguity phenomena. The
SynSem-Integration model’s predictions are not only qualitatively plausible, but are
also significantly correlated to the experimentally observed data. A baseline model
making difficulty predictions based on the change in the preferred syntactic analysis
found by a lexicalised syntactic parser was shown to make qualitatively implausible
predictions, which was mirrored in the absence of significant correlations of the baseline
predictions with human data.

6.7.1. Error Analysis

The SynSem-Integration model proved to perform less reliably for the NP/0 ambiguity
than for the other phenomena, so that there is no significant correlation of the pooled
NP/0 predictions to the experimental observations. We found that this is caused by a
preference of the semantic model for analyses that are not predicted by the literature to
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be constructed. This preference leads to a disproportional prediction of conflict cost,
because these analyses always differ from those preferred by the syntactic model.3

Recall that the semantic model is by its implementation biased to prefer analyses that
predict a verb to occur with its most frequent role combination (see Section 5.2.2). The
preferred role set bias helps the semantic model overcome the preference for assigning
as few roles as possible that is owed to its formulation. When comparing analyses for a
transitive verb, the semantic model without the bias would prefer an analysis that only
allows role assignment to one argument, since assignments with fewer arguments are
more likely than those where the probabilities of several role assignments are multiplied
to reach the final probability. The preferred role set bias instead leads to a preference for
analyses that allow the transitive verb to assign roles to a syntactic subject and object,
because transitive verbs are most frequently seen in this configuration in the training
corpus. In general, the bias thus leads to a preference for analyses that allow the verb
to fill all its preferred argument slots as early as possible and thus ensures that roles are
assigned to incoming material as early as possible, in accordance with the processing
assumptions made, e.g., by Pritchett (1992) or Crocker (1996).

However, when processing the NP/0 ambiguity, the preferred role set bias tends to
lead the semantic model away from the assumed correct preference: The disambigua-
tion of the NP/0 ambiguity leads to an analysis which contains two transitive verbs in
intransitive readings. This is strongly dispreferred by the semantic model, since both
verbs have to be assumed to occur with a dispreferred role set. This dispreference for
the correct analysis can be seen as an instantiation of difficulty arising when a previ-
ously assigned thematic role has to be withdrawn and cannot be replaced with another
thematic role from the same verb covering the previous role filler. Pritchett’s theory
explicitly predicts large processing difficulty in this case, and the NP/0 ambiguity
(where this type of reanalysis has to take place) has been shown to be harder to process
than the related NP/S ambiguity, where reanalysis can replace the role assigned to a
direct object with one assigned to an embedded clause, and the former object remains
part of an argument of the verb (Sturt et al., 1999). The preferred role set bias is thus
theoretically plausible, but in our experiments still leads the SynSem-Integration model
to make incorrect predictions for the NP/0 ambiguity.

To quantify the amount of unexpected analyses preferred by the semantic and syn-
tactic models, we conducted an analysis of the model’s cost predictions and classified
the predictions into two categories: Predictions based on syntactic and semantic pref-
erences that are consistent with literature assumptions about possible analyses of the
experimental items, and predictions that are based on spurious preferences for other

3It might appear promising to use an NP/S data set for parameter setting to alleviate this problem.
However, because the conflict cost stems from the semantic model’s preference for a completely
unintended structure in the NP/0 materials, and not from the magnitude of individual difficulty
predictions or the definition of the preferred structure, this would not solve the problem of spuriously
predicted conflict cost.
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analyses. The error analysis shows that overall, 44% of all predicted cost (30% for the
Rank/If-Worse and the Ratio/Ratio models) is due to conflict cost caused by spurious
model preferences (there is no spuriously predicted semantic cost). The largest part of
these spurious cost predictions, namely 72% (65% Fixed/If-Worse, 69% Ratio/Ratio),
are those made for the two NP/0 data sets.

The single data set that contributes most to the remaining spurious predictions is the
Pickering and Traxler NP/S data. For this data set, the formulation of the items often
allows the disambiguating main verb to be interpreted as a reduced relative modifying
the ambiguous NP. This interpretation was not intended by the experimenters, but
the semantic model generally prefers it because it often appears to correlate better
with the verb’s preferred argument realisation. When the predictions made for the
Pickering and Traxler NP/S data set are also disregarded, the Rank/If-Worse model
predicts only 10% cost due to spurious preferences, and spurious cost predictions in the
other two model instantiations go down to 12% (Fixed/If-Worse) and 8%(Ratio/Ratio).
This means that the analyses preferred by the syntactic and semantic models generally
correspond to one of the analyses involved in the ambiguity phenomena. Except for the
problematic cases described above, the SynSem-Integration model therefore reliably
bases its predictions on the alternative analyses assumed by the experimenters.

The error analysis reported above distinguishes between model preferences for
analyses that are intended to be constructed for the experimental items and those that
are not. It therefore accepts as correct model preferences for analyses that correspond
to one of the two assumed alternative analyses of an ambiguous item, but that are
not preferred at the current stage of incremental processing, according to literature
assumptions. For example, a syntactic preference for a reduced relative analysis already
at the ambiguous verb in the MC/RR ambiguity would count as correct, even though
the experimenters assumed that the stimulus would be analysed as a main clause at this
point. This may seem overly permissive. A second error, more rigid, analysis suggests
itself: It would determine the percentage of semantic and syntactic preferences that are
in accordance with the experimenters’ assumptions.

However, it appears that comparing the model’s preferences to the experimenters’
assumptions is not informative for model development, because it does not necessarily
lead to an improvement in the predictions of the experimental observations. An error
analysis serves the purpose of identifying possible improvements to the model that
will eventually allow the model predictions to become more similar to the observations
in the test data. However, as we minimise divergence of the syntactic and semantic
models’ preferences from the literature assumptions, we are not guaranteed to pre-
dict the human data more correctly. Instead, the model’s predictions will simulate
more correctly the pattern of processing difficulty hypothesised in advance by the
experimenters in accordance with the assumptions about preferred analyses of the
experimental items. The theoretically assumed distribution of difficulty is however
always much more clear-cut than the actual experimental findings, predicting clearly
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defined difficulty to occur only in one or two clearly defined regions and nowhere
else. These clear-cut expectations are usually not exactly mirrored in the experimental
findings, however: If they appear, effects may be weaker than expected or exhibit
a trend in an unexpected direction. Therefore, a model that exactly mimics the ex-
perimenters’ assumptions about the properties of the items will not exactly predict
the corresponding experimental findings. Even norming results, which establish that
the experimenter’s assumptions do indeed hold for the experimental items, do not
always correctly predict the participants’ reactions. For example, Binder (2001) created
predictions for her eye-tracking experiment of discourse influences on the MC/RR
ambiguity using the Constraint-Integration model (Spivey and Tanenhaus, 1998) and
setting the constraints according to her norming results. The predicted effects were
substantially larger than the effects that were actually observed.

Instead of aiming to model the experimenters’ assumptions about item properties,
the SynSem-Integration model is free to make some predictions that do not correspond
to the assumed properties of the items. It thereby accounts for noise in the experimental
data that can be due to several sources. One source is an unexpected reaction of
the participants to some stimuli, possibly because they do not share the expected
preferences (for example of verb subcategorisation or main clause interpretation). Such
unexpected properties are predicted by the SynSem-Integration model if they are
mirrored in the training data. Of course, we cannot guarantee that the preferences
extracted from the training data exactly correspond to human preferences. However,
recall from the discussion in Section 2.1 that it appears plausible to assume that corpus
preferences match processing preferences to some degree. In addition, the SynSem-
Integration model’s success at predicting human processing data strongly suggests that
the corpus resources show similar preferences to those employed by readers.

Likewise, the SynSem-Integration model can account for systematic confounding
biases in the items, as long as these are due to a factor within the range of the model, for
example to diverging verb subcategorisation preferences or the higher plausibility of
one alternative analysis over the other in an ambiguous region. Finally, both the model
and the experimental data contain some random noise: This noise is due to readers’
individual preferences in the experimental data, while in the model it stems from the
combination of two presumably noisy probabilistic models.

In sum, by allowing the preferences of the semantic and syntactic model to differ
from the assumed preferences in the literature, the SynSem-Integration model accounts
for the observed data more accurately than a model could that predicts exactly the
preferences stipulated by the experimenters. The diverging preferences model true
divergences of assumed and actual stimulus preferences as well as noise in the observed
data that is due to readers’ individual differences.
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6.7.2. Theoretical Implications of Model Performance

The failure of the lexicalised parser baseline model to predict the patterns of human
processing difficulty in our test data clearly demonstrates that a pure PCFG-based
parser model is unable to capture the effects of semantic plausibility in the data. The
parser model fails despite making use of head-head dependencies, which should in
principle allow it to evaluate structural analyses with respect to the likelihood of
seeing the verb-argument pairs they contain. However, the sparseness of the relevant
head-head dependencies in the training data precludes their effective use.

These sparseness problems occur both for test data of the same genre and for psy-
cholinguistic items: On an unseen portion of the Penn Treebank training data, the
fully lexicalised parser model used as a baseline hardly outperformed the partially
lexicalised parser (the SynSem-Integration model’s syntactic model) in Section 5.1.3.
Further, in Chapter 3, the coverage results of the unsmoothed semantic model trained
on the PropBank (which adds thematic role annotation to the Penn Treebank) showed
that hardly any verb-argument pairs in the test data were seen in the training corpus.
To cover head-head relations sufficiently to make plausibility predictions, a fully lexi-
calised parser would therefore have to be trained on much larger reliably annotated
corpora than are available today, and presumably will be available in the near future,
given the high cost of human annotation. Further, it is not clear whether the evaluation
of the frequency of head-head co-occurrence in syntactic structure is an appropriate
way of modelling human plausibility evaluation, which can be expected to take place
at least at the level of thematic roles (recall the discussion of grammatical functions and
thematic roles as instantiations of verb-argument relations in Section 2.5.1).

This result suggests the need for a different source of semantic plausibility intuitions.
Existing constraint-integration models have used human judgements (McRae et al.,
1998, Narayanan and Jurafsky, 2002), which are however costly to elicit and thereby
compromise the models’ wide coverage. The SynSem-Integration model is the first to
provide an independent, wide-coverage model of human plausibility intuitions that is
derived from corpus data and requires no adaptations to process different phenomena.

The SynSem-Integration model proved able to reliably predict patterns of human
difficulty in sentence processing. Its performance thus indicates that linking two
sources of semantic plausibility and syntactic probability estimates by simple cost
functions is sufficient to predict difficulty effects in human sentence processing. In
contrast, existing constraint-integration models explicitly specify a large number of
different constraints and use complex mechanisms for integration. Note that the
SynSem-Integration model’s syntactic and semantic models subsume many of the
constraints usually posited by constraint-integration models, such as thematic fit,
verb form or structural preferences. The SynSem-Integration model however does
not require the definition of an individual hand-selected set of constraints and the
manual setting of weights for each ambiguity phenomenon to be modelled. Instead,
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its syntactic and semantic models are independently motivated as experience-based
models of syntax and human plausibility intuitions, respectively, and the preferences
relevant to processing different ambiguity phenomena simply fall out of these more
general models. The use of general models of syntactic and semantic preferences
ensures that in processing difficulty phenomena, all applicable constraints are always
considered, and have consistent weights, which is difficult to ensure through manual
constraint selection.

The SynSem-Integration model’s predictions proved to be robust across three dif-
ferent combinations of cost functions. The cost functions based on probability ratios
performed somewhat worse than those predicting fixed amounts of cost or cost based
on a difference in syntactic and semantic rank. This is presumably because the proba-
bility ratio cost function is less robust to noise.

The probabilistic formulation of the SynSem-Integration model has two important
consequences with regard to the model’s predictions: One is the short tree bias of
the syntactic parser model that overrides verb subcategorisation preferences in the
NP/S and NP/0 ambiguities, allowing the model to make the correct prediction that
humans initially prefer a direct object analysis even for verbs that generally prefer
to take complement clauses. The other is the few role bias in the semantic model,
which is not in accordance with the intuition that the human sentence processor tries
to optimise the number of assigned roles to be able to interpret the input incrementally.
We have applied normalisation strategies to avoid this bias, but these have in turn
proven to dissuade the semantic model from preferring the intended interpretation
after disambiguation for the NP/0 ambiguity.

Recall from the discussion in Section 2.5.3 that our claims about the cognitive reality
of the architecture of the syntactic and semantic model are different. We do assume
that the syntactic model’s probabilistic basis reflects the human sentence processor’s
experience-based processing strategies. Against this background, we argue that the
syntactic model’s short tree bias reflects the human processor’s preference for frequent,
simple analyses that gave explanatory power to Frazier’s (1978) Minimal Attachment
principle.

The situation is different with the semantic model. While we have chosen an imple-
mentation based on linguistic experience, this choice was mostly one of practicability.
It is much more plausible to assume that humans directly estimate plausibility from
their experience in the real world than from the frequency of linguistic utterances
about these experiences, even though we assume there is a correlation between the
two (Section 2.5.1). Also, we have implemented a model that makes independence
assumptions between the role assignments to different verb-argument pairs, due to
data sparseness. This implementational choice causes the few role bias, which we only
minimise, but not eliminate by normalisation procedures. However, there is no reason
why events with many participants should be less plausible to people than events
with few participants. Thus, our implementation and especially the independence
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assumptions it makes between role assignments lead to a practicable approximation of
the human reasoning system that should not be understood as making strong claims
about the working of that system.

Another example of implementational choice that we do not construe as making
strong claims about cognitive reality is the existence of two separate, feed-forward
modules. We only assume that the human sentence processor constructs several
analyses for the input in parallel, and that these analyses are semantically evaluated,
so that both the syntactic and the semantic evaluations can be used to determine a
globally preferred structure.

6.7.3. Summary

We have reviewed the performance of the SynSem-Integration model in an evaluation
against human data and have found that the model clearly outperforms a syntactic
parser baseline system. We have carried out an error analysis and have identified
difficulties with one ambiguity phenomenon and two specific test sets, which are
caused by the semantic model’s preference for syntactic analyses that support a verb’s
argument slots to be filled over those that do not. We have shown that for all other data
sets, the model bases its difficulty predictions on syntactic and semantic preferences
that correspond to expected analyses of the experimental items. We have argued that
where syntactic and semantic model’s preferences deviate from the assumptions in the
literature, the deviations capture noise and unexpected reactions to the data that are
also present in the experimental results.

Overall, we have found that by combining preferences for syntactic analyses from
two rich information sources by simple cost functions, the SynSem-Integration model
achieves robustness, wide coverage and high reliability in the prediction of unseen
human data, while not requiring the hand-selection of constraints and constraint
weights. The poor performance of a lexicalised parser baseline model underscores the
necessity of integrating a notion of semantic plausibility into our processing model.

Finally, we have again discussed the claims about the human sentence processing
system that our probabilistic implementations of the syntactic and semantic model
make. While we assume that the syntactic model mirrors the reliance of the human sen-
tence processor on previous language experience, we consider the implementation of
the semantic model a practicable approximation of human reasoning about plausibility
that does not make strong claims about psychological reality.
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In this thesis, we have identified four core desiderata for models of human sentence
processing that are motivated by properties of the human sentence processor: Wide cov-
erage, incrementality, a probabilistic, experience-based architecture and the integration
of semantic plausibility on the level of verb-argument relations. The key contribu-
tions of this thesis are the proposal of the Syntax/Semantics (SynSem) Integration
model, a sentence processing model that accounts for all four desiderata, and, as a
precondition for this proposal, the introduction of a general model of human semantic
intuitions about the plausibility of verb-argument relations that is used as the semantic
component in the SynSem-Integration model.

This semantic model estimates the plausibility of a verb-argument pair connected
by a specific thematic role by estimating the probability of seeing that triple in a
corpus of annotated training data. It proceeds incrementally by verb-argument pairs,
predicting thematic roles and plausibility estimates for individual pairs, and computes
the plausibility of a syntactic structure on the basis of the plausibility estimates for the
verb-argument pairs it contains. The semantic model in its naïve implementation faces
a significant sparse-data problem, which we alleviate by combining two smoothing
methods. In Chapter 3, we discussed how Good-Turing smoothing ensures verb-
specific predictions about role preferences in case of an unseen argument, and how
class-based smoothing exploits semantic generalisations to make more and better
predictions that are specific to both the verb and the argument. The smoothed model’s
predictions are significantly correlated to human plausibility judgements for a variety
of test sets (see Chapter 4). The semantic model achieves wide coverage of unseen data,
but makes specific predictions only if the verb is known, because the verb defines the
set of applicable thematic roles.

The existence of a general model of semantic plausibility allowed us to propose the
SynSem-Integration model of human sentence processing. It integrates an incremental,
probabilistic grammar-based syntactic model and the semantic model’s preference
predictions on the basis of the plausibility of the verb-argument relations in each
syntactic structure. These plausibility predictions complement a syntactic probability
of the structures in determining the globally preferred structure. The syntactic and
semantic models also each identify a preferred structure based on their respective
ranking of structures. Predictions of difficulty in human sentence processing are made
by transparent cost functions defined over the preferences of both models in relation
to the globally preferred structure. These predict difficulty whenever one model’s
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preferred structure conflicts with the globally preferred structure, and whenever the
semantic interpretation of the globally preferred structure has to be revised and changes
non-monotonically. Empirically, it has proven important that revision cost be assigned
only if the new interpretation is less plausible than the old one (see Chapter 5).

The experience-based architecture of both models and the estimation of their pa-
rameters from corpora gives the SynSem-Integration model wide coverage both of
structures that are processed effortlessly as well as those that cause disruption. This
allows the model to cover a range of different psycholinguistic phenomena without
requiring modifications. Finally, the SynSem-Integration model operates strictly in-
crementally, integrating each word into the syntactic representation immediately and
making plausibility estimates as soon as a new verb-argument pair is encountered.

We have shown in Chapter 6 that the SynSem-Integration model successfully predicts
difficulty in human sentence processing for four well-studied ambiguity phenomena.
The model’s success indicates that the simple and transparent combination of two
preference rankings of the possible syntactic analyses of the input is enough to accu-
rately predict the observed effects. This is relevant in comparison with constraint-based
models, to which the SynSem-Integration model is most closely related. Both types of
model combine preferences for different syntactic analyses that are computed based on
different sources of information to arrive at a globally preferred analysis and to predict
processing difficulty. However, unlike constraint-integration models, the SynSem-
Integration model does not require the stipulation of individual sets of constraints for
each construction type or the manual determination of weights. Instead, the param-
eters in the syntactic and semantic models are for the most part learnt automatically
from corpus data, and remain constant across phenomena. Furthermore, the SynSem-
Integration model’s cost functions are a much simpler integration mechanism than
those employed by constraint-integration approaches and similar models (e.g., Spivey
and Tanenhaus, 1998, Narayanan and Jurafsky, 2002).

The SynSem-Integration model is also related to ranking parser models. It includes
a syntactic parser model as one of its components and uses the concept of ranking
structures according to their goodness. However, pure probabilistic parser models
are limited to the prediction of syntactic preferences only, as demonstrated by the
performance of the syntax-only baseline model, which could not predict the difficulty
patterns in our test data: Even though we used a fully lexicalised probabilistic parser
which had information about the frequency of head-head co-occurrences, for example
of verbs and nouns, it did not predict plausibility effects. We have argued that this is
due to the extreme sparseness of head-head co-occurrences in the available syntactically
annotated training corpora. The SynSem-Integration model overcomes this limitation
of pure probabilistic parser models by integrating an explicit source of semantic plausi-
bility estimates, and thus is able to reliably predict the patterns of difficulty observed
experimentally.
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7.1. Future Work

A number of possible extensions and applications of the SynSem-Integration model
and the semantic plausibility model suggest themselves for future work. One is the
integration of additional sources of preferences that influence human sentence process-
ing. This would allow an assessment of the scalability of the approach and would give
the SynSem-Integration model wider coverage of human processing phenomena.

The most prominent candidate for this third information source is the influence of
discourse context on the processing of ambiguities. Many studies have found that
the processing especially of the PP Attachment and MC/RR ambiguities is influenced
by preceding context. More specifically, these ambiguities appear to be preferentially
resolved towards modifying an NP if this attachment disambiguates between several
possible antecedents available in referential context (e.g., Altmann and Steedman,
1988, Spivey and Tanenhaus, 1998). A similar effect was found sentence-internally,
depending on the definiteness of the NP to be modified (e.g., Crain and Steedman,
1985, Spivey-Knowlton and Sedivy, 1995). It is assumed that this preference is caused
by differences in the amount of presuppositions that definite and indefinite modified
NPs introduce and that have to be accommodated in the experimental null context.

Both these effects of existing or presupposed referential context can be captured by
introducing a context representation and an evaluation mechanism that ranks input
sentences by their acceptability given the preceding context. This ranking would
prefer sentences which unambiguously define their referents and which force the
accommodation of fewest presuppositions. The combination of this preference ranking
from the discourse component with the preferences of the syntactic and semantic model
would then serve to broaden the SynSem-Integration model’s coverage of processing
phenomena and to gauge the scalability of the model.

Results from Christianson, Hollingworth, Halliwell, and Ferreira (2001) suggest a sec-
ond extension to the SynSem-Integration model. They show that after processing NP/0
sentences like While Anna dressed, the baby lay on the bed, readers often retain the impres-
sion that the sentences express the initially constructed direct object interpretation of
the ambiguous NP, Anna dressed the baby. Simultaneously, they however also maintain
the semantic interpretation of the disambiguated sentence. It therefore appears that
humans do not always completely abandon their initial semantic interpretation of the
input, even if it becomes untenable. The addition of an explicit memory component to
the SynSem-Integration model would allow us to investigate the assumptions necessary
to model this phenomenon. For example, slow decay of memory contents might allow
ultimately incorrect interpretations to remain active enough at the end of the sentence
to be recalled. Alternatively, an incomplete deletion of incorrect propositions during
the update of the semantic interpretation might account for these effects.

A further strand of future work focuses on the semantic model. Here, one goal is to
further improve its performance. We have employed class-based smoothing for verbs
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and nouns in the semantic model, and have focused on optimising the verb classes.
This strategy was clearly successful, in that the resulting model significantly predicts
human intuitions both for seen and unseen verb-argument-role triples. However, the
example of selectional preference models, which use only the WordNet noun hierarchy
for smoothing, suggests that optimising the level of generalisation of the noun classes
could yield another performance improvement. For example, we could adapt a reliably-
performing selectional preference model to determine each noun’s optimal class with
regard to the verb before applying class-based smoothing. The method proposed by
Clark and Weir (2002), for example, seems well-suited because it focuses on optimally
using the WordNet hierarchy for smoothing. Automatic induction of word classes,
as performed for the verbs, appears less promising because of the overall lower type
frequencies of nouns in the training data.

Another goal is to investigate the question how much knowledge is needed to
model human plausibility intuitions, which may lead to alternative formulations
of the semantic model. Relying on corpus data with thematic role annotation, we
have used a fairly knowledge-intensive approach for which relatively small amounts
of training data exist. An alternative strategy would be to explore knowledge-lean
models of lexical semantics, for example vector space models. Such models construct
semantic representations using information about the distributions of words in context
(Lund and Burgess, 1997, Landauer and Dumais, 1997). For knowledge-lean models,
much larger training corpora are necessary for training, but since at most syntactic
annotation is needed and annotation can be automatic, much more training data is
also available. Vector space models have been shown repeatedly to predict relatedness
effects between words, for example facilitated processing of words after a related word
has been presented (priming). It is conceivable that vector space models can be used to
distinguish between plausible and implausible pairs of words (see, e.g., Burgess and
Lund, 1997, who show that the representations for the members of verb-argument pairs
from studies that found a plausibility effect are more similar than those from studies
that found no effect). However, it is not clear how vector space models can encode the
relation between verb and noun, with respect to which plausibility must be judged. It
is conceivable that models which also use the syntactic relations between words could
allow a first step in that direction (e.g., Padó and Lapata, to appear).

Finally, the semantic model is of interest also for language processing approaches
from computational linguistics, for example for lexicalised parsing models. Lexicalisa-
tion is used to allow lexically specific attachment decisions depending on a category’s
head, and if available, on co-occurrence information for example with the heads of
sister categories. When comparing a lexicalised parser that uses such head-head depen-
dencies with a lexicalised parser that does not in Chapter 5, we have however found
that the two parsers performed almost indistinguishably, and in Chapter 6, we have
seen that a fully lexicalised parser failed to predict the effect of thematic fit manipu-
lations for which it could in principle account using head-head dependencies. Both
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results indicate, in accordance with Gildea (2001), that head-head dependencies are not
efficiently used in the lexicalised parser, due to data sparseness. In the semantic model,
a similar sparseness problem is successfully addressed using class-based smoothing
methods. If such smoothing models are applied in a lexicalised parser, they should
increase the amount of head-head information available in lexicalised parsing. This in
turn should increase performance by allowing parsers to make more specific, and in a
sense more semantically motivated, attachment decisions.

Another domain of application for the semantic model in computational linguistics
are tasks like selectional preference induction or thematic role assignment. We have
shown that the FrameNet-trained semantic model outperforms selectional preference
approaches on a number of test sets. It is especially interesting for these approaches
that the model’s reliance on verb classes allows accurate predictions despite the use of
argument preferences from several verbs.

The semantic model also outperformed a standard role labeller on our test set. While
the semantic model’s performance on a standard role labelling test set, where syntactic
features already allow accurate predictions, has not been tested, its plausibility pre-
dictions for verb-argument-role triples should certainly yield an interesting extension
to standard role labelling systems. The machine-learning field of ensemble learning
achieves improvements over the performance of single classifiers by combining systems
with different views of the data and different error profiles (see Dietterich, 1999, for an
introduction). Results from Erk and Padó (2005) suggest that semantic features may
indeed provide such an independent view of the role-labelling problem beyond the
view provided by the standard syntax-based features. This means that the combination
of a standard role labeller and the preferred role predictions output by the semantic
model could be profitable with regard to overall role labelling performance.

In sum, the SynSem-Integration model combines the wide-coverage, experience-
based approach of current syntactic parsing accounts with a wide-coverage semantic
model that evaluates the semantic plausibility of syntactic structures. As proposed in
the constraint-based literature, the two information sources are integrated to determine
a single preferred structure and to predict processing difficulty. The result is a wide-
coverage, incremental, probabilistic model which explains the use of semantic and
syntactic information in human sentence processing, as established by numerous
experimental findings.
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A. The Semantic Model: Training Data
and Implementation

This appendix contains details relevant to the semantic model. Section A.1 describes the
preparation of the training data and the extraction of features for verb class induction
and model training. Section A.2 describes how verb classes were automatically induced
from the training data to be used for class-based smoothing. Finally, Section A.3
contains the exact formulation of the backoff procedure to combine Good-Turing and
class-based smoothing.

A.1. Training Data Preparation and Feature Extraction

This section gives details on how the training data for our models was prepared and
how the information needed to estimate the model was extracted. From the annotated
FrameNet and PropBank corpus data, we extracted information about which verbs,
senses, roles, argument heads and grammatical functions co-occurred. Information
about verb senses and roles are straightforward to extract from the annotations, but we
need to describe in more detail how we arrive at the other features.

A.1.1. Verb and Argument Head Lemmas

The role-assigning verbs were extracted from the annotations and lemmatised using
the MorphA tool (Minnen, Carroll, and Pearce, 2001). This rule-based tool gives reliable
results when the correct part of speech of the input words is known, as was the case for
the verbal predicates.

In order to extract a verb’s co-occurrence with argument heads, we exploited the
mapping of semantic role labels to syntactic phrases, from which we then extracted the
head. For the PropBank data, manually assigned syntactic trees are available and role
annotation is linked directly to phrases in the tree structure. The heads of the labelled
arguments were determined heuristically, such that the first encountered verb is the
preferred head of a verbal phrase or sentence, the first encountered adjective or adverb
the head of an adverbial phrase etc. We defined the head of a prepositional phrase
(PP) to be the head of the noun phrase to preserve as much of the semantic content of
prepositional phrases as possible. Information about the PP status and preposition are
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conserved in the grammatical function of the phrase (see below). In a noun phrase, the
head is the last noun child.

The FrameNet annotation is made to character spans in the corpus sentences. To
link this information to argument phrases, the corpus was automatically parsed with
the Collins parser (Collins, 1997). We then extracted those phrasal nodes as argument
phrases that spanned only the annotated words. If there was no correspondence of
role span and syntactic phrase, due to parser errors or idiosyncrasies in the annotation,
all nodes corresponding to the lexical items in the role span were extracted. The
parser provides lexical heads for all constituents. Before extracting the argument heads,
we lemmatised the corpora. Since only automatically assigned word class tags were
available for the lexical items, we used the TreeTagger tool (Schmid, 1994), a standard
lemmatisation and part-of-speech tagging tool trained on a large corpus of English.

A.1.2. Grammatical Functions

While both training corpora provide grammatical function annotation, the annotation
style and the information contained in the grammatical function labels is very different.
For example, the Penn Treebank function annotation for verbs’ arguments focuses on
marking phrases whose function cannot be immediately inferred. This means there
are no tags for objects or sentence complements, but benefactive and dative PPs are
marked, for example. The subject function is however annotated, and the NP in an
agentive by-PP receives a tag for logical subject. In addition, there is a set of more
semantic labels that usually attach to adverbials. These labels distinguish e.g. direction,
location, manner and purpose.

On the other hand, the FrameNet function tagging annotates all arguments of a verb,
but uses just three labels: ext, obj and dep. Ext marks arguments outside the maximal
phrase headed by the verb. These are generally the syntactic subject, be it in a finite
verb phrase, a governing verb construction or a passive clause. Obj marks direct objects
of the verb, including those that are wh-extracted. Finally, dep marks adverbs, PPs and
sentential complements, as well as the second object in double object constructions.

For reasons of model consistency, we wish to standardise the information contained
in the grammatical function annotation. The intended role of grammatical functions in
our model is to indicate the syntactic relation of the argument to the verb. For this end,
the PropBank grammatical functions seem less adequate, since they do not apply to
every argument of the verb and since they make quite fine-grained distinctions that
may lead to sparse data in estimation. In addition, the functions assigned to adjuncts
are semantic in nature and if specified would practically disambiguate role assignment.
As a final technical consideration, it is easier to map more detailed annotation to coarser
labels than the reverse. For these reasons, we will derive more reliable and useful
annotations if we use FrameNet grammatical functions.

We make two adaptations to the FrameNet grammatical function labels to make
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them more informative: First, we split the ext tag heuristically to account for passive
constructions. We annotate NP subjects of verbs with a past participle POS tag that
have no direct objects as ext-pas instead of ext. Second, for PPs, we add the preposition
to the dep function to be able to distinguish between different kinds of PP dependents.

We map existing PropBank role and grammatical function annotation to FrameNet
grammatical functions in the following way: We map the Penn Treebank subject tag
to the ext function, which is subsequently split heuristically into ext and ext-pas as
for the FrameNet data. Other NPs with PropBank role annotation are labelled as obj,
with the second and subsequent objects receiving the label dep. All arguments with
the PropBank ArgM label immediately receive the dep tag.

A.2. Inducing Verb Classes

This section describes in detail how verb classes were induced for class-based smooth-
ing. Section A.2.1 describes the two clustering algorithms. In Section A.2.2, the selection
of the optimal values for the three parameters algorithm, smoothing within the cluster-
ing algorithm and number of clusters is described.

A.2.1. Clustering Algorithms

We used an implementation of the Information Bottleneck (IB) and Information Distor-
tion (ID) algorithms written by Zvika Marx (Marx, 2004). With both these soft clustering
algorithms, clustering proceeds by dividing up one of the existing clusters at each time
step. Over time, the clustering history forms a hierarchy of clusters, while at each time
step, a new configuration of clusters is available. The clustering tool allows smoothing
of the input features during the clustering process: Smoothing counts are added to
the observed feature frequencies either uniformly or based on feature frequency. In
practice, IB forms more even-sized clusters while ID converges faster.

Information Distortion Method

The Information Distortion (ID) method (Gedeon et al., 2003) takes its name from
the idea of deriving a more compact, distorted representation of the input data that
optimally represents the information contained in the input in the form of clusters and
cluster membership. It minimises a cost term with two parts to arrive at the optimal
clustering. One the one hand, it maximises the conditional entropy of clusters given
verbs, thus discarding input information. In order to retain the relevant information
in the input, it minimises the conditional entropy of features given clusters under the
assumption that the features are related to the verbs and carry information about them.
The two constraints are combined by a weighting factor β. The cost term that has
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to be minimised during clustering thus is as shown in Equation A.1, if conditional
independence between clusters and features given the data is assumed.

L = −H(Clusters|V erbs) + βH(Features|Clusters) (A.1)

The size of β determines whether few or many clusters may form. For β = 0, there is
just one cluster, which splits up again and again as β increases.

Information Bottleneck Method

The Information Bottleneck (IB) method (Tishby et al., 1999) is closely related to the
Information Distortion method. It minimises a similar cost term, which is defined in
terms of mutual information rather than conditional entropy, as shown in Equation A.2:

L = I(Clusters;V erbs)− βI(Features;Clusters) (A.2)

Expressed in terms of conditional entropy and neglecting a constant factor, this equation
becomes Equation A.3

L = (H(Clusters)−H(Clusters|V erbs)) + βH(Features|Clusters) (A.3)

since I(Clusters;V erbs) = H(Clusters) − H(Clusters|V erbs). The difference be-
tween the algorithms is therefore that the IB method uses the the entropy of the cluster
distribution as a prior.

A.2.2. Parameter Setting

We have three parameters to explore for inducing verb classes: The clustering algorithm,
the amount of smoothing applied within the clustering algorithms and the number
of clusters within each clustering run. The evaluation of the clustering results is
task-based: We choose the clustering configuration that produces optimal results in
the judgement prediction task (see Section 3.2.1) on the development set. For each
experiment, the same corpus was used to induce verb classes and to estimate the model
terms.

Selecting Algorithm and Intra-Algorithm Smoothing We combined each of the
algorithms with six levels of smoothing. We varied the intra-algorithm smoothing
methods, namely assignment of smoothing counts by frequency, or uniform assignment,
and three levels of intensity. We report the number of clustering runs (out of six) for
each algorithm in which at least one cluster configuration allowed the model to make
predictions that were significantly correlated to human judgements on the development
set. Table A.1 gives a first indication that verb clusters formed from the FrameNet data
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All NP
Corpus ID IB ID IB
FN 4 1 – –
PB 0 0 3 4

Table A.1.: Number of clustering configurations that allow significant correlations with
human data for the two clustering algorithms (out of 6), for the FrameNet
and PropBank training corpora.

work better for smoothing than PropBank clusters: For the FrameNet corpus, there was
a significant correlation to human data for four ID algorithm runs. For the IB algorithm,
one combination led to significant correlations.

On the PropBank training corpus, no significant correlations were found at all when
features for all arguments were used as input to clustering. We also experimented with
using just NP arguments, since semantic annotation in PropBank does not allow reliable
generalisations about underlying role meaning beyond the Arg1 role. By restricting the
input to just NP arguments, we exclude many arguments that may lead the clusterer
to making incorrect generalisations. Reducing the amount of information available to
the clusterer did prove successful in that it produced a total of seven combinations of
clustering algorithm and a smoothing level that led to significant correlations.

Additionally, we observed that for the PropBank data, one very large cluster and
several small ones were formed. The large cluster overgeneralises semantic alternatives
and made class-based smoothing ineffective. Therefore, we disregard the largest cluster
for the PropBank data. No such effect was observed with the FrameNet clusters.

From the set of algorithm-smoothing combinations in Table A.1, we selected parametri-
sations for final evaluation based on the notion of stability. Recall that both algorithms
increase the number of clusters by one at each iteration and that each parametrisation
yields a series of cluster configurations as the number of iterations increases. We chose
those parametrisations where a stable series of at least three consecutive cluster config-
urations returned significant correlations on the development set. This should be an
indication of a generalisable success, rather than a fluke caused by peculiarities of the
data.

We chose several parametrisations for both training corpora, because we want to
be able to test whether evaluation results generalise to more than one algorithm-
smoothing combination. We selected three parametrisations for each training corpus,
choosing parametrisations with long series of significant results first. For FrameNet,
two stable series were tied, so we chose the configuration that starts at a higher number
of classes (assuming that more classes mean more fine-grained semantic distinctions).
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Corpus Verb Classes Algorithm Smoothing No of Clusters

PB
PB 1 ID ms 200 3
PB 2 IB s 300 11
PB 3 IB ms 200 7

FN
FN 1 ID ms 100 11
FN 2 ID s 200 13
FN 3 ID s 300 13

Table A.2.: Selected clustering configurations for both training corpora. Reference
number in thesis, algorithm, smoothing options and number of clusters.

The rejected IB series starts at three classes, while the chosen ID series starts at 13
classes.

Setting the Number of Clusters Having selected stable combinations of clustering
algorithm and smoothing, the last remaining parameter to be set is the number of
clusters to be used. Out of a stable series of configurations, we use the configuration
that returned the first significant result, as this is the most general grouping of verbs.
Any following configurations only make additional splits.

An overview of the stable configurations we use in all evaluations below is given in
Table 3.3, with the smoothing parameters for the clustering algorithms and the number
of clusters they contain. The identification string assigned to each set of verb classes
is used in the body of the thesis to refer to the configuration. The row with intra-
algorithm smoothing information contains the parameter switches for the clustering
algorithm. ms signifies frequency-based smoothing, and s signifies uniform assignment
of smoothing. The lower the smoothing indicator, the fewer additional counts were
assigned to the input data.

A.3. Combining Good-Turing and Class-Based Smoothing

This section describes in detail how we combine GT and class-based smoothing in our
final semantic plausibility model. We use pure GT smoothing for three of the four model
terms. The sparsest P (a|vs, gf, r) term is first smoothed with class-based smoothing,
and if that fails, we back off to a GT estimate. We use Katz’ Backoff, a special case of
linear interpolation (see Section 3.3.2), to combine the different smoothing strategies.

We back off in three phases: If f(classarg, classverb, gf, role) > 0, we use the class-
based estimate P (classarg|classverb, gf, role). Else, if f(classarg, classverb, role) > 0,
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we drop the grammatical function information from estimation and attempt to use
P (classarg|classverb, role). As the treatment of sparse specified grammatical func-
tions discussed in Section 3.1.4, this step assumes that the syntactic realisation of a
verb-argument pair is flexible, and that dropping the grammatical function from the
estimation altogether may yield useful information. As a last resort, we assign the GT
estimate for unseen events from the second backoff distribution.

To ensure that the backoff procedure returns a probability distribution, we need to
discount each backoff distribution so that probability mass is left over for the next
backoff step, and we need to scale the output of the next backoff step so that it only takes
up the left-over probability mass. We first use the GT approach to determine the amount
of probability mass that each backoff distribution distribution should reserve for unseen
events, and to discount it accordingly, so that probability mass is indeed freed. The
probability mass reserved by the second backoff distribution P (classarg|classverb, role)
is split equally among all possible unseen events and assigned in the third backoff step.

Finally, the output of the second backoff distribution has to be scaled so that it only
takes up the probability mass left over by the first distribution. The total probability
mass taken up by the third backoff step by definition is equal to the mass left over by
step two, so no additional scaling is necessary there.

The scaling factor α for the second backoff distribution apportions the probability
mass assigned to unseen events in step 1 fairly over the probability mass we expect
step 2 to assign to these events (see e.g., Dagan, Pereira, and Lee, 1994). Since we
are dealing with conditional probability distributions in our backoff steps, the scaling
factor depends on the conditioning events classverb and role.

The factor is computed as shown in Equation A.4: All probability mass that backoff
distribution 1 assigns to seen events (those where the backoff distribution does not
assign a zero probability) is summed up. Subtracting this sum from 1 results in the
probability mass reserved for unseen events. This formulation is chosen because it
is generally easier to sum over seen events than over (a potentially large number of)
unseen events. The mass reserved for unseen events is then divided by the mass that
backoff distribution 2 assigns to the events that are unseen in distribution 1. This mass
is computed as 1 minus the sum of all probabilities that backoff distribution 2 assigns
to the events covered by distribution 1.

αclassverb,role =
1−

∑
classarg :Pbo1(classarg |classverb,gf,role)>0 Pbo1(classarg|classverb, gf, role)

1−
∑

classarg :Pbo1(classarg |classverb,gf,role)>0 Pbo2(classarg|classverb, role)
(A.4)

Combining the discounted probability distributions by this backoff factor ensures
that the semantic model outputs a probability distribution for the P (classarg|classv, r, gf)
term and cleanly combines class-based smoothing with a GT estimate for cases that are
still assigned zero probability after smoothing was applied.
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B. Plausibility Rating Materials

This Appendix contains the verb-argument pairs rated in our study, with FrameNet
and PropBank thematic role annotation and ratings. Each verb is listed once with its
FrameNet fillers and once with its PropBank fillers. The seen relation between verb
and argument is presented first.

Ratings for the role commonly assigned to the syntactic subject position were elicited
by asking How common is it for an Argument to Verb?, while ratings for the role commonly
assigned to a syntactic object were elicited by asking How common is it for an Argument
to be Verbed?. If necessary, something was added to the subject elicitation, for example
for the verb tell. Ratings were on a scale of 1− 7, with 1 meaning very uncommon and 7
meaning very common.

We chose the verbs according to the roles they assign in VerbNet. The first six verbs
in each table assign an experiencer role, the next six assign a recipient role and the last
six assign a patient role.

Table B.1.: Verbs and FrameNet arguments with FrameNet and PropBank role and rating

Verb Argument FN Role PB Role Rating
resent woman Experiencer Arg0 5.6
resent woman Content Arg1 4.9
resent group Experiencer Arg0 5.2
resent group Content Arg1 5.2
resent individual Experiencer Arg0 6.0
resent individual Content Arg1 5.6
resent presence Content Arg1 1.4
resent presence Experiencer Arg0 5.0
resent contribution Content Arg1 1.2
resent contribution Experiencer Arg0 3.5
resent intrusion Content Arg1 1.2
resent intrusion Experiencer Arg0 6.1
hear girl Perceiver_passive Arg0 6.8
hear girl Phenomenon Arg1 6.5
hear man Perceiver_passive Arg0 6.7
hear man Phenomenon Arg1 6.5
hear ear Perceiver_passive Arg0 6.8
hear ear Phenomenon Arg1 1.1
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B. Plausibility Rating Materials

Table B.1.: Verbs and FrameNet arguments (continued)

Verb Argument FN Role PB Role Rating
hear sound Phenomenon Arg1 6.8
hear sound Perceiver_passive Arg0 1.2
hear voice Phenomenon Arg1 6.5
hear voice Perceiver_passive Arg0 3.5
hear knock Phenomenon Arg1 6.2
hear knock Perceiver_passive Arg0 1.1
see friend Perceiver_passive Arg0 6.7
see friend Phenomenon Arg1 6.6
see viewer Perceiver_passive Arg0 6.8
see viewer Phenomenon Arg1 3.8
see pupil Perceiver_passive Arg0 6.6
see pupil Phenomenon Arg1 6.3
see name Phenomenon Arg1 6.0
see name Perceiver_passive Arg0 1.0
see movement Phenomenon Arg1 6.0
see movement Perceiver_passive Arg0 1.2
see face Phenomenon Arg1 6.8
see face Perceiver_passive Arg0 2.4
encourage government Speaker Arg0 4.2
encourage government Addressee Arg1 3.8
encourage vicar Speaker Arg0 5.6
encourage vicar Addressee Arg1 4.7
encourage affiliate Speaker Arg0 3.7
encourage affiliate Addressee Arg1 4.9
encourage pupil Addressee Arg1 5.9
encourage pupil Speaker Arg0 3.9
encourage boy Addressee Arg1 5.7
encourage boy Speaker Arg0 5.2
encourage technician Addressee Arg1 4.8
encourage technician Speaker Arg0 4.0
embarrass government Experiencer Arg1 4.9
embarrass government Stimulus Arg0 3.8
embarrass executive Experiencer Arg1 4.9
embarrass executive Stimulus Arg0 4.8
embarrass intervener Experiencer Arg1 2.9
embarrass intervener Stimulus Arg0 4.1
embarrass importunity Stimulus Arg0 2.4
embarrass importunity Experiencer Arg1 1.2
embarrass book-keeping Stimulus Arg0 2.6
embarrass book-keeping Experiencer Arg1 1.3
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Table B.1.: Verbs and FrameNet arguments (continued)

Verb Argument FN Role PB Role Rating
embarrass lyric Stimulus Arg0 3.6
embarrass lyric Experiencer Arg1 1.2
confuse baby Experiencer Arg1 6.0
confuse baby Stimulus Arg0 3.7
confuse sense Experiencer Arg1 3.8
confuse sense Stimulus Arg0 4.0
confuse computer Experiencer Arg1 4.1
confuse computer Stimulus Arg0 5.4
confuse comment Stimulus Arg0 5.8
confuse comment Experiencer Arg1 1.5
confuse boatman Stimulus Arg0 2.1
confuse boatman Experiencer Arg1 3.2
confuse equipment Stimulus Arg0 4.9
confuse equipment Experiencer Arg1 1.4
promise parent Addressee Arg1 5.8
promise parent Speaker Arg0 6.5
promise customer Addressee Arg1 6.4
promise customer Speaker Arg0 3.6
promise company Addressee Arg1 5.8
promise company Speaker Arg0 5.2
promise government Speaker Arg0 6.4
promise government Addressee Arg1 5.0
promise administration Speaker Arg0 6.0
promise administration Addressee Arg1 4.9
promise sun-god Speaker Arg0 1.2
promise sun-god Addressee Arg1 2.7
advise customer Addressee Arg1 6.0
advise customer Speaker Arg0 3.8
advise designer-gardener Addressee Arg1 3.8
advise designer-gardener Speaker Arg0 5.8
advise biologist Addressee Arg1 2.4
advise biologist Speaker Arg0 5.0
advise official Speaker Arg0 6.2
advise official Addressee Arg1 5.9
advise doctor Speaker Arg0 6.8
advise doctor Addressee Arg1 4.0
advise expert Speaker Arg0 6.5
advise expert Addressee Arg1 3.8
inform public Addressee Arg1 5.9
inform public Speaker Arg0 3.8
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B. Plausibility Rating Materials

Table B.1.: Verbs and FrameNet arguments (continued)

Verb Argument FN Role PB Role Rating
inform employee Addressee Arg1 5.6
inform employee Speaker Arg0 5.2
inform police Addressee Arg1 6.0
inform police Speaker1 Arg0 5.8
inform secretary Speaker Arg0 6.2
inform secretary Addressee Arg1 5.8
inform center Speaker Arg0 4.9
inform center Addressee Arg1 4.0
caution friend Addressee Arg2 5.0
caution friend Speaker Arg0 5.6
caution woman Addressee Arg2 5.7
caution woman Speaker Arg0 5.7
caution judge Addressee Arg2 3.7
caution judge Speaker Arg0 5.4
caution police Speaker Arg0 6.6
caution police Addressee Arg2 2.2
caution lady Speaker Arg0 5.0
caution lady Addressee Arg2 5.0
caution rain Speaker Arg0 1.2
caution rain Addressee Arg2 1.3
ask doctor Addressee Arg2 6.7
ask doctor Speaker Arg0 6.5
ask police Addressee Arg2 6.2
ask police Speaker1 Arg0 6.5
ask state Addressee Arg2 3.8
ask state Speaker Arg0 3.8
ask prosecutor Speaker Arg0 6.6
ask prosecutor Addressee Arg2 6.3
ask charity Speaker Arg0 5.9
ask charity Addressee Arg2 5.2
tell reporter Addressee Arg2 6.7
tell reporter Speaker Arg0 6.7
tell therapist Addressee Arg2 6.7
tell therapist Speaker Arg0 6.9
tell court Addressee Arg2 6.6
tell court Speaker Arg0 6.8

1This verb-argument pair was seen in both the Addressee and Speaker relation.
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Table B.1.: Verbs and FrameNet arguments (continued)

Verb Argument FN Role PB Role Rating
tell department Speaker Arg0 5.3
tell department Addressee Arg2 5.0
tell senator Speaker Arg0 6.1
tell senator Addressee Arg2 6.3
tell patient Speaker Arg0 5.9
tell patient Addressee Arg2 6.4
hit opponent Victim Arg1 5.7
hit opponent Agent Arg0 5.3
hit creature Victim Arg1 5.0
hit creature Agent Arg0 5.0
hit baby Victim Arg1 3.6
hit baby Agent Arg0 6.2
hit man Agent Arg0 5.6
hit man Victim Arg1 4.1
hit mummy Agent Arg0 2.3
hit mummy Victim Arg1 2.2
hit brother Agent Arg0 4.7
hit brother Victim Arg1 4.1
increase amount Attribute Arg1 5.5
increase amount Cause Arg0 2.4
increase rate Item Arg1 5.8
increase rate Cause Arg0 4.7
increase number Attribute Arg1 5.5
increase number Cause Arg0 1.6
increase authority Agent Arg0 6.0
increase authority Item Arg1 2.9
increase industry Agent Arg0 5.7
increase industry Item Arg1 3.0
increase model Cause Arg0 2.6
increase model Item Arg1 3.5
kill man Victim Arg1 5.4
kill man Killer Arg0 3.4
kill mother Victim Arg1 3.8
kill mother Killer Arg0 2.1
kill lion Victim Arg1 4.9
kill lion Killer Arg0 2.7
kill girl Killer Arg0 2.2
kill girl Victim Arg1 4.1
kill rebel Killer Arg0 4.5
kill rebel Victim Arg1 5.0
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B. Plausibility Rating Materials

Table B.1.: Verbs and FrameNet arguments (continued)

Verb Argument FN Role PB Role Rating
kill shark Killer Arg0 2.1
kill shark Victim Arg1 3.9
eliminate club Theme Arg1 2.8
eliminate club Agent Arg0 3.6
eliminate barrier Theme Arg1 4.9
eliminate barrier Agent Arg0 3.9
eliminate need Theme Arg1 5.0
eliminate need Agent Arg0 2.5
eliminate intruder Agent Arg0 3.3
eliminate intruder Theme Arg1 2.8
eliminate law Agent Arg0 4.6
eliminate law Theme Arg1 3.0
eliminate therapy Agent Arg0 4.7
eliminate therapy Theme Arg1 2.7
raise price Attribute Arg1 6.0
raise price Cause Arg0 1.7
raise rate Attribute Arg1 5.7
raise rate Cause Arg0 1.8
raise dividend Item Arg1 4.7
raise dividend Cause Arg0 1.6
raise government Agent Arg0 6.0
raise government Item Arg1 1.2
raise bank Agent Arg0 6.0
raise bank Item Arg1 1.8
raise country Agent Arg0 5.2
raise country Item Arg1 1.8
eat meal Ingestibles Arg1 6.9
eat meal Ingestor Arg0 1.9
eat lunch Ingestibles Arg1 6.9
eat lunch Ingestor Arg0 1.1
eat egg Ingestibles Arg1 6.4
eat egg Ingestor Arg0 1.0
eat villager Ingestor Arg0 6.8
eat villager Ingestibles Arg1 1.7
eat local Ingestor Arg0 6.7
eat local Ingestibles Arg1 1.5
eat group Ingestor Arg0 6.0
eat group Ingestibles Arg1 1.1
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Table B.2.: Verbs and PropBank arguments with FrameNet and PropBank role and rating

Verb Argument FN Role PB Role Rating
resent wife Experiencer Arg0 5.8
resent wife Content Arg1 5.0
resent viewer Experiencer Arg0 4.0
resent viewer Content Arg1 2.7
resent firm Experiencer Arg0 2.7
resent firm Content Arg1 5.2
resent cost Content Arg1 1.1
resent cost Experiencer Arg0 5.6
resent transfer Content Arg1 1.3
resent transfer Experiencer Arg0 3.9
resent product Content Arg1 1.2
resent product Experiencer Arg0 4.2
hear court Hearer Arg0 6.4
hear court Message Arg1 5.2
hear board Hearer Arg0 5.4
hear board Message Arg1 2.8
hear committee Hearer Arg0 5.8
hear committee Message Arg1 4.1
hear case Message Arg1 5.8
hear case Hearer Arg0 1.4
hear appeal Message Arg1 6.4
hear appeal Hearer Arg0 1.7
hear moan Phenomenon Arg1 5.8
hear moan Perceiver_passive Arg0 1.1
see return Phenomenon Arg1 5.0
see return Perceiver_passive Arg 1.2
see effect Phenomenon Arg1 6.0
see effect Perceiver_passive Arg0 1.3
see drop Phenomenon Arg1 3.8
see drop Perceiver_passive Arg0 1.0
see executive Perceiver_passive Arg0 6.8
see executive Phenomenon Arg1 6.0
see analyst Perceiver_passive Arg0 6.5
see analyst Phenomenon Arg1 5.4
see investor Perceiver_passive Arg0 5.9
see investor Phenomenon Arg1 4.2
encourage executive Speaker Arg0 5.0
encourage executive Addressee Arg1 5.6
encourage uncertainty Speaker Arg0 2.5
encourage uncertainty Addressee Arg1 5.5
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B. Plausibility Rating Materials

Table B.2.: Verbs and PropBank arguments (continued)

Verb Argument FN Role PB Role Rating
encourage purpose Speaker Arg0 3.8
encourage purpose Addressee Arg1 3.6
encourage investor Addressee Arg1 5.5
encourage investor Speaker Arg0 5.1
encourage company Addressee Arg1 4.0
encourage company Speaker Arg0 4.0
encourage client Addressee Arg1 5.1
encourage client Speaker Arg0 3.7
embarrass conservative Experiencer Arg1 3.7
embarrass conservative Stimulus Arg0 3.9
embarrass board Experiencer Arg1 3.9
embarrass board Stimulus Arg0 3.8
embarrass official Experiencer Arg1 5.0
embarrass official Stimulus Arg0 4.9
embarrass treatment Stimulus Arg0 4.0
embarrass treatment Experiencer Arg1 1.0
embarrass information Stimulus Arg0 4.8
embarrass information Experiencer Arg1 1.2
embarrass revelation Stimulus Arg0 5.3
embarrass revelation Experiencer Arg1 1.2
confuse shareholder Experiencer Arg1 5.0
confuse shareholder Stimulus Arg0 3.3
confuse community Experiencer Arg1 4.9
confuse community Stimulus Arg0 3.5
confuse situation Experiencer Arg1 5.1
confuse situation Stimulus Arg0 6.0
confuse insistence Stimulus Arg0 4.2
confuse insistence Experiencer Arg1 1.4
confuse statement Stimulus Arg0 6.0
confuse statement Experiencer Arg1 2.5
confuse condition Stimulus Arg0 4.6
confuse condition Experiencer Arg1 2.5
promise state Addressee Arg1 3.9
promise state Speaker Arg0 5.6
promise station Addressee Arg1 2.2
promise station Speaker Arg0 1.9
promise foundation Addressee Arg1 5.1
promise foundation Speaker Arg0 4.9
promise company Speaker Arg0 5.8
promise company Addressee Arg1 5.2
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Table B.2.: Verbs and PropBank arguments (continued)

Verb Argument FN Role PB Role Rating
promise plan Speaker Arg0 5.1
promise plan Addressee Arg1 1.2
promise fund Speaker Arg0 3.8
promise fund Addressee Arg1 1.9
advise client Addressee Arg1 6.6
advise client Speaker Arg0 3.7
advise business Addressee Arg1 5.8
advise business Speaker Arg0 5.3
advise investor Addressee Arg1 6.3
advise investor Speaker Arg0 6.0
advise hospital Speaker Arg0 6.0
advise hospital Addressee Arg1 4.0
advise planner Speaker Arg0 6.3
advise planner Addressee Arg1 3.9
advise banker Speaker Arg0 6.0
advise banker Addressee Arg1 5.0
inform committee Addressee Arg1 5.3
inform committee Speaker Arg0 5.9
inform reader Addressee Arg1 5.9
inform reader Speaker Arg0 4.1
inform network Addressee Arg1 2.6
inform network Speaker Arg0 4.4
inform system Speaker Arg0 4.6
inform system Addressee Arg1 1.9
inform administration Speaker Arg0 6.0
inform administration Addressee Arg1 5.6
inform foundation Speaker Arg0 4.2
inform foundation Addressee Arg1 3.4
caution bank Addressee Arg2 2.3
caution bank Speaker Arg0 4.2
caution leader Addressee Arg2 5.0
caution leader Speaker Arg0 5.9
caution user Addressee Arg2 5.4
caution user Speaker Arg0 3.8
caution developer Speaker Arg0 3.8
caution developer Addressee Arg2 5.0
caution professional Speaker Arg0 5.0
caution professional Addressee Arg2 5.1
caution trader Speaker Arg0 3.2
caution trader Addressee Arg2 5.1
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B. Plausibility Rating Materials

Table B.2.: Verbs and PropBank arguments (continued)

Verb Argument FN Role PB Role Rating
ask court Addressee Arg2 5.8
ask court Speaker Arg0 6.0
ask department Addressee Arg2 5.2
ask department Speaker Arg0 4.0
ask congress Addressee Arg2 6.0
ask congress Speaker Arg0 5.8
ask official Speaker Arg0 6.1
ask official Addressee Arg2 6.6
ask union Speaker Arg0 6.0
ask union Addressee Arg2 5.3
ask firm Speaker Arg0 5.3
ask firm Addressee Arg2 5.1
tell reporter Addressee Arg2 6.7
tell reporter Speaker Arg0 6.7
tell analyst Addressee Arg2 6.0
tell analyst Speaker Arg0 6.5
tell investor Addressee Arg2 6.0
tell investor Speaker Arg0 6.0
tell chairman Speaker Arg0 6.6
tell chairman Addressee Arg2 6.2
tell officer Speaker Arg0 6.3
tell officer Addressee Arg2 6.0
tell executive Speaker Arg0 6.6
tell executive Addressee Arg2 5.7
hit stock Impactee Arg2 2.7
hit stock Impactor Arg1 2.0
hit market Impactee Arg2 3.7
hit market Impactor Arg1 1.7
hit ball Impactee Arg2 6.1
hit ball Impactor Arg1 5.7
hit quake Impactor Arg2 3.4
hit quake Impactee Arg1 1.2
hit player Agent Arg0 5.6
hit player Victim Arg1 5.7
hit earthquake Impactor Arg2 2.7
hit earthquake Impactee Arg1 1.3
increase sale Item Arg1 2.7
increase sale Cause Arg0 5.6
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Table B.2.: Verbs and PropBank arguments (continued)

Verb Argument FN Role PB Role Rating
increase rate Attribute Arg1 5.8
increase rate Cause Arg0 4.7
increase revenue Item Arg1 5.8
increase revenue Cause Arg0 4.0
increase company Agent Arg0 5.2
increase company Item Arg1 2.6
increase bank Agent Arg0 6.0
increase bank Item Arg1 2.4
increase move Cause Arg0 4.0
increase move Item Arg1 2.0
kill item Victim Arg1 1.3
kill item Cause Arg0 2.7
kill people Victim Arg1 6.2
kill people Killer Arg0 3.0
kill cell Victim Arg1 5.7
kill cell Cause Arg0 2.8
kill antibody Cause Arg0 5.9
kill antibody Victim Arg1 4.1
kill group Killer Arg0 3.4
kill group Victim Arg1 3.0
kill house Cause Arg0 1.7
kill house Victim Arg1 1.0
eliminate job Theme Arg1 5.0
eliminate job Agent Arg0 3.0
eliminate barrier Theme Arg1 4.9
eliminate barrier Agent Arg0 3.9
eliminate need Theme Arg1 5.0
eliminate need Agent Arg0 2.5
eliminate policy Agent Arg0 4.2
eliminate policy Theme Arg1 4.2
eliminate act Agent Arg0 4.9
eliminate act Theme Arg1 2.4
eliminate provision Agent Arg0 3.1
eliminate provision Theme Arg1 4.1
raise question None1 Arg1 6.4
raise question None2 Arg0 4.2
raise rate Attribute Arg1 5.7
raise rate Cause Arg0 1.8
raise stake Item Arg1 5.2
raise stake Cause Arg0 2.1
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B. Plausibility Rating Materials

Table B.2.: Verbs and PropBank arguments (continued)

Verb Argument FN Role PB Role Rating
raise congress Agent Arg0 5.3
raise congress Item Arg1 1.2
raise bank Agent Arg0 6.0
raise bank Item Arg1 1.8
raise firm Agent Arg0 5.3
raise firm Item Arg1 2.0
eat apple Ingestibles Arg1 6.5
eat apple Ingestor Arg0 1.0
eat debt Ingestibles Arg1 1.4
eat debt Ingestor Arg0 1.3
eat pizza Ingestibles Arg1 6.8
eat pizza Ingestor Arg0 1.1
eat people Ingestor Arg0 6.9
eat people Ingestibles Arg1 1.5
eat husband Ingestor Arg0 6.7
eat husband Ingestibles Arg1 1.3
eat cost Ingestor Arg0 1.0
eat cost Ingestibles Arg1 1.8
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W. Nelson Francis and Henry Kučera. Manual of information to accompany a standard corpus of
present-day edited American English, for use with digital computers. Brown University, Providence,
RI, 1964.

Lyn Frazier. On comprehending sentences: Syntactic parsing strategies. Indiana University Linguis-
tics Club, Bloomington, IN, 1978.

Lyn Frazier. Sentence processing: A tutorial review. In M. Coltheart, editor, Attention and
Performance XII: The Psychology of Reading. Lawrence Erlbaum Associates, 1987.

Lyn Frazier, Maria Nella Carminati, Anne E. Cook, Helen Majewski, and Keith Rayner. Semantic
evaluation of syntactic structure: Evidence from eye movements. Cognition, 99:B53–B62,
2005.

Susan Garnsey, Neal Pearlmutter, Elizabeth Myers, and Melanie Lotocky. The contributions of
verb bias and plausibility to the comprehension of temporarily ambiguous sentences. Journal
of Memory and Language, 37:58–93, 1997.

Tomas Gedeon, Albert Parker, and Alexander Dimitrov. Information distortion and neural
coding. Canadian Applied Mathematics Quarterly, 10(1):33–70, 2003.

Edward Gibson, Carson T. Schütze, and Ariel Salomon. The relationship between the frequency
and the processing complexity of linguistic structure. Journal of Psycholinguistic Research, 25:
59–92, 1996.

Daniel Gildea. Corpus variation and parser performance. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2001.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. Computational
Linguistics, 28(3):245–288, 2002.

Ana-Maria Giuglea and Alessandro Moschitti. Knowledge discovery using FrameNet, VerbNet
and PropBank. In Proceedings of the Workshop on Ontology and Knowledge Discovering at the
European Conference on Machine Learning (ECML), 2004.

202



Bibliography

Ana-Maria Giuglea and Alessandro Moschitti. Semantic role labeling via FrameNet, VerbNet
and PropBank. In Proceedings of the joint International Conference on Computational Linguistics
and Annual Meeting of the Association for Computational Linguistic (COLING/ACL), 2006.

I.J. Good. The population frequencies of species and the estimation of population parameters.
Biometrika, 40:237–264, 1953.

John Hale. A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the
Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL),
2001.

John Hale. The information conveyed by words in sentences. Journal of Psycholinguistic Research,
32(2):101–123, 2003.

Mary Hare, Ken McRae, and Jeffrey Elman. Sense and structure: Meaning as a determinant of
verb subcategorization preferences. Journal of Memory and Language, 48:281–303, 2003.

Mary Hare, Ken McRae, and Jeffrey Elman. Admitting that admitting verb sense into corpus
analyses makes sense. Language and Cognitive Processes, 19(2):181–224, 2004.

Virginia Holmes, Laurie Stowe, and Linda Cupples. Lexical expectations in parsing
complement-verb sentences. Journal of Memory and Language, 28(6):668–689, 1989.

Frederick Jelinek, John Laerty, David Magerman, and Salim Roukos. Decision tree parsing
using a hidden derivation model. In Proceedings of the 1994 Human Language Technology
Workshop, 1994.

Mark Johnson. PCFG models of linguistic tree representations. Computational Linguistics, 24:
613–632, 1998.

R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, 38:325–340, 1987.

Dan Jurafsky. Probabilistic modeling in psycholinguistics: Linguistic comprehension and
production. In Rens Bod, Jennifer Hay, and Stefanie Jannedy, editors, Probabilistic Linguistics,
pages 39–96. MIT Press, 2003.

Daniel Jurafsky. A probabilistic model of lexical and syntactic access and disambiguation.
Cognitive Science, 20:137–194, 1996.

Marcel A. Just and Patricia A. Carpenter. A theory of reading: From eye fixations to compre-
hension. Psychological Review, 87:329–354, 1980.

Frank Keller and Mirella Lapata. Using the web to obtain frequencies for unseen bigrams.
Computational Linguistics, 29(3):459–484, 2003.

Frank Keller and Christoph Scheepers. Context effects on frame probability independent of
verb sense ambiguity. In Proceedings of the Annual Meeting of the Cognitive Science Society, 2006.

Karin Kipper, Hoa Trang Dang, and Martha Palmer. Class-based construction of a verb lexicon.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), 2000.

203



Bibliography

Dan Klein and Christopher Manning. Accurate unlexicalised parsing. In Proceedings of Annual
Meeting of the Association for Computational Linguistics (ACL), 2003.

Anna Korhonen, Yuval Krymolowski, and Zvika Marx. Clustering polysemic subcategorization
frame distributions semantically. In Proceedings of the Annual Meeting of the Association for
Computational Linguistic (ACL), 2003.

Thomas Landauer and Susan Dumais. A solution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction and representation of knowledge. Psychological
Review, 104:211–240, 1997.

Maria Lapata, Frank Keller, and Sabine Schulte im Walde. Verb frame frequency as a predictor
of verb bias. Journal of Psycholinguistic Research, 30(4):419–435, 2001.

Beth Levin. English Verb Classes and Alternations. Chicago University Press, Chicago, 1993.

Roger Levy. Probabilistic models of word order and syntactic discontinuity. PhD thesis, Stanford
University, 2005.

Hang Li and Naoki Abe. Generalizing case frames using a thesaurus and the MDL principle.
Computational Linguistics, 24(2):217–244, 1998.

Sigrid Lipka. Reading sentences with a late closure ambiguity: Does semantic information
help? Language and Cognitive Processes, 17(3):271–298, 2002.

Ken Litkowski. Senseval-3 task: Automatic labeling of semantic roles. In Proceedings of Senseval-
3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text,
2004.

Simon Liversedge, Martin Pickering, Holly Branigan, and Roger van Gompel. Processing
arguments and adjuncts in isolation and context: The case of by-phrase ambiguities in
passives. Journal of Experimental Psychology, 24(2):461–475, 1998.

Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments & Computers, 28:203–208, 1997.

Maryellen MacDonald. Probabilistic constraints and syntactic ambiguity resolution. Language
and Cognitive Processes, 9(2):157–201, 1994.

Maryellen MacDonald, Neal Pearlmutter, and Mark Seidenberg. The lexical nature of syntactic
ambiguity resolution. Psychological Review, 101:676–703, 1994.

Scott A. MacDonald and Richard C. Shillcock. Eye movements reveal the on-line computation
of lexical probabilities. Psychological Science, 14:648—652, 2003.

Christopher Manning and Hinrich Schütze. Foundations of statistical language processing. MIT
Press, Cambridge, MA, 1999.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1994.

204



Bibliography

Zvika Marx. Structure-based computational aspects of similarity and analogy in natural language.
PhD thesis, Hebrew University, Jerusalem, 2004.

Marshall R. Mayberry. Incremental nonmonotonic parsing through semantic self-organization. PhD
thesis, University of Texas at Austin, 2003.

James McClelland, Mark St. John, and Roman Taraban. Sentence comprehension: A parallel
distributed processing approach. Language and Cognitive Processes, 4(3/4):287–335, 1989.

Ken McRae, Michael Spivey-Knowlton, and Michael Tanenhaus. Modeling the influence of
thematic fit (and other constraints) in on-line sentence comprehension. Journal of Memory and
Language, 38:283–312, 1998.

Douglas L. Medin and Cynthia Aguilar. Categorization. In Robert A. Wilson and Frank C. Keil,
editors, The MIT Encyclopedia of the Cognitive Sciences, pages 104–105. MIT Press, 1999.

Paola Merlo. A corpus-based analysis of verb continuation frequencies for syntactic processing.
Journal of Psycholinguistic Research, 23(6):435–457, 1994.

Guido Minnen, John Carroll, and Darren Pearce. Applied morphological processing of English.
Natural Language Engineering, 7(3):207–223, 2001.

Don Mitchell. Lexical guidance in human parsing: Locus and processing characteristics. In
M. Coltheart, editor, Attention and performance XII. Erlbaum, 1987.

Don Mitchell and Marc Brysbaert. Syntax and Semantics 31: Challenges to recent theories of
crosslinguistic variation in parsing: Evidence from Dutch. In Dieter Hillert, editor, Sentence
Processing: A crosslinguistic perspective, pages 313–344. Academic Press, San Diego, CA, 1998.

Srini Narayanan and Daniel Jurafsky. A Bayesian model predicts human parse preference
and reading time in sentence processing. In T. G. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems 14, pages 59–65. MIT Press, 2002.

Srini Narayanan and Daniel Jurafsky. A Bayesian model of human sentence processing. MS,
http://www.icsi.berkeley.edu/~snarayan/newcog.pdf, 2005.

Srini Narayanan and Daniel Jurafsky. Bayesian models of human sentence processing. In
Proceedings of the Annual Meeting of the Cognitive Science Society, 1998.

Stefan Oepen, Dan Flickinger, Kristina Toutanova, and Chris Manning. LinGO Redwoods: A
rich and dynamic treebank for HPSG. In Beyond PARSEVAL. Workshop at the Third Conference
on Language Resources and Evaluation (LREC), 2002.

Sebastian Padó and Maria Lapata. Dependency-based construction of semantic space models.
Computational Linguistics, to appear.

Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An annotated corpus
of semantic roles. Computational Linguistics, 31(1):71–105, 2005.

Martin Pickering and Matthew Traxler. Plausibility and recovery from garden paths. Journal of
Experimental Psychology: Learning, Memory and Cognition, 24, 1998.

205



Bibliography

Martin Pickering, Matthew Traxler, and Matthew W. Crocker. Ambiguity resolution in sentence
processing: Evidence against frequency-based accounts. Journal of Memory and Language, 43:
447–475, 2000.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne Ward, James Martin, and Daniel
Jurafsky. Support vector learning for semantic argument classification. Machine Learning, 60:
11–39, 2005.

Bradley Pritchett. Grammatical Competence and Parsing Performance. The University of Chicago
Press, 1992.

Trivellore Raghunathan. An approximate test for homogeneity of correlated correlations.
Quality and Quantity, 37:99–110, 2003.

Keith Rayner, Marcia Carlson, and Lyn Frazier. The interaction of syntax and semantics during
sentence processing: Eye movements in the analysis of semantically biased sentences. Journal
of Verbal Learning and Verbal Behaviour, 22:358–374, 1983.

Keith Rayner, Simon Garrod, and Charles A. Perfetti. Discourse influences during parsing are
delayed. Cognition, 45:109–139, 1992.

Philip Resnik. Left-corner parsing and psychological plausibility. In Proceedings of the Interna-
tional Conference on Computational Linguistics (COLING), Nantes, France, 1992.

Philip Resnik. Selectional constraints: An information-theoretic model and its computational
realization. Cognition, 61:127–159, 1996.

Philip Resnik. Selectional preference and sense disambiguation. In Proceedings of the ACL Siglex
Workshop on Tagging Text with Lexical Semantics, Why, What and How?, 1997.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

Brian Roark. Robust Probabilistic Predictive Syntactic Processing: Motivations, Models, and Applica-
tions. PhD thesis, Brown University, 2001.

Douglas Rohde. A Connectionist Model of Sentence Comprehension and Production. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 2002.

Douglas Rohde. Tgrep2 user manual. tedlab.mit.edu/~dr/Tgrep2/, 2001.

Doug Roland and Daniel Jurafsky. Verb sense and verb subcategorisation probabilities. In
P. Merlo and S. Stevenson, editors, The Lexical Basis of Sentence Processing: Formal, Computa-
tional and Experimental Issues, pages 325–346. John Benjamins, Amsterdam, 2002.

Douglas Roland and Daniel Jurafsky. How verb subcategorization frequencies are affected by
corpus choice. In Proceedings of the joint International Conference on Computational Linguistics
and Annual Meeting of the Association for Computational Linguistics (COLING/ACL), 1998.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L. Petruck, and Christopher R. Johnson.
FrameNet: Theory and Practice. e-book, 2005.

206



Bibliography

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings of the
International Conference on New Methods in Language Processing (NeMLap), 1994.

Sabine Schulte im Walde and Chris Brew. Inducing German semantic verb classes from purely
syntactic subcategorisation information. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2002.

Carson Schütze and Edward Gibson. Argumenthood and English prepositional phrase attach-
ment. Journal of Memory and Language, 40:409–431, 1999.

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and Hans Uszkoreit. Annotating unrestricted
German text. In Fachtagung der Sektion Computerlinguistik der Deutschen Gesellschaft für
Sprachwissenschaft, 1997.

Michael Spivey and Michael Tanenhaus. Syntactic ambiguity resolution in discourse: Modeling
the effects of referential context and lexical frequency. Journal of Experimental Psychology:
Learning, Memory and Cognition, 24(6):1521–1543, 1998.

Michael Spivey-Knowlton. Integration of visual and linguistic information: Human data and model
simulations. PhD thesis, University of Rochester, 1996.

Michael Spivey-Knowlton and Julie Sedivy. Parsing attachment ambiguities with multiple
constraints. Cognition, 55:227–267, 1995.

Mark St. John and James McClelland. Learning and applying contextual constraints in sentence
comprehension. Artificial Intelligence, 46:217–257, 1990.

Mark Steedman. Connectionist sentence processing in perspective. Cognitive Science, 23(4):
615–634, 1999.

Andreas Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–201, 1995.

Laurie Stowe. Thematic structures and sentence comprehension. In G. Carlson and M. Tanen-
haus, editors, Linguistic structure in language processing, pages 319–357. Kluwer Academic
Publishers, 1989.

Patrick Sturt, Martin Pickering, and Matthew W. Crocker. Structural change and reanalysis
difficulty in language comprehension. Journal of Memory and Language, 40:136–150, 1999.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul Aarseth. Using predicate-argument
structures for information extraction. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2003.

Whitney Tabor and Michael K. Tanenhaus. Dynamical models of sentence processing. Cognitive
Science, 23(4):491–515, 1999.

Whitney Tabor, Cornell Juliano, and Michael Tanenhaus. Parsing in a dynamical system: An
attractor-based account of the interaction of lexical and structural constraints in sentence
processing. Language and Cognitive Processes, 12(2/3):211–271, 1997.

207



Bibliography

Patrizia Tabossi, Michael Spivey-Knowlton, Ken McRae, and Michael Tanenhaus. Semantic
effects on syntactic ambiguity resolution: Evidence for a constraint-based resolution process.
In C. Umilta and M. Moscovitch, editors, Attention and Performance XV, pages 589–615.
Lawrence Erlbaum Associates, 1994.

Michael Tanenhaus, Michael Spivey-Knowlton, and Joy Hanna. Modeling thematic and dis-
course context effects with a multiple constraints approach: Implications for the architecture
of the language comprehension system. In M. W. Crocker, M. Pickering, and C. Clifton,
editors, Architectures and Mechanisms for Language Processing, pages 99–118. Cambridge Uni-
versity Press, 2000.

Roman Taraban and James McClelland. Constituent attachment and thematic role assignment
in sentence processing: Influences of content-based expectations. Journal of Memory and
Language, 27:597–632, 1988.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The Information Bottleneck method.
In Proceedings of the Annual Allerton Conference on Communication, Control and Computing, 1999.

John Trueswell, Michael Tanenhaus, and Christopher Kello. Verb-specific constraints in sentence
processing: Separating effects of lexical preference from garden-paths. Journal of Experimental
Psychology: Learning, Memory and Cognition, 19(3):528–553, 1993.

John Trueswell, Michael Tanenhaus, and Susan Garnsey. Semantic influences on parsing: Use of
thematic role information in syntactic ambiguity resolution. Journal of Memory and Language,
33:285–318, 1994.

John C. Trueswell. The role of lexical frequency in syntactic ambiguity resolution. Journal of
Memory and Language, 35:566–585, 1996.

Roger van Gompel and Martin Pickering. Lexical guidance in sentence processing: A note on
Adams, Clifton and Mitchell (1998). Psychonomic Bulletin and Review, 8(4):851–857, 2001.

Roger van Gompel, Martin Pickering, and Matthew Traxler. Reanalysis in sentence processing:
Evidence against current constraint-based and two-stage models. Journal of Memory and
Language, 45:225–258, 2001.

Nianwen Xue and Martha Palmer. Calibrating features for semantic role labeling. In Proceedings
of the joint Human Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP), 2004.

Alexander Yeh. More accurate tests for the statistical significance of result differences. In
Proceedings of the International Conference on Computational Linguistics, 2000.

208


