
 
 

The Mental Representation in 
Mental Rotation  

Its Content, Timing and Neuronal Source 

Dissertation 

zur Erlangung des akademischen Grades eines 

Doktors der Philosophie 

der Philosophischen Fakultät III 

der Universität des Saarlandes 

 

 

vorgelegt von 

Heinrich René Liesefeld 

aus Duisburg 

 

Saarbrücken, 2012 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dekan: Prof. Dr. Jochen Kubiniok 

Erstberichterstatter: Prof. Dr. Hubert D. Zimmer 

Zweitberichterstatter: Prof. Dr. Dirk Wentura 

Tag der Disputation: 4. Mai 2012 



 
The Mental Representation in 

Mental Rotation  
Its Content, Timing and Neuronal Source 

Doctoral Dissertation 

submitted in partial fulfillment of the requirements for the academic degree of 

Doctor of Philosophy 

to the Philosophical Faculties of Saarland University 

by Heinrich René Liesefeld 

 

submitted on September, 26th 2011 

defended on May, 4th 2012 

 



II 

 

Acknowledgements 

Part of this work is also included in published articles. Specifically, the prelimi-

nary study was published as Liesefeld and Zimmer (2011) and experiments 1b 

and 2 are published as Liesefeld and Zimmer (2012). For these articles I am the 

first author. In order to warrant a smooth reading, the respective passages are 

not marked in the text. Furthermore, in keeping with the practice of these arti-

cles, in the main text I consistently employ “we” instead of “I”. 

I thank Emma Bridger and Dirk Wentura for helpful comments on part of the 

work included here. I wish to especially acknowledge the contribution by Anna 

Arend who took part in this work in all its phases from developing and discuss-

ing the initial ideas to writing the final manuscript. Without her involvement, 

this work would not have reached its final quality. Last but not least I thank my 

supervisor Hubert D. Zimmer for the perfect balance between letting me dwell 

into details and occasionally pushing me towards the more general goal of a 

consistent dissertation. With his wholehearted support I was able to work out 

my ideas and to develop my own style of conducting research in an enjoyable 

and even playful atmosphere. 



III 

 

 
“For let no one hope to decide the question whether it is the earth or heaven 

that really revolves in the diurnal motion, until he has first comprehended the 

nature of spontaneous rotation.” 

—Francis Bacon (1620). 

The new organon. 

“To form monsters and join incongruous shapes and appearances costs the 

imagination no more trouble than to conceive the most natural and familiar ob-

jects.” 

—Hume (1748)  

An enquiry concerning human understanding. 

“I am crushed, I am carrying the whole world on my back in the process of try-

ing to visualize my turning around and making myself see in terms of “right” 

what I saw in terms of “left” and vice versa.” 

—Vladimir Nabokov (1974). 

Look at the harlequins! 



IV 

 

Contents 

Acknowledgements .................................................................................................................. II 

Contents ...................................................................................................................................... IV 

List of Tables ............................................................................................................................. IX 

List of Figures ............................................................................................................................. X 

List of Abbreviations ............................................................................................................. XII 

Abstract .....................................................................................................................................XIV 

1. Mental Rotation ......................................................................................................... 1 

1.1 The Mental Rotation Effect ...................................................................................... 1 

1.2 What is Mental Rotation Good For? ..................................................................... 3 

1.3 Classification of Mental-Rotation Tasks ............................................................. 4 

1.3.1 Comparing simultaneously presented stimuli .......................................... 7 

1.3.2 Comparing a single stimulus to its long-term memory entry ............. 8 

1.3.3 Comparing successively presented stimuli ............................................. 10 

1.3.4 Rotation cues ....................................................................................................... 11 

1.4 Disoriented Object Recognition ......................................................................... 13 

1.5 Mental Rotation as a Working Memory Function ....................................... 14 

1.5.1 Working-memory tasks .................................................................................. 14 

1.5.2 Parcellation of working memory ................................................................. 16 

1.6 Brain Regions Involved in Mental-Rotation Tasks...................................... 18 

1.6.1 Parietal cortex ..................................................................................................... 20 

1.6.2 Motor system ...................................................................................................... 22 

1.6.3 Mirror-neuron areas ........................................................................................ 25 

1.6.4 Spatial working memory areas .................................................................... 26 

1.6.5 Visual system ...................................................................................................... 27 

1.7 Examining the Process of Mental Rotation via EEG.................................... 28 

2. Preliminary Experiment—An Effect of Rotational Direction ................. 31 

2.1 Methods ....................................................................................................................... 39 

2.1.1 Participants .......................................................................................................... 39 

2.1.2 Stimuli .................................................................................................................... 39 

2.1.3 Design .................................................................................................................... 40 



V 

 

2.1.4 Procedure ............................................................................................................. 41 

2.1.5 EEG recording, artifacts handling and signal extraction .................... 42 

2.2 Results .......................................................................................................................... 43 

2.2.1 Behavioral data .................................................................................................. 43 

2.2.2 ERPs ........................................................................................................................ 47 

2.3 Discussion ................................................................................................................... 51 

2.3.1 Effect of rotational direction ......................................................................... 52 

2.3.2 Possible causes of the effect of rotational direction ............................ 52 

2.3.3 Two shapes of the rotation-related slow potential .............................. 54 

3. Mental Representations ....................................................................................... 57 

3.1 Holistic vs. Piece-Meal Representations ......................................................... 58 

3.2 Visual Mental Images as One Type of Visual (Depictive) 

Representations ....................................................................................................... 60 

3.3 A New Hypothesis: Rotation of Orientation-Dependent 

Information ................................................................................................................ 62 

3.4 Are Statements About Mental Representations Possible? ....................... 64 

3.5 Other Features of Mental Representations .................................................... 66 

3.6 How to Manipulate Representational Content ............................................. 67 

3.7 How to Measure Representational Content................................................... 71 

3.7.1 Technique 1: Processing speed .................................................................... 72 

3.7.2 Technique 2: Comparison time .................................................................... 72 

3.7.3 Technique 3: Slow potentials ........................................................................ 72 

3.7.4 Technique 4: P3bs ............................................................................................. 73 

3.7.5 Technique 5: Cortical activation patterns ................................................ 73 

3.8 Theoretical Considerations on the Specific Design of the Present 

Studies .......................................................................................................................... 74 

4. Experiment 1a: An Influence on Rotational Speed ..................................... 79 

4.1 Method ......................................................................................................................... 80 

4.1.1 Participants .......................................................................................................... 80 

4.1.2 Design .................................................................................................................... 81 

4.1.3 Procedure ............................................................................................................. 82 

4.2 Results .......................................................................................................................... 83 



VI 

 

4.2.1 Excluded participants ...................................................................................... 83 

4.2.2 Rotation times .................................................................................................... 84 

4.2.3 Comparison times ............................................................................................. 86 

4.2.4 Accuracies ............................................................................................................ 88 

4.3 Interim Discussion................................................................................................... 89 

5. Experiment 1b: An Even More Controlled Influence on Rotational 

Speed .......................................................................................................................... 91 

5.1 Methods ....................................................................................................................... 92 

5.1.1 Participants .......................................................................................................... 92 

5.1.2 Design .................................................................................................................... 93 

5.1.3 Procedure ............................................................................................................. 93 

5.2 Results .......................................................................................................................... 95 

5.2.1 Ignored information ......................................................................................... 95 

5.2.2 Rotation times .................................................................................................... 95 

5.2.3 Training effects on rotation times .............................................................. 97 

5.2.4 Comparison times ............................................................................................. 98 

5.2.5 Encoding times .................................................................................................100 

5.3 Discussion ................................................................................................................. 101 

6. Experiment 2: Tracking the Recoding of a Mental Representation via 

EEG ............................................................................................................................. 107 

6.1 Exploiting Slow Potentials as Online-Measures of 

Representational Content ................................................................................... 108 

6.2 Identification of Mismatches and the P3b .................................................... 110 

6.3 Methods ..................................................................................................................... 111 

6.3.1 Participants ........................................................................................................111 

6.3.2 Design ..................................................................................................................112 

6.3.3 Procedure ...........................................................................................................112 

6.3.4 EEG recording ...................................................................................................114 

6.3.5 EEG artifacts handling and signal extraction ........................................114 

6.4 Results ........................................................................................................................ 115 

6.4.1 Ignored information .......................................................................................115 

6.4.2 Slow potentials .................................................................................................116 



VII 

 

6.4.3 Comparison times ...........................................................................................122 

6.4.4 P3bs ......................................................................................................................124 

6.5 Discussion ................................................................................................................. 125 

7. Experiment 3: Parcellation of the Mental Rotation Network via fMRI

 .................................................................................................................................... 133 

7.1 Related Studies ....................................................................................................... 136 

7.2 Construction of the Control Task ..................................................................... 138 

7.3 Methods ..................................................................................................................... 140 

7.3.1 Participants ........................................................................................................140 

7.3.2 Design ..................................................................................................................141 

7.3.3 Procedure ...........................................................................................................142 

7.3.4 Scanning procedure ........................................................................................143 

7.3.5 Image analysis ..................................................................................................144 

7.4 Results ........................................................................................................................ 146 

7.4.1 Ignored information .......................................................................................146 

7.4.2 Behavioral data ................................................................................................146 

7.4.3 fMRI data .............................................................................................................149 

7.5 Discussion ................................................................................................................. 158 

8. General Discussion .............................................................................................. 163 

8.1 The Content of the Rotated Representation ................................................ 163 

8.2 Representational Content is not Recoded for Comparison ................... 164 

8.3 The Format of the Rotated Representation ................................................. 167 

8.4 Experimental Control over Mental Representations ............................... 170 

8.5 Limitations of the Present Studies .................................................................. 170 

8.6 Employing the Developed Techniques to Other Tasks ........................... 172 

8.7 Further Implications of the Present Results and Future 

Directions .................................................................................................................. 173 

8.7.1 A common explanation for effects on rotational speed ....................173 

8.7.2 Inability to rotate .............................................................................................175 

8.7.3 Possible rotation mechanisms ...................................................................176 

8.7.4 The special situation of 180°-tilts .............................................................177 

8.7.5 Imagery and perception ................................................................................179 



VIII 

 

8.7.6 Orientation-dependent information in applied contexts .................180 

8.7.7 Disoriented object recognition...................................................................181 

9. Conclusions ............................................................................................................ 185 

10. Appendix ................................................................................................................. 189 

11. References .............................................................................................................. 191 

 

 

 



IX 

 

List of Tables 

Table 3.1 Crucial characteristics of the employed stimuli .................................. 78 
Table 6.1 Global and local probabilities for matches and mismatches ........ 130 
Table 7.1 Areas activated by mental rotation proper as identified by 

the interaction contrast (rotation > retention) × (135° > 45°) .... 152 
Table 7.2 Summary of multivariate analyses of variance (F values) on 

activation in the six regions of interest ................................................. 155 
Table 7.3 Effects of the amount of orientation-dependent and 

orientation-independent information/visual complexity on 
activation in the six regions of interest ................................................. 156 

Table 7.4 Summary of activated areas of the mental rotation network 
in several contrasts ....................................................................................... 157 

Table A1 Mean accuracies and 95%-confidence intervals from 
Experiments 1a, 1b, 2 and 3 ...................................................................... 190 

 



X 

 

List of Figures 

Figure 1.1 Two trials of a mental rotation experiment ............................................. 1 
Figure 1.2 The different types of mental-rotation tasks with typical 

stimuli ..................................................................................................................... 6 
Figure 1.3 Brain areas activated in mental-rotation tasks as found in a 

meta-analysis by Zacks (2008) .................................................................. 20 
Figure 2.1 An illustration of the denominations for character tilts and 

the two strategies ............................................................................................ 32 
Figure 2.2 Illustration of the two possible strategies in character-

rotation tasks .................................................................................................... 35 
Figure 2.3 The trial sequence of the two strategy conditions up-right 

and turn-round ................................................................................................. 37 
Figure 2.4 Accuracy as a function of tilt and strategy condition ........................ 44 
Figure 2.5 Median response times as a function of tilt and strategy 

condition ............................................................................................................. 45 
Figure 2.6 Grand average for the four absolute character tilts ........................... 47 
Figure 2.7 Linear trend of rotational angle at parietal electrode sites ............ 49 
Figure 2.8 Interaction between direction of tilt and strategy condition ......... 50 
Figure 2.9 Effect of rotational direction on the ERPs at Pz ................................... 51 
Figure 3.1 A visual representation is worth more than 87 words ..................... 61 
Figure 3.2 A schematic illustration of the relations between available, 

represented, comparison-relevant and orientation-
dependent stimulus information ............................................................... 69 

Figure 3.3 Illustration of the general trial structure with a complex 
stimulus ............................................................................................................... 75 

Figure 3.4 Examples of stimulus types and their mismatches ............................ 76 
Figure 4.1 Trial procedure of Experiment 1a............................................................. 83 
Figure 4.2 Rotation times as a function of rotational angle and stimulus 

type in Experiment 1a ................................................................................... 85 
Figure 4.3 Comparison Times as a function of stimulus and match type 

in Experiment 1b ............................................................................................. 88 
Figure 5.1 Trial procedure of Experiment 1b ............................................................ 94 
Figure 5.2 Rotation times as a function of stimulus type and rotational 

angle in Experiment 1b ................................................................................. 97 
Figure 5.3 Comparison times as a function of stimulus type and match 

type in Experiment 1b ................................................................................. 100 
Figure 6.1 Trial procedure of Experiment 2 ............................................................. 113 
Figure 6.2 Effects of the stimulus types on slow potentials ............................... 118 
Figure 6.3 The effect of orientation-independent information/visual 

complexity and the effect of the amount of orientation-
dependent information separately for the perception, early 
processing and late processing phase ................................................... 120 

Figure 6.4 Grand averages for the three rotational angles averaged over 
stimulus types ................................................................................................. 122 

Figure 6.5 Effects of stimulus and match type on P3b amplitudes, P3b 
latencies and comparison times .............................................................. 123 



XI 

 
Figure 6.6 Grand average P3b waveforms locked to comparison 

stimulus onset for visually complex and complex stimuli, 
separately for each match type ................................................................ 124 

Figure 7.1 Redrawing of stimuli employed by Lamm et al. (2009) ................. 137 
Figure 7.2 Trial procedure of Experiment 3 ............................................................. 139 
Figure 7.3 Rotation times and retention times in Experiment 3 ...................... 147 
Figure 7.4 Comparison times in the rotation and retention condition in 

Experiment 3 ................................................................................................... 149 
Figure 7.5 Group brain activation maps .................................................................... 151 
Figure 7.6 Brain areas involved in the process of mental rotation 

proper ................................................................................................................ 154 
Figure 8.1 Illustration of a typical mistake ............................................................... 166 
Figure 8.2 Illustration of a 180° transformation using mental flipping 

instead of mental rotation .......................................................................... 177 
 

 



XII 

 

List of Abbreviations 

° .................................................................................................................................................. Degree 
€...................................................................................................................................................... Euro 
% .............................................................................................................................................. Percent 
α ........................................... Rate of Type I Error (Rejection of a True Null Hypothesis) 
ηp2 ........................ Effect Size for ANOVAs with Repeated Measurements (Partial η2) 
ε .......................................................................................................Greenhouse-Geisser Epsilon 
µV ......................................................................................................................................... Microvolt 
χ² ....................................................................... Test Statistic from Chi-Square Distribution 
3D ..................................................................................................................... Three-Dimensional 
AC-PC line ......................... Intercommissural (Anterior-Posterior Commissure) Line 
ANOVA .......................................................................................................... Analysis of Variance 
BA ......................................................................................................................... Brodmann’s Area 
CCW .................................................................................................................... Counterclockwise 
cf. ........................................................................................................................................... Compare 
CW ...................................................................................................................................... Clockwise 
dB/8ve ............................................................................................................. Decibel per Octave 
Dep ........................... (Amount of/Mismatch in) Orientation-Dependent Information 
df ...................................................................................................................... Degrees of Freedom 
dz ..................................................................................................... Effect Size for Paired t-Tests 
EEG ........................................................................................................ Electroencephalography 
e.g. .................................................................................................................................. For Example 
EOG ............................................................................................................... Electroocculogramm 
EPI.................................................................................................................. Echo Planar Imaging 
ERP ......................................................................................................... Event-Related Potential 
F .................................................................................................. Test Statistic from F-Distribution 
fMRI ....................................................................... Functional Magnetic Resonance Imaging 
FWHM .......................................................................................... Full-Width at Half Maximum 
Hz ................................................................................................................................................. Hertz 
HRF .................................................................................. Haemodynamic Response Function 
Indep ..................... (Amount of/Mismatch in) Orientation Independent Information 
IPC .............................................................................................................Inferior Parietal Cortex 
kΩ .............................................................................................................................................. Kilohm 
IPS .................................................................................................................... Intraparietal Sulcus 
M .................................................................................................................................................. Match 
MANOVA ............................................................................ Multivariate Analysis of Variance 
mm ..................................................................................................................................... Millimeter 
MNI .......................................................................................... Montreal Neurological Institute 
ms..................................................................................................................................... Millisecond 
p. ..................................................................................................................................................... Page 
p ......... Probability of Equally Extreme Test Statistic, Given Null Hypothesis is True 
pcorr ........................................................................... Greenhouse-Geisser Corrected p-Value 
PET ......................................................................................... Positron Emission Tomography 
pMd ............................................................................................ Dorsolateral Premotor Cortex 
pp. ................................................................................................................................................ Pages 
r ............................................................. Pearson Product-Moment Correlation Coefficient 
RMB ..................................................................................................... Renminbi (Chinese Yuan) 



XIII 

 
ROI ...................................................................................................................... Region of Interest 
s ................................................................................................................................................. Second 
SPL ......................................................................................................... Superior Parietal Lobule 
SPM ....................................... Statistical Parametric Mapping (fMRI Analysis Software) 
t............................................................................... Test Statistic from Student’s t-Distribution 
T ..................................................................................................................................................... Tesla 
T1 ...................... T1-Weighted Image (Especially for Differentiating Fat From Water) 
V3-5 ........................................................................................................................ Visual Areas 3-5 
V5/MT ..................... Human Visual Motion Area MT (Middle Temporal Visual Area) 
V. Complex ....................................................................... Visually Complex (Stimulus Type) 
 



XIV 

 

Abstract 

What is rotated in mental rotation? The implicitly or explicitly most widely ac-
cepted assumption is that the rotated representation is a visual mental image. 
We here provide converging evidence that instead mental rotation is a process 
specialized on a certain type of spatial information. As a basis, we here develop 
a general theory on how to manipulate and empirically examine repre-
sentational content. One technique to examine the content of the representation 
in mental rotation is to measure the influence of stimulus characteristics on ro-
tational speed. Experiment 1a and 1b show that the rotational speed of univer-
sity students (10 men, 10 women and 10 men, 11 women, respectively) is 
influenced exclusively by the amount of represented orientation-dependent 
spatial-relational information but not by orientation-independent spatial-rela-
tional information, visual complexity, or the number of stimulus parts. Obvious-
ly, only explicit orientation-dependent spatial-relational information in an ab-
stract, nonvisual form is rotated. As information in mental-rotation tasks is 
initially presented visually, a nonvisual representation during rotation implies 
that at some point during processing information is recoded. Experiment 2 
provides more direct evidence for this recoding. While university students 
(12 men, 12 women) performed our mental-rotation task, we recorded their 
EEG in order to extract slow potentials, which are sensitive to working-memory 
load. During initial stimulus processing, slow potentials were sensitive to the 
amount of orientation-independent information or to the visual complexity of 
the stimuli. During rotation, in contrast, slow potentials were sensitive to the 
amount of orientation-dependent information only. This change in slow 
potential behavior constitutes evidence for the hypothesized recoding of the 
content of the mental representation from a visual into a nonvisual form. We 
further assumed that, in order to be accessible for the process of mental 
rotation, orientation-dependent information must be represented in those brain 
areas that are also responsible for mental rotation proper. Indeed, in an fMRI 
study on university students (12 men, 12 women) the very same set of brain 
areas was specifically activated by both the amount of mental rotation and of 
orientation-dependent information. The amount of orientation-independent 
information/visual complexity, in contrast, influenced activation in a different 
set of brain areas. Together, all activated areas constitute the so-called mental 
rotation network. In sum, the present work provides a general theory and 
several techniques to examine mental representations and employs these 
techniques to identify the content, timing, and neuronal source of the mental 
representation in mental rotation. 
 



 

1 

1. Mental Rotation 

1.1 The Mental Rotation Effect 

Is the character displayed in Figure 1.1A a normal or a mirrored version of an R? 

What about the R in Figure 1.1B? 

 

Figure 1.1. Two trials of a mental rotation experiment. 

If you tried to answer these questions, your decision very probably took 

longer for the character in Figure 1.1B than for that in Figure 1.1A. Whether you 

noticed this or not, the comparison between the presented character and your 
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long-term memory entry of an R took longer for the R rotated further from 

upright. In general, the time to decide whether two objects are the same or mir-

ror images of each other is an (almost) linear function of the angular disparity 

between the two objects (see the rotation time patterns in the preliminary expe-

riment as well as Experiment 1a, 1b and 3 reported here). The usual interpreta-

tion of this mental rotation effect is that in order to compare two stimuli that 

differ in absolute orientation, a visual mental image of one stimulus has to be 

rotated into alignment with the other stimulus (for a review see, e.g., Shepard & 

Cooper, 1982). 

This interpretation implicates that the rotated object on its way from one 

orientation into the other moves through intermediate orientations. In a direct 

test of this hypothesis, Cooper and Shepard (Cooper, 1976; Cooper & Shepard, 

1973) asked participants to mentally rotate one stimulus (in the following the 

original stimulus) at a predetermined speed. At unpredictable times during rota-

tion either a matching or a mismatching second stimulus (in the following com-

parison stimulus) was shown. The time it took to compare the two stimuli de-

pended on the (predicted) orientation of the mental representation of the origi-

nal stimulus at comparison stimulus onset and not on the original stimulus’ ini-

tial orientation. Instead of starting the rotation from the original stimulus’ origi-

nal orientation, participants apparently rotated their current mental repre-

sentation of the original stimulus into alignment with the comparison stimulus. 

Critically, these results show that the orientation of the rotated mental repre-

sentation at comparison stimulus onset depends on how far the representation 

was already rotated at this point in time. This constitutes strong evidence that 

the mental representation moves through intermediate orientations during 

mental rotation. Other and at first glance more efficient manipulation algo-

rithms that would lead to the same outcome (a rotated representation) are con-

ceivable. Matrix transformations would in a one step process transform a men-

tal representation of the original stimulus from the initial into the target orien-

tation. However, in contrast to the empirical results, matrix transformations do 

not take longer for larger rotational angles and do not go through intermediate 

orientations. These two characteristic result patterns of mental-rotation tasks 
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consequently are the strongest evidence for the claim that mental rotation is an 

analog process similar to a real, physical rotation. 

1.2 What is Mental Rotation Good For? 

Humans are highly skilled in manipulating rigid objects in order to solve prob-

lems. Using tools, for example, is one application of this ability. In some in-

stances, manually trying out such manipulations and failing to achieve the ex-

pected goal induces no great costs. This is the case for the manipulation of small, 

easily replaceable objects. However, in many other instances, such failure might 

waste much energy, time or other resources (e.g., moving a heavy stone), or a 

rare opportunity (e.g., during hunting) or is even dangerous (e.g. cutting the tree 

branch one is sitting on). In all these cases, the ability to mentally simulate an 

action prior to performing it becomes a clear advantage in the struggle for sur-

vival. 

Although this ability might have originally evolved for such situations, hu-

mans, creative as they are, regularly go beyond these practical applications of 

mental simulations. For example, in Einstein’s thoughts “the words or the lan-

guage, as they are written or spoken, do not seem to play any role”, but rather 

“certain signs and more or less clear images which can be ‘voluntarily’ repro-

duced and combined“ (Hadamard, 1945, p. 142). This is expressed in Einstein’s 

famous avowal that his “particular ability does not lie in mathematical calcula-

tion, but rather in visualizing effects, possibilities and consequences.” In order 

to decipher the double-helical structure of the DNA, Watson and Crick aug-

mented their simulation ability by external models. Using such aids, Watson rea-

lized that “an adenine-thymine pair held together by two hydrogen bonds was 

identical in shape to a guanine-cytosine pair” (Watson, 1968, p. 123). When he 

came into the laboratory the next morning, Crick was “flipping the cardboard 

base pairs about an imaginary line” (Watson, 1968, p. 128). Mental simulations 

are known to have driven the invention of the self-starting, reversible induction 

motor and the polyphase system of electrical distribution by Tesla, the discov-

ery of the molecular structure of benzene by Kekulé (Shepard & Cooper, 1982, 

pp. 6-7) and the mental rotation effect by Shepard and Metzler (Shepard & 
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Cooper, 1982, p. 7). More common applications of the simulation ability are, for 

example, to prepare for rearranging heavy furniture in a room, suitcases in a 

trunk or broken bones in a human body (cf. Shepard & Cooper, 1982, p. 2). 

Furthermore, mental simulation is important in scholarly disciplines like 

geometry, engineering design and stereochemistry, in navigation and in the 

planning of movements like grasping. Many intelligence tests include subtests 

that purportedly demand mental simulation (e.g., block design, paper folding, 

paper form board, surface development and of course cube comparison as well 

as figure, card and flag rotation) and since recently mental rotation is even con-

sidered a relatively general and independent contributor to human intelligence 

on par with both general verbal and perceptual aptitude (W. Johnson & 

Bouchard, 2005). 

Obviously, the mental simulation of manipulations of rigid objects in space is 

of utmost importance for the success of the human species. There exist six de-

grees of freedom of rigid motion in space. Three degrees are translational and 

three are rotational. All transformations of rigid bodies in space are reducible to 

combinations of translations and rotations (cf. Shepard & Cooper, 1982). Many 

spatial features of objects as perceived from a specific viewpoint remain inva-

riant under translation but not under rotation, thereby rendering the ability to 

mentally rotate objects more important than the ability to mentally translate 

them. Indeed, mental rotation seems to be the critical bottle-neck of human 

mental simulation ability (see also Chapter 8.7.2). 

1.3 Classification of Mental-Rotation Tasks 

Since the first experimental study on mental rotation (Shepard & Metzler, 1971), 

many different types of this task were developed (see Figure 1.2). Naturally, 

these types of tasks share certain attributes. In all mental-rotation tasks two 

stimuli must be compared. Participants compare features of one (original) sti-

mulus to subsequently encoded features of a second (comparison) stimulus. On 

most or all trials, these two stimuli differ in orientation. This angular disparity 

determines the amount of to-be-performed rotation. Participants decide 

whether the original stimulus matches the comparison stimulus irrespective of 
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angular disparity. Mismatching comparison stimuli usually are mirror images of 

the respective original stimulus. As the mental rotation effect tends to disappear, 

whenever other than mirror images are employed as mismatching comparison 

stimuli (i.e., stimuli that mismatch in some other feature), this characteristic ap-

pears to be critical for mental rotation to occur (for reviews, see Corballis, 1988; 

but see also, Förster, Gebhardt, Lindlar, & Siemann, 1996; Shepard & Cooper, 

1982). As a consequence, stimuli employed in mental-rotation tasks are usually 

asymmetrical, because the mirror image of a symmetrical stimulus is the stimu-

lus itself. 
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Figure 1.2. The different types of mental-rotation tasks with typical stimuli. A and 

B: Comparison of simultaneously presented stimuli. C and D: Comparison of a 

stimulus with its long-term memory entry. E and F: Comparison of successively 

presented stimuli with a rotation cue shown in between. A, B, E and F show 

matching stimuli. C shows a normal (nonmirrored) G. D is a drawing of a right 

hand. Stimuli in A are copied from Peters and Battista (2008). Stimuli in B and F 

are redrawn from Vanderplas and Garvin (1959). The stimulus in D is copied from 

Parsons (1994). Stimuli and rotation cue in E are redrawn from Bethell-Fox and 

Shepard (1988). Rotation cue in F is redrawn from Folk and Luce (1987). 
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On a relatively general level, the processing steps that take place in every 

mental-rotation task are: 

1. Encoding of the original and/or comparison stimulus into a mental repre-

sentation; 

2. Determination of the angular disparity between original and comparison 

stimulus, that is, determination of the rotational angle; 

3. Mental rotation proper; 

4. Comparison of the now aligned mental representations of original and com-

parison stimulus; 

5. Response selection. 

Although all types of mental-rotation tasks share these task characteristics 

and processing steps, some characteristics and processing steps differ between 

the types of mental-rotation tasks. 

1.3.1 Comparing simultaneously presented stimuli 

In one type of mental-rotation tasks (Figure 1.2A and Figure 1.2B), on each trial 

two stimuli are shown next to each other. Participants’ task usually is to decide 

whether the two stimuli are the same or mirror images of each other. Based on 

eye- fixation patterns Just and Carpenter (1976) developed a relatively detailed 

processing model which differentiates between three major processing stages: 

1. Search. 

a. A segment of the original stimulus is encoded. 

b. The corresponding segment of the comparison stimulus is searched for. 

Search starts at the corresponding point of the field around the compari-

son stimulus, whereby fields are hypothetical imaginary symmetrical 

boundary boxes around the two stimuli. 

c. If there is no stimulus segment at this point, first the stimulus segment 

closest to this point is compared. 

d. As the angular disparity between stimuli increases, search time increases 

for two reasons. 
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i. Corresponding stimulus segments are in successively dissimilar lo-

cations in the searched fields and therefore successively more time 

is dedicated to active search. 

ii. The probability that the wrong segment is selected and erroneously 

rotated increases. 

2. Transformation and Comparison. 

a. The corresponding segments are mentally rotated towards each other in 

50° steps. 

b. After each step a check is conducted whether the segments are within 25° 

of each other and if so, the rotation is finished. 

3. Confirmation, strategy 1: 

a. A second pair of corresponding segments is encoded. 

b. The same rotation that was applied to the first pair is applied to this 

second pair of segments. 

c. After rotation, the corresponding segments are compared. 

4. Confirmation, strategy 2: 

a. The relation between an arm and the central joint of each stimulus is en-

coded. 

b. This relation is directly (i.e., independent of angular disparity) compared 

between stimuli. 

This model applies especially to the task and stimuli originally developed by 

Shepard and Metzler (1971; see Figure 1.2A). Just and Carpenter (1985) 

adapted the model to the rotation of other stimuli (cubes), but still within the 

same type of mental-rotation task (simultaneous-presentation). 

1.3.2 Comparing a single stimulus to its long-term memory  entry 

When only one stimulus is shown on each trial, this stimulus can be considered 

the comparison stimulus and the representation of the original stimulus is 

drawn from long-term memory. This presupposes that a long-term memory en-

try of the stimulus exists. Consequently, the stimuli are learned prior to the 

proper mental-rotation task (e.g., Cooper, 1975; Koriat & Norman, 1985a) or are 

pre-experimentally known. Examples for frequently employed pre-experimen-
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tally known stimuli are alphanumeric characters (character-rotation tasks; 

Figure 1.2C) or drawings of human body parts (e.g., hands, Figure 1.2D). In 

these tasks, participants have to differentiate between normal and mirror-im-

aged characters or between left and right body parts. Their decision time fol-

lows an almost linear function of the stimulus disparity from upright (e.g., 

Cooper & Shepard, 1973). Reaction time for differentiating between left and 

right disoriented body parts additionally depends on physiological properties of 

the human body (e.g., Parsons, 1994). Note that differentiating between normal 

and mirror imaged characters or between left and right body parts can be trans-

lated into deciding whether the presented stimulus matches its long-term mem-

ory entry or whether the presented body part matches optionally a right or left 

body part. Therefore, single-stimulus mental-rotation tasks also require the 

comparison of two stimuli as do all mental-rotation tasks. 

One crucial difference between single-stimulus and simultaneous-presenta-

tion mental-rotation tasks lies in the process of determining the angular dispari-

ty and thereby the correct rotational angle. For alphanumeric characters two 

possibilities are discussed (see also Chapter 2). 

1. Parallel rotation of two mental representations (e.g., Jolicoeur, 1990) 

a. Two mental representations of the presented comparison stimulus are 

rotated in parallel one into clockwise and the other into counterclock-

wise direction. 

b. As soon as one representation reaches upright it is compared to the re-

spective long-term memory entry—determination of the angular dispari-

ty becomes superfluous. 

2. Rotation after identification of orientation (e.g., Corballis, 1988) 

a. The comparison stimulus or at least its top is identified. Indeed, a stimu-

lus can be identified at least to a certain degree without the need for ro-

tation (e.g., Jolicoeur, Snow, & Murray, 1987). 

b. The orientation of the stimulus is identified as its disparity from upright 

(the disparity from the respective long-term memory entry) 

c. The correct rotational angle is calculated by simply reversing the sign of 

the value for this angular disparity. 
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1.3.3 Comparing successively presented stimuli 

An alternative to training pre-experimentally unknown stimuli prior to the rota-

tion part of an experiment is to present the original stimulus before the com-

parison stimulus on each trial (e.g., D. Cohen & Kubovy, 1993; Figure 1.2E and 

Figure 1.2F without the rotation cue). In these tasks, the original stimulus is en-

coded into working memory and mental rotation is performed when the com-

parison stimulus is shown. From onset of the comparison stimulus on, these 

tasks are therefore similar to the single-stimulus tasks with the only difference 

that the original stimulus is held in working memory instead of being retrieved 

from long-term memory. Stimuli employed in this type of task can but do not 

need to be pre-experimentally unknown (for successive-presentation mental 

rotation-tasks with pre-experimentally known stimuli, see, e.g., Cooper & 

Shepard, 1973 and the preliminary experiment of the present work). Simultane-

ous-presentation mental-rotation tasks can be considered special cases of suc-

cessive-presentation tasks with an interstimulus interval of zero (cf. Farell, 

1985). However, a critical effect of an interstimulus interval larger than zero is 

that participants cannot check back and forth between the two stimuli and con-

sequently have to encode all relevant information while the original stimulus is 

shown. 

A potential advantage of single-stimulus and successive-presentation above 

simultaneous-presentation mental-rotation tasks is that the original stimulus is 

retrieved from long-term or working memory instead of being visually encoded. 

Presenting only one stimulus at a time certainly reduces the number of per-

formed saccades. Furthermore, retrieval from memory might proceed smoother 

and might allow for fewer strategies (but see Chapter 2) than visual encoding of 

this stimulus. Thereby the process of mental rotation is potentially measured a 

little more purely. However, there are still many processes which are difficult to 

separate from mental rotation proper, as for example, determination of the rota-

tional angle (potentially including identification of the disoriented stimulus), 

encoding of the comparison stimulus and comparison of the two stimuli. This 

difficulty arises from the fact that all sub-processes (encoding, determination of 

the rotational angle, rotation, and comparison) take place within the same time-

interval, namely while the comparison stimulus is shown on the screen. 
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An interesting consequence of the existence of the mental rotation effect is 

that the process of mental rotation can to a certain degree be mathematically 

isolated from other processing stages. Indicators of the process of mental rota-

tion proper increase in value with the amount of mental rotation. Only the slope 

but not the intercept of the function relating any dependent variable to rota-

tional angle reflects mental rotation proper. Some of the processes taking place 

in mental-rotation tasks—especially encoding, comparison and response selec-

tion—are not likely to influence dependent variables in an angle-dependent 

manner and therefore can be separated from the process of mental rotation 

proper. Consider that it takes some time to compare two identically oriented 

objects. This is not due to mental rotation proper (which should not take place 

in this case) but to the mentioned additional processes (which must also take 

place when mental rotation is necessary). 

1.3.4 Rotation cues 

Unfortunately, the mental rotation effect does not enable a differentiation be-

tween effects of mental rotation proper and effects of the identification of the 

correct rotational angle. As evident in the descriptions of mental-rotation tasks 

so far, the determination of rotational angle is a complex process. In fact, this 

process is not necessarily identical to the process of mental rotation proper. 

Time and effort spent on determining the rotational angle and mental rotation 

proper are however easily confused, because both processes purportedly be-

come more difficult and time-consuming with increasing rotational angle. This 

complication can easily be alleviated by employing rotation cues that indicate 

the correct rotational angle (see Figure 1.2E and Figure 1.2F). Although, in prin-

ciple, rotation cues can be employed in each of the three types of tasks, they are 

most often found in tasks with successive stimulus presentation (e.g., Bethell-

Fox & Shepard, 1988; M. D. Folk & Luce, 1987). 

In theories on the processing chain in mental-rotation tasks (e.g., Corballis, 

1988; Jolicoeur, 1990; Just & Carpenter, 1976), much effort goes into the identi-

fication of the correct rotational angle. Most authors assume that in a first step 

the angular disparity between original and comparison stimulus must be identi-
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fied. As the problem of how participants identify the correct rotational angle 

occupies so much space in theories on mental rotation, relatively little is said 

about the process of mental rotation itself. Employing rotation cues can drasti-

cally reduce the complexity of mental-rotation tasks and help to focus on the 

process of mental rotation proper. Furthermore, in successive-presentation 

mental-rotation tasks with rotation cues like those displayed in Figure 1.2E and 

Figure 1.2F many of the necessary processing steps can be isolated from mental 

rotation proper. This is because the processing steps are separated into three 

time intervals: 

1. Encoding of the original stimulus starts from onset of the original stimulus. 

2. Encoding of the rotation cue starts from onset of the rotation cue. Mental 

rotation starts when both original stimulus and rotation cue are encoded 

(see Cooper & Shepard, 1973). 

3. Encoding of the comparison stimulus and comparison starts from onset of 

the comparison stimulus. In addition, response selection cannot start earlier 

than comparison stimulus presentation. 

Assumedly, encoding of the rotation cue does not become more difficult with 

increasing rotational angle. At least the rotational angle should influence the 

encoding of the rotation cue less than it would influence the determination of 

the rotational angle without the aid of a cue. Encoding of original and compari-

son stimulus as well as the comparison process itself and response selection are 

temporally separated from mental rotation proper. Consequently, a successive-

presentation with rotation cue is the best choice for isolating the process of 

mental rotation proper from all other cognitive processes operating in mental-

rotation tasks. 

From an experimental perspective the successive-presentation mental-rota-

tion task with rotation cue has the advantage that in comparison to other men-

tal-rotation tasks less cognitive processes take place (determination of the rota-

tional angle is at least much less complex) and that the processes that take place 

are better separable. A drawback of this type of task ironically is its complexity 

from the viewpoint of participants. Correct use of a rotation cue usually takes a 

while to learn. Task instructions like “Rotate one stimulus into the orientation of 
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the other!” are more intuitive than “Rotate one stimulus according to the rota-

tion cue!” In addition, in successive-presentation mental-rotation tasks working 

memory demands are high as characteristics of the original stimulus must be 

maintained during rotation and, if lost, cannot be encoded anew. For certain 

populations this type of mental-rotation task might even be unsolvable. Indeed, 

pre-testing our mental-rotation task (as employed in all main experiments re-

ported here) with children did lead to accuracy rates close to or below chance 

level. 

1.4 Disoriented Object Recognition 

A rotation, but not a translation increases the difficulty of visually encoding ob-

jects. However, as a matter of fact, humans are able to recognize disoriented 

objects. This problem of object constancy across orientations might in part be 

solved by mental rotation (e.g., Jolicoeur, 1990; Tarr & Pinker, 1989). The fact 

that humans are capable of recognizing objects from different perspectives is 

truly remarkable if one considers how difficult such tasks are for computers 

(see, e.g., Hyder, Islam, Akhand, & Murase, 2009; Tarr, 2003). In typical experi-

ments on disoriented object recognition, participants name or categorize ob-

jects shown disoriented from upright (for reviews, see Jolicoeur, 1990; Leek & 

Johnston, 2006). On early trials of such experiments, the time to identify objects 

increases with their angular displacement from upright. The slope of the func-

tion relating identification time to angular displacement is of similar magnitude 

as the slope found in mental rotation studies (e.g., Corballis, Zbrodoff, Shetzer, & 

Butler, 1978; Jolicoeur, 1985; Jolicoeur & Milliken, 1989; Jolicoeur, et al., 1987). 

However, in contrast to mental rotation studies, the displacement from upright 

almost completely loses its impact on identification times over the course of the 

experiment (e.g., Corballis & Nagourney, 1978; Corballis, et al., 1978). Appar-

ently, participants perform mental rotation on earlier but not on later trials of 

an experiment (e.g., Jolicoeur, 1985). In addition, even on early trials, the identi-

fication of objects disoriented by 180° is faster than would be predicted by a 

strictly linear relationship (e.g., Jolicoeur, 1985; Jolicoeur & Milliken, 1989; 

Murray, 1995a, 1995b). Based on the findings from the experiments presented 
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in the following, we will provide an explanation for these differences in data 

patterns observed in experiments on mental rotation and disoriented object 

recognition (Chapter 8.7.7). 

1.5 Mental Rotation as a Working Memory Function 

Working memory is defined as a system that actively maintains 

(stores/represents) information. Most researchers assume that information is 

usually maintained for further processing (manipulation) and not for the sole 

purpose to retrieve it after a retention period (e.g., Baddeley, 2000; Baddeley, 

2002; see also the contributions in Miyake & Shah, 1999a and especially the 

summary by Miyake & Shah, 1999b, p. 445). Only a collaboration of mainte-

nance and processing functions of working memory allows such diverse activi-

ties as language comprehension, reasoning, problem solving, decision making 

and, of course, mental rotation. Typical tasks employed to examine working 

memory are for example change detection, N-back, simple span, and complex 

span (storage and processing) tasks. As detailed in the following, these tasks 

focus (exclusively) on maintenance and largely ignore the processing function of 

working memory. As a consequence and in spite of its prominent theoretical 

role, processing is strongly underrepresented in empirical research on working 

memory. 

1.5.1 Working-memory tasks 

In change detection tasks (for a review, see Luck, 2008), stimulus information 

has to be encoded and maintained for a short period of time (the retention 

interval) and subsequently be compared to a second stimulus or stimulus array. 

From each participant’s performance-accuracy an estimate can be derived that 

reflects how many items the respective participant is able to hold in working 

memory (Cowan, 2001). Obviously, change detection tasks charge only the 

maintenance and not the processing component of working memory. 

In N-back tasks (for a review, see Jaeggi, Buschkuehl, Perrig, & Meier, 2010), 

a stream of items (e.g., words) is shown and the current stimulus always has to 

be compared to the item presented N positions earlier in time. Processing load 
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increases along with N as reflected by decreasing accuracy rates and increasing 

response times for the comparison. The cognitive affordance in N-back tasks is 

to maintain the last N items. As these items constantly have to be updated, N-

back tasks might charge the executive function (see, e.g., Baddeley, 2000; 

Baddeley, 2002) of working memory, a manipulation of the stored material, 

however, is not necessary. 

In simple span tasks, on each trial a list of several sequentially presented 

items (e.g., words) has to be remembered. After presentation of items has ended, 

participants try to recall all items from the list. Simple span tasks consequently 

also charge only the storage function of working memory. Complex span tasks 

(for a review, see Conway, et al., 2005) in contrast also involve the processing 

function of working memory. In alternation with remembering items, a task like 

reading a sentence (reading span, Daneman & Carpenter, 1980), solving a math 

problem (operation span, Turner & Engle, 1989) or counting dots (counting 

span, Case, Kurland, & Goldberg, 1982) has to be performed. In both simple and 

complex span tasks the dependent variable of main interest is the number of 

correctly recalled items. As the processing component interferes to a certain 

degree with the storage component, fewer items are usually recalled in complex 

compared with simple span tasks. 

Although complex span tasks charge both storage and processing compo-

nents of working memory, the processing material usually differs from the stor-

age material (e.g., Turner & Engle, 1989). Even in a complex span task like 

counting span in which the connection between storage and processing material 

seems rather close (Case, et al., 1982), the result of the processing of each item 

(the total from counting) must be stored passively. The representation of the 

result does not need to be manipulated further. However, the capability to mani-

pulate represented information is exactly the reason for which the construct 

working memory was introduced and which differentiates it from its precursor 

short-term memory (e.g., Baddeley, 2002). Of course, during the processing com-

ponent of complex span tasks information has to be maintained (e.g., digits) and 

processed (e.g., multiplied). However, the focus in complex span tasks tradition-

ally lies on recall performance and therefore on the storage component. As a 
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consequence, the influence of processing affordances on processing perfor-

mance is hardly ever examined. 

During mental rotation a representation of the original stimulus must be 

maintained and manipulated, namely rotated. Only if both maintenance and 

processing are successful, that is, only if the relevant information is represented 

in working memory and is correctly transformed, participants can successfully 

compare original and comparison stimulus. The dependent variable of main in-

terest in behavioral mental-rotation tasks is processing (rotation) time. 

Processing times presumably increase with increasing affordances on the 

processing of represented information. The main independent variable of inter-

est in mental-rotation tasks is rotational angle, which directly influences 

processing affordances as evident by the classical mental rotation effect (see 

Chapter 1.1). Mental-rotation tasks consequently are far better suited to ex-

amine working memory as a system for processing maintained information than 

most purpose-built working-memory tasks. 

1.5.2 Parcellation of working memory 

It is largely agreed upon that several working memory systems can be differen-

tiated according to the type of information that is stored and/or processed. The 

differentiation between verbal and visuo-spatial working memory is well-estab-

lished (for reviews, see Baddeley & Logie, 1999; Logie, 1995). Brain damage can 

lead to a disruption of visuo-spatial working memory while verbal working 

memory remains intact and vice versa (e.g., de Renzi & Nichelli, 1975). In addi-

tion, visuo-spatial working memory main tasks are more strongly disrupted by 

visuo-spatial secondary tasks than by verbal secondary tasks. The opposite pat-

tern emerges for verbal working memory main tasks (e.g., Meiser & Klauer, 

1999). 

Based on these double-dissociations, visuo-spatial working memory is consi-

dered largely independent from verbal working memory. Visuo-spatial work-

ing-memory can, however, be further subdivided into visual/object and spa-
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tial/motor components1 (for reviews, see, e.g., Logie, 1995; Repovš & Baddeley, 

2006; Zimmer, 2008). Also between these components double dissociations in 

the form of case studies on neuropsychological patients and interference studies 

have been reported (e.g., Della Sala, Gray, Baddeley, Allamano, & Wilson, 1999; 

Klauer & Zhao, 2004). Further evidence for this dissociation comes from single-

cell recordings in monkeys (Wilson, Ó Scalaidhe, & Goldman-Rakic, 1993), posi-

tron emission tomography (PET; e.g., Smith, Jonides, Koeppe, & Awh, 1995), 

functional magnetic resonance imaging (fMRI; e.g., Belger, et al., 1998), and 

electroencephalography (EEG; e.g., Mecklinger & Pfeifer, 1996) studies. Indeed, 

different cortical pathways have been identified that process perceptually rele-

vant (ventral stream; e.g., features of objects) and action relevant (dorsal stream; 

e.g., orientations and locations) aspects of visually encoded information (e.g., 

Goodale & Milner, 1992; for a recent review, see Milner & Goodale, 2008). These 

pathways also serve as working memory stores (for a meta-analysis on PET and 

fMRI data, see Wager & Smith, 2003). 

The differentiation between visual/object and spatial/motor working mem-

ory raises the question of which of the two systems is employed in mental-rota-

tion tasks. As the usual assumption goes that mental rotation is performed on 

visual representations (see Chapter 3.1), several researchers postulated visual 

working memory as the cognitive system underlying mental-rotation tasks 

(Hyun & Luck, 2007; Prime & Jolicoeur, 2010). The input modality in mental-

rotation tasks indeed usually is visual (as in Figure 1.1 and Figure 1.2). However, 

the process of rotation is by definition spatial in nature and therefore would 

rather be considered as belonging to the domain of spatial working memory. 

Although in principle it appears possible that a spatial process works on a visual 

representation it appears more efficient that information is represented and 

processed within one working memory system (see Experiment 3, Chapter 7). 

This would imply that visual information is recoded into a spatial representa-

tion before mental rotation takes place (see Experiment 2, Chapter 6). 

Information indeed can reach spatial working memory from different input 

modalities. For example, auditory-spatial tasks interfere with visuo-spatial tasks 

                                                        
1 Note that also interference between verbal and spatial tasks has been reported, which might 
indicate special affordances for the processing of seriated material (Jones, Farrand, Stuart, & 
Morris, 1995; see also, Smyth & Scholey, 1994). 
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(Baddeley & Lieberman, 1980; Lehnert & Zimmer, 2006) and elicit memory-re-

lated electrophysiological activity over the same cortical areas (Lehnert & 

Zimmer, 2008). In addition, mental rotation can be performed on hapticly pre-

sented stimuli (Carpenter & Eisenberg, 1978). Independent of the input modali-

ty being visual or haptic, mental rotation is apparently performed by the same 

brain structures. Topographically similar slow potentials emerge during mental 

rotation for hapticly (Röder, Rösler, & Hennighausen, 1997) and visually (Rösler, 

Heil, Bajric, & Pauls, 1995) presented stimuli, indicating that at least in one case 

(haptic or visual presentation) and perhaps in both cases information was re-

coded in order to be rotated. 

1.6 Brain Regions Involved in Mental-Rotation Tasks 

Which brain areas are responsible for mental rotation? Knowledge about the 

cortical circuit that enables humans to perform mental rotation is interesting in 

its own right. However, such knowledge can also lead to a deeper understanding 

of the cognitive processes underlying mental-rotation tasks. The very same 

brain regions that are active during mental rotation are also active during other 

cognitive, perceptual and motor tasks. By considering this pattern of results 

from the literature and thereby approaching an understanding of the function of 

the respective brain region, it is possible to derive well-informed guesses about 

the respective brain region’s role during mental rotation. This in turn can lead 

to new hypotheses about the cognitive processes taking place during mental 

rotation. 

For this endeavor, it is helpful to differentiate between mental-rotation tasks 

and the process of mental rotation proper. As already detailed above (Chapter 

1.3), many different cognitive processes take place during mental-rotation tasks. 

Some of these processes might occur in parallel with and consequently render it 

difficult to disentangle mental rotation proper. The usually bad temporal resolu-

tion of positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI) data further aggravates this problem, because even processes 

that happen sequentially but within a short time-interval are difficult or imposs-

ible to differentiate based on their timing alone. Consequently, a comparison of 
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activity during a mental-rotation task with baseline activity (e.g., looking at a 

fixation cross) will highlight many areas that are not related to mental rotation 

proper, but to processes as, for example, encoding, maintaining and comparing 

information and even to processes related to the behavioral response (e.g., but-

ton press), general attention allocation or the visual perception of the stimulus. 

However, as mentioned above (Chapter 1.3.2) the mental rotation effect can be 

employed to disentangle mental rotation proper from many of these additional 

processes. Activation in brain areas that are related to the process of mental 

rotation proper must (linearly) depend on the rotational angle, because more 

mental rotation must be performed with an increasing rotational angle. In the 

following we focus on those areas that a recent meta analysis (Zacks, 2008) 

found consistently activated in such a rotation-specific manner and that are 

displayed in Figure 1.3. 
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Figure 1.3. Brain areas activated in mental-rotation tasks as found in a meta-

analysis by Zacks (2008). Areas more strongly activated in mental-rotation tasks 

compared with loose baselines (omnibus) are marked in green. Areas more 

strongly activated for large rotational angles compared with small angles 

(rotation) are marked in red. Overlapping areas are marked in yellow. BA = 

Brodmann’s area; pMd = dorsolateral premotor cortex; SPL = superior parietal 

lobule; IPS = intraparietal sulcus. Adapted from “Neuroimaging Studies of Mental 

Rotation: A Meta-Analysis and Review,” by J. M. Zacks, 2008, Journal of Cognitive 

Neuroscience, 20, p. 4. © 2007 by the Massachusetts Institute of Technology. 

Reprinted with permission. 

1.6.1 Parietal cortex 

Rotation-specific activation is usually found centered in the superior-parietal 

lobule (SPL; e.g., M. S. Cohen, Kosslyn, Breiter, & DiGirolamo, 1996; Richter, et al., 

2000; Tagaris, Kim, Strupp, & Andersen, 1996, 1997) or (potentially in part due 

to the spatial proximity of these areas) within the intraparietal sulcus (IPS; e.g., 

Carpenter, Just, Keller, Eddy, & Thulborn, 1999; Ecker, Brammer, David, & 

Williams, 2006; Harris, et al., 2000; Jordan, Heinze, Lutz, Kanowski, & Jäncke, 

2001; Milivojevic, Hamm, & Corballis, 2009). Only few studies found rotation-

specific activation centered in inferior parietal regions (e.g., Alivisatos & 

Petrides, 1997). There are single reports of left (e.g., Alivisatos & Petrides, 1997; 

Ecker, et al., 2006) or right (e.g., Harris, et al., 2000) lateralization, whereas 
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usually activation is bilateral (e.g., Carpenter, et al., 1999; M. S. Cohen, et al., 

1996; Jordan, et al., 2001; Milivojevic, et al., 2009; Richter, et al., 2000; Tagaris, 

et al., 1996, 1997). Accordingly, in Zacks’ (2008) meta-analysis rotation-specific 

activation emerges bilaterally and centered within the intraparietal sulcus. 

From there, the activation extends into the several adjacent areas, including 

Brodmann’s areas (BAs) 7, 19, 39, and 40. 

The parietal cortex contains most of the dorsal pathway (see Chapter 1.5.2). 

This pathway is crucial for processing the spatial, action-relevant aspects of vi-

sually encoded information (e.g., Goodale & Milner, 1992; for a recent review, 

see Milner & Goodale, 2008). Parietal cortex is assumed to code location in mo-

tor coordinates (for a review, see Colby & Goldberg, 1999). With such a space 

representation the (posterior) parietal cortex might provide sensory-motor in-

tegration, including the formation of high-level movement intentions (for a re-

view, see Andersen & Buneo, 2002). 

The sulcus lying in between the inferior and superior parietal cortex can be 

subdivided into the anterior and posterior intraparietal sulcus. The anterior 

part is involved in grasping, manual modeling and tactile exploration of three-

dimensional objects (Binkofski, et al., 1998; Jäncke, Kleinschmidt, Mirzazade, 

Shah, & Freund, 2001). Temporarily inactivating this area in monkeys impedes 

the shaping of the contralateral hand in preparation for grasping an object. This 

indicates a role of the anterior intraparietal sulcus in the guidance of goal-di-

rected hand movements (Gallese, Murata, Kaseda, & Niki, 1994). In line with this 

finding Jäncke et al. (2001) collected evidence that the anterior intraparietal 

sulcus in humans is involved in complex object-oriented hand movements, like 

modeling and exploring an object. The specific function of the anterior intrapa-

rietal sulcus purportedly is to coordinate object-related hand movements 

(Jäncke, et al., 2001). Several lines of evidence (for a review, see Jäncke, et al., 

2001) indicate that the posterior intraparietal sulcus is a supra-modal integra-

tion center, holding an action-oriented object representation which provides 

input to the anterior intraparietal sulcus. 

Activation in the superior parietal lobule depends on the location of a pre-

ceding stimulus, but not on subsequent eye or arm movements. Consequently, 

this activity might constitute a (transient) working memory trace of the preced-
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ing stimulus’ location (Steinmetz, 1998; see also Chapter 6.1.4.). Apparently, the 

left superior parietal lobule processes mainly categorical spatial relations 

whereas the right superior parietal lobule processes mainly coordinate (conti-

nual) spatial relations (Trojano, et al., 2002). In another study, the left inferior 

and the right superior parietal lobule were preferentially active during 

processing of coordinate (continual) spatial relations whereas parietal involve-

ment in the processing of categorical spatial relations was less conclusive 

(Kosslyn, Thompson, Gitelman, & Alpert, 1998). 

In sum, the parietal cortex is obviously involved in the processing and main-

tenance of spatial information and also plays a role in object recognition and 

action planning. Among other functions, the parietal cortex might hold a spatial 

representation of objects and their locations which is employed to plan and exe-

cute manipulations of the respective objects (cf., e.g., Milner & Goodale, 2008). 

Indeed, the parietal cortex is active only when participants observe object-re-

lated actions and not when they observe object unrelated actions (Buccino, et al., 

2001, see also Chapter 6.1.3.). As detailed below (Chapter 3.3), the present work 

aims to demonstrate that mental rotation works on a representation of purely 

spatial, relational information. The superior parietal cortex and intraparietal 

sulcus appear likely candidates for holding such a representation. 

1.6.2 Motor system 

In most mental rotation studies, rotation-specific activation is found in the bila-

teral dorsolateral premotor cortex (pMd; e.g., Ecker, et al., 2006; Milivojevic, et 

al., 2009; Richter, et al., 2000; Seurinck, de Lange, Achten, & Vingerhoets, 2011; 

Windischberger, Lamm, Bauer, & Moser, 2003) resulting in a clear activation of 

these areas in Zacks’ (2008) meta-analysis. Importantly, Carpenter et al. (1999) 

have shown that this premotor activation is not due to the planning or perfor-

mance of saccades, as it persists even when the control task induces much more 

saccades than the mental-rotation task itself (see also, e.g., Vanrie, Béatse, 

Wagemans, Sunaert, & Van Hecke, 2002). Premotor cortex is related to motor 

planning and execution (for a review, see Picard & Strick, 2001). During motor 

imagination premotor cortex is even more active than during motor perfor-
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mance (Gerardin, et al., 2000). Consequently, premotor activity in mental-rota-

tion tasks might reflect motor imagination of performing the rotation (Zacks, 

2008). Mental rotation is indeed at least in part guided by motor processes, as 

indicated by strong influences of concurrently performed manual rotations on 

mental rotation performance (Wexler, Kosslyn, & Berthoz, 1998; Wohlschläger 

& Wohlschläger, 1998). Already planning a manual rotation into a direction op-

posite to a mental rotation that is performed before the motor plan is executed 

impedes mental rotation (Wohlschläger, 2001). Participants purportedly em-

ploy cortical regions for mental rotation that are usually responsible for plan-

ning movements and two concurrently planned but incompatible rotations in-

terfere even if one is manual and the other mental. 

Some authors went one step further and reasoned that mental rotation 

might actually be performed in the primary motor cortex which directly con-

trols the performance of voluntary movements. This speculation was unleashed 

by single-cell recordings in monkey primary motor cortex. While monkeys 

performed a task which presumably involves mental rotation, the firing pattern 

of orientation-specific neurons in primary motor cortex behaved as if the 

rotation was performed manually (but see Cisek & Scott, 1999; Georgopoulos, 

Lurito, Petrides, & Schwartz, 1989; Lurito, Georgakopoulos, & Georgopoulos, 

1991). In humans, the left primary cortex is activated more strongly during the 

rotation of hand stimuli (see Figure 1.2D) compared with the rotation of objects 

(Kosslyn, Digirolamo, Thompson, & Alpert, 1998; but see Parsons, Fox, Downs, 

& Glass, 1995; Vingerhoets, de Lange, Vandemaele, Deblaere, & Achten, 2002). 

This activation, however, might simply reflect the fact that participants see 

hands or compare hand-stimuli to their own hands and not necessarily that 

their primary motor cortex is involved in mental rotation proper. 

It consequently is of interest that participants, at times, apparently employ a 

strategy of imagining the use of their dominant hand for the rotation of objects. 

Activation in right-handed subjects’ left primary motor cortex should be higher 

when they employ this ‘motor’ strategy compared with a ‘nonmotor’ strategy. 

Kosslyn and colleagues claim to have found such evidence in two experiments in 

which they manipulated the strategy of their participants. This was achieved by 

instructions (Kosslyn, Thompson, Wraga, & Alpert, 2001) and by preliminary 
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blocks of trials in which participants mentally rotated drawings of hands and 

which apparently primed a ‘motor’ strategy for the subsequent block of object 

rotation trials (Wraga, Thompson, Alpert, & Kosslyn, 2003). However, as already 

mentioned by Zacks (2008) the stereotactic coordinates of activation which 

according to Kosslyn et al. (2001) lie within the primary cortex actually lie 

within the premotor cortex. Wraga et al. themselves mention that the focus of 

activation they found lies at the border of premotor and primary motor cortex 

(the stereotactic coordinates given by Wraga et al. also more probably lie within 

premotor cortex, although admittedly, rather close to primary motor cortex). 

Only the activity elicited by the rotation of hand stimuli as reported by Kosslyn 

et al. (1998) reliably lies within primary motor cortex. However, other studies 

did neither find activation in primary motor cortex for the rotation of hand 

stimuli (Parsons, et al., 1995) nor higher activation in this area for rotation of 

hand stimuli compared with rotation of alphanumeric characters (de Lange, 

Hagoort, & Toni, 2005) or tools (Vingerhoets, et al., 2002). Consequently, there 

is no evidence so far that the rotation of objects activates human primary motor 

cortex and the evidence for such an effect by drawings of body parts is at best 

inconsistent. Primary motor cortex activation as found in many other studies is 

apparently due to the motor affordances of the button press which is given at 

the end of each mental rotation trial (see de Lange, et al., 2005; Ecker, et al., 

2006; Richter, et al., 2000; Windischberger, et al., 2003). 

The clear left lateralization found in the studies by Kosslyn and colleagues 

(Kosslyn, Digirolamo, et al., 1998; Kosslyn, et al., 2001; Wraga, et al., 2003) re-

mains interesting, however, because it still indicates that under certain condi-

tions participants might employ an alternative motor imagery strategy biased to 

their dominant hand. In contrast, as reported above (beginning of this chapter), 

the consistently observed premotor activation during the mental rotation of 

objects, usually emerges bilaterally, indicating a strategy not biased to either 

side (e.g., Ecker, et al., 2006; Richter, et al., 2000; Seurinck, et al., 2011; 

Windischberger, et al., 2003; but see, e.g., Vingerhoets, et al., 2002). 
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1.6.3 Mirror-neuron areas 

Although bilateral inferior-frontal cortex, mainly BA 44/45/46, is consistently 

activated in a rotation-specific manner (Zacks, 2008), this activation is seldom 

discussed (for an exception, see Hugdahl, Thomsen, & Ersland, 2006). Left 

BA 44/45 (Broca’s area) is widely considered to be related to speech motor 

processes (Poldrack, et al., 1999). Left BA 44 was also found active in an object 

working-memory task that required mirror-image discrimination, but no 

mental rotation (Mecklinger, Gruenewald, Besson, Magnié, & Von Cramon, 

2002). Hughdahl et al. (2006) as well as Mecklinger et al. (2002) interpret the 

activation in BA 44/45 as subvocal rehearsal or ‘inner speech’ in the absence of 

verbal material. This use of verbal working memory purportedly assists the 

primary working-memory system involved in these tasks. Indeed, bilateral, 

slightly left-lateralized BA 44/45 activity is usually observed during verbal 

working-memory tasks as well (e.g., Paulesu, Frith, & Frackowiak, 1993; Wager 

& Smith, 2003; see also J. D. Cohen, Perlstein, Braver, & Nystrom, 1997). 

An alternative interpretation derives from the fact that also premotor and 

parietal areas are active during mental-rotation tasks. Bilateral BA 44/45 and 

the inferior parietal lobule including the intraparietal sulcus are considered the 

two major regions of the human mirror-neuron system. In addition, dorsolateral 

premotor cortex and superior parietal lobule were also found active during ac-

tion observation (for reviews, see, e.g., Rizzolatti & Craighero, 2004; Rizzolatti & 

Sinigaglia, 2010). As reported above (Chapter 1.6.1), the parietal cortex seems 

to hold the representation of an object that is manipulated, whereas premotor 

regions represent the action on the object (Buccino, et al., 2001). Buccino et al. 

(2001) showed object-related or object-unrelated hand, mouth and foot actions 

to their participants and measured the neuronal response via fMRI. A compari-

son of activation in Buccino et al.’s study and Zacks’ (2008) meta-analysis indi-

cates that similar regions are active during mental rotation and the observation 

of object-related hand actions. Bilateral activation of BA 44/45 as well as dorso-

lateral premotor and parietal cortex might consequently be due to an involve-

ment of the mirror-neuron system for object-related hand actions in mental 

rotation (cf. Milivojevic, et al., 2009). 
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1.6.4 Spatial working memory areas 

Interestingly, a very similar cortical activation pattern is well-established for 

working memory (for a meta-analysis, see Wager & Smith, 2003), especially for 

spatial working-memory tasks (for a review, see Ikkai & Curtis, 2011). Similar to 

mental rotation, areas consistently found activated in spatial working-memory 

tasks include the dorsolateral premotor cortex, the inferior precentral sulcus 

(identical or close to BA 44/45), the intraparietal sulcus, and the transverse pa-

rietal sulcus (within the superior parietal lobule; see also, Srimal & Curtis, 2008). 

The same regions are also found active during tests of spatial attention and mo-

tor intention (Ikkai & Curtis, 2011). Dorsolateral premotor cortex and BA 44 

contain the superior and inferior frontal eye field which, besides the control of 

saccadic eye movement, apparently are involved in allocation of spatial atten-

tion and in spatial working memory (Kastner, et al., 2007). These findings are 

consequently in line with the assumptions of allocation of spatial attention as a 

rehearsal mechanism in spatial working memory (Awh, et al., 1999) and the 

finding that saccade execution is influenced by spatial working-memory load 

(Theeuwes, Olivers, & Chizk, 2005). Superior and inferior frontal eye fields as 

well as many parietal areas, especially the intraparietal sulcus are topographi-

cally organized (Silver & Kastner, 2009) and thereby ideally suited for the 

representation of spatial information.  

As already reasoned based on a theoretical comparison (Chapter 1.4), 

mental rotation might be a spatial working memory function and work on 

purely spatial information. This speculation is further strengthened by the large 

overlap in cortical areas active during spatial working memory and mental-

rotation tasks (cf. Jordan, et al., 2001). However, mental rotation obviously is 

more complex than simple working-memory tasks which require only the 

passive storage of information (see Chapter 1.5). This might explain why brain 

injury can lead to specific problems in mental rotation and other imagery tasks 

while performance in passive visuo-spatial working-memory tasks remains 

intact (Morton & Morris, 1995). 
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1.6.5 Visual system 

Some mental rotation studies found rotation-specific activation in BA 19 (e.g., 

Barnes, et al., 2000; M. S. Cohen, et al., 1996; Kosslyn, Digirolamo, et al., 1998). 

One highly plausible candidate for the mental rotation network that lies within 

BA 19 is the visual motion area (V5/MT; Barnes, et al., 2000; M. S. Cohen, et al., 

1996; Vanrie, et al., 2002). This area is functionally relevant for the perception 

of motion (for reviews, see Silverman, Grossman, Galetta, & Liu, 1995; van 

Wezel & Britten, 2002) and also responds to apparent motion (Goebel, 

Khorram-Sefat, Muckli, Hacker, & Singer, 1998; Liu, Slotnick, & Yantis, 2004; 

Muckli, et al., 2002). As mental rotation actually is the imagery of one special 

type of motion, Cooper & Shepard (1982) reasoned that mental rotation and 

apparent motion might be driven by the same (perceptual) processes (see also 

Shepard & Judd, 1976). In line with this assumption, mental rotation is influ-

enced by a concurrent motion aftereffect. Watching a disc rotating induces a 

subsequent illusion of a rotation into the opposite direction. This aftereffect ac-

celerates mental rotation into the same and decelerates mental rotation into the 

opposite direction (Corballis & McLaren, 1982; Heil, Bajrič, Rösler, & 

Hennighausen, 1997). V5/MT indeed shows rotation-specific increases in acti-

vation in some studies (M. S. Cohen, et al., 1996; de Lange, et al., 2005; Seurinck, 

et al., 2011), although not in others (Ecker, et al., 2006; Jordan, et al., 2001). In a 

direct test of this hypothesis, Barnes et al. (2000), however, found no rotation-

specific activation in V5/MT. Instead they found such activation in a satellite 

region of V5/MT within the inferior temporal sulcus. The inferior temporal lobe, 

including the fusiform gyrus (BA 37) also showed rotation-specific activation in 

other studies (e.g., Carpenter, et al., 1999). The increase in V5/MT activation 

with rotational angle might however stem from attempts to recognize dis-

oriented stimuli (Gauthier, et al., 2002) and not from mental rotation proper. 

Under certain conditions, retinotopic areas in early visual cortex can be acti-

vated via feedback from higher visual areas, as for example, during visual im-

agery (Slotnick, Thompson, & Kosslyn, 2005) and during apparent motion per-

ception (but see Liu, et al., 2004; Sterzer, Haynes, & Rees, 2006). Comparing 

mental rotation to a loose fixation baseline Ecker et al. (2006) found activation 

in several visual areas, including early visual (BA 17/18/19), and inferotem-
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poral areas (BA 37, including fusiform gyrus). However, the time-courses of the 

haemodynamic response functions (HRFs) in these areas depended on the dura-

tion of stimulus presentation and not on rotation time, indicating that activation 

in these areas was not related-to mental rotation proper. Similarly, Jordan et al. 

(2001) reason that the activation they observed in striate and extrastriate areas, 

including the fusiform gyrus, reflects the visual processing of stimuli in mental-

rotation tasks. Apparently, mental rotation proper does not involve early visual 

areas. This lack of early visual involvement in mental rotation speaks against 

the common assumption of visual mental representations in mental rotation 

(see Chapter 3.1). 

1.7 Examining the Process of Mental Rotation via EEG 

A close relationship has been established between the process of mental rota-

tion and an event-related potential (ERP) component peaking over the parietal 

cortex at electrode site Pz. This component has been observed in two different 

shapes. In one comprehensive review of ERPs in single-stimulus mental-

rotation tasks with alphanumeric characters (character-rotation tasks, cf. 

Figure 1.1 and Figure 1.2C), Heil (2002) describes this component as short-

lasting (phasic) and with a positive peak around 350-700 ms after stimulus 

onset (see also, e.g., Bajrič, Rösler, Heil, & Hennighausen, 1999; Gootjes, 

Bruggeling, Magnée, & Van Strien, 2008; Heil, Rauch, & Hennighausen, 1998; 

Heil & Rolke, 2002; Núñez-Peña & Aznar-Casanova, 2009; Peronnet & Farah, 

1989; Riečanský & Jagla, 2008; Rösler, Schumacher, & Sojka, 1990; Wijers, Otten, 

Feenstra, & Mulder, 1989). The topography and timing of this component are in 

the range of another component known as P3b (cf., e.g., Chapter 3.7.4). The P3b 

is usually elicited by task-relevant stimuli (for recent reviews, see Nieuwenhuis, 

Aston-Jones, & Cohen, 2005; Polich, 2007; Verleger, 1997, see also Experiment 

2). The less expected a stimulus is, the larger the P3b amplitude it elicits (e.g., R. 

Johnson & Donchin, 1980; Mars, et al., 2008). However, in character-rotation 

tasks the amplitude of this positive component becomes smaller as the 

character’s tilt increases. As this decrease in amplitude is not explainable by 

factors that typically influence the P3b in other tasks, it is often assumed that a 
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negative slow potential temporarily overlaps with the P3b. This component and 

not the P3b itself becomes more negative as more rotation is required. 

Another shape of this component has been reported by Rösler, Heil, Bajric 

and Pauls (for similar ERPs see Röder, et al., 1997; 1995; Rösler, Röder, Heil, & 

Hennighausen, 1993; Ruchkin, Johnson, Canoune, & Ritter, 1991; Wegesin, 

1998). In this study, a star with distinguishable points had to be rotated into an 

orientation indicated by an acoustic rotation cue. The resulting mental repre-

sentation had then to be compared to a subsequently presented comparison 

stimulus. Rösler et al. found a negative slow potential that lasted from 1 s until 

9 s after the acoustic cue (the time point after which rotation could start). This 

component, too, increased in amplitude along with the rotational angle. There is 

accumulating evidence that slow potentials of this kind reflect the topography 

and intensity of cortical activation (Khader, Schicke, Röder, & Rösler, 2008; 

Rösler, Heil, & Röder, 1997), which is why they are frequently interpreted as a 

correlate of the mental effort allocated to a particular task. In comparison to the 

short-lasting component (Heil, 2002), this slow potential has a later onset and a 

longer duration. 

The circumstances under which this rotation-related component takes the 

one or the other shape remain unknown. According to our classification of men-

tal-rotation tasks (Chapter 1.3), the tasks reviewed by Heil (2002) are single-

stimulus mental-rotation tasks whereas those like the one employed by Rösler 

et al. (1995) are successive-presentation tasks with a rotation cue. Furthermore, 

the former tasks usually employ alphanumeric characters whereas the latter 

tasks usually employ pre-experimentally unknown stimuli. If the different 

shapes of the component are due to differences between the tasks (and not due 

to the stimuli), angle-dependent late-onset and long-lasting slow potentials 

(Rösler, et al., 1995) should be observed in a successive-presentation task with 

rotation cues even when alphanumeric characters are employed as stimuli. If 

the different shapes are due to the different stimuli, an angle-dependent short-

lasting component (Heil, 2002) should be observed whenever alphanumeric 

characters are employed even in a successive-presentation task with rotation 

cues. 
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In an experiment with blind-folded sighted and blind participants and a hap-

tic presentation mode, Rösler et al. (1993) indeed found an angle-dependent 

slow potential similar to the one observed by Rösler et al. (1995) in a succes-

sive-presentation task with alphanumeric stimuli but without rotation cue (see 

Chapter 1.3.3). The component with maximum effect size at Pz and P4 was not 

embedded into a P3b but clearly inside the negative voltage range, did not start 

until 1 s after onset of the rotation probe and lasted much longer than the com-

ponent in the studies reviewed by Heil (2002). It therefore appears possible that 

the critical aspect of the task that determines the shape of the mental rotation 

component is whether comparisons must be made between two representa-

tions held in working memory or between a tilted stimulus and its long-term 

memory entry. For example, the former of these two possibilities may be based 

on a more detailed representation. However, in an EEG study that employed vi-

sually presented alphanumeric characters in a successive-presentation mental-

rotation task without rotation cue (Rösler, et al., 1990) the observed angle-de-

pendent component was very similar in shape to that found when a single char-

acter is shown (Heil, 2002).  

Possibly, concerning mental rotation, the critical stimulus characteristic of 

alphanumeric characters is that they are two-dimensional and relatively simple. 

This simplicity might be lost in a haptic presentation mode. Critically, also the 

stimuli employed in the main experiments of the present work, as reported be-

low (see Figure 3.4), are two-dimensional and relatively simple. In order to find 

out whether the task or stimulus characteristics determine the shape of the 

rotation-related component, and consequently which shape we would expect in 

the successive-presentation mental-rotation task employed in Experiments 1a, 

1b, 2 and 3, we conducted a preliminary mental-rotation EEG study. Along with 

doing so, we aimed to add to the knowledge about the process of mental 

rotation as detailed in the following. 
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2. Preliminary Experiment—An Effect of 

Rotational Direction 2 

In character-rotation tasks (i.e., single-stimulus mental-rotation tasks with 

alphanumeric characters, see Chapter 1.3.2) participants decide whether a 

disoriented character is presented in its normal or mirrored version—they 

judge its handedness. Similar to all other mental-rotation tasks, the typical 

result observed in character-rotation tasks is a monotonic increase in response 

times with the character’s angular deviation from upright (the typical mental-

rotation effect). Response times increase up to a character tilt of 180° and 

decrease for larger angles. The peak of response times at 180° is thought to 

indicate that participants usually rotate the character along the shortest path 

into its upright position. Participants are therefore obviously able to rotate in a 

clockwise (CW) as well as in a counterclockwise (CCW) direction. In the follow-

                                                        
2 This chapter is an adapted version of Liesefeld and Zimmer (2011). 
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ing, we will indicate tilts to the left with negative numbers, e.g., -120° and tilts to 

the right with positive numbers, e.g., +120° (see Figure 2.1). If CW and CCW ro-

tations are equally fast, the function relating response times to the character tilt 

and therefore to the amount of mental rotation should be symmetrical with its 

peak and axis of reflection at 180°, that means the slope for CW and CCW rota-

tions should be the same. This is the result found in most studies employing the 

character-rotation task (see, e.g., Cooper & Shepard, 1973; Shepard & Cooper, 

1982). 

 

Figure 2.1. An illustration of the denominations for character (Char) tilts and the 

two strategies. The dotted circle indicates the character’s tilt. Negative angles 

stand for tilts to the left and positive angles for tilts to the right. The mirrored R is 

tilted -120° as an example. The solid circles indicate the amount of rotation that 

has to be performed if a character is “up-righted” from (middle circle) or “turned-

round” into (outer circle) a given tilt. The arrows indicate the respective direction 

of rotation. CW rotations are additionally indicated by black semi-circles and CCW 

rotations by grey semi-circles. 

However, discrepant results have also been reported. Koriat and Norman 

(1985a) showed one such asymmetry. In their experiment, participants took 

considerably longer to judge the handedness of characters tilted +120° than 
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characters tilted -120°. Here, the reader should note that characters tilted to the 

left (negative angles) have to be mentally rotated CW to reach an upright posi-

tion. Based on this upright representation a decision about the character’s hand-

edness can be made. The reverse applies with characters tilted to the right (see 

the inner circle of Figure 2.1). Hence, these results indicate that rotations take 

longer in a CCW than in a CW direction. In a further experiment, Koriat and 

Norman (1985b) again observed a similar asymmetry, this time for the recogni-

tion of tilted Hebrew words. An effect of direction of character tilt was also 

found by Robertson and Palmer (1983). They investigated the rotation of global 

and local structure by using large letters made of small ones in a character-rota-

tion task. On each trial participants had to determine whether the letters at 

either one of the two levels were normal (rather than mirrored) versions. Al-

though the distinction between global and local structure is not important for 

the present experiment, an ancillary result of this study is interesting: When the 

global letters were presented in their normal version, response times were 

markedly longer for stimuli tilted +120° (apparently causing CCW rotation) 

compared to stimuli tilted -120° (CW rotation). However, additional findings 

(including those from within the same studies) challenge the assumption of the 

superiority of CW rotation. When Robertson and Palmer (1983) showed mirror-

reversed global letters, response times were shorter for tilts of +120° (CCW ro-

tation) compared to -120° (CW rotation). In addition, in two further experi-

ments by Koriat and Norman (1985a) no asymmetry was observed, and where 

the effect was observed it appeared only for normal versions of characters. The 

inconsistency of these results as well as the outcomes from the many studies 

with similar designs that do not observe any asymmetry (e.g., the seminal work 

of Cooper & Shepard, 1973), prompts the question as to whether such an effect 

of the direction of rotation really exists and how it could be demonstrated more 

clearly. As we assume that variations in participants’ strategies in character-ro-

tation tasks cause these inconsistencies across experiments, we now turn to an 

examination of these strategies. 

In character-rotation tasks, there are two potential strategies for determin-

ing the handedness of a character. On the one hand, participants may build a 

mental representation of the presented character and then mentally rotate this 
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representation into an upright orientation—participants “right the character” 

(see the middle circle of Figure 2.1 and Figure 2.2A). This upright repre-

sentation can then be compared directly to the respective long-term memory 

entry. This is the common account for the results of character-rotation tasks. If 

participants use this strategy, characters tilted to the right are rotated CCW and 

characters tilted to the left are rotated CW. On the other hand, participants may 

identify the tilted character and build a mental representation of this character 

in its canonical upright orientation (by accessing the respective long-term 

memory entry). They then rotate this representation to bring it into congruence 

with the presented character (they “turn it round”; see outer circle of Figure 2.1 

and Figure 2.2B). Diametrically opposed to the first strategy, characters tilted to 

the right would elicit CW and those tilted to the left would elicit CCW rotations. 

In the following, we call these two strategies up-right and turn-round, 

respectively. Strategy turn-round is possible only if one can identify the 

stimulus and its orientation without the need for rotation. Participants are 

usually able to identify stimuli without rotation after a number of trials (see, e.g., 

Jolicoeur, et al., 1987) and once this is achieved, identification of orientation 

should be unproblematic. Furthermore, most researchers (implicitly) assume a 

turn-round-strategy for paradigms involving the mental rotation of human 

hands (e.g., Cooper & Shepard, 1975; Ionta & Blanke, 2009; Ionta, Fourkas, 

Fiorio, & Aglioti, 2007; Parsons, 1994; Sekiyama, 1982). If, as we will show, 

rotation in a CW direction is easier than in a CCW direction, using a mixture of 

both strategies would be advantageous in solving mental-rotation tasks. 

Strategy up-right would be easier whenever the character is tilted to the left, 

because for negative tilts the representation of the character has to be rotated in 

CW direction to make it up-right. Strategy turn-round, in contrast, should be 

more efficient for characters tilted to the right—the representation generated 

from long-term memory needs rotation in CW direction to align it with the 

presented stimulus. The relationship between these strategies (up-right vs. 

turn-round), the directions of character tilt (to the left/negative vs. to the 

right/positive) and the direction of rotation (CW vs. CCW) are depicted in 

Figure 2.1. The two strategies are illustrated in Figure 2.2. 
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Figure 2.2. Illustration of the two possible strategies in character-rotation tasks. 

Both (A) rotating the perceived character into the canonical orientation (to make 

it “up-right”) and (B) rotating a canonical version into the orientation of the pre-

sented character (to “turn it round”) can lead to the correct decision. 

If participants in character-rotation tasks systematically use both strategies, 

that is, if they use strategy up-right for characters tilted to the left and strategy 

turn-round for characters tilted to the right, they can avoid performing any CCW 

rotation at all. In this case, the function relating response times to the angle of 

tilt would be the same for characters tilted to the right and those tilted to the 

left—the result observed by (among many others) Cooper and Shepard (1973). 

The likelihood of such an efficient strategy might increase with the amount of 

practice. The eventual ratio of strategies may also depend on the participants’ 

personal preferences, on details of the instructions or on some other arbitrary 

cues of the experimental context. For example, asking participants explicitly to 

rotate the tilted character into its canonical orientation should increase the fre-

quency of up-right rotations. In short, the problem is that in the common char-

acter-rotation task participants are free to select their strategy and to change it 

from one trial to the next. The resulting variance in strategy use across experi-

ments could explain why the effect of rotational direction is observed so unre-

liably. 

The most clear-cut way to overcome this problem and to examine effects of 

rotational direction is to develop a task in which the experimenter can control 

the rotation strategies participants might use. In such a task, the direction of tilt 

would directly determine the direction of rotation. This has been inadvertently 

achieved by one version of Cooper and Shepard (1973)’s character-rotation 

tasks. Participants initially saw a cue that indicated the identity of the upcoming 

character (an outline drawing of the normal, upright version of the character; 
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the original stimulus in terms of the present work). Following this stimulus, an 

arrow (a rotation cue) indicated the tilt of the upcoming character. After a vari-

able amount of time, the character on which the handedness decision had to be 

given was shown. Whenever participants had sufficient time (1 s) to prepare for 

the upcoming critical character, the mental rotation effect on response times to 

this character was abolished. In contrast, the less time was given for prepara-

tion, the greater the effect of character tilt, that is, a mental rotation effect, 

evolved. It is assumed that during the 1 s of preparation, participants had men-

tally rotated a representation of the original stimulus into the indicated orienta-

tion. When the second character was presented they simply had to compare it to 

the mental representation they had created in advance. For shorter preparation 

times, however, participants were unable to finish the rotation and therefore 

had to continue or even restart the rotation after the appearance of the second 

character. That means by shortening preparation times the task was effectively 

transformed from a successive-presentation task with rotation cue into a single-

stimulus task (see Chapter 1.3). Importantly, whilst preparing, participants 

could not choose between strategies up-right and turn-round. Only strategy 

turn-round was possible, because during the preparation period, only an 

upright oriented character was available and participants prepared for a com-

parison with a tilted character (the comparison character). 

We employed this task with two major changes in order to circumvent two 

additional problems. Firstly, whenever CW rotations are to be performed, com-

parison characters are tilted to the right. Correspondingly, CCW rotations al-

ways occur with comparison characters that are tilted to the left (see 

Figure 2.3b). To avoid this possible confound we operationalized not only strat-

egy turn-round, but also strategy up-right (see Figure 2.3a). Strategy up-right is 

induced here by presenting the original character tilted and the comparison 

character upright. Consequentially, in the latter strategy condition, a CW rota-

tion is necessary for original characters that are tilted to the left and vice versa a 

CCW rotation for original characters that are tilted to the right. According to the 

strategy that is induced, in the following, we call the two strategy conditions 

turn-round and up-right, respectively. Only if we find the same effect of rota-

tional direction in both strategy conditions, can we be assured that effects of 
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rotational direction do not stem from the direction of the tilt of either the origi-

nal or the comparison character. If, on the other hand, an effect of rotational di-

rection emerges only in one of the two strategy conditions, it must be due to the 

tilt of the original character or the tilt of the comparison character. We expect to 

find similar effects of rotational direction in both strategy conditions, because 

we assume that the direction of rotation is critical. 

 

Figure 2.3. The trial sequence of the two strategy conditions (A) up-right and (B) 

turn-round, trials with 120° tilts. Both examples show mismatches. There were 

blank intervals of 750 ms duration between adjacent displays. 

The second change of the task procedure came about as a consequence of 

the up-right strategy condition. Cooper and Shepard (1973) instructed their 

participants to determine the second character’s handedness. In the strategy 

condition up-right, it is possible to judge the handedness of the comparison 

character simply by comparing it to the representation of its prototype in long-

term memory. To prevent the use of this strategy, we asked participants to de-

cide if the original character’s handedness matches the handedness of the com-

parison character. In this new version of the task, a mirror-reversed character 

could also be a matching comparison stimulus. A mismatch trial would be one in 

which the comparison character has the specified orientation but a different 

handedness than the original character. It is therefore always necessary to men-

tally rotate the original character in order to be prepared for its comparison 

with the comparison character. Participants’ task was always to match the re-

sult of the mental rotation with the comparison character. Note that, compared 

to a usual character-rotation task, the mental rotation time window has moved 
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to the point in time when both information about the rotational angle and the 

original character is available, that is, to the preparation period. When the com-

parison character appears (and response times are recorded), mental rotation is 

assumed to be already completed. That means, the time from onset of the com-

parison character to the participants’ key press does not reflect mental rotation, 

but only the comparison process. The latency of this key press therefore does 

not reflect rotation time, but merely comparison time. 

In summary, the logic is as follows. On the basis of Koriat and Norman’s re-

sults (1985a) we conclude that mental rotation of characters in a CW direction 

is easier than in a CCW direction. We assume that the reason for the irregular 

emergence of this effect is that two different strategies can be employed to solve 

the usual character-rotation task and that studies vary in the extent to which 

these strategies are used. If participants' strategies can be brought under exper-

imental control, it should be possible to observe consistent effects of rotational 

direction. For that purpose we developed a new character-rotation task. Partici-

pants were required to mentally rotate one character (the original character) 

into a specific orientation and to compare the result of this rotation process to a 

subsequently presented comparison character. We conducted this experiment 

under two strategy conditions—the to-be-rotated original character was shown 

either upright or tilted, and correspondingly the comparison character was 

shown tilted or upright. By running both strategy conditions, we were able to 

test for the alternative hypotheses that any effect of direction is due to the tilt of 

either the original or the comparison character. As the dependent variable of 

interest, we measured ERPs at parietal electrode sites during the period in 

which we assumed rotation would take place. The amplitude of the component 

taken to reflect mental rotation should depend on the amount of rotation in a 

given trial. This component should be most prominent at Pz and take one of two 

alternative shapes as described in detail above (Chapter 1.7). It should either 

manifest itself as a short-lasting amplitude modulation of a P3b or as a long-last-

ing negative slow potential. Additionally and critically, we expected the ampli-

tude of this component to be more negative for CCW than for CW rotations in 

both strategy conditions, because the relative negativity should indicate in-

creases in effort. 
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2.1 Methods 

2.1.1 Participants 

Sixteen paid volunteers recruited from Saarland University received €8 per 

hour for participation. They gave written informed consent after the nature of 

the study had been explained to them. Participants were unaware of the hypoth-

esis being tested and had no prior experience with the task. Data from two par-

ticipants had to be discarded. One participant constantly gave the wrong answer 

for rotational angles of 180° (we return to this issue in the general discussion, 

Chapter 8.7.4). The second participant had excessively long comparison times 

(more than 1 ½ times the interquartile difference above the group mean). The 

final sample comprised 14 participants, seven men and seven women. They 

were between 20 and 31 years of age (mean: 23.8). According to their self-re-

port, all had normal or corrected-to-normal vision and, with the exception of 

one, all participants were right-handed. 

2.1.2 Stimuli 

The stimuli presented were alphanumeric characters printed in Arial Narrow 

font, approximately 2.5° of visual angle in height (viewing distance of about 

75 cm). As stimulus-specific learning effects in mental rotation experiments 

have been reported previously (D. Cohen & Kubovy, 1993), we tried to minimize 

this influence on our experimental within-factor strategy condition. To achieve 

this, three separate stimulus sets were used, one for the training phase and one 

for each of the two strategy conditions (up-right vs. turn-round). The sets for 

the strategy conditions were: G, J, R, k, 2, 5 and F, P, Q, h, 4, 7. For practice trials 

L, f, t and 1 were employed. The assignment of stimulus sets to the strategy con-

ditions was counterbalanced across participants. The original character in each 

trial was displayed in gray whereas the comparison character was black. Stimu-

lus timing and collection of behavioral data was controlled by E-Prime 2.0 

(Psychology Software Tools, 2005). 
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2.1.3 Design 

We ran two strategy conditions: In strategy condition up-right participants ini-

tially saw a tilted original character, which they mentally rotated into its upright 

form (they “made it upright”) to prepare for a comparison with the upcoming 

comparison character. Accordingly, the comparison character in strategy condi-

tion up-right was always presented upright. The orientation of the original char-

acter was indicated by an arrow preceding the presentation of the character. In 

strategy condition turn-round the original character was always presented 

upright. It was also preceded by an arrow which indicated the orientation the 

character had to be rotated into. The original character had to be “turned-

round”, because the comparison character in strategy condition turn-round was 

presented in the orientation indicated by the arrow. When no rotation was ne-

cessary (because both characters were presented upright), the arrow preceding 

the original character pointed upwards. Figure 2.3 schematically illustrates the 

two strategy conditions. In both strategy conditions, participants’ task was to 

indicate, whether the two characters were the same or mirror versions of each 

other. Participants were instructed that only the match between the result of 

the mental rotation of the original and the comparison character was relevant, 

making a decision based solely on the comparison character impossible. Half of 

the participants pressed a key on the right side of an external response box for 

match with their right index finger and one on the left side for mismatch with 

their left index finger. The remaining participants had the reversed assignment 

of response buttons. The strategy conditions (up-right vs. turn-round) were 

blocked and the order of the two blocks was counterbalanced across subjects. 

We implemented five character tilts: +60°, +120°, 180°, -120° and -60° (cf. 

Figure 2.1). Trials in which both characters were presented upright and which 

therefore required no rotation are subsequently referred to as 0°. The experi-

ment was run with all possible within-subject factor combinations by drawing 

randomly without replacement at runtime from a 6 (character tilt) × 

6 (character identity) × 2 (original character version) × 2 (match) list. Each par-

ticipant was presented with the counterbalanced list twice per strategy condi-

tion (up-right vs. turn-round). As we expected character identity, original char-

acter version and match not to influence the rotation itself, this amounts to 48 
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trials per relevant cell in a 6 (character tilt) × 2 (strategy condition)-design. Di-

rection of rotation (CW vs. CCW) can, of course, only be defined for absolute ro-

tational angles of 60° and 120°, namely, -60° and -120° tilts demand CW rota-

tions in strategy condition up-right and CCW rotations in condition turn-round; 

+60° and +120° tilts demand CCW rotations in up-right- and CW rotations in 

turn-round trials (see Figure 2.1). It is unclear why participants failed on trials 

with erroneous answers, so only correct trials were included into the analysis. 

As error rates tend to increase with rotational angle in mental-rotation tasks, 

this would lead to (nonrandomly) less observations per cell for higher rota-

tional angles. Therefore, erroneous trials were rescheduled (with their order 

determined randomly) at the end of each block without any apparent break be-

tween regular and rescheduled trials. As a result, for each cell the number of 

trials included into the analysis was independent of the cell’s difficulty. 

2.1.4 Procedure 

Each trial started with a fixation-cross that appeared in the center of the screen 

for 500 ms. 750 ms after its offset, an arrow indicating either the orientation of 

the upcoming original character (up-right) or the orientation the character had 

to be rotated into (turn-round) was presented for 1000 ms. Another 750 ms 

after the offset of the arrow the original character was presented for 2000 ms. 

The original character was switched off and 750 ms later the comparison char-

acter appeared. The trial was terminated by the participant’s answer, but the 

comparison character remained on the screen for at least 1000 ms to ensure 

that the stimulus offset did not confound the EEG (see Figure 2.3). All stimuli 

were presented centrally. Trials were separated by intervals jittered between 

1 s and 3 s in 100 ms steps. 

Participants were encouraged to focus on a high accuracy rate, while the 

speed of responses was secondary. After every 12th trial there was a break, dur-

ing which participants were informed about their cumulative percent correct 

and their mean comparison times on correct trials. The participants themselves 

terminated the break, which lasted for at least 5 s. Before the regular trials of 

each block started, participants practiced the task. The practice phase ended 
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and the regular trials started as soon as the participant had given 12 correct 

answers in a row (irrespective of any breaks in between). 

2.1.5 EEG recording, artifacts handling and signal extrac tion 

The EEG was collected by Ag/AgCl-electrodes at frontal (F3, Fz, F4), central (C3, 

Cz, C4), parietal (P3, Pz, P4) and occipital (O1, Oz, O2) sites according to the ex-

tended 10/20 system, amplified with BrainAmp DCs (Brain Products), recorded 

with BrainVision Recorder 1.03 (Brain Products, 2007) and analyzed with 

BrainVision Analyzer 2.01 (Brain Products, 2008). An electrode between Fz and 

Cz served as the ground. Electrodes were referenced to an electrode at the left 

mastoid and re-referenced offline to an average of the original reference and an 

electrode at the right mastoid. Electrodes at the outer canthi of both eyes pro-

vided the horizontal and two electrodes above and below the right eye the ver-

tical EOG. The impedance was kept below at least 10 kΩ for EOG-electrodes and 

below 5 kΩ for the other electrodes. Data was analog low-pass filtered at 250 Hz 

and sampled at 1000 Hz. No high-pass filter was set because we were interested 

in slow cortical potentials. Whenever one electrode was close to saturation, the 

experiment was paused during the next break and all channels were reset. 

Trials contaminated with severe artifacts other than eye blinks were re-

jected (4.3% of all trials). Drift artifacts were corrected using the method of 

Hennighausen, Heil, and Rösler (1993). Eye blinks were detected automatically 

and corrected according to the method of Gratton, Coles and Donchin (1983). 

No offline-filter was employed. To extract ERPs, the EEG was segmented into 

epochs from 200 ms before onset of the fixation cross to 1 s after presentation 

of the comparison character, drawn to a 200 ms baseline starting at the begin-

ning of the epoch (and therefore ending at the onset of the fixation cross) and 

averaged for each Strategy Condition × Character Tilt × Original Character Ver-

sion × Match cell. Only trials answered correctly were used for the averages. As 

all trials answered incorrectly were rescheduled, we obtained 48 measurements 

per 2 (strategy condition) × 6 (character tilt) cell of interest minus the 4.3% of 

trials contaminated with severe artifacts; that is, on average, about 

4 measurements per relevant cell. 
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2.2 Results 

2.2.1 Behavioral data 

Unless otherwise noted, all data were analyzed by analysis of variance (ANOVA). 

Effects and interactions were further deconstructed by testing for polynomial 

trends and other contrasts. Reported p values are based on Greenhouse-Geisser 

corrected degrees of freedom (dfs) where appropriate (Greenhouse & Geisser, 

1959). The original F values and dfs are reported throughout, alongside 

Greenhouse-Geisser epsilons (ε) and corrected p values (pcorr) when the correc-

tion was adopted. In all graphs the construction of 95%-confidence intervals 

follows the procedure described by Jarmasz and Hollands (2009). We corrected 

the critical t values’ dfs appropriately if εs were too low, as suggested by Loftus 

and Masson (1994). The effects on which the confidence intervals are based can 

be found below each figure. We would like to stress that there were no behav-

ioral responses collected during the interval in which mental rotation is thought 

to have taken place (following the appearance of the original character). Partici-

pants responded to the comparison character, making it likely that all or most of 

the rotation had been finished by the time comparison times were measured. 

Comparison times are therefore only reported for the sake of completeness and 

to show that participants complied with the instructions. 

Percentage of correct answers was calculated upon regular trials only, that is, 

we did not include the rescheduled trials into this analysis. Accuracy was very 

high (98% for strategy condition up-right and 94% for turn-round, see 

Figure 2.4). Consequently, some cells yielded zero variance (no errors were 

committed) when original character version and match were included into the 

analysis. Accuracies were therefore analyzed by a nested 2 (strategy condi-

tion) × 6 (character tilt) ANOVA. Main effects of character tilt, F(5,65) = 9.47, 

ε = .40, pcorr < .01, ηp2 = .42 and strategy condition, F(1,13) = 10.19, p < .01, 

ηp2 = .44 as well as their interaction, F(5,65) = 4.04 ε = .46, pcorr < .05, ηp2 = .24 

were significant. Note that the high overall level of accuracy may have obscured 

the results. In particular, performance for strategy condition up-right was close 
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to perfect and therefore could not show any effect of character tilt. This might 

have resulted in a spurious interaction. 

 

Figure 2.4. Accuracy as a function of tilt and strategy. 95%-confidence intervals 

are based on an error estimate pooled over the effects of angle and strategy con-

dition and their interaction. 

As participants were supposed to rotate the character during the 2750 ms 

before onset of the comparison character and as even the slowest participants 

of Cooper and Shepard (1973) did not show a mental rotation effect after 1 s 

preparation time, we did not expect any effect of the amount of rotation on com-

parison times. Nevertheless, we analyzed the median comparison times per par-

ticipant associated with correct answers for each 2 (strategy condition) × 

6 (character tilt) × 2 (original character version) × 2 (match) cell. Contrary to 

our expectation the comparison times showed strong main effects of tilt, 

F(5,65) = 12.29, ε = .25, pcorr < .01, ηp2 = .49, strategy condition, F(1,13) = 6.82, 

p < .05, ηp2 = .34 and an interaction between the two, F(5,65) = 9.22, ε = .36, 

pcorr < .01, ηp2 = .41 (see Figure 2.5). Interestingly, there was also a strong inter-

action between original character version and match, F(1,13) = 9.40, p < .01, 

ηp2 = .42: Participants’ match-responses were faster than their mismatch-

responses when the original character was presented in its normal version, 
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F(1,13) = 7.78, p < .05. In contrast, the latency of mismatch- and match-

responses did not differ when the original character was presented in its mir-

rored version, F(1,13) < 1, p > .2. 

 

Figure 2.5. Median comparison times as a function of tilt and strategy condition. 

Because the more interesting comparisons are within the two strategy conditions, 

95%-confidence intervals are based on the effect of tilt. 

Mental rotation is generally assumed to have taken place if response times 

are linearly related to the absolute rotational angle. To test whether this was the 

case for our comparison-time data, we further decomposed the reported effect 

of character tilt. In a first step we collapsed tilts of +60° and -60° as well as tilts 

of +120° and -120° creating a new factor absolute character tilt with four levels 

(0°, 60°abs, 120°abs and 180°). For each strategy condition, we tested the median 

comparison times for a linear trend across absolute character tilt—the typical 

criterion for assuming mental rotation. Indeed, a significant linear trend in 

strategy condition turn-round, F(1,13) = 13.54, p < .01 as well as in strategy 

condition up-right, F(1,13) = 8.65, p < .05 was found. Turn-round also showed a 

significant quadratic trend, F(1,13) = 9.20, p < .01, while up-right did not, 

F(1,13) < 1, p > .2. In addition the linear trend was significantly steeper in strat-
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egy condition turn-round compared to up-right, as reflected by an interaction 

between the linear trend of character tilt and strategy condition, F(1,13) = 10.38, 

p < .01. 

One might argue that some participants may not have rotated during the in-

terval before presentation of the comparison character as instructed, but in-

stead waited for the appearance of the comparison character to start the rota-

tion. This is unlikely to be the case for two reasons. Firstly, as is reported below, 

ERPs were sensitive to the degree of rotation long before the comparison char-

acter appeared. Secondly, an additional analysis indicated that the observed ef-

fect of rotational angle at the time of comparison character presentation was 

only present for women. A 2 (sex) × 2 (strategy condition) × 4 (absolute charac-

ter tilt) ANOVA showed a significant three-way Sex × Strategy Condition × Char-

acter Tilt interaction, F(3,36) = 5.80, ε = .46, pcorr < .05, ηp2 = .33. An analysis of 

comparison times separately for the two sexes revealed that men (who were—

as is frequently the case in mental-rotation tasks—faster, F(1,12) = 11.44, 

p < .01, ηp2 = .49) showed no significant linear trends for character tilt in any 

strategy condition, both ps > .2. All effects of strategy condition and character 

tilt on the comparison times of men were due to slower responses in 180°, turn-

round trials compared with all other trial-types. Women in contrast showed sig-

nificant linear trends, F(1,12) = 15.54, p < .01 and F(1,12) = 34.45, p < .01 in 

strategy conditions up-right and turn-round respectively and an additional 

quadratic trend in strategy condition turn-round, F(1,12) = 9.43, p < .01. In sum, 

the harder the task and the slower the participants, the stronger the mental ro-

tation effect on comparison times. This is the pattern one would expect if some 

participants were not able to finish rotation during the allotted time. We there-

fore suppose that the effects on comparison times reflect that some participants 

had to perform some rotation after appearance of the comparison stimulus. 

Nonetheless, it is likely that most rotation would have been completed during 

the preparation interval. 



2. Preliminary Experiment 47 

2.2.2 ERPs 

Prior to any analysis of the effect of rotational direction on ERPs, we have to 

identify the ERP component which reflects the process of mental rotation in the 

present study. As expected on the basis of previous mental rotation studies in 

which ERPs have been employed, the effect of rotational angle was clearest at 

parietal electrodes, especially at Pz (see e.g. Heil, 2002). Figure 2.6 shows the 

grand average time-locked to trial onset at Pz. Four prominent positive and one 

negative component are evident. Of interest for our purposes are (a) the positiv-

ity peaking at about 3450 ms (i.e., 450 ms after onset of the original character) 

which we interpret as a P3b elicited by the original character and (b) the long 

lasting negativity directly following this P3b. 

 

Figure 2.6. Grand average for the four absolute character tilts (0°, 60°abs, 120°abs, 

180°). Here and in the following graphs negative polarity is plotted upwards. For 

clarity a 2 Hz low-pass filter has been applied to all ERP-graphs, the analyses in 

contrast are carried out on the unfiltered waveforms. The data at P3 and P4 show 

the same pattern. 
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The component reviewed by Heil (2002) usually lies in the interval between 

300 and 1000 ms after onset of the rotation probe, that is, in the present data it 

should emerge inside the P3b evoked by the original character. From the fact 

that the amplitude of this P3b was not influenced by character tilt, it follows that 

this rotation-related component was not present, in either strategy condition 

up-right or turn-round. The slow potential starting around 1000 ms after onset 

of the original character, in contrast, was strongly influenced by character tilt. 

This slow potential is comparable to the component reported by Rösler et al. 

(1995). The effect of tilt lasts until the end of the episode in both strategy condi-

tions; that means the component may have persisted even after the comparison 

character had appeared. This is in line with our interpretation of the compari-

son time pattern—maybe at least some participants were unable to finish rota-

tion during the preparation interval and therefore had to execute at least some 

rotation after the comparison character had appeared. However, we did not 

want to confound our dependent measure with other components or processes 

starting after the presentation of the comparison character. Therefore, we fo-

cused our analysis on the mean amplitude of the component inside the prepara-

tion interval, that is, from 4000 ms (i.e., from the beginning of the rotation-re-

lated slow potential) until 5750 ms, when the comparison character appeared 

(eliciting another P3b). 

The component appeared at the expected location, inside the expected time-

window and has one of the two alternatively expected shapes. Taken together, 

this indicates that the component reflects the process of mental rotation, as has 

been previously observed (e.g., Rösler, et al., 1995). The final criterion that a 

component reflecting mental rotation should meet is that its negativity should 

increase with rotational angle. To confirm that this is the case for the compo-

nent observed here, we again combined positive and negative tilts with the 

same absolute value, resulting in a factor of absolute character tilt with four le-

vels (0°, 60°abs, 120°abs and 180°) and tested for linear trends directly (ANOVA 

results on the data pooled over electrodes are reported below). All electrodes at 

parietal locations (P3, Pz and P4) showed linear trends for absolute character 

tilt (P3: F(1,13)= 4.90, p < .05; Pz: F(1,13) = 4.97, p < .05; P4: F(1,13) = 7.10, 

p < .05; see Figure 2.7). No electrode showed quadratic or cubic trends, all 
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ps > .2. For the parietal locations, there was no Site × Linear Trend interaction, 

F(2,26) < 1, p > .2. As the effect measured at the three electrodes was obviously 

the same, we pooled over these electrodes in the following analyses, obtaining a 

significant linear trend over all three electrodes from the P-row, F(1,13) = 5.88, 

p < .05. It is appropriate to include all three electrodes in the analyses because 

fMRI studies have shown bilateral parietal increases in blood flow with increas-

ing rotational demand in mental-rotation tasks (for a review see Zacks, 2008; 

see also Chapter 1.6). 

 

Figure 2.7. Linear trend of rotational angle at parietal electrode sites averaged 

over the 4000-5750 ms time window. The displayed 95%-confidence intervals are 

based on the Electrode Site × Character Tilt interaction. 

After demonstrating the validity of our task as well as our dependent mea-

sure (the angle-dependent slow potential), we now turn to the critical test of 

our main hypothesis. An ANOVA with factors of laterality (P3, Pz, P4), strategy 

condition (up-right, turn-round), character tilt (0°, 60°, 120°, 180°, -120°, -60°) 

and original character version (normal vs. mirrored), showed a significant effect 

of character tilt, F(5,65) = 2.52, ε = .60, p < .05, ηp2 = .16 only. The effect of strat-

egy condition was marginally significant, F(1,13) = 3.41, p = .09. 
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Our hypothesis concerned the ERPs in trials with -120° and +120° tilts in 

strategy conditions up-right and turn-round. We focused our analyses on 120° 

instead of 60° tilts or a combination of both, because the expected effect should 

be strongest for the larger rotational angle (and Koriat & Norman, 1985a, ob-

served the asymmetry only for tilts of 120°). This allowed us to maximize the 

power of our statistical tests. The outcomes of these contrasts fully supported 

our hypotheses. Average amplitudes were more negative for +120° than 

for -120° tilts in strategy condition up-right, F(1,13) = 5.43, p < .05, ηp2 = .29, and 

more negative for -120° than for +120° tilts in strategy condition turn-round, 

F(1,13) = 5.32, p < .05, ηp2 = .29, leading to a significant interaction, 

F(1,13) = 10.35, p < .01, ηp2 = .44 (see Figure 2.8 and Figure 2.9). 

 

Figure 2.8. Interaction between direction of tilt and strategy condition. Bars in-

dicate the difference in amplitude between +120° and -120° tilts separately for the 

two strategy conditions. Amplitude of the rotation-related slow potential is 

averaged over the time period 1000 -2750 ms after onset of the original character 

and pooled over P3, Pz and P4. In strategy condition up-right +120° tilts demand a 

CCW rotation and -120° tilts demand a CW rotation. In strategy condition turn-

round -120° tilts demand a CCW rotation and +120° tilts demand a CW rotation. 

Error bars represent the 95%-confidence interval of these differences. 



2. Preliminary Experiment 51 

 

Figure 2.9. Effect of rotational direction on the ERPs at Pz. Amplitudes are higher 

for CCW (gray) than CW (black) tilts in strategy condition up-right (thick lines) as 

well as in strategy condition turn-round (thin lines). +120° tilts are displayed as 

continuous and -120° tilts as broken lines. P3 and P4 showed the same pattern. 

Negative polarity is plotted upwards. For clarity, a 2 Hz low-pass filter has been 

applied. 

2.3 Discussion 

An effect of rotational direction has emerged only very inconsistently in pre-

vious studies (e.g. Koriat & Norman, 1985a). We assume the reason for this in-

consistency is that participants in usual character-rotation tasks can choose be-

tween two strategies, both of which cause different rotational directions for a 

given character tilt. Consequentially, analyses are usually carried out on mix-

tures of rotations in CW and CCW directions, as the researcher has no means for 

reliably differentiating between these two rotational directions. Only if a given 

study induces a strong bias towards one of the two strategies, can an effect of 

rotational direction emerge. In the study presented here we developed a task 

that brings the direction of rotation under the control of the experimenter. 
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2.3.1 Effect of rotational direction 

During the rotation interval of our task, we observed a slow potential that be-

came more negative with an increasing rotational angle. This slow potential is 

comparable to the one reported by Rösler et al. (1995) and is generally inter-

preted as reflecting the process of mental rotation. As hypothesized, this slow 

potential was found to be more negative for conditions designed to elicit CCW 

rather than for CW rotations. The amplitudes of negative going slow potentials 

are thought to reflect the amount of activation in the underlying cortex or, cog-

nitively speaking, the amount of effort allocated to a task (Khader, et al., 2008; 

Rösler, et al., 1997). We therefore conclude that mental rotation (at least of al-

phanumeric characters) is more effortful in a CCW than in a CW direction. The 

effect was observed whether the original character (strategy condition up-right) 

or the comparison character (strategy condition turn-round) was presented 

tilted from upright. This allows us to exclude the alternative hypotheses that the 

effect stems from the tilt of either the original or the comparison character. In 

addition, both strategy conditions include trials with rotations in CW and trials 

with rotations in CCW direction. Obtaining the effect of rotational direction in 

both strategy conditions corresponds to a replication of the effect, providing 

further support for our hypothesis. 

2.3.2 Possible causes of the effect of rotational directi on 

We were able to prove an advantage of CW rotations over CCW rotations, but 

with the data at hand, we can only speculate about the reason for this effect. One 

possible explanation comes from divided visual field studies. Corballis and 

Sergent (1989; see also Burton, Wagner, Lim, & Levy, 1992) found a strong in-

teraction between the visual field a tilted stimulus was shown in and the direc-

tion in which it was tilted. Specifically, the right hemisphere appears to be supe-

rior at rotating stimuli in CW, while the left hemisphere rotates more efficiently 

in a CCW direction. As the right hemisphere’s mental rotation performance is 

generally superior to that of the left hemisphere (for an overview see Corballis, 

1997), a net advantage for CW rotations—which the right hemisphere appears 

to perform better than CCW rotations—might be expected. The hemispheric 
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asymmetry and the right-hemisphere advantage in turn could be explained in 

the context of Kosslyn’s (1994) theory of visual imagery: He assumes (Kosslyn, 

1994; Kosslyn, et al., 2001) that mental rotation can be guided by the motor sys-

tem. As is the case in most mental rotation experiments, our participants’ reac-

tions were recorded by button presses with the participants’ palms pointing 

downwards and their digits pointing towards the screen. From this position one 

rotational direction was physically easier than the other for each hand—CW for 

the left and CCW for the right hand. In this situation, therefore, a CW rotation 

would be rather “unnatural” for the left hemisphere, which controls the right 

hand, and vice versa for the right hemisphere (see, e.g., Ionta & Blanke, 2009; 

Ionta, et al., 2007; Parsons, 1994; Sekiyama, 1982). Concerning the right-hemi-

sphere advantage, there is some evidence that the spatial representation of the 

right hemisphere is continuous whereas the representation of the left hemi-

sphere is categorical (see Kosslyn, 1994). If the representation that is mentally 

rotated continually goes through intermediate positions, the right hemisphere 

representation should be better suited for this. 

Another explanation for the effect could simply be that people are better 

able to rotate CW because they are familiar with this direction following expo-

sure to the CW rotation of clocks. Additional evidence for a general preference 

for CW rotations comes from visual illusions. For example, the Enigma figure, 

devised by Leviant (see Leviant, 1996) induces a perception of rotation. The 

perceived direction of rotation changes on average every 4.7 s. Interestingly, the 

overall duration of CW motion is longer than that of CCW motion and there is a 

strong bias of the perceived movement to start in a CW direction (Gori, 

Hamburger, & Spillmann, 2006).This bias is also reported for other illusions of 

rotation (Mackay, 1957). 

An alternative reason for the effect of rotational direction might relate to the 

stimuli that were employed. As more alphanumeric characters are oriented to 

the right, the perception even of a tilted and mirrored character primes a repre-

sentation of objects with their mass center to the right which, if they were real 

objects, would tend to fall to the right (CW). 

In contrast to the effect of rotational angle on the ERPs, the effect of strategy 

condition and the effect of direction of rotation emerged directly following the 
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presentation of the original character (see Figure 2.9). Nevertheless, this does 

not necessarily mean that all three independent variables (strategy condition, 

rotational angle, direction of rotation) cannot influence the same process (and 

therefore the same component). In the beginning the effect of rotational angle 

may be lacking, because rotations around different angles in the same direction 

do not yet differ—that means for rotations around a larger angle the smaller 

angles have to be passed. If this is the case, not only the amplitude, but even 

more so the duration of the rotation-related slow potential reported here 

should be sensitive to mental rotation—the more rotation has to be done the 

longer the underlying cortex should be active above a proper baseline3 (cf. 

Pegna, et al., 1997). This would also explain why Rösler et al. (1995), using un-

known stimuli—for which rotation takes longer than for familiar stimuli (see 

Bethell-Fox & Shepard, 1988)—observe a slow potential of much longer dura-

tion than we did. They measured angle dependent slow potentials that lasted for 

up to 8 s, while ours lasted only about 2 s. Alternatively, the earlier onset of the 

effects of strategy condition and direction of rotation could indicate differences 

in the initialization phase of mental rotation, for example, a tendency to rotate 

CW has to be surmounted before rotation in CCW direction can possibly start. 

However, because the effect of rotational direction emerged in both strategy 

conditions, it cannot be explained by encoding differences (cf. the reasoning in 

the introduction to this study). 

2.3.3 Two shapes of the rotation-related slow potential 

The data presented here, can help determine the conditions under which the 

rotation-related slow potential shows a late rotational-angle-effect onset and a 

long duration, as was the case for the rotation-related component observed in 

the present study (see also Rösler, et al., 1995), instead of the relatively short-

lasting shape as reported by Heil (2002). The earlier studies in which these dif-

ferent shapes of the slow potential are observed do not only differ in the stimuli 

they use, but also in the paradigm. We used the same material as Heil (2002) but 

                                                        
3 In 0° trials no rotation is necessary and rotations around 180° seem to differ in another 
(qualitative) way (see below). Therefore with the data at hand (only two rotational angles that 
were directly comparable, namely 60° and 120°) we could not further test this hypothesis. 
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a paradigm more similar to Rösler et al. (1995). The shape of the angle-depen-

dent component we found is comparable to the one Rösler et al. observed, 

namely a slow potential at parietal electrodes that started about 1 s after rota-

tion could possibly start, whose negativity increased with increasing rotational 

angle and that lasted for several seconds. In contrast, we did not observe the 

short-lasting shape of the component described in the review by Heil (2002). 

Therefore, we suppose that it is the paradigm and not the stimulus set that influ-

ences the shape of the component. As the main studies as reported below also 

employ a successive-presentation mental-rotation task, the mental rotation-re-

lated component in Experiment 2 should be similar to that in the present study 

and that reported by Rösler et al. (1995). The mental rotation effect should 

emerge in a negative slow potential centered at Pz, show a late onset and should 

persist until or even slightly beyond the end of the rotation interval. 
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3. Mental Representations 4 

Humans are able to internally represent visual aspects of the external world. 

Information initially detected by the photoreceptors of the eyes is eventually 

transformed into a mental representation which allows us to separate objects, 

compare them to memory entries, to reason about them and to interact with 

them. Even after an object has vanished from the scope of view mental repre-

sentations of the object can continue to exist in mind. Such representations in 

fact do not even need the object to exist at all. Humans can keep representations 

of objects active, retrieve them from long-term memory, or construct them at 

will (cf. Hume, 1748), a faculty called imagery (for a review see Kosslyn, 1994). 

Everyone virtually always actively represents and processes visual and spatial 

                                                        
4 Part of this chapter is adapted from Liesefeld and Zimmer (2012), Copyright © 2012 by the 
American Psychological Association. Adapted with permission. The official citation that should 
be used in referencing this material is Liesefeld, H.R., & Zimmer, H.D. (2012). Think Spatial: The 
Representation in Mental Rotation Is Nonvisual. Journal of Experimental Psychology: Learning, 
Memory, and Cognition. doi: 10.1037/a0028904. No further reproduction or distribution is 
permitted without written permission from the American Psychological Association. 
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information. Depending on ancillary factors, these activities are called seeing, 

reasoning, dreaming etc. Active mental representations of visual and spatial 

information are among the most important experiences in our daily life and are 

the building blocks many different mental processes work on. Zimmer and 

Liesefeld (2011) have claimed earlier that the human cognitive system can 

adaptively recode a given type of mental representation into another type ren-

dering different types of information explicit. Which information is selected and 

how it is represented depends on tasks affordances, available and necessary 

resources, and the cognitive processes that transform the mental representation. 

For the present work we assume that mental representations exist and that 

they can be subject to empirical testing (for a discussion of some diverging 

standpoints see Chapter 3.4). Mental representations are then purportedly 

transformed by mental processes. In principle, it should be possible to examine 

the properties of mental representations and mental processes separately. How-

ever, the nature of a mental representation obviously restricts the nature of the 

process by which it is transformed. As an example, if in mental rotation picture-

like representations are rotated, the process of mental rotation must specify 

how the picture looks like after each rotational step. If on the other hand only 

certain spatial characteristics of an object are rotated, only these need to be up-

dated. Therefore, a theory of mental rotation must take into account the nature 

of both the employed mental representation and the employed mental process, 

and a deeper understanding of the one informs a deeper understanding of the 

other. Shepard and Cooper (1982, p. 12) even note that it might be impossible to 

determine the nature of the process of mental rotation without knowledge 

about the representation in mental rotation. However, although much is already 

known about the process of mental rotation, the representation in mental rota-

tion has so far received only little empirical testing. 

3.1 Holistic vs. Piece-Meal Representations 

“[I] experienced a spontaneous kinetic image of three-dimensional structures 

majestically turning in space” (Shepard & Cooper, 1982, p. 7) is how Shepard 

described the vital spark that had led to his seminal study on mental rotation 
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(Shepard & Metzler, 1971); in fact, this description is close to the subjective ex-

perience of most participants performing mental-rotation tasks and purportedly 

close to the experience you had if you tried to answer the question posed in the 

first sentence of this work. Accordingly, it is generally assumed that mental 

rotation is performed on some kind of visual mental image, that is, a depictive 

representation of the visual characteristics of the stimulus which is in many 

ways similar to a picture of the stimulus (cf., e.g., Kosslyn, Thompson, & Ganis, 

2006). However, sometimes introspection is misleading, as we argue is the case 

for mental rotation. 

Early theories of mental rotation assumed that a single visual mental image 

is rotated that represents visual characteristics of the to-be-rotated stimulus in 

an integrated, holistic fashion (e.g., Cooper & Shepard, 1978). The main line of 

support for the holistic hypothesis came from studies observing that stimuli 

which clearly differed in visual complexity were rotated at an identical pace (D. 

Cohen & Kubovy, 1993; Cooper, 1975; Cooper & Podgorny, 1976). In these stu-

dies, the slope of the function which relates rotation time to rotational angle and 

which is generally interpreted as a reflection of rotational speed, did not differ 

between visually simple and visually complex stimuli. Consequently, the strong-

est challenges to the holistic hypothesis come from reports of modulations of 

rotational speed by the stimuli’s visual complexity (M. D. Folk & Luce, 1987; Heil 

& Jansen-Osmann, 2008), by the stimuli’s dimensionality (Bauer & Jolicoeur, 

1996; Jolicoeur, Regehr, Smith, & Smith, 1985), and by the difficulty of the com-

parison task, which might also influence characteristics of the rotated mental 

representation (M. D. Folk & Luce, 1987; Förster, et al., 1996; Pylyshyn, 1979). 

The alternative piece-meal hypothesis states that under conditions of high com-

plexity not the whole stimulus is rotated at once, but its parts in sequence, 

necessitating at least two iterations of encoding, rotation and matching (Just & 

Carpenter, 1976; Just & Varma, 2007; Pylyshyn, 1979; Yuille & Steiger, 1982); 

the more stimulus parts have to be rotated, the lower the apparent rotational 

speed. However, most proponents of both competing hypotheses explicitly or 

implicitly assume that mental rotation works on visual mental images. Instead 

of one holistic image of the stimulus, several images of the stimulus’ parts might 

be rotated in a piece-meal fashion (see Bauer & Jolicoeur, 1996; Bethell-Fox & 
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Shepard, 1988; Folk & Luce, 1987; Heil & Jansen-Osmann, 2008; Yuille & Steiger, 

1982). 

3.2 Visual Mental Images as One Type of Visual (Depicti ve) 

Representations 

Both the holistic and piece-meal hypothesis are in line with the assumption of 

visual mental images in mental rotation. In order to empirically examine 

whether mental images indeed play a role in mental rotation, a careful theoreti-

cal consideration of the properties of visual mental images is necessary. Most 

characteristics that apply to physical representations (pictures, stick figures, 

written or spoken words) also apply to mental representations, including visual 

mental images. The information a representation represents is its representa-

tional content. The same content can in principle be represented by several 

types of representations differing in their representational format. Depending 

on the representation’s format different subsets of its content are encoded 

explicitly or implicitly. Explicitly encoded information is directly accessible from 

the representation, whereas implicitly encoded information has to be derived 

from the explicitly encoded information in order to be accessed5. Visual infor-

mation (the content) can, for example, be represented as a written description 

(verbal format, Figure 3.1A) or as a picture (visual format, Figure 3.1B; cf. the 

dual-coding theory by Paivio, 1971). Note that even with the extensive verbal 

description in Figure 3.1A, it is still impossible to accurately redraw the rather 

simple stimulus in Figure 3.1B. For example, the size and the color of the stimu-

lus are unspecified and it is still unclear how and where exactly the square 

touches the smaller line and whether the two lines intersect. On the other hand, 

while reading the verbal representation you might became aware of stimulus 

                                                        
5 Our definition of “explicit” obviously deviates from Kosslyn et al.’s (2006) definition. According 
to their example, the representation of the three points (3,2), (3,5), and (3,7) in Cartesian format 
makes “explicit” that the points lie along the same vertical line. However, for deriving this fact, at 
least two comparisons of the points’ x-coordinate values have to be performed. As this spatial-
relational information (“lying on the same line”) has to be derived, it is not explicit in our use of 
the word. An explicit representation of this fact might, for example, be the sentence “The three 
points lie along the same vertical line”. The human cognitive system obviously is very fast in 
deriving this fact from the Cartesian coordinates given. If in Kosslyn et al.’s writing “explicit” is 
replaced by “very fast derivable/detectable/accessible by the human cognitive system”, we 
perfectly agree with their comments on it. 
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properties which are implicitly present in the visual representation, but which 

had to be made explicit in order to be processed by your cognitive system, as, 

for example, the size ratios between the stimulus parts6. In all visual representa-

tions, including visual mental images, besides the explicitly represented infor-

mation (e.g., the color of each pixel) a near infinite number of spatial relations 

between the stimulus’ parts are represented implicitly; all these spatial rela-

tions between stimulus parts are available from the visual representation but 

must be made explicit in order to be directly accessible for subsequent mental 

processes. 

 

Figure 3.1. A visual representation is worth more than 87 words. Much less 

information is derivable from the verbal representation (A) than from the visual 

representation (B) of the stimulus. Furthermore, the two representations make 

different subsets of information explicit. 

One characteristic of visual representations is crucial for the present article. 

Any visual representation that implicitly encodes the spatial relation between 

two stimulus parts is a representation of at least the two stimulus parts them-

selves. By representing two stimulus parts visually, not only the intended spatial 

relation but many other spatial relations between the two stimulus parts are 

represented. Consequently, certain spatial relations cannot be erased from a 

visual representation without also erasing other spatial relations7, because they 

are represented implicitly by the same explicit sets of pixel values. In 

Figure 3.1B, the spatial relation “the square is to the right of the smaller line” 

can be erased by erasing the pixels that form the square in the visual repre-
                                                        
6 The verbal description can also implicitly represent information. For example, the size ratio 
between the smaller line and the square (3/8th) can be derived from the two given ratios. 
7 Note that even in visual representations the presence or absence of many other types of 
stimulus properties can be varied fully independently. Consider, for example, stick figures that 
represent objects without specifying color, texture or detail about shape (Fodor, 1975). 
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sentation. Having erased these pixels, not only the spatial relation that was in-

tended to be erased is lost, but also, for example, the spatial relation “the square 

is affixed to the top of the smaller line”. These two spatial relations cannot be 

represented separately and representing them both does not cost more “re-

sources” (pixels) than representing just one of them—the visual representation 

implicitly specifies these pieces of spatial-relational information (and many 

others) either way. Some storage capacity might of course be saved by, for 

example, representing the square with fewer pixels. But even if the square 

shrinks to one pixel in the extreme, both spatial relations are still implicitly 

represented. That certain pieces of spatial-relational information (like those 

that were erased with the square) cannot be represented separately is the mi-

nimal prediction which can be derived from the assumption of visual mental 

images and which we will use to falsify the hypothesis that mental rotation 

works on visual mental images. In the following, we develop the alternative 

hypothesis that in mental rotation only a specific type of spatial information is 

represented in a nonvisual form. 

3.3 A New Hypothesis: Rotation of Orientation-Dependent  

Information 

That mirror images have to be discriminated appears to be critical for mental 

rotation to occur (for reviews, see Corballis, 1988; Shepard & Cooper, 1982). 

Takano (1989) pointed out the specific type of information in which mirror 

images differ and which reliably induces mental rotation. To-be-compared stim-

uli must differ in at least one piece of information that changes whenever the 

orientation of the stimulus varies (but see Förster, et al., 1996). For example, 

whether the arc of the letter R is located to the right or left of the larger stroke 

depends on the R’s absolute orientation with respect to the viewer. When the R 

is rotated 180° in the picture-plane for example, the arc has moved from the 

right to the left side of the larger stroke. Whether the smaller stroke of the R is 

connected to the arc or not, on the other hand, is not influenced by the R’s 

orientation; that means that this piece of information does not change its value 

when the stimulus orientation varies. Note that these two types of information 



3. Mental Representations 63 

are quite similar as both describe spatial relations between stimulus parts. 

Their differing characteristic that is important for our purposes is that the first 

type is orientation-dependent, whereas the second type is orientation-

independent. All orientation-dependent information can be reduced to “to the 

left/right of”, “above/below” or in “front of/behind”. Takano (1989) found that 

mental rotation occurred only if orientation-dependent information has to be 

compared between stimuli. In contrast, when mismatching stimuli always differ 

in orientation-independent information, comparison time is short and inde-

pendent of the stimuli’s angular disparity, indicating that in these cases mental 

rotation was not performed, because it was unnecessary. 

This finding allows for a fundamentally new hypothesis about the repre-

sentational content during mental rotation. Mental-rotation tasks could be 

solved by rotating only pure, explicit orientation-dependent information instead 

of visual mental images8. In contrast, in any visual mental image, orientation-

dependent information would be represented implicitly by an image of two 

stimulus parts, namely those stimulus parts whose relation is described by the 

respective piece of orientation-dependent information. These images would 

additionally implicitly specify much other information about the spatial relation 

between the represented stimulus parts (including orientation-independent 

information). These additional pieces of spatial-relational information would 

therefore be inextricably interwoven with the original piece of orientation-

dependent information (cf. Figure 3.1 and the example for this general point in 

Chapter 3.2). 

In visual mental images a piece of orientation-dependent information that 

describes a spatial relation between stimulus part A and stimulus part B (e.g., “A 

is to the right of B”) cannot be represented separated from certain other pieces 

of information about the spatial relation between A and B, for example, from the 

piece of orientation-independent information “A is in the middle of B”. If we, 

however, can show that two such pieces of information are indeed represented 

                                                        
8 Note that Takano (1989) explicitly does not take up a position concerning the mentally rotated 
representation. He states that the presence of orientation-dependent information is necessary 
for mental rotation to occur and that orientation-dependent information probably is 
represented explicitly during the comparison process. The process of mental rotation itself, in 
contrast, might as well work on a holistic representation, that is, on something like a visual 
mental image. 
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separately during mental rotation, we can conclude that the representation 

underlying mental rotation is not visual in any sense, not even structural pic-

torial in the sense of Fodor (1975). The bottom line is that participants might 

not rotate visual mental images of a stimulus’ parts nor any other type of visual 

representation, but explicit and abstract spatial-relational information (for a 

similar speculation on the representation employed for mechanical reasoning, 

see Hegarty, 2004), or more specifically, orientation-dependent spatial-rela-

tional information. 

How can this claim be reconciled with the strong introspection that visual 

mental images are indeed employed in mental rotation (see above, Chapter 3.1)? 

Analogous to Shepard and Cooper’s (1982, p. 10) observation that “on intro-

spection […] the mind’s most efficient and automatic operations appear to the 

mind itself to be virtually instantaneous as well as effortless”, we argue that on 

introspection, the mind’s most complete representations appear to the mind 

itself to be virtually identical to the perception of the represented object. None 

of these introspections, however, needs to reflect reality. Mental rotation be-

comes more difficult with increasing rotational angle and the rotated repre-

sentation might not be a full-blown mental image of the stimulus9. 

3.4 Are Statements About Mental Representations Possibl e? 

Although it certainly is of utmost importance to cognitive psychology, there is 

some reserve among cognitive psychologist to tackle the question of the format 

of mental representations and there are good reasons for this reserve. 

Already the basic distinction between representations and processes might 

be called into question. In “neural network” models (e.g., McClelland, Rumelhart, 

& Hinton, 2002), both representations and processes are instantiated by the 

pattern of weights given to the links between the elements of the network 

(processing units). Processing units influence each other by means of excitation 

or inhibition. These models consequently blur the distinction between repre-

sentations and processes and might thereby be more parsimonious than those 

                                                        
9 Note how nicely this speculation fits to the assumption that representations in the dorsal 
stream (which apparently plays an important role in mental rotation) cannot be accessed 
consciously (Milner & Goodale, 2008). 
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employing a strict distinction. However, we consider this distinction as being at 

least of explanatory value. Consequently, for the present work we simply 

assume that a distinction between mental representations and mental processes 

is possible. Furthermore, one critical implication of the assumption that mental 

processes and mental representations are only two sides of the same coin is that 

they cannot appear separated (cf. Kosslyn, et al., 2006, pp. 22-23). The existence 

of “mental flipping” as reported below (Chapter 8.7.4, see Figure 8.2), however 

is at least suggestive evidence that the representation employed in mental rota-

tion can also be manipulated by other processes than mental rotation. 

A further problem arises from Anderson (1978)’s logical proof of the funda-

mental inability of behavioral data to support strong claims on the format of 

mental representations. His central claim is that a mental representation of any 

format can mimic the behavior of the mental representation of any other format 

if appropriate encoding and recoding processes are applied. According to 

Anderson, also physiological data would only be informative on the issue, if it 

was possible to directly observe the physiological instantiation of a mental 

representation (e.g., observing images that are laid out in real physical space on 

the brain)10. This might, however, be meant ironically and not as a real possibil-

ity. Either way, Anderson’s argumentation concerns only the representational 

format and not the representational content. If one representation mimics 

another, independent of their format, their informational content actually is 

identical. In the following, we will demonstrate some new or underestimated 

techniques to identify the nature of representational contents. 

We agree with Anderson (1978) that any type of representation can in prin-

ciple represent any type of informational content. That means, we cannot differ-

entiate representational formats by testing under which conditions they work. 

We will however show that we can differentiate representational formats by 

testing under which conditions they fail. Anderson did not fully appreciate the 

power of the fact that certain pieces of informational content cannot be erased 

from certain types of representations without also erasing other pieces of infor-

                                                        
10 Anderson (1978) explicitly left open two additional possibilities to derive knowledge about 
the format of mental representations of which we will make use: Model plausibility/parsimony 
and computational efficiency. 
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mation as discussed above (Chapter 3.2). A similar idea might, however, have 

inspired his statement that “it may be possible to decide that there are different 

representations without deciding how they are different”. By carefully mani-

pulating the to-be-represented information and then examining the resulting 

representational content, we consequently might be able to draw conclusions 

even about representational format (see Chapter 8.3). 

3.5 Other Features of Mental Representations 

The question of whether analog representations (mental images) are part of 

human thoughts has generated a great deal of scientific dispute and research 

(for reviews on this so-called imagery debate see, e.g., Block, 1981; Kosslyn, 

1994; Pylyshyn, 2003; Tye, 1991). The relational structure of objects is consid-

ered to be essentially preserved in analog but not in non-analog (e.g., proposi-

tional) mental representations. Indeed, one reason for the strong interest in the 

mental rotation effect is that it is apparently more naturally explained in terms 

of analog thinking than in terms of propositional thinking (see Kosslyn, 1994 for 

an analog; and Pylyshyn, 1979 for a propositional explanation of the mental 

rotation effect). The subject matter of the imagery debate is the format of men-

tal representations. The primary subject matter of the present work, however, is 

the content of the mental representation in mental rotation. As detailed in 

Chapter 3.4, positive statements on the format of mental representations might 

even be impossible (cf. Anderson, 1978; but see Chapter 8.3 for a negative 

statement on the format of the mental representation in mental rotation). 

Consequently, the imagery debate is of only marginal interest here and will not 

be considered in detail. 

Shepard and Cooper (e.g., 1982, p. 14) assume that while performing mental 

rotation, “the brain is passing through an ordered series of states that (whatever 

their neurophysiological nature) have much in common with the perceptual 

states that would occur if the appropriate physical object were presented in suc-

cessively more rotated orientation in the external world.” Such a second-order 

isomorphism allows for several types of representational format and content in 

mental rotation as long as the same representations also play a role in percep-
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tion. The assumption of a second-order isomorphism in mental rotation appears 

plausible to us but direct testing is beyond the scope of the present work. 

3.6 How to Manipulate Representational Content 

To explore how information is represented during mental rotation, the exper-

imenter must first gain some control over which information is represented. 

Generally speaking, in mental-rotation tasks participants compare information 

from one stimulus to information from a comparison stimulus (see Chapter 1.3) 

and indicate whether the two stimuli match in all pieces of information they 

carry or not; according to Farell’s (1985) classification, mental-rotation tasks 

are “same”-“different” judgment tasks with a conjunctive criterion. In order to 

successfully solve such tasks (see Farell, 1985), participants only need to en-

code and maintain information that potentially differs between to-be-compared 

stimuli and is nonredundant. These pieces of information are comparison-

relevant, whereas all remaining information about the stimuli is comparison-

irrelevant. As soon as participants recognize that a piece of information is 

comparison-irrelevant it becomes advantageous not to waste any resources on 

its representation or processing11. For example, in mental-rotation tasks to-be-

compared stimuli usually do not differ in size. Participants consequently do not 

need to check the stimuli for potentially subtle differences in size in order to 

determine whether the stimuli match or not, even though a difference in size 

would in fact constitute a mismatch. 

We deliberately differentiate between the terms ‘comparison-relevant’ and 

‘task-relevant’. For example, the absolute orientation of an alphanumeric char-

acter in a mental-rotation task as displayed in Figure 1.2C is of course task-rele-

vant, because it determines the amount of to-be-performed rotation. For the 

comparison itself (which takes place after rotation) the absolute orientation 

however is by definition not relevant. Furthermore, it has been observed that 

                                                        
11 Note that we explicitly state only that it is unnecessary to represent other than comparison-
relevant or task-relevant (see the following paragraph) information. This is meant in a purely 
theoretic-analytical but not empirical sense. We do not claim that it is under no circumstances 
beneficial to represent such irrelevant information. Possibly, in certain situations certain types 
of information are processed automatically and the costs of actively suppressing these types of 
information would be higher than simply representing them. Ironically, in these cases, 
suppressing irrelevant information would waste resources. 
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comparison-irrelevant information influences performance in change detection 

tasks. When the spatial-relational arrangement of objects on a screen is changed 

from the original to the comparison display performance accuracies drop and 

comparison times increase even when these spatial relations are not compari-

son-relevant (Jiang, Olson, & Chun, 2000; Santa, 1977; Zimmer, 1998; Zimmer & 

Lehnert, 2006). This might be the case, because the spatial relations were help-

ful in establishing a correspondence between individual objects during S1 and 

S2 which might have worked as an additional retrieval cue and were therefore 

in some sense task-relevant. Task-relevance apparently is also an empirical 

question whereas comparison-relevance fully depends on the experimental de-

sign. 

If, in a comparison task, a participant has reached a high accuracy rate, the 

researcher can deduce that this participant has at least represented all com-

parison-relevant information (for a statistical procedure to determine, which 

information was ignored by participants achieving a low accuracy rate, see 

Chapter 4.2.1). Comparison-relevant information is an experimentally well-

defined subset of all available stimulus information (see Figure 3.2). As working 

memory capacity is highly limited (e.g., Luck & Vogel, 1997), participants can 

actively represent only a certain amount of stimulus information. They conse-

quently have to select a subset from the near-infinitely large and rather ill-

defined set of available information. It would be advantageous to represent 

comparison-relevant and to filter out comparison-irrelevant information (for 

limitations, see footnote 11). However, comparison-relevance might be difficult 

to determine for participants who are new to a task (cf. M. D. Folk & Luce, 1987; 

Yuille & Steiger, 1982). In order to reassure that they will be able to detect all 

possible mismatches, participants might in addition to comparison-relevant 

information represent much information that is not comparison-relevant. In 

praxis, it consequently happens that participants unnecessarily represent some 

of the comparison-irrelevant information and fail to represent some of the 

comparison-relevant information; the sub-samples of represented and compari-

son-relevant information are only partially overlapping (as depicted in 

Figure 3.2), although in the ideal, most efficient case they would be identical. 

This complicates the experimenter’s task of accurately manipulating represent-
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tational content—perfect control can be exerted over which information is 

comparison-relevant, but this translates to only partial control over which infor-

mation is eventually represented. 

 

Figure 3.2. A schematic illustration of the relations between available, represented, 

comparison-relevant and orientation-dependent stimulus information. Only the 

subsample of comparison-relevant information can be brought under full 

experimental control, because it is defined by the task-design. In contrast to the 

other subsamples of information, it is therefore displayed as a perfect circle. Which 

information participants actually represent also depends on the participants’ 

experience with the employed task and stimuli. How effective the task is performed 

depends on how large the overlap between the sets of represented and 

comparison-relevant information is. How efficient the representation is depends 

additionally on how small the overlap between represented information and other 

than comparison-relevant information is. As participants purportedly strive to 

increase effectiveness and efficiency, experimental control over represented 

information should increase with appropriate instructions and training on the 

task and/or stimuli. 

One way to increase the overlap between the subsamples of comparison-

relevant and represented stimulus information is to employ stimuli that provide 

as little comparison-irrelevant information as possible. Further, participants can 

be informed about the comparison-relevant informational content of the stimuli 

by revealing how stimuli potentially differ, that is, which mismatches are possi-
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ble. Even then, the cognitive system might still need some time to be tuned for 

the specific encoding and processing of comparison-relevant information. As 

familiarity with a task and with the employed stimuli increases, mental repre-

sentations should approach the most efficient state. The overlap between 

represented and comparison-relevant information should increase, the amount 

of represented comparison-irrelevant information should decrease and the 

proportion of actually represented comparison-relevant information should 

approach 100% (within the limits of individual working memory capacity, of 

course). This amounts to an increase in the quality of experimental control over 

the represented information over the course of the experiment. In sum, 

experimental control over participants’ representational content is always 

imperfect but should increase by using simple, information-poor stimuli, 

making participants aware of comparison-relevant information and allowing 

them to practice the task and become accustomed to the employed stimuli and 

mismatches. 

The general approach to manipulate participants’ mental representations 

followed here is to employ stimuli with different amounts of comparison-rele-

vant information (please refer to Chapter 3.8 for the specific implementation). 

Participants have to represent more information for a stimulus that includes 

more comparison-relevant information. It consequently is possible to examine 

the effect of a certain type of information by comparing two stimuli that differ in 

the number of comparison-relevant pieces of this type of information. 

As detailed above (Chapter 3.2) the type of content of a representation is 

defined as the type of information that it explicitly represents. Only the amount 

of this type of information determines the complexity of the representation. A 

difference in other than the type of explicitly represented information, in con-

trast, does not influence this representation’s complexity. However, it appears 

quite plausible that participants hold several mental representations at the 

same time. A type of information that is not explicitly represented in the mental 

representation of interest might be explicitly represented in an alternative men-

tal representation. 

In order to collect evidence that a representation of interest explicitly 

represents a certain type of information, the effect of two stimuli must be com-
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pared that differ in the amount of exactly this and no other type of comparison-

relevant information. The stimulus that contains more pieces of this type of 

information should induce a higher representational complexity. Further, it is of 

importance to prove that the mental representation of interest is specific for 

this first type of information, that is, that it does not explicitly represent other 

types of information. This can be achieved by employing a second pair of stimuli. 

This pair would contain the identical amount of the first type of information 

(that is purportedly represented), but differ in the amount of other types of 

comparison-relevant information that are hypothesized not to be represented in 

the mental representation of interest12. If the representation is indeed specific 

to the first type of information participants must store these latter types of 

information somewhere outside the examined representation. The complexity 

of the representation of interest would consequently not differ for this second 

pair of stimuli. 

3.7 How to Measure Representational Content 

The theory detailed above (Chapter 3.6) allows (to a certain degree) controlling 

which information is mentally represented and manipulating how much of this 

information is represented. The next step in an empirical endeavor is to mea-

sure, how this information is represented; especially, to prove that it is, as 

hypothesized, represented in the representation of interest. The two stimuli 

that differ in the amount of purportedly explicitly represented information 

should influence appropriately chosen dependent variables differently (as, e.g., 

processing speed, see below). The two stimuli that do not differ in the amount of 

explicitly represented information should not exert such a differential influence, 

even if they differ in many other features. In order to measure how these stimuli 

are eventually mentally represented, several techniques are possible. In the 

present work we employ five such techniques as detailed in the following. 

                                                        
12 To exhaustively test for all types of information and features that are purportedly not 
represented is, of course, impossible. It is possible, however, to test for plausible candidates as 
derived from the literature and for those types of information or features that are similar to the 
purportedly represented type. 
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3.7.1 Technique 1: Processing speed 

Processing slows down when the amount of processed and therefore explicitly 

represented information is increased. This should be the case, because the 

represented information must be updated at each processing step. Processing 

speed is, however, uninfluenced by the amount of information represented in an 

alternative representation or implicitly in the representation of interest. The 

measure of processing speed employed in Experiment 1a, 1b and 3 is the slope 

of the function relating rotation time to rotational angle. 

3.7.2 Technique 2: Comparison time 

A mismatch in a type of information that is not explicit in the active mental 

representation should be detected later than a mismatch in a type of informa-

tion that is explicitly represented. Different types of representations might be 

mutually exclusive, that is, perhaps only one representation can be active at a 

given point in time. This would mean that only a certain type of information can 

be active at the onset of the comparison stimulus. We employ this strategy in 

each of the four following experiments. 

3.7.3 Technique 3: Slow potentials 

From the electroencephalogram (EEG) recorded during the retention interval of 

working-memory tasks slow potentials can be extracted. These components 

have two characteristics that are of interest for our purposes. Firstly, the 

topography of slow potentials apparently depends on the type of information 

maintained in working memory (e.g., Mecklinger & Pfeifer, 1996; Ruchkin, 

Johnson, Grafman, & Canoune, 1997). Secondly, the amplitude of slow potentials 

increases with increasing working-memory load (Arend & Zimmer, 2011; 

Lehnert & Zimmer, 2008; Mecklinger & Pfeifer, 1996; Rämä, et al., 1997; 

Ruchkin, Canoune, Johnson, & Ritter, 1995; Ruchkin, et al., 1997), that is, with 

the amount of explicitly represented information. In Experiment 2, we employ 

this online-measure in order to observe how the mental representation in men-

tal rotation is recoded over the course of an experimental trial. 
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3.7.4 Technique 4: P3bs 

The P3b, is a component peaking usually between 250-650 ms after onset of a 

task-relevant stimulus at parietal electrode sites (for recent reviews, see 

Nieuwenhuis, et al., 2005; Polich, 2007; Verleger, 1997).The amplitude of the 

P3b following stimulus onset is interpreted as reflecting the subjective probabil-

ity of the class of events the eliciting stimulus is subjectively perceived to belong 

to (e.g., R. Johnson & Donchin, 1980; Mars, et al., 2008). Consequently, this 

amplitude can be employed to measure which events are subjectively perceived 

to belong to the same or different classes. In Experiment 2, by considering the 

single and joint probabilities of mismatches in orientation-dependent and orien-

tation-independent information and the P3b amplitudes these events elicit, we 

determine which types of mismatches fall into the same or different subjective 

classes of events. This allows concluding whether different types of comparison-

relevant information (even within the same stimulus) belong to the same or 

different subjective classes of information. 

3.7.5 Technique 5: Cortical activation patterns 

Slow potentials are assumed to reflect activation of the underlying cortical areas 

(e.g., Khader, et al., 2008). That the topography of slow potentials depends on 

the type of maintained information consequently reflects that different cortical 

areas store the different types of information. By using neuroimaging tech-

niques like functional magnetic resonance imaging (fMRI) these cortical areas 

can be identified with a higher spatial resolution. Indeed, the maintenance of 

different types of information in working memory elicits different cortical 

activation patterns (for a review, see Wager & Smith, 2003). Activation as mea-

sured by fMRI is apparently also modulated by the amount of information 

represented in working memory (e.g., Todd & Marois, 2004). In Experiment 3, 

we employ this method to localize the brain areas that hold the mental repre-

sentation employed in mental rotation. 
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3.8 Theoretical Considerations on the Specific Design o f 

the Present Studies 

As Takano (1989) has pointed out (see also Chapter 3.3) only orientation-

dependent information is comparison-relevant in typical mental-rotation tasks. 

The typically employed mirror images differ in many pieces of orientation-

dependent information. However, as, for example, all “to the left of” relations 

are “to the right of” relations in the mirror image, only one piece of orientation-

dependent information in this dimension is nonredundant. Note further that in 

typical mental-rotation tasks a stimulus’ absolute orientation (e.g., the angular 

disparity from upright) is not comparison-relevant (cf. Takano, 1989). For two-

dimensional stimuli this effectively means that only one from the initially two 

fully nonredundant pieces of orientation-dependent information 

(“above/below”, “to the left/right of”) can potentially vary between to-be-com-

pared stimuli and therefore has to be represented during rotation. In order to 

relax this constraint for the studies described below, we employ a rotational cue 

that indicates the target orientation into which the stimulus on each trial has to 

be rotated (see Figure 3.3). Due to this rotation cue, also the second piece of 

nonredundant orientation-dependent information (which usually determines 

the target orientation) can be rendered comparison-relevant. Besides, as dis-

cussed above (Chapter 1.3.4), this rotational cue allows an improved separation 

of mental processes taking place during the task. 
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Figure 3.3. Illustration of the general trial structure with a complex stimulus. The 

original stimulus is followed by rotation cues (the arcs). After rotation is finished, 

the comparison stimulus appears. The rotation cues shown during the rotation 

interval indicate the direction (here: counterclockwise) and the amount (here: 90°) 

of to-be-performed rotation on each trial. The stimulus has to be mentally rotated 

from the one to the other end of these arcs as if the arcs were rails along which the 

stimulus moves. In 50% of trials one piece of information differed between to-be-

imagined and comparison stimulus. Participants’ task was to indicate whether the 

two stimuli matched or not. The uppermost comparison stimulus is a match, 

whereas the remaining comparison stimuli are the mismatches that were possible 

in this example (given the original stimulus and the rotation cues displayed, for 

further details on stimulus types and their mismatches see Figure 3.4). 

We constructed three types of stimuli with controlled amounts of compari-

son-relevant spatial-relational information and as little distracting detail as 

possible (see Figure 3.4). For simple stimuli only one piece of information was 

comparison-relevant, namely to which side of the larger line the smaller line is 

attached. Visually complex stimuli included an additional piece of comparison-

relevant information concerning whether the square is in the middle or at the 

end of the smaller line. Complex stimuli additionally included a third piece of 
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comparison-relevant information, namely on which side of the smaller line the 

square is located. Whether the square is located in the middle or at the end of 

the smaller line can be encoded orientation-independently. On which side of the 

larger line the smaller line is attached and on which side of the smaller line the 

square is located, in contrast, must be encoded orientation-dependently.  

 

Figure 3.4. Examples of stimulus types and their mismatches. On each trial, the 

comparison stimulus either matched the to-be-imagined stimulus (left side of each 

box) or had the expected absolute orientation but mismatched in exactly one piece 

of information (right side of each box). Whether the mismatching piece of 

information is orientation-dependent or orientation-independent is indicated 

below each mismatching stimulus. As rotation cues indicated the final, to-be-

imagined stimulus position on each trial (see Figure 3.3), the simple and visually 

complex stimuli mismatching in orientation-dependent information were indeed 

mismatches, even though they can be rotated into congruence if the rotation cues 

are ignored. 

The visually complex stimuli employed here are of greater comparative 

visual complexity relative to simple stimuli according to all criteria employed in 

earlier mental rotation studies. They are made up of more (nonredundant) parts 

(Yuille & Steiger, 1982), have more inflictions on their perimeter (more angles 

and vertices; e.g., Cooper, 1976) and are less compact (e.g., Bethell-Fox & 

Shepard, 1988). Visually complex and complex stimuli, in contrast, share a 

comparable level of visual complexity according to these criteria. As Kosslyn 

(1994) discusses possible influences of stimulus circumference on rotational 
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speed, we took care that visually complex and complex stimuli have exactly the 

same circumference. 

Critically, complex stimuli differ from simple and visually complex stimuli in 

the amount of comparison-relevant orientation-dependent information, where-

as simple stimuli differ from both other types in the amount of comparison-rele-

vant orientation-independent information, in visual complexity, in circumfer-

ence and in the number of comparison-relevant stimulus parts (see Table 3.1). 

In the following, we will for convenience use orientation-independent informa-

tion/visual complexity as an umbrella term for the differences between simple 

and visually complex stimuli. If holistic visual mental images were rotated, 

representational complexity might differ between simple and visually complex 

stimuli, for example, because their circumference differs (cf. Kosslyn, 1994). 

Visually complex and complex stimuli would however be of equal representa-

tional complexity. Notably, even if only comparison-relevant stimulus parts 

were rotated in a piece-meal fashion, visual mental images of visually complex 

and complex stimuli would not differ in complexity. Once the spatial relation 

between the smaller line and the square is encoded in any visual way, all 

comparison-relevant spatial-relational information that these parts carry is 

represented implicitly (see Chapter 3.2). A visual mental image of only the 

smaller line and the square would already implicitly represent the comparison-

relevant piece of orientation-independent information in visually complex stim-

uli and two pieces of comparison-relevant information (one orientation-depen-

dent, one orientation-independent) in complex stimuli (see Figure 3.4 and 

Table 3.1). We, in contrast, predict that representational complexity is equal for 

simple and visually complex stimuli and higher for complex stimuli. For simple 

and visually complex stimuli one piece and for complex stimuli two pieces of 

orientation-dependent information must be rotated in order to successfully 

solve the comparison task (see Table 3.1). 
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Table 3.1 

Crucial Characteristics of the Employed Stimuli. 

Stimulus Type Dep Indep  Parts Visual complexity 

Simple 1 0  2 Low 

Visually complex 1 1  3 High 

Complex 2 1  3 High 
Note. Dep = Number of pieces of orientation-dependent information. Indep = Number of pieces 
of orientation-independent information. Parts = Number of comparison-relevant stimulus parts 

(a spatial relation exists between at least two stimulus parts). 

As mentioned above (Chapter 3.3), Takano (1989) has shown that whenever 

two stimuli that differ in orientation-independent information are presented 

simultaneously, no mental rotation is performed, because a mismatch can be 

detected without mental rotation. For our stimuli this means that on trials in 

which the position of the square on the smaller line (the piece of orientation-

independent information) differs between stimuli, participants would not per-

form mental rotation at all. Our critical question however concerns the repre-

sentation of both orientation-dependent and orientation-independent informa-

tion during mental rotation. This is why we did not present the two stimuli 

simultaneously, but presented the comparison stimulus on each trial after the 

rotation had already been performed (see Figure 3.3). That is, we employ a 

successive-presentation mental-rotation task with rotation cues (see Chapter 

1.3). With this successive presentation, while performing mental rotation, 

participants do not know whether the upcoming stimulus will match the origi-

nal stimulus, differ in orientation-dependent information or differ in orienta-

tion-independent information. They consequently cannot compare the compari-

son-relevant orientation-independent relation between the smaller line and the 

square prior to performing mental rotation. Instead, they have to represent all 

comparison-relevant information until the rotation process is finished and the 

comparison stimulus appears13. 

                                                        
13 We will show that only orientation-dependent information is rotated. Critically, our design 
forces participants to also represent orientation-independent information. Therefore, we will in 
the following also discuss, how orientation-independent information might be represented 
outside the rotated representation. 
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4. Experiment 1a: An Influence on Rotational 

Speed 

As mentioned above (Chapter 3.1), the slope of the function relating rotation 

time to rotational angle is generally interpreted as reflecting the speed of men-

tal rotation which in turn is assumed to be influenced by characteristics of the 

rotated representation. The more information is represented and consequently 

has to be processed, the slower the performed rotation. This allows us to derive 

specific predictions from the holistic and visual piece-meal hypotheses on the 

one and our hypothesis that only orientation-dependent information is 

represented in the rotated representation on the other hand. The visual piece-

meal hypothesis would predict that the slopes for visually complex and complex 

stimuli should be identical and steeper than the slope for simple stimuli, be-

cause simple stimuli are visually less complex and contain one comparison-rele-

vant stimulus part less than the other two stimuli. The original holistic hypothe-
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sis would not predict any differences in rotational speed. Nevertheless, one 

explanation for differences in rotational speed is in line with the holistic hypoth-

esis. Stimuli with a larger circumference might be rotated more slowly, because 

the scanning around the rotated stimulus’ circumference becomes necessary 

after each rotational step in order to keep its shape intact (Kosslyn, 1994). 

Therefore, if it predicts any difference in slope at all, the holistic hypothesis 

would predict the same pattern as the visual piece-meal hypothesis, namely a 

slower rotation of visually complex and complex compared with simple stimuli. 

In contrast, we predict that the slope for simple and visually complex stimuli is 

identical and shallower than the slope for complex stimuli, because complex 

stimuli contain one piece of comparison-relevant orientation-dependent infor-

mation more than the other two stimuli (Technique 1, see Chapter 3.7). 

Our main hypotheses concern the mental representation during mental rota-

tion. We might however also gain some insight into the mental representation 

after mental rotation. Probably, after rotation is performed, the resulting mental 

representation is recoded in order to prepare for the comparison process and 

other or additional information than during the rotation phase is made explicit. 

If this final representation is a visual mental image of the stimulus parts, all 

types of mismatches should be detected at an equal speed, because it can be 

matched directly to the perceptual visual input from the comparison stimulus—

comparison times should not differ for the different types of mismatches. If, in 

contrast, the final representation explicitly represents only orientation-depen-

dent information, mismatches in orientation-dependent information should be 

detected much faster than mismatches in orientation-independent information 

(Technique 2, see Chapter 3.7). 

4.1 Method 

4.1.1 Participants 

Twenty-eight members of Saarland University (16 female; age range: 17-36, 

median age: 22) received €8 per hour for participation. They reported having 

normal or corrected-to-normal vision and gave informed consent after the na-
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ture of the study had been explained to them. Data from one participant was 

excluded for not following the instructions as evident by an overall accuracy 

(.53) at chance level (.50). 

4.1.2 Design 

The original stimulus, which was simple, visually complex or complex (stimulus 

type), was displayed in one of six orientations (±70°, ±110°, ±150°) and had to 

be rotated around one of three angles (45°, 90°, 135°; rotational angle) either 

clockwise or counterclockwise. Original values for each of the maximally three 

pieces of information within a stimulus were determined at random. There 

were two possible values for each of the maximally three pieces of comparison-

relevant information (e.g., for complex stimuli, the smaller line was attached 

either to the one or to the other side of the larger line, the square was either in 

the middle or at the top of the smaller line and either to the one or to the other 

side of it). On half of the trials the comparison stimulus exactly matched the to-

be-imagined stimulus. On the other half of trials, the comparison stimulus dif-

fered from the original stimulus in a single piece of information. The two possi-

ble mismatches (see Figure 3.3) for visually complex stimuli were equiprobable. 

A mismatch in the second piece of orientation-dependent information (on which 

side of the smaller line the square was located) appeared twice as often as the 

other two types of mismatches for complex stimuli. This imbalance was intro-

duced in order to avoid the overall probability of a mismatch in the second piece 

of orientation-dependent information becoming too low. A low probability 

would make processing this piece of information unimportant for obtaining a 

high accuracy rate and thereby might encourage participants to simply ignore it. 

To sum up, depending on the stimulus type there were between two and four 

possible match types (matches, mismatches in the first piece of orientation-

dependent information, mismatches in orientation-independent information 

and mismatches in the second piece of orientation-dependent information). All 

factors were varied within participants. The experiment consisted of 432 regu-

lar trials plus rescheduled trials as detailed below. 
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4.1.3 Procedure 

Stimulus presentation and response recording was controlled by E-Prime 2.0 

Software (Psychology Software Tools, 2005). All stimuli were 3° of visual angle 

in size and presented in black against a gray background at the center of the 

screen. The trial procedure is displayed in Figure 4.1. On each trial, after a fixa-

tion cross of 500 ms duration the original stimulus was shown for 1000 ms. Two 

arcs whose one end touched the original stimulus’ main axis indicated the direc-

tion and amount of rotation. They appeared 200 ms before the offset of the orig-

inal stimulus. Participants were instructed to press the space bar as soon as 

they had finished rotation along these arcs. The rotation time from offset of the 

original stimulus until pressing of the space bar was our main dependent varia-

ble of interest. Immediately after this press, the comparison stimulus appeared 

for 500 ms. The comparison stimulus was always of the same type as the origi-

nal stimulus and appeared in the indicated orientation but could differ in one 

piece of information (see Figure 3.4). From onset of the comparison stimulus, 

participants had 800 ms to decide whether it was the stimulus they had to 

imagine or not by pressing a key with their left or right index finger. If this key 

press was not given within the time limit, the trial counted as a miss. Response 

hand-assignment was counterbalanced across participants. The comparison 

time from onset of the comparison stimulus until participants’ second key press 

was our secondary dependent variable of interest. The time window allotted for 

the comparison was rather narrow in order to discourage participants from 

pressing the space bar before having finished the rotation. During the 500 ms 

inter-trial interval an empty screen was shown. In this first study, participants 

were not informed about the amount and type of the stimuli’s informational 

content to find out whether they would spontaneously identify all comparison-

relevant information. 
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Figure 4.1. Trial procedure of Experiment 1a. Participants had to rotate a mental 

representation of the encoded original stimulus around the angle indicated by the 

rotation cues and to compare the final mental representation to the ensuing 

comparison stimulus. Rotation times and comparison times were recorded 

separately. The comparison stimulus was shown for only 500 ms but participants 

had 800 ms in total to decide whether it matched the rotated original stimulus or 

not. 

Before data acquisition started, participants practiced the task until they had 

responded correctly to 10 simple stimuli in a row. As we analyzed rotation 

times of correct trials only, after the 432 regular trials, we rescheduled all incor-

rectly answered trials. Rescheduling continued (each time assigning a new ran-

dom order) until all trials were correctly solved exactly once. In addition, partic-

ipants were encouraged to achieve an accuracy rate of 90% or more. Feedback 

on accuracies and rotation times was provided every 20th trial. When partici-

pants’ accuracy fell below 90% they were reminded of this target value. In total 

we obtained 48 observations per participant and Stimulus Type × Rotational 

Angle cell. 

4.2 Results 

4.2.1 Excluded participants 

If information is systematically ignored, it cannot influence rotation times. 

Therefore the final analysis only included data from participants who processed 

all comparison-relevant information. As an objective criterion that information 

x of stimulus y was not ignored, we conducted a χ²-test (on data from all except 

the reentered trials) of whether the relative frequency of mismatch answers in 



84 The Representation in Mental Rotation 

case of a change in information x (x-hit) was significantly higher (p < .05) than 

the relative frequency of mismatch answers in case of a match (false alarm) for 

stimulus y. Data of 7 participants failed this test for at least one type of informa-

tion. Among these, 6 participants ignored the piece of orientation-independent 

information in complex stimuli. Four participants additionally ignored the piece 

of orientation-independent information in visually complex stimuli and 

2 participants additionally ignored the second piece of orientation-dependent 

information. One participant ignored only the second piece of orientation-

dependent information. The final sample included 20 participants (50% female; 

age range: 20-36, median age: 22). 

4.2.2 Rotation times 

All following analyses are based on median reaction times as these are less 

sensitive to outliers than mean reaction times. We employed MANOVAs instead 

of ANOVAs, because in the employed all-within subjects design the sphericity 

assumption underlying repeated-measurements ANOVA was often violated. 

Significant interactions and main effects were further decomposed by testing 

for polynomial trends and computing pair-wise comparisons. In all graphs, 

95%-confidence intervals are shown. If not otherwise noted, for this and for all 

following experiments, construction followed the procedure described by 

Jarmasz and Hollands (2009). Dfs to establish the criterion t-value for the confi-

dence intervals were corrected for violation of the sphericity assumption by ε 

(Greenhouse & Geisser, 1959) as suggested by Loftus and Masson (1994). The 

effect on which the respective confidence intervals are based is indicated below 

each figure. 

As evident in Figure 4.2, rotational angle had a linear influence on rotation 

time for complex and visually complex but not for simple stimuli. As predicted, 

this linear trend was clearly modulated by the amount of orientation-dependent 

information. The slope for complex stimuli was steeper than that for visually 

complex stimuli. The difference in slope between simple and visually complex 

stimuli, however, is more complicated. A within-subject 3 (stimulus type) × 

3 (rotational angle) MANOVA on median rotation times showed main effects of 
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stimulus type, F(2,18) = 9.85, p = .001, ηp2 = .49, and rotational angle, 

F(2,18) = 22.46, p < .001, ηp2 = .68, which were modulated by a Stimulus Type × 

Rotational Angle interaction, F(4,16) = 4.45, p = .01, ηp2 = .31. Linear trends of 

rotational angle were present for each stimulus type (ps < .001), whereas qua-

dratic trends were absent for complex and visually complex stimuli (ps > .47), 

but clearly present for simple stimuli, F(1,19) = 16.12, p < .001. The Stimulus 

Type × Rotational Angle interaction was driven by a modulation of the linear 

trend by the amount of orientation-dependent information, F(1,19) = 5.36, 

p = .03, which had no quadratic component, F(1,19) = 0.22, p = .64, and by a 

modulation of the linear trend by orientation-independent information/visual 

complexity, F(1,19) = 7.06, p = .02, which, in contrast, had a quadratic compo-

nent, F(1,19) = 3.78, p = .07. As predicted, rotational speed was lower for com-

plex than for visually complex stimuli. The difference between simple and 

visually complex stimuli, in contrast, was not predicted and was apparently 

more complicated. 

 

Figure 4.2. Rotation times as a function of rotational angle and stimulus type in 

Experiment 1a. The amount of orientation-dependent but not of orientation-

independent information influences rotational speed. Confidence intervals are 

based on the Stimulus Type × Rotational Angle interaction. 
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The presence of the nonlinear trend of rotational-angle on rotation times for 

simple stimuli means that either the increase from 45° to 90° or the increase 

from 90° to 135° was influenced by additional factors not directly related to 

mental rotation. As evident in Figure 4.2, the only data point deviating from the 

exact parallelism of slopes for the lower two lines (simple vs. visually complex 

stimuli) was the rotation time for 45° rotations of simple stimuli, which was 

actually the easiest cell of the design. We suspected that the rotation time in this 

cell of the design was overestimated, because the time needed for rotation 

might have been shorter than the time needed to perform other cognitive 

processes working in parallel with mental rotation. Testing for a modulation of 

the increase in rotation times from 45° to 90° and from 90° to 135° of rotational 

angle by the amount of orientation independent information (the interaction 

contrasts) led to, F(1,18) = 9.24, p < .01 and , F(1,18) = 0.61, p > .2; that means, 

the increase from 45° to 90° was significantly modulated, but the increase from 

90° to 135° was clearly not. These two modulations were consequently of differ-

ent magnitude, F(1,19) = 3.80, p = .06. When only the increase from 90° to 135° 

is considered, slopes for simple and visually complex stimuli are identical. 

4.2.3 Comparison times 

As introduced above (Technique 2, Chapter 3.7.2), the pattern of comparison 

times (the time from onset of the comparison stimulus until participants press a 

key to indicate the outcome of their comparison) might shed some light on the 

content of the representation which participants hold active after the process of 

mental rotation has been finished. Figure 4.3 shows the very orderly pattern of 

comparison times over the three types of stimuli. As stimulus types differed in 

the number of mismatch types, the influence of this variable on comparison 

times had to be analyzed by three separate Match Type MANOVAs for each stim-

ulus type and each match type. A main effect of match type was present for each 

of the three stimulus types, F(1,19) = 13.51, p = .001, ηp2 = .42, F(2,18) = 64.12, 

p < .001, ηp2 = .77, and F(3,17) = 41.19, p < .001, ηp2 = .79 for simple, visually 

complex and complex stimuli, respectively. Responses to matches were fastest 

(all ps < .007) and responses to mismatches in orientation-dependent 
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information were faster than those to mismatches in orientation-independent 

information (all ps < .001). In contrast to the following three experiments, 

responses to mismatches in the second piece of orientation-dependent 

information were slower than responses to the first piece of orientation-

dependent information in complex stimuli, F(1,19) = 19.06, p < .001. Addition-

ally, as evident in Figure 4.3, comparison time increased over stimulus types 

with the absolute amount of comparison-relevant information. To statistically 

confirm this pattern we conducted three additional Stimulus Type MANOVAs for 

each match type that occurred for more than one stimulus type (i.e., for all but 

mismatches in the second piece of orientation-dependent information). The 

main effect of stimulus type was present for matches, F(2,18) = 31.01, p < .001, 

ηp2 = .69, as well as for mismatches in the first piece of orientation-dependent 

information, F(2,18) = 28.96, p < .001, ηp2 = .61, and in the piece of orientation-

independent information, F(1,19) = 37.85, p < .001, ηp2 = .67. Loosely speaking, 

the comparison time pattern reflects main effects of stimulus type and match 

type without an interaction. 
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Figure 4.3. Comparison Times as a function of stimulus and match type in 

Experiment 1a. Notably, mismatches in orientation-independent information are 

detected much slower than mismatches in orientation-dependent information. 

Confidence Intervals are based on the effect of match type separately for each 

stimulus type. M, match; dep1, orientation-dependent mismatch 1 (side of the 

larger line, the smaller line is attached to); Indep, orientation-independent 

mismatch (position of the square on the smaller line); Dep2, orientation-dependent 

mismatch 2 (side of the smaller line, the square is attached to). 

4.2.4 Accuracies 

An examination of the pattern of accuracies showed that none of the reported 

effects can be explained by a speed-accuracy trade-off. In this and all following 

experiments accuracies tended to simply mirror the patterns of rotation and 

comparison times. Speed-accuracy trade-offs would predict short reaction times 

in cells with low accuracies. As usual in mental rotation studies, we observed 

the exactly opposite pattern, namely a tendency for high accuracies in cells with 

short reaction times and low accuracies in cells with long reaction times. Accu-

racies can principally be influenced by any process occurring before the 

response is given and are therefore much less conclusive than the measured 
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reaction times. As analyses of accuracies did not further add to the understand-

ing of the data we consequently refrained from unnecessarily crowding the 

result sections of the present work. Analyses on accuracies are neither reported 

for the present experiment or for any of the following experiments. Instead, 

Table A1 in the appendix shows mean accuracies from all four main 

experiments. 

4.3 Interim Discussion 

The pattern of rotation times confirmed our hypothesis that the representation 

in mental rotation includes orientation-dependent information. As predicted, 

the amount of orientation-dependent information influenced rotational speed. 

This was apparent in the difference in the linear trend of rotation times for 

complex and visually complex stimuli. However, the difference in linear trend 

for simple and visually complex stimuli might indicate that also other than 

orientation-dependent information is explicitly represented during mental 

rotation. We assume that this is not the case and that an additional process 

other than mental rotation influenced rotation times for 45° rotations of simple 

stimuli. In line with this interpretation the slope for simple stimuli, in contrast 

to visually complex and complex stimuli, clearly differed from linearity. As 45° 

rotations for simple stimuli actually are the easiest type of trials in the exper-

imental design, it appears most probable that the estimation of rotation time in 

this cell was flawed. 

Possibly, participants had not finished encoding at the time rotation cues 

were shown. Part of the encoding process would then have influenced measured 

rotation times. This should usually prolong all rotation times evenly (a shift of 

the y-intercept) and not influence the slope of the function. However, if at least 

part of the subject sample finished encoding only after a 45° rotation of the 

simple stimulus, encoding time would fully determine our indicator of rotation 

time in this cell. If 45° rotations of simple stimuli took shorter than the encoding 

process, the measured rotation times were overestimated. A second reason for 

such an overestimation might be that participants were able to proceed to the 

comparison stimulus only after the original stimulus had disappeared. As rota-
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tion cues appeared 200 ms before the original stimulus disappeared, very fast 

participants might already have finished the rotation before they were allowed 

to proceed. Because of these possible confounds, only the increase from 90° to 

135° is a valid indicator of rotational speed for simple stimuli. According to this 

measure, rotational speed did not differ between simple and visually complex 

stimuli, indicating that the mental representation of these two stimuli was of 

equal complexity. It therefore appears that—as hypothesized—only orienta-

tion-dependent information is mentally rotated. 
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5. Experiment 1b: An Even More Controlled 

Influence on Rotational Speed 14 

The influence of rotational angle on rotation times for simple stimuli in Experi-

ment 1a deviated from linearity. We assumed that other processes than mental 

rotation proper influenced the measured rotation times for 45° rotations of sim-

ple stimuli. We reasoned that sometimes rotation in this cell was finished before 

the encoding process had ended or before participants were allowed to proceed 

to the comparison stimulus. In Experiment 1b, consequently participants were 

given enough time to encode the original stimulus and they were allowed to 

proceed to the comparison stimulus as soon as the rotation cue was shown. As 

rotation cannot start sooner than with the onset of the rotation cue, this latter 

manipulation assured that even very fast participants were allowed to proceed 

to the comparison stimulus directly after having finished the rotation. 

                                                        
14 Experiment 1b and 2 are also reported in Liesefeld and Zimmer (2012). See also the credit 
line in Footnote 4. 
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Many participants of Experiment 1a ignored orientation-independent infor-

mation. One reason might be that participants did not realize that mismatches in 

orientation-independent information were possible and therefore did not en-

code or maintain this piece of information. The number of participants ignoring 

information should therefore be drastically reduced if the instructions make 

participants aware of all comparison-relevant information. Furthermore, as dis-

cussed above (Chapter 3.6), we assume that not only instructions but also train-

ing on the task should influence experimental control over participants’ 

representational content and thereby the purity of observed results. In order to 

test for such training effects we redesigned the task as to allow for a comparison 

of results in the first and second half of trials. 

We deliberately included a slight imbalance into the design of Experiment 1a. 

In order to assure that the second piece of orientation-dependent information is 

processed, a mismatch in this type of information happened twice as often as a 

mismatch in the other two pieces of information in complex stimuli. The ob-

served data pattern however indicates that participants’ tendency to ignore this 

type of information was rather low (see Chapter 4.2.1). In Experiment 1b, we 

consequently also equated the probability of mismatch types in complex stimuli. 

5.1 Methods 

5.1.1 Participants 

Experiment 1b was conducted while the first author was visiting the Chinese 

Academy of Sciences, Institute of Psychology in Beijing. Twenty-four students 

recruited at Beijing universities (12 women; median age: 21, age range: 17-25) 

received between 20-40 RMB (Chinese Yuan) for participation. The exact 

amount depended upon the participants’ performance as clarified below. Partic-

ipants reported having normal or corrected-to-normal vision and gave informed 

consent. 
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5.1.2 Design 

The first stimulus shown on each trial (the original stimulus), which was either 

simple, visually complex or complex (stimulus type), was displayed in one of six 

orientations (-150°, -110°, -70°, 70°, 110°, 150°) and took one of the two possi-

ble values for each of the maximally three pieces of comparison-relevant infor-

mation (e.g., for complex stimuli, the smaller line was attached either to the one 

or the other side of the larger line, the square was either in the middle or at the 

top of the smaller line and either to the one or to the other side of the smaller 

line, see Figure 3.4). Rotation was performed around one of three angles (45°, 

90°, 135°; rotational angle) either clockwise or counterclockwise. In 50% of 

trials, the comparison stimulus differed from the to-be-imagined stimulus in 

exactly one piece of information. The maximally three possible types of mis-

matches (see Figure 3.4) for each stimulus type were equiprobable. All indepen-

dent variables were varied within participants. The experiment consisted of two 

blocks with at least 216 trials each. The exact number of trials depended on the 

participants’ performance as clarified below. 

5.1.3 Procedure 

Stimulus presentation and response recording was controlled by E-Prime 2.0 

(Psychology Software Tools, 2005). All stimuli were about 3° of visual angle in 

size and presented in black against a gray background at the center of the 

screen. The trial procedure is displayed in Figure 5.1. Each trial began with a 

500 ms forward-mask consisting of an overlay of all possible versions of the 

upcoming stimulus type. This resulted in different forward masks for each stim-

ulus type and stimulus orientation and participants could consequently prepare 

for the type of the upcoming original stimulus and the orientation of its main 

axis. The original stimulus was then shown until participants pressed the space 

bar (encoding time). If this press was made within 1000 ms, the trial continued 

with a backward-mask consisting of the rapid presentation of seven or eight 

exemplars of the stimulus type. This mask was applied in order to discourage 

participants from pressing the space bar before having finished encoding. When 

the press was not made within the time limit, the trial was truncated and 
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counted as a miss. After the backward-mask only the main axis of the stimulus 

remained on the screen and two arcs that touched this main axis appeared in 

order to indicate the direction and amount of rotation. Participants were in-

structed to press the space bar as soon as they finished rotation along these 

rotation cues. The rotation time from onset of the rotation cues until pressing of 

the space bar was our main dependent variable of interest. Immediately after 

this press, the comparison stimulus appeared. It was always of the same type 

(simple, visually complex, complex) as the original stimulus and its main axis 

always appeared in the orientation as indicated by the arcs. Mismatching stimuli 

differed in one piece of information only. Participants had 1000 ms to decide 

whether the comparison stimulus was the stimulus they had imagined or not 

(comparison time). The time-window allotted for this comparison was rather 

narrow in order to discourage participants from proceeding from the rotation 

interval to the comparison stimulus before having finished the rotation. Partici-

pants indicated the outcome of their comparison by a press with the left or the 

right index finger. If this key press was not given within the time limit, the trial 

counted as a miss. Response hand-assignment was counterbalanced across 

participants. During the 2000 ms inter-trial interval the screen was empty. 

 

Figure 5.1. Trial procedure of Experiment 1b. Encoding times, rotation times and 

comparison times were recorded separately. 

Participants were informed about the comparison-relevant stimulus charac-

teristics in order to ensure that they were aware of all comparison-relevant 

information. Before data acquisition began, participants performed 30 trials 

with successively stricter time limits for encoding and comparison intervals. 

They continued practicing the task with the final 1000 ms-time limits until they 
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either provided 10 correct answers in a row or worked through 50 additional 

practice trials. Only rotation times from correctly solved trials from the main 

part of the experiment were analyzed. Trials with incorrect answers or viola-

tions of a time limit (misses) were reentered into the random trial sequence so 

that all 216 trials were solved correctly exactly once on each block. After the 

first block, the second block started without any apparent break so that partici-

pants were unaware of the experiments’ block structure. In addition to a 

30 RMB basic pay participants received a bonus of 10 RMB for an overall accu-

racy rate of 90% or above and were penalized 0.1 RMB for each miss. Feedback 

on accuracy, misses and reaction times was provided in a self-terminated break 

after every 20th trial. Whenever participants’ mean accuracy since the last feed-

back fell below 90% they were reminded of this target value. In total we 

obtained 48 data points per participant and Stimulus Type × Rotational Angle 

cell. 

5.2 Results 

5.2.1 Ignored information 

Following the same procedure as described for Experiment 1a, we excluded 

participants who systematically ignored comparison-relevant information. 

Three participants ignored at least one type of information in complex stimuli. 

One participant ignored all information in complex stimuli (with an accuracy 

rate of .58 for this stimulus type; chance level: .50), one ignored the piece of 

orientation-independent and one ignored the first piece of orientation-depen-

dent information in complex stimuli. Excluding these data sets resulted in the 

final sample of 21 participants (11 women; median age: 21, age range: 17-25).  

5.2.2 Rotation times 

As in Experiment 1a, all following analyses are based on median reaction times 

employing MANOVAs. Effects of stimulus type were decomposed by separate 

MANOVAs into effects of orientation-independent information/visual complex-
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ity by testing simple against visually complex stimuli, and effects of orientation-

dependent information by testing visually complex against complex stimuli, 

respectively. Significant interactions and main effects were further decomposed 

by testing for polynomial trends and computing pair-wise comparisons. 

As evident in Figure 5.2, rotational speed was modulated by the amount of 

orientation-dependent information but not by orientation-independent infor-

mation/visual complexity. The slope for complex stimuli was steeper than that 

for visually complex stimuli whereas the slopes for simple and visually complex 

stimuli were of the same magnitude. A within-subject 3 (stimulus type) × 

3 (rotational angle) MANOVA on median rotation times showed main effects of 

stimulus type, F(2,19) = 12.83, p < .001, ηp2 = .55, and rotational angle, 

F(2,19) = 15.17, p < .001, ηp2 = .60, which were modulated by a Stimulus Type × 

Rotational Angle interaction, F(4,17) = 4.65, p = .01, ηp2 = .33. Linear trends of 

rotational angle were present for each stimulus type (ps < .001), whereas qua-

dratic trends were absent (ps > .36). In order to deconstruct the interaction, we 

separately analyzed the effect of orientation-independent information/visual 

complexity (simple vs. visually complex stimuli) and the effect of the amount of 

orientation-dependent information (visually complex vs. complex stimuli) by 

two 2 (stimulus type) × 3 (rotational angle) MANOVAs. Both main effects were 

present in both MANOVAs (all ps < .010). In contrast and critically, there was no 

Stimulus Type × Rotational Angle interaction for orientation-independent infor-

mation/visual complexity (simple vs. visually complex stimuli), F(2,19) = 1.32, 

p = .29, ηp2 = .05, but only for the amount of orientation-dependent information 

(visually complex vs. complex stimuli), F(2,19) = 8.71, p = .002, ηp2 = .38. This 

latter interaction was driven by a modulation of the linear trend by the amount 

of orientation-dependent information, F(1,20) = 14.80, p = .001, which had no 

quadratic component, F(1,20) = 0.11, p = .74. As predicted, rotational speed was 

lower for complex than for visually complex stimuli but did not differ between 

simple and visually complex stimuli. 
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Figure 5.2. Rotation times as a function of stimulus type and rotational angle in 

Experiment 1b. Only the amount of comparison-relevant orientation-dependent 

information influences rotational speed as reflected by the steeper slope for 

complex stimuli. Confidence intervals are based on the Stimulus Type × Rotational 

Angle interaction. 

5.2.3 Training effects on rotation times 

A strict quantitative interpretation of our hypothesis that only orientation-

dependent information is explicitly represented during rotation would predict 

that complex stimuli are rotated exactly half as fast as visually complex stimuli, 

because the former stimulus type contains double the amount of comparison-

relevant orientation-dependent information compared with the latter stimulus 

type. We calculated rotational speeds in millisecond per degree of rotational 

angle (ms/°) for each Participant × Stimulus Type cell as rotational speed = 

(rotation time135° − rotation time45°)/90°. In line with our general hypothesis, 

rotation was clearly slower for complex (mean: 16.93 ms/°) than for visually 
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complex stimuli (mean: 11.17 ms/°), t(20) = 3.85, p = .001, dz = 0.8415. However, 

rotation of complex stimuli was still significantly faster than the 22.34 ms/° pre-

dicted by a strict quantitative interpretation of our hypothesis, t(20) = 3.52, 

p = .002, dz = 0.77. The reason for this divergence from the quantitative predic-

tion might be that in spite of the careful instruction and the training phase, 

participants still represented comparison-irrelevant orientation-dependent 

information during a substantial part of the earlier trials (cf. Figure 3.2). Never-

theless, until the second half of the experiment they might have learned to em-

ploy a more efficient representation of only comparison-relevant orientation-

dependent information. 

As mentioned in the method section, the experimental structure allows for a 

division into a first and a second block of trials. As the second block was a repli-

cation of the first block and hence the two blocks are fully comparable, this al-

lows us to directly test for training effects within the experiment. Rotation be-

came faster from the first to the second block for all stimulus types, ts > 3.21, 

ps < .005, dzs > 0.70, from an average speed of 16.00 ms/° to 8.71 ms/°. Impor-

tantly, in the second block of trials, rotation of complex stimuli (12.61 ms/°) was 

about half as fast as rotation of visually complex stimuli (7.22 ms/°), 

t(20) = 3.67, p < .002, dz = 0.80, and therefore did not differ significantly from 

the speed predicted by a linear relationship between rotational speed and the 

amount of orientation-dependent information (14.44 ms/°), t(20) = 1.09, p = .29, 

dz = 0.24. 

5.2.4 Comparison times 

Figure 5.3 shows the pattern of comparison times over the three types of stimuli. 

As in Experiment 1a, comparison times were analyzed by three separate Match-

Type MANOVAs for each stimulus type and three Stimulus-Type MANOVAs for 

each match type that occurred for more than one stimulus type. A main effect of 

match type was present for each of the three stimulus types, F(1,20) = 22.24, 

p < .001, ηp2 = .53, F(2,19) = 33.30, p < .001, ηp2 = .60 and F(3,18) = 29.76, 

                                                        
15 We report dz (J. C. Cohen, 1988, p. 44) as a measure of effect size for paired t-tests. Throughout 
the present work, only one effect size per effect is reported. That means whenever a ηp2 is given 
we do not additionally report dz for nested contrasts. 
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p < .001, ηp2 = .66 for simple, visually complex and complex stimuli, respectively. 

Responses to matches were fastest (all ps < .001) and responses to mismatches 

in orientation-dependent information were faster than those to mismatches in 

orientation-independent information (all ps < .007). Responses to the two types 

of orientation-dependent mismatches in complex stimuli, in contrast, were 

equally fast (p = .86). In addition, comparison times increased with the absolute 

amount of comparison-relevant information for matches, F(2,19) = 55.59, 

p < .001, ηp2 = .73, as well as for mismatches in the first piece of orientation-

dependent information, F(2,19) = 37.94, p < .001, ηp2 = .64, and in the piece of 

orientation-independent information, F(1,20) = 37.67, p < .001, ηp2 = .65. 

Loosely speaking, the comparison time pattern reflects main effects of stimulus 

type and match type without an interaction. 
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Figure 5.3. Comparison times as a function of stimulus type and match type in 

Experiment 1b. Importantly, comparison times for mismatches in orientation-

dependent information are shorter than those for mismatches in orientation-

independent information. Confidence intervals are based on the match type main 

effects of each stimulus type. M, match; dep1, orientation-dependent mismatch 1; 

Indep, orientation-independent mismatch; Dep2, orientation-dependent mis-

match 2.  

5.2.5 Encoding times 

Encoding times differed between simple (409.26 ms), visually complex 

(465.10 ms) and complex (484.84 ms) stimuli, F(2,19) = 26.42, p < .001, 

ηp2 = .71; p < .001 for all pair-wise comparisons. A quadratic trend, 

F(1,20) = 18.00, p < .001, and a linear trend, F(1,20) = 55.53, p < .001, reflected a 

larger increase from simple to visually complex stimuli compared with the in-

crease from visually complex to complex stimuli. 
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5.3 Discussion 

Rotation times for three types of stimuli (see Figure 4.2 and Figure 5.2) were 

measured in a successive-presentation mental-rotation task. We examined the 

slopes of the functions relating rotation time to rotational angle as indicators of 

rotational speed, because rotational speed should decrease with an increasing 

amount of information explicitly represented during rotation. As predicted, in 

Experiment 1a and 1b rotational speed was lower for complex than for visually 

complex stimuli, indicating that rotational speed was influenced by the only 

characteristic that differed between these two stimulus types, namely the 

amount of comparison-relevant orientation-dependent spatial-relational infor-

mation. In contrast and as predicted, even though simple stimuli differed from 

visually complex stimuli in the amount of comparison-relevant orientation-

independent spatial-relational information, in the number of comparison-rele-

vant stimulus parts, and in visual complexity (see Table 3.1), rotational speeds 

for these two types of stimuli were identical.  

In Experiment 1a, median rotation time in the easiest cell of the design dif-

fered from the predicted pattern. We reasoned that rotation times for 45° rota-

tions of simple stimuli might be contaminated by influences other than mental 

rotation proper. As a consequence, in Experiment 1b we employed an improved 

experimental design. The result pattern from this latter experiment is exactly as 

predicted. We can consequently conclude that only orientation-dependent infor-

mation is explicitly represented in the rotated representation. 

Furthermore, we observed that mismatches in orientation-dependent infor-

mation are detected much faster than mismatches in orientation-independent 

information. As a mismatch in explicitly represented information should be de-

tected more easily than other types of mismatches, this finding indicates that 

even after mental rotation has finished, only orientation-dependent information 

is explicitly represented. This constitutes indirect additional evidence for our 

claim that the representation in mental rotation is nonvisual. If a visual mental 

image was rotated in order to be compared to a visually presented comparison 

stimulus, it would be very inefficient to recode this image after the rotation and 

make a type of nonvisual information explicit that is only implicitly represented 
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in the incoming visual input from the comparison stimulus. It appears more 

reasonable to assume that the rotated nonvisual representation is simply not 

recoded before the comparison process starts. However, comparison-relevant 

orientation-independent information is not lost during rotation. After a short 

delay, participants are able to detect mismatches in orientation-independent 

information. We assume that orientation-independent information is stored in 

an alternative more passive mental representation which is not actively held in 

working memory. This hypothesis is discussed in detail below, where we can 

take converging evidence from Experiment 2 into account. 

Eye fixation studies indicate that stimulus complexity influences only the 

encoding stage of mental-rotation tasks (Carpenter & Just, 1978; Just & 

Carpenter, 1985). These authors assume that for more complex stimuli it takes 

longer to extract the critical features of the stimulus. There are two potential 

reasons: Increasing stimulus complexity might render it difficult to determine 

which the critical, comparison-relevant features are. As we kept the employed 

stimuli simple and assured that participants would be aware of all comparison-

relevant features, this explanation is rather improbable for the pattern of encod-

ing times observed here. Alternatively, complex stimuli might include more crit-

ical features to extract. In line with this reasoning, the observed encoding times 

increase from simple through visually complex to complex stimuli, that is, with 

the amount of comparison-relevant information. However, the increase in 

encoding times from simple to visually complex stimuli was much stronger than 

the increase from visually complex to complex stimuli. This indicates that some-

thing additional had happened for orientation-independent information. Orien-

tation-independent information is apparently not retained in the rotated repre-

sentation. Possibly, storing it in an alternative, more passive representation 

takes extra encoding time. Indeed, this speculation is in line with fMRI data re-

ported in Experiment 3 as discussed below. 

One alternative explanation for the observed pattern of rotation times is in 

line with the visual piece-meal hypothesis and should be considered here. 

Maybe participants rotated only those stimulus parts that actually encoded 

comparison-relevant orientation-dependent information and therefore had to 

be rotated in order to solve the task (cf. Takano, 1989). Participants would then 
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have rotated the square from our complex stimuli as a visual mental image but 

not the square from our visually complex stimuli. The visual mental image of 

visually complex stimuli would then have looked identical to the visual mental 

image of simple stimuli. 

However, this alternative hypothesis predicts different comparison time pat-

terns for complex and visually complex stimuli and therefore stands in contrast 

to the observed analogous pattern of comparison times for these two stimulus 

types in Experiment 1a and b (and in all of the following experiments). The 

alternative hypothesis can admittedly be brought into accordance with the 

observed comparison times for visually complex stimuli. A mismatch in orienta-

tion-independent information (a change of the square’s position) is detected 

more slowly than a mismatch in orientation-dependent information. If for visu-

ally complex stimuli the square is not visually represented within the rotated 

representation, the alternative explanation would, like our hypothesis, implicate 

some alternative representation of orientation-independent information. 

Accessing this alternative representation might prolong comparison times rela-

tive to a simple template-match between the rotated visual representation and 

the comparison stimulus (which would be sufficient to detect a mismatch in 

orientation-dependent information). However, this explanation cannot be 

brought into accordance with the observed comparison times for complex stim-

uli. It predicts that all types of mismatches in complex stimuli are detected 

equally fast, because all comparison-relevant information would be present in 

the rotated visual representation. The difference in comparison times for mis-

matches in the piece of orientation-independent information and in the second 

piece of orientation-dependent information is especially strong evidence against 

the alternative interpretation, because both types of mismatches are due to a 

change of the square’s position. 

In contrast to the prediction from the alternative interpretation and in line 

with our hypothesis, the comparison time patterns for visually complex and 

complex stimuli are similar. This indicates that at the onset of the comparison 

stimulus orientation-independent information is similarly represented and 

consequently processed equally slow for both types of stimuli. This is in line 

with our hypothesis, because we assume that the rotated representation of nei-
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ther stimulus type represents orientation-independent information and there-

fore detection of mismatches in orientation-independent information for both 

stimulus types should require a (comparatively slow) comparison with an alter-

native representation. 

We predicted that rotational speed decreases with an increasing amount of 

represented orientation-dependent information. From our hypothesis, it does 

not inevitably follow that this relationship is linear. However, in the second 

block of trials of Experiment 1b, rotational speed for two pieces of comparison-

relevant orientation-dependent information (complex stimuli) was indeed half 

the rotational speed for one piece of comparison-relevant orientation-depen-

dent information (visually complex stimuli). As reasoned above (Chapter 3.6), 

with practice on a “same”-“different” judgment task participants’ ability to 

differentiate comparison-relevant from comparison-irrelevant information 

should increase. This means that our participants might have represented more 

comparison-irrelevant information during trials of the first than of the second 

block. If part of this represented comparison-irrelevant information was orien-

tation-dependent (e.g., if participants represented “the smaller line is to the 

right of the larger line” and additionally the then redundant information “the 

square is to the right of the larger line”), rotational speed unnecessarily slowed 

down. After the first block of trials our participants had indeed reached at a 

representation that was very efficient for the purpose of mental rotation, as 

indicated by the fact that their rotational speed had almost doubled. 

This reasoning is in line with stimulus specific training-induced increases in 

rotational speed (e.g., Bethell-Fox & Shepard, 1988; Heil, Rösler, Link, & Bajrič, 

1998)—not the process of mental rotation itself is trained, but participants 

learn to employ a more efficient mental representation of the trained stimuli. It 

appears that with training, the amount of represented information approaches 

the directly controllable amount of comparison-relevant information and conse-

quently experimental control over the amount of represented orientation-

dependent information increases. As a consequence, in the second block of the 

present study, rotational speed for two pieces of comparison-relevant orienta-

tion-dependent information did not differ significantly from half the speed for 

one piece of comparison-relevant orientation-dependent information. This sup-
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ports a strong quantitative version of our hypothesis that mental rotation works 

on a representation that explicitly represents orientation-dependent informa-

tion only. 
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6. Experiment 2: Tracking the Recoding of a 

Mental Representation via EEG 16 

In Experiment 1a and 1b we have shown that mental rotation does not work on 

a visual representation. However, participants perceive presented stimuli in 

mental-rotation tasks visually and consequently encode stimulus information 

via their visual system. The encoded information must therefore initially be 

represented visually. As Experiment 1a and 1b have shown, this early repre-

sentation is apparently later recoded into a nonvisual representation which is 

mentally rotated. Might it be possible to observe such a recoding of people’s 

mental representations? More direct evidence for this recoding would not only 

constitute converging evidence for our claim that the representation during 

mental rotation is nonvisual but might also inform a more detailed theory about 

the chain of mental processes taking place in mental-rotation tasks. 

                                                        
16 Experiments 1b and 2 are also reported in Liesefeld and Zimmer (2012). See also the credit 
line in Footnote 4. 
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6.1 Exploiting Slow Potentials as Online-Measures of 

Representational Content 

One characteristic our mental-rotation task shares with common working-mem-

ory tasks is that participants have to maintain information over a short period 

of time. The change-detection task (for a review, see Luck, 2008) is a prototypi-

cal working-memory task that shares even more characteristics with our task. 

Participants have to decide whether two stimulus arrays that are separated by a 

short retention interval are the same or not. Like mental-rotation tasks in gen-

eral, the typical change-detection task is a “same”-“different” judgment task 

with a conjunctive criterion and, like the mental-rotation task employed here, a 

stimulus onset asynchrony larger than zero (a retention interval; Farell, 1985; 

see also, Hyun & Luck, 2007). The change-detection task therefore is in many 

critical aspects similar to our mental-rotation task. As mentioned above (Tech-

nique 3, Chapter 3.7.3), from the electroencephalogram (EEG) recorded during 

the retention interval of change-detection tasks slow potentials can be extracted 

which have two characteristics that make them ideally suited as potential on-

line-measures of explicitly represented information. Firstly, the topography of 

slow potentials depends on the type of comparison-relevant information that 

has to be maintained (e.g., Mecklinger & Pfeifer, 1996; Ruchkin, et al., 1997). 

Changes in the type of explicitly represented information (the representational 

content), might therefore lead to topographical changes in slow potential pat-

terns. Secondly, the amplitude of slow potentials has been shown to increase 

with increasing working-memory load (Arend & Zimmer, 2011; Lehnert & 

Zimmer, 2008; Mecklinger & Pfeifer, 1996; Rämä, et al., 1997; Ruchkin, et al., 

1995; Ruchkin, et al., 1997), that is, with the amount of explicitly represented 

information. 

In Experiment 1a and 1b, we demonstrated that only orientation-dependent 

information is mentally represented during mental rotation by comparing the 

rotational speeds of stimuli that differ in orientation-dependent information 

only (visually complex vs. complex stimuli as shown in Figure 3.4) on the one 

hand and stimuli that differ in another type of spatial-relational information and 

in visual complexity (simple vs. visually complex stimuli as shown in Figure 3.4) 
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on the other hand. In Experiment 2, we apply a similar logic to slow potentials in 

order to examine how the mental representation in mental rotation evolves 

over time. During intervals in which visual information is explicitly represented, 

slow potential amplitude should differ between simple and visually complex 

stimuli. Amplitudes should differ between visually complex and complex stimuli, 

in contrast, during those time-intervals during which orientation-dependent 

information is explicitly represented. Visually encoded information is known to 

be processed from the occipital cortex on into an anterior direction. The effect 

of the more abstract (i.e., further processed) orientation-dependent information 

should consequently emerge over a region more anterior compared with the 

effect of visual complexity. 

Note, however, that slow potentials usually have a rather broad topography, 

including activation at many adjacent electrode sites. Additionally, if informa-

tion in our task is indeed processed along the dorsal visual pathway (see 

Chapter 1.5.2 and 1.6.1), adjacent regions presumably process both types of 

information. As a consequence, we expect topographical differences only in as 

far as the center of activation of slow potentials should move into an anterior 

direction. The spatial resolution of slow potentials as measured by EEG is not 

sufficient to expect these differences to be significant in the present study. 

Therefore, we employ an explorative definition of the respective regions of 

interests (ROIs) as the set of those electrodes at which the respective effect is 

not significantly weaker than at all surrounding electrodes (see Chapter 6.4.2 

for details). ROIs defined by this method might overlap. Nevertheless, the ROI 

for the effect of orientation-dependent information should be located more 

anterior compared with the ROI for the effect of orientation-independent 

information/visual complexity. 

The effect of orientation-dependent information should emerge within a 

time-interval when mental rotation takes place. In the preliminary experiment 

(Chapter 2) we found that the process of mental rotation in the employed type 

of mental-rotation task might be reflected by a negative slow potential centered 

at Pz, starting about 1 s after rotation can potentially start and lasting for the 

whole rotation interval and slightly beyond. This component will be taken to 

confirm that mental rotation occurred and to determine when it was performed. 
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An effect of visual complexity during stimulus presentation would only indi-

cate that our manipulation of visual complexity was successful, because in this 

phase the stimulus is physically present. Kosslyn et al. (2006, p. 4) consider only 

those representations mental images that are maintained active beyond percep-

tion of a stimulus. Evidence for the maintenance of a visual representation 

would be an effect of visual complexity that has a topography comparable to the 

topography of the effect during perception and that persists even beyond stimu-

lus perception. Critically, we have to take into account that the timing of stimu-

lus perception does differ from the timing of stimulus presentation. It takes 

about 150-200 ms until stimuli are consciously perceived (e.g., Fisch, et al., 2009; 

Gaillard, et al., 2009; Sergent, Baillet, & Dehaene, 2005) and it takes some time 

before a visual representation vanishes from iconic memory (e.g., Keysers, Xiao, 

Földiák, & Perrett, 2005; Loftus, Duncan, & Gehrig, 1992). For the event-related 

potential analyses, we will consequently define a perception interval that starts 

and ends slightly later than stimulus presentation. 

6.2 Identification of Mismatches and the P3b 

In Experiment 1a and 1b, we found that mismatches in orientation-dependent 

information are detected much faster than mismatches in orientation-indepen-

dent information. We reasoned that this pattern of results indicates that even 

after rotation has finished, participants continue to actively represent orienta-

tion-dependent information only. Orientation-independent information, in con-

trast, has to be retrieved from an alternative, passive representation in order to 

be compared to the comparison stimulus. We might find converging evidence 

for this interpretation in the event-related potential emerging after onset of the 

comparison stimulus. The P3b, a component peaking at parietal electrode sites, 

usually between 250-650 ms after onset of a task-relevant stimulus, is a poten-

tial candidate (for recent reviews, see Nieuwenhuis, et al., 2005; Polich, 2007; 

Verleger, 1997). Although its exact interpretation is rather controversial, most 

researchers agree that the amplitude of the P3b depends on the subjective 

probability of the class of events the eliciting stimulus is subjectively perceived 

to belong to—the less expected the stimulus, the larger the P3b amplitude it 
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elicits (e.g., R. Johnson & Donchin, 1980; Mars, et al., 2008). By comparing P3b 

amplitudes between different mismatch-types, we can consequently gain evi-

dence about how participants group the different types of mismatches into 

classes (Technique 4, Chapter 3.7.4). From our interpretation of the comparison 

time pattern in Experiment 1b it follows that the two types of mismatches in 

orientation-dependent information are treated similar to each other but differ-

ent from mismatches in orientation-independent information. Furthermore, we 

might gain additional insight into the comparison process in our task by mea-

suring the latency of the P3b which under certain conditions is correlated with 

comparison times (for a review, see Verleger, 1997). Interpretation of P3b la-

tency is even more controversial than its amplitude, but it seems to indicate the 

timing of a process mediating between stimulus evaluation and response selec-

tion (Verleger, Jaśkowski, & Wascher, 2005). A delay of this or a preceding 

process might be the reason for the delay of comparison times for mismatches 

in orientation-independent information. If this is the case also P3b latency 

should be prolonged for this type of mismatch. 

To sum up, we expect (a) a long lasting effect of visual complexity on poste-

rior slow potentials during perception and potentially for some time afterwards, 

and (b) an effect of orientation-dependent information on more anterior distri-

buted slow potentials in a later time window; (c) P3b amplitude and (d) P3b 

latency should be larger for mismatches in orientation-independent than for 

mismatches in orientation-dependent information in visually complex as well as 

complex stimuli but be similar for the two types of mismatches in orientation-

dependent information in complex stimuli. 

6.3 Methods 

6.3.1 Participants 

Thirty-nine students recruited at Saarland University (21 women; median age: 

22 years, age range: 20-34 years) received €8 per hour of participation. Partici-

pants reported having normal or corrected-to-normal vision and gave informed 

consent. Data from 1 participant were excluded from further analysis because of 



112 The Representation in Mental Rotation 

failure to follow the instructions, as evident by an overall accuracy (.48) at 

chance level (.50). We further excluded data from 3 participants with outlier 

overall accuracies below .75 (1½ times the interquartile difference below the 

group mean). 

6.3.2 Design 

The original stimulus which was either simple, visually complex or complex 

(stimulus type), was displayed in one of sixteen orientations (±15°, ±35°, ±55°, 

±75°, ±105°, ±125°, ±145°, ±165°), and took one of the two possible values for 

each of the maximally three pieces of comparison-relevant information (e.g., for 

complex stimuli, the smaller line was attached either to the one or to the other 

side of the larger line, the square was either in the middle or at the top of the 

smaller line and either to the one or to the other side of it). Rotation was per-

formed around one of three angles (45°, 90°, 135°; rotational angle) either 

clockwise or counterclockwise. In 50% of trials, the comparison stimulus dif-

fered from the to-be-imagined stimulus in a single piece of information. The two 

possible mismatches (see Figure 3.4) for visually complex stimuli were equi-

probable. As in Experiment 1a, a mismatch in the second piece of orientation-

dependent information (on which side of the smaller line the square was locat-

ed) appeared twice as often as the other two types of mismatches for complex 

stimuli. This imbalance might help to differentiate between the influence of local 

and global mismatch probabilities on P3b amplitudes. All factors were varied 

within participants. The experiment consisted of 432 trials. 

6.3.3 Procedure 

Stimulus presentation and response recording was controlled by E-Prime 2.0 

(Psychology Software Tools, 2005). All stimuli were about 3° of visual angle in 

size and presented in black against a gray background at the center of the 

screen. The trial procedure is displayed in Figure 6.1. Each trial began with a 

500 ms fixation cross. The original stimulus was then shown for 1000 ms. Two 

arcs indicating the direction and amount of rotation appeared 200 ms before 

offset of the original stimulus and remained on screen for the whole rotation 
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interval. Participants had to perform a mental rotation along these rotation cues. 

The comparison stimulus appeared 5500 ms after onset of the rotation cues17. It 

was always of the same type (simple, visually complex, complex) as the original 

stimulus and always appeared in the orientation indicated by the rotation cues. 

Mismatching stimuli differed from matching stimuli in one piece of information 

only. Participants had maximally 800 ms to decide whether the comparison 

stimulus was the stimulus they had imagined or not (comparison time). Partici-

pants indicated the outcome of their comparison by a press with the left or the 

right index finger. If this key press was not given within the time limit, the trial 

counted as a miss. Response hand-assignment was counterbalanced across 

participants. Between trials an empty screen was shown for an interval jittered 

between 1500 ms and 3500 ms. 

 

Figure 6.1. Trial procedure of Experiment 2. Within the allotted 5500 ms, partici-

pants had to rotate a mental representation of the encoded stimulus around the 

angle indicated by the rotation cues in order to compare the final mental 

representation to the ensuing comparison stimulus. 

As in Experiment 1a, participants were not informed about the comparison-

relevant stimulus characteristics. Before data acquisition began, participants 

trained the task until they gave at least 10 correct answers in a row or the 

experimenter decided to proceed to the main part of the experiment. Feedback 

on accuracy and comparison times was provided in a break after every 20th trial. 

Whenever participants’ mean accuracy since the last feedback fell below 90% 

they were reminded of this target value. During each such break the amplifier 

was reset by the experimenter in order to avoid saturation. 

                                                        
17 As rotation times vary strongly within and between subjects, in order to obtain event-related 
potentials, we had to employ a fixed rotation interval. As a consequence, no rotation times were 
measured. 
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6.3.4 EEG recording 

The EEG was collected by Ag/AgCl-electrodes at frontal (F3, Fz, F4), central (C3, 

Cz, C4), parietal (P3, Pz, P4) and occipital (O1, Oz, O2) positions according to the 

extended 10/20 system18, amplified with BrainAmp DCs (Brain Products) and 

recorded with BrainVision Recorder 1.03 (Brain Products, 2007). An electrode 

between Fz and Cz served as the ground. Electrodes were referenced to an elec-

trode at the left mastoid and re-referenced offline to an average of the original 

reference and an electrode at the right mastoid. Electrodes at the outer canthi of 

both eyes provided the horizontal and two electrodes above and below the right 

eye the vertical EOG. The impedance was kept below at least 10 kΩ for EOG-

electrodes and below 5 kΩ for all data electrodes. Data was analog low-pass fil-

tered at 250 Hz and sampled at 1000 Hz. No high-pass filter was set, because we 

were interested in slow potentials.  

6.3.5 EEG artifacts handling and signal extraction 

EEG data were analyzed with BrainVision Analyzer 2.01 (Brain Products, 2008). 

Drift artifacts were corrected using the method of Hennighausen, Heil, and 

Rösler (1993). We were interested in the effect of stimulus type on slow poten-

tials emerging prior to comparison stimulus onset and in the effect of mismatch 

type on P3bs following comparison stimulus onset (see Figure 6.1). In order to 

extract slow potentials, data were first low-pass filtered at 30 Hz (48 dB/8ve). 

The EEG was then segmented into epochs from 800 ms before onset of the fixa-

tion cross until 1000 ms after onset of the comparison stimulus and drawn to a 

baseline from 200 ms before until onset of the fixation cross. Epochs whose 

200 ms-baseline was contaminated with blink artifacts were rejected. Eye 

blinks were detected automatically and corrected according to the method of 

Gratton, Coles and Donchin (1983). Remaining epochs contaminated with se-

vere artifacts were detected and rejected via a semi-automatic procedure. 

Epochs were drawn to a new baseline from 600 ms before until onset of the 

fixation cross and then averaged separately for each stimulus type and for each 

                                                        
18 We also recorded electrodes at P5 and P6 in order to check for lateralizations of the rotation-
related slow potential. As there was none and without P5 and P6 we had a symmetric 
arrangement of electrodes, we do not further consider data measured at these electrodes. 
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rotational angle. Data from 4 participants were excluded because of an exces-

sive number of artifacts in their EEG recording. Rejection of artifacts resulted in 

on average 76.00 (17.59%) retained epochs for each of these excluded partici-

pants. For all remaining participants we obtained at least 200 and on average 

330.74 (76.56%) artifact-free epochs. 

As P3bs were measured after comparison stimulus onset, only correctly 

solved trials were included into the averages. However, due to the much shorter 

time interval of interest, the number of retained epochs was increased consider-

ably by preprocessing P3bs separately from slow potentials. Data were low-pass 

filtered at 40 Hz (48 dB/8ve). The EEG from correctly solved trials was seg-

mented into epochs from 200 ms before until 800 ms after onset of the compari-

son stimulus and drawn to a baseline from 200 ms before until onset of the 

comparison stimulus. Epochs with blinks were rejected or, if too many epochs 

were lost, corrected as described above. Remaining epochs with other severe 

artifacts were also rejected, resulting in at least 317 and on average 367.13 

(84.98%) artifact- and error-free epochs. 

6.4 Results 

6.4.1 Ignored information 

Following the same procedure as described for Experiment 1a, we excluded 7 

participants who ignored at least one type of information in at least one 

stimulus type. All of these participants ignored the piece of orientation-

independent information in complex stimuli. Some additionally ignored the 

piece of orientation-independent information in visually complex stimuli, but 

none of these participants ignored any orientation-dependent piece of 

information. The final sample consisted of data from 24 participants (12 women; 

median age: 22, age range: 20-30). As preliminary analyses indicated no 

interaction between stimulus type and rotational angle for the regions and time 

intervals of interest, we separately analyzed slow potentials for each stimulus 

type averaged over rotational angles and for each rotational angle averaged 
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over stimulus types. For each participant this lead to an average of 109.99 

measurements per cell of interest (range: 73.33-134.00). 

6.4.2 Slow potentials 

Analogous to the analysis of rotation times in Experiment 1a and 1b and as de-

scribed in detail above (Chapter 3.6), effects of stimulus type were decomposed 

into effects of orientation-independent information/visual complexity and ef-

fects of orientation-dependent information. As evident in Figure 6.2A, the effect 

of orientation-independent information/visual complexity was centered at elec-

trode position Pz and the effect of the amount of orientation-dependent infor-

mation at electrode position Cz. According to theoretical considerations as de-

scribed above (Chapter 6.1) and to visual inspection of the grand averages at 

these two electrode sites (Figure 6.2B), we defined three time-intervals of inter-

est, namely a perception phase from 700 ms until 1700 ms (from 200 ms after 

stimulus onset until 200 ms after stimulus offset), an early processing phase 

from 1700 ms until 2600 ms and a late processing phase from 4100 ms until 

6900 ms. Topographical regions of interest (ROIs) were defined separately for 

the effect of orientation-independent information/visual complexity, the effect 

of orientation-dependent information and the effect of rotational angle for each 

time-interval in which the respective effect occurred. ROIs were determined by 

starting from a full 4 (anterior-to-posterior rows) × 3 (left-to-right columns) × 

2 or 3 (respective effect) MANOVA on the mean voltages in the respective time-

interval and then stepwise excluding those electrode rows, columns and single 

electrodes for which the effect was comparatively weak until no significant 

interaction (p < .05) with electrode site remained that included the respective 

effect. 

The effect of orientation-independent information/visual complexity (sim-

ple vs. visually complex stimuli) was strongest at rows C (C3, Cz, C4) and P (P3, 

Pz, P4) for both the perception and early processing phases. The ROI for the ef-

fect of the amount of orientation-dependent information (visually complex vs. 

complex stimuli) during the late processing phase consisted of electrodes Fz, C3 

and Cz, that means it was more anteriorly distributed and slightly left latera-
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lized. ROIs for the effect of rotational angle consisted of electrode rows P (P3, Pz 

and P4) and O (O1, Oz, O2) for the early processing phase. During the late 

processing phase the effect of rotational angle was significantly stronger at Pz 

than at all other electrode sites. The ROI for the effect of rotational angle conse-

quently differed between the early (rows P and O) and late processing phase (Pz 

only). 
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Figure 6.2. Please refer to the figure caption on the right. 
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Figure 6.2. Effects of the stimulus types on slow potentials. (A) Spline-interpolated 

topographic maps of the effects of orientation-independent information/visual 

complexity (difference between visually complex and simple stimuli, upper row) 

and of the effect of the amount of orientation-dependent information (difference 

between complex and visually complex stimuli, lower row) displayed over time. 

During perception and in an early time-window directly following perception a 

positive effect of orientation-independent information/visual complexity at 

parieto-central electrode sites is present. In a later time window, this effect has 

vanished and a more anterior distributed negative effect of the amount of 

orientation-dependent information has emerged. (B) Grand averages showing the 

effect of stimulus type averaged over rotational angles at electrode sites Cz (where 

the effect of the amount of orientation-dependent information was strongest) and 

at Pz (where the effect of orientation-independent information/visual complexity 

was strongest). 

Analyzing the effect of orientation-independent information/visual complex-

ity (see also Figure 6.3A), a 3 (time-interval) × 2 (simple vs. visually complex 

stimuli) MANOVA on mean amplitudes from the orientation-independent infor-

mation/visual complexity ROI yielded an interaction, F(2,22) = 8.58, p = .001, 

ηp2 =.34. The effect was present during perception, t(23) = 6.35, p < .001, 

dz = 0.93, and during the early processing phase, t(23) = 3.13, p = .004, dz = 0.57. 

During the late processing phase, in contrast, the effect of orientation-indepen-

dent information/visual complexity was absent, t(23) = .57, p = .57, dz = 0.14. 

The effect tended to be smaller during the early processing relative to the 

perception phase, t(23) = 1.97, p = .06, dz = 0.40, and it clearly ceased from the 

early to the late processing phase, t(23) = 3.05, p = .006, dz = 0.62. 
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Figure 6.3. The effect of the amount of orientation-independent informa-

tion/visual complexity (Indep, gray bars, difference between visually complex and 

simple stimuli) and the effect of the amount of orientation-dependent information 

(Dep, white bars, difference between complex and visually complex stimuli) 

separately for the perception, early processing and late processing phase on 

amplitudes at (A) the region of interest (ROI) for the effect of orientation-

independent information/visual complexity (Indep-ROI) and (B) at the ROI for the 

effect of orientation-dependent information (Dep-ROI). Error bars indicate the 

meaningful half of 95%-confidence intervals for the respective difference. 

Differences for which error bars do not cross the x-axis are significant with p < .05, 

two-tailed. 

Analyzing the effect of the amount of orientation-dependent information 

(see also Figure 6.3B), a 3 (time-interval) × 2 (simple vs. visually complex stim-

uli) MANOVA on mean amplitudes from the orientation-dependent information 

ROI also yielded an interaction, F(2,22) = 9.82, p < .001, ηp2 =.39. This interac-
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tion was driven by a pattern exactly opposite to the pattern for the effect of 

orientation-independent information/visual complexity. An effect of orienta-

tion-dependent information was absent during perception, t(23) = 0.93, p = .36, 

dz = 0.16, as well as during the early processing phase, t(23) = 0.80, p = .43, 

dz = 0.16. During the late processing phase, in contrast, the effect was present, 

t(23) = 2.56, p = .017, dz = 0.46. The effect did not differ between early 

processing and perception phase, t(23) = 0.38, p = .71, dz = -0.10. That the effect 

of the amount of orientation-dependent information did not emerge before the 

late processing phase was further confirmed by significant interaction contrasts 

between late processing phase and perception phase, t(23) = 4.03, p < .001, 

dz = 0.82, as well as between late and early processing phase, t(23) = 4.45, 

p < .001, dz = 1.03. 

As rotation cues did not appear before 1300 ms, it is not surprising that an 

effect of rotational angle was absent during the perception phase (from 700 ms 

until 1700 ms) at the early rotation ROI, F(2,22) = 0.95, p = .40, ηp2 =.05, and at 

the late rotation ROI (Pz), F(2,22) = 1.03, p = .37, ηp2 =.06 (see Figure 6.4). How-

ever, an effect of rotational angle was present during the early processing phase 

at the early rotation ROI, F(2,22) = 15.63, p < .001, ηp2 =.48. This effect was due 

to a linear trend, t(23) = 5.69, p < .001, without quadratic component, 

t(23) = 0.63, p = .54. Also during the late processing phase an effect of rotational 

angle on amplitudes at the late rotation ROI, F(2,22) = 8.49, p = .002, ηp2 =.39, 

and a linear trend, t(23) = 4.11, p < .001, were present. In contrast to the early 

processing phase, the quadratic component, t(23) = 2.46, p = .021, was signifi-

cant, reflecting a smaller increase in amplitude from 45° to 90°, t(23) = 2.05, 

p = .05, compared with the increase from 90° to 135°, t(23) = 4.03, p < .001,. 

That the effect of rotational angle differed between the two processing phases 

was confirmed by two separate 2 (early vs. late processing phase) × 

3 (rotational angle) MANOVAs on amplitudes at the early and late rotation ROI, 

respectively. For both ROIs, interactions between processing phase and rota-

tional angle were present, F(2,22) = 9.84, p < .001, ηp2 =.17, and F(2,22) = 8.40, 

p < .002, ηp2 =.15, respectively. 
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Figure 6.4. Grand averages for the three rotational angles averaged over stimulus 

types. The components become more negative with increasing rotational angle 

from 45° (light gray) to 90° (dark gray) to 135° (black). 

6.4.3 Comparison times 

Amplitudes and latencies of P3bs at Pz as well as comparison times for correctly 

solved trials are displayed in Figure 6.5. Effects of match type on comparison 

times were present for simple, F(1,23) = 13.87, p = .001, ηp2 =.38, for visually 

complex, F(2,22) = 30.62, p < .001, ηp2 =.62, and for complex stimuli, 

F(3,21) = 51.04, p < .001, ηp2 =.60. Replicating the findings from Experiment 1b, 

responses to matches were fastest, all ps < .03, and responses to mismatches in 

orientation-dependent information were faster than those to mismatches in 

orientation-independent information, all ps < .001, whereas responses to the 

two types of mismatches in orientation-dependent information in complex stim-

uli were given at the same speed, t(23) = 0.15, p = .88. Main effects of stimulus 

type were present for matching comparison stimuli, F(2,22) = 59.74, p < .001, 

ηp2 =.76, for mismatches in the first piece of orientation-dependent information, 

F(2,22) = 27.00, p < .001, ηp2 =.62, and for mismatches in the piece of orienta-

tion-independent information, F(1,23) = 25.40, p < .001. All pairwise-compari-

sons were significant, ps < .001. As in Experiment 1a and 1b, loosely speaking, 

the comparison time pattern reflects main effects of stimulus type and match 

type without an interaction. 
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Figure 6.5. Effects of stimulus and match type on P3b amplitudes, P3b latencies 

and comparison times in Experiment 2. Changes in orientation-independent infor-

mation give rise to stronger and later P3bs as well as slower comparison times. 

Confidence intervals are based on the effects of match type separately for each 

stimulus type. M, match; Dep1, orientation-dependent mismatch 1; Indep, orien-

tation-independent mismatch; Dep2, orientation-dependent mismatch 2. 
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6.4.4 P3bs 

As evident in Figure 6.6, P3bs peaked two times. As the effect of match type was 

strongest on the second peak, P3b peaks were defined as the local positive 

amplitude maximum within the time window 450 ms until 650 ms after 

comparison stimulus onset. Peak latencies and mean amplitude values ±10 ms 

around the peak were exported for statistical analysis. P3b amplitudes were 

higher at Pz than at all other electrodes (all ps < .006). 

 

Figure 6.6. Grand average P3b waveforms locked to comparison stimulus onset for 

visually complex and complex stimuli, separately for each match type. The P3bs 

following mismatches in orientation-independent information (Indep, light gray) 

differ considerably from P3bs following matches (M, dark gray) and mismatches in 

orientation-dependent information (Dep1 and Dep2, black solid and black dotted, 

respectively). For comparison, mean comparison times for each condition are 

indicated at the x-axis. 

Effects of match-type on P3b amplitudes were present for simple, 

F(1,23) = 26.29, p < .001, ηp2 =.53, for visually complex, F(2,22) = 42.10, p < .001, 

ηp2 =.59, and for complex stimuli, F(3,21) = 17.66, p < .001, ηp2 =.41. There was a 

tendency for matches to elicit the smallest P3bs, all ps < .10. Mismatches in 

orientation-dependent information elicited smaller P3bs than mismatches in 

orientation-independent information, all ps < .001, whereas P3b amplitude did 

not differ between complex stimuli mismatching in one of the two pieces of 
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orientation-dependent information, t(23) = 0.80, p = .43. P3b amplitude did not 

differ between stimulus types for any type of mismatch, both ps > .49, that is, in 

contrast to the comparison time pattern there was no main effect of stimulus 

type (see Figure 6.5). Only for matches an effect of stimulus type on P3b ampli-

tude was present, F(2,22) = 9.93, p < .001, ηp2 =.38. 

P3b latencies and reaction times were correlated over Participants × Stimu-

lus Types × Match Type cells, r = .41, p < .001. P3b latency was significantly 

longer in response to mismatches in orientation-independent information than 

to matches and to mismatches in orientation-dependent information, all ps < .05. 

In addition, mismatches in orientation-independent information elicited a later 

P3b-peak in complex than in visually complex stimuli, t(23) = 3.56, p = .002. No 

other difference was significant, all ps > .26. 

6.5 Discussion 

We measured event-related potentials during the performance of a successive-

presentation mental-rotation task, in order to explore how the mental repre-

sentation employed in mental-rotation tasks evolves over time. An effect of 

orientation-independent information/visual complexity was observed at cen-

tro-parietal electrodes during stimulus perception. This effect persisted without 

changing topography for at least 1100 ms after the eliciting stimulus had al-

ready vanished from view. This long duration indicates that the original repre-

sentation of the stimulus was kept active in working memory beyond iconic 

memory. In contrast and as predicted, an effect of the amount of orientation-

dependent information emerged after the effect of orientation-independent 

information/visual complexity had started vanishing. In line with our hypothe-

sis, this indicates that orientation-dependent information was made explicit and 

accessible in order to be rotated. Furthermore, the more anterior distribution of 

this effect indicates that the explicit representation of orientation-dependent 

information is located later in the processing chain and therefore is purportedly 

more abstract than the initial visual representation. This conclusion is based on 

the fact that visually encoded information is from the visual cortex on processed 

into an anterior direction. In sum, the observed pattern of slow potential activ-
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ity includes several pieces of converging evidence for our hypothesis that the 

process of mental rotation works on a nonvisual mental representation that 

represents orientation-dependent information only. Note, however, that due to 

the low spatial resolution of the EEG and due to the explorative definition of 

ROIs in the present study, topographical differences must, for the moment, be 

interpreted with caution (see Chapter 6.1). In Experiment 3, we make use of the 

much higher spatial resolution of fMRI to further substantiate the findings re-

ported here. 

There is some concern about whether increases in slow potential amplitude 

reflect increasing working-memory load or other influences, as increasing effort 

or arousal (e.g., McCollough, Machizawa, & Vogel, 2007). Fortunately, this does 

not influence the interpretation of slow potential amplitudes as we exploit them. 

If holding information of type A but not of type B increases effort or arousal this 

fact just as nicely shows that information type A was explicitly represented and 

processed. 

How are several pieces of orientation-dependent information rotated? Three 

explanations for the slowing down of rotational speed as a function of the 

amount of orientation-dependent information as observed in Experiment 1a 

and 1b (see also Experiment 3) are conceivable. Rotation might be performed 

on a representation that comprises several pieces of orientation-dependent 

information and rotation slows down, because more information has to be up-

dated at each rotational step. Alternatively, pieces of information might be 

represented independently and rotated in parallel but all these rotation pro-

cesses share a common limited resource. As these two hypotheses both impli-

cate that all orientation-dependent information is made explicit before rotation 

begins, both predict an effect of the amount of orientation-dependent informa-

tion starting no later than the mental rotation process itself. The present data 

therefore point to a third alternative. Pieces of information might be 

represented and rotated one after the other. Apparent rotational speed de-

creases simply because two rotations have to be performed for complex stimuli 

whereas only one rotation is necessary for simple and visually complex stimuli. 

That the effect of orientation-dependent information emerged only long after 

rotation had purportedly begun indicates that during the first rotation the 
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amount of orientation-dependent information explicitly represented in working 

memory was the same for all three stimulus types. The second piece of 

orientation-dependent information in complex stimuli did apparently enter 

working memory only after this first rotation had been finished. No earlier than 

from this time point on did the representation for complex stimuli represent 

two pieces of orientation-dependent information and did therefore differ in 

complexity from the representation of visually complex stimuli. 

The effect of mental rotation had a slightly different topography in the late 

compared with the early processing phase. In addition the effect had a quadratic 

trend in the former but not in the latter time-interval. This might indicate that 

we actually observed two different components that were sensitive to rotational 

angle. The later component was a negative slow potential as expected for the 

employed type of mental-rotation task based on the results from the prelimi-

nary experiment (Chapter 2). The earlier component in contrast was rather 

similar to the component reviewed by Heil (2002). It became manifest as a 

negative amplitude modulation of a P3b. Although this question cannot be fully 

solved here, it appears that this earlier component was induced by the 

processing of the rotation cue or the preparation of mental rotation and not by 

mental rotation proper. 

At the time the second piece of orientation-dependent information was pur-

portedly made explicit, the original stimulus had vanished from the screen, from 

iconic memory and, as indicated by the observed slow potential pattern, from 

working memory. We must consequently assume that in addition to the rotated 

representation, our participants held a passive backup representation. This 

backup representation was apparently not actively held in working memory. 

In Experiment 1a, 1b and 2, participants took much longer to detect a mis-

match in orientation-independent information. Apparently, the rotated repre-

sentation is not recoded before comparison stimulus onset and consequently 

only orientation-dependent information is actively represented when the com-

parison process starts. This interpretation receives strong additional support by 

the finding that slow potentials are sensitive to the amount of orientation-

dependent information only even after the onset of the comparison stimulus at 

6800 ms (see Figure 6.2B). How were participants then able to detect mis-
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matches in orientation-independent information? Orientation-independent 

information might be derived from an alternative representation that was not 

held active in working memory at the time of comparison stimulus onset. This 

possibly is the very same backup representation which was used to derive the 

second piece of orientation-dependent information during rotation of complex 

stimuli. 

P3b amplitude is assumed to reflect how strongly the subject expected the 

stimulus class the eliciting stimulus is subjectively perceived to belong to (e.g., R. 

Johnson & Donchin, 1980; Mars, et al., 2008). These expectations might be influ-

enced by the stimulus classes’ global (over the course of the experiment) and 

local (given the preceding stimulation) probabilities. If the stimulus matches the 

expectations well, the P3b amplitude is small. The stronger expectations are 

violated the larger P3b amplitudes become. Applying this interpretation to our 

data means that matches were most expected. Expecting matches is a smart 

strategy as in 50% of all trials matching stimuli appeared and this event there-

fore had the highest global probability. 

More interesting, as P3b amplitude reflects the subjective probability of a 

stimulus class it can be employed to assess into which subjective classes the 

different mismatches fell. Confirming our hypothesis that subjects differentiate 

between mismatches in orientation-independent and mismatches in orienta-

tion-dependent information, P3b amplitudes were much larger for mismatches 

in orientation-independent information than for both types of mismatches in 

orientation-dependent information with the latter two being of the same magni-

tude (see Figure 6.5 and Figure 6.6). Notably, mismatches in the two pieces of 

orientation-dependent information for complex stimuli and the one piece of 

orientation-dependent information for visually complex stimuli all elicited P3bs 

of the same amplitude, indicating that these were perceived as belonging to the 

same class. Importantly, a close examination of Table 6.1 reveals that the ampli-

tude differences between P3bs elicited by mismatches in orientation-dependent 

and orientation-independent information are not explainable in terms of local 

(given one stimulus type) or global (over all stimulus types) probability for the 

three different types of mismatches. The pattern of P3b amplitudes, however, is 
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in line with the global probabilities if probabilities for the two types of mis-

matches in orientation-dependent information are combined. 

To illustrate this point, consider that for trials with visually complex stimuli, 

local probability for mismatches in orientation-dependent and orientation-inde-

pendent information was the same; nevertheless, P3b amplitude differed. For 

trials with complex stimuli, local probability of mismatches in the second piece 

of orientation-dependent information was twice as high compared with that of 

the first piece of orientation-dependent information; nevertheless, P3b ampli-

tude did not differ. Averaged over stimulus types, global probability was lowest 

for a mismatch in the second piece of orientation-dependent information 

(8.33%) and highest for a mismatch in the first piece of orientation-dependent 

information (29.17%); nevertheless, P3b amplitudes did not differ. Global prob-

ability for a mismatch in orientation-independent information (12.5%) lay in 

between the probabilities for the two pieces of orientation-dependent informa-

tion; nevertheless, P3b amplitude was significantly larger for mismatches in 

orientation-independent information than for mismatches in either piece of 

orientation-dependent information. However, the combined global probability 

of mismatches in orientation-dependent information was three times higher 

than the global probability for mismatches in orientation-independent informa-

tion. As a consequence, P3b amplitude was larger for the former than for the 

latter class of mismatches. The pattern of P3b amplitudes consequently sup-

ports our claim that participants classify mismatches into those in orientation-

dependent and those in orientation-independent information. 
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Table 6.1 

Global and Local Probabilities for Matches and Mismatches in %. 

Level Match Dep1 Dep2 Indep Dep1 + Dep2 

Local      

Simple 50.00 50.00   50.00 

V. complex 50.00 25.00  25.00 25.00 

Complex 50.00 12.25 25.00 12.25 27.25 

Global 50.00 29.17  8.33 12.50 37.50 
Note. The observed order of P3b amplitudes is Match < Dep1 = Dep2 << Indep. Dep1 = 

orientation-dependent mismatch 1 (side of the larger line, the smaller line was 
attached to); Indep = orientation-independent mismatch (position of the square on 
the smaller line); Dep2, = orientation-dependent mismatch 2 (side of the smaller line, 

the square was attached to).  

Taking into account that P3bs peak much later and comparison times are 

much longer for mismatches in orientation-independent information than for all 

types of mismatches, we arrive at an even more interesting (though speculative) 

interpretation. As at the time of comparison stimulus onset orientation-inde-

pendent information is not actively represented in working memory, a compari-

son stimulus mismatching in orientation-independent information only is first 

classified as matching. This early classification is based exclusively on informa-

tion actively represented in working memory (orientation-dependent informa-

tion) which perfectly matches for stimuli mismatching in orientation-indepen-

dent information only. This misclassification delays the process that mediates 

between stimulus evaluation and response selection (Verleger, et al., 2005) and 

consequently increases P3b latency and comparison time. The subsequent dis-

covery that the comparison stimulus actually does not match the expected stim-

ulus therefore becomes especially surprising and consequently elicits a large 

P3b amplitude. 

To sum up, the present study indicates very precisely how information in a 

mental-rotation task is processed: The original stimulus is first encoded into a 

visual representation, emerging about 200 ms after stimulus onset. This visual 

representation remains active in working memory for only part of the trial until 

at least about 1100 ms after the original stimulus disappeared and 1300 ms af-
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ter the rotation could potentially start. Orientation-dependent information is in 

a piece-meal fashion extracted, actively and explicitly represented and rotated 

in working memory. If a second piece of orientation-dependent information is 

comparison-relevant (as in our complex stimuli), after the first rotation, at 

about 2800 ms after the onset of the rotation cue, this second piece of orienta-

tion-dependent information is extracted from a passive backup representation 

and also rotated. While the second piece of orientation-dependent information 

is rotated, the first piece of information continues to be actively represented. At 

the onset of the comparison stimulus, only orientation-dependent information 

is actively represented in working memory. That means participants are either 

unable to or for other reasons refrain to re-activate orientation-independent 

information or to built up a visual representation before the comparison stimu-

lus appears. Therefore an initial comparison of the active representation and 

the comparison stimulus indicates a match for both matching stimuli and for 

stimuli mismatching in orientation-independent information. Only after orienta-

tion-independent information is then retrieved from the passive backup repre-

sentation, mismatches in orientation-independent information are detected. 

This reactivation delays reactions to mismatches in orientation-independent 

information by about 60 ms. To our knowledge, this is the most precise empiri-

cally founded description of an information processing chain in an equally com-

plex task ever reported. 
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7. Experiment 3: Parcellation of the Mental 

Rotation Network via fMRI 

A large network of cortical areas is activated in mental-rotation tasks. As de-

tailed above (Chapter 1.6), even when only rotation-specific contrasts are consi-

dered, many distributed foci of activation are found (for a review, see Zacks, 

2008). These cortical areas purportedly play different roles during mental rota-

tion. For example, it might be possible to differentiate between regions more 

related to the processing or maintenance of information. It is also possible, that 

the very same regions are responsible for processing and maintenance. All three 

experiments reported above indicate that the representation in mental rotation 

includes only orientation-dependent spatial-relational information. Orientation-

independent spatial-relational information in contrast seems to be stored pas-

sively for the duration of rotation. That these two types of information are 

treated differently also indicates that they are processed in different cortical 
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regions. The topographies of slow potentials as observed in Experiment 2 al-

ready constitute suggestive evidence in favor of this hypothesis. However, as 

discussed above (Chapter 6.1) the spatial resolution of these slow potentials 

was not sufficient to provide conclusive evidence. This gap shall be closed here 

with the aid of functional magnetic resonance imaging (fMRI). In contrast to 

EEG the spatial resolution of fMRI should allow identifying the specific cortical 

regions that process the two types of spatial-relational information. 

A similar technique as employed in the three experiments above can also be 

applied to fMRI data. Activation should be higher for visually complex compared 

with simple stimuli in regions that process orientation-independent or visual 

information. An increase in activation that is related to visual complexity should 

emerge in primary and secondary visual areas of the cortex (BA 17/18, V3), 

whereas pure orientation-independent information might be processed in other 

regions. Regions that process orientation-dependent information should show 

higher activation for complex compared with visually complex stimuli. As 

spatial-relational information is more abstract than visual information, foci of 

activation that reflect the processing of orientation-dependent information 

should lie clearly beyond primary and secondary visual cortex within the dorsal 

stream of visual information processing (see, e.g., Milner & Goodale, 2008; see 

also Chapter 1.5.2). As spatial-relational information is apparently stored in the 

superior parietal lobule (Kosslyn, Thompson, et al., 1998; Trojano, et al., 2002), 

this area is a likely candidate for showing an effect of the amount of orientation-

dependent spatial relational information. 

Although considering only rotation-related activations in order to isolate 

activation due to the process of mental rotation proper is a step into the right 

direction several difficulties in interpreting the findings reported above 

(Chapter 1.6) remain. Many authors (including Zacks, 2008) consider the 

comparison between 0° and a larger angle as rotation-specific. Problematically, 

0° rotations are no rotations. For example, when two matching stimuli are 

shown simultaneously (Chapter 1.3.1) in the same orientation, they can 

immediately be recognized as the same. A pure template-match would be 

sufficient. In contrast, even a small rotation already renders the task much more 

complex. This becomes evident if one considers, for example, the several 
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processing steps assumed by Just and Carpenter (1976; see Chapter 1.3.1). 

Determining the direction and amount of rotation or initiating a rotation might 

already elicit rotation unspecific differences between, for example 0° and 60° 

trials. In addition, as shown above (Experiments 1a, 1b and 2), before mental 

rotation can start, information must be brought into a specific format. This 

might not be necessary when no rotation is performed on 0° trials. There are 

consequently many more differences between trials with rotational angles of 0° 

and trials that indeed require mental rotation than solely the amount of rotation. 

The logic of rotation-specific contrasts is to isolate only those processes that 

become more demanding with increasing rotational angle. This can 

consequently only be achieved by contrasting at least two rotational angles 

larger than 0°. 

Furthermore, mental rotation proper is not the only cognitive process oper-

ating in mental-rotation tasks that becomes more demanding with an increasing 

rotational angle. Time on task is inherently related to rotation time in mental-

rotation tasks. The longer the rotation takes, the longer participants must, for 

example, focus attention on the task. In addition, when rotation takes longer, 

information must be maintained for a longer period of time (cf. Milivojevic, et al., 

2009). Although the duration of mental rotation can be disentangled from visual 

stimulation or from execution of button presses (e.g., Ecker, et al., 2006), it can-

not be disentangled from time on task. This is where experimentally isolating 

the process of mental rotation is far superior to purely statistical approaches 

which must rely on a difference in the time-course of mental rotation and other 

processes (Ecker, et al., 2006; Richter, et al., 2000; Windischberger, et al., 2003). 

Activation elicited by processes that have the same timing as mental rotation 

can to a certain degree be eliminated by constructing a control condition that 

requires the same set of cognitive affordances as the mental-rotation task but 

no mental rotation. Subtracting activation in this control condition from 

activation in the mental rotation condition would then only leave those areas 

that are involved in mental rotation proper. This is not a trivial goal and might 

never be fully reached (e.g., Friston, Price, et al., 1996; Price, Moore, & Friston, 

1997). However, we believe (and the results reported below prove us right) that 
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a careful design of the control condition can lead much closer to this ideal than 

the usually employed fixation or 0°-rotation baselines do. 

Finally, the difficulty and duration of determining the direction and the 

amount of rotation might also increase with rotational angle (see above, 

Chapter 1.3.1 and 1.3.4). This influence can be drastically reduced by employing 

rotation cues as in the previous three experiments described above. Rotation 

cues directly indicate the direction and amount of rotation and preparatory 

analyses of stimulus parts become unnecessary. 

7.1 Related Studies 

Up to now, only relatively few fMRI or PET studies exist that employ a succes-

sive-presentation mental-rotation task as in the present work (Lamm, 

Windischberger, Moser, & Bauer, 2007; Suchan, Botko, Gizewski, Forsting, & 

Daum, 2006; Suchan, et al., 2002). Interestingly, one of these studies (Lamm, et 

al., 2007) tried to examine the influence of the amount of spatial information on 

brain activation. Lamm et al. (2007) employed two-dimensional block figures 

(see Figure 7.1). As usual for successive-presentation mental-rotation tasks, 

participants had first to encode an original stimulus and a rotation cue. After a 

rotation interval a matching block figure or its mirror image appeared. So far 

their task is similar to that in many other mental rotation studies. However, 

these authors rendered their stimuli more complex by adding either of two 

types of additional information. Within the block figures either an arrow or a 

dot was shown. These allowed introducing other types of mismatches in addi-

tion to mirror images. On part of the trials, the dot appeared in the wrong posi-

tion within the comparison stimulus. This resulted in an orientation-indepen-

dent mismatch of the relation between dot and block figure. Similarly, the arrow 

sometimes appeared in the wrong orientation, resulting in a purportedly orien-

tation-dependent mismatch. Both types of stimuli consequently included two 

pieces of comparison-relevant information. Specifically, the stimuli with the dot 

included one piece of orientation-dependent and one piece of comparison-

relevant orientation-independent information. If everything had worked out, 
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the stimuli with the arrow would have included two pieces of comparison-

relevant orientation-dependent information. 

 

Figure 7.1. Redrawing of stimuli employed by Lamm et al. (2007). The original 

stimulus (left) must be mentally rotated so that the stimulus eventually ‘stands’ on 

the orange bar. The orange bar consequently is a rotation cue (see Chapter 1.3.4) 

and indicates a rotation of 160°, clockwise. After rotation the comparison stimulus 

(right) appears. Can you tell whether the two stimuli in A are matching? Please 

pay special attention to the orientation of the arrow. What about B? A: Mismatch 

in the orientation of the arrow. B: Mismatch in the position of the dot. The 

mismatch in A is very difficult to spot until one realizes that the arrow of the 

original stimulus points away from the other arm of the block figure and the 

arrow in the comparison stimulus point towards this arm. This constitutes an 

orientation-independent encoding of the relation between the arrow and the block 

figure. Example A does therefore not require a more difficult mental rotation than 

example B. 

Unfortunately, Lamm et al. (2007) did not closely enough analyze under 

which conditions participants have to represent orientation-dependent infor-

mation (see especially Chapter 3.6 and 3.8). The direction of the arrow in isola-

tion evidently is a piece of orientation-dependent information. However, in 

Lamm et al.’s stimuli this piece of information can easily be encoded in an alter-



138 The Representation in Mental Rotation 

native, orientation-independent way. Consider the example trial given by the 

authors and which is redrawn here as Figure 7.1. The arrow, which was located 

in one arm of the figure either pointed towards or away from the other arm. 

This is not a piece of orientation-dependent information as evident by the fact 

that the sentence does not include “left/right”, “above/below” or similar terms. 

This relation does not change when the stimulus is rotated—if, in one absolute 

orientation of the block figure, the arrow points towards the other arm, it also 

does so in any other orientation of the figure. This piece of information is orien-

tation-independent. Lamm et al.’s participants consequently did in neither con-

dition have to process a second piece of orientation-dependent information. 

That means, the authors failed to manipulate the amount of orientation-depen-

dent information. Their contrast between activation in trials employing stimuli 

with arrows minus trials employing stimuli with dots does not reflect an influ-

ence of the amount of orientation-dependent information. Their finding of 

higher activation in the superior occipital lobe and no activation difference in 

rotation-related areas does therefore not indicate the brain regions that process 

orientation-dependent information. 

7.2 Construction of the Control Task 

The goal of our control task is enabling a differentiation between activation re-

lated to mental rotation proper and all other activation that also increases with 

rotational angle but is not related to mental rotation proper. Angle-dependent 

activation should be found in the experimental as well as in the control task, but 

the angle-dependent activation in the control task should only be a subsample 

of the activation found in the experimental task. The control tasks should there-

fore, of course, be as similar as possible in terms of perceptual stimulation. In 

addition, as mentioned above, the control task should require the same set of 

cognitive processes but no mental rotation. To do so, we basically replaced the 

rotation interval by a retention interval (see Figure 7.2). Such retention trials 

were inserted randomly into rotation trials in order to avoid a specific prepara-

tion for the respective condition. Another problem was the activation associated 

with the key press participants gave to indicate that they had finished the rota-
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tion. In order to introduce a comparable motor affordance the retention interval 

was also terminated by a key press. This key press was given as soon as the arcs 

(which worked as rotation cues in the rotation condition) changed their color 

from black to gray. As reported in Experiment 1a and b, rotation times differ for 

different stimuli, rotational angles, participants and phases of the experiment. In 

order to account for all these variables, the program continuously updated the 

point in time when this color change happened as to induce the key press at a 

time equivalent to the current median of the given participant’s rotation time in 

the respective rotation cell of the experimental design. 

 

Figure 7.2. Trial procedure of Experiment 3. On rotation trials (experimental 

condition, upper row) participants had to rotate the original stimulus along the 

arcs as in the previous experiments. They indicated having finished the rotation by 

a key press. The color change of the arcs was irrelevant in this condition. On 

retention trials (control condition, lower row) rotation cues appeared centered on 

the main axis of the stimulus. This indicated that no rotation had to be performed 

and the upcoming comparison stimulus would be in the same orientation as the 

original stimulus. In this condition, participants waited until the rotation cue 

changed its color from black to gray and then pressed a key in order to proceed. 

The experiment was conducted with three main questions in mind. Firstly, 

which brain areas are involved in the process of mental rotation proper? These 

areas should show stronger activation for larger rotational angles compared 

with smaller angles and this effect should be clearly stronger for the rotation 

compared with the retention condition. That means activation in these areas 

should show an interaction between rotational angle and experimental condi-
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tion. Secondly, is orientation-depended information (i.e., the type of information 

that is mentally rotated) represented within the same brain areas that also per-

form rotation? Following the same logic as in Experiment 2, those areas that 

show higher levels of activation for complex stimuli than for visually complex 

stimuli potentially hold orientation-dependent information. We assume that a 

mental process must have direct access to the processed information and that 

therefore activation in the same set of brain areas should depend both on the 

amount of represented information and on the amount of processing (rotational 

angle in the present study). According to our reasoning, the process of mental 

rotation is performed on orientation-dependent information only. Consequently, 

activation in the set of brain areas that show rotation-specific activation should 

also depend on the amount of represented orientation-dependent information. 

Thirdly, where is orientation-independent information (i.e., a type of informa-

tion that is not mentally rotated) stored and which brain areas simply reflect the 

visual complexity of the rotated stimuli or the amount of represented orienta-

tion-independent information? Again following the same logic as introduced 

above (Chapter 3.8), those brain areas that are activated more strongly during 

the processing of visually complex compared with the processing of simple 

stimuli either code orientation-independent information or visual complexity. 

As we already collected much evidence that orientation-independent 

information/visual complexity is processed separated from orientation-

dependent information (Experiment 1a, 1b and 2), we hypothesize that these 

two types of information are processed in different brain areas. In sum, the 

overarching aim of the present study was to identify the cortical network that is 

employed in mental-rotation tasks and to gain insight into the function of its 

several parts. 

7.3 Methods 

7.3.1 Participants 

Thirty-eight students recruited at Saarland University (20 women; median age: 

23.5 years, age range: 19-30 years) received €8 per hour of participation. Partic-
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ipants reported having normal or corrected-to-normal vision and gave informed 

consent. As indicated by an informal interview after the testing, one participant 

did not follow the instructions to proceed to the comparison stimulus as soon as 

he had finished the rotation and was consequently excluded from further analy-

sis. Additionally, data from one participant with an outlier overall accuracy 

more than 1½ times the interquartile difference below the group mean (< .7) 

and one participant with an outlier overall rotation time 1½ times the inter-

quartile difference above the group mean (> 4538 ms) were excluded. 

7.3.2 Design 

As in the previous experiments, the original stimulus was simple, visually com-

plex, or complex (stimulus type). It was displayed in one of four orientations 

(±150°, ±70°), and took one of the two possible values for each of the maximally 

three pieces of comparison-relevant information (e.g., for complex stimuli, the 

smaller line was attached either to the one or to the other side of the larger line, 

the square was either in the middle or at the top of the smaller line and either to 

the one or to the other side of it). On one third of trials, no rotation had to be 

performed. Visual stimulation in this retention control condition was kept equiv-

alent to the rotation experimental condition by employing the same rotational 

cues (two arcs, each 45° or 135° in size) with the single difference that the cues 

were centered on the stimulus’ main axis (see Figure 7.2). In order to keep the 

participants’ stay in the scanner within a comfortable duration only trials with 

rotations of 45° and 135° (rotational angle), clockwise and counterclockwise 

were employed. On 50% of trials, the comparison stimulus differed from the to-

be-imagined stimulus in a single piece of information. The two possible mis-

matches (see Figure 3.4) for visually complex stimuli were equiprobable. As in 

Experiment 1a and 2, a mismatch in the second piece of orientation-dependent 

information (on which side of the smaller line the square was located) appeared 

twice as often as the other two types of mismatches for complex stimuli. All fac-

tors were varied within participants and presented in a randomized order. The 

experiment consisted of two blocks with 144 trials each. 
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7.3.3 Procedure 

Stimulus presentation and response recording was controlled by E-Prime 2.0 

(Psychology Software Tools, 2005). Due to a technical error, stimuli were 

slightly smaller than in the previous experiments, namely about 2.67° of visual 

angle. They were presented in black against a gray background at the center of 

the screen of MRI compatible goggles (VisualSystem, NordicNeuroLab). The trial 

procedure is displayed in Figure 7.2. Each trial began with a 500 ms fixation 

cross. The original stimulus was then shown for 1000 ms. Two arcs indicating 

the direction and amount of rotation appeared 200 ms before offset of the origi-

nal stimulus and remained on screen for the whole rotation interval. In the rota-

tion condition, participants had to perform a mental rotation along these rota-

tion cues. After participants had finished the rotation, they proceeded to the 

comparison stimulus by a key press with their left or right thumb. 

In the retention control condition rotation cues were centered on the main 

axis of the stimulus. Participants had to press the key with their thumb as soon 

as the rotation cues changed color from black to gray. The experimental pro-

gram was designed as to induce this key press at a similar time point in the 

retention as in the rotation condition. At the onset of each retention trial the 

median rotation time from all previous trials for the respective cell of the rota-

tion condition was calculated. From this value, the median time from onset of 

the color change until the key press on retention trials was subtracted. The 

resulting value determined the time from offset of the original stimulus until the 

color change of the rotation cue. When participants pressed the button before 

the color change, the trial was aborted and an error message was displayed. The 

color also changed in the rotation condition but was irrelevant for the partici-

pants. Instructions therefore encouraged participants to ignore the color change 

on rotation trials. 

After the key press, the comparison stimulus was presented for 500 ms. It 

was always of the same type (simple, visually complex, complex) as the original 

stimulus. On rotation trials it appeared in the orientation indicated by the rota-

tion cues whereas on retention trials it appeared in the same orientation as the 

original stimulus. Mismatching stimuli differed from matching stimuli in one 

piece of information only. Participants had maximally 800 ms to decide whether 
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the comparison stimulus was the stimulus they had imagined or not (compari-

son time). Participants indicated the outcome of their comparison by a press 

with the left or the right index finger. If this key press was not given within the 

time limit, the trial counted as a miss. Which thumb was used to proceed to the 

comparison stimulus and whether the left or right index finger were used to 

give a match or mismatch answer was counterbalanced across participants. 

Between trials an empty screen was shown for an interval jittered between 

2000 ms and 4000 ms. 

As in Experiment 1b, participants were informed about all comparison-rele-

vant stimulus characteristics in order to ensure that they were aware of all com-

parison-relevant information. Participants practiced the task outside the scan-

ner under supervision of the experimenter until the experimenter was con-

vinced that they fully understood the task. During these practice trials partici-

pants received feedback on their performance. Inside the scanner they contin-

ued practicing until the experimenter had completed the scanner set-up. Partici-

pants performed two experimental blocks of 144 (96 rotation and 48 retention) 

trials each with a break in between.  

7.3.4 Scanning procedure 

Whole-brain gradient-echo planar images were acquired employing a 3 T mag-

netic resonance scanner (MAGNETOM Skyra, Siemens Healthcare). A 20-channel 

head coil was employed for radio-frequency transmission and signal reception. 

The 3D high-resolution T1-structural image of the whole brain (3D MPRAGE, 

192 slices, slice thickness = 0.9 mm, in-plane resolution = 0.938 × 0.938 mm, 

repetition time = 1900 ms, echo time = 2.13 ms, inversion time = 900 ms) was 

acquired during the break between the two functional runs which corresponded 

to the two experimental blocks. The structural image was later used to 

normalize the fMRI datasets acquired from each participant into standard MNI 

space. During task performance, functional EPI images were obtained 

(repetition time = 2000 ms, echo time = 30 ms, flip angle = 90°, 28 slices, slice 

thickness = 3 mm, interslice gab = 0.75 mm, field of view = 192 × 192 mm, 

acquisition matrix = 94 × 94, resulting in a voxel size of 2.04 × 2.04 × 3.75 mm, 
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parallel to the intercommissural (AC-PC) line). Whenever the 105 mm in z-

direction were insufficient to include the whole brain, we excluded part of the 

cerebellum of the respective participant from the functional scan. As the 

experimental procedure included self-paced intervals (rotation/retention and 

comparison times) the number of necessary functional scans was not 

predictable in advance. Each of the two runs was aborted manually several 

seconds after the participant had finished the 144 trials of an experimental 

block. 

7.3.5 Image analysis 

Image analysis was conducted with Statistical Parametric Mapping (SPM8; 

Wellcome Trust Center for Neuroimaging, 2010) running in MATLAB (The 

MathWorks, 2008). The first 5 scans of each functional run were discarded in 

order to allow for the establishment of a steady-state condition of transverse 

magnetization. Functional images were realigned to the mean image using a 

least-squares approach and a rigid body spatial transformation (Friston, et al., 

1995). The structural scan of each participant was co-registered to the mean 

functional image, segmented into three tissue classes (gray matter, white matter 

and cerebrospinal fluid) and spatial normalization parameters were derived by 

matching gray matter to that of a standard template as provided by SPM8. All 

functional images were then normalized with these parameters and written at 

an isotropic voxel size of 2 mm. Finally, the normalized functional images were 

smoothed with an isotropic 8 mm full-width at half-maximum (FWHM) 

Gaussian kernel. This relatively coarse smoothing kernel should alleviate effects 

of structural differences between participants. 

Separate regressors were defined for each Condition (rotation vs. reten-

tion) × Stimulus Type × Rotational Angle cell separately for each functional run. 

These regressors of interest were modeled as discrete impulses in the middle of 

the rotation interval (cf. Postle, Zarahn, & D'Esposito, 2000). Dummy regressors 

of no interest were modeled at the onset of the original and at the onset of the 

comparison stimulus in order to suppress variance introduced by these events. 

In addition, the overall difference between runs was modeled. Finally, the 
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realignment parameters were included as regressors of no interest in order to 

suppress residual motion-related variance (Friston, Williams, Howard, 

Frackowiak, & Turner, 1996). All regressors were then convolved with the 

canonical HRF provided by SPM8 and employed to predict the activation 

pattern in each single voxel (mass-univariate approach) based on the General 

Linear Model. Based on the b weights from these regressors, statistical 

parametric maps were created for each subject displaying t values of planned 

contrasts at each voxel. These maps indicate whether a certain voxel was more 

strongly activated in one compared with another condition. These t-value maps 

were then submitted to a second-level random effects analysis over subjects in 

order to obtain results which can be generalized to the population from which 

the subject sample was drawn. Specifically, the following contrasts were 

analyzed: rotation > retention, rotation, 135° > rotation, 45°, retention, 135° > 

retention, 45°, (rotation > retention) × (135° > 45°), rotation, visually complex 

stimuli > rotation, simple stimuli, rotation, complex stimuli > rotation, visually 

complex stimuli. 

In order to correct for multiple comparisons, a cluster extent threshold was 

determined via Monte Carlo simulations using cluster_threshold_beta (Slotnick, 

2006; see also Slotnick, Moo, Segal, & Hart, 2003). The underlying idea is that 

clusters of contiguous voxels become increasingly improbable as the clusters 

grow larger. Running 1,000 simulations, for an individual voxel threshold of 

p < .001 and an overall (rather conservative) type I error rate of α < .001, a 

minimal cluster size of 40 contiguous voxels was determined. That means, only 

clusters of 40 voxels or larger were considered significantly activated. Ana-

tomical labels of activated areas were identified with the SPM anatomy toolbox 

(Eickhoff, 2011; see also Eickhoff, et al., 2005) complemented by additional 

literature as indicated and the Talairach client (Research Imaging Center, 2009) 

with MNI coordinates transformed into Talairach coordinates by mni2tal (Brett, 

1999). In addition, MarsBaR (Brett, 2010; see also, Brett, Anton, Valabregue, & 

Poline, 2002) was used to build functional regions of interest (ROIs) and rfxplot 

(Gläscher, 2009) to export the ROI data of individual subjects for further statis-

tical analysis. 
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7.4 Results 

7.4.1 Ignored information 

In order to obtain an acceptable number of observations per cell for the χ²-test, 

we pooled accuracy data from rotation and retention conditions. Following the 

same procedure as described for Experiment 1a, we excluded 11 participants 

who ignored at least one type of information in at least one stimulus type. As in 

Experiment 2, all of these participants ignored the piece of orientation-indepen-

dent information in complex stimuli. One participant additionally ignored the 

piece of orientation-independent information in visually complex stimuli, and 

one participant additionally ignored the second piece of orientation-dependent 

information. The final sample consisted of data from 24 participants (12 women; 

median age: 23, age range: 19-30). 

7.4.2 Behavioral data 

In order to obtain values directly comparable to Experiment 1b (Figure 5.2), 

rotation and retention times were defined as the times from onset of the rota-

tion cues until the participant’s key press. The resulting pattern is displayed in 

Figure 7.3. We first conducted an analysis to examine whether the algorithm for 

equating retention to rotation times was successful. A 2 (condition: rotation vs. 

retention) × 3 (stimulus type: simple vs. visually complex vs. complex stimuli) × 

2 (rotational angle: 45° vs. 135°) MANOVA on median rotation/retention times 

indicated that retention times were on average longer than rotation times, 

F(1,23) = 19.65, p < .001, ηp2 =.46. However, rotation and retention times did 

not significantly differ with respect to the effect of rotational angle, 

F(1,23) = 2.67, p = .11, ηp2 =.11, the effect of stimulus type, F(2,22) = 2.33, p = .12, 

ηp2 =.12, or the interaction between rotational angle and stimulus type, 

F(2,22) = 0.84, p = .45, ηp2 =.04. Even though the employed algorithm was not 

perfectly successful in equating rotation and retention times, the patterns are 

very similar. Concerning the fMRI analysis, the fact that retention times are 

longer than rotation times is conservative with respect to the assumption that 
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certain cortical areas should be more active in the rotation condition compared 

with the retention condition. 

 

Figure 7.3. Rotation times (left) and retention times (right) in Experiment 3. 

Retention times and rotation times show similar patterns, because the experiment 

was designed to adjust retention times to rotation times for each Stimulus Type × 

Rotational Angle cell (please refer to Chapter 7.3.3 for details of the adjustment 

procedure). Confidence intervals are based on the Stimulus Type × Rotational 

Angle interaction. 

Retention times were artificially influenced by the algorithm of the experi-

mental program. Therefore, rotation times (see left part of Figure 7.3) were also 

analyzed separately. A 3 (stimulus type) × 2 (rotational angle) MANOVA on me-

dian rotation times revealed an effect of stimulus type, F(2,22) = 10.77, p < .001, 

ηp2 =.45, an effect of rotational angle, F(1,23) = 42.85, p < .001, ηp2 =.65, and an 

interaction between the two, F(2,22) = 13.10, p < .001, ηp2 =.41. The interaction 

was driven by a stronger increase in rotation times from 45° to 135° for both 

visually complex compared with simple stimuli, t(23) = 2.94, p = .007, and for 

complex compared with visually complex stimuli, t(23) = 3.02, p = .006. 
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Median comparison times for correct answers are displayed in Figure 7.4. 

Separate Condition × Match Type MANOVAs were conducted for each stimulus 

type. One participant did not give any correct answer for mismatches in the 

piece of orientation-dependent information of visually complex stimuli on rota-

tion trials (but did apparently not ignore this piece of information on retention 

trials). Therefore tests including this cell have one degree of freedom less than 

comparable other tests. Comparisons took longer in the rotation compared with 

the retention condition, F(1,23) = 9.14, p = .006, ηp2 =.28, F(1,22) = 3.19, p = .09, 

ηp2 =.13, F(1,23) = 18.67, p < .001, ηp2 =.45, for simple, visually complex and 

complex stimuli, respectively. The condition by match type interaction was sig-

nificant for simple, F(1,23) = 7.43, p = .01, ηp2 =.24, and marginally significant 

for visually complex, F(2,21) = 2.93, p = .08, ηp2 =.17, but nonsignificant for 

complex stimuli, F(3,21) = 1.05, p = .39, ηp2 =.04. 
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Figure 7.4. Comparison times in the rotation (left) and retention (right) condition 

in Experiment 3. Confidence intervals are based on the effect of match type 

separately for each stimulus type. M, match; dep1, orientation-dependent mis-

match 1; Indep, orientation-independent mismatch; Dep2, orientation-dependent 

mismatch 2. 

7.4.3 fMRI data 

Group brain activation maps for the contrasts of interest are shown in 

Figure 7.5. The upper-left activation map shows the effect of rotational angle 

(135° > 45°). Activated areas reach from the earliest visual areas (BA 17/18) 

through most stages of the dorsal stream (inferior parietal lobule, intraparietal 

sulcus, superior parietal lobule, left V3; e.g., Goodale & Milner, 1992; see also 

Chapter 1.5.2 and 1.6.1) and also include left V4 and the somatosensory cortex 

(BA 1/2/3). The second large cluster includes the inferior part of the dorsolat-

eral premotor cortex (pMd; Schubotz, Anwander, Knösche, von Cramon, & 

Tittgemeyer, 2010), the ventral premotor cortex (including regions BA 44/45) 

and the left pre supplementary motor area (pre-SMA, Picard & Strick, 2001). 
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Obviously, these brain areas together are sufficient to visually represent the 

stimulus, transform it into an appropriate spatial mental representation, per-

form the rotation and maintain all comparison-relevant information. Indeed, 

this activation pattern is very similar to that found in mental rotation studies 

employing a rather loose baseline (e.g., Thompson, Slotnick, Burrage, & Kosslyn, 

2009). However, part of this work is also necessary to successfully perform the 

retention control condition. Consequently, part of the brain areas is also more 

active for retention times equivalent to 135° rotation compared with retention 

times equivalent to 45° rotations as displayed in the upper middle part of 

Figure 7.5. Similar to the previous contrast, all primary and secondary visual 

areas are activated as well as the inferior parietal lobule, the intraparietal sulcus 

and the inferior part of the superior parietal lobule. However, the superior part 

of the superior parietal lobule (SPL), the intraparietal sulcus (IPS), inferior pa-

rietal cortex (IPC), left somatosensory cortex (BA 1/2), dorsolateral premotor 

cortex (pMd) and the left pre-supplementary motor area (pre-SMA) are clearly 

more activated when rotation has to be performed as evident in the contrast 

rotation > retention (lower leftmost) and the interaction contrast (rotation > 

retention) × (135° > 45°) (lower middle). Obviously, these two contrasts, which 

should show the brain regions that are related to mental rotation proper, 

provide similar results. Among these, the interaction contrast is the more 

conservative comparison, because it also takes into account the effect of 

rotational angle. In the following, we therefore focus on the regions significantly 

activated in the interaction contrast. As indicated in Table 7.1, only the largest 

cluster comprises several cortical regions, namely left SPL, left IPS and left 

somatosensory cortex and is in the following referred to as SPL+. All other 

clusters are roughly restricted to one cortical region and are therefore referred 

to by the name of the respective region. In sum, these regions constitute the 

network of brain areas that is frequently found activated in mental-rotation 

tasks and is therefore known as the mental rotation network. 
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Figure 7.5. Group brain activation maps overlaid over the single subject render 

from SPM8. For each contrast we employed an individual voxel threshold of 

p < .001 and a cluster extent threshold of 40 contiguous voxels thereby keeping the 

overall type I-error rate at α < .001 as determined by a Monte Carlo simulation 

(please refer to Chapter 7.3.5 for details). Colors code the t value for the respective 

contrast at the respective voxel. Rotational Angle: rotation, 135° > rotation, 45°; 

Retention Time: retention, 135° > retention, 45°; Visual Complexity: rotation, 

visually complex stimuli > rotation, simple stimuli; Rotation-Specific: rotation > 

retention; Interaction Contrast: (rotation > retention) × (135° > 45°); Orientation-

Dependent Information: rotation, complex stimuli > rotation, visually complex 

stimuli. 
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Table 7.1 

Areas Activated by Mental Rotation Proper as Identified by the Interaction Con-

trast (Rotation > Retention) × (135° > 45°). 

MNI Coordinates Volume 
(cm3) t Potential Structure Label x y z 

-12 -64 56 14.64 6.83 left SPL (7A/7PC), 
BA 2, IPS 

(hIP1/2/3), IPC 
SPL+,l (A) -38 -52 60  5.51 

-26 -60 54  5.31 

22 -68 58  4.81 5.30 
right SPL 

(7A/7P/7PC) 
SPL,r (B) 28 -54 56  5.15 

36 -52 66  3.75 

-26 6 60  5.38 7.17 

left pMd  pMd,l (C) -22 -2 54  5.98 
-26 -10 54  5.83 

28 4 58  1.92 4.45 

right pMd  pMd,r (D) 24 10 48  4.07 
34 10 64  3.94 

42 -78 32  1.02 4.63 
right IPC  IPC,r (E) 

34 -76 40  4.20 

0 10 60  0.50 4.64 
left pre-SMA pSMA,l (F) 

-10 14 54  3.87 
Note. Coordinates are given for global (bold) and local maxima (more than 8 mm apart) in each 
cluster. All ps ≤ .001. 

Six main clusters were significantly activated in the interaction contrast 

(Rotation > Retention) × (135° > 45°) and are purportedly the cortical areas di-

rectly involved in the process of mental rotation. Activations in these areas as a 

function of Condition × Stimulus Type × Rotational Angle are displayed in 

Figure 7.6. Respective MANOVAs conducted for each ROI are summarized in 

Table 7.2. As ROIs were determined by the Condition × Rotational Angle inte-

raction contrast, this interaction is, of course, highly significant for activation in 

all ROIs, all Fs(1,23) > 19.75, all ps < .001. In addition, activation in all ROIs 

showed clear main effects of stimulus type and rotational angle, all 

Fs(2,22) > 6.39, all ps < .001, and Fs(1,22) > 14.68, all ps < .001, respectively. 
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There was no three-way interaction, all Fs(2,22) < 0.92, all ps > .41. The activa-

tion pattern in the pre-SMA differed somewhat from the other, mostly homo-

geneous activation patterns. Only for the pre-SMA a marginal significant interac-

tion between stimulus type and rotational angle was present, F(2,22) = 3.01 

p = .07, ηp2 =.13, in all other ROIs, this interaction was not significant, all 

Fs(2,22) < 0.29, all ps > .75. In contrast, the main effect of condition was present 

in all ROIs, all Fs(2,22) > 17.35, all ps < .001, except the pre-SMA, F(1,23) = 1.52 

p = .23, ηp2 =.06. Only the interaction between condition and stimulus type 

showed a rather inconsistent pattern over ROIs (see Table 7.2). 
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Figure 7.6. Please refer to the figure caption on the right. 
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Figure 7.6. Brain areas involved in the process of mental rotation proper as iden-

tified by the (rotation > retention) × (135° > 45°) interaction contrast overlaid 

over the SPM single subject render (outside) and their activation pattern in 

percent signal change as a function of condition, stimulus type and rotational 

angle (inside), displayed with 95%-confidence intervals based on the Stimulus 

Type × Rotational Angle interaction. We employed an individual voxel threshold of 

p < .001 and a cluster extent threshold of 40 contiguous voxels thereby keeping the 

overall type I-error rate at α < .001 as determined by a Monte Carlo simulation 

(please refer to Chapter 7.3.5 for details). Colors code t values for the displayed 

contrast at the respective voxel. As a single contrast is displayed, the scale in A is 

also valid for all other areas. (A) left SPL+; (B) right SPL; (C) left pMd; (D) right 

pMd; (E) right IPC; (F) left pre-SMA. 

Table 7.2 

Summary of Multivariate Analyses of Variance (F Values) on Activation in the Six 

Regions of Interest. 

Source SPL+,l SPL,r pMd,l pMd,r  IPC,r pSMA,l 

Condition 43.86*** 67.67*** 54.74*** 38.25*** 17.36***   1.52 

Stimulus 68.84*** 61.12*** 28.35*** 26.69*** 39.90*** 16.39*** 

Angle 96.53*** 92.51*** 46.55*** 30.26*** 22.64*** 14.68*** 

Condition × 
Stimulus 

  3.09†   1.98   6.31**   2.84†   1.82   3.96* 

Condition × 
Angle 

32.05*** 21.62*** 36.65*** 19.88*** 23.45*** 19.75*** 

Stimulus 
× Angle 

  0.18   0.29   0.25   0.01   0.02   3.01† 

Condition × 
Stimulus × 
Angle 

  0.55   0.54   0.20   0.45   0.15   0.91 

Note. l = left; r = right; SPL = superior parietal lobule (+ = and surrounding); pMd = dorsolateral 
premotor cortex; IPC = inferior parietal cortex; pSMA = pre-supplementary motor area. 
†p < .10, *p < .05, **p < .01, ***p < .001. 

We hypothesized that the same regions that are responsible for mental rota-

tion proper also represent the rotated information (orientation-dependent 
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information). Indeed, as summarized in Table 7.3, all ROIs from the interaction 

contrast show the expected effect of the amount of orientation-dependent infor-

mation. These regions apparently also show an effect of the amount of orienta-

tion-independent information/visual complexity. However, in all ROIs, except 

the pre-SMA, orientation-dependent information has a clearly stronger effect 

than orientation-independent information as evident in Figure 7.6 and in the 

effect sizes given in Table 7.3. This is also apparent when looking at the group 

brain activation maps in Figure 7.5. Consider the strong similarity in activation 

pattern of the maps in the lower row of Figure 7.5, which display the regions 

active during mental rotation proper and the regions mainly processing orienta-

tion-dependent information (Figure 7.5, lower right). The brain activation pat-

tern that orientation-independent information/visual complexity elicits 

(Figure 7.5, upper right), in contrast, differs strongly from the regions active 

during mental rotation proper. 

Table 7.3 

Effects (t Values and Effect Sizes, dzs) of the Amount of Orientation-Dependent 

(Dep) and Orientation-Independent Information/Visual Complexity (Indep) on 

Activation in the Six Regions of Interest. 

 Dep  Indep 

Region       t dz    t dz 

SPL+, left (A) 5.58*** 1.14  3.25** 0.66 

SPL, right (B) 5.91*** 1.21     4.34*** 0.89 

pMd, left (C) 4.20*** 0.86  2.98** 0.61 

pMd, right (D) 4.59*** 0.94  2.04† 0.42 

IPC, right (E) 6.96*** 1.42  1.78† 0.36 

pre-SMA, left (F)     2.48* 0.51     5.58*** 1.14 
Note. All tests have 23 degrees of freedom. SPL = superior parietal lobule (+ = and surrounding); 
pMd = dorsolateral premotor cortex; IPC = inferior parietal cortex; pSMA = pre-supplementary 
motor area. 
†p < .10, *p < .05, **p < .01, ***p < .001. 

In addition to the rotation-specific areas, the amount of orientation-depen-

dent information influences activation in bilateral insula (maxima: 34/32/-4 

and -32/22/2), bilateral BA 44 (maxima: -50/10/32 and 46/6/32), and left 
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V5/MT (maximum: -42 -68 -10). However, activation in these areas was also 

influenced with a similar strength by orientation-independent informa-

tion/visual complexity and therefore might rather reflect the amount of com-

parison-relevant information in a given condition. Some visual areas as bilateral 

V4 and right-medial BA 17/18 were specifically activated by orientation-inde-

pendent information/visual complexity. In addition, the activation cluster in the 

left pre-SMA was much stronger for this contrast compared with all other con-

trasts. Table 7.4 gives an overview over the areas activated in the different con-

trasts. 

Table 7.4 

Summary of Activated Areas of the Mental Rotation Network in Several Contrasts. 

Region 
Rot, 

Angle 
Ret, 

Angle Cond 
Cond 

× Angle Indep Dep 

BA 17 l/r l/r   r (m)  

BA 18 l/r l/r   r (m)  

V3 l l/r     

V4 l l/r   l/r  

V5/MT l l   l/r l 

IPC l/r l/r l/r l/r l/r l/r 

IPS l/r l l/r l/r l/r l/r 

SPL l/r l/r (inf) l/r (sup) l/r (sup) l/r l/r (sup) 

BA 1 l/r  l/r l r  

BA 2 l/r  l/r l l/r l/r 

BA 3 l/r      

pMd l/r  l/r l/r  l/r 

pSMA l  l l l  

SMA  l/r     

BA 44 l/r    l/r l/r 

Insula l/r  l  l/r l/r 
Note. Angle = rotational angle; Cond = condition; Rot = rotation; Ret = retention; Indep = 
orientation-independent information/visual complexity; Dep = orientation-dependent 
information; l = left hemisphere; r = right hemisphere; m = medial part of the structure; sup = 

superior part of the structure; inf = inferior part of the structure. 
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7.5 Discussion 

We set out to explore the function of the several cortical regions that form the 

mental rotation network. First of all, those regions that increase in activation 

with the amount of performed rotation were identified. These regions, which 

include mainly visual, parietal and premotor areas, purportedly all contribute to 

the performance of mental-rotation tasks. Notably, all principal regions dis-

cussed in Zacks’ (2008) meta-analysis on mental rotation studies (see Chapter 

1.6) were also found active in the current study. However, as evident in the 

comparison of the duration-adjusted 135°- and 45°-retention trials, a sub-

sample of these areas plays a more passive role. Activation in these areas also 

increases with the duration of retaining information, even when no mental 

rotation is necessary. With the aid of this very specific control condition, we 

were able to isolate the regions that are responsible for the process of mental 

rotation proper as those regions in which the effect of rotational angle was 

stronger than the effect of retention time (the interaction contrast). These 

included only a subsample of the areas that form the mental rotation network, 

namely the superior parietal lobule (including the intraparietal sulcus and 

somatosensory areas), dorsolateral premotor areas, the right inferior parietal 

cortex and the pre-supplementary motor area. As predicted, activity in all areas 

involved in mental rotation proper was also influenced by orientation-

dependent information. Except for the pre-SMA, orientation-dependent 

information had a much stronger effect than orientation-independent 

information/visual complexity. 

Why did orientation-independent information/visual complexity influence 

activation in these areas at all? Besides the training phase, participants of the 

current study performed a rather small amount of only 192 rotation trials in 

total. In comparison, participants of Experiment 1a and 1b performed at least 

432 rotation trials and, additionally, incorrectly solved trials were repeated 

until correctly solved in these latter experiments. The design was reduced for 

the fMRI study in order to keep the time inside the scanner at a comfortable 

duration. As evident in the analysis of training effects in Experiment 1b (see also 

Chapter 3.6), participants need some training before they are able to employ an 
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efficient mental representation. Consequently, participants in the current study 

might often have represented irrelevant or redundant orientation-dependent 

information. For example, in addition to representing “the smaller line is above 

the larger line” they might have represented “the square is above the larger 

line”. Note that these two pieces of information are redundant, because the 

square and the smaller line were always on the same side of the larger line. It 

was consequently sufficient to represent only one of these pieces of information. 

In line with this reasoning, rotational speed was in the present study not only 

lower for complex compared with visually complex stimuli, but also for visually 

complex compared with simple stimuli. If some participants sometimes 

represented two pieces of orientation-dependent information on trials with 

visually complex stimuli, visually complex stimuli have caused a stronger 

activation in the cortical regions that process orientation-dependent 

information compared with simple stimuli. However, for complex stimuli par-

ticipants might also have represented this redundant information and the addi-

tional piece of comparison-relevant orientation-dependent information. Conse-

quently the increase in activation due to the amount of represented orientation-

dependent information was much stronger from visually complex to complex 

stimuli. 

As discussed above (Chapter 1.6.3), the superior parietal lobule (SPL) and 

intraparietal sulcus (IPS) as well as the dorsolateral premotor cortex (pMd), 

that is, the areas that are activated by mental rotation proper, are also activated 

when participants observe others performing object-related hand actions 

(Buccino, et al., 2001) and are therefore considered part of or related to the 

mirror-neuron system (e.g., Rizzolatti & Sinigaglia, 2010). Object-unrelated 

hand actions also activate the pMd but not the IPS/SPL. Consequently, these 

areas might also play differential roles in mental-rotation tasks. The pMd might 

represent the imagined action of rotation whereas the IPS/SPL might hold the 

rotated representation (information about the rotated object). However, the fact 

that in the present study activation in both regions depends on the amount of 

represented orientation-dependent information and the amount of performed 

rotation constitutes evidence against a differential role of these regions in men-

tal rotation. In addition, the topography of the negative slow potential that was 
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observed in Experiment 2 and that was taken to reflect the amount of processed 

orientation-dependent information indicates that the pMd is more strongly 

involved in processing this type of information compared with the parietal 

cortex. 

Rizzolatti and Sinigaglia (2010) emphasize more the role of the inferior pa-

rietal cortex than the superior parietal lobule in the mirror-neuron system. 

However, they also note that the superior parietal lobule is activated in studies 

employing proximal arm movements that are directed to a particular spatial 

location, for example, when observing, executing, or imagining a reaching move-

ment without grasping (Filimon, Nelson, Hagler, & Sereno, 2007). In the work-

ing memory literature, it is considered established that spatial information is 

stored in the superior parietal lobule whereas object information is stored in 

the inferior parietal cortex (e.g., Wager & Smith, 2003). If the manipulated ob-

ject (the mental representation in our case)—in contrast to the real objects 

typically that are employed in the studies reviewed by Rizzolatti and 

Sinigaglia—is purely spatial in nature, it appears more probable that it is 

represented in the spatial and not in the object storage system. That the mirror-

neuron system is involved in mental rotation is also indicated by the 

involvement of another classical mirror-neuron area, namely bilateral BA 44/45. 

However, this area is not specifically involved in representing orientation-

dependent information. Its activation increased with the amount of comparison-

relevant information regardless of whether the information was orientation-

dependent or independent. 

Further, activation in bilateral insula depended on the amount of compari-

son-relevant information. The insula is found active in many mental rotation 

studies (e.g., Kosslyn, Digirolamo, et al., 1998; Lamm, Windischberger, Leodolter, 

Moser, & Bauer, 2001; Milivojevic, et al., 2009). Based on a thorough review of 

the literature reporting insula activation, Sterzer & Kleinschmidt (2010) pro-

pose that the activation in this area depends on the level of alertness induced by 

stimulus or task characteristics. If this is the case, the amount of comparison-

relevant information in our task had a uniform influence on our participants’ 

alertness. Also a region close to left V5/MT showed consistently increasing acti-

vation with the amount of comparison-relevant information. Activation in this 
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area might correspond to rotation-specific activation in left V5/MT found by 

Seurinck et al. (2011). These authors found a rotation-specific effect (which was 

modulated by a rotation aftereffect, see Chapter 1.6.5) on activation in this area 

and therefore assume that V5/MT is of functional relevance for mental rotation. 

This interpretation fits well with V5/MT’s role in visual motion perception 

(Barnes, et al., 2000; M. S. Cohen, et al., 1996; Vanrie, et al., 2002). However, 

according to the present data, V5/MT is not involved in mental rotation proper. 

Activation in this area is apparently merely related to the passive maintenance 

of any type of comparison-relevant information for the duration of mental 

rotation. 

We found stronger activation in visual areas for visually complex compared 

with simple stimuli. This was purportedly due to the higher visual complexity of 

visual complex stimuli. These areas could in principle provide the back-up 

representation as postulated above (Chapter 6.5). However, these areas very 

probably are the source for the positive slow potential observed in Experi-

ment 2 which was also sensitive to the stimuli’s visual complexity. This slow 

potential extinguished long before the comparison stimulus appeared (latest 

2600 ms after the original stimulus disappeared). This representation is conse-

quently not sufficient to identify mismatches in orientation-independent infor-

mation whenever the trial lasts too long. 

This might be were the pre-SMA comes into play. Many mental rotation 

studies report rotation-related activation in the SMA (e.g., M. S. Cohen, et al., 

1996; Richter, et al., 2000) or pre-SMA (e.g., Ecker, et al., 2006; Milivojevic, et al., 

2009; Windischberger, et al., 2003). Windischberger et al. (2003) found that the 

posterior part of the SMA (the SMA proper) is more engaged in the button press, 

while the anterior part (the pre-SMA) is related to mental rotation. Often the 

differentiation between SMA proper and pre-SMA is not taken into account al-

though these areas are anatomically and functionally clearly separable (for a 

review, see Picard & Strick, 2001). Consequently, also studies reporting SMA 

activation might, similar to the present study, actually have found pre-SMA 

activation. The pre-SMA is not as directly related to motor planning as the SMA 

proper (Picard & Strick, 2001). It is apparently involved in establishing or 

retrieving sensory-motor associations (Kurata, Tsuji, Naraki, Seino, & Abe, 2000; 
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Sakai, et al., 1999). Pre-SMA seems to be activated when participants are pre-

paring for selecting a motor response based on retained information (Petit, 

Courtney, Ungerleider, & Haxby, 1998). 

In this role the pre-SMA might be programmed on each trial with visually 

complex or complex stimuli to elicit a mismatch response when the square of 

the comparison stimulus appears on the wrong position on (the middle or the 

end of) the smaller line, that is, in case of an orientation-independent mismatch. 

This programming could already take place during the encoding phase and 

might therefore explain the prolonged encoding times for complex and visually 

complex stimuli compared with simple stimuli as found in Experiment 1b. In 

addition, eliciting a response via the sensory-motor association of the pre-SMA 

might take longer than via the comparison of actively maintained information, 

explaining the prolonged comparison times for mismatches in orientation-inde-

pendent information. It consequently appears probable that the pre-SMA is the 

back-up store for orientation-independent information. 

We assume that the orientation-independent information/visual complex-

ity-related slow potential observed in Experiment 2 and the here observed 

visual system activation reflect the same process. In Experiment 2, this slow 

potential lasted only for a fixed amount of time. It might therefore be surprising 

that visual system activation was stronger for 135° trials compared with 45° 

trials in both the rotation and retention condition of the present study. However, 

note that the slow potential in Experiment 2 was present for at least 1100 ms 

after the original stimulus had vanished. In the present study the average 

rotation time on 45° trials measured from onset of the rotation cues (200 ms 

before offset of the original stimulus) was about 1840 ms. That means, 45° trials 

often ended before the visual representation was extinguished. If this 

representation was discarded after onset of the comparison stimulus, it was 

consequently upheld for a longer time period in 135° trials (which lasted about 

2520 ms on average) compared with 45° trials. 
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8. General Discussion 19 

8.1 The Content of the Rotated Representation 

Results from each of the four experiments constitute strong evidence for the 

claim that only orientation-dependent spatial-relational information is explicitly 

represented during mental rotation. 

1. Rotational speed is influenced by the amount of orientation-dependent 

information but not by the amount of orientation-independent information, 

the amount of comparison-relevant stimulus parts or by the stimuli’s visual 

complexity as found in Experiment 1a and 1b. These studies made use of and 

further validate the generally accepted assumption that rotational speed 

slows down whenever the rotated mental representation becomes more 

                                                        
19 Part of this chapter is adapted from Liesefeld and Zimmer (2012). See also the credit line in 
Footnote 4. 
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complex. As hypothesized, representational complexity in mental rotation 

and therefore rotational speed depends exclusively on the amount of orien-

tation-dependent information, indicating that only this type of information is 

explicitly represented. 

2. Only the amount of orientation-dependent information influences the ampli-

tude of a slow potential during a time-interval when purportedly the second 

piece of orientation-dependent information is rotated as found in Experi-

ment 2. This study made use of and further validates the generally accepted 

assumption that the amplitude of slow potentials measured during a reten-

tion period reflects the amount of information stored in working memory. 

Our finding consequently indicates that during mental rotation only orienta-

tion-dependent information is explicitly represented in working memory. 

3. Only the amount of orientation-dependent information influences activation 

in cortical areas that are responsible for performing the process of mental 

rotation proper as found in Experiment 3. This study supports our hypothe-

sis that the very same brain areas that perform a mental process are also in-

volved in maintaining the processed representation. 

8.2 Representational Content is not Recoded for 

Comparison 

Above, we already discussed in detail that even after mental rotation is finished, 

the representational content remains the same. Orientation-dependent informa-

tion continues to be explicitly represented in the active mental representation 

whereas orientation-independent information remains implicit. This observa-

tion is supported by three findings. 

1. In all four experiments reported here, comparison times are prolonged for 

mismatches in orientation-independent information. The processing of this 

type of information is purportedly delayed, because it is not explicitly 

represented in the active mental representation employed for comparison. 

2. P3bs to mismatches in orientation-independent information are delayed 

relative to P3bs to mismatches in orientation-dependent information, fur-
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ther supporting that orientation-independent information is processed de-

layed compared with orientation-dependent information. 

3. P3bs to mismatches in orientation-independent information are enlarged 

relative to mismatches in orientation-dependent information, indicating that 

mismatches in orientation-independent information and mismatches in 

orientation-dependent information belong to different subjective classes. 

The critical difference purportedly is that orientation-dependent informa-

tion is explicitly represented in the active representation and therefore di-

rectly accessible whereas orientation-independent information is not. 

Further supporting the assumption that orientation-independent informa-

tion was not actively represented in the representation employed for compari-

son, some participants did apparently make the comparison only according to 

actively represented orientation-dependent information. From the total of 28 

participants who were excluded for ignoring information over all four Experi-

ments, 25 ignored at least the piece of orientation-independent information in 

complex stimuli. Among these, 21 participants detected a mismatch when the 

square switched sides in the complex stimuli, but not when the square moved 

on the smaller line (see Figure 8.1). In other words, these excluded participants 

selectively ignored the piece of orientation-independent information (whether 

the square of the comparison stimulus was in the middle or on top of the 

smaller line) whereas they processed the second piece of orientation-dependent 

information (on which side of the smaller line the square was attached), even 

though both pieces of information describe the spatial relation between the 

same stimulus parts. We assume that this systematic error could only occur, 

because participants did not actively represent orientation-independent infor-

mation at comparison stimulus onset. Those participants who ignored orienta-

tion-independent information might, in contrast to the more successful partici-

pants, not make use of a passive backup representation for comparison. 
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Figure 8.1. Illustration of a typical mistake. For 25 of the 28 participants who 

were excluded for ignoring information over all reported experiments, the stim-

ulus in the upper left was indistinguishable from the stimulus on the right. 

Differentiating between the upper left and the lower stimulus, in contrast, did not 

pose a major challenge to 21 of them. For the reader this mistake seems rather 

surprising when looking at the figure, because the figure is a visual representation 

of the stimuli. Participants in contrast purportedly held a nonvisual 

representation of the stimulus in the upper left. This representation apparently is 

identical for the upper two stimuli, because it only specifies selected pieces of 

orientation-dependent information. 

As indicated by the patterns of comparison times, in three (Experiment 1b, 2 

and 3) out of the four experiments and the P3b-pattern in Experiment 2, mis-

matches in orientation-dependent information were obviously treated similarly 

independent of whether the smaller line and the square changed to the other 

side of the larger line (change in the first piece of orientation-dependent infor-

mation) or the square changed to the other side of the smaller line (change in 

the second piece of orientation-dependent information). Only for Experiment 1a 

a mismatch in the second piece of orientation-dependent information elicited 

longer comparison times than a mismatch in the first piece of orientation-

dependent information. An explanation might be based on the (plausible) addi-

tional assumption that the several pieces of information are compared sequen-

tially. Participants of Experiment 1a might then have preferentially started the 

comparison with the first piece of orientation-dependent information, whereas 

participants of the other three experiments apparently did not have such a clear 

preference. Fortunately, our interpretation of the observed comparison time 

patterns that orientation-independent information is held in an alternative, 

more passive representation does not depend on equal comparison times for 

the two pieces of orientation-dependent information but only on prolonged 

comparison times for mismatches in orientation-independent information. An 
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explanation for the divergence in Experiment 1a from the predominant pattern 

might be found in subtle differences in instructions and would need further re-

search for confirmation. 

8.3 The Format of the Rotated Representation 

Although we can make an affirmative statement about the representational con-

tent (what is represented) mental rotation works on, we cannot tell what the 

format (how it is represented) of the representation in mental rotation is. Equa-

ting representational format and representational content would be the same 

fallacy as to assume “that the best way to explain data with property P is to as-

sume a representation with property P” (Anderson, 1978). That is, on intuitive 

grounds it might appear plausible to assume that a representation has the same 

format as its content, but such an assumption is, of course, not logically justified. 

Nevertheless, we can definitely tell what the format is not. As detailed above 

(Chapter 3.8), we deliberately constructed our task and stimuli in such a way 

that no visual representation of our complex stimuli, neither a sketch on a sheet 

of paper nor a visual mental image, can represent the second piece of orienta-

tion-dependent information separately from the piece of orientation-indepen-

dent information. However, all our data—rotation times, comparison times, 

slow potentials, P3bs and brain activation patterns—indicate that precisely this 

happens in mental-rotation tasks. Orientation-dependent information and 

orientation-independent information held by the smaller line and the square in 

our complex stimuli (see Figure 3.4) were represented separately even though 

any visual representation of the employed stimuli would have inextricably 

encoded these two pieces of information together. It is consequently safe to 

conclude that the representation on which the process of mental rotation works 

has a nonvisual format. This strongly contradicts implicit and explicit held 

beliefs that the rotated representation is visual. Mental rotation does not work 

on a visual mental image. 

As already discussed above (Chapter 3.4), Anderson (1978) logically proofed 

that the behavior of any representation-process pair can be mimicked by an 

alternative representation-process pair. This might be a last refuge from the 
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ultimate rejection of visual mental images in mental rotation. What could this 

alternative pair be in the present studies? Of course, it is theoretically possible 

to extract orientation-dependent information from the visually presented stim-

ulus and to remap this information onto a visual representation, for example, in 

the form of arrows. That would mean that participants actually rotate visually 

represented arrows, one arrow to represent orientation-dependent information 

from simple and visually complex stimuli and two arrows to represent orienta-

tion-dependent information from complex stimuli. For the comparison partici-

pants then must also extract orientation-dependent information from the 

second stimulus and recode it into visually represented arrows in order to 

match both sets of arrows. Recoding from visual to nonvisual and back to visual 

comes very close to Anderson’s “T∗ = �	 ∙ T ∙ ���”, that, is a recoding from one 

representational format to the other via an intermediate representation that is 

of the same format as the original stimulus, which as Anderson himself notes 

has to be rejected on grounds of parsimony considerations. 

There is no possibility to directly recode the implicitly represented orienta-

tion-dependent information from the visually presented stimulus into such a set 

of visually represented arrows without an intermediate nonvisual representa-

tion of explicit orientation-dependent information, because the only common 

property of arrows and the presented stimulus actually is orientation-depen-

dent information. Nevertheless, even if there was such a direct possibility, this 

recoding would violate parsimony considerations. Participants would recode 

visual representation A into visual representation B, whereby visual representa-

tion B includes less task-relevant information than the original visual represen-

tation A (which additionally includes orientation-independent information). 

This appears so outrageously inefficient (cf. Anderson, 1978) that we initially 

did not even bother to consider this possibility. Participants could have saved 

the trouble of recoding and visually represented the stimulus parts directly. 

They thereby even had represented the piece of orientation-independent infor-

mation for free. In addition, what strange algorithm would be able to rotate vi-

sually represented arrows, but unable to rotate arrows with an additional mark 

for orientation-independent information? Given our knowledge about the repre-

sentational content in mental rotation (orientation-dependent information), a 
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visual image is not parsimonious and not plausible as the representational 

format in mental rotation (cf. Anderson, 1978). The arguments put forward here 

do not only apply to arrows, but to all conceivable visual representations of 

orientation-dependent information. 

As no affirmative statement about the format of the rotated representation 

can be derived from our data, they cannot be interpreted as support for a propo-

sitional representation in mental rotation. The fact that orientation-dependent 

information can in principle be expressed isolated and explicitly in a 

propositional format merely shows that propositional representations are more 

flexible than analog representations; they do not commit themselves to a certain 

represented content. On the contrary, findings of nonvisual factors like the diffi-

culty of the comparison influencing rotational speed (Förster, et al., 1996; 

Pylyshyn, 1979), can no longer unambiguously count as evidence in favor of 

propositional theories, because, as discussed above (Chapter 3.6), the nature of 

the comparison can also influence which information is comparison-relevant or 

how efficiently comparison-relevant information is discriminated from com-

parison-irrelevant information. Therefore, the predominant interpretation of 

the classical mental rotation effect that is that a mental representation is rotated 

similar to an analog rotation is rather strengthened by our results. 

It appears at least possible that not only the content of the rotated repre-

sentation is spatial, but also its format, that is, rotation might work on spatial 

mental images. In contrast to the assumption of a propositional representation, 

spatial mental images would intuitively explain why the mental rotation effect 

exists at all. The most plausible transformation of a propositional representa-

tion would work like “with a 180° rotation ‘to the left’ becomes ‘to the right’” or 

“with a clockwise 90° rotation ‘to the left’ becomes ‘above’”, that is, it would be 

similar to a direct matrix transformation. These transformations would not take 

longer for larger rotational angles compared with smaller angles. Even though 

transformations on propositional representations (there is no doubt that 

humans do possess propositional representations) are obviously a possible 

strategy in mental-rotation tasks, mental rotation of a purely spatial image 

might simply take less time than applying complicated rules on propositional 

representations. This spatial image might, similar to a visual image, be rigid in 
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certain ways and therefore allow only certain types of transformations, as 

detailed below (Chapter 8.7.3). As a consequence, the typical angle-dependency 

of rotation times (the mental rotation effect) emerges. 

8.4 Experimental Control over Mental Representations 

An intricacy of the experimental manipulation of mental representations (see 

Chapter 3.6) is that control over people’s mental representations is never fully 

possible. Nevertheless, we here introduced several techniques that improve 

experimental control over mental representations. Among these is a careful 

choice of stimuli. Comparison-relevance can be directly manipulated by includ-

ing mismatches in the respective piece of information into the task design. How-

ever, participants will represent these pieces of information only if they know or 

at least presume that they are relevant. Furthermore, they must also know 

which pieces of information are irrelevant in order not to represent them. Ap-

plying this knowledge increases the efficiency of and thereby experimental con-

trol over participants’ mental representations. An efficient representation can to 

a certain degree be induced by employing stimuli that do not contain many irre-

levant features and by instructions that explain the relevant pieces of informa-

tion to the participants. However, even then participants obviously represent 

irrelevant information during early trials of an experiment. As shown in Experi-

ment 1b, only after a certain amount of training participants are able to employ 

a really efficient representation. 

8.5 Limitations of the Present Studies 

We developed and employed a task especially suited to obtain evidence for our 

hypothesis about the mental representation in mental rotation. Both trial proce-

dure and stimuli employed in this task are new and different to other mental-

rotation tasks. Although we cannot think of a plausible reason why our results 

should not generalize to other mental-rotation tasks and stimuli, this 

generalization has yet to be proved. 
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The stimuli employed here are (a) visually rather simple, as they contain 

only few elements, clear geometric shapes and few detail, (b) pre-experimen-

tally unknown, and (c) two-dimensional. 

1. By keeping stimuli as visually simple as possible comparison-irrelevant 

information is kept at a minimum. Thereby extracting comparison-relevant 

information and ignoring comparison-irrelevant information becomes rela-

tively easy (see Figure 3.2). However, it might be of interest to show that the 

effects reported here also emerge for visually more complex stimuli. For vi-

sually more complex stimuli more training should be necessary before an 

efficient representation is developed. However, assumedly, the training task 

does not necessarily need to be a mental-rotation task, but any other task 

that nudges participants to only process comparison-relevant and ignore 

comparison-irrelevant information. 

2. Consequently, for pre-experimentally known stimuli like alphanumeric char-

acters this training-phase is purportedly rather short, because participants 

already possess profound knowledge on the stimuli’s structure. That is, they 

already have had abundant training on the stimuli before they even enter 

the laboratory. By applying this knowledge, it should become easier to clas-

sify the potential types of mismatches and thereby to differentiate between 

comparison-relevant and comparison-irrelevant information. Note, however, 

that in usual character-rotation tasks (see Figure 1.2C) only one piece of 

(orientation-dependent) information is comparison-relevant. 

3. In a first step, we employed two-dimensional stimuli. However, three-

dimensional stimuli would allow independently manipulating three pieces of 

orientation-dependent information. After training, that is, when participants 

employ an efficient representation, a linear effect of the amount of compari-

son-relevant orientation-dependent information on the slope of the function 

relating rotation time to rotational angle should emerge. Such a parametric 

modulation of activation should also emerge in brain areas supporting the 

representation of orientation-dependent information as measured by means 

of fMRI or slow potentials. 
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We employed a successive-presentation mental-rotation task with rotation 

cues (see Chapter 1.3). Although this type of mental-rotation task has some im-

portant advantages, it is actually employed rather seldom. As certain cognitive 

processes involved in mental-rotation tasks can only begin after the appearance 

of certain stimuli (see Chapter 1.3.4), successive presentation allows separating 

these processes to a certain degree. In addition, this type of mental-rotation task 

has an advantage that was especially crucial for our purposes. In all other types 

of mental-rotation tasks, mismatches in orientation-independent information 

can be identified before mental rotation starts. This is because in simultaneous-

presentation, single-stimulus as well as successive-presentation (without rota-

tion cue) mental-rotation tasks rotation is performed when the comparison 

stimulus is already shown on the screen (see Chapter 1.3 and Figure 1.2). Smart 

participants would check for mismatches in orientation-independent informa-

tion prior to conducting mental rotation. If such a mismatch is found, a mis-

match answer can be given without the need for mental rotation. If no mismatch 

is found and obviously all orientation-independent information matches be-

tween the to-be-compared stimuli, there is no need to represent orientation-

independent information during rotation (cf. Takano, 1989). That means the 

question of how orientation-independent information is stored during mental 

rotation cannot be addresses by these tasks. Nevertheless, effects of the amount 

of orientation-dependent information can also be examined by these other 

types of mental-rotation tasks. 

8.6 Employing the Developed Techniques to Other Tasks 

Apart from mental rotation, humans purportedly employ mental representa-

tions in many other cognitive tasks. The techniques to manipulate (Chapter 3.6) 

and measure (Chapter 3.7) the amounts of represented information and thereby 

to identify the nature of the representational content should also be adoptable 

to these other tasks. These techniques can, of course, be applied to all types of 

working-memory tasks. Additionally, these techniques might be fruitful in re-

search on perception and consciousness, as exemplified in Experiment 2. The 

slow potential measured during the perception phase of our task was sensitive 



8. General Discussion 173 

to the visual complexity of the stimuli. This effect began only about 200 ms after 

the eliciting stimulus was shown, that is, at the time when it was purportedly 

perceived consciously. Among many other remaining applications of the devel-

oped techniques might also be an examination of the content of the mental 

representations known as attentional sets (e.g., Adamo, Pun, Pratt, & Ferber, 

2008; C. L. Folk & Anderson, 2010). 

8.7 Further Implications of the Present Results and Fut ure 

Directions 

As cognitive psychologists have carried the false belief of visual mental images 

in mental rotation over decades, it has produced a number of misleading as-

sumptions and interpretations of experimental results. In the remaining para-

graphs, we will briefly address some of these issues in order to give the inter-

ested reader an impression of the more general implications of the present 

work. The re-interpretation of empirical results given below is of course inher-

ently post-hoc. Further empirical testing therefore appears appropriate in order 

to substantiate these speculations. 

8.7.1 A common explanation for effects on rotational spee d 

Studies supporting the holistic hypothesis did not find any influence of visual 

complexity on rotational speed (Cooper, 1975; Cooper & Podgorny, 1976). Stud-

ies supporting the piece-meal hypothesis (M. D. Folk & Luce, 1987; Heil & 

Jansen-Osmann, 2008), in contrast, found such an influence even when the same 

type of stimuli was employed as in the studies supporting the holistic hypothe-

sis (polygons constructed according to an algorithm by Attneave & Arnoult, 

1956). As discussed above (Chapter 3.6), only information that is comparison-

relevant must be represented in order to solve mental-rotation tasks success-

fully. Consequently, representational complexity is not necessarily determined 

by the visual complexity of the stimuli. Recall that, in contrast to the present 

study, most mental rotation studies include only mirror images as mismatching 

stimuli and that two-dimensional mirror images can be distinguished by com-
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paring one single piece of orientation-dependent information. Therefore, if 

participants in these mental rotation studies always performed most effi-

ciently—that is, if they used the sparsest effective representation—their rota-

tional speed would be independent of visual complexity. Exactly this pattern of 

results is usually misinterpreted as support for the holistic hypothesis. 

However, as discussed in the introduction and as the analysis of training ef-

fects (the increase in rotational speed from the first to the second block of trials) 

in Experiment 1b has confirmed, participants do not always perform most effi-

ciently and often represent more than just the comparison-relevant information. 

For polygons with many vertices, for example, certainly more information is 

available and might consequently be represented than for polygons with fewer 

vertices. The amount of available information might render a differentiation 

between comparison-relevant and comparison-irrelevant information harder 

with the more complex than with the less complex polygons. Visually very com-

plex stimuli might therefore mislead participants to represent much more than 

just comparison-relevant information. As the unnecessarily represented com-

parison-irrelevant information would also contain orientation-dependent infor-

mation, rotational speed would decrease accordingly. In line with this reasoning, 

rotational speed is higher when participants are informed about comparison-

irrelevant (redundant) information in a given stimulus (Yuille & Steiger, 1982). 

The probability of accurately discriminating between comparison-relevant 

and comparison-irrelevant information in a given stimulus set and consequently 

the probability that only comparison-relevant orientation-dependent informa-

tion is represented should additionally increase with participants’ familiarity 

with the employed stimuli. Indeed, when stimuli are well known to participants 

(as in Cooper, 1975; Cooper & Podgorny, 1976) no influence of visual complex-

ity on rotation rate is found. In light of the present results, it appears that when 

stimuli are familiar, only the single piece of comparison-relevant orientation-

dependent information is rotated in usual mental rotation studies employing 

two-dimensional stimuli. Consequently, rotational speed increases with practice 

on the rotated stimuli (e.g., Heil, Rösler, et al., 1998; Pylyshyn, 1979; Tarr & 

Pinker, 1989; see also our analysis of training effects in Experiment 1b) and 
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rotational speeds for visually simple and visually complex stimuli converge as 

these stimuli become familiar (Bethell-Fox & Shepard, 1988). 

The tendency to represent comparison-irrelevant information should on the 

other hand increase with the difficulty of determining which information is 

comparison-relevant, for example, with the difficulty of the comparison (see M. 

D. Folk & Luce, 1987; Pylyshyn, 1979). This explains why mental rotation some-

times occurs even when the task does not include any comparison-relevant 

orientation-dependent information at all. Förster et al. (1996) found a mental 

rotation effect even though they employed hard to discriminate polygons as 

mismatching stimuli instead of mirror images. It appears that Förster et al.’s 

participants did not use the most efficient representation but represented and 

rotated comparison-irrelevant orientation-dependent information. With train-

ing on Förster et al.’s stimuli or with appropriate instructions the mental rota-

tion effect should disappear. 

In addition to the effects of visual complexity, familiarity, and task-difficulty, 

our results can also explain the effect of dimensionality on rotational speed 

(Bauer & Jolicoeur, 1996; Jolicoeur, et al., 1985). One piece of orientation-depen-

dent information is sufficient to differentiate between two-dimensional mirror 

images. Without restrictions on the possible rotational plane, rotations in three-

dimensional space must, in contrast, take two pieces of orientation dependent 

information into account (cf. Figure 1.3A). We suppose that it is this difference 

in the amount of relevant and therefore mentally represented orientation-

dependent information that influences rotational speed and not dimensionality 

per se. 

8.7.2 Inability to rotate 

Rock, Wheeler & Tudor (1989) convincingly demonstrated that observers are 

actually unable to imagine how an object looks after a rotation (see also Parsons, 

1995). Participants were unable to draw complex irregular three-dimensional 

objects in a new perspective; in addition, they were unable to recognize these 

rotated objects when recognition time was limited to 4 s and consequently time-

consuming alternative strategies (other than mental rotation) were suppressed. 
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Rock et al. argue that these results make a clear case against the assumption of 

mental rotation in general. However, actually, their data only show that their 

subjects were unable to mentally rotate full-blown visual mental images of ob-

jects. This finding leaves open the possibility that in usual mental-rotation tasks 

only orientation-dependent information is rotated. As we have shown, 

processing of one piece of orientation-dependent information is sufficient to 

successfully perform most mental-rotation tasks. The complex and 

exceptionally irregular forms employed in the experiments by Rock et al., in 

contrast, purportedly rendered much more information comparison-relevant 

than manageable by inexperienced subjects. Consequently, in the light of the 

present article, Rock et al.’s data do not disprove the ability of mental rotation in 

general, but only the ability to rotate full-blown visual mental images. 

8.7.3 Possible rotation mechanisms 

The idea of visual mental images in mental rotation took much of its appeal 

from the fact that a certain degree of rigidity is intuitively ascribed to such 

representations. Visual mental images apparently cannot be submitted to just 

any type of transformation. Mental rotation might be performed incrementally, 

because people simulate how the presented object looks like when rotated. This 

simulation must go through a series of intermediate steps because participants 

can tell how an image looks like when slightly rotated but the image loses its 

inner structure when rotated around too large an angle. In order to prevent 

such lost, Kosslyn (1994) reasons that the structure must be updated after each 

rotational step. However, a similar rigidity might also apply to a spatial mental 

representation. Maybe people lack a direct mapping of the values of orientation-

dependent information for large rotational angles. They might however be able 

to perform small changes in orientation-dependent information and achieve 

larger rotations by concatenating these small manipulations. 

That the process of mental rotation itself is spatial or simulates a spatial be-

havior is rather self-evident; the present article shows that also the representa-

tion this spatial process works on specifies only spatial information. Even more, 

we can further constrain the information which is rotated, namely to orienta-
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tion-dependent spatial-relational information. The smaller the informational 

content of the processed representation the more efficient the process that 

manipulates this representation can be (cf. Just & Carpenter, 1985). An algo-

rithm that manipulates a pictorial representation, for example pixel-wise, must 

employ much more resources than a mechanism that works on pieces of ab-

stract spatial-relational information, that is, on much less information than is 

included in an image. Future models and theories of mental rotation should be 

based on the active representation and manipulation of orientation-dependent 

information only (cf. Morgan, 1983), while all other relevant information can be 

stored passively for the duration of the rotation process. 

8.7.4 The special situation of 180°-tilts 

An important yet unanticipated outcome of the preliminary experiment, was 

that mental manipulations of 180° appear to be (at least by some participants) 

solved in a qualitatively different way (cf. Cooper & Shepard, 1973). Specifically, 

participants appear to be solving these trials not by mental rotation, but by men-

tal flipping a representation first along the horizontal and then along the vertical 

axis (see Figure 8.2). The response pattern of one participant who was excluded 

for consistently erring on 180° trials (6.5% correct for 180°20, 96% correct for 

other tilts) may be best explained if she flipped the mental representation along 

the horizontal axis. Critically, she apparently did not execute the second flip 

which would have been necessary to arrive at a 180°-rotated representation 

(see Figure 8.2). In fact, a second participant reported having realized commit-

ting this error during practice trials and having adjusted his strategy by also 

executing the second flip in the remaining trials. 

 

Figure 8.2. Illustration of a 180° transformation using mental flipping instead of 

mental rotation. 

                                                        
20 While guessing would lead to a 50% correct rate. 



178 The Representation in Mental Rotation 

This complements response time data collected by Murray (1997). In a first 

experiment he could show that subjects indeed can flip a representation around 

the horizontal axis when they are instructed to do so. This process takes less 

time than a 180° rotation. Using this difference in speed, in a second experiment, 

Murray could successfully classify part of the subject sample as using a flipping 

strategy while the other part used a rotation strategy in an identification task 

with upside-down stimuli. Our two participants may have employed a flipping 

strategy without being instructed to do so. We suppose that more participants 

may have employed a flipping strategy for 180° trials in the preliminary 

experiment, but without making the mistake which would have brought their 

strategy to light, namely omitting the second flip. 

One important implication for research on mental rotation is that data in 

180° trials should be interpreted with caution. These data might not be compa-

rable to other rotational angles, because (1) the amount of mental effort neces-

sary for flipping two times could differ from the amount of mental effort for 

rotating 180°, that means flipping and rotating could differ quantitatively and (2) 

the process of flipping may be qualitatively different to the process of rotation. 

For example, flipping might not necessitate representations in intermediate 

orientations (Kanamori & Yagi, 2002), while just this characteristic is quite 

important for the claim of mental rotation being an analogue process (e.g., 

Cooper, 1976). Compounding this problem is the possibility that part of the sub-

ject sample in a given mental rotation experiment uses rotation and the remain-

ing part uses flipping for performing 180° trials, thereby inflating the error var-

iance and undermining the validity of the obtained measures. 

How this alternative strategy might work becomes evident when consider-

ing the main finding from Experiments 1 to 4 that the mental rotation process 

works on pure orientation-dependent information. With this knowledge it be-

comes apparent why flipping in contrast to rotation in the picture plane does 

not involve intermediate representations of the stimulus (Kanamori & Yagi, 

2002). In order to flip a stimulus only one processing step on orientation-depen-

dent information is necessary: “to the left of” directly becomes “to the right of” 

for a flip around the vertical axis and “above” becomes “below” for a flip around 

the horizontal axis. This mechanism would clearly differ from a 180°-rotation of 
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a mental image in the depth-plane as assumed by Murray (1997). If this is the 

case, mental rotation would not be the only process that manipulates orienta-

tion-dependent information. 

8.7.5 Imagery and perception 

The finding that an active mental representation can specify spatial information 

without being visual has important implications beyond mental rotation. Mental 

representations of this type certainly play a role in many other cognitive tasks 

and in daily life. It is rather uncontroversial that imagery and visual cognition 

are closely related and that findings from both areas should be explainable in a 

common framework (e.g., Kosslyn, 1994; Palmer, 1999). Especially questions 

concerning the format of representations, shape recognition and the interface 

between perception and cognition might best be approached from both per-

spectives (Pinker, 1984). If, as was the case in the present study, a type of spa-

tial-relational information between stimulus parts can be factored apart and be 

represented detached from other spatial relations, this shows that it is at least 

possible to represent stimuli in a purely structural way as structural description 

theories of object recognition assume (for an overview, see Palmer, 1999; 

Pinker, 1984). A weakness of structural description theories has been that the 

elements (primitives and relations) employed by structural descriptions were 

not sufficiently specified (Palmer, 1999; Pinker, 1984). The present findings 

constitute evidence for the existence of one such presumably elementary rela-

tion (orientation-dependent spatial-relational information) and a process spe-

cialized to manipulate it and only it (mental rotation) within our cognitive sys-

tem. The idea of mutually specialized representation-process pairs is in line 

with Anderson’s (1978) note that “well designed systems tend to have special 

representations for the kinds of information they have to process frequently. 

These representations are designed to facilitate the kind of computations useful 

for this kind of information.” However, note that orientation-dependent infor-

mation apparently can also be flipped (Chapter 8.7.4) and potentially also trans-

lated horizontally and vertically (e.g., a stimulus part that was to the right of 

might be moved leftwards until it is to the left of another stimulus part). 
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8.7.6 Orientation-dependent information in applied contex ts 

If orientation-dependent information is indeed an elementary type of informa-

tion employed by the human cognitive system, it purportedly is of importance 

for a huge variety of tasks in daily life. 

In general, when perceived from an imperfect perspective (i.e., not aligned 

with an egocentric reference frame of the viewer), orientation-dependent infor-

mation is much more difficult to process than orientation-independent informa-

tion, because mental rotation is necessary to determine how it looks from the 

canonical perspective. Therefore in situations in which the same object must be 

recognizable from different perspectives as few orientation-dependent informa-

tion as possible should be rendered important. Such situations arise, for exam-

ple, when a client sits in front of a consultant’s desk while the consultant sits 

behind it or in conferences where participants sit around desks. Whenever 

some material is spread out on the desk, the different participants perceive it 

from different orientations, and this causes difficulties whenever orientation-

dependent information is critical. For example, text is more difficult to read and 

some graphs are more difficult to interpret when seen bottom up. 

In addition, there is strong interindividual variability in the ability to 

differentiate between left and right (e.g., Hirnstein, Ocklenburg, Schneider, & 

Hausmann, 2009) which might also drive the variability in mental rotation abil-

ity and the respective intelligence factor (W. Johnson & Bouchard, 2005). People 

ranking low on this ability are therefore potentially less suited for jobs with 

strong affordances on processing orientation-dependent information (e.g., flying 

an aircraft, driving a taxi or mechanical engineering). In neuropsychological pa-

tients suffering from orientation agnosia the parietal lobe is damaged. That is, 

these patients might have lost part of the brain regions for processing orienta-

tion-dependent information (e.g., Fujinaga, Muramatsu, Ogano, & Kato, 2005; 

Harris, Harris, & Caine, 2001; Karnath, Ferber, & Bülthoff, 2000; Turnbull, 

Beschin, & Della Sala, 1997). Indeed, the patient of Harris et al. (2001) showed 

reduced metabolism in the superior parietal and mid-dorsolateral frontal lobe 

(potentially premotor cortex). These might be the same areas which we found 

specifically sensitive to the amount of mental rotation and the amount of orien-

tation-dependent information (see Chapter 7.4.3; but see Turnbull, Della Sala, & 
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Beschin, 2002). Furthermore, children often confuse letters that differ in orien-

tation-dependent information only (e.g., b and d; e.g., Dehaene, et al., 2010). 

Potentially, children would benefit from a preparatory course on orientation-

dependent information before they start learning to differentiate between these 

letters; such a skill might additionally alleviate problems in geometry. In sum, it 

might be of high ergonomic, diagnostic and pedagogic interest to examine how 

the necessity to process orientation-dependent information can be avoided and 

how the ability to process orientation-dependent information can be assessed 

and improved. 

8.7.7 Disoriented object recognition 

One remarkable capability of humans is the ability to recognize an object even 

when encountered in a new perspective in which it was never seen before (see 

Chapter 1.4). This capability is usually examined by asking participants to name 

or categorize objects shown disoriented from upright (for reviews, see Jolicoeur, 

1990; Leek & Johnston, 2006). On early trials, the slope of the function relating 

identification time to angular displacement of to-be-identified disoriented ob-

jects is of similar magnitude as the slope found in mental rotation studies (e.g., 

Corballis, et al., 1978; Jolicoeur, 1985; Jolicoeur & Milliken, 1989; Jolicoeur, et al., 

1987). However, there are two important differences between these slopes. 

Firstly, objects disoriented by 180° are identified much faster than would be 

expected under the assumption of a linear relation between identification time 

and angular displacement. Compared with trials with disorientations of 120°, 

180° trials are solved only slightly slower (e.g., Jolicoeur & Milliken, 1989; 

Murray, 1995b) or even faster (e.g., Jolicoeur, 1985; Murray, 1995a, 1995b). 

Considering the findings for 180°-mental rotation trials as discussed above 

(Chapter 8.7.4) this indicates that one flip is sufficient for object recognition (cf. 

Murray, 1997). The ‘to the left/right of’ piece of orientation-dependent informa-

tion is apparently ignored. For most objects it does not matter whether they are 

seen from one or the other side—this information is habitually ignored in object 

recognition, because it actually is unimportant; it does, however matter whether 

an object is seen standing upright or upside-down. 
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Secondly, on later trials, identification time becomes nearly independent of 

the angular displacement from upright (e.g., Corballis & Nagourney, 1978; 

Corballis, et al., 1978). Apparently, participants perform mental rotation on ear-

lier but not on later trials (e.g., Jolicoeur, et al., 1985). In order to explain why 

mental rotation occurs, Jolicoeur (1990; see also, Jolicoeur & Milliken, 1989) 

assumed that on earlier trials participants are unable to recognize objects pre-

sented in a noncanonical orientation and therefore have to rotate a visual men-

tal image of the objects into an upright orientation. The recognition process 

then is a template-match comparison between the resulting visual mental image 

and upright oriented long-term memory entries. On later trails, the recognition 

process changes from a template-match comparison into a comparison of orien-

tation invariant features. As a consequence of this qualitative change of the 

recognition process, mental rotation becomes superfluous. 

According to our reasoning, the fact that mental rotation takes place indi-

cates that (in addition to other information) orientation-dependent information 

is processed. Apparently, participants in these object recognition tasks assume 

that orientation-dependent information is of importance. Orientation-depen-

dent information is important for determining how an object is oriented with 

respect to any frame of reference that is not centered on the object itself. 

However, for the recognition of an object, the importance of orientation-

dependent information is rather low. Usually objects do not appear to change 

identity by a mirror-reversal, meaning that orientation-dependent information 

is usually comparison-irrelevant for object recognition. In the seldom case that 

objects can be differentiated from each other only based on orientation-

dependent information, identification times show the usual mental rotation 

effect. This is, for example, the case for the characters q, p, b, and d (Corballis & 

McLaren, 1984). 

In our Experiment 1b, participants apparently processed some comparison-

irrelevant orientation-dependent information during the first block but were 

able to nearly exclusively focus on comparison-relevant orientation-dependent 

information during the second block of trials. In a similar fashion, participants 

in experiments on disoriented object recognition might process comparison-

irrelevant orientation-dependent information during earlier trials and thereby 
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waste time and cognitive resources. With practice on the task and with increas-

ing familiarity with the employed stimuli participants obviously discover that 

they can identify the presented objects without considering orientation-depen-

dent information (see also Chapter 3.6 and Figure 3.2). Participants conse-

quently stop processing and comparing this type of information. When no 

orientation-dependent information is processed, no mental rotation takes place, 

because there is no information the mental rotation process could potentially 

process. Participants, however, continue to compare comparison-relevant 

orientation-independent information between the presented stimulus and long-

term memory entries. The feature-based comparison process employed for ob-

ject recognition is the same on later as on earlier trials, but a certain type of fea-

tures, namely orientation-dependent information, is simply not taken into ac-

count anymore. 

In order to explain, why mental rotation occurs on earlier but not on later 

trials, Jolicoeur (1990; see also, Jolicoeur & Milliken, 1989) had to postulate two 

qualitatively different recognition processes, namely a template-match compari-

son and a comparison based on abstract orientation-invariant features. Postula-

tion of a template-match becomes unnecessary and a theory of object recogni-

tion becomes much more parsimonious by simply dropping the false assump-

tion that the mental representation in mental rotation is a visual mental image. 
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9. Conclusions 

The main topic of the present work is the mental representation that is rotated 

in mental rotation. We developed the hypothesis that this representation speci-

fies a potentially elementary type of spatial relation only, namely orientation-

dependent information. By developing a new mental-rotation task and carefully 

controlling the amount of comparison-relevant information, we were able to 

find abundant converging evidence in favor of this hypothesis from which we 

here repeat only the most striking. 

In Experiment 1a and 1b, rotational speed depended on the amount of 

represented orientation-dependent information only. As participants of Experi-

ment 1b became experienced, which we argue increases the experimental con-

trol over their representations, we even found a strict linear relationship be-

tween the amount of represented orientation-dependent information and rota-

tional speed—doubling the amount of represented orientation-dependent infor-

mation resulted in halving rotational speed. The amount of represented orienta-
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tion-independent spatial-relational information, the amount of comparison-

relevant stimulus parts and visual complexity in contrast did not influence rota-

tional speed at all. 

Employing the same stimuli as in the previous experiments, in Experiment 2 

we extracted slow potentials from the EEG measured during the rotation inter-

val. These were exploited as an online-measure of representational content. In 

an early processing phase slow potential amplitude was sensitive to orientation-

independent information/visual complexity whereas it was sensitive exclusively 

to the amount of orientation-dependent information during a later phase. We 

concluded that the employed representation is visually encoded but then re-

coded into a format suited for the process of mental rotation. 

In Experiment 3, we went one step further and identified the cortical regions 

that hold the mental representation in mental rotation. This was achieved by 

searching for those cortical areas that become more active with an increasing 

amount of orientation-dependent information. We reasoned that in order to be 

manipulated, a mental representation should be available in the same areas that 

also perform the manipulation proper. As predicted, rotation-specific and orien-

tation-dependent information-specific activation was found in a fully overlap-

ping set of cortical areas. 

Comparison times from all four Experiments as well as P3bs observed in 

Experiment 2 further indicate that the representation employed for the com-

parison process which follows mental rotation proper also explicitly represents 

orientation-dependent information only. This indicates that the mental repre-

sentation is not recoded after mental rotation. Apparently, the same type of 

information is explicitly represented for the comparison as during rotation. 

In sum, we were able to show that, in contrast to introspection and in con-

trast to implicit and explicit beliefs of most researchers in the field, the mental 

representation manipulated by the process of mental rotation is not visual in 

any sense but exclusively represents orientation-dependent spatial-relational 

information. As a side effect, we developed and validated several new tech-

niques to manipulate and measure mental representational content. Further-

more, the insights into the nature of the representation in mental rotation as 

gained by the present work help dissolving discrepant findings about the influ-
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ence of stimulus complexity on rotational speed and are instructive for theories 

on the process of mental rotation proper as well as for theories of object 

recognition. 
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10. Appendix 

As mentioned above (Chapter 4.2.4), accuracy data did not add to an under-

standing of the processes or representations involved in mental rotation. As a 

consequence, we did not report any analysis on accuracy data for Experiment 1a, 

1b, 2 or 3. Instead, all accuracy means for each Stimulus Type × Rotational 

Angle- and each Stimulus Type × Match Type cell are given in Table A1. 
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Table A1 

Mean Accuracies and 95%-Confidence Intervals (CIs) from Experiments 1a, 1b, 

2 and 3. 

Cell 1a 1b 2 3, rot 3, ret 

Simple, 45° .98 .95 .98 .95 .96 

Simple, 90° .97 .97 .97   

Simple, 135° .95 .91 .94 .93 .96 

V. Complex, 45° .94 .94 .92 .89 .89 

V. Complex, 90° .91 .94 .91   

V. Complex, 135° .90 .94 .91 .88 .86 

Complex, 45° .91 .92 .92 .86 .92 

Complex, 90° .87 .89 .90   

Complex, 135° .79 .80 .84 .79 .86 

CI (interaction)     ±.02     ±.02     ±.02     ±.02     ±.03 

Simple, match .96 .95 .96 .95 .95 

Simple, dep1 .97 .95 .96 .92 .96 

CI (match type)     ±.01     ±.01     ±.01     ±.06     ±.02 

V. Complex, match .94 .95 .93 .93 .92 

V. Complex, dep1 .96 .92 .96 .90 .95 

V. Complex, indep .83 .89 .83 .77 .71 

CI (match type)     ±.03    ±.03     ±.04     ±.07     ±.06 

Complex, match .88 .90 .91 .88 .91 

Complex, dep1 .93 .85 .92 .85 .93 

Complex, indep .73 .83 .77 .67 .72 

Complex, dep2 .83 .84 .87 .77 .92 

CI (match type)     ±.05     ±.05     ±.04     ±.06     ±.06 

Note. CIs are calculated according to the procedure described by Jarmasz and Hollands 

(2009) and are corrected for violations of the sphericity assumption by ε (Greenhouse & 
Geisser, 1959) as suggested by Loftus and Masson (1994). CIs are given for the Stimulus 
Type × Rotational Angle interaction and for the effect of match type, separately for each 

stimulus type. V. Complex = visually complex; dep1/2 = mismatch in orientation-dependent 
information 1/2; indep = mismatch in orientation-independent information. 
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