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An extract from Alois Alzheimer’s interview with the severely demented Auguste Deter in 1901. She 

represents the first reported case of Alzheimer’s disease.  

Reprinted from Maurer et al., Auguste D and Alzheimer’s disease. Lancet 349, 1546-9 (1997). 

 

What is your name?  

Auguste.  

Last name?  

Auguste.  

What is your husband’s name?  

 Auguste, I think…  
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 Abstract 

I 

 

ABSTRACT 
The blood-brain barrier (BBB) rigorously shields off the central nervous system from the periphery thereby 

protecting the fragile brain homeostasis. Yet, it also causes many potentially effective brain drugs to fail in vivo 

- not because of a lack of potency, but for they cannot enter the brain parenchyma. Nanoparticles enable brain 

drug delivery by acting as Trojan Horses, masking the original physicochemical properties of a drug and 

allowing targeted transport to biostructures, thereby enlarging the pool of brain drug candidates, such as 

potential anti-Alzheimer’s disease (AD) drugs. Flurbiprofen (FBP) is a non-steroidal anti-inflammatory drug 

(NSAID) that lowers amyloid beta (Aβ) and AD prevalence in high dose long-term treatment. Still, an FBP 

enantiomer failed in clinical trials with AD patients, likely for its poor brain penetrating capacity. This study 

revisits FBP as an anti-AD drug by packing the drug into poly(lactic acid) nanoparticles (PLA-FBP NP). 

PLA-FBP NP crossed an advanced in vitro BBB model (consisting of primary porcine brain capillary endothelial 

cells (pBCEC) on Transwell® inserts to allow a blood and a brain compartment separation). Also, PLA-FBP NP 

reduced Aβ42 burden (generated by AD model cells) in the brain compartment – notably without destroying 

barrier integrity. These promising in vitro findings highlight the potential of nanotechnology-based approaches 

as a chance in BBB crossing for the prevention and treatment of neurodegenerative disorders. 

 

Graphical abstract of this thesis. The drug flurbiprofen might positively impact amyloid-β (Aβ) burden, but failed in clinical trials for it crosses the blood-
brain barrier insufficiently in vivo. When the drug is incorporated in nanoparticles, it crosses a primary porcine in vitro blood-brain barrier model and 
reduces amyloid-β levels in the brain-representing compartment. Flurbiprofen mediates amyloid-β reduction by modifying the enzyme activity of 
γ-secretase.   
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ZUSAMMENFASSUNG 
Die Blut-Hirn-Schranke (BHS) trennt Peripherie und Zentralnervensystem voneinander um die fragile 

Hirn-Homöostase zu schützen. Allerdings scheitern daher viele potentiell effektive Neurotherapeutika 

in vivo – sie können die BHS oft nicht überschreiten. Nanopartikel können den Transport ins Gehirn 

vermitteln indem sie als Trojanische Pferde die physikochemischen Eigenschaften der Substanzen 

maskieren und einen zielgerichteten Transport erlauben. Dies vergrößert die Anzahl potentieller 

Neuropharmaka, z.B. gegen die Alzheimer Krankheit (AD). Flurbiprofen (FBP) gehört zu den nicht-

steroidalen Antirheumatika, die Amyloid beta (Aβ) und die AD-Prävalenz bei hoch dosierter 

Langzeitgabe verringern können. Dennoch verliefen klinische Studien mit AD Patienten enttäuschend, 

wahrscheinlich, weil FBP die BHS nur schlecht passiert. Diese Arbeit greift FBP wieder auf, indem die 

Substanz in Polymilchsäure-Nanopartikel (PLA-FBP NP) verpackt wird. PLA-FBP NP konnten ein in vitro 

BHS Modell (basierend auf primären porzinen Hirnkapillarendothel-Zellen (pBCEC) auf Transwell® 

Einsätzen zur Teilung in Blut- und Hirn-Kompartiment) überwinden. Darüber hinaus konnten die 

Nanopartikel Aβ42 im Hirn-Kompartiment (produziert von AD Modell-Zellen) reduzieren – ohne dabei 

die Barriere-Integrität zu zerstören. Diese vielversprechenden in vitro Daten unterstreichen das 

Potenzial Nanotechnologie-basierter Ansätze zur Überwindung der BHS für die Therapien und 

Prävention neurodegenerativer Erkrankungen. 
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ABBREVIATIONS  
 

°C Degrees Celsius 

µ Micro 

AChE Acetylcholine esterase 

AD Alzheimer’s disease 

AEBSF 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride 

AIDS Acquired immune deficiency syndrome 

ALS Amyotrophic lateral sclerosis 

ApoE3 Apolipoprotein E3 

APP Amyloid precursor protein 

ATP Adenosine triphosphate 

BACE1 β-secretase 1 (also known as β-site amyloid precursor protein cleaving enzyme 1, β-site APP 

cleaving enzyme 1, membrane-associated aspartic protease 2, memapsin-2, aspartyl 

protease 2, and ASP2) 

BBB Blood-brain barrier  

BSA Bovine serum albumin 

Cld-3 Claudin 3 

Cld-5 Claudin 5 

CLSM Confocal laser scanning microscopy 

CNS Central nervous system 

COX-1,-2 Cyclooxygenase-1,-2 

CSF Cerebrospinal fluid 

CYP  Cytochrome P450 

DAPI  4',6-diamidino-2-phenylindole 

DHA Docosahexaenoic acid 

DMEM Dulbecco's modified Eagle medium 

DMSO Dimethyl sulfoxide 

dpm Decays per minute 

EDC 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 

Em Emission 

EMA European medicines agency 

ESAM Endothelial selective adhesion molecule 

Ex Excitation 

FBP Flurbiprofen 

FBS Fetal bovine serum 

FCS Fetal calf serum 

FDA Food and drug administration 

g Gravity 

g Gram 

GI Gastrointestinal  

GPC Gel permeation chromatography 

GTP Guanosine triphosphate 

h Hour 

HAART Highly active antiretroviral therapy  

HD Huntington’s disease  

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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HIV Human immunodeficiency virus 

HPLC High-performance liquid chromatography 

HRP Horseradish peroxidase 

HSA Human serum albumin 

JAM  Junctional adhesion molecules 

LDLR Low density lipoprotein receptor 

LRP1 Low density lipoprotein receptor-related protein 1 

LRP2 Low density lipoprotein receptor-related protein 2 (also known as Megalin) 

MAO  Monoamine oxidase 

MEM Minimum essential medium 

MES 2-(N-morpholino)ethanesulfonic acid 

MHC Major histocompatibility complex  

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MRI Magnetic resonance imaging 

MS Multiple sclerosis  

NaCl Potassium chloride  

NCS New born calf serum 

NEAA Non-essential amino acids 

NRG1  Type III neuregulin 1  

NSAID Non-steroidal anti-inflammatory drug 

O/W Oil/water  

Occl Occludin 

PBCA Poly(butyl cyanoacrylate) 

PBS Phosphate buffered saline 

PD Parkinson’s disease  

PDI Polydispersity index 

PEG Poly(ethylene glycol) 

Pen/Strep Penicillin streptomycin solution 

PFA Paraformaldehyde 

PLA Poly(lactic) acid 

PLGA Poly(lactic-co-glycolic acid) 

PSEN 1, PSEN 2 Presenilin 1, Presenilin 2 

PVA Poyvinyl alcohol 

Resazurin  7-Hydroxy-3H-phenoxazin-3-one 10-oxide 

ROS Reactive oxygen species  

RT Room temperature 

RXR Retinoid X receptor 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

TER Transendothelial electrical resistance 

TJ Tight junction 

UK United Kingdom 

US United States of America 

VD Vascular dementia 

W/O/W Water/oil/water  

ZO-1 Zonula occludens 
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1 INTRODUCTION  
A strong barrier surrounds the human brain, rigorously and reliably shielding off most substances and 

pathogens to protect the fragile central nervous system (CNS) homeostasis. However, this barrier also 

often prevents successful drug treatment in case of brain-associated diseases.    

1.1 The blood-brain barrier: Obstacle in brain drug development 

Disorders of the brain are a significant problem today, including depression, schizophrenia, dementia, 

Alzheimer’s and Parkinson’s disease, epilepsy, cerebrovascular disease and brain tumors [1], but 

research and development for CNS disease drugs is highly complex. Substances may often show 

promising in vitro results in preclinical testing, but they often fail to benefit in vivo. Although the 

number of drugs for CNS treatment has steadily grown, too few drugs acting on the CNS have entered 

the market [2] – even though treatment tactics with small molecule drugs often may exist (Figure 1A). 

The limiting factor is the delivery to the brain. For example, in the early stage of the acquired immune 

deficiency syndrome (AIDS), the human immunodeficiency virus (HIV) infects the brain [3]. HIV can be 

significantly reduced by highly active antiretroviral therapy (HAART) in the periphery, but the cocktail 

of small molecule drugs partially cannot penetrate the brain parenchyma,  hampering HIV treatment 

if the virus settles down in the CNS of the patient [3, 4].  

1.1.1 The shortage of brain medications  

Transport of drugs to the brain is an exception rather than a rule: nearly 100 % of large molecule drugs 

and more than 98 % of small molecule drugs cannot gain access to the brain, leading to a very limited 

number of potential neuropharmaceuticals. Generally, only substances with a molecular mass less 

than 400-500 Da that form less than 8-10 hydrogen bonds in solvent water can diffuse to the brain in 

relevant amounts if no specific transport molecule is available. Also, the drug must not avidly bind to 

plasma proteins or be a substrate to the brain’s efflux transporters [5]. Only very few CNS disorders 

(depression or schizophrenia) respond to drugs of this category (Figure 1A).  

The brain seems to be fenced off from the rest of the body (as illustrated in Figure 1B). In the whole 

body autoradiogram of a mouse, sacrificed after intravenous injection of radiolabeled histamine, the 

CNS appears completely white; the overall rest of the body appears black and grey representing the 

amount of infused histamine (white areas in the abdomen represent air-filled intestinal loops). 

Whereas histamine (which only is approximately 100 Da in mass) perfused all capillaries in the 

periphery, it does not appear in the entire brain and spinal cord.  
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More than a century ago, Paul Ehrlich laid the foundation for the experiments leading to the discovery 

of the blood-brain barrier (BBB) by using trypan dyes [6, 7] that he originally developed in search of 

drugs against protozoa of the species Trypanosoma, which cause sleeping sickness (African 

trypanosomiasis). Peripheral injections of trypans lead to staining of the whole body of laboratory 

animals – with exception of the brain (Figure 1C).  

Edwin Goldman, systemically refined the experiments [7–9] and injected trypan blue in different 

animals (mice, rats, frogs, guinea pigs, rabbits, dogs and monkeys), and he also observed the same 

phenomenon. The dye distributed rapidly to the complete body with exception of the CNS. To rule out 

that this effect was due to a poor brain affinity, Goldmann performed the correct verifying experiments 

and injected the dyes not only to the periphery, but to the cerebrospinal fluids of the animals’ brains 

(Figure 1D). Vice versa, the CNS was stained, but not the body of the animal. He therefore proved that 

the distribution was independent from the dyes’ affinity, but that the dyes were caught in either the 

blood or the brain compartment of the body – dependent on the injection site. The actual structures 

responsible for separating the blood and the brain could only be proved to exist by Reese and 

Karnovsky with the introduction of scanning electron microscopy in the 1960s [10].  

 

  

 
Figure 1: The blood-brain barrier restricts body distribution of substances. (A) Drug therapy for brain disorders is difficult, even with small 
molecule drugs (adapted and modified from Pardridge [2]). Exceptions: L-dopa for Parkinson’s disease and cytokines for multiple sclerosis 
can enter the brain. (B) Autoradiogram of a mouse 30 minutes after intravenous injection of radiolabeled histamine. No signal was detected 
in the central nervous system, but everywhere else in the periphery (adapted and modified from Pardridge [2]). (C) Scheme of first 
experiment that hinted at the existence of such a barrier. Ehrlich developed trypan dyes that stained the periphery if injected into animals 
[6, 7]. (D) Goldmann systematically refined the experiments [7–9]. Not only staining the periphery by intravenous dye application was 
feasible, but also the inversion of the experiment. Injecting dyes into the CNS only stained the brain and cerebral fluids. These data proved 
the existence of a barrier between blood and brain parenchyma.  
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1.1.2 The structure of the blood-brain barrier  

Today we know that all higher organisms possess a blood-brain barrier (BBB) to maintain the unique 

and fragile homeostasis of a complex nervous system. A tight network of over 600 km of microvessels 

provides the human CNS with nutrients and exports toxic metabolites – nearly the linear distance 

between Hamburg and Munich (Figure 2A). Endothelial cells, growing on a basal lamina composed of 

collagen and laminine, line these cerebral microvessels and hence represent the barrier’s 

cornerstones. Astrocytes (which cover more than 90 % of the capillary’s surface), pericytes and 

neurons provide biochemical support via release of growth factors [11]. Together they are often called 

the “neurovascular unit” (Figure 2B).  

The very specialized brain endothelial cells – distinct from most other endothelia in the body – connect 

with each other and form a physical barrier (Figure 2C). The foundations are transmembrane tight 

junction (TJ) proteins that seal the paracellular pathway and play a key role in maintaining barrier 

function. Without accurate tight junction protein expression, the cellular barrier lacks appropriate 

resistance and is permeable to various substances. The first identified tight junction protein was zonula 

occludens [12]. Later, occludin and the very important claudin group were shown to block the aqueous 

pathway and force most molecules to take the transcellular route [13, 14]. Claudin derives from the 

Latin word “claudere”, meaning “to shut, to block”.  

Transcellular transport is highly regulated, thus resulting in a transport barrier (Figure 2C). 

Transporters on both sides of the endothelial layer import valuable nutrients and export noxious 

metabolites. Examples are glucose and amino acids that have their own transport system to maintain 

brain homeostasis: the brain only constitutes 2 % of body weight, but requires up to 20 % of the basal 

metabolism. Other valuable molecules are transported by receptor-mediated transcytosis: insulin, 

transferrin or apolipoproteins bind to their specific receptor protein at the BBB and are imported by 

clathrin-mediated endocytosis. This pathway leads to the formation of endosomes that are later 

acetated by proton pumps (and then are called lysosomes) before degradation. Another import 

process is adsorptive transcytosis: plasma proteins fuse with the plasma membrane of the endothelial 

cells due to their specific surface charge and are also transported across the barrier and released at 

the brain site.  

Different enzymes in the brain parenchyma contribute to the metabolic barrier (Figure 2C) function: 

peptidases and nucleotidases outside of the cell can degrade peptides and adenosine triphosphate 

(ATP); monoamine oxidase (MAO) and members of the cytochrome P450 (CYP) family inside the cell 

inactivate many neuroactive and toxic compounds [15]. 
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Figure 2: Simplified structure of the blood-brain barrier. (A) Schematic human brain that is lined with billions of blood capillary vessels, 
resulting in a remarkable large network. Brain data in the box from [2, 16–18]. (B) The neurovascular unit is composed of brain endothelial 
cells, basal lamina, pericytes, astrocytes and neurons. (C) Tight junctions seal the gaps between endothelial cells and represent the physical 
barrier. Efflux transporters (P-glycoprotein) possess many substrates that are exported if they cross the blood-brain barrier. Extra- and 
intracellular enzymes degrade a plethora of substances if they enter the brain parenchyma. JAM = Junctional adhesion molecules, ESAM = 
endothelial selective adhesion molecule, MAO = monoamine oxidase, CYP = cytochrome P450 (CYP1A and CYP2B). Modified after Abbott 
et al. [11]. 
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1.1.3 In vitro models try to predict in vivo success  

The BBB represents one of the most challenging hindrances in the body and therefore needs to be 

taken into account when trying to develop new CNS drugs. Today most of these studies are performed 

in laboratory animals, and consequently are expensive, labor intensive and under debate concerning 

ethical legitimation. Furthermore, it is often hard to choose or develop an appropriate animal model 

(transgenic or inbred strains, species variants). Generally, a robust, relatively simple, but still widely 

useable model is needed. Consequently, numerous in vitro models of the BBB emerged in order to 

complete and accelerate in vivo and human studies and to simplify the overwhelming complexity of 

this structure [19–21].  

In vitro approaches have various advantages compared to animal studies:  

• Less expense,  

• High throughput for drug permeability experiments, 

• Simplified working environment, 

• Less variability,  

• Higher reproducibility, 

• Higher versatility (manipulating possibilities). 

However, in vitro cellular models that aim at predicting permeability of drugs across the BBB need to 

fulfil certain criteria (summarized from Gumbleton and Audus [21]): First of all, the model must 

represent the permeability data for low (e.g., inulin or sucrose) and high (e.g., diazepam or 

propranolol) brain-penetrating substances, which can be set as an internal reference for the potential 

new CNS drug in debate. Secondly, the model must reflect the limited paracellular pathway, which 

forces substances to take the transcellular route across the BBB. Monitoring transendothelial electrical 

resistance (TER) indicates BBB integrity, but still provides only limited information regarding 

paracellular restriction. Thus, permeability studies with marker solutes are recommended. Thirdly, the 

model should possess a cell architecture that resembles the in vivo conditions, including morphology, 

cell-cell contacts, and expression of BBB relevant receptors, transporters and proteins. For 

nanoparticle-mediated drug transport studies, the expression of receptors that are capable of 

transcytosis is of upmost importance. Also, efflux pumps, most importantly P-gp, may have an 

enormous impact on BBB transit capacitance and therefore should be expressed accurately in an in 

vitro BBB model. Finally, a model ideally should allow easy handling and culturing, as well as high yield 

of cells for screening or high-throughput experiments. An immortalized cell line that stably expressed 

all abovementioned features would therefore be the optimal BBB model. However, until today, all 

brain endothelium cell lines failed to depict a realistically restricted paracellular pathway, drawing 

attention to primary cells as BBB model.    
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Immortalized brain endothelial cell lines are a very basic tool to mimic the BBB in vitro, advantages 

mainly comprise time and cost efficacy as well as low variability in experiments. Commonly used cell 

lines for BBB research are the murine bEnd3 [21, 22] and HBMEC [23], derived from human material. 

HBMEC was described as the most suitable human BBB model cell line, compared to 3 other cell lines, 

although HBMEC only expresses crucial proteins like claudin-5 or zonula occludens on a very low level 

[23]. Another disadvantage of cell lines is their low TER: bEnd3 cells exhibit TER values lower than 

60 Ω*cm2 in general [21]; HBMEC display TER values lower than 50 Ω*cm2 in cell cultures [23].  

Primary capillary endothelial cell cultures are a compromise between in vivo experiments and cell line 

based in vitro models, since BBB characteristics are generally better than in simple models (like bEnd3), 

but the experiments are not defined as animal studies. However, since yields of brain capillary 

endothelial cells from rodents are relatively low (e.g. 1-2 million cells per rat brain), large experimental 

setups need a vast amount of animals to be sacrificed, raising ethical concerns. Bovine (first described 

by Bowmann et al. [24]) and porcine species gained more and more attention as an alternative source 

for brain capillary endothelial cells, since cell yields are higher: for bovine material ~50 million viable 

cells per brain are reported [21]; the preparation protocol for porcine material used in this study 

usually results in 20-30 million cells per brain. Bovine models were widely neglected in Europe after 

bovine spongiform encephalopathy (BSE) appeared in the nineties, and the generation of porcine 

models was focused on, pioneered by the group of Galla [25]. TER of porcine BBB model used in this 

study can exceed 500 Ω*cm2 depending on the surface grown on [26, 27].    

In vitro models were continually refined, and today range from static horizontal cell culture systems to 

advanced three dimensional (3D), flow-based cocultures [28–31]. For example, NDIV-BBBr [28, 29], 

µBBB [30] and SyM-BBB [31] take into account the blood flow through a 3D vessel construct to induce 

shear stress and limit sedimentation of samples to depict realistic local concentration of drugs, leading 

to better predictability of drug transport in vivo.  

But all in all, regardless of all efforts made to optimize in vitro BBB models, mimicking the BBB on a 

cellular level is a challenging task and is associated with serious drawbacks as it is for any in vitro cellular 

model: cells cultivated ex situ lose their natural environment and lack external stimuli and physiological 

factors. They may modify expression of organ-specific, relevant features such as transporters, proteins 

and ligands which can lead to altered characteristics in vitro. Thus, in vitro findings always need to be 

verified within in vivo experiments.  
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1.1.4 Strategies for blood-brain barrier circumvention 

Strategies to deliver drugs to the brain in vivo are rare and often appear rather harsh: One common 

invasive approach is, for example, to inject hyperosmolar mannitol solution within the carotid artery. 

The osmotic shock shrinks the cells and disrupts the intercellular connections, so that co-applied drugs 

can pass the endothelial cell layer. Also, ultrasonic sound waves are used to forcibly break down the 

blood-brain barrier [32]. These techniques are not specific and allow uncontrolled passage of drugs; 

adverse side effects may comprise changes in neuropathology, brain vasculopathy and seizures [33–

37]. Even more radical is intraventricular injection of drugs or implantation of depots (Figure 3). Ipso 

facto, these are brain surgery procedures with all associated risks like intracranial infections [38] or 

brain edema [39]. Furthermore, in the brain parenchyma the drug concentration decreases 

logarithmically with the diffusion distance, leading to a very low bioavailability even close to the 

injection site [2, 40, 41].  

Non–invasive methods improve the treatment procedure, but they are rarely successful. The 

modification of drugs to improve blood-brain barrier crossing can lead to loss of function, whereas the 

intranasal application via the nervus olfactorius (a window in the blood-brain barrier) drastically 

decreases bioavailability [42]. Inhibition of efflux transporters (like P-glycoprotein) [43] allows some 

drugs to penetrate into the brain parenchyma, but entails severe, mostly intolerable adverse effects. 

A promising approach to combine the beneficial characteristics of non-invasive techniques is to use 

nanoparticles as drug carriers. Various studies showed that intravenous injection of drug-loaded 

nanoparticles can lead to drug release in the brain (for review see [39], also see 1.2.2): The 

nanoparticles can be transcytosed at the BBB by receptor-mediated pathways. The incorporated or 

adsorbed drug itself is not modified and can perform its original task after the particle matrix releases 

it into the brain. 

 

 

Figure 3: Invasive strategies for blood-brain barrier circumvention. (A) Intracerebral implant (2 mm disc with 125I-labeled nerve growth factor 
(NGF)) releases the drug only at the local depot site (autoradiogram of rat brain). Adapted from Pardridge [44]. (B) Implantation of GLIADEL® 
wafers (polymer loaded with chemotherapeutics for the treatment of recurrent gliomas) during human brain surgery. Adapted from Lesniak 
and Brem [45]. (C) Ommaya reservoir allows intraventricular injection of drugs. Adapted and modified from Mehta et al. [46]. 
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1.2 Nanotechnology: Promising approach for brain delivery  

Pharmacology today faces the challenge of efficient drug transport and distribution to desired organs. 

The advantages are seductive compared to classical, non-targeted administration of drugs: Specific 

transport allows a higher therapeutic value at the desired site of action and reduces adverse side 

effects in the periphery, therefore being advantageous compared to classical, non-targeted 

administration of drugs. For the treatment of brain disorders, nanomaterials represent an interesting 

pharmacological tool to overcome the otherwise insurmountable structure of the blood-brain barrier. 

In brief, nanoparticles can act as molecular Trojan horses [47]. 

1.2.1 What are nanoparticles? 

Nanotechnology is a versatile, advantageous and fast emerging biomedical field and a plethora of 

nano-sized formulations is being developed right now. For pharmaceutical purposes, nanoparticles are 

defined as solid, biodegradable colloids, with diameters ranging from 1 to 1,000 nm, and bearing drugs 

or other biologically active substances [48, 49]. Usually, nanoparticles intended for therapeutic 

approaches consist of at least two components: a basis polymer to form the particles and one 

pharmaceutically active substance that can be incorporated, adsorbed or chemically bound [49]. The 

preparation method depends on the basis material and can either be achieved by polymerization or 

dispersion processes. Natural macromolecules as basis material include human serum albumin (HSA), 

sodium alginate, chitosan or gelatin (for review of nanoparticle preparation see [50]). Common 

examples for synthetic, biocompatible polymers for nanoparticle preparation are poly(lactic acid) (PLA) 

and poly(glycolic acid) (PGA), or a copolymers from PLA and PGA, resulting in poly(lactic-co-glycolic 

acid) (PLGA) (Figure 4A), which are approved by the United States food and drug administration (FDA) 

[51–53] and frequently serve as basis material for nanoparticle preparation [54]. The human body 

metabolizes these polyesters into glycolic acid and lactic acid. These acids then are decomposed within 

the citric acid cycle to form water (H2O) and  carbon dioxide (CO2), which explains their excellent 

biocompatibility [55]. Current examples of approved drugs that utilize PLA and PLGA as material for 

implants or microparticles are Trenantone [56] , Profact [57] or Zoladex [57].  

 

For successful application in clinic, therapeutic nanoparticles are expected to be at least [39, 47, 49]: 

• non-toxic 

• non-immunogenic 

• non-inflammatory  

• preferentially biodegradable 

• functionally targeted to desired bio-structures  

• capable of prolonged circulation in the bloodstream  
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Regarding biomedical applications, the usage of nanoparticles may differ strongly despite preparative 

similarities. The desired function can either be a therapeutic effect of transported substances, the 

diagnosis of a disease state or molecular imaging in clinic or research. Drugs can be incorporated or 

conjugated to the surface of nanoparticles; detection molecules (contrast agents, radionuclides or 

fluorophores) can be added; and targeting structures (antibodies or ligands) can be coupled to the 

surface (Figure 4B) (for review see [58]). The biological stability of the biodegradable nanoparticles 

influences pharmacokinetics [54]: the drug release from nanoparticles can be altered by variation of 

size, basis material composition or coatings to allow a broad release profile ranging from immediate 

to retarded. 

 

 

 

Figure 4: Nanoparticle basis materials and modifications for biomedical application. (A) Chemical structure of poly(glycolic acid) (PGA), 
poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA). (B) A multi-functionalized nanoparticle can carry: Ligands for imaging (contrast 
agents for magnet resonance spectroscopy, radionuclides for positron emission tomography (PET) or single-photon emission computed 
tomography (SPECT)), shell coating for enhanced circulation time in the bloodstream (e.g. with poly ethylene glycol (PEG)), fluorescent 
markers for in vitro application, ligand-modification for targeted transport (e.g. peptides, antibodies). Drugs and proteins for therapeutic 
purposes can be bound to the surface of the nanoparticles or incorporated. Image adapted and modified from Re et al. [58]. (C) Nanoparticles 
can be targeted to bio-structures: mouse brain slice in electron microscopy, arrows indicate endocytosed nanoparticles in brain endothelial 
cells and nanoparticles in the blood stream after intravenous injection, scale bar 2 µm, reprinted from Zensi et al. [59]. 
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1.2.2 Targeting nanoparticles to bio-structures  

Body distribution 

Nanoparticles are often injected intravenously to avoid the biological barriers of the gastrointestinal 

tract. However, after entering the bloodstream, they usually accumulate in organs of the reticulo-

endothelial system (liver, spleen, lungs and bone marrow), and are thereby hindered in fulfilling their 

original purpose. Fortunately, targeting strategies to bio-structures exist. The next sections summarize 

the success of nanoparticles for brain targeting.  

Brain targeting options 

Nanoparticles are an elegant way to overcome the challenging blood-brain barrier with minimal 

invasive damage. By masking the original physic-chemical properties of a drug, nanoparticles allow 

transporting substances that could not enter the brain by themselves. The fundamental idea is that 

ligand-modified nanoparticles mimic biomolecules that have a specific receptor at the blood-brain 

barrier. 

Guiding drug-loaded nanoparticles to the brain was first achieved by surfactants. Kreuter et al. [60, 61] 

and Schroeder et al. [62, 63] tested more than a dozen different surfactant coatings for nanoparticles 

that influenced BBB transit capability. Interestingly, incubating nanoparticles with polysorbate 80 

(Tween®80) or poloxamer 188 (Pluronic® F-68) causes anchoring of lipoproteins from blood plasma [64, 

65] or serum of the culture medium [39, 49, 66–68]. These lipoproteins, for example apolipoproteins 

E and/or A-I, adsorb to the nanoparticles’ surface and can interact with receptors at the BBB, resulting 

in cellular uptake of the drug-loaded nanoparticles in vitro and in vivo [26, 47, 69–75].  

A tangible example is loperamide, an opioid drug that cannot enter the brain and therefore has no 

analgesic effect. When loperamide-loaded nanoparticles are injected into mice, these animals become 

less sensitive in nociceptive experiments, proving drug transport to the brain. Kreuter et al. showed an 

analgesic effect of apolipoprotein-modified nanoparticles in nociceptive experiments in 2002 [66]. 

Later, Chen et al. [76] investigated the differences in brain transport capacity comparing loperamide-

loaded PLGA-PEG-PLGA nanoparticles coated with either Tween®80 or Pluronic® F-68. Direct coupling 

of apolipoprotein onto the nanoparticles’ surfaces to enable BBB crossing (Figure 4C), can even 

increase the effect compared to Tween®80-coated nanoparticles [77, 78].  

The mechanism of nanoparticle uptake was proposed to be endo- and transcytosis mediated by 

receptors of the low density lipoprotein (LDL) receptor family [49, 60] (that is also expressed on BBB-

forming endothelia [79, 80]). For example, Tween®80-coated PBCA nanoparticles were shown to be 

taken up by neuronal cells in in vitro primary cells, and the uptake could be blocked by LDLR antibodies 

[72].  
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Wagner et al. [81] further investigated the endocytosis processes and confirmed that ApoE-modified 

nanoparticles are actively transported via LDL receptor family members in in vitro experiments by using 

the receptor-associated protein (RAP). RAP blocks binding sites of most LDL receptor family members 

and after co-incubating RAP with ApoE-modified nanoparticles, binding capacity to BBB model cells 

was drastically reduced [81]. The prominent role of the LDL receptor related protein (LRP1) was 

highlightened by adding soluble purified LRP1 fragments when ApoE-modified nanoparticles were 

incubated on BBB model cells [81]. Binding to the cells was inhibited when fragments expressing the 

binding domain II or IV of LRP1 were added, verifying LRP1 involvement [81], because the domains 

(which are capable of binding numerous LPR1 ligands [82]) sequester the nanoparticles before they 

can bind to the cellular LRP1 receptors expressed on the BBB cells.  

Present-day examples for compound-loaded nanoparticles for brain delivery are listed in Table 1, many 

of them focusing on brain tumors or pain management. Another hot topic is the treatment of 

neurodegenerative disorders. 

Nanoparticles for Alzheimer’s disease   

Nanotechnology offers the chance to rethink drug treatment strategies that are ineffective due to their 

inability to transit the BBB. It suddenly seems possible to choose from a larger variety of substances in 

the anti-neurodegeneration drug development- but how could we use this new pharmacological tool? 

Which substances would stand a chance against dementia and Alzheimer’s disease? Are there any 

treatment options right now that nanoparticles could improve? To answer these questions, we need 

to take a closer look at the nature of these diseases.  

 

Table 1: Selected examples of drugs and substances bound to nanoparticles for brain delivery in in vivo studies. Adapted and modified 
from Li and Sabliov [83] and Wohlfart et al. [39].  

Compound Purpose Basis material# Surface modification§ Reference 

Campthotecin  Anticancer drug SLN Pluronic® F 68 [84] 

Dalargin  Analgesic drug PBCA Tween®80 [61, 84] 

Dexamethasone  Steroidal drug PLGA Alginate hydrogel [85] 

Doxorubicin Anticancer drug PBCA Tween®80 [86] 

Etoposide Anticancer drug Tripalmitin Without coating [87] 

FITC  Fluorescent marker PLA Tween®80 [88] 

Gemcitabine  Anticancer drug PBCA Tween®80 [89] 

Kyotorphin Analgesic drug PBCA Tween®80 [62] 

Loperamide Opiate receptor agonist PBCA, HSA, PLGA Tween®80, ApoE3, ApoA1, ApoB100, (R)-g7 peptide [78, 90, 91] 

Methotrexate  Anticancer drug PBCA Tween®80 [92] 

Rivastigmine  Anti-Alzheimer's drug PBCA Tween®80 [93] 

Sulpiride Atypical antipsychotic drug PLA Maleimide PEG [94] 

Tacrine Anti-Alzheimer's drug PBCA Tween®80 [95] 

Tubocurarine  Muscle relaxants PBCA Tween®80 [96] 

 

#Abbreviations: SNL=solid lipid nanoparticles, PBCA=poly(butyl cyanoacrylate), PLGA=poly(lactic-co-glycolic acid), PLA=poly(lactic acid), 

HSA=human serum albumin.  §Trade names: Tween®80=polysorbate 80, Pluronic® F 68=poloxamer 188.  
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1.3 Dementia and Alzheimer’s disease: A rapidly growing problem   

A long life expectancy accompanies an increased risk to develop dementia of the Alzheimer’s disease 

type. On the one hand, the obstacle of the blood-brain barrier complicates treatment of 

neurodegenerative disorders. On the other hand, often the etiology and neuropathological processes 

are far from being understood - preventing the development of causal approaches. 

1.3.1 Case numbers, prognosis and treatment options  

Dementia is not a specific disease itself, but rather a collective term to depict symptoms like memory, 

communication and cognitive deficiencies [97] that are often responsible for disabilities in the elderly. 

The name derives from the Latin word dementia meaning irrationality.  

Today, more than 46 million people in the world suffer from dementia (population numbers in 2015 

for comparison: Colombia 48.2 million, Spain: 46.4 million [98]). The World Alzheimer Report 2015 

predicts that these numbers will almost double every 20 years [99] due to demographic changes 

(Figure 5A) and even corrected the estimates to be more than 10 % compared to the World Alzheimer 

Report 2009. Regarding global incidence, in 2015 over 9.9 million new cases will occur, meaning one 

new case every 3.2 seconds [99]. Up to 80 % of dementia cases are supposed to be caused by 

Alzheimer’s disease (Figure 5B). The situation is expected to rapidly aggravate, because life expectancy 

immensely increased during the last century (Figure 5C) and age is the main risk factor for Alzheimer’s 

disease [100, 101]. 

 

 

Figure 5: Dementia and Alzheimer’s disease facts. (A) Estimated number of people suffering from dementia worldwide at different time 
points (data from World Alzheimer Report 2015 [99]). (B) Causes and types of dementia displayed in percent of all dementia cases (data from 
Alzheimer’s Association [97]). DWL=dementia with Lewy bodies, FTLD= frontotemporal lobar degeneration, PD= Parkinson’s disease, CJD= 
Creutzfeldt-Jakob disease, NPH=normal pressure hydrocephalus, VD= vascular dementia. (C) Mean life expectancy for Europe and the world, 
data from Riley [102].  
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Mortality and Morbidity  

Some Alzheimer’s disease cases are not recognized for years, but once diagnosed, patients only live 

for an additional four to eight years on average [103, 104]. They do not die of the Alzheimer’s 

symptoms themselves, but of the on-going loss of body functions as well as secondary infections like 

pneumonia. Death certificates often listed these acute conditions as the primary cause of death rather 

than the underlying Alzheimer’s disease – even though later disease stages directly contribute to death 

by drastically promoting terminal conditions. Tinetti et al. reported that dementia was the second most 

important contribution to death after heart failure in the elderly [105]. Therefore, Alzheimer’s disease 

is likely to cause more deaths than officially recorded, but already nowadays, it is the sixth-leading 

cause of death in the United States. Compared to other major diseases, deaths attributed to 

Alzheimer’s disease drastically increased in recent years [97], reflecting various facts: a rise in the 

actual number of deaths attributed to Alzheimer’s disease, better survival chances for other life 

threatening diseases and an improved reporting pattern for causes of death [97].  

Are there any treatment options? 

Unfortunately, nothing prevents or cures the cognitive degradation and constantly proceeding 

helplessness of Alzheimer’s disease patients. Today, no causal therapy exists. Patients may only receive 

moderate symptomatic relief from three different acetylcholine esterase (AChE) inhibitors (donepezil, 

galantamine and rivastigmine) and one N-Methyl-D-aspartate (NMDA) receptor inhibitor (memantine) 

[106] that are on the market. Whether patients really benefit from these substances is highly 

controversial [107–109]. Attendant symptoms for cognitive impairment (like depression, 

schizophrenia and aggression) are commonly treated either pharmacologically or 

psychotherapeutically [106, 110, 111]. 

Recently, the development of causal, disease-modifying strategies has been in the focus of attention 

and many substances have advanced to clinical trials. Unfortunately, they failed eventually and did not 

stop or slow down cognitive decline in patients (for example [112]). In contrast to symptomatic 

improvement, these drugs are not expected to be efficient in a few months, complicating and 

increasing costs of clinical trials. Many believe that these drugs will not be beneficial to patients after 

the disease has already been recognized. Upon diagnosis of Alzheimer’s disease, neuronal damage and 

synaptic dysfunction have already occurred and are unlikely to be reversible.  
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1.3.2 Discovery and neuropathology of Alzheimer’s disease 

What happens in the brain of an Alzheimer’s disease patient? More than 100 years ago, Dr. Alois 

Alzheimer (Figure 6A) gave a remarkable lecture at a Psychiatrists Meeting in Tübingen, Germany 

[113]. He presented a case report of his former patient Auguste Deter (Figure 6B): she was severely 

demented and died at the early age of 55 at the Frankfurt Psychiatric Hospital. When Dr. Alzheimer 

autopsied her brain, he noticed aggregated plaques and neurofibrillary tangles. Surprisingly, the 

chairpersons and audience gave little attention to Alzheimer’s topic. The next year, he published an 

article about Deter’s case, called “Über eine eigenartige Erkrankung der Hirnrinde” [113–115]. His 

former mentor, Emil Kraepelin, noticed the significance of Alzheimer’s findings, published a report in 

the 8th edition of his famous textbook Psychiatrie [116] and proposed the name Alzheimer’s disease 

for the illness.  

Today, pathologists reconfirm the two primary cardinal lesions that Alois Alzheimer found in Auguste 

Deter’s brain. Firstly, extracellular plaques (Figure 6C, D) consisting of amyloid-β peptide (Aβ) that 

evolve after proteolytic cleavage of the amyloid precursor protein (APP) (described in detail in 1.3.3) 

and secondly, intracellular neurofibrillary tangles (NFTs) that consist of hyperphosphorylated τ protein 

leading to loss of synaptic function and eventually neuronal death [117]. Release of τ also triggers 

further neurodegeneration since it is neurotoxic itself [118]. During the course of the disease, neurons 

and synapses progressively perish (especially in the cortex and sub-cortex) [119]. Furthermore, the 

innate immune system responds with the activation of inflammatory processes in the diseased brain 

(for review see [120]) that can be advantageous in early stages, but promotes further neuronal cell 

death in late stages. Loss of brain mass compared to a non-diseased brain (Figure 6E, F) often is 

reported in the advanced disease stages of Alzheimer’s disease [121]. It is very challenging to 

determine if one pathological structure described above “drives the disease, is a natural bystander or 

just represents an unsuccessful repair attempt” [122], especially in end stages of Alzheimer’s disease 

when numerous biochemical pathways change and result in altered gene expression and protein levels 

compared to the healthy brain. 

These massive alterations in severe Alzheimer’s dementia obviously influence mental and physical 

health of affected patients. Deter’s symptoms were typical for a late disease stage: She lost track of 

time and space, and could not remember where she put things. She could not remember details from 

her own history and gave answers that had no connection to the question. She increasingly lost 

language, visuospatial (“where-am-I”) and behavioural skills [123] as well as became unsocial in her 

family life. Like the majority of patients in the advanced stages of the disease [124], she became 

completely helpless and lost muscle mass and mobility. Around 1905, Deter’s condition worsened and 

she became confined to bed, was confused, incontinent and unable to feed herself [125]. 
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Figure 6: The discovery of Alzheimer’s disease. (A) Alois Alzheimer, German neuropathologist and namesake of Alzheimer’s disease, 
reprinted from Hippius and Neundörfer [113]. (B) The first person diagnosed with Alzheimer’s disease, Auguste Deter, reprinted from Maurer 
et al. [126]. She died early (55 years old) after a secondary infection in 1906. Alzheimer post mortem investigated her brain and noticed 
severe abnormalities. (C-D) Schematic differences between a brain of a (C) healthy person and a (D) patient suffering from severe Alzheimer’s 
disease. Notice the two cardinal findings that are characteristic for Alzheimer’s disease: neurofibrillary tangles and senile plaques composed 
of Aβ peptide. Also, activated microglia release pro-inflammatory molecules, such as chemokines, interleukines and reactive oxygen species 
in the diseased brain. (E) Normal brain compared to a (F) brain from an Alzheimer’s disease patient with diffuse atrophy in the cortex and 
enlargement of the ventricle. Brain atrophy indicates a dementia of the Alzheimer’s type, but is not a clear diagnostic tool, images copied 
from Bird [127]. 
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1.3.3 Etiology hypotheses of Alzheimer’s disease 

Why exactly people develop Alzheimer’s disease is not elucidated up to today (except for an inherited 

variant with causal gene mutations [128–132]). Most likely, the disease is a consequence of multiple 

factors rather than one deciding cause. Age is the main risk factor as well as genetic predisposition 

exists, but many questions remain. Scientists continue to try to understand and explain Alzheimer’s 

disease etiology. The first hypothesis was based on the loss of cholinergic activity in 1982 [133]. Today, 

the most common hypothesis, suggested by John Hardy and colleagues in 1991 [134], blames 

aggregated amyloid-β peptide plaques as a causal event in Alzheimer’s disease. George Bartzokis 

questioned the amyloid hypothesis as the actual cause of Alzheimer’s disease and proposed his myelin 

breakdown hypothesis [135, 136] in 2004 as a response (see below).  

The cholinergic hypothesis  

In Alzheimer’s disease, levels of choline acetyltransferase (ChAT) and acetylcholine (ACh) (synthesized 

by ChAT) are low [133], which promotes the downfall of cholinergic neurons. This is expected to 

contribute to the disease, but is likely not a primary event in Alzheimer’s disease development. It rather 

appears that deposition of amyloid plaques negatively affects cholinergic neurons and consequently 

lowers ACh synthesis, then (as a secondary event) resulting in further damages of cholinergic neurons 

and lower ACh receptor expression [133, 137–139]. Acetylcholine esterase (AChE) inhibitors target this 

effect in Alzheimer’s disease therapy. By inhibiting the degrading enzyme, ACh concentration and 

duration are elevated, thereby easing the patients’ symptoms in early and moderate disease stages.  

The amyloid hypothesis  

According to the widely postulated amyloid-β hypothesis [134, 140, 141], the accumulation of the 

neurotoxic Aβ plaques causes Alzheimer’s disease, caused by either elevated Aβ42 production in the 

diseased brain or by decreased physiologic Aβ42 clearing processes. Aβ plaques derive from the 

amyloid precursor protein (APP) that is naturally expressed in the brain (Figure 7).  

Special proteases – so-called α-, β- and γ-secretases - sequentially cleave the transmembrane APP and 

different APP fragments evolve. In the non-amyloidogenic pathway, α-secretase cleaving results in a 

soluble APPα fragment, which will not form plaques (Figure 7A). In the amyloidogenic pathway, 

consecutive cleaving of β- and γ-secretases occurs (Figure 7B). Firstly, β-secretase (also called BACE1) 

cuts off a soluble APPβ fragment and leaves a 99 amino acid long fragment in the plasma membrane. 

Secondly, the γ-secretase cleaving leads to the neurotoxic peptide composed of 42 amino acids (Aβ42), 

which is highly hydrophobic and tends to form complexes – resulting in the characteristic extracellular 

plaque formation (Figure 7B). Regulating secretase activity can therefore influence Aβ42 burden: 

γ-secretase blockers reduce Aβ42 level by complete enzyme inhibition, whereas γ-secretase 
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modulators elegantly promote a switch from Aβ42 to Aβ38 without affecting other important pathway, 

such as Notch (Figure 7C), a highly conserved, evolutionary ancient cell signaling pathway present in 

most multicellular organisms (for review see [142]). 

The myelin breakdown hypothesis 

Another model was postulated by Bartzokis in 2004 [135, 136]. He criticized that the amyloid 

hypothesis does not explain recent failures in clinical trials, when Aβ burden reduction failed to reduce 

cognitive decline. Bartzokis proposed that myelin (produced by oligodendrocytes) is involved in 

essential circuit functions and is especially vulnerable to damage, thereby promoting Alzheimer’s 

disease. Hardy countered that the amyloid hypothesis was accurate, but that the damage after Aβ 

deposition already occurred, was irreversible [128]. 

 

 

Figure 7: The molecular generation of Aβ plaques. (A) Aβ plaques derive when the amyloid precursor protein (APP), which is expressed in 
the healthy brain, undergoes a specific proteolytic pathway. Most of the APP is cleaved by α-secretase, leading to a non-toxic, solvable 
fragment (sAPPα) and a smaller fragment in the membrane (non-amyloidogenic). (B) The other cleaving pathway results in neurotoxic Aβ 
species: APP is first cleaved by β-secretase, which leaves a 99 amino acid long fragment in the membrane. In the next step, the γ-secretase 
complex cuts off the upper 38-43 amino acids, leading to the amyloidogenic Aβ42. This Aβ species is highly hydrophobic and hence forms 
complexes (Aβ plaques). Flurbiprofen (FBP) and other non-steroidal anti-inflammatory drugs can modulate γ-secretase activity and therefore 
might be beneficial for Alzheimer’s disease therapy. Adapted and modified from LaFerla et al. [143]. (C) γ-secretase activity can be 
pharmacologically regulated: while γ-secretase blockers result in decreases of Aβ38, Aβ40 and Aβ42 production and a down regulated Notch 
pathway, γ-secretase modulators switch the preference from Aβ42 to Aβ38 without affecting Aβ40 levels or Notch signaling (for further 
information see [144]). 
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1.3.4 Alzheimer’s disease variants 

Two variants of Alzheimer’s disease exist: A rare, early onset familial variant caused by gene mutations 

and a much more common sporadic variant with no obvious cause:  

Familial Alzheimer’s disease 

In the familial variant, causal mutations in APP processing genes facilitate the formation of neurotoxic 

Aβ species (Figure 7). Either the APP gene itself or γ-secretase-encoding genes (PSEN-1 or -2) are 

mutated – both resulting in elevated Aβ42 production. In the Swedish APP mutation variant 

(N/L670/671K/M), more Aβ42 is produced because the β-secretase prefers the mutated APP variant, 

thereby favoring the amyloidogenic pathway [128–132]. Causal gene mutation cases only comprise up 

to 10 % of patients. A recent article reported that Auguste Deter was one of them. After exhumation 

of her body for genome analysis, a mutation associated with familial Alzheimer’s disease was found 

[145].  

Sporadic Alzheimer’s disease 

Far more patients (90-95 %) suffer from the sporadic variant with no obvious cause. The main risk 

factor is aging, but various other factors may have an impact (e.g., infections or cardiovascular 

diseases). In terms of genetics, genome-wide association studies revealed risk correlations [128], like 

variations in endosomal vesicle recycling genes [146, 147]. Also, altered cholesterol homeostasis can 

lead to AD, especially apolipoprotein E (ApoE) variations play a major role in incidence: People carrying 

one or two copies of the E4 allele of apolipoprotein E (ApoE4) have an increased risk compared to 

other isoforms (such as the most common variant ApoE3) [148]. In the central nervous system, ApoE 

serves as the major carrier for cholesterol, playing a key role in synaptogenesis and repair mechanisms, 

which may directly cause faster AD progression. Interestingly, the different ApoE isoforms differ in 

their cholesterol transport capacity – and ApoE4 is the least efficient. Other interesting relationships 

between cholesterol and Alzheimer’s disease exists: intracellular cholesterol has been found to 

interfere with Aβ production [149] and Aβ can modulate cholesterol metabolism in the brain [150]. 

ApoE4 expressing cells also seem to be less effective in Aβ clearance and degradation and a negative 

effect in immunomodulation is suspected [151–154]. Furthermore, altered innate immune system 

responses [155] can increase the risk for AD [156, 157]: For example, fibrillary amyloid can bind to the 

complement factor C1 that activates the classical complement cascade [158, 159] promoting an 

inflammatory response. In addition, astroglia and microglia bear Toll-like receptors that recognize 

fibrillary amyloid. The role of these activated microglia can at the same time be beneficial (involved 

brain repair) and harmful (pro-inflammatory) [160–162]. Furthermore, variants in innate immunity 

genes can be a risk factor for Alzheimer’s disease [155].   
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1.3.5 Alzheimer’s disease risk reduction factors 

A minority of people seems to have a considerably lower risk of Alzheimer’s disease than the rest of 

the population: For example, a recent study reported of a natural APP gene mutation in a cohort of 

Icelanders that is associated with a lower risk for Alzheimer’s disease and dementia [163]. Also 

nutrition factors, such as intake of long-chain Ω-3 polyunsaturated fatty acids, are debated to protect 

from Alzheimer’s disease, but so far failed to be effective in clinical trials [164–167]. Even psychosocial 

factors (higher education, sports) are discussed to potentially lower the disease risk (for review see 

[168]). Remarkably, retrospective epidemiologic studies revealed that patients suffering from 

rheumatoid arthritis actually are less likely to develop Alzheimer’s disease [169]. Apparently, their pain 

medication evokes a protective effect.  

Painkillers against Alzheimer’s disease? 

Patients affected with rheumatism receive high doses of non-steroidal anti-inflammatory drugs 

(NSAIDs) for a long period. Numerous epidemiologic studies suggested that a sustained intake of 

NSAIDs during the therapy of rheumatoid arthritis reduced the risk of developing Alzheimer’s disease 

[169]. Consequently, NSAIDs were proposed for the treatment and prevention of Alzheimer’s disease 

nearly 25 years ago [170]. Scientists believed that NSAIDs either were beneficial due to their anti-

inflammatory properties or because they might directly target the amyloid processing [171–173]. In 

fact, NSAIDs are able to lower neurotoxic Aβ species [174, 175] by modulating γ-secretase activity 

(Figure 7C). For example, sulindac sulphide, ibuprofen and indomethacin were shown to lower 

neurotoxic Aβ42 production in vitro and in vivo rodent models [174, 175].  

The flurbiprofen failure 

Another promising NSAID candidate for Alzheimer’s treatment was flurbiprofen (FBP). The enantiomer 

of the racemic mother molecule R-flurbiprofen (Tarenflurbil, FlurizanTM) can lower Aβ42 species in vitro 

[176–178] (Figure 7C), but elegantly lost its influence on the cyclooxygenases (COX) 1 and 2. This 

feature was sought for in order to reduce the classical severe side effects mediated by COX activity 

alteration during high dose NSAID therapy.  

For several years, Myriad Genetics (an American molecular diagnostic company) conducted research 

and clinical trials to investigate R-flurbiprofen’s potency for Alzheimer disease therapy, but 

discontinued the development in 2008 [179–181]. R-flurbiprofen still showed some benefits in a phase 

II clinical trial for patients with mild Alzheimer’s disease, but failed in a phase III clinical trial, because 

it did not significantly improve patients’ thinking ability or influenced daily activities [182–184]. 
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Flurbiprofen (like many other NSAIDs) only poorly distributes to the brain parenchyma and hence may 

have failed to reduce Aβ42 in a satisfactory quantity in vivo. Although the substance is fairly lipophilic 

and consequently is expected to readily cross the BBB, distribution in the CNS is limited, because 

flurbiprofen tightly binds to plasma proteins [185]. Therefore, availability of flurbiprofen in the brain – 

if applied in low to moderate doses - is very restricted, potentially prohibiting a neuroprotective effect 

regarding Alzheimer’s disease pathology. In fact, only >5 % of applied acidic NSAIDs (ibuprofen, 

flurbiprofen, ketoprofen, naproxen) reach the brain or the cerebrospinal fluid (CSF) [177, 185–188].  

In vitro experiments suggest that flurbiprofen efficiently decreases amyloid burden in cellular 

Alzheimer’s disease models at concentrations of 50 µM and higher [68, 172]. In contrast, less than 

1.5 µM of ibuprofen or flurbiprofen is achieved at normal plasma concentration in in vivo experiments 

[185–188]. Higher doses (as given in rheumatoid arthritis) would be required to achieve a desired 

NSAID effect in the brain in patients, but the severe gastrointestinal side effects and toxicity rules out 

high dose treatment. 

Therefore, it is desired to improve the NSAIDs’ bioavailability in the brain in order to increase a 

potential therapeutic effect while reducing peripheral doses and associated side effects. Packing 

flurbiprofen into nanoparticles is expected to increase brain distribution by reducing plasma protein 

binding and masking the physicochemical characteristics of the drug. Nanoparticle-mediated brain 

transport has been shown to be effective in various cases, and can be further optimized by specific 

ligand coupling to even increase active nanoparticle uptake mechanisms.  
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2 AIM OF THIS THESIS 
Brain drug development is a highly complex task, regarding that the vast majority of substances cannot 

cross the blood-brain barrier (BBB) in vivo. Unfortunately, many of the in vitro models of the BBB –

originally intended to facilitate brain drug development – actually rather confuse the situation, 

because they often do not reflect the insurmountable obstacle of the BBB. By being more permeable 

than the in vivo BBB, unsuited in vitro BBB models lead to a plethora of false positive brain drug 

candidates. Therefore, a great need exists for reliable in vitro screening methods in order to predict 

BBB crossing capacity. Thus, substances that show little promise for in vivo success could be better 

identified and the enormous expenses of further investigation could be restricted. 

This thesis aims at identifying and investigating an in vitro model that displays excellent barrier 

qualities. Nevertheless, the in vitro model is supposed to be only moderately complex in order to allow 

high-throughput approaches for pharmaceutical industries in the long term. Here, primary 

brain material from the domestic pig Sus scrofa was selected, because it is expected to be 

advantageous for BBB model formation compared to a cell-line based approach for various reasons, 

including high genetic comparability to humans and large availability from slaughter processes 

intended for food production. The suitability of the model was intended to be assessed by state-of-

the-art techniques, such as investigating the expression of essential tight junction proteins and BBB-

relevant receptors, defining transendothelial electrical resistance and determining the permeability 

capacitance of radiolabeled marker substances across the barrier. 

After verifying a proper barrier function of the in vitro model, this thesis intends to address the 

question: Are nanoparticles a potential tool to allow transport of drugs that could not enter the brain 

by themselves? Specifically, this work should focus on the non-steroidal anti-inflammatory drug 

(NSAID) flurbiprofen. Flurbiprofen was proposed as an anti-Alzheimer’s disease drug, because it 

showed promising results in Aβ42 reduction in vitro and in vivo experiments and nevertheless failed in 

clinical trials, probably due to its poor distribution to the CNS. This study aims at revisiting the drug by 

incorporating it into nanoparticles for BBB transit. Various nanoparticular characteristics, such as 

influence on the barrier formation, the viability or integrity of BBB model cells should be investigated 

in this thesis. The actual drug transport capacity of the nanoparticles and, eventually, the ability to 

reduce Aβ42 should be assessed, and possibly increased by optimizing the nanoparticular formulations 

by surface modifications or adjusting the choice of basis material to influence drug release profiles. 

In addition, this work aims at discussing to what extend other diseases could profit from NSAID-loaded 

nanoparticles and which other pathways could causally be targeted in Alzheimer’s disease pathology, 

benefitting from nanotechnology. 
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3 EXPERIMENTAL PROCEDURES   

3.1 Materials  

Utensils and consumables 

Item Supplier 

CELLSTAR® aspirating pipettes Greiner Bio-One, Frickenhausen, Germany 

CELLSTAR® cell culture flasks Greiner Bio-One, Frickenhausen, Germany 

CELLSTAR® multiwell culture plates  Greiner Bio-One, Frickenhausen, Germany 

CELLSTAR® serological pipettes, div. sizes Greiner Bio-One, Frickenhausen, Germany 

Culture slides, glass, div. sizes BD Bioscience, Heidelberg, Germany 

FACS tubes (Polystyrene, Round-Bottom Tube)  Becton Dickinson, Heidelberg, Germany 

Microscopy chamber ibidi, Martinsried, Germany 

Plastic scintillation vials PerkinElmer, Boston, USA 

Storage bottles, polystyrene, div. sizes  Corning, Wiesbaden, Germany 

Transwell® inserts (3 µm and 0.4 µm pore size) Corning, Wiesbaden, Germany 

VACUETTE® EDTA Tubes Greiner Bio-One, Frickenhausen, Germany 

Vacuum filtration system TPP, Trasadingen, Switzerland 

VerexTM HPLC vials Phenomenex, Aschaffenburg, Germany 

Antibodies 

Primary antibodies  

Name Antigen  Host Supplier   

Anti-ApoA4 Apolipoprotein A4 (ApoA4) Mouse Cell Signaling, Boston, USA 

Anti-ApoE3 Apolipoprotein E3 (ApoE3) Mouse Cell Signaling, Boston, USA 

Anti-ApoER Apolipoprotein E Receptor (ApoER) Mouse Acris, Herford, Germany 

Anti-Cld-3 Claudin 3 (Cld-3) Rabbit  abcam, Cambridge, UK, 

Anti-Cld-5 Claudin 5 (Cld-5) Rabbit  abcam, Cambridge, UK 

Anti-LDLR LDL Receptor (LDLR) Rabbit  abcam, Cambridge, UK 

Anti-LRP1 Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Mouse  Kind gift from C. Pietrzik, Mainz 

Anti-LRP2 Low Density Lipoprotein Receptor-related Protein 2 (LRP2) Mouse abcam, Cambridge, UK 

Anti-Occl Occludin (Occl) Rabbit  abcam, Cambridge, UK 

Anti-ZO-1 Zonula occludens (ZO-1) Rabbit  ZYTOMED, Berlin, Germany 

    

Secondary antibodies 

Name Conjugation Isotype Supplier  

Goat Anti-Mouse  Alexa Fluor® 488 IgG Invitrogen, Molecular Probes, 
Eugene, USA 

Goat Anti-Rabbit  Alexa Fluor® 488 IgG Invitrogen, Molecular Probes, 
Eugene, USA 

Rabbit-Anti-Mouse Horseradish peroxidase IgG Santa Cruz, Dallas, USA 

Spectra data of dyes and conjugates 

 Excitation [nm] Emission [nm] 

Alexa Fluor® 488  495 519 

CellTracker™ Blue CMAC  353  466 

CellTracker™ Red CMTPX  577 602 

DAPI 358 461 

Lumogen® F Orange 240 524  539  

PromoFluor-488 Premium  490 516 

PromoFluor-633 635 658 
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Chemicals, biologicals and kits 

Item Supplier 
14C-diazepam  Hartmann Analytic, Braunschweig, Germany 
14C-inulin  PerkinElmer, Boston, USA 

Acetonitrile Sigma-Aldrich, Steinheim, Germany 

AEBSF  Sigma-Aldrich, Steinheim, Germany 

alamarBlue® cell viability assay reagent Invitrogen, Karlsruhe, Germany 

ApoE3 human recombinant, expressed in E. coli Sigma-Aldrich, Steinheim, Germany 

Aqua ad iniectabilia Berlin-Chemie, Berlin, Germany 

Aβ42 human ELISA Kit Life Technologies, Darmstadt, Germany 

BD Cytofix/Cytoperm™ Kit BD Biosciences, San Diego, USA 

Bovine Serum Albumin  PAA Laboratories, Pasching, Germany 

Carboxy-(PEG)4-amine Thermo, Langenselbold, Germany 

CellTrackerTM Blue CMAC and Red CMTPX  Invitrogen, Karlsruhe, Germany 

Collagen from human placenta, type IV Sigma-Aldrich, Steinheim, Germany 

Collagenase Biochrom, Berlin, Germany 

Dichloromethane Sigma-Aldrich, Steinheim, Germany 

Dispase® II (neutral protease, grade II) Roche Diagnostics, Mannheim, Germany 

Coomassie Brilliant Blue R-250 Bio-Rad Laboratories, Munich, Germany 

Divinylsulfone Sigma-Aldrich, Steinheim, Germany 

DMEM/F-12  Invitrogen, Karlsruhe, Germany 

DNAse Roche Diagnostics, Mannheim, Germany 

Easycoll Separating Solution Biochrom, Berlin, Germany 

EDC AppliChem, Darmstadt, Germany 

Ethyl acetate Sigma-Aldrich, Steinheim, Germany 

FACS-Flow, -Clean, -Rinse Becton Dickinson, Heidelberg, Germany 

Fetal Bovine Serum   Sigma-Aldrich, Steinheim, Germany 

Fetal Bovine Serum Gold  PAA Laboratories, Pasching, Austria 

Flurbiprofen Sigma-Aldrich, Steinheim, Germany 

Geneticin®  Invitrogen, Karlsruhe, Germany 

Gentamicin  Invitrogen, Karlsruhe, Germany 

HEPES  Invitrogen, Karlsruhe, Germany 

Hydrocortisone solution Sigma-Aldrich, Steinheim, Germany 

L-glutamine  Invitrogen, Karlsruhe, Germany 

Lumogen® F Orange 240  BASF, Ludwigshafen, Germany 

M199 Invitrogen, Karlsruhe, Germany 

MANNIT 20 %, mannitol solution Serag-Wiessner, Naila, Germany 

MEM NEAA Invitrogen, Karlsruhe, Germany 

MEM Vitamins Invitrogen, Karlsruhe, Germany 

Newborn Calf Serum  Biochrom, Berlin, Germany 

N-hydroxysulfoxuccinimide Sigma-Aldrich, Steinheim, Germany 

Nu-Serum™ IV  BD Biosciences, Heidelberg, Germany 

Ovalbumin from hen egg white Sigma-Aldrich, Steinheim, Germany 

Paraformaldehyde  Sigma-Aldrich, Steinheim, Germany 

Penicillin-Streptomycin  Invitrogen, Karlsruhe, Germany 

Phosphate buffered saline  Invitrogen, Karlsruhe, Germany 

Phosphate buffered saline, pH 7.2 Invitrogen, Karlsruhe, Germany 

Poly(lactic acid) (PLA) Sigma-Aldrich, Steinheim, Germany 

Polyvinyl alcohol (PVA) Sigma-Aldrich, Steinheim, Germany 

Potassium chloride solution (0.075 M) Sigma-Aldrich, Steinheim, Germany 

PromoFluor-488 Premium Labeling Kit PromoCell, Heidelberg, Germany 

PromoFluor-633 Labeling Kit PromoCell, Heidelberg, Germany 

Protein Assay Bio-Rad Laboratories, Munich, Germany 

RESOMER® RG502H and RG752H Evonik Industries, Essen, Germany 

Sodium chloride  Sigma-Aldrich, Steinheim, Germany 

SolvableTM PerkinElmer, Boston, USA 

Trifluoroacetic acid  Sigma-Aldrich, Steinheim, Germany 

Trypsin EDTA Invitrogen, Karlsruhe, Germany 

Tween®80  Sigma-Aldrich, Steinheim, Germany 

Ultima Gold, Scintillation fluid  PerkinElmer, Boston, USA 

VECTASHIELD® Hard SetTM mounting medium (+/- DAPI)  Vector Laboratories, Burlingame, USA 
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Software 

Software  Provider 

CellQuest Pro Becton Dickinson, Heidelberg, Germany 

cellZscope® 2.1.2 nanoAnalytics, Münster, Germany 

ChemStation® 1.7 Agilent Technologies, Waldbronn, Germany 

CorelDRAW® Graphics X6 Corel Corporation, Ottawa, Canada 

Leica Application Suite X (LAS X) Leica Microsystem, Heidelberg, Germany 

Microsoft Office 2010 & 2013 Microsoft Corporation, Redmond, USA 

OriginPro 9.1G OriginLab Corporation, Northampton, USA 

QuantaSmart software  PerkinElmer, Boston, USA 

Zeiss ZEN 2009 Zeiss, Jena, Germany 

 

Hardware 

Item Supplier 

Agilent 1200 and 1260 Infinity HPLC device Agilent Technologies, Waldbronn, Germany 

Analytical balance CP64 Sartorius, Göppingen, Germany 

Biofuge stratos Heraeus, Hanau, Germany  

CASY® Cell Counter + Analyzer System OLS OMNI Life Science, Bremen, Germany 

CC-12 camera Soft imaging systems, Münster, Germany 

cellZscope® device  nanoAnalytics, Münster, Germany 

Centrifuge 3K18 Sigma Laboratory Centrifuges, Osterode am Harz, Germany 

Centrifuge 5810R Eppendorf, Hamburg, Germany 

Centrifuge Biofuge Pico Thermo Scientific, Langenselbold, Germany 

Centrifuge Biofuge R Thermo Scientific, Langenselbold, Germany 

Dispersion tools S25N-10G and S25NK-19G Ultra Turrax®, IKA, Staufen, Germany 

Excitation light source, mercury lamp X-Cite®, series 120 Lumen Dynamics Group Inc., Mississauga, Canada 

Flow cytometer FACS Calibur Becton Dickinson, Heidelberg, Germany 

Gemini® NX 250-C18 column Phenomenex, Aschaffenburg, Germany 

Heraeus® BBD6220 Incubators  Thermo Scientific, Langenselbold, Germany 

Leica TCS SP8 confocal microscope Leica Microsystem, Heidelberg, Germany 

Microscopes CKX31 and IX70 Olympus, Hamburg, Germany 

Mini centrifuge Biozym Scientific, Hessisch Oldendorf, Germany 

Poroshell 120 EC-C18 column  Agilent Technologies, Waldbronn, Germany 

Poroshell 120 UHPLC Guard EC-C18 Pre-column  Agilent Technologies, Waldbronn, Germany 

TECAN infinite® 200 microplate reader Tecan Group, Maennedorf, Switzerland 

Tri-Carb 2910TR, liquid scintillation counter PerkinElmer, Boston, USA 

TSKgel Super SW3000 column Tosoh Bioscience, Stuttgart, Germany 

Ultra Turrax® device T25 digital Ultra Turrax®, IKA, Staufen, Germany 

Zeiss LSM 510 confocal microscope Zeiss, Jena, Germany 

Zetasizer PN3702 Malvern Instruments, Malvern, UK 
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Origin of cell lines and primary cells 

Cells Type Biological source Provider 

    

7WD10 Human APP gene transfected cell line Cricetulus griseus Kind gift from Claus Pietrzik, Institute 
for Pathobiochemistry, Mainz 
University, Germany 

bEnd3 Polyoma middle T antigen transformed brain 
endothelioma cells 

Mus musculus LGC Promochem, Wesel, Germany 

HBMEC SV-40 transfected human brain microvascular 
endothelial cells 

Homo sapiens Kind gift from Kwang Sik Kim, Division 
of Pediatric Infectious Diseases, Johns 
Hopkins University School of 
Medicine, Baltimore, USA 

pBCEC Primary porcine brain capillary endothelial cells Sus scrofa domestica Freshly prepared from primary 
material from local slaughterhouse 
(Zweibrücken, Germany) 

Media composition & coatings for cell culture 

Medium stocks were prepared in a maximum volume of 500 ml, only small volumes were pre-heated 

to 37 °C prior to use in cell culture. All basis media were obtained from Gibco®, Life Technologies. Fetal 

calf serum was obtained from PAA or Sigma-Aldrich. 

Growth surfaces for endothelial cells (pBCEC, bEnd3, HBMEC) were pre-coated with 0.1 mg/ml 

collagen type IV from human placenta in 0.25 % acetic acid / PBS (1:4). A total of 180 µl/cm2 of this 

solution was incubated for 2 hours at 37 °C, washed with PBS and cells were seeded when the growth 

surfaces were still moist. 

 

Cell type Basis (Cat. No. Gibco®) medium Sera Antibiotics Additives 
     

7WD10 MEM α (22571)  10 % FCS 1 % Pen/Strep 

400 µg/ml Geneticin®  

 

 

bEnd3 DMEM (41965) 10 % FCS  

 

 

HBMEC RPMI 1640 (21875) 10 % FCS 

10 % Nu-Serum 

1 % Pen/Strep 2 mM L-glutamine 

1 mM sodium pyruvate 
1x MEM NEAA 

1x MEM Vitamins 

 

pBCEC 1st  M199 (31150) 10 % NCS 1 % Pen/Strep 

1 % Gentamycin 

 

0.7 mM L-glutamine 

pBCEC 2nd DMEM/F-12 (11039) 0 or 5 % FCS 1 % Pen/Strep 

1 % Gentamycin 

1.5 mM L-glutamine 

550 nM hydrocortisone  
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3.2 Methods 

3.2.1 Cell culture 

All cell culture work was performed under sterile conditions to avoid contamination with bacteria, 

fungi or other microorganisms. Consumable materials and reagents were either sterilized by the 

supplier or autoclaved, ethanol-sterilized or sterile-filtered prior to use. All applied chemicals were of 

highest purity. Mycoplasma contamination of cell lines was tested for in frequent intervals. 

Cultivation of cell lines 

Endothelial cell lines of murine and human origin (bEnd3, HBMEC) were cultured at 37 °C, 5 % CO2 and 

95 % relative air humidity in an incubator. For splitting, cells were washed with PBS and incubated with 

trypsin-EDTA (0.5 %) until more than 90 % of the cells detached. Addition of culture medium inhibited 

the trypsin effect and rinsed off the remaining cells. After centrifugation, the cell sediment was 

resuspended in medium and cultured accordingly to further application. bEnd3 and HBMEC were 

allowed to reach confluence before splitting and seeding.  

Isolation and cultivation of primary porcine brain capillary endothelial cells  

Primary porcine brain capillary endothelial cells (pBCEC) were dissected following a protocol of Wagner 

et al. [26]. Directly after slaughtering fresh porcine skulls from Sus scrofa domestica (Figure 8A) were 

kindly provided by the local slaughterhouse in Zweibrücken, Germany. Slaughtering occurred in 

accordance with the guideline 93/119/EC of the European Community on the protection of animals at 

the time of slaughter or killing from 22.12.1993. At the Fraunhofer IBMT, skulls were sprayed with 

disinfecting agent and the skullcap was removed (Figure 8B) to prepare cerebral tissue. The outermost 

layers of the meninges (Dura mater and Arachnoidea mater) were removed. The brain was carefully 

detached from the brainstem (Truncus encephali) and transferred to a transport buffer. All following 

steps were performed under sterile conditions in an airflow hood. The remaining meningeal 

membrane (Pia mater) and major blood vessels were stripped off (Figure 8C) and the grey matter was 

collected and minced into pieces (Figure 8D). For homogenization and release of capillary fragments, 

the gray matter was digested with the same volume of dispase II solution at 37 °C for 70 minutes under 

stirring. Afterwards, the capillary fragments were divided from the connective tissue with the aid of a 

discontinuous density gradient (30 min, 4 °C, and 822 g, without brake) (Figure 8E). The fatty 

supernatant was removed after centrifugation and capillary fragments were transferred to fresh 

medium. After centrifugation (20 min, 4 °C, 235 g) to wash out remaining percoll, the cells were 

digested in collagenase II solution (20 min, 37 °C, 150 rpm on a shaking incubator) with frequent 

resuspensions. This step allows separation of brain capillary cells from non-endothelial tissue, because 
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collagenase II segregates intercellular connections and the basal lamina. Subsequently, DNAse was 

added at 37 °C for 3 minutes to prevent clumping of capillary fragments due to unleashed DNA. Next, 

the cell suspension was filtered with the aid of a cell strainer (70 µm pore size) in order to discard larger 

undigested microvascular capillary fragments and to singularize cells. After centrifugation (10 min, 

4 °C, 376 g) the cell pellet was resuspended in 1 ml DMEM and transferred onto a continuous density 

gradient (20 min, 10 °C, 312 g, no brake), that was freshly prepared (45 min, 21 °C, 14,500 g, no brake). 

This second density gradient allowed separation of brain capillary endothelial cells from other cells and 

permitted a homogenous, pure cell culture. The upper fraction containing the pBCEC was collected 

and transferred to PBS for centrifugation (10 min, 4 °C, 258 g). To remove remaining erythrocytes, the 

pellet was resuspended twice in 1 ml erythrocyte lysis buffer and subsequently centrifuged (5 min, 

4 °C, 165 g) (Figure 8F). Finally, the cells were washed two times in DMEM and resuspended in a 

medium containing 10 % newborn calf serum (pBCEC 1st) for counting and seeding.  

After Isolation, pBCEC were plated at a density of 3.5x106 cells/cm2 on collagen IV-coated surfaces. To 

remove unattached cells and debris, a medium exchange was performed 1 hour after the initial 

seeding. Approximately 24 hours after seeding, the medium was changed to hydrocortisone-

containing medium (pBCEC 2nd) in order to support transendothelial electrical resistance (TER) 

development of the confluent monolayer, unless otherwise stated. pBCEC were not passaged and used 

for further experiments within 1 week after isolation, usually after 4 to 5 days in culture. 
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Figure 8: Selected steps of pBCEC preparation. (A) Sculls obtained from the local slaughter house. (B) Removal of skullcap after opening with 
a hatchet. (C) Isolated brain before removal of meningeal membranes. (D) Homogenization of the grey matter and preparation for dispase II 
digestion. (E) Digested brain tissue transferred to discontinuous gradient for removal of fatty supernatant. (F) Final pBCEC pellet after various 
enzymatic digestion and centrifugation steps. 
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3.2.2 Measurement of transendothelial electrical resistance of cell layers  

In the body, epithelial and endothelial cells form barriers to regulate diffuse permeation of solutes. A 

direct correlation between permeability and transendothelial electrical resistance (TER) exists as tight 

cell layers show high TER values [189]. Therefore, TER measurement is suitable for quantifying leakage 

of barrier forming tissue. 

In this work, pBCEC were plated on human collagen IV-coated (131 µg/cm2) Transwell® inserts and 

subsequently placed in the cellZscope® device, which allows non-invasive real-time monitoring of TER 

development. Transwell® controls consisted of a collagen IV-coated insert without cells. Except for 

sample applications and medium exchanges, the module stayed in an incubator (37 °C, 5 % CO2, 95 % 

relative air humidity) and was connected to an external controller and computer, allowing automated, 

long-term measurements. A cellZscope® device can monitor TER and capacitance (CCl) of cell layers that 

grow on porous membranes between two electrodes and form an interface between two 

compartments. When small alternating current voltage (Vac) is applied, the electrical impedance of the 

cell system can be measured. Ideally, the cell layer limits ion current in this setup.  

Principle of measurement 

Barrier properties can be evaluated by extracting data from equivalent circuits and corresponding 

mathematical models that allow separating the total impedance (Z) spectrum from the impedance 

spectrum of the cells. Although cell layers are complex systems, their electronic features can be 

modelled by basic elements. 

The relevant components for a cell layer’s total impedance are the ohmic resistance TER and the 

capacitance Ccl (Figure 9). The TER describes the parallel connection of the paracellular paths while the 

capacitance Ccl of the cell layer comprises both apical and basolateral membranes. Rmed is 

approximated and models the culture medium’s ohmic resistance in the apical (Rmed1) and basolateral 

((Rmed2) compartment (Figure 9). The interface between the electrodes’ metal and the cell culture 

medium is called constant phase element (CPE) and displays a complex impedance behaviour. It is 

empiric and based on the two parameters Acpe, ncpe. The cellZscope® software uses CPE as a 

mathematical model to describe the frequency-dependence of the electrode-medium interface's 

impedance. Total impedance of the system is calculated by the applied equivalent circuit and the 

corresponding mathematical models that are based on the five parameters TER, Ccl, Rmed, Acpe and ncpe.  

Obtained data from the cellZscope® device is fitted by resulting algorithms to extract the parameters 

TER and Ccl.  
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Figure 9: Schematic measurement of transendothelial electrical resistance (TER) and capacitance (Ccl) of a cell layer. Frequency dependent 
impedance is recorded and an electric equivalent circuit is used to analyze the data. Adapted and modified from nanoAnalytics [189].  

 

3.2.3 Permeability of radiolabeled model substances 

The quality of in vitro BBB model systems cannot only be monitored by measurement of the TER, but 

also by determination of the permeability of different marker substances, which is more sophisticated 

and sensitive.  

The permeability of a BBB model is expressed by the percentage of measured decays per minute (dpm) 

values of a radiolabeled substance from apical (blood-representing) and basolateral (brain-

representing) Transwell® compartments. Although Becquerel (Bq) is the Système international d’unités 

(SI)-derived unit of radioactivity, the unit Curie (Ci) is still widely used in scientific publications and 

industry and was therefore also calculated in this study. 

For the evaluation of the obtained data, the following conversion factors are essential: 

 

1 �� = 60 �	
 

1 �	
 = 0.016 �� 

1 �	
 = 1.67× 10�� ��� 

1 �� =  2.7027 × 10��� �� 

1 ��� =  27.027 ��� 
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For permeability assays pBCECs were isolated and prepared as described (see 3.2.1) and seeded on 

Transwell® inserts (Figure 10A) placed in a cellZscope® device. Permeability experiments occurred 

during maximum TER plateau, usually at day 4 to 5 post seeding. As a paracellular marker 14C-inulin 

was chosen (Figure 10B). Inulin is not able to cross the BBB in vivo and therefore its low permeability 

represents a good indicator for intact barrier integrity. To verify physiological conditions, a transcellular 

marker was also applied (Figure 10B). For this purpose, 14C-diazepam was selected. Diazepam is also 

known as Valium® and can diffuse through endothelial cell in vivo. For barrier characterization 

experiments, 0.35 µCi/Transwell® of 14C-inulin or 14C-diazepam (DZP) were added to the apical 

compartment. After 2 hours incubation, medium from the apical and basolateral Transwell® 

compartment was transferred to a plastic vial containing 6 ml scintillation fluid and placed into a liquid 

scintillation counter (LSC). The decay per minute (dpm) and counts per minute (cpm) data were 

calculated by the QuantaSmart software with program settings for a single dpm assay and a measured 

energy level from 0 to 156 keV.  

In order to further verify physiological conditions, the BBB model was opened by adding hyperosmotic 

1.1 M mannitol solution. In this case, permeability experiments were performed with the radiolabeled 

markers solved in 1.1 M mannitol solution (Figure 10C) with an approximate osmolality of 

1,100 mOs/ml.  

After the marker incubation, Transwell® membranes were solubilized in 1 ml SolvableTM for 4 h at 60 °C, 

transferred to scintillation fluid and also measured in LSC analysis equally like samples from basolateral 

or apical compartment.  

 

 

 

Figure 10: Schematic experimental design for permeability assays. (A) pBCEC on Transwell® inserts were incubated with radiolabeled marker 
substances when TER values were appropriate (4-5 days after preparation). After 2 hours, medium was analyzed for radioactive decays per 
minute (dpm) in a liquid scintillation counter. (B) 14C-inulin served as a paracellular marker, tight junctions should largely prohibit diffusion 
across an intact barrier. 14C-diazepam (DZP) passes the BBB transcellularly in vivo and should be detected in the basolateral compartment of 
the in vitro model. (C) When mannitol is added, pBCEC osmotically shrink, and 14C-inulin should be able to pass by the disrupted tight 
junctions. 
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3.2.4 Characterization of the in vitro models by immunocytochemistry 

For the characterization of the in vitro BBB models, primary cells or endothelial cell lines were stained 

with different antibodies for relevant markers and subsequently analyzed either by confocal laser 

scanning microscopy (CLSM) (qualitative) or flow cytometry (quantitative). Primary and secondary 

antibodies used for characterization are listed in section 3.1.  

Qualitative immunocytochemistry 

Primary pBCECs were stained with various antibodies against tight junction proteins (Cld-3, Cld-5, ZO-1, 

Occl). Cells were fixed with 1 % paraformaldehyde or acetone for 5-10 minutes and blocked by 

5 % fetal calf serum (FCS) or bovine serum albumin (BSA) for 20 minutes. The primary antibody was 

diluted in PBS and incubated at room temperature for 1 hour or at 4 °C overnight. Cells were washed 

twice with PBS before applying the secondary antibody for 1 hour. After washing with water or PBS, 

cell culture slides were allowed to dry for up to 1 hour. Cover glasses and VECTASHIELD® Hard SetTM 

mounting medium (with DAPI) were added and again left to dry in a refrigerator for at least two hours. 

Samples were then analyzed with the aid of a confocal laser scanning microscope (CLSM).  

Quantitative immunocytochemistry  

For determination of the receptor status of the in vitro BBB model, flow cytometry analysis was 

performed after immunostaining for receptors of the low density lipoprotein receptor family (LDLR, 

LRP1, LRP2, ApoER). The pBCEC, bEnd3 or HBMEC were detached from growth surface by trypsin-EDTA 

incubation (0.5 %, 37 °C, 5-10 min). After washing, 3x105 – 1x106 cells were transferred to FACS tubes 

and incubated with BD Cytofix/Cytoperm solution for 20 min at 4 °C and subsequently with blocking 

solution (5 % FCS in PBS) for 30 min at 4 °C in order to prevent unspecific antibody binding. Then, 

blocking solution was removed and cells were incubated with 50 µl primary antibody (0.5-1 µg in PBS) 

for at least 1 hour at 4 °C. Afterwards, cells were washed again and incubated with the secondary 

antibody (0.5-1 µg in 50 µl PBS) for 30 min at 4 °C in the dark, washed again and resuspended in FACS-

Fix solution before further analysis. Washing was performed with BD Perm/Wash solution and PBS. 

Samples were analyzed by flow cytometry with a FACS Calibur device. An electronic gate was set for a 

mother population of adequate control cells (treated identically, but without primary antibody 

incubation). 10,000 cells were recorded for each investigated sample and analyzed with the CellQuest 

Pro software. For analysis, a threshold was set for fluorescence intensity of the control population. 

Sample signals exceeding the threshold were counted as “positive” for the respective staining, 

(expressed either as “% positive”).  
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3.2.5 Nanoparticle preparation and characterization  

All nanoparticles used in this study were prepared at the Institute for Pharmaceutical Technology and 

Biopharmacy (IPTB) at Münster University by Dr Iavor Zlatev and Bastian Raudszus. 

Drug-loaded human serum albumin (HSA) nanoparticles 

To prepare drug-loaded human serum albumin (HSA)-based nanoparticles two protocols were used. 

For the solvent displacement technique 0.5 ml aqueous HSA solution (40 mg/ml; pH 8) and 0.4 ml FBP 

(10 mg/ml) in water (pH 8) were added to 0.1 ml of water and were incubated for 2 h in a 

Thermomixer® (20 °C, 650 rpm). Afterwards, 4 ml ethanol 90% (m/m) were added dropwise in a 

velocity of 1 ml/min under constant stirring. After centrifugation (10 min, 16,000 g) and washing, the 

synthetized nanoparticles were collected and the amount of incorporated FBP was detected by HPLC 

analysis. Solvent displacement with PEG4000 was performed the like solvent displacement technique 

above, but instead of ethanol, 4 ml PEG4000 (300 mg/ml) in water (pH 5.5, 5.8 or 6.1) were added.  

The inverse solvent displacement technique was similar to the solvent displacement technique, but 

instead of adding ethanol to a HSA solution, the process was inversed, resulting in addition of the 

aqueous HSA-FBP solution (described above) to 4 ml ethanol 90% (m/m). Next, 11.6 µl glutaraldehyde 

(80 mg/ml) in water were added and stirred overnight.  

Drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles 

For preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles two different techniques and two 

different PLGA polymers (differing in proportions of lactide and glycolide) were used. For oil/water 

(o/w) emulsion diffusion technique, either 100 mg RESOMER® RG502H (lactide : glycolide 50:50 ) or 

100 mg RESOMER® RG752H (lactide : glycolide 75:25) and 10 mg FBP were dissolved in 1 ml ethyl 

acetate (organic phase). Then, 2 ml polyvinyl alcohol (PVA) in water (10 mg/ml) was added (aqueous 

phase). For O/W emulsion, the sample was homogenized in an UltraTurrax® device (30 min, 

21,000 rpm, dispersion tool S25N-10G). The emulsion was then transferred to 8 ml PVA in water 

(10 mg/ml) and magnetically stirred in an exhaust hood for at least 3 hours for ethyl acetate 

evaporation. The thereby produced nanoparticles were centrifuged and redisperged five times in PBS 

(pH 8) or water for washing. For detection of incorporated FBP, 20 µl nanoparticle suspension were 

added to 980 µl acetone and mixed for 5 min at 20 °C with a Thermomixer® device (20 °C, 700 rpm). 

After centrifugation (20 min, 20,000 g), FBP content was analyzed by HPLC.   

For water/oil/water (w/o/w) emulsion evaporation technique, 0.5 ml FBP (20 mg/ml in water, 

pH 12.3) and 2.5 ml RESOMER® RG502H in dichloromethane (40 mg/ml) was homogenized by 

UltraTurrax® (1 min, 18,000 rpm, dispersion tool S25N-10G), resulting in a pre-emulsion. For w/o/w 

double emulsion, the pre-emulsion was added to 14 ml PVA in hydrochloric acid (10 mg/ml, pH 2.2) 
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and again homogenized by UltraTurrax® (5 min, 18,000 rpm, dispersion tool S25NK-19G). The pH was 

adjusted to 5.8 by NaOH. For dichloromethane removal, the sample was stirred on a magnetic stirrer 

(220 rpm) overnight under an exhaust hood. The produced nanoparticles were centrifuged and 

redisperged five times in PBS (pH 8) or water for washing. The detection of incorporated FBP was 

performed by HPLC analysis as described above for o/w emulsion diffusion technique prepared PLGA 

nanoparticles.  

Drug-loaded poly(lactic acid) nanoparticles 

Nanoparticles based on poly(lactic acid) (PLA) were produced by an emulsion diffusion technique 

(Figure 11A) as previously described [68]. In brief, the organic phase (100 mg PLA and 10 mg FBP 

dissolved in 2 ml dichloromethane) and aqueous phase (12 ml polyvinyl alcohol (2%, w/v)) were 

homogenized with an Ultra Turrax® device (24,000 rpm, 30 min) in an ice bath. If visualization of the 

nanoparticles for flow cytometry and microscopy analysis was aimed for, the organic phase also 

contained 150 µg Lumogen® F Orange 240. Dichloromethane removal occurred by stirring overnight at 

room temperature under an appropriate exhaust hood. Nanoparticles were then collected by 

centrifugation and resdiperged and washed in purified water.  

For lyophilization, trehalose (3 % w/v) was added as a cryoprotective agent. Lyophilization steps were 

performed as indicated in Figure 11A. Lyophilized nanoparticles were freshly reconstituted in cell 

culture medium (40 mg/ml) and vortexed prior to experiments. 

For determination of flurbiprofen loading, high-performance liquid chromatography (HPLC) analysis 

was performed: 1 ml acetonitrile was added to 1 mg nanoparticles and incubated for 5 min at room 

temperature (RT). After centrifugation (20,000 g; 10 min), the 20 µl aliquots of the supernatant were 

measured with a HPLC device at a flow rate of 1 ml/min. The mobile phase consisted of acetonitrile 

and 0.1 % (v/v) trifluoroacetic acid (57.5 : 42.5, v/v), detection occurred at 245 nm wavelength.  

After preparation, particle diameter, polydispersity index (PDI), and zeta potential of drug-loaded 

nanoparticles (resdiperged in purified water) were analyzed with the aid of a Malvern Zetasizer 

Nano ZS. In this study, only nanoparticles with a PDI < 0.1 were used for further experiments, because 

the population distribution of the nanoparticles is then assumed to be monodisperse (Figure 11B, C). 

For surfactant coating, Tween®80 was added in a final concentration of 1 % to the freshly redisperged 

nanoparticles 30 min before incubation on cells and shacked at RT at 600 rpm.  
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Figure 11: Preparation and characterization of fluorescence-labeled, flurbiprofen-loaded poly(lactic acid) nanoparticles (PLA-FBP-Lum NP) 
by oil/water (O/W) emulsion diffusion technique. (A) Preparation overview. The organic phase (consisting of poly(lactic acid) (PLA), 
flurbiprofen and a Lumogen® dye, all solved in dichloromethane) was added to the aqueous phase (polyvinyl alcohol (PVA)) and was 
subsequently homogenized with an Ultra Turrax® device in an ice bath to avoid vaporization of the organic phase. Dichloromethane was 
removed by stirring overnight (220 rpm) under an exhaust hood. Nanoparticles were collected by centrifugation and redispersion in purified 
water. Before freeze drying in a lyophilization device as indicated, trehalose solution was added as a cryoprotective agent. After drying, the 
vials were sealed and stored at 4 °C until use. (B), (C) Scheme of two different nanoparticle populations that might display the same mean 
diameter. Notice that the particles in (B) share a common size distribution whereas the size and shape of the population in (C) strongly varies. 
These characteristics are important for cellular uptake and cytotoxicity. The polydispersity index (PDI) challenges this problem. If a particle 
population shows a PDI smaller than 0.1, a population of equal size and shape (=monodisperse) as shown in (B) can be assumed. 
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Ligand-modified poly(lactic acid)nanoparticles 

For apolipoprotein E3 (ApoE3) or ovalbumin modification, 15 mg PLA NP were mixed with a 5-fold 

molar excess of divinylsulfone for 5 minutes in 0.1 M NaOH (introducing amine-reactive 

vinylsulfonegroups to the particle surface). The nanoparticles were collected at 10,000 g and washed 

3 times with purified water. Afterwards nanoparticles were redisperged and incubated in 125 µl 

carboxy-(PEG)4-amine solution (4 mg/ml) overnight at room temperature and 700 rpm, resulting in 

PEGylated nanoparticles that were purified by centrifugation (10,000 g, 10 min) and redisperged in 

water. Afterwards, 80 µl of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) solution 

(30 mg/ml) and a N-hydroxysulfosuccinimide (Sulfo-NHS) solution (10 mg/ml) were added and 

incubated for 15 min at room temperature and 600 rpm, buffered by 2-(N-morpholino)ethanesulfonic 

acid (MES) at pH 4.6. The reaction leads to linking of an amine-reactive Sulfo-NHS ester to the 

PEGylated nanoparticles, allowing to covalently bind an amine-containing molecule (like a protein) to 

the nanoparticles’ surface. Excess reagent was removed by centrifugation (10,000 g, 5 min). 

Nanoparticles were redisperged in water, centrifuged a second time and then incubated with 5 mg/ml 

ApoE3 or ovalbumin in PBS (pH 7.5) for 3 hours. To determine the amount of unbound ApoE3 or 

ovalbumin, nanoparticles were centrifuged (15,000 g, 15 min) and the supernatant was analyzed in 

20 µl aliquots by gel permeation chromatography (GPC) at a flow rate of 0.35 ml/min. The mobile 

phase was PBS (pH 6.8) containing 0.1 % sodium dodecyl sulfate (SDS). Detection was performed at 

280 nm wavelength. 

As for drug-loaded nanoparticles, particle diameter, polydispersity index (PDI) and zeta potential of 

ligand-modified nanoparticles (redisperged in purified water) were analyzed with a Zetasizer device. 

Lyophilization of the ligand-modified nanoparticles was performed as described above for drug-loaded 

nanoparticles (Figure 11A).  
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3.2.6 Fluorescence labeling of proteins 

Lyophilized human, recombinant apolipoprotein E3 and the control protein ovalbumin were labeled 

with a fluorescent marker to allow detection in flow cytometry. A commercially available kit, 

PromoFluor-633 Labeling Kit was used according to the manufacturer’s instructions. Samples were 

lyophilized after preparation and freshly resolved prior to experimental use. The fluorescent label 

allowed detection at Ex 637/Em 657 nm. Protein labeling was performed at the IPTB at Münster 

University by Dr Iavor Zlatev. 

3.2.7 Nanoparticle plasma protein binding assay 

The investigation and analysis of the protein corona of PLA-FBP NP after incubation with human 

plasma was performed by Dr. Sabrina Meister of the Johannes Gutenberg University, Mainz, Germany 

as described [68, 190].  

Human blood plasma from 15 apparently healthy donors was collected at the Otorhinolaryngology, 

Head- and Necksurgery (ENT) department at the Medical University Mainz in EDTA-coated tubes to 

prevent blood clotting. The samples were anonymized in order to be untraceable back to a specific 

donor. Studies were performed according to the local ethics committee of the Medical University 

Mainz and in accordance with the Declaration of Helsinki.  

For protein corona investigation, PLA nanoparticles were incubated with an equal volume of human 

plasma sample for a defined period of time (5, 15, 30 and 60 min). Afterwards, the mixture was loaded 

onto a sucrose cushion (0.7 M in PBS) and centrifuged through cushion (12,000 rpm, 20 min, 4 °C), 

thereby allowing a separation of plasma from the nanoparticle-protein complexes. After washing the 

nanoparticle-protein pellet three times with PBS, the proteins were eluted from the nanoparticles by 

adding an equal amount of sodium dodecyl sulfate (SDS) buffer (62.5 mM Tris-HCl pH 6.8; 2 % w/v SDS, 

10 % glycerol, 50 mM DTT, 0.01 % w/v bromophenol blue) at 95 °C for 5 min (also see [68]).  

The proteins were separated by gel electrophoresis on a 12 % SDS-polyacrylamide gel that was stained 

with Coomassie Brilliant Blue R-250. Quantitative analysis of proteins was performed by using a 

commercially available protein assay kit from Bio-Rad Laboratories. Qualitative analysis of proteins 

was performed by immunochemistry. Proteins from the nanoparticles’ corona were relocated to 

polyvinylidene difluoride (PVDF) membranes, which were blocked with 5 % non-fat dry milk in tris-

buffered saline (TBS) containing 0.01% Tween® 20, before performing primary antibody staining with 

anti-ApoA4 and anti-ApoE3 and a horseradish peroxidase-coupled secondary antibody (antibodies are 

listed in section 3.1, also see [68]).  
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3.2.8 Cellular binding studies 

Different endothelial cell lines and primary cells were seeded on multi-well culture plates, previously 

coated with human collagen IV (131 µg/cm2). Samples and controls were incubated for 4 hours at 

37 °C. Nanoparticular formulations were added in a final concentration of 105.3 µg/cm2 growth 

surface. Fluorescence-labeled ApoE3 was added in a concentration of 1.053 µg/cm2 growth surface to 

simulate the approximate concentration of ApoE3 on ApoE3-modified nanoparticles (10 µg 

ApoE3/1 mg nanoparticle). After incubation, the cells were washed twice with PBS, detached from the 

growth surface by trypsin-EDTA (0.5 %) incubation and transferred into FACS tubes. Cells were again 

washed two times with PBS and subsequently fixed with FACS-Fix solution. For flow cytometry analysis, 

at least 10,000 cells per sample were counted and evaluated with the aid of CellQuest Pro software. 

Untreated control cells were used for population gating (Figure 12). Lumogen® F Orange 240 labeled 

PLA nanoparticles were detected in fluorescence channel FL-1 (Ex 488/Em 530), PromoFluor-633 

labeled ApoE3 was detected in FL-4 (Ex 633/Em 661). 

 

Figure 12: Exemplary analysis of flow cytometry data. (A) First, a cellular population is gated as control (Forward-scattered light (FSC) vs. 
sideward-scattered light (SSC)). (B) To quantify events, the threshold can be set by including approx. 1 % of the untreated control cells. (C) All 
fluorescence events above the threshold are counted as positive cells. (D) Alternatively, the parameter Y Geo Mean (reflects binding intensity) 
can be analyzed. It describes the shift of the histogram (represents signal intensity in the relevant fluorescence channel, here FL1-H). 

 

3.2.9 Cellular uptake studies 

Cellular uptake of nanoparticles can be monitored by confocal laser scanning microscopy (CLSM). For 

this purpose, primary pBCEC or the human BBB model cell line HBMEC were seeded on human collagen 

IV-coated glass cover slides and incubated with 105.3 µg/cm2 of nanoparticular formulations for 37 °C 

for 4 or 24 hours. After washing with PBS, cells were incubated with CellTrackerTM Blue CMAC according 

to the manufacturer’s instructions to stain the cytosol. Then, samples were fixed with 

1 % paraformaldehyde for 10 minutes at room temperature, dried and embedded in VECTASHIELD® 

Hard SetTM mounting medium, which either contained DAPI or not. Microscopy analysis was performed 

with a Zeiss LSM 510 or a Leica TCS SP8 confocal microscope. PLA nanoparticles were labeled with 

Lumogen® F Orange 240 for detection at 524/539 nm wavelength.  
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3.2.10 Determination of cytotoxic potential of nanoparticles 

Influence on transendothelial electrical resistance 

Transendothelial electrical resistance (TER) alteration after nanoparticle exposure was taken as an 

indirect indicator for cellular integrity and viability. TER values directly before sample incubation were 

defined as “original TER” and normalized to 100 %. After 4 hours, TER measurements were stopped 

and the latest values recorded by the cellZscope® device were averages and converted to “% of original 

TER” of each Transwell® insert. If possible, controls and sample solutions were applied in equal droplet 

size to assure comparable influence on vibration shock induced TER alteration. 

Influence on marker permeability 

To investigate the nanoparticles’ influence on barrier integrity, 0.35-0.67 µCi of 14C-inulin was directly 

added to each Transwell® after nanoparticles and controls were applied. After 2 hours of incubation, 

the medium from each compartment was collected and transferred to 6 ml scintillation fluid for 

analysis with a liquid scintillation counter. The decay per minute (dpm) and counts per minute (cpm) 

data were calculated by the QuantaSmart software with program settings for a single dpm assay and 

a measured energy level from 0 to 156 keV. 

Cellular viability  

Cellular viability can be assessed by incubation of resazurin (the active compound of alamarBlue®), 

which is blue in color, practically non-fluorescent and crosses cell membranes. Viable cells reduce 

resazurin continuously to resorufin, which is red in color and highly fluorescent, whereas non-viable 

cells loose metabolic capacity necessary for resazurin reduction. Therefore, it can be used as an 

oxidation-reduction and proliferation indicator in cell viability assays in order to measure aerobic 

respiration [191]. In this study, the cytotoxic potential of nanoparticles and other samples was 

investigated. For this purpose, freshly prepared pBCEC were seeded in 96-well plates and cultivated 

for 4 days. Subsequently, cells were incubated with different concentrations of ApoE3, flurbiprofen or 

flurbiprofen-loaded nanoparticles. Ethanol incubation served as positive control for cellular toxicity. 

After 4 hours, a medium exchange was performed and alamarBlue® solution was added according to 

the manufacturer’s instructions and incubated for another 4 hours. Fluorescence intensity was 

measured with a common plate reader at Ex/Em 560/610 nm. The intensity of the fluorescent signal is 

proportional to the number of vital cells; untreated cells were set as 100 % vital. The assay was 

controlled for effects of medium and flurbiprofen-loaded nanoparticles in order to exclude false 

positive responses. Intern replicas of experimental or no-cell control samples were performed to 

minimize experimental errors.   
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3.2.11 Nanoparticle-mediated drug transport experiments 

For drug transport experiments across an advanced in vitro BBB model, the following setup was 

chosen: Primary porcine brain capillary endothelial cells (pBCEC) were prepared from fresh skulls and 

seeded on Transwell® inserts in a cellZscope® device to monitor TER development as a quality control 

(also see 3.2.1). Four days later, when TER reached a plateau phase or was still rising, pBCEC were 

incubated with nanoparticles and other samples for 4 hours (Figure 13A). 

To assess the flurbiprofen-loaded nanoparticles’ capacity of transporting the drug across the in vitro 

BBB model, the following experiments were subsequently performed (Figure 13A-D):  

 

  

Figure 13: Overview of experimental setup for nanoparticle transport studies. (A) After isolation and cultivation, pBCEC were incubated 
with nanoparticles or control samples for 4 hours. Then, medium from the apical (blood-representing) and basolateral (brain-representing) 
compartment were either analyzed for flurbiprofen content in (B) HPLC analysis or (C) transferred to the Alzheimer’s disease model cell line 
7WD10 for 72 hours in order to perform an Aβ42-detecting ELISA with the supernatants. (D) The cellular viability of the 7WD10 cells was 
afterwards checked for in a cellular viability (alamar®Blue) assay to exclude that an Aβ42-reducing effect was caused by impaired viability. 
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Quantification of flurbiprofen by high performance liquid chromatography  

For quantitative detection of flurbiprofen, cell culture samples from basolateral compartments were 

harvested after 4 hours of incubation in the pBCEC BBB model and transferred to high performance 

liquid chromatography (HPLC) analysis (Figure 13A, B). Medium from the apical compartment was 

harvested; mixed with 0.8 ml acetonitrile to precipitate proteins and disintegrate remaining 

nanoparticles [192]. After centrifugation (10,000 g, 10 min), 500 µl of the supernatant was transferred 

to fresh vials and investigated in HPLC analysis. 

Transwell® membranes were dissolved by adding 1 ml DMSO (also described to precipitate 

proteins[193]) and centrifuged (10,000 g, 10 min) to remove polycarbonate residues.  

All supernatants were transferred to fresh vials for HPLC analysis, performed by either Dr Iavor Zlatev 

and Mr. Bastian Raudszus at IPTB at Münster University or at Fraunhofer IBMT (Table 2) with the aid 

of Ms. Linda Elberskirch. Calibration of flurbiprofen measurement was performed by DMSO-dissolved 

drug standard (IPTB: 1.5-150 µg FBP, 7 concentrations or IBMT: 0.031-250 µg FBP, 14 concentrations). 

Calculation of the calibration curve from standard served as reference for sample analysis.  

 

Table 2: Parameters for flurbiprofen detection via HPLC analysis performed at IPTB in Münster, Germany or at IBMT in Sulzbach, Germany. 

 IPTB IBMT 

HPLC device Agilent 1200 Infinity  Agilent 1260 Infinity  

Column  Gemini®-NX-C18  Poroshell 120EC-C18 

Mobile phase 57.5 % acetonitrile  

42.5 % trifluoroacetic acid (0.1 % in H2O) 

57.5 % acetonitrile  

42.5 % trifluoroacetic acid (0.1 % in H2O) 

Flow rate 1 ml/min 0.5 ml/min 

Column compartment temperature  30 °C 40 °C 

Detection Diode array detector, 245 nm Diode array detector, 247 nm 

Injection volume  20 µl  10 µl 

Runtime 8 min 8 min 

 

Functional assay for detection of Aβ42 species  

Aβ42 reducing potential of nanoparticles and control samples was assessed with a commercially 

available Aβ42 detecting ELISA (Figure 13C). Again, pBCEC were incubated with samples for 4 hours in 

the apical, blood-representing compartment of the Transwell® model when TER was sufficient. Then, 

800 µl of the medium from the basolateral, brain-representing compartments was transferred to 

24 well plates, previously seeded with 3x104 7WD10 cells/cm2. 7WD10 are Chinese hamster ovary 

(CHO) cells that stably express APP751wt for the secretion of Aβ peptide [194]. After three more days 

without further medium exchange, the supernatant of the 7WD10 cells was analyzed in an Aβ42 

detecting ELISA according to the manufacturer’s instructions. In the first step, standards of known 

Aβ42 concentration (15.63 – 1,000.00 pg/ml), samples and controls were co-incubated with an 

antibody specific for the COOH terminus of the 1-42 Aβ sequence in a microtiter plate coated with an 
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antibody specific for the NH2 terminus of the Aβ peptide. As recommended in the manufacturer’s 

instructions, the protease inhibitor cocktail 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride 

(AEBSF) was added in a final concentration of 1 mM. Bound antibody was detected by adding a 

horseradish peroxidase (HRP)-labeled antibody that recognizes the species origin of the anti-Aβ42 

peptide antibody. Next, the HRP substrate (stabilized chromogen) was added and converted to a bluish 

color by HRP (directly proportional to the amount of Aβ42). The reaction was stopped by a stop 

solution that changes color from blue to yellow and enabled detection at 450 nm with a common plate 

reader. Negative controls included chromogen blanks. All samples and standards were performed at 

least in duplex per assay. Untreated 7WD10 cell controls were set as 100 % Aβ42 level.  

Cellular Viability of the Alzheimer’s disease model cells 

In order to exclude cytotoxic effects on the Alzheimer’s disease model cells that could falsify the 

outcome of Aβ42 reduction, the cellular viability assay was performed after transport experiments 

across the pBCEC in vitro BBB model (Figure 13D) as described earlier. In brief, samples and controls 

were added to Transwell® inserts seeded with pBCEC as described earlier. After 4 hours of incubation, 

the basolateral medium was transferred to 7WD10 cells and after 72 hours, the supernatant was 

analyzed for Aβ42 species and flurbiprofen content. The 7WD10 cells were washed with PBS and 

provided with fresh medium containing alamarBlue® overnight in an incubator and analyzed for 

fluorescence intensity (excitation 560 nm, emission 610 nm).  

3.2.12 Experimental definitions and visual display of data 

Unless otherwise stated, the term independent experiment was defined as the following: For primary 

cells, one preparation from one porcine brain, which was treated with nanoparticles from different 

lots (usually prepared on different days or in different batches). For cell lines, an independent 

experiment also was performed with different nanoparticle lots. Furthermore, cells from different 

passages were used.  

Error bars represent the standard error of the mean (SEM) calculated with Microsoft Excel. Data was 

plotted with OriginPro 9.1 and the resulting graphs were customized and standardized with 

CorelDRAW® Graphics X6 without altering the original data. Fluorescent images were contrasted and 

modified in the same manner for all samples and controls.  
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4 RESULTS &  DISCUSSION 
This study investigates the transport capacity of poly(lactic acid) nanoparticles loaded with a potential 

anti-Alzheimer’s disease drug across an advanced blood-brain barrier (BBB) model based on freshly 

isolated primary porcine brain capillary endothelial cells (pBCEC). It was examined whether application 

of flurbiprofen-loaded nanoparticles on the blood-representing compartment of the in vitro BBB model 

could reduce neurotoxic Aβ42 peptide (expressed by 7WD10 cells) in the brain-representing 

compartment. Due to its physicochemical properties, flurbiprofen itself only poorly crosses the BBB in 

vivo and was therefore discontinued as an anti-Alzheimer’s disease drug in clinical trials.  

4.1 Characterization of the in vitro blood-brain barrier model*  

In order to prove that the porcine in vitro blood-brain barrier model fulfils the expectations for drug 

transport studies, a number of quality tests were performed (Figure 14). After pBCEC isolation from 

primary material (also see 3.2.1), immunostaining for tight junction (TJ) proteins was performed as a 

first indicator for accurate barrier formation of the endothelial cell layer. Furthermore, the 

transendothelial electrical resistance (TER) of pBCEC cultured on Transwell® membranes was 

continuously monitored with the aid of a cellZscope® device, allowing impedance measurements 

across a cellular layer. Moreover, the permeability of 14C-labeled marker substances inulin and 

diazepam across the in vitro barrier was assessed by using a liquid scintillation counter (LSC). 

 

 

 

Figure 14: Flow chart of the experimental design. The blood-brain barrier model (pBCEC) was tested for its suitability as an appropriate 
model. After preparation and seeding of cells, tight junction (TJ) proteins were stained for. Next, transendothelial electrical resistance (TER) 
measurements were perfomed with the aid of a cellZscope® device that automatically monitores impedance. Furthermore, the permeability 
of radioactive tracers (14C-inulin and 14C-diazepam) was evaluated with the aid of a liquid scintillation counter (LSC).   

                                                           
* Parts of this section were published in [195]. 
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4.1.1 Tight junction protein expression 

Tight junction (TJ) proteins play a key role in maintaining barrier function in brain endothelial cells. 

Literally, they seal the gaps between the cellular monolayer (see Figure 2C). Without accurate tight 

junction protein expression, the cellular barrier lacks appropriate resistance and is permeable for 

various substances. To prove that pBCECs express the main TJ proteins, antibody staining was 

performed and evaluated by confocal laser scanning microscopy (CLSM). Claudin 5 (Cld-5) and 

claudin 3 (Cld-3), occludin (Occl) and zonula occludens (ZO-1) antibody staining (green) revealed a 

characteristic pericellular expression of tight junction proteins (Figure 15), implying that the 

connecting function between adjacent cells can be performed without restriction. Therefore, the 

pBCEC in vitro BBB model fulfils one of the fundamental requirements of a suitable barrier integrity.  

 

Figure 15: Tight junction protein expression in primary pBCEC. Claudin 5 (Cld-5) and claudin 3 (Cld-3), occludin (Occl) and zonula occludens 
(ZO-1) antibody staining displayed in green, DAPI-stained nuclei displayed in blue. Scale bar as indicated. Data published in [195].  
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4.1.2 Measurement of transendothelial electrical resistance  

Different methods to determine endothelial barrier function exist. One convenient way is following 

barrier characteristics in real time with the automatized measurement of impedance (Figure 16A). For 

this purpose, pBCEC were isolated and seeded on Transwell® inserts in a cellZscope® device. Especially 

on small pore-sized membranes (0.4 µm polycarbonate membranes), transendothelial electrical 

resistance (TER) values are excellent and comparable to in vivo measurements of approximately 

2,000 Ω*cm2 (data not shown, compare Figure 36C). However, 0.4 µm sized pores might hamper the 

transport of nanoparticles, which in this study are approximately up to 0.25 µm in diameter. 

Consequently, for all transport experiments, pBCEC were cultured on polycarbonate membranes with 

larger pores (3 µm diameter). TER values are generally lower on larger pore sized membranes, but a 

hindrance for nanoparticle transport is less likely to occur.  

An averaged example of TER development of pBCEC from one primary preparation displays that TER 

increased approximately two days after preparation and reached a plateau or slower escalating phase 

after four to five days (Figure 16B). During this phase in TER development, all further experiments were 

initialized, because it was assumed that TJ protein connections (disrupted during primary cell 

preparation) were reformed between endothelial cells. As a quality criterion, only pBCEC displaying 

>300 Ω*cm2 were included. Transwell® controls, consisting of identically treated inserts without cells 

(“No cells” in Figure 16B) never displayed TER development, thereby ruling out that the polycarbonate 

membrane or collagen IV coating affected a barrier formation.  

 

 

Figure 16: Transendothelial electrical resistance (TER) development of pBCEC on large pore-sized Transwell® membranes. (A) Schematic 
drawing of experimental design. (B) Transendothelial electrical resistance (TER) was measured in a Transwell® system and averaged by the 
cellZscope® software. Data from 3 independent Transwell® inserts, displayed with error bars. 
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4.1.3 Permeability of radiolabeled model substances  

The quality of an in vitro blood-brain barrier model can also be described by the permeability of specific 

marker substances. Here, the pBCEC Transwell® model was incubated with radiolabeled 14C-inulin, and 

radioactive decays were detected in the apical and in the basolateral compartment of the Transwell® 

insert (Figure 17A). The experiments were performed on 3 µm pore-sized membranes in order to 

validate barrier tightness, despite lower TER compared to smaller-pored membranes. For pBCEC grown 

on 3 µm pores, only about 0.2 % of the applied 14C-inulin was detected in the basolateral compartment 

after two hours of incubation (Figure 17B). To validate that the low permeability is determined by the 

cellular barrier function (e.g. unrelated to inulin accumulation on the membrane), 20 % mannitol 

solution was added to prove for physiological function. Hyperosmolar mannitol is supposed to 

osmotically shrink the cells and therefore loosen the tightly packed endothelial cells. This technique is 

also used in patients in vivo for supporting drug transport across the blood-brain barrier. In the pBCEC 

model, mannitol application increased the low permeability for 14C-inulin up to 3.5 % (Figure 17B). The 

physiological properties in terms of osmotic opening were therefore assumed to be confirmed. Next, 

the permeability of a transcellular marker was investigated. 14C-diazepam is able to cross cellular 

membranes. Diazepam is a tranquilizing, anxiolytic (fear easing) and anti-epileptic drug that is highly 

lipophilic and works when applied orally for it crosses the blood-brain barrier in vivo. In the pBCEC 

Transwell® model, 6.1 % of the applied 14C-diazepam was found in the basolateral compartment after 

2 hours. As expected, the permeability for 14C-diazepam rose drastically when mannitol addition forced 

the barrier to open. In this case 13.3 % of 14C-diazepam was retrieved in the brain-representing, 

basolateral compartment. 

 

Figure 17: Verification of appropriate barrier characteristics in vitro. (A) Schematic drawing of experimental design. When TER was 
sufficiently high, 14C-labeled markers were added to the pBCEC BBB model. (B) Permeability of radiolabeled marker substances 14C-inulin and 
14C-diazepam in a pBCEC blood-brain barrier model was assessed by liquid scintillation counter (LSC) measurements. Hyperosmolar mannitol 
was applied to simulate an osmotic shock. For comparison, Transwell® inserts without pBCEC (No cells) were also measured for marker 
permeability. Data from at least 3 independent experiments with 3 internal replicas (=Transwell® inserts). Error bars indicate SEM. Data 
published in [195].   
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4.1.4 Concluding remarks on characterization of the in vitro blood-brain barrier model 

All in all, this section closely characterized the quality of the in vitro primary pBCEC BBB model using 

various methods in order to verify the suitability of the pBCEC model for drug transport studies. 

Firstly, tight junction (TJ) protein expression was analyzed. Tight junction proteins seal the intercellular 

gaps of the endothelial layer and therefore play a key role in blood-brain barrier integrity. The 

expression and right cellular localization of the most important tight junction proteins in pBCEC was 

confirmed by antibody staining and confocal laser scanning microscopy (CLSM) analysis. The pBCEC in 

vitro BBB model strongly expresses claudins 3 and 5, zonula occludens and occludin, being 

advantageous to commonly used cell lines that either do not express all of these TJ proteins or the 

expression level is very low [23].  

Secondly, the development of transendothelial electrical resistance (TER) of the cellular layer was 

measured by impedance spectroscopy with the aid of a cellZscope® device. TER is a commonly used 

parameter for a non-invasive determination of a BBB model quality. Earlier studies showed that small 

pore sizes of 0.4 µm in diameter facilitate high TER values. However, the small pores might hamper 

nanoparticle transport. Hence, for transport experiments membranes with larger pores of 3 µm were 

used in this study. In general, a good model is expected to display TER values in the order of magnitude 

of hundreds Ω*cm2 [19]. For comparison, in vivo fetal rats develop TER around 300 Ω*cm2, adult rats 

up to 1,400 Ω*cm2 [196]. In this study, pBCEC grown on 3 µm pore-sized membranes usually reached 

TER values up to 300 Ω*cm2 and higher, thereby by far exceeding cell line-based BBB models like 

HBMEC (~25 Ω*cm2) or bEnd3 (~40 Ω*cm2) [19–21, 68].  

Thirdly, to assure that the cells grown on 3 µm pore-sized membranes are also a suitable model with 

good barrier integrity, a permeability assay with transcellular and paracellular radiolabeled markers 

was established. The measurement of radioactive tracers is one of the most sensitive assays to monitor 

permeability today. A proper model should be impermeable for inulin, which is neither actively 

transported via the blood-brain barrier, nor diffuses to the brain in vivo. High permeability is therefore 

always a sign of a leaky model. 14C-labeled inulin and diazepam were applied to the pBCEC model 

during the ascending phase of TER development. Only 0.2 % of the applied 14C-inulin was detectable 

in the basolateral (brain-representing) compartment. This finding implies a strong barrier function of 

the cells. In contrast, when the BBB model was forced to open by mannitol addition, 14C-inulin 

permeability drastically increased, which proves a good comparability to in vivo conditions, since 

mannitol-based opening of the BBB is also used in experimental animals and patients. Another 

indicator of physiological conditions is the good permeability for diazepam. This drug, also known by 

its trade name Valium®, easily crosses the BBB in vivo. The pBCEC models also is permeable for 

14C-labeled diazepam in in vitro experiments.   
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4.2 Nanoparticle preparation and characterization* 

The first result and discussion section introduced a suitable in-house in vitro blood-brain barrier model 

usable for drug transport studies. This second section deals with preparation of nanoparticles for BBB 

crossing and their characterization. An overview of the experimental setup is shown in Figure 18. After 

preparation of different polymer-based flurbiprofen-loaded nanoparticles quality parameters like size, 

surface charge and poly dispersity index were determined with the aid of a Zetasizer® device. 

Flurbiprofen-loading of the nanoparticles was assessed by high-performance liquid chromatography 

(HPLC) analysis.  

Usually, the pBCEC in vitro BBB model reacts very sensitively to external stimuli and consequently, 

several experiments were performed to further investigate the nanoparticles’ cytotoxic potential. The 

cellular viability of the pBCEC BBB model was evaluated after nanoparticle incubation in a resazurin-

based, color changing (alamarBlue®) assay. Furthermore, the influence of nanoparticles on the 

transendothelial electrical resistance (TER) in short- and long-term exposure was investigated in 

impedance measurements with the aid of a cellZscope® device. Finally, the influence on barrier 

integrity was assessed by determining the permeability of radiolabeled marker substances after 

nanoparticle incubation with the aid of a liquid scintillation counter (LSC).  

 

 

 
Figure 18: Flow chart of the experimental design. Nanoparticular formulations based on different basis materials were prepared and 
investigated for various quality features. Also, they were tested for their cytotoxic potential regarding the BBB-forming pBCEC in a cellular 
viability assay. Furthermore, the nanoparticles’ influence on transendothelial electrical resistance (TER) development after short-and long-
term exposure was investigated in impedance measurements with a cellZscope® device. Intact barrier integrity after nanoparticle application 
was checked for in permeability studies with radiolabeled marker substances.  

 

.  

                                                           
* Parts of this section were published in [68, 195, 197].  
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4.2.1 Choice of basis material, synthesis and characterization of nanoparticles 

Different basis materials are possible to take into account when preparing nanoparticles capable of 

drug transport across the BBB. During the course of the project, various nanoparticular formulations 

were prepared and tested for their drug transport capacity and interaction with BBB model cells (see 

[197]).  

HSA-based nanoparticles were prepared by a well-established desolvation technique that allows 

ApoE3-modification [197], but requires chemical precipitation with ethanol. Flurbiprofen is hardly 

soluble in aqueous media and tends to dissolve in the alcohol that is dropped into the aqueous phase 

for nanoparticle formation. The loading consequently was too inefficient for further experiments [197]. 

For three different preparation techniques, more than 80 % of the originally used drug were 

redetected in washing supernatants and not incorporated in HSA nanoparticles [197].  

PLGA-based nanoparticles loaded with flurbiprofen during the preparation process (PLGA-FBP NP) 

failed in in vitro experiments and did not lower Aβ42 levels in the brain representing compartment of 

the pBCEC BBB model (data not shown). The drug was not detected in expected amounts in HPLC 

analysis after transport, and PLGA-FBP NP did not evoke cytotoxic effects (data not shown). Most of 

the flurbiprofen was likely released from the PLGA-FBP NP during further wash steps in the preparation 

protocol, and therefore the theoretical loading efficacy did not reflect the actual flurbiprofen content 

during the cell culture experiments. This effect is in accordance with other recent data, describing that 

PLGA-FBP NP very quickly release flurbiprofen [197]. Neither oil/water (O/W) emulsion diffusion nor 

water/oil/water (W/O/W) emulsion evaporation technique improved FBP-loading of PLGA NP if they 

were dissolved in media with pH >7, which is essential for biological applications. PLGA is consequently 

not suited for this application.  

PLA-based nanoparticles were prepared by an emulsion-diffusion method as described in 3.2.5 and 

also a recent publication [68]. For PLA nanoparticle tracking in microscopy and flow cytometry 

experiments, an optional fluorescent substance (Lumogen® F Orange 240) was added for visualization 

(also see 3.2.5). During the preparation process, flurbiprofen was added and incorporated into the 

nanoparticles (PLA-FBP NP). The main characteristic features of PLA-FBP NP were determined with the 

aid of a Zetasizer Nano ZS and by HPLC analysis (Table 3).   
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Table 3: Characterization of flurbiprofen-loaded poly(lactic acid) (PLA) nanoparticles (PLA-FBP NP) and unloaded control nanoparticles 
(PLA NP). Table of NP characteristics according to data sheets provided by the Institute for Pharmaceutical Technology and Biopharmacy 
(IPTB) at Münster University. Diameter and dispersity index were measured with the aid of a Zetasizer Nano ZS. Flurbiprofen loading was 
determined by HPLC analysis. 

 Lots (n) Diameter (nm) Poly dispersity index 
(PDI) 

FBP loading 
(µg/mg NP) 

PLA NP 6 250.0 (±19.6) 0.089 (±0.036)  

PLA-FBP NP 10 239.9 (±11.2) 0.070 (±0.026) 52.27 (±11.3) 

 

 

The mean nanoparticle diameter settled at < 250 nm for drug-loaded or control particles; the poly 

dispersity index of less than 0.1 indicates a monodisperse, meaning homogeneous particle population 

(Table 3). The mean loading of the drug into PLA-based nanoparticles leveldoff at around 52 µg 

flurbiprofen per 1 mg nanoparticle formulation (Table 3). Reconstitution of the lyophilized PLA-FBP NP 

in saline resulted in a quick release of the drug. After 6 hours, more than three quarters of the initially 

incorporated flurbiprofen appeared in the supernatant of redisperged nanoparticles (Figure 19 and 

[68, 197]). 

 

 

 

  

  

Figure 19: Flurbiprofen released from PLA-FBP NP over time. Nanoparticles were dissolved in aqueous solution at pH 7.5, before drug 
content was measured by HPLC analysis at different time points as indicated. Release of flurbiprofen is displayed as percent of the originally 
incorporated drug. Figure copied from [68]. 
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4.2.2 Cellular viability of model cells after nanoparticle application  

To test for nanoparticles’ cytotoxic potential on the in vitro BBB cellular model, different viability tests 

are possible. Here, an alamarBlue® cellular viability assay was performed that quantifies the reduction 

from a non-fluorescent (resazurin) to a highly fluorescent dye (resofurin), which can only be performed 

by living cells (see 3.2.10). The pBCECs were incubated with increasing concentrations of DMSO-

dissolved flurbiprofen (FBP) and a corresponding solvent control (DMSO) (Figure 20). In order to 

compare the cytotoxic potential of drug-loaded nanoparticles and the free drug, the equal 

concentration of flurbiprofen incorporated in flurbiprofen-loaded nanoparticles (PLA-FBP NP) was 

added to the cells.  

FBP application strongly influenced cellular viability, reducing it to less than 50 % in higher 

concentrations, whereas (in equivalent concentrations) the solvent DMSO itself did not alter cellular 

viability, ruling out a solvent-mediated effect. FBP-incorporation in nanoparticles abolished the 

cytotoxic potential of the drug: PLA-FBP NP did not reduce cellular viability of pBCEC. On the contrary, 

especially higher concentrations seemed to slightly elevate resazurin conversion compared to control 

cells. For the PLA-FBP NP were intended for BBB crossing purposes and coatings with surfactants were 

shown to enable and enhance BBB transit [37, 49, 64–67], the nanoparticles were pre-incubated with 

1 % Tween®80, which was reported to enable brain uptake of PLA-based nanoparticles before [88]. 

However, coating PLA-FBP NP with 1 % Tween®80 in this experimental setup reduced cellular viability 

and appeared to be toxic to pBCEC in high concentrations (Figure 20).  

 

    

 
Figure 20: Cellular viability of in vitro blood-brain barrier model cells (pBCEC) after incubation of dissolved flurbiprofen (FBP) or 
flurbiprofen-loaded poly(lactic acid) nanoparticles (PLA-FBP NP). The pBCECs were incubated with increasing amounts of FBP or PLA-FBP NP 
and corresponding controls for 4 hours at 37 °C. Error bars as indicated, n is at least 3 from independent experiments with multiple internal 
replicas. Data partly published in [195].   
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4.2.3 Influence on transendothelial electrical resistance development 

As transendothelial electrical resistance (TER) is a strong indicator for BBB integrity and pBCEC viability, 

the nanoparticles’ influence on TER was checked for with the aid of a cellZscope® device.  

Regarding short-term TER development, even low concentrations of the free drug FBP drastically 

decreased TER by more than 70 % in low concentrations, even by 90 % in high concentrations, 

therefore completely abolishing TER (Figure 21A, B). In contrast, PLA-FBP NP only caused minor, 

reversible drops in TER that rapidly recovered again. Although application of PLA-FBP NP forced a 

concentration dependent drop in TER, pBCEC nearly completely recovered during the following 

4 hours. After PLA-FBP NP application, TER never dropped by more than 15 %, even in highest 

concentrations. Cells incubated with lower concentrations of PLA-FBP NP showed no major difference 

in further TER development (Figure 21A, B). The co-incubation of Tween®80 negatively impacted on 

TER development, but did not decrease TER by more than 50 % compared to original values. Control 

cells were treated with PBS to simulate the droplet-induced cellular stress. 

 

 

Figure 21: PLA-FBP NP influence on short-term development of transendothelial electrical resistance (TER). (A) After preparation, pBCEC 
were cultured on Transwell® inserts as described earlier and TER was monitored by a cellZscope® device. Nanoparticles (±Tween®80) or free 
drug were added (indicated by black arrow) when TER was still increasing. Lines represent representative measurements of pBCEC on 
Transwell® inserts treated with different drug concentrations or PBS as control. (B) Mean influence on TER after sample incubation is plotted 
for different concentrations of flurbiprofen, either applied as free drug or PLA-FBP NP ((±Tween®80). Error bars represent SEM, n > 3. Data 
partly published in [195].   
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To investigate if nanoparticles influenced TER in the long term, PLA-FBP NP and the free drug FBP were 

applied to pBCEC and incubated for several weeks during which TER measurements were continuously 

performed automatically every hour in a cellZscope® device.  

Cells treated with dissolved FBP reacted with a dramatic TER impairment that did not fully recover 

during the following weeks (Figure 22A). Furthermore, TER value development of FBP-treated cells did 

not compare to PBS-treated control cells (Figure 22A). In contrast, application of PLA-FBP NP barely 

affected the long-term development of TER in the in vitro pBCEC BBB model: although TER values did 

not always reach TER of the control cells during the next weeks, the general time course of TER 

development appeared similar for PLA-FBP NP-treated and PBS-treated control cells (Figure 22B). 

Pre-coating of nanoparticles with Tween®80 generally decreased TER values, but the time course of 

TER development appeared to be comparable to PLA-FBP NP-treated cells and controls (Figure 22B).  

 

 

Figure 22: Influence of flurbiprofen (FBP), flurbiprofen-loaded nanoparticles (PLA-FBP NP) with or without Tween®80 on long-term 
transendothelial electrical resistance (TER). (A) Exemplary measurements of pBCEC treated with either 29 µg FBP (black filled curve) and 
corresponding DMSO control (dashed line). (B) Same experimental setup, this time 29 µg flurbiprofen from PLA-FBP NP with (white filled 
curve) or without (red filled curve) prior 1 % Tween®80 coating of the nanoparticles was applied. Light grey filled curve represent control cells 
treated with PBS. Black arrows indicate time point of sample addition.   
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4.2.4 Influence on marker permeability and barrier integrity of the in vitro BBB model 

The reversible decrease in TER (Figure 21) after PLA-FBP NP application might symptomize a short-

term barrier disruption for pBCEC. This would be fatal, because it would mimic a transport process of  

PLA-FBP NP when actually the barrier became leaky.  

To rule out a permeable barrier after nanoparticle application, freshly isolated pBCEC were grown on 

3 µm pore Transwell® membranes as described in 3.2.1 and incubated with the free drug FBP and 

PLA-FBP NP (Figure 23A) while TER was still rising. In this experimental setup, the paracellular marker 

14C-inulin was simultaneously applied in order to identify fenestration or impairment of the pBCEC BBB 

model. As shown earlier in Figure 17, again pBCEC control cells were highly impermeable and only 

allowed less than 0.2 % of the apically applied 14C-inulin to pass (Figure 23B). Increasing concentrations 

of flurbiprofen-loaded nanoparticles (PLA-FBP NP) did not increase permeability of 14C-inulin, 

suggesting unaffected barrier integrity. Incubation with DMSO-dissolved flurbiprofen on the other 

hand had a drastic effect on barrier integrity (Figure 23B). Even the lowest concentrations of FBP 

increased 14C-inulin permeability to more than 3.5 %, which compares to simultaneous mannitol 

application (see also Figure 17). Higher concentrations of FBP resulted in a drastic increase of 14C-inulin 

permeability to over 15 %, indicating that the barrier function of the pBCECs was destroyed. The 

solvent DMSO itself negatively impacted 14C-inulin permeability, but not as drastically as dissolved FBP 

(Figure 23B).  

 

 

Figure 23: Influence of flurbiprofen and flurbiprofen-loaded nanoparticles on the permeability of the paracellular marker 14C-inulin. 
(A) Schematic drawing of experimental design. Increasing concentrations of DMSO-dissolved flurbiprofen (FBP) or flurbiprofen-loaded PLA 
nanoparticles (PLA-FBP NP) were applied to pBCEC cultured in a cellZscope® device when transendothelial electrical resistance (TER) was 
sufficient. Simultaneously, the paracellular marker 14C-inulin was added and incubated for 2 hours at 37°C. (B) Analysis of 14C-inulin content 
in the basolateral compartment after sample addition, measured with the aid of a liquid scintillation counter (LSC). Error bars represent SEM, 
n is at least 3 from independent experiments with multiple internal controls. Data published in [195].   
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4.2.5 Concluding remarks on nanoparticle preparation and characterization 

In this study, the basis material PLA was chosen for nanoparticle preparation for various reasons. 

Firstly, PLA itself is a common basis material used for nanoparticle preparation and displays excellent 

biocompatibility [55]. The human bodies’ capability to degrade PLA  was first described nearly 50 years 

ago [198] and explains why PLA was approved by the US Food and Drug Administration (FDA) for 

contact with biological fluids and a vast number of other applications, ranging from wrapping and 

catering material, agricultural use to medical technology, e.g. surgical implants.  

Secondly, compared to HSA and PLGA, PLA in this study showed the most efficient flurbiprofen loading 

capacity. However, freeze-dried PLA-FBP NP quickly released the incorporated drug after redispersion. 

More than 75 % of flurbiprofen exits the nanoparticles during the first 6 hours in phosphate buffer [68, 

197], which could be optimized in future preparation protocols. 

Other basis matrices for nanoparticle preparation incorporating flurbiprofen could comprise alginate, 

gelatin or poly(butylcyanoacrylate) (PBCA) (for a review on nanoparticle preparation see [50]). 

To investigate the nanoparticles’ influence on the in vitro BBB model, several experiments were 

performed. Firstly, a cellular viability assay (alamarBlue®) revealed that pBCEC tolerated PLA-FBP NP 

application. In contrast, the free drug flurbiprofen (FBP) drastically decreased cellular viability in high 

concentrations. Coating the nanoparticles with Tween®80 reduced cellular viability in high 

concentrations.  Secondly, the development of the pBCEC’s transendothelial electrical resistance (TER), 

which represents an indicator for barrier function, was barely influenced by PLA-FBP NP application – 

neither in short-term, nor in long-term TER monitoring. Again, the free drug FBP drastically (and 

irreversibly) impaired TER, even in low concentrations. Coating the nanoparticles with Tween®80 

negatively impacted on short- and long-term TER development, but not as drastically as the incubation 

of the free drug FBP. Thirdly, PLA FBP NP application did not increase 14C-inulin (a paracellular marker) 

permeability across the BBB model, which proves for an unimpaired barrier integrity. Application of 

free FBP caused a major increase of 14C-inulin permeability and therefore massively weakened the 

barrier function. All in all, the PLA-FBP NP used in this study are characterized by a very low cytotoxic 

potential and therefore suitable for further examination.  
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4.3 Nanoparticle-mediated drug transport across the in vitro barrier*  

After characterizing the flurbiprofen-loaded, PLA-based nanoparticles (regarding physicochemical 

parameters and cytotoxic or barrier-disrupting potential) in the last section (see 4.2), this part of the 

study deals with the actual drug transport capacity of the nanoparticular formulation across the pBCEC 

in vitro BBB model, which displays excellent barrier characteristics (also see 4.1). 

In brief, the following experiments were performed in order to investigate if the nanoparticles 

effectively convey the incorporated drug across the cellular barrier and if the transported drug is still 

biologically active and able to reduce Aβ42 levels in the brain-representing compartment of the in vitro 

model (Figure 24). First, the cellular binding and uptake capacity of the drug-loaded nanoparticles was 

investigated in flow cytometry and confocal laser scanning microscopy (CLSM), for these processes are 

required for a successful transcytosis across the BBB. Next, the drug content in the different 

compartments of the in vitro pBCEC BBB model was analyzed by high-performance liquid 

chromatography (HPLC). The medium from the brain-representing compartment was subsequently 

transferred to a cellular in vitro Alzheimer’s disease model (7WD10), which expresses a mutated 

amyloid precursor protein (APP) variant. Aβ42 levels after incubation with the medium from 

nanoparticle-treated BBB model was assessed by an Aβ42-recognizing enzyme-linked immunosorbent 

assay (ELISA). To rule out that a possible Aβ42-reducing outcome was mediated by cytotoxic effects, 

the Alzheimer’s disease in vitro model was investigated in a cellular viability assay (alamar®Blue) after 

application of nanoparticle-treated medium.  

 

Figure 24: Flow chart of experimental design. Cellular binding and uptake of nanoparticles was checked for in flow cytometry and high 
resolution CLSM analysis. Drug transport capacity of the nanoparticles across the cellular barrier was assessed by HPLC analysis. Verification 
of preserved biological efficiency of the drug after nanoparticle packing was achieved by a functional Aβ42 species ELISA. To ensure that a 
potential Aβ42-lowering effect was not due to cytotoxicity, the Alzheimer’s disease model cells were finally investigated in a cellular viability 
assay. 
  

                                                           
* Parts of this section were published in [68, 195]. 
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4.3.1 Cellular binding of nanoparticles 

When nanoparticles are intended to be used as carrier systems to overcome the blood-brain barrier 

by receptor-mediated transcytosis, the first step is binding to the cellular surface. Here, cell lines of 

different species (human HBMEC and murine bEnd3) as well as freshly isolated primary porcine brain 

capillary endothelial cells (pBCEC) were investigated for their ability to bind to drug-loaded poly(lactic 

acid) nanoparticles in flow cytometry analysis. For detection, a Lumogen® Orange label was introduced 

during the nanoparticle preparation process that allowed visualization at 539 nm. The fluorescent, 

flurbiprofen-loaded PLA nanoparticles (PLA-FBP-Lum NP) were applied to different blood-brain barrier 

model cells and incubated for 4 hours at 37 °C. Data was analyzed either by counting % positive cells 

or by measuring the binding intensity (displayed as Y Geo Mean) of nanoparticles. Nearly 100 % of the 

different endothelial model cells were positive in flow cytometry experiments after nanoparticle 

incubation, meaning that nearly all cells bound PLA-FBP-Lum NP (Figure 25A). This result was 

independent from the cellular model and equally true for HBMEC, bEnd3 or the primary pBCEC model 

systems. Binding intensity peaks (labeled as “Y Geo Mean”) shifted from cell type to cell type, whereas 

the human-derived BBB modell cell line HBMEC most extensively bound PLA-FBP-Lum NP (Figure 25B). 

This data is in accordance with analysis concerning the expression of BBB relevant receptors (also see 

Table 4), revealing that (of the three cellular BBB models used in this study) HBMEC most extensively 

express receptors of the low density lipoprotein (LDL) receptor family. The LDL receptors (especially 

LRP1) were shown to play a key role in apolipoprotein-modified nanoparticle uptake in BBB model cells 

[81]. For PLA nanoparticles form a protein corona partially consisting of apolipoproteins [68] after 

incubation in plasma or serum-containing medium, the different LDL receptor expression of the various 

BBB model cell lines explains the altering binding capacity of the nanoparticles.  

 

Figure 25: Binding capacity of PLA-FBP-Lum NP to different blood-brain barrier model cells in flow cytometry experiments. (A) Binding 
characteristics of PLA-FBP-Lum NP after 4 hours of incubation analyzed as “% positive cells”, displaying quantitative evaluation. Data partly 
published in [195]. (B) Same experiments analyzed by “Y Geo Mean”, representing the binding intensity of PLA-FBP-Lum NP to the different 
endothelial cells as indicated. Data was obtained in at least 3 independent experiments with multiple internal replicas. 
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4.3.2 Cellular uptake of nanoparticles  

Cellular uptake of poly(lactic acid) nanoparticles was investigated in confocal laser scanning 

microscopy (CLSM). After incubating HBMEC with flurbiprofen-loaded, fluorescent poly(lactic acid) 

nanoparticles (PLA-FBP-Lum NP) and staining for the cytosol with CellTrackerTM Blue afterwards, a 

correlation between the cytosolic staining (blue in Figure 26) and the signal for PLA-FBP-Lum NP 

(yellow) was detectable in effectively every cell. It appeared that the nuclei of the cells were not 

infiltrated with the fluorescent labeling molecules of the nanoparticles (Figure 26). 

To strengthen this data, similar experiments were performed with primary porcine brain capillary 

endothelial cells (pBCEC) incubated with PLA-FBP-Lum NP. As shown for the cell line HBMEC, the 

cytosolic staining of pBCEC (blue in Figure 27) correlated with the fluorescent signal of the 

nanoparticles (yellow in Figure 27) when PLA-FBP-Lum NP were incubated for 4 hours at 37 °C.  

In untreated control cells (upper panel in Figure 27), no nanoparticle signal was detected. Furthermore, 

nanoparticle incubation at 4 °C instead of 37 °C, completely abolished PLA-FBP-Lum NP uptake (lower 

panel in Figure 27).  

Another experiment used confocal microscopy imaging to obtain pictures not only in x and y direction, 

but additionally in z coordinates (Figure 28) in order to reconstruct 3D images of PLA-FBP-Lum NP-

treated pBCEC and rule out that scattered signals from the cellular surface might be mistaken for 

cellular uptake. Again, when incubation occurred at 4 °C, samples lacked cell associated nanoparticle 

signals (Figure 28A). In contrast, incubation at 37 °C provoked a correlation of the cytosol signal (blue) 

and the signal for the nanoparticles (yellow) (Figure 28B). The effect becomes particularly apparent 

when images are cropped (Figure 28C), underlining the cellular uptake of the nanoparticles by allowing 

insight into the cytosol (Figure 28C-F). 

 

 

Figure 26: HBMEC uptake of fluorescent PLA-FBP NP. Confocal laser scanning microscopy (CLSM) revealed a clear correlation of the yellow 
fluorescent signals (nanoparticles) with the blue-stained cytosol of HBMEC cells (right image). In contrast, no yellow fluorescence signal was 
detected in control samples that were incubated with PBS instead of nanoparticles (left image) after 4 hours of incubation at 37 °C. Scale bar 
as indicated.   
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Figure 27: Primary pBCEC uptake of fluorescent PLA-FBP NP analyzed by confocal laser scanning microscopy (CLSM). Nanoparticles were 
incubated on pBCEC for 4 h either at 37 °C (middle panel) or 4 °C (lower panel). Cells without PLA-FBP-Lum NP incubation served as control 
(upper panel). After nanoparticle incubation, cells were stained with CellTrackerTM Blue for 30 min; mounting medium for CLSM analysis 
contained DAPI. At 37 °C, PLA-FBP-Lum NP signals (yellow) correlated with the cytosol staining (blue), whereas for 4 °C incubation or control 
cells, no yellow signals were detectable in the cytosol. Scale bar as indicated.  
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Figure 28: 3D projection of confocal laser scanning microscopy (CLSM) analysis of pBCEC after nanoparticle incubation. (A) Untreated 
control cells, cytosol was stained with CellTrackerTM Blue, nuclei are DAPI stained. (B) Cells incubated at 37 °C with PLA FBP NP. Yellow signal 
for nanoparticles correlates with blue cytosol staining. (C) Magnification of cells positive for nanoparticle signals. Red and green line represent 
level for optical cutting in x and y direction. Front quarter was cropped to allow in insight into the cytoplasm. Nanoparticle signal seems to 
be distributed to the cytosol. Nuclei appear not to be infiltrated by nanoparticles. Scale bar as indicated. Data partly published in [195]. 
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4.3.3 Drug transport studies 

Total flurbiprofen transport across the barrier 

To check if flurbiprofen-loaded nanoparticles release the incorporated drug on the brain-representing 

compartment of the in vitro BBB model, the basolateral media of pBCEC grown Transwell® inserts was 

collected after sample incubation and analyzed for flurbiprofen in high-performance liquid 

chromatography (HPLC).  

Figure 29A displays single measurements for different concentrations of either the free drug or 

nanoparticle formulation and was used to calculate Figure 29B, which averages the transport rate of 

flurbiprofen across the barrier. More than 2/3 of apically applied flurbiprofen (FBP) was detectable in 

the basolateral (brain-representing) compartment (Figure 29A, B) after 4 hours of incubation in the in 

vitro pBCEC BBB model. When PLA-FBP NP were applied, less than 30 % of the incorporated drug 

passed the barrier, independent from Tween®80 coating of the nanoparticles. The large discrepancy 

between flurbiprofen transit when applied as free drug or incorporated in nanoparticles raised the 

question where PLA-FBP NP remained in the in vitro BBB model. Therefore, the model’s compartments 

were analyzed separately in the next experiment.  

 

Figure 29: Comparison of flurbiprofen transport across the pBCEC BBB 
model when applied either as free drug or incorporated in nanoparticles. 
(A) Drug amount detected in the basolateral compartment in the pBCEC BBB 
model. After adding flurbiprofen (FBP) or drug-loaded nanoparticles 
(PLA-FBP NP) with or without Tween®80 coating, the medium from 
basolateral site was harvested after 4 hours of incubation and analyzed by 
high-performance liquid chromatography (HPLC). Each symbol represents 
data from one independent measurement; linear fits (calculated with 
OriginPro 9.1G software) are displayed as lines. Data partly published in [195]. 
(B)  Drug transport rate to the basolateral compartment in %, calculated and 
averaged from all data points in (A). Data was obtained in at least 3 
independent experiments with multiple internal controls. Error bars as 
indicated. 
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Drug distribution within in the in vitro model 

In order to localize the remaining PLA-FBP NP within the in vitro BBB model, the different 

compartments of the model were analyzed by HPLC separately: 

To calculate the retrieval rate of the theoretically applied drug, medium from the apical, blood-

representing compartment (grey in Figure 30) was incubated with acetonitrile in order to precipitate 

proteins from cell culture medium on the one hand, and disintegrate remaining nanoparticles to 

release the drug payload on the other hand. Transwell® inserts (white in Figure 30), seeded with pBCEC, 

were treated with DMSO to disintegrate the polycarbonate membrane and solubilize the cells, ideally 

dissolving the incorporated drug into the solvent matrix. Medium from basolateral, brain-representing 

compartment (black in Figure 30) was analyzed in HPLC without further treatment. Whereas for FBP 

the entire drug amount could be retrieved, retrieval rates for PLA-FBP NP were about less than 90 % 

(Figure 30A). For nanoparticles, about half of the calculated drug crossed the BBB model and was 

detected in the basolateral compartment (independent from Tween®80 coating) (Figure 30B), for the 

free drug FBP, basolateral values exceeded 60 %. When the total amount of the samples was set as 

100 % (Figure 30B), nanoparticle samples had a higher retrieval rate (>6 %) in the Transwell® 

compartment than the free drug (<2 %). This data indicates that a proportion of PLA FBP NP could still 

be endocytosed inside the pBCEC and were not yet transcytosed across the in vitro BBB.  

Figure 30: Drug retrieval in different 
compartments of the BBB model 
analysed by HPLC. (A) Percentage of 
drug retrieved in apical (grey), 
basolateral (black) or Transwell® (white) 
compartment of the BBB model when 
applying one exemplary concentration  
(146 µg FBP/TW) flurbiprofen. (B) Total 
retrieved drug values from (A) were set 
as 100 % in each sample, in order to
quantitatively compare the different 
localizations of flurbiprofen. Data from 
at least 3 independent experiments 
with multiple internal controls. Error 
bars indicate SEM. Data partly 
published in [195]. 
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4.3.4 Aβ42 reduction by flurbiprofen-loaded poly(lactic acid) nanoparticles  

Drugs should keep their biological efficacy after transport across the BBB. In order to assess if the 

incorporated flurbiprofen from nanoparticles can still reduce Aβ42 levels in vitro, we designed an 

experimental setup with Aβ42 overexpressing cells 7WD10 (Figure 31A). 

After pBCEC (grown on Transwell® inserts as described) were incubated 4 hours with either 

flurbiprofen (FBP) or flurbiprofen-loaded nanoparticles (PLA-FBP NP), the basolateral medium was 

transferred to Aβ42 overexpressing 7WD10 cells and left there for 72 hours (Figure 31A). The 

subsequent Aβ42 ELISA revealed that the transported flurbiprofen from PLA-FBP NP can reduce the 

Aβ42 levels to less than 70 % of the control level (Figure 31B). Nanoparticle coating with Tween®80 did 

not seem to enhance the effect. Similar concentrations of FBP reduced Aβ42 to 30 % of the original 

level. The more pronounced Aβ42 reducing effect of FBP was expected, because (as shown before in 

Figure 29) more drug was detected in the basolateral compartment after FBP incubation, compared to 

PLA-FBP NP application. However, FBP appeared to be toxic for pBCEC in higher concentration (shown 

in (Figure 20-23), indicating that the barrier became leaky after FBP application.  

 

 

Figure 31: Flurbiprofen-loaded poly(lactic acid) nanoparticles (PLA-FBP NP) reduce Aβ42 levels after transport across the in vitro blood-
brain barrier (BBB) model. (A) Schematic drawing of experimental design: pBCEC were isolated and cultivated as described earlier. When 
transendothelial electrical resistance (TER) was adequate, samples were incubated for 4 hours. The apical compartment and pBCEC were 
then discarded and basolateral medium was transferred to culture plates seeded with Aβ42 producing 7WD10 cells. After 72 hours, the 
supernatants were harvested and analyzed in a human Aβ42-recognizing ELISA assay. (B) Increasing concentrations of applied 
flurbiprofen (FBP) gradually decrease Aβ42 levels. PLA-FBP NP application achieves reduction of Aβ42 levels to less than 70 % of the control 
samples, independent from Tween®80 pre-incubation. Grey rectangle indicates free FBP concentrations that showed a toxic effect on pBCEC 
in cellular Data from at least 3 independent experiments, error bars indicate SEM. Data partly published in [195].   
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4.3.5 Cellular viability of the Alzheimer’s disease model cells 7WD10  

In order to exclude that the transported flurbiprofen from apically applied drug-loaded nanoparticles 

may alter cellular viability of the Alzheimer’s disease model cell line in the basolateral compartment, 

cytotoxicity assays after transport studies were performed. A decrease in cellular viability could cause 

false positive results for Aβ42 reduction in the subsequent assay.  

FBP or PLA-FBP NP (± Tween®80) were first applied to the apical compartment of the in vitro blood-

brain barrier model for 4 hours. Then, the basolateral medium was transferred to the 7WD10 cells 

(Figure 32A). 7WD10 cells were not negatively affected by the samples. Even after 72 hours of 

incubation, all treated cells displayed viability values near 100 % compared to untreated control cells.  

 

 

Figure 32: Nanoparticles’ influence on the Alzheimer’s disease model (7WD10) cells’ viability after crossing the pBCEC BBB model. 
(A) Schematic drawing of experimental design: pBCEC were incubated with FBP or PLA-FBP NP (±Tween®80). After 4 hours, medium of the 
basolateral compartment was transferred to the 7WD10 cells for 3 days, before performing an alamarBlue® cell viability assay. (B) Data from 
cellular viability assay. 7WD10 cells treated with basolateral medium from control Transwell® inserts without drug application were set as 
100 % vital. Data from at least 3 independent experiments, error bars indicate SEM. Data partly published in [195]. 

 

4.3.6 Summary drug transport 

The first step in nanoparticle-mediated transcytosis for drug transport comprises binding of the 

particles to the cells’ surfaces at the blood-representing site, followed by an uptake into the cytoplasm 

of the BBB model cells and finally a release process at the brain-representing site.  

The binding characteristics of PLA-FBP NP were investigated by using the primary in vitro BBB model 

(pBCEC) as well as commonly used BBB model cell lines (bEnd3, HBMEC). Flow cytometry revealed that 

the nanoparticles strongly bound to the cells, although binding intensity differed from model to model, 

being strongest for the human-derived cell line HBMEC. However, flow cytometry data in this case 
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includes both surface-bound nanoparticle signal and intracellular signal, therefore confocal laser 

scanning microscopy (CLSM) was also performed to further investigate cellular uptake. CLSM analysis 

allowed optical sectioning by focusing on selected depths of samples and thereby provided insight 

access into the nanoparticle-treated cells. CLSM data revealed that the nanoparticle signal correlated 

with the cytosolic staining, verifying cellular uptake of PLA-FBP NP in endothelial cells.  

Next, the drug transport capacity of PLA-FBP NP was investigated in HPLC analysis. Flurbiprofen from 

PLA-FBP NP was detected in the brain-representing compartment of the primary in vitro BBB model 

after 4 hours incubation in the blood-representing compartment, verifying that the nanoparticular 

formulation and drug-loading efficacy is suitable for this purpose. In this study’s experimental setup, 

transit of free FBP was about twice as high as for PLA-FBP NP. However, the BBB crossing of FBP is 

rather due to barrier disruption than active transport for several reasons: As stated earlier, FBP 

performed poorly regarding cellular viability of the pBCEC, also TER and C14-inulin permeability were 

strongly influenced by FBP. Another disadvantage of FBP application was the low solubility of FBP in 

water, which required the use of solvents. In this study, FBP was dissolved in DMSO. However, DMSO 

is poorly compatible with the basis material (polycarbonate) of the Transwell® inserts, and can dissolve 

the actual membrane structure. Although a very low volume (>20 µl) of DMSO was applied to a total 

volume of 2.5 ml, an effect of the DMSO became apparent in 14C-inulin permeability assays, indicating 

that even the DMSO solvent destroys the barrier function of pBCEC grown on polycarbonate Transwell® 

membranes. FBP therefore is not a suitable control in drug transport experiments in this experimental 

setup.  

Finally, this study’s data verifies that drug transport from flurbiprofen-loaded poly(lactic acid) 

nanoparticles (PLA-FBP NP) is sufficient to evoke a biological effect and reduce Aβ42 levels in the brain-

representing compartment of the pBCEC model – most importantly, without impairing the barrier 

function of the barrier. HPLC analysis of flurbiprofen content in the brain-representing compartment 

verified this conclusion; supporting the promising binding and uptake experiments of the nanoparticles 

with endothelial cells.  

In a recent publication [68], we could already underpin this study’s data by showing that PLA-FBP NP 

successfully reduced Aβ42 levels by more than 25 %. Nevertheless, using a simpler, murine cell 

line-based BBB model consisting of bEnd3, the study had one major limitation. bEnd3 cells only develop 

low TER values (~40 Ω*cm2), not comparable to the in vivo situation (e.g. in fetal rats around 

300 Ω*cm2, in adult rats up to 1,400 Ω*cm2) [196]. Here, this gap was closed by using a more advanced, 

primary pBCEC-based model with higher TER values (300-1,200 Ω*cm2). Additionally, intact barrier 

integrity was verified by checking for permeability of radiolabeled, non-transportable tracers to 

minimize false positive results in drug transport studies.   
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This promising in vitro data suggests that PLA-FBP NP could also be used to transport flurbiprofen to 

the brain in vivo. The approach shows major benefits compared to the application of the drug alone. 

Flurbiprofen is indeed capable of lowering Aβ42 levels in an in vitro Alzheimer’s disease model, 

consisting of 7WD10 cells that secrete Aβ peptides. However - in contrast to PLA-FBP NP - the 

application of the dissolved drug is toxic to pBCEC (verified in cellular viability assays) and drastically 

impairs the BBB integrity (shown in transendothelial electrical resistance measurements and 

permeability assays with radiolabeled 14C-inulin). Since flurbiprofen destroys the barrier function of 

the in vitro BBB model, more drug crosses the pBCEC layer (verified in HPLC analysis and Aβ42 ELISA). 

In the first study, flurbiprofen also evoked cytotoxic effects on bEnd3 cells prohibiting application of 

corresponding concentrations of dissolved drug compared to PLA-FBP NP [68]. Here again, a cytotoxic 

effect in viability assays was observed. In addition, DMSO-dissolved flurbiprofen increased 14C-inulin 

permeability (even low concentrations) (Figure 23), making the dissolved drug an unsuitable control 

for drug transport studies.  

Furthermore, it was investigated if the pre-coating of nanoparticles with the surfactant Tween®80 

increased drug transport capacity across the in vitro pBCEC BBB model. Surfactants generally lower the 

surface tension between two liquids or between a liquid and a solid. For nanoparticles, it was widely 

proposed that surfactant (like Tween®80) coating of nanoparticles facilitates brain transport in in vivo 

experiments. Hypothetically, Tween®80 coating is expected to anchor lipoproteins from sera or 

plasma, thereby enhancing endocytosis processes at the BBB, because the bound proteins (like ApoE) 

from the blood or cell culture medium promote uptake by BBB specific receptors (for review see [47]). 

Other (less likely) hypotheses state that Tween®80 coatings could act either by inhibiting efflux pumps 

(especially P-glycoprotein) or by a general effect characterized by endothelial membrane fluidization 

and enhanced permeability (for review see [47]).  

Many brain targeting nanoparticles coated with Tween®80 show promising study outcomes (Table 1). 

For PLA-based nanoparticles, evidence exists that Tween®80 enhances brain uptake. For example, Sun 

et al. reported that for BBB crossing of their FITC-loaded PLA nanoparticles, Tween®80 coating was 

actually required in their in vivo experimental setup [88]. Interestingly, in this study’s experimental 

setup, the pre-incubation of PLA-FBP NP with Tween®80 did not enhance BBB crossing, indicated by 

unaltered Aβ42 reduction in the following functional experiments. This is in accordance with the HPLC 

data showing that Tween®80 coating of PLA-FBP NP did not enhance flurbiprofen concentration in the 

brain-representing compartment after application to the blood-representing compartment.  

Kreuter recently reviewed that for some nanoparticlular formulations (like PLGA-based nanoparticles) 

Tween®80 coating was not as efficient for BBB transit than other surfactants [47]. Therefore, other 

surfactant coatings that were shown to enhance crossing of the BBB (like Pluronic-F68®) could be tested 
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for PLA-FBP NP in the future. However, Meister et al. used the same PLA-FBP NP that were used in this 

study and applied them to a simpler BBB model consisting of bEnd3 cells [68]. The sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot data (Figure 33A, B) showed 

that a protein corona appeared on the surface of the nanoparticles – notably without prior surfactant 

coating of the nanoparticles. So, the PLA-FBP NP obviously adsorbed to apolipoproteins, regardless of 

surfactant coating. The protein corona appeared already after 5 min of plasma incubation (Figure 33A) 

and increased over time, rather quantitatively than qualitatively. Notably, the protein corona partially 

consisted of ApoE3 (Figure 33B). Apolipoproteins enable receptor-mediated uptake by lipoprotein 

receptors at the BBB, and ApoE-coupling to nanoparticles allows active endocytosis of the 

nanoparticles via the low density lipoprotein receptor-related protein 1 (LRP1) [81]. Here, it seems that 

in the case of PLA-FBP NP, Tween®80 coating does not seem to play a major role for drug transport in 

vitro (but should nevertheless be taken into account for possible in vivo studies). Alternatively, direct 

coupling of relevant ligands to the nanoparticles’ surface could be applied. Consequently, the next 

section of this thesis concentrates on further describing a potential ligand for PLA-FBP NP to improve 

BBB crossing. 

 

Figure 33: Protein corona of PLA-FBP NP after plasma incubation without surfactant coating. (A) Coomassie Blue-stained SDS-PAGE of 
nanoparticles incubated with human plasma for different periods as indicated. The nanoparticle-plasma protein complexes were separated 
from human plasma by sucrose cushion centrifugation before gel electrophoresis. Protein corona formation on nanoparticles is already visible 
after 5 min of plasma incubation and the amount of bound protein seems to increase over time. (B) Western blot data of the nanoparticle-
protein complexes stained for Apolipoprotein A4 (α-ApoA4) and E (α-ApoE). Image copied and modified from [68].  
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4.4 A suitable ligand for in vivo application: Apolipoprotein E3* 

For this study’s in vitro transport experiments (see 4.3), flurbiprofen-loaded nanoparticles without a 

surface modification were used. However, for in vivo application, a specific ligand modulation would 

be desirable to specifically target receptor-mediated transport across the blood-brain barrier.  

Coupling apolipoprotein E3 (ApoE3) to the nanoparticles’ surface targets the low density lipoprotein 

receptor (LDLR) family, in particular the low density lipoprotein receptor-related protein 1 (LRP1), for 

specific transport. This next section summarizes the preliminary experiments for specific ligand 

coupling. 

 

 

 
Figure 34: Flow chart of the experimental design. Different model cells (pBCEC, bEnd3, HBMEC) were tested for the expression of relevant 
blood-brain barrier receptors in flow cytometry after antibody staining. Next, cells were incubated with fluorescent ApoE3 or ApoE3-modified 
nanoparticles and analyzed in flow cytometry or confocal laser scanning (CLSM) experiments. The cytotoxic potential of ApoE3 was 
investigated considering permeability, viability and influence on transendothelial electrical resistance (TER).        

 

 

4.4.1 Verification of receptor expression  

The different in vitro BBB model cells (pBCEC, HBMEC and bEnd3) robustly express the surface 

receptors LDLR, LRP1 and LRP2 (also known as Megalin) (Table 4). The human-derived cell line HBMEC 

most extensively expresses the receptors compared to bEnd3 and pBCEC. Cells were stained with 

specific primary antibodies and fluorescent secondary antibodies and subsequently analyzed in flow 

cytometry measurements. The signal increased in a concentration-dependent manner when compared 

to control cells (incubated without the primary antibody). For clarity, only one antibody concentration 

per sample is displayed.  

  

                                                           
* Parts of this section were published in [195]. 
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Table 4: Expression low density lipoprotein receptor protein receptor (LDLR) family members. Different endothelial cells were antibody-
stained for receptors expressed at the BBB in vivo and analyzed in flow cytometry experiments. Data from at least 3 independent experiments 
with multiple replicas of >10,000 cells. Symbols represent proportion of % positive cells: (-) <10 %; (+) 11-49 %; (++) 49-90 %; (+++) >90 % 

 

4.4.2 ApoE binding to blood-brain barrier model cells  

To address the question if the planned ligand binds to in vitro BBB model cells, ApoE3 was fluorescently 

labeled with a commercially available kit (also see 3.2.8) and investigated in flow cytometry 

experiments. For this screening experiment, the human BBB model cell line HBMEC was used to avoid 

time and cost-consuming primary cell preparation of pBCEC. As shown in Table 4, HBMEC expresses 

the relevant receptors required for lipoprotein binding. 

Fluorescent ApoE3 (ApoE-633) in a concentration of 1 µg/cm2 showed excellent binding that was 

reduced by about 40 % when unlabeled ApoE3 (in a 10-fold excess) was applied for competitive 

displacement at the LRP1 receptor (Figure 35). A random protein of comparable molecular weight 

(ovalbumin) that was not expected to be specifically transported via the LRP1 receptor served as a 

negative control and was simultaneously fluorescently labeled. As expected, the basal binding of the 

fluorescent ovalbumin (Ov-633) was unaltered by co-incubation with 10-fold excess of free, unlabeled 

ApoE3 (Figure 35). The binding of ApoE3 therefore is assumed to be specific.  

Similar binding experiments were performed in a 4 °C environment, instead of 37 °C (Figure 35). As 

Wagner et al. showed in 2012 for ApoE3-modified nanoparticles, it was confirmed that also the uptake 

of free, fluorescently labeled ApoE3 is an active process that cannot be performed if the cell’s 

metabolism is reduced to a minimum. Values for the mean fluorescence intensity dropped by >95 % 

when cells were incubated at 4 °C instead of 37 °C for four hours.  

 

 

 
pBCEC bEnd3 HBMEC 

LDLR ++ +++ +++ 

LRP1 ++ ++ +++ 

LRP2 ++ ++ +++ 

Figure 35: ApoE binding to brain endothelial 
cells. The human cell line HBMEC was
incubated with fluorescence-labeled ApoE3 
(ApoE-633) or ovalbumin (Ov-633) for 
4 hours at 37 °C or 4 °C before analyzing 
binding intensity (described as Y Geo Mean) 
by flow cytometry. Untreated pBCEC served 
as control and threshold setting. Unlabeled 
ApoE3 in a 10-fold excess was added as 
indicated to check for competitive 
displacement at the specific receptors. Data 
from at least 3 independent experiments 
with multiple replicas of >10.000 cells.  
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4.4.3 ApoE influence on barrier integrity and viability o f primary BBB model cells 

ApoE3 was tested for its potency to reduce cellular viability in vitro. ApoE3 showed no relevant 

reduction in viability when applied in concentrations up to 100 µg/cm2 (Figure 36A). After excluding a 

cytotoxic effect, ApoE3 was also investigated for its potential to alter the permeability of radiolabeled 

marker substances in the primary pBCEC BBB model. As described earlier, pBCEC were isolated from 

freshly slaughtered pig brains and cultivated in a cellZscope® device to monitor their barrier qualities. 

When the transendothelial resistance (TER) was still rising, permeability experiments with radiolabeled 

14C-inulin were performed. 

After exposure of 14C-inulin (0.4 µCi/ml) to the apical compartment, only about 0.2 % of the originally 

applied substance was detectable in the basolateral compartment - indicating good barrier integrity of 

the primary model system (see also 4.1.3). In contrast, addition of 1 µg ApoE3/cm2 growth surface 

promoted permeability of 14C-inulin, although data can only be interpreted as a trend, because 

statistical significance was not achieved. As a further control, hyperosmotic mannitol solution was 

applied together with the 14C-inulin. As expected, the permeability of the radiolabeled marker rose 

drastically (Figure 36B), implying physiological characteristics.  

Next, ApoE3 was tested for its influences barrier integrity by application to pBCECs during TER 

measurements in a concentration of 1 µg ApoE3/cm2 growth surface. While the TER values of control 

cells still increased after a comparable droplet of PBS was applied to the Transwell®, the TER of samples 

incubated with ApoE3 decreased (Figure 36C). The concentration was equivalent to the amount of the 

ApoE3 coupled to the nanoparticles when applied in the standard concentration of 100 µg NP/cm2 

growth surface. However, in terms of experiments with nanoparticles, these concentrations will not 

be attained at the cellular level, because the ApoE3 is coupled to the surface of the assumed spherical 

structure. The surface of a sphere is defined as  � = 4��� = ���. If the diameter of the nanoparticle 

is approximately 200 nm, surface area totals to 125250 nm2. This results in a very low actual 

concentration of ApoE3 at the cellular surface. In accordance with this assumption, ApoE3-modified 

nanoparticles show substantial milder effects on TER in the equivalent ApoE3 concentration per 

incubation surface: Wagner et al. reported in a study investigating uptake mechanisms for ApoE-

modified HSA-based nanoparticles a rapid, reversible drop in TER after incubation that appeared to be 

less drastic than the free ApoE3 in this study’s experiments [81]. Overall, ApoE3 appears to alter barrier 

integrity without being toxic to the primary in vitro BBB model pBCEC. 
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Figure 36: Cell – ligand interactions of ApoE3 and pBCEC. 
(A) Influence of ApoE3 on cellular viability of pBCEC was assessed 
in a cellular viability assay after cells were incubated with different 
concentrations of ApoE3. PBS-treated cells served as negative 
control and were assumed to be 100 % vital. (B) Influence of ApoE 
and ovalbumin (Ov) on barrier integrity of primary pBCEC. 
Mannitol was added to test for physiological characteristics of the 
BBB model. (C) Influence of ApoE3 on transendothelial resistance 
(TER) of pBCEC grown on 0.4 µm Transwell® membranes. One 
exemplary experiment out of at least 3, PBS-treated cells served as 
control. Data from >3 independent experiments with multiple 
internal controls. 
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4.4.4 Binding and uptake of ligand-modified nanoparticles  

The previously described drug transport experiments in section 4.3 were performed by using 

unmodified, drug-loaded nanoparticles. It was shown that, after human plasma incubation, these 

nanoparticles form a protein corona consisting of apolipoproteins [68]. For coupling of apolipoproteins 

to nanoparticles can increase BBB translocation [59, 66, 81, 199], the next step in this study comprised 

ligand modification of poly(lactic acid)-based nanoparticles.      

A PEGylation of the nanoparticles surface allowed coupling of the ligand ApoE3 (PLA-PEG-ApoE NP) or 

the control protein ovalbumin (PLA-PEG-Ov NP). The amount of covalently bound ApoE to the 

nanoparticles was 14.8 µg protein/mg NP, comparable to the amount of bound ovalbumin 

(11.48 µg/mg NP) (Table 5). The diameter of unmodified PLA NP was 244.1 nm, confirming previous 

data (see Table 3). Ligand-modification slightly increased the nanoparticles’ diameter to 266.9 nm for 

PLA-PEG-ApoE NP and 263.1 nm for PLA-PEG-Ov NP. Next, the preparation procedure of the PLA-PEG-

ApoE NP was slightly changed and lacked NaOH in the buffer composition (PLA-PEG-ApoE NP w/o 

NaOH). Thereby the ApoE3 binding reaction is expected to be diminished, representing a further 

control to verify specific, ApoE3-mediated uptake of the nanoparticles. The diameter of these control 

PLA-PEG-ApoE NP w/o NaOH was unexpectedly larger (285 nm) compared to PLA-PEG-ApoE or Ov NP.  

Similar to experiments in section 4.3.1 and 4.3.2, cellular binding and uptake of ligand-modified 

nanoparticles was checked for. Flow cytometry experiments revealed that incubating different 

endothelial cells (HBMEC, pBCEC) with PLA-PEG-ApoE NP drastically enlarged binding capacity, 

compared to unmodified control nanoparticles (PLA NP) (Figure 37A, B). Binding of PLA-PEG-ApoE NP 

w/o NaOH was similar to PLA NP. Coupling of the random protein ovalbumin (resulting in 

PLA-PEG-OV NP) also scaled down binding to pBCEC.  

CLSM analysis indicated that PLA-PEG-ApoE NP entered primary endothelial cells (Figure 36C, D). 

Primary pBCEC were incubated either with ApoE3-modified PLA nanoparticles for 24 hours at 37 °C. 

The blue signals for DAPI-stained nuclei and yellow nanoparticle fluorescence did not overlap 

indicating a cytosolic distribution. Untreated control cells lacked cell specific nanoparticle signals. 

 

Table 5: Characterization of ligand-modified poly(lactic acid) (PLA) nanoparticles and control nanoparticles. Table of NP characteristics. 
Diameter and dispersity index were measured with the aid of a Zetasizer Nano ZS. The amount of bound protein was calculated indirectly by 
detection of unbound protein in the supernatant after NP purification by gel permeation chromatography (GPC) analysis. For visualization, 
all NP were labeled with 1.5 µg Lumogen® F Orange 240/mg NP. 

 Diameter (nm) Poly dispersity index (PDI) Bound protein (µg/mg NP) 

PLA NP 244.1 0.064 - 

PLA-PEG-ApoE NP 266.9 0.075 14.8 

PLA-PEG-ApoE NP w/o NaOH 285.0 0.106 - 

PLA-PEG-Ov NP 263.1 0.132 11.5 
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Figure 37: Influence of ApoE3 modification on nanoparticles’ binding and uptake characteristics in endothelial cells. In pilot flow cytometry 
experiments, (A) HBMEC or (B) pBCEC cells were incubated with 105.3 µg NP/cm2 growth surface for 4 hours at 37 °C. ApoE3-modified 
nanoparticles (PLA-PEG-ApoE NP) strongly increased binding intensity, compared to unmodified control nanoparticles (PLA NP). If the 
preparation procedure of PLA-PEG-ApoE NP was modified and lacked NaOH in the buffer (PLA-PEG-ApoE NP w/o NaOH), binding capacity 
dropped drastically again. Nanoparticle modification with the control protein ovalbumin (PLA-PEG-Ov NP) did not seem to strongly alter 
binding compared to unmodified nanoparticles (PLA NP). The effect was also observed for other concentrations and incubations times (data 
not shown). n=1. Note different y axis increment. Data from (B) was published in [195]. Cellular uptake of PLA-PEG-ApoE NP was checked for 
in primary pBCEC analyzed by confocal laser scanning microscopy (CLSM): (C) In control samples, no cell specific nanoparticle signal was 
detectable; (D) after 24 h of incubation with PLA-PEG-ApoE NP, nanoparticular accumulation in the cytoplasm appears (yellow) was apparent. 
Pilot experiment, n=1. Nuclei are DAPI stained (blue). Scale bar as indicated.  
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4.4.5 Concluding remarks on ligand modification  

Previous studies demonstrated that modification of nanoparticles with apolipoproteins facilitates the 

transport across the BBB in vitro and in vivo [26, 59, 66, 77, 81, 200]. This effect was already reported 

for human serum albumin (HSA)-based nanoparticles and is especially important for in vivo application 

to promote targeted transport across the BBB in the body. Examples for successful brain targeting 

formulations are loperamide-loaded [78, 90, 91] and obidoxime-loaded [26] ApoE3-modified 

nanoparticles. Loperamide, for example, an opioid drug used against diarrhea, does not cross the BBB 

in vivo and consequently does not reduce pain. However, it shows analgesic effects if it is injected 

directly into the brain or loaded into ApoE3-modified HSA nanoparticles that are intravenously injected 

into mice. These animals react less sensitive in a tail-flick test, vividly demonstrating the elegant 

potential of nanoparticle-mediated drug transport to the brain [77].  

Here, nanoparticles that were coupled to apolipoprotein E3 or control ligands were used. Pilot 

experiments with these nanoparticles suggest that pBCEC take up ApoE3-modified PLA nanoparticles 

(PLA-PEG-ApoE NP). Furthermore, PLA-PEG-ApoE NP bind stronger to brain capillary endothelial cells 

than control nanoparticles. Elegantly, the control nanoparticles are in this case not just PEGylated 

nanoparticles, but particles that are prepared by the exact same procedure except for the lack of NaOH 

during the coupling phase (preventing the functionalization of free OH groups for coupling ligands). All 

in all, it is therefore likely that ApoE3-modification of flurbiprofen-loaded nanoparticles (PLA-FBP NP) 

also will enhance brain transport capacity of the incorporated drug in vivo. 
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5 OUTLOOK &  SCIENTIFIC CONTEXT  

5.1 Optimization of nanoparticles for flurbiprofen transport 

Drug-loading capacity, release profile and surface modification  

Although flurbiprofen-loaded poly(lactic acid) nanoparticles (PLA-FBP NP) used in this in vitro study 

displayed very promising results in terms of low cytotoxic potential, crossing of the in vitro BBB model 

and capability to reduce amyloid burden in a subsequent in vitro Alzheimer’s disease model, many 

ways of further improving them exist.  

Firstly, the drug release profile of PLA-FBP NP used in this study is rather quick, meaning that the 

complete drug loading is released within a few hours after redisperging the freeze-dried nanoparticles. 

For the in vitro study, the release profile was sufficient, but for in vivo experiments, a retarded drug 

release profile of PLA-FBP NP is more desirable. In vivo, nanoparticles can be transported to the brain 

as fast as 15 min after intravenous injection [59], but a sustained drug release in the brain parenchyma 

would prolong treatment intervals for humans. Possibilities to produce “retard nanoparticles” in the 

future comprise coating with different guarding substances, such as chitosan or PEG (for review see 

[201]). It is also possible to produce multilayer nanoparticles that bear a PLA-based, FBP-loaded core 

with shells of different material in order to keep the drug inside the particle for a longer time. 

Secondly, the nanoparticle formulation for flurbiprofen transport should further be improved to allow 

a ligand-modification on the one hand, and an optimal drug-loading efficacy on the other hand. In this 

study, PLA served as a nanoparticle basis material due to its advantageous flurbiprofen-loading 

capacity (compared to HSA- or PLGA-based nanoparticles). Furthermore, coupling of the surface ligand 

ApoE3 to unloaded PLA nanoparticles was achieved (PLA-PEG-ApoE NP). In summary, one nanoparticle 

species with a ligand modification without drug loading (PLA-PEG-ApoE NP) and another nanoparticle 

without ligand, but with drug loading (PLA-FBP NP) were available for in vitro testing. In the future, 

one nanoparticle must possess these two critical key attributes: it must be capable of selectively 

crossing the blood-brain barrier (due to a surface modification) and must bear a sufficient amount of 

the drug flurbiprofen to evoke biological effects.  
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Nanoparticle trafficking and tracking in vitro and in vivo  

The question arises if the in vitro BBB model depicts realistic local in vivo concentrations. The pBCEC 

BBB model is based on a simple Transwell® system, meaning the endothelial cells grow horizontally on 

a porous membrane. Also, the system lacks any fluidic movements and is therefore a static system. 

This does not portray the realistic circumstances at the neurovascular unit since in human brains more 

than 600 ml of blood passes the capillaries per minute with a mean flow velocity of 1 mm/s [202]. 

Without question, the local concentration of nanoparticles that can interact with the BBB surface in 

vivo will be considerably lower. Therefore, the data obtained in this in vitro study cannot predict an 

outcome in humans, but rather serves as a proof of concept for future experiments. The data obtained 

from the pBCEC BBB model is less prone to be false positive results compared to weaker in vitro BBB 

models and confirms PLA-FBP NP as appropriate technology for transporting drugs to the brain.  
This study only indirectly suggests that drug-loaded nanoparticles crossed the in vitro BBB model, 

because detection occurred via analyzing the released drug at the brain-representing site by HPLC and 

biological efficacy of the released drug via an Aβ42-detecting ELISA assay and not the actual 

nanoparticles themselves. It would therefore additionally be interesting to track the nanoparticles in 

in vitro and in vivo experiments. Different strategies exist to label nanoparticles with radioactive tracer 

molecules since either incorporated or bound proteins can be labeled [203] or the nanoparticles’ basis 

material (e.g. PLGA) [204] can bear radioactive molecules. 

If nanoparticles consist of or bear proteins or peptides, iodination strategies [205] are a convenient 

way to add a radioactive tracer (depending on the amino acid that becomes labeled ). Commonly, the 

Bolton-Hunter reagent (125I, 131I) is used for iodination of proteins. It can be applied directly to peptide 

or protein samples and conjugates to terminal amino groups effectively introducing radioactive iodine. 

This technique is non-oxidative and less harsh to proteins than alternative methods. One disadvantage 

is that iodine isotopes have relatively short half-lives (60 days for 125I and 8 days for 131I) and need to 

be used very soon after labeling. Here, Bolton-Hunter iodination could be used to label either HSA-

based nanoparticles or ApoE3-modified PLA-based nanoparticles in order to monitor transport across 

the in vitro BBB model. Another way to achieve radiolabeled nanoparticles is to label one of the 

nanoparticles components before the actual nanoparticle preparation process. Various methods and 

isotopes exist that allow traceable nanoparticle formulations. Tritium (3H) (a radioactive isotope of 

hydrogen) can be used to label peptides [206]. The low energy β emitter has a half-life of 12.32 years, 

making it convenient for laboratories. Peptides can be easily tritium labeled by catalytic exchange, e.g. 

it would be possible to 3H-label the ApoE3 ligand before or after nanoparticle modification. Using 

N-succinimidyl [2,3-3H]propionate ([3H]NSP), the reaction is similar to using Bolton-Hunter reagent and 

labels free amino groups with less alteration of the protein structure, though with lower specific 
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activity compared to Bolton-Hunter reagent. Also, it is possible to tritium label the basis material as 

companies offer custom synthesized 3H-PLGA formulations [204] that can be further used to prepare 

nanoparticles respectively.  

Peptide labeling can also be achieved by 14C [207]. Theoretically, 14C-labeled amino acids can be 

incorporated in peptides or 14C can be added to the N-terminus of peptides by acetylation of free amino 

groups with 14C acetic acid. However, compared to tritium labeling, this approach is rather expensive 

and reduced in specific activity [208]. 

A further step to investigate nanoparticular trafficking routes in the body is to follow in vivo routes by 

high resolution imaging techniques, such as magnetic resonance imaging (MRI). For this purpose, the 

ferrimagnetic compound magnetite (Fe3O4) can be introduced to nanoparticles. We already showed 

that magnetite-labeled HSA nanoparticles can be detected in rats with clinical MRI scanners with 

limited sensitivity, although further investigations with ligand-modified, magnetite-labeled HSA 

nanoparticles are needed to reliably visualize brain uptake [209]. A magnetite labeling of PLA-based 

nanoparticles that carry a flurbiprofen loading would also be desirable to test in in vivo MRI trafficking 

experiments. Different groups already demonstrated that it is possible to prepare magnetic 

nanoparticles that consist of, or carry PLA [210, 211]. Further elucidation the potential of PLA-FBP NP 

as anti-Alzheimer’s disease drug would be possible by adapting the preparation protocol to produce 

magnetic PLA-FBP NP for MRI analysis. 

Nevertheless, past experiments have shown that even the best in vitro data cannot accurately reflect 

the in vivo situation, especially not for brain delivery. Since flurbiprofen already failed in clinical trials, 

the in vitro data of this study needs to be critically regarded and confirmed with great care, requiring 

verification in vivo. The study outcome is not yet confirmed in animal models, which would be essential 

to further promote PLA-FBP NP in anti-Alzheimer’s disease drug development. The body distribution 

of this nanoparticular formulation would be of utmost importance to correlate the in vitro data with 

in vivo trafficking and suitability as a brain drug.   
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5.2 Improving models: Can in vitro data predict in vivo outcome?  

“Animal experiments will remain necessary in biomedical research for the foreseeable future” [212] 

states the Basel Declaration, a document signed by scientists from Switzerland, Germany, the United 

Kingdom, France and Sweden to promote alternatives to working with laboratory animals. The basic 

3R principle (replace, reduce, refine) aims at avoiding and reducing animal tests and suffering of 

laboratory animals. One important cornerstone to achieve this goal are in vitro models. 

In drug development research, in vitro models are commonly used before testing promising 

formulations in in vivo animal studies or in clinical trials with healthy humans or diseased patients 

(strictly regulated by official institutions such as the US Food and Drug Administration (FDA) or the 

European Medicines Agency (EMA)). Especially advanced (close to in vivo) models can reduce false 

positive study outcomes and limit the number of candidates suited for in vivo studies and clinical trials 

– saving research money and decreasing ethical concerns.  

Alzheimer’s disease models 

In this study, 7WD10 cells (a widely reported cell line heterogeneously overexpressing amyloid 

precursor protein 751WT (APP751WT) prone to peptide aggregation) were used as an in vitro 

Alzheimer’s disease model. As for all simplified in vitro models, this cell line cannot replicate all 

characteristics of Alzheimer’s disease, but is rather used to explore the pharmacological efficacy in 

targeting the amyloid cascade in a controlled experimental setup.  

Generally, great effort has been made to improve in vitro cellular Alzheimer’s disease models. Israel et 

al. reprogrammed primary cells from patients suffering from either the familial or sporadic Alzheimer’s 

disease by using induced pluripotent stem cell (iPSC) technology [213]. They further characterized their 

model for pathological markers like amyloid-β levels and phosphorylated τ and treated purified 

neurons with β- and γ-secretase inhibitors to investigate phenotypes relevant to Alzheimer’s disease. 

In a recent Nature publication, Choi et al. introduced familial Alzheimer’s disease mutations (in APP 

and PSEN1) in a neural stem-cell-derived model cultured in a three-dimensional setup [214]. These 

cells produced amyloid-β (and also amyloid-β plaques) and aggregated phosphorylated and 

filamentous τ. Application of β- and γ-secretase inhibitors reduced amyloid-β pathology and also 

tauopathy [214]. 

A further step in testing anti-Alzheimer’s disease drug candidates are in vivo models, but the situation 

is complicated. As the most common animal model Mus musculus does not suffer from demented itself 

and so far no neurotoxin has been discovered that induces Alzheimer’s disease in mice (as the 

compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) does for a Parkinson’s disease 

phenotype). Nevertheless, generation of genetically modified mouse models drastically increased the 
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understanding of Alzheimer’s disease pathology and improved preclinical testing of potential 

therapeutics [215]. However, it is vital to keep in mind that alterations in these transgenic animals can 

lead to potential confounding factors due to overexpression of Aβ or τ. Models based on the amyloid 

hypothesis (used to test Aβ reducing strategies) are, for example, Tg2576 [216]. These mice 

overexpress a mutant APP and show Aβ plaques comparable to those observed in humans, even 

though these animals lack neuronal tangles or neuronal loss. Analogously, τ transgenic models (e.g. 

Tg4510 [217]) overexpress a mutant τ form and display neurofibrillary tangles, functional deficits and 

brain atrophy. Furthermore, the elegant 3xTg Alzheimer’s disease mouse model combines three gene 

mutations (tauP301L, APPK670N/M671L and PS1M146V) and displays three of the Alzheimer’s-

associated characteristics: amyloid aggregation, fibrillary tangles and deficiencies in synaptic 

transmission.  

A very recent model uses Octodon degus, a rodent native to South America, as a sporadic Alzheimer’s 

disease model: apparently, these animals spontaneously develop pathological hallmarks associated 

with Alzheimer’s disease, such as amyloid-β plaques and τ deposits; also, they develop a decline in 

cognition with age [218]. All in all, the Octodon degu model seems to fulfil a plethora of Alzheimer’s 

characteristics found in humans, including molecular, cellular and even behavioral aspects, making it 

a unique natural rodent model for neurodegenration.    

Still, no currently established disease model can display all aspects that are reported for Alzheimer’s 

disease in humans. Therefore, it will always be necessary to reconfirm in vitro and in vivo animal data 

in clinical trials to prove efficacy in Alzheimer’s disease therapy in humans. 

Blood-brain barrier models 

Overall, this study suggests that the monoculture of the primary porcine in vitro model based on pBCEC 

represents a strong, physiologically comparable fort. This conclusion was also recently underpinned in 

[219]. Also, using swine primary material closely resembles human conditions regarding genome, 

anatomy and physiology [220] (unlike many other experimental animal species), but lacks ethical 

concerns compared to using primary primate cells. Nevertheless, there is a plethora of possibilities to 

further improve.  

As cells never grow isolated in a physiological system, advanced in vitro models focus on multiple cell 

type cultures and three dimensional setups. Literature bursts of studies concerning co-cultures of 

endothelial cells with astrocytes, pericytes and neurons or even aforementioned triple-cultures. 

Especially astrocytes, which in vivo cover more than 90 % of the endothelial cells’ surface, seem to play 

a major role. Many reports claim an increased blood-brain barrier integrity of model cells if astrocytes 

(or even astrocytoma cell lines like 1321N1) are cultured on the opposite side of the Transwell® 
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membranes, or if astrocyte-covered membrane disks or if sole astrocyte-conditioned media are added 

to endothelial cell cultures [19, 221–223].  

Other innovative in vitro cell culture models try to remodel the natural blood flow of the in vivo 

situation by expanding to a third dimension (3D models) or introducing dynamics and fluidics, because 

the lack of shear stress in static models (like Transwell® inserts) can influence barrier characteristics, 

like the expression of TJ proteins and BBB-relevant ion channels and transporters. Inducing shear stress 

at the endothelial cells’ surface alone can induce a convergence to in vivo situations and can improve 

barrier integrity, as well as the separation into compartments allowing co-culturing of different cell 

types (endothelial and neuronal cells, astrocytes, pericytes). Current microfluidic models that allow 

multiple cell cultures in different compartments comprise, for example, NDIV-BBBr [28, 29], µBBB [30] 

and SyM-BBB [31]. These systems mimic a blood flow through a vessel that is better suited for drug 

transport studies than the static, horizontal Transwell® system. In a 3D blood vessel model, 

sedimentation of substances is not possible and detection of the substances at the other side of the 

barrier is more likely due to active transport processes. This allows a better predictability for the 

transport of a drug in vivo. Nevertheless, in all three models the culture surface is rather small (e.g. in 

[30]: 10 x 10 mm2); making detection of substances with a low permeability in vivo rather difficult (due 

to detection range). 

Additionally, the increase in complexity in an in vitro BBB model makes it more and more difficult for 

pharmaceutical industries to transit the model to a high through-put variant for large scale research 

and development, and eventually for preclinical testing of promising drug candidates. Overall, simple 

BBB models that still display excellent barrier characteristics and moreover can be upgraded to high 

through-put techniques are most desirable for pharmaceutical drug development.  

Impairment of the blood-brain barrier in Alzheimer’s disease  

A further complicating factor for BBB modelling in the context of neurodegenerative disorders is the 

existing BBB dysfunction in Alzheimer’s disease. It was postulated that neurotoxic Aβ crosses an 

impaired BBB and induces neurodegeneration; the process of Aβ accumulation in the brain and BBB 

impairment are also believed to interact and reinforce each other, eventually promoting 

neurodegeneration [224–226]. 
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5.3 Further strategies and candidates profiting from nanotechnology   

This study proves that nanoparticle-mediated drug transport allows transit across an advanced in vitro 

blood-brain barrier model and therefore may be an excellent tool to treat life-threatening brain 

diseases, like brain tumors (glioblastoma multiforme) or others. The etiology and pathological 

processes associated with neurodegenerative disorders, like Alzheimer’s disease, are confusingly 

complex. Often it remains unclear if a certain hallmark is reason or cause of the disease development 

and progression, prohibiting reliable prognosis of effective drug treatment options in the future. 

Prevention or acute treatment?  

Experts on the Alzheimer’s disease topic are consent that the disease is not currently treatable and 

therapy will, if anything, only halt or slow down the disease’s progression. Of very large concern is the 

timing of the intervention, because by the time amyloid deposits and neurofibrillary tangles are 

present, treatment is expected to be past the point of efficacy [104]. However, imaging data suggests 

that amyloid plaques appear even before clinical decay [227]. The diagnosis of a very early stage 

Alzheimer’s disease is therefore essential - and justifies the great efforts in molecular biomarker 

development [228–230]. When the first symptoms become noticeable, patients have already lost a big 

part of the neural signaling capacity, meaning a large proportion of neurons already perished, and the 

remaining neurons tire while compensating the loss of the other neurons. The rigorous exhaustion 

again causes neural death and even more neurons perish. Furthermore, the lack of synaptic stimulation 

causes neurons to draw back their dendrites and reduce themselves to mainly soma. These altered, 

“sleeping” neurons fall into a passive condition and lose their capability in signal passaging.  

Screening for Alzheimer’s disease biomarkers in certain cases, like when tangible risk factors (such as 

familial Alzheimer’s disease history or APOE4 genotype) are given, therefore would be a step towards 

early intervention possibilities. From current research, anti-amyloid treatment can only be preventive 

and this must be taken into account when developing nanoparticle formulations. Advantages of 

nanoparticular formulations compared to conventional drug development comprise low doses and less 

side effects due to targeted transport (Figure 38). However, a long-term prevention of diseases by drug 

therapy should ideally be orally applied, cheap and should aim at good compliance and low side effects 

for the patients. A common example is secondary prevention of cardiovascular diseases with the 

antithrombotic drug acetylsalicylic acid (ASA, AspirinTM): a daily oral dose of >100 mg/day is sufficient 

for antithrombotic prevention [231, 232] (whereas for pain relief 500–1,500 mg are required) and 

people only suffer from an acceptable rate of side effects.   
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Figure 38: Overview of nanoparticle-mediated benefits and concerns for Alzheimer’s disease and other neurodegenerative disorders 
regarding NSAID- and other potential drug-loading for preventive approaches. NSAID-based drug application is only expected to work 
against Alzheimer’s disease if given at very early stage. But high doses required relevant in AD outcome do not justify NSAID-prevention 
therapy without further indications. Nanoparticles can be used to target NSAIDs to the brain to reduce peripheral side effects and enhance 
local drug concentrations, but at the moment, only intravenous injection of brain-targeted nanoparticles is feasible, raising ethical concerns 
and questions about patients’ compliance. Nevertheless, NSAID-loaded nanoparticles could not only be beneficial for Alzheimer’s disease 
patients, but also in context of other neurodegenerative diseases (like Parkinson’s or Huntington’s disease). Other disease modifying 
strategies in the battle against Alzheimer’s disease could comprise nanoparticles targeting causal mechanisms (like inflammation or amyloid 
production). Often these substances are not able to cross the blood-brain barrier themselves, which could be allowed by effectively using 
nanotechnology.   
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In the case of flurbiprofen, long-term high dose NSAIDs application for Alzheimer’s disease risk 

reduction (as shown in patients with rheumatoid arthritis) is not justifiable, because of the severe 

adverse side effects in these doses. Therefore, packing flurbiprofen into nanoparticles as Trojan horses 

in order to target transport to the brain is an elegant approach to reduce side effects by lower doses 

in the periphery. 

However, at present, nanoparticles that are intended to be given orally and to treat brain diseases are 

years away from tangible development. Examples exist for nanoparticles that are given orally and 

reach their target site in the gastrointestinal (GI) tract [233–235]. However, if the nanoparticles are 

supposed to exit the GI tract and enter the blood stream numerous problems exist. Mainly, the 

nanoparticles are very unlikely to cross the mucosa of the intestine. This can be beneficial if a high local 

concentration is sought (e.g., when the nanoparticles should be degraded in the mucus), but mucus 

crossing of un-degraded nanoparticles to be further transported to the blood stream is very unlikely 

to happen. In addition, the natural route would take them to the portal vein directly to the liver where 

they are likely to accumulate.  

Therefore, the nanoparticle formulations discussed in this study are only applicable to intravenous 

injection (Figure 38). The ethical concern is that it is not justifiable to treat people, especially the elderly 

(that are more prone to infections and critical immune responses) with a prevention that needs to be 

intravenously applied. In addition, the patients’ compliance is expected to be very low. One possibility 

makes an intravenous preventive treatment more palatable for potential patients would be to increase 

the time span between recurrent applications. If it was possible to prepare a retard nanoparticle that 

consistently releases the drug in an e.g. monthly period, it would be conceivable that people would 

use it as prevention regimen.  

A common example for an injected prevention strategy is vitamin B12 supplementation for vegans. 

Vitamin B12 is only present in animal products (and its oral availability is generally low), but it is 

essential for neural development and memory performance. Therefore, vegans (and also non-vegans) 

often perform a vitamin B12 treatment where the drug hydroxocobalamin or cyanocobalamin (which 

is metabolized to vitamin B12 in the body) is intramuscularly injected monthly or weekly over a certain 

period of time. 

Analogously, certain risk factors for Alzheimer’s disease would justify a long-term intravenous drug 

therapy or prevention approach using nanotechnology. Indications could consist of predisposition of a 

familial variant of Alzheimer’s disease, caused by gene mutation in the APP or γ secretase-encoding 

gene. All current mouse models of Alzheimer’s disease make use of these mutations to mimic 

Alzheimer’s disease, where the proportion of the familial variant only covers 5-10 % of all Alzheimer’s 

disease cases. However, for the people suffering from the gene mutation, it would be legitimate to 
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intervene with e.g. NSAIDs that were repeatedly shown to modulate γ-secretase activity and are 

expected to be beneficial if they can reach brain parenchyma.  

Another indication for nanoparticle-based NSAID prevention could be a peculiar Alzheimer’s disease 

biomarker. Researchers and clinicians put a lot of effort into establishing an early diagnosis of 

Alzheimer’s disease. Particularly useful is the analysis of cerebrospinal fluid (CSF) for total τ (T-τ), 

phosphorylated τ (P-τ) and β-amyloid peptide (Aβ42) [236–238]. Hinting at neurofibrillary tangle 

formation and amyloid pathologies, these analyses can therefore identify patients at early Alzheimer’s 

disease stages that did not yet develop dementia (it also serves as differential diagnosis between 

Alzheimer’s disease and other dementias). These patients could actually benefit from nanoparticle-

mediated drug therapy in the early stage of the disease, justifying the perceived burden of a recurrent 

intravenous prevention approach.      

Ideally, the drug release profile of the nanoparticles should then be optimized to a retard profile, 

minimizing the frequency of injections. This could be achieved by a combination of basis material for 

the nanoparticles: e.g. if PLGA-based nanoparticles were used, the proportion of PLA and PGA in the 

PLGA composition varies the release profile of the drug. An injection could therefore include 

nanoparticles with increasing amounts of PLA in the PLGA composite to delay drug release. 

Furthermore, a subpopulation of the nanoparticles could be coated with protectants, such as chitosan, 

that would further delay degradation in the human body. 

 

Intervention possibilities profiting from nanotechnology  

The progression of Alzheimer’s disease creates the largest unmet medical need in neurology. A 

hindrance is that the etiology hypotheses are not elucidated up to today and that it seems likely that 

more than one pathogenic pathway causes the disease state. This section discusses the current 

disease-modifying and prevention strategies that could profit from using nanotechnology, focusing in 

detail on Aβ-related approaches and neuro-inflammation (other current approaches comprise 

targeting τ pathology, altered ApoE genotypes and metabolic dysfunction).  

In his review from 2010, Citron outlines different causal intervention strategies [122] focusing on the 

reduction of Aβ42 formation and Aβ42 plaque pathology (summarized in Figure 39). A lot of these 

strategies could profit from nanotechnology, because many of the substances worth considering as 

anti-Alzheimer’s disease drug candidate are not currently suited for blood-brain barrier crossing 

themselves - making nanoparticle-mediated drug transport a promising approach. 
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Figure 39: Disease modifying strategies against Alzheimer’s disease. The amyloid precursor protein (APP) is cleaved by β- and γ-secretase 
during the amyloidogenic pathway, resulting in aggregation-prone Aβ42 peptide that forms neurotoxic oligomers and amyloid plaques, which 
may cause neuroinflammation. The amyloid cascade may trigger downstream τ pathology. ApoE can affect Aβ deposition and/or clearance. 
Various approaches for possible disease-modifying strategies that causally target the proposed pathology processes are shown: (A)  Secretase 
inhibitors and modulators alter the proteolytic cleavage outcome, thereby reducing Aβ42 levels. (B) Aggregation inhibitors target plaque 
formation by decreasing Aβ-Aβ interaction. (C) Clearance mechanisms comprise degrading Aβ peptides e.g. by proteases. (D) Alternatively, 
Aβ-recognizing antibodies can be used to mark neurotoxic Aβ peptides for degradation by the immune system. (E) Independent from Aβ 
pathway, τ pathology can be interfered with by decreasing either τ aggregation or τ hyperphosphorylation. (F) As neuroinflammation is linked 
to Alzheimer’s disease, targeting inflammation processes is another causal tool. However, it is still unclear to what extent inflammatory 
responses are harmful or beneficial in Alzheimer’s disease pathology. Image adapted and modified from Citron [122].  
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The amyloid hypothesis blames pathologic amyloid plaque accumulation in the brain due to an 

imbalance of Aβ42 production and clearance as the origin for Alzheimer’s disease development. 

Consequently, drugs that influence the amyloidogenic outcome of APP cleaving and resulting in less 

Aβ production are a cornerstone in anti-Alzheimer’s disease drug development (Figure 39A). Despite 

some critical voices started to question the amyloid hypothesis in recent years, there is strong 

pathological and genetic evidence that Aβ peptide, especially the least soluble isoform Aβ42 plays a 

key role in all types of Alzheimer’s disease [239, 240]. However, in the last years, several therapeutics 

that were developed on behalf of the amyloid hypothesis failed in clinical tests. The next section 

summarizes recent efforts that failed, but might be revisited in nanoparticular formulations. 

The first target in Aβ42 reduction was γ-secretase. γ-secretase inhibitors (Figure 39A) decrease Aβ42 

burden by altering progressive proteolytic cleavage of APP. Concerns towards γ-secretase inhibition 

arose when scientists found that deleting the γ-secretase component PSEN lead to lethal phenotype 

(comparable to a Notch1 knock out) and that inhibiting Notch 1 cleaving interferes with thrombocyte 

differentiation and B-cell maturations [241, 242]. Nevertheless, companies developed γ-secretase 

inhibitors like semagacestat and avagacestat that were believed to be beneficial for Alzheimer’s 

patients [243–246]. Unfortunately, cognitive decline did not significantly improve with semagacestat 

and avagacestat therapy, but rather it worsened. However, since γ-secretase has many substrates, the 

outcome of these trials is hard to interpret and the negative effect might be due to other altered 

pathways affected by γ-secretase inhibitors [247–249]. To avoid safety issues, circumventing an effect 

on the Notch pathway was aimed for and lead to the development of γ-secretase modulators (not 

inhibitors). Some NSAIDs are able to decrease neurotoxic Aβ42 species (Figure 39A), whereas other Aβ 

isoforms increase [250], without affecting Notch [251]. This effect is not mediated by the classical COX 

inhibition, but by direct γ-secretase interaction [173] or the corresponding substrates [252]. This study 

used the γ-secretase modulator flurbiprofen. R-flurbiprofen (tarenflurbil) failed in an Alzheimer’s 

disease clinical trial, due to its poor transport capacity across the blood-brain barrier. Delivery of 

NSAIDs to the CNS is often inefficient, likely evoked by binding to plasma proteins [185–188, 253] . The 

incorporation of the drug within nanoparticles evoked an Aβ42 reducing effect in the in vitro 

BBB/Alzheimer’s disease model. Achieving targeted transport to the brain in vivo by surface 

modification of the flurbiprofen-loaded nanoparticles, may improve the prospects of disease 

modification in animal models or patients. Another explanation for the failure of R-flurbiprofen in 

clinical trials might have been the reduced impact on COX activity. Patients treated with high-dose, 

long-term NSAIDs were less likely to develop Alzheimer’s disease, but this effect was also believed to 

be due to anti-inflammatory reactions. Another strategy to avert the amyloidogenic pathway [254] is 

targeting β-secretase (BACE1), which is ubiquitously expressed but elevated in the brain and its 
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biological role is still not clear. In sporadic Alzheimer’s patients, BACE1 is not mutated, but β-secretase 

activity is still enhanced (not clear if this is the cause of the pathology or a late-stage consequence). 

Generally, β-secretase inhibitors are a promising anti-Alzheimer’s disease drug, but the development 

seems to be challenging as most of the candidates are large and hydrophilic peptides [255], prohibiting 

blood-brain barrier crossing. In these cases, nanoparticles could be an excellent approach to deliver 

these substances to the brain parenchyma since nanoparticles loaded with peptides or proteins have 

been successfully prepared in the past. Another (theoretically possible) approach is stimulation of 

α-secretase (e.g. through cell surface receptors [256]) providing less APP substrate for the 

amyloidogenic pathway. Nevertheless, far more APP enters the non-amyloidogenic pathway and for a 

measurable effect, α-secretase activity would need to markedly increase, changing not only APP but 

also various other membrane protein metabolism. The possible side effects are unknown and no 

α-secretase activator has entered clinical trials so far [122].  

It is also possible to target Aβ aggregation for AD intervention (Figure 39B). In the brain, different Aβ 

isoforms are generated, of which Aβ42 tends to aggregate in oligomers. Scientists originally assumed 

that only large fibrils would be neurotoxic, but later it was shown that even smaller Aβ oligomers can 

lead to synaptic dysfunction (for review see [240]). Consequently, one approach was developing 

substances that inhibit Aβ-Aβ interaction (Figure 39B), but not many of these drugs entered clinical 

trials. A prominent candidate, tramiprosate, keeps Aβ monomers in a non-fibrillary state [257] and 

reduced Aβ42 in the cerebrospinal fluid in a phase II trial. It was not effective in a phase III trial, and it 

is still unclear if the drug blocked Aβ42 in the brain. Nanoparticles could be used try and enhance 

tramiprosate (AlzhemedTM) transport to the brain.  

Furthermore, enhancing Aβ clearance can be aimed for (Figure 39C) by involving two key structures: 

Aβ-degrading proteases and Aβ-targeting antibodies. Proteases (also called peptidases or proteinases) 

ipso facto cleave proteins (or peptides) by hydrolysis of peptide bonds. For Aβ peptide cleavage, the 

most important proteases identified are neprilysin, insulin-degrading enzyme and plasmin [258]. 

Plasmin degrades Aβ peptides in vitro, but is inhibited in vivo by plasminogen activator inhibitor 1 

(PAI-1) (which prevents generation of plasmin from plasminogen). Consequently, blocking the PAI-1 

leads to activated Aβ-degrading plasmin and also more Aβ clearance (Figure 39C). PAI-1 inhibitors 

reduced Aβ burden in transgenic mice [258, 259], but the brain transport of PAI-1 inhibitors is expected 

to be problematic in patients due to the blood-brain barrier. Proteins can be incorporated into 

nanoparticular formulations. So, an interesting approach to target Aβ-degrading proteases to the brain 

could be packing the enzymes into nanoparticles of suited basis materials (e.g., PLGA) and using 

surfactant coating or direct coupling of surface ligands (e.g., ApoE3) to allow blood-brain barrier 

crossing and enhance protease concentration in the brain.  
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Concerning immunotherapy (Figure 39D), two pathways are assumed to support Aβ clearance (for 

review see [104]). Either a peripheral sink effect appears when antibody binding in the blood plasma 

causes a gradient that drives Aβ removal from the brain, or antibodies might tag Aβ species present in 

the brain making them recognizable for microglia (capable of phagocytosis). In active immunization, 

the Aβ42 antigen itself is injected; in passive immunization whereby, patients receive Aβ42-recognizing 

antibodies. However promising, up to today this stagey failed in terms of slowing cognitive decline and 

in some cases was even harmful to patients that developed a severe immune response [122]. 

Antibodies targeting the amyloid-β peptide repeatedly failed to slow cognitive declines in Alzheimer’s 

patients during clinical trials and raised questions about the effectiveness of Aβ42 reduction. In 2012, 

the Nature news blog reported that Bapineuzumab, a humanized monoclonal antibody, did not cause 

cognitive improvement in patients during two trials, even though Alzheimer’s disease biomarkers 

(amyloid brain plaque and phosphorylated τ protein) in the cerebrospinal fluid (CSF) were decreased 

after Bapineuzumab treatment. In response, the developing company Johnson & Johnson therefore 

wanted to discontinue the development. In two global, randomized phase III clinical trials, the lack of 

efficacy of Bapineuzumab was recently confirmed [112]. Eli Lilly and Company also failed with a similar 

antibody (Solanezumab) in two phase III clinical trials. However, as previously mentioned, maybe study 

designs should be adapted to try to treat asymptomatic patients that already show the including 

criteria in biomarkers, but do not yet suffer from cognitive decline or dementia.  

Another target in anti-AD drug development is reducing hyperphosphorylated τ (Figure 39E). The 

protein τ is a soluble and binds to and stabilizes microtubules in axons, thereby contributing to 

cytoskeleton functions and axonal transport. In Alzheimer’s disease, hyperphosphorylated, insoluble, 

aggregated τ tangles (one of the two hallmarks of AD) appear, which either directly cause neuronal 

toxicity or contribute to the degeneration by reduced axonal transport (for review see [260]). The 

burden of τ in specific brain areas correlates with the degree of cognitive decline [261]. Furthermore, 

τ mutations can lead to other forms of dementia [262]. Strategies to counteract τ pathology comprise 

inhibiting either τ aggregation or hyperphosphorylation [263, 264]. Anti-τ aggregators seem appealing, 

because it is generally believed that τ aggregates are harmful and a lot of effort is made in quest for a 

suitable substance, LMTXTM (proposed trade name: Rember) from TauRx Therapeutics, for example, 

showed positive results in phase II clinical trials and entered phase III recently [265–267]. Generally, 

nanoparticles could be used to maximize transport capacity across the brain. Inhibition of kinases 

(enzymes that transfer a phosphate group from phosphate-donors to substrates), is the logical 

consequence to avoid hyperphosphorylation. However, the main pathologic kinase for Alzheimer’s 

disease development is not yet identified. Nevertheless, for development of kinase inhibitors as anti-

Alzheimer’s disease drugs, nanoparticles could be advantageous to reduce the severe side effects that 
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follow chronic kinase inhibition by dose reduction and allow organ-specific targeting, thereby widening 

the number of potential substances and facilitating approval and regulating processes. 

Moreover, a link between inflammation and Alzheimer’s disease exists– as numerous studies have 

shown until today – making it a causal target in anti-Alzheimer’s disease drug therapy development 

(Figure 39F). However, from the recent literature, it is still confusing if inflammation initiates 

Alzheimer’s disease, if it is just a natural bystander or if it might be an advantageous response (for 

review see [215]). Therefore, the question remains: should neuro-inflammation be targeted in 

Alzheimer’s disease therapy or not?  

One the one hand, the early activation of the immune system can be beneficial in clearing Aβ species 

[215]. Aβ species themselves, for example, can activate innate immune responses to recruit activated 

microglia that are capable of phagocytosis, thereby counteracting Alzheimer’s disease pathology 

(Figure 40). One the other hand, neuro-inflammation processes are assumed to be harmful and directly 

related to Alzheimer’s disease development (Figure 40). Especially interesting is the interaction 

between astroglia, microglia and neurons. Astrocytes and microglia can recognize damage or injury to 

the brain (like trauma, infections or fibrillary Aβ) and consequently release pro-inflammatory signals 

(such as chemokines, interleukines, cytokines, prostaglandins, pentraxins, complement components 

and reactive oxygen species) that are up regulated in the affected brain areas [268–272]. If this 

secondary response is triggered constantly (e.g. by increased Aβ42 generation), the activated neuro-

inflammatory process leads to neuronal death [273].  Furthermore, activated microglia are correlated 

with senile plaques and it is believed that activated microglia cannot phagocytize Aβ in the presence 

of inflammatory cytokines, therefore promoting plaque formation [274].  

 

 

 

Figure 40: Inflammation in Alzheimer’s disease (Alzheimer’s disease). In Alzheimer’s disease, a chronic inflammation in certain brain regions 
appears that is supposed to be harmful and can further promote Alzheimer’s disease (up and down arrows). Other immune responses can 
be beneficial to supress pathogenesis (inhibitory arrows), such as microglial phagocytosis of Aβ species. Genetics or epigenetics (like 
traumatic injury, infections or inherited diseases) can influence both beneficial and harmful immune responses (curved arrows). NSAIDs 
affect disease progression or development, for example by reducing Aβ generation or suppressing inflammation (curved inhibitory arrows).  
Schema adapted and modified from Wyss-Coray [215].  
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Therefore, anti-inflammatory therapy has been proposed as an anti-Alzheimer’s disease therapy 

(Figure 40). As described earlier, the efficacy of chronic NSAIDs use regarding Alzheimer’s disease risk 

reduction is undeniable and supported by animal model and epidemiological data [120, 156, 170, 215, 

275]. However, the mechanism behind this beneficial effect is still not completely understood, because 

NSAIDs have multiple targets and modes of action that – apart from their potency to reduce Aβ42 

species - could be beneficial in the battle against Alzheimer’s disease: 

NSAIDs - Panacea or pharmacological sledgehammer?  

The original NSAID, Aspirin (first synthesized and patented in the 1890s), was described to mainly 

target COX-1 and COX-2, thus inhibiting prostaglandin synthesis (Figure 41A). Today, many other 

NSAIDs exist with various selectivity for COX-1 or -2. In the context of epidemiological studies with 

rheumatic patients, NSAIDs were proposed as anti-Alzheimer’s disease drugs, but largely failed in 

clinical trials (examples are celecoxib and rofecoxib (COX-2 selective) or naproxen [120] (mixed COX-

1/COX-2 inhibitor)). Interestingly, people affected with arthritis that used long-term high-dose NSAIDs 

showed a drastic decrease of major histocompatibility complex (MHC) class II-positive activated 

microglia (compared to people without arthritis or without NSAID consumption) [276], suggesting that 

NSAIDs can reduce microglia activation. Even more interesting, neither NSAID-use nor arthritis 

changed the proportion of Aβ deposits and neurofibrillary tangles in the study. The Aβ42-decreasing 

mechanism of NSAIDs is based on modulation or inhibition of γ-secretase (Figure 41B). Another target 

of certain NSAIDs is the small GTP-binding protein Rho and its kinase Rock (Figure 41C). Inhibition of 

Rho eventually leads to reduced Aβ production. Some NSAIDs (like R-flurbiprofen) seem to be capable 

of translocating NFκB to the nucleus leading to reduced COX-2 expression (Figure 41D), which could 

be relevant for a beneficial effect in Alzheimer’s disease patients. Activation of PPAR-γ by NSAIDs 

(Figure 41E) may lower the expression of β-secretase by repressing β-secretase cleaving enzyme 1 

(BACE1) promoter [277], however, clinical trials with PPAR-γ agonists were rather sobering. 

The NSAID failure in clinical trials regarding Alzheimer’s disease may be due to various reasons: Firstly, 

it is consistent that anti-inflammatory approaches (as well as Aβ targeting strategies) would rather 

work as Alzheimer’s disease prevention, but not Alzheimer’s disease treatment when clinical features 

became obvious. Secondly, it appears that celecoxib and rofecoxib were targeting the wrong enzymes. 

Both being COX-2 selective, both drugs are associated with less gastrointestinal side effects, but COX-1 

(not COX-2) is upregulated in activated microglia. Flurbiprofen, on the other hand is COX-1/-2 

unselective, but might not have reached relevant concentrations in the brain, again underlining 

nanotechnologies’ potential for enhanced drug transport.  
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Figure 41: NSAIDs have multiple effects in Alzheimer's disease. (A) The classical role of NSAIDs is (selective or non-selective) cyclooxygenase 
(COX) inhibition, which inhibits prostaglandin and thromboxane synthesis thereby evoking anti-inflammatory effects (B) Other effects 
relevant in Alzheimer’s disease are modulation or inhibition of γ-secretase (lowering Aβ42), (C) inhibition of Rho and Rock, (D) inhibition of 
NFκB translocation to the nucleus (reduces inflammation and BACE expression) and (E) activating PPAR-γ and the retinoid X receptor (RXR) 
(increases macrophage function and represses BACE expression). Schema adapted and modified from [215], examples for NSAIDs from [176, 
177, 251, 278–286].  

 

Furthermore, inflammatory processes are also discussed in various other diseases; therefore, NSAID-

loaded nanoparticles could also be indicated not only against Alzheimer’s disease. Neuro-inflammation 

does indeed appear to play a major role in other neurodegenerative disorders, such as multiple 

sclerosis [287], Huntington’s disease [288] or Parkinson’s disease [289, 290], where NSAID treatment 

was already reported to show beneficial effects in disease models [291]. Therefore, NSAID-loaded, 

brain-targeted nanoparticles could be used to enhance the drug transport to the brain to treat other 

disorders apart from Alzheimer’s disease. Furthermore, a multiple ligand coupling could be used to 

target brain-nanoparticles to substructures, such as the substantia nigra, targeting tissue specific 

receptors (dopamine receptor 2, short splice variant (D2Rs), the dopamine autoreceptor exclusively 

expressed in dopaminergic neuron presynapses).  
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As a closing remark, it should be noted that also life style factors such as the organization of leisure 

time and fitness [292, 293] and nutrition are debated to play a role in neurodegenerative disease 

development and outcome. Especially, the beneficial impact of food intake for Alzheimer’s disease 

prevention or therapy is a large research field today. For example, some studies pay high regard to 

high-dose B vitamin supplements (like folate, vitamin B6 and B12). Yet, in a randomized controlled trial 

patients with mild to moderate Alzheimer’s disease did not profit from the vitamins and cognitive 

decline was not slowed down [294]. Analogously, meta-analysis and systematic reviews controversy 

discuss caffeine intake to be beneficial for Alzheimer’s disease risk reduction [295, 296] 

Other studies focused on fats: Ω3 fatty acids and Ω3 fatty acid-rich fish. These acids are suspected to 

be neuroprotective during development and aging and numerous epidemiologic studies and clinical 

trials have appeared on this topic during the last decade. Although data from animal models and cell 

culture studies wa promising [297–301], the results in humans are inconsistent and difficult to 

interpret [164, 166, 302–308]. Especially docosahexaeoic acid (DHA) was proposed to be beneficial in 

dementia. At the moment, it seems that high Ω3 fatty acid intake prevents Alzheimer’s disease 

development rather than eases symptoms in the manifested disease state [309]. The protective 

mechanism is not understood yet, but anti-inflammatory effects are conceivable [166] as well as the 

ratio of Ω3 to Ω6 fatty acids in erythrocyte membranes [165]. It could be beneficial to provide more 

Ω3 fatty acids in the brain parenchyma, especially in individuals that have an increased risk for 

Alzheimer’s disease (biomarkers) without established symptoms. This would be problematic with usual 

oral intake because the amount of DHA would be too large. An option would be to prepare fatty acid 

nanoparticles as described in the literature [310], consisting of DHA and modifying the surface with 

brain targeting ligands such as ApoE3 and transferrin. The increased amount of DHA in the brain 

parenchyma might evoke neuroprotection and slow cognitive decline in very early stages of 

Alzheimer’s disease. 
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6 CONCLUSION  
Today, people achieve a remarkably prolonged lifespan compared with past decades and centuries, 

thanks to increasing wealth, less heavy physical labor, improved hygiene standards, healthier lifestyles,   

the development of new live-saving drugs and interventions, and better health care systems.  

However, the longevity accompanies a drastically increased prevalence for neurodegenerative 

disorders, like Alzheimer’s disease. For the etiology of Alzheimer’s disease is not yet completely 

understood, causal interventions or cures are currently still lacking, but desperately needed. In the 

search for potent anti-Alzheimer’s disease drugs, various promising substances were identified. 

However, hope often crumbled when it came to clinical trials. One example is the non-steroidal anti-

inflammatory drug (NSAID) flurbiprofen that was an anti-Alzheimer’s disease candidate. After 

promising phase II clinical trials, flurbiprofen eventually failed in a phase III clinical trial, probably due 

to its low penetration capacity to the brain.  

Here, flurbiprofen was revisited as an anti-Alzheimer’s disease drug by trying to enhance brain 

transport with the aid of molecular Trojan horses. The drug was incorporated in poly(lactic acid) 

nanoparticles in order to mask the original physico-chemical properties of flurbiprofen that hinder 

blood-brain barrier crossing.  

The appeal of flurbiprofen-loaded PLA-nanoparticles for anti-Alzheimer’s disease drug development 

lies in the excellent biocompatibility and the already existing approval of the separate components - 

both flurbiprofen and poly(lactic acid) were approved by regulatory authorities (like the FDA). 

Furthermore, incorporating flurbiprofen in drug-loaded nanoparticles is expected to impede 

flurbiprofen binding to plasma proteins, which was proposed as the main reason for flurbiprofen’s low 

blood-brain brain penetration capacity. As discussed in this study, flurbiprofen-loaded nanoparticles 

also bind to plasma proteins. However, in this case, the formation of a protein corona (partly consisting 

of apolipoproteins) on the nanoparticles surface after plasma incubation allows receptor-mediated 

transcytosis across the blood-brain barrier, rather than retention in the bloodstream. Enhancing the 

transport rate of flurbiprofen across the blood-brain barrier by nanotechnology is consequently 

expected to succeed. For NSAIDs, only less than 5 % of the originally applied drug amount reach the 

brain or the cerebrospinal fluid (CSF), resulting in less than 1.5 µM flurbiprofen at normal plasma 

concentrations in vivo [177, 185, 187, 188]. For an amyloid reducing effect in cellular Alzheimer’s 

disease models, about 50 µM flurbiprofen are needed [68, 172]. Increasing the transport rate of 

flurbiprofen to the brain by more than 30 fold with the aid of nanoparticles seems feasible when using 

a suitable nanoparticular formulation. For example, Chen et al. could increase loperamide permeability 
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across an in vitro BBB model by more than 20 fold when using a specific nanoparticle formulation [76]. 

Even more drastic effects for nanoparticle-mediated BBB crossing of loperamide were shown in in vivo 

nociceptive experiments, in which animals treated with loperamide-loaded nanoparticle reacted less 

sensitive to pain after nanoparticle-treatment than loperamide-treated control animals [49, 90].  

However, the question remains at which time point a nanoparticle-based anti-Alzheimer’s disease 

therapy or prevention strategy would be indicated. Would flurbiprofen still show beneficial effects in 

Alzheimer’s disease patients when symptoms were already apparent? It is more likely that an 

intervention would be too late in this disease state. Rather, predisposed patients could profit from an 

early, marker- or genotype-indicated prevention approach. It seems conceivable that e.g. an existing 

familial variant of Alzheimer’s disease or an accumulation of genetic risk factors - recognized before 

symptom occurrence – justifies nanoparticle-mediated NSAID or flurbiprofen prevention.  

Future steps resulting from this study’s data consist of optimizing nanoparticle preparation to combine 

drug-loading and ligand-modification in one formulation. Ideally, these nanoparticles should be 

traceable in vitro and in vivo e.g. by the inclusion of marker molecules. Furthermore, the aim should 

be to develop a retarded flurbiprofen-release profile to allow maximal effect in in vivo application. 

Other drugs (e.g. other non-steroidal anti-inflammatory drugs) that reduce Aβ42 burden or positively 

affect neuro-inflammation in Alzheimer’s disease could be incorporated in similar nanoparticles to 

enhance brain transport capacity in vivo.  

For pre-screening, better in vitro blood-brain barrier models for drug transport studies can be achieved 

by co-culturing brain endothelial cells together with other cells of the neurovascular unit (providing 

biochemical support) and introducing shear stress in three-dimensional model structures (mimicking 

blood flow to improve barrier integrity and achieving more realistic local drug concentrations than in 

a static in vitro model). Nevertheless, even by refining the already very promising in vitro results 

presented in this study, a success in in vivo experiments is still not guaranteed.  

 

Overall, it might seem like grasping at straws when reinvestigating drugs that already failed once. 

However, in the battle against Alzheimer’s disease, the fast-emerging field of nanotechnology offers 

the possibility to enlarge the pool of substances that may have a positive impact - giving us hope that 

development of effective pharmacological tools will become more realistic in the near future.  
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