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Abstract  

The magic bullets for treating bacterial infection are getting less potent in face of the growing 

resistance. This warning situation urges for rapid development of new antibacterial weapons 

effective against resistant pathogens. In this thesis, novel antibiotic scaffolds with low 

resistance frequency were developed by two strategies. 

First, targeting a vital binding site (the switch region) of bacterial RNA polymerase: Following 

analog design approaches, six ureido-heterocycle-carboxylic acid classes were synthesized 

based on a previous class. The new compounds show potent activity against Gram-positive 

pathogens as well as the Gram-negative E. coli TolC strain. They are characterized by no cross-

resistance with the clinically used RNAP inhibitor rifampicin, lower rate of resistance 

development, and marginal cytotoxicity to human cells. 

These features were employed to target the closely related NNRTI binding site of HIV-1 

reverse transcriptase. By structure-based optimization, the first small molecule dual anti-

infectives were discovered exhibiting antibacterial and antiretroviral activities on HIV-1 wild 

type and resistant strains. 

Second, optimization of novel natural antibiotics (the cystobactamids) that target DNA gyrase 

and topoisomerase IV: Pursuing an interactive de novo design, both target and antibacterial 

activities of cystobactamid 507 were enhanced. The new congeners display an outstanding 

metabolic stability. Moreover, the synthetic route was markedly improved. 
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Zusammenfassung 

Angesichts einer ständig wachsenden Resistenzentwicklung werden die therapeutischen 

Optionen zur Behandlung bakterieller Infektionen ständig schlechter. Deshalb sind neue 

Antibiotika gegen resistente Bakterien dringend notwendig. In dieser Doktorarbeit werden 

neue antibiotisch wirksame Scaffolds durch zwei Strategien entwickelt. 

Erstens Hemmstoffe der bakteriellen RNA Polymerase, die an die Switch Region binden: 

mittels Analog Design wurden Substanzen in sechs Klassen von Ureido-Heterocyclus-

Carbonsäuren erhalten. Die Verbindungen zeigten eine starke antibakterielle Aktivität, keine 

Kreuzresistenz zu dem klinisch verwendeten Rifampicin, eine niedrigere Resistenz-

Entwicklungsrate und eine nur geringfügige Toxizität gegenüber humanen Zellen. 

In einem weiteren Projekt wurde die Tatsache ausgenutzt, dass die NNRTI Bindestelle der 

HIV-1 Reversen Transkriptase strukturelle Ähnlichkeiten zur Switch Region hat. Geeignete, 

oben entwickelte Wirkstoffe wurden nun weiter strukturell optimiert und duale Hemmstoffe 

mit antibakterieller und antiretroviraler Aktivität an Wildtyp und resistenten Stämmen 

erhalten. 

Zweitens wurde eine Optimierung des natürlich vorkommenden Cystobactamids 507 

hinsichtlich DNA Gyrase und Topoisomerase IV unternommen. Diese Ziele und eine 

Erhöhung der antibakteriellen Aktivität wurde durch interaktives de novo Design erreicht. Die 

neuen Derivate zeigten auch eine verbesserte metabolische Stabilität. Außerdem wurde der 

synthetische Zugang verbessert. 
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1 1 Introduction 

1 Introduction 

Bacteria are unicellular microorganisms constituting one of the three known life systems 

(Bacteria, Archaea, and Eukaryotes) (Woese et al. 1990). They live free in soil and water or in 

symbiosis with other organisms, e.g., plants, animals, and even human. The human body 

harbors a large number of bacteria living on the skin, in the oral cavity, the respiratory-, 

gastrointestinal- and urogenital tracts. Our bodies were estimated to contain more than 50% of 

their cells as bacteria (Sender et al. 2016). This human microbiota has an important role in 

keeping our bodies healthy. Besides digestion and stimulation of the immune system, the body 

flora produces numerous active compounds necessary for various functions, e.g., vitamin K, 

tryptamine (neurotransmitter), polysaccharide A (immunomodulatory), deoxycholic acid 

(metabomodulatory), and many antibiotics (Donia and Fischbach 2015). However, there are 

also pathogenic bacteria that cause serious diseases, e.g., TB, pneumonia, and cholera upon 

infecting the human body or when the immune system is impaired as in case of chemotherapy, 

leukemia, and HIV infection. Such bacterial infectious diseases are responsible for millions of 

death cases worldwide each year. 

Although it was mysterious at that time, ancient people used antibacterial preparations from 

molds, plants or insects that were described in traditional medicine for the treatment of 

bacterial infections. For example, tetracycline was found in the bones from a tomb in the 

Dakhleh Oasis, Egypt back to the late Roman period (Cook et al. 1989). The relationship 

between bacteria and disease was proved by Louis Pasteur and the Nobel-laureate Robert Koch 

in the middle of the nineteenth century. In the early twentieth century, Paul Ehrlich thought of 

finding a magic bullet that can only kill the pathogen and do not harm the host. Through series 

of chemical modifications and pharmacological screenings, Ehrlich and his team developed 

arsphenamine, the first synthetic antibiotic, for the treatment of syphilis. Few years later, sulfa 

drugs were discovered and in 1940, penicillin could be isolated. Ehrlich’s work and Alexander 

Fleming’s discovery dated the beginning of the modern antibiotic era (Aminov 2010). 

The discovery of antibiotics witnessed a golden age in the period 1940–1960, when many 

classes (natural and synthetic) were introduced (Figure 1). Since 1960 hitherto, medicinal 

chemistry took over the reins in the development of antibiotics (Walsh and Wencewicz 2014). 

Rising hurdles such as low potency, narrow spectrum, instability, toxicity, etc. could be 

conquered using the versatile MedChem approaches. Nevertheless, a common drawback of 

the antibiotics showed up at this period was the lack of innovation, i.e., no new chemical 

entities were introduced, but peripherally modified derivatives of known antibiotic scaffolds 
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instead. These generations of antibacterial drugs with minor changes at invariable core 

structures could be easily prone to bacterial defense mechanisms likewise the parent antibiotics 

(cross-resistance). 

 

 

Figure 1. The antibiotics discovery timeline; adapted from (Walsh and Wencewicz 2014). 

 

On the other side, bacteria have evolved resistance against the clinically used antibiotics that 

rendered them ineffective. This antimicrobial resistance (AMR) has consequences not only on 

the public health but also it menaces the economic growth. For instance, the additional health 

care costs for MDR bacterial infections in EU were estimated to be € 1.5 billion per year 

(Aminov 2010). In US, MRSA infections extra cost $ 3–4 billion each year (Fischbach and 

Walsh 2009). Even worse, the current estimation of global death due to AMR is warning that 

we could find ourselves back in a new preantibiotic era (Arias and Murray 2009). 

1.1 Antibiotics and their Main Targets 

Antibiotics are chemical compounds that kill or inhibit the growth of bacteria. Besides their 

use for treatment of acute bacterial infections, they have several necessary applications in 

surgical operations, transplantations, care of the critical cases or HIV-infected patients and 

cancer chemotherapy. As a valid antibacterial agent viable for clinical use, the term “magic 

bullet” was expanded to include other criteria such as selective toxicity against pathogenic 

bacteria, innocuous to human cells and normal flora, broad spectrum, low tendency toward 

resistance development, reasonable PK properties relevant to the site of application, e.g., 

solubility, lipophilicity, chemical and metabolic stability. 



 

 

3 1 Introduction 

The antibiotic mode of action usually is assigned to the intrusion into the function of one or 

more vital machineries in bacteria: cell wall, cell membrane, nucleic acids (DNA and RNA), 

protein and metabolites synthesis. The major bacterial targets of antibiotics are described in 

figure 2. 

 

Figure 2. Antibiotic targets in bacteria; adapted from (Yoneyama and Katsumata 2006). 

 

1.1.1 Inhibition of Cell Wall Synthesis 

Components of the bacterial cell are enveloped by a phospholipid bilayer (the inner 

membrane), and a mesh of peptidoglycan (murein) forming the cell wall. In Gram-negative 

bacteria, an extra layer containing lipopolysaccharide (LPS) surrounds the cell wall (the outer 

membrane). These barriers are essential for protecting the bacterial cell from osmolysis. 

Crosslinking of the peptidoglycan network is carried out by transglycosylase and 

transpeptidase (also known as penicillin binding protein, PBP). 

β-Lactam antibiotics, e.g., penicillins, cephalosporins, carbapenems, and monobactams inhibit 

the peptidoglycan synthesis competitively through mimicking the D-Ala-D-Ala substrate 

(Figure 3) (Tipper and Strominger 1965). They bind to the PBP irreversibly via opening of the 

β-lactam ring and acylation of the active site. Another peptidoglycan synthesis inhibitors are 

the glycopeptides, e.g., vancomycin. They bind to the D-Ala-D-Ala substrates, and hinder their 

access to PBP (Kohanski et al. 2010). 
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Figure 3. Structural mimicking to the substrate sequence D-Ala-D-Ala (A) by various 

penicillins (B). 

 

 1.1.2 Inhibition of Protein Synthesis 

For protein biosynthesis, the genetic data loaded on mRNA are decoded by the action of the 

ribosome (translation) in a three-step process (initiation, elongation, and termination). Besides 

the ribosome, tRNAs carrying the amino acids, initiation and release factors are necessary for 

translation. 

Bacterial ribosome is a nucleoprotein consisted of two subunits (30S and 50S). Tetracyclins 

bind to the 30S subunit and impede the interaction between tRNAs and the ribosome. 

Aminoglycosides, e.g., streptomycin and gentamicin bind irreversibly to the 16S rRNA 

component of the 30S subunit. This leads to conformational changes that in turn increase the 

mRNA codon–tRNA mismatching and subsequent protein mistranslation (Kohanski et al. 

2010). 

Chloramphenicol and macrolides, e.g., erythromycin interact with the 23S rRNA of 50S 

subunit and block the peptidyl transferase activity. Oxazolidinones bind to the 50S subunit and 

inhibit the formation of initiation complex (Kohanski et al. 2010). 

1.1.3 Disruption of Cell Membrane 

Cell membrane integrity is essential for preventing leakage of cell contents. The cationic 

peptides polymyxins target the cytoplasmic membrane as well as the outer membrane of Gram-

negative bacteria causing an increased permeability and subsequent cell death (Yoneyama and 

Katsumata 2006). 

1.1.4 Inhibition of Nucleic Acid Synthesis 

DNA replication and transcription are pivotal processes for bacteria. During DNA replication, 

two types of topoisomerases are required to modulate and maintain the topology of the 
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supercoiled DNA strands. Type I topoisomerases temporarily cleave one DNA strand at a time, 

whereas topoisomerases type II transiently cleave the two DNA strands at the same time in an 

ATP dependent process. Aminocoumarins and fluoroquinolones target the type II 

topoisomerases, namely DNA gyrase and Topoisomerase IV. Fluoroquinolones, e.g., 

norfloxacin, ciprofloxacin, and levofloxacin bind to the DNA-bound gyrase forming a ternary 

complex. They stabilize the complex in the DNA double-strand cleaved state preventing DNA 

religation (topoisomerase poisoning) (Kohanski et al. 2010). 

The process of RNA synthesis (transcription) is carried out by the DNA-dependent RNA 

polymerase in three stages (initiation, elongation, and termination). RNAP is a multi-subunit 

enzyme composed of α2, β, βʹ and ω subunits constituting the core enzyme of a molecular 

weight ~400 kDa. The latter binds to the initiation factor σ forming the holoenzyme. Although 

the core RNAP is the catalytic active motif, binding to σ factor is a key step for promotor DNA 

recognition and binding (Murakami and Darst 2003). Rifamycins inhibit transcription through 

binding to the β subunit of the DNA-bound RNAP adjacent to the active center, leading to a 

steric interference with the growing RNA transcript (Feklistov et al. 2008).        

1.1.5 Inhibition of Metabolite Pathways 

Bacterial cells need folic acid as a cofactor for synthesizing nucleotides.  Folate biosynthesis 

starts from p-aminobenzoic acid and pteridine in the presence of dihydropteroate synthase to 

produce dihydropteroic acid. The latter is converted to dihydrofolic acid by dihydrofolate 

synthase. Subsequent reduction by dihydrofolate reductase yields tetrahydrofolic acid. 

Sulfonamides silence dihydropteroate synthase, and trimethoprim inhibits dihydrofolate 

reductase by competitive binding to the active site through structural mimicking to the 

corresponding substrates PABA and dihydrofolic acid, respectively (Figure 4) (Yoneyama and 

Katsumata 2006). 

 
Figure 4. Structural analogy between PABA and sulfanilamide as well as DHF and 

trimethoprim.



 

 

6 1.2 Mechanisms of Bacterial Resistance 

1.2 Mechanisms of Bacterial Resistance 

Bacterial resistance is a natural phenomenon, where bacteria protect themselves from 

antibiotics produced by the same or other species (bacteria, fungi, and plants) during the 

competition for nutrients or habitat. This is also true for antibiotics developed by human, i.e., 

as soon as an antibiotic was discovered or approved for clinical use, bacteria evolve special 

defense mechanisms to withstand the antibiotic damage. Based on its origin, resistance can be 

classified into two types: intrinsic and acquired. Intrinsic resistance is the inherent ability of 

bacteria to resist the antibiotic due to presence of a resistance gene in their chromosomes. 

Acquired resistance occurs due to mutation of the bacterial genome or transfer of the resistance 

gene through a plasmid or transposon from other resistant bacteria (Yoneyama and Katsumata 

2006). The mechanisms of antibiotic resistance are summarized in figure 5. 

 

 

Figure 5. Mechanisms of antibiotic resistance; adapted from (Lewis 2013).  
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1.2.1 Reduced Permeability 

The outer membrane of Gram-negative bacteria, e.g., Enterobacteriaceae and Pseudomonas 

species represents an intrinsic barrier against many of antibiotics. It is a bilayer composed of 

an interior phospholipid layer and an exterior LPS layer. In addition, protein channels (porins) 

traversing across the outer membrane are present for transport of small hydrophilic nutrients. 

Antibiotic uptake into Gram-negative bacteria is limited by the ability to diffuse either through 

the LPS layer or through the porins. On one hand, the LPS-containing outer membrane shows 

2-fold lower permeability than the cytoplasmic membrane for lipophilic compounds (Nikaido 

2003). On the other hand, besides their selectivity for size and charge of the molecules, 

decreasing the number or size of porins is detrimental for the entry of hydrophilic antibiotics 

into the bacterial cell (Blair et al. 2015). 

1.2.2 Increased Efflux 

Active transport of antibiotics outside the cell through efflux pumps is a frequent innate 

resistance mechanism of bacteria. There are five efflux families: the major facilitator 

superfamily (MFS), the small multidrug resistance (SMR), the resistance-nodulation-cell 

division (RND), the multidrug and toxic compound extrusion (MATE), and the ATP binding 

cassette (ABC) superfamily (Putman et al. 2000). Energy required for drug export is either 

supplied by ATP in case of the ABC superfamily (primary transporters), or through a proton 

motive force (PMF), or sodium in case of MATE family, for the other families (secondary 

transporters) (Yoneyama and Katsumata 2006). 

Examples for the multidrug efflux pumps are AcrB in E. coli and MexB in P. aeruginosa that 

belong to the RND family. They are homotrimers that are located in the inner membrane. They 

form a tripartite complex with a periplasmic protein AcrA and MexA, respectively, and an 

outer membrane channel TolC and OprM, respectively. Studies of the AcrB exporter indicated 

that there are two distinct multisite binding pockets (proximal and distal). These pockets are 

large and can interact with broad structurally variant substrates mainly through hydrophobic 

and electrostatic interactions (Nakashima et al. 2011). 

Overexpression of efflux pumps plays a key role in resistance. Regulation of efflux pump gene 

transcription is mediated by local and global regulators such as the transcription factors (MarA, 

SoxS, and RamA), which activate acrAB expression in Enterobacteriaceae (Alekshun and 

Levy 1997; Pomposiello et al. 2001; Nikaido et al. 2008; Blair et al. 2015). 

 

 

 



 

 

8 1.2 Mechanisms of Bacterial Resistance 

1.2.3 Inactivation 

Bacteria utilize their supplies of enzymes to disable antibiotics, especially those of natural 

origin, through chemical modifications. One method is the hydrolysis of the antibiotic active 

moiety, e.g., β-lactams by β-lactamases. Similar to transpeptidases (PBPs), β-lactamases bind 

to β-lactams through a serine residue at the active site forming penicilloyl-O-Ser β-lactamase 

intermediates. In contrast to PBPs, these intermediates dissociate rapidly resulting in inactive 

penicilloic acids with cleaved β-lactam rings (Walsh 2000). 

Another method of inactivation is to cap the interacting functional groups, e.g., OH and NH2 

of an antibiotic with masking groups, e.g., acetyl, phosphoryl, and nucleotidyl. This leads to 

inhibition of crucial contacts with the target protein, and thereby decreasing the binding 

affinity. Aminoglycosides are inactivated by three classes of modifying enzymes: 

acetyltransferases that cause N-acetylation using acetyl-CoA, phosphotransferases that induce 

O-phosphorylation using ATP, and adenylyltransferases that result in O-adenylation via 

adding AMP moiety from ATP. Chloramphenicol acetyltransferases are responsible for O-

acetylation of chloramphenicol using acetyl-CoA (Yoneyama and Katsumata 2006). These 

capped aminoglycosides and chloramphenicol show low affinity to RNA constituents of the 

ribosome and are incompetent to hinder protein synthesis. 

1.2.4 Alteration of Target 

Bacteria can evade the antibiotics’ damages by modifications of their targets. Since antibiotic 

targets are pivotal for bacteria, these modifications should not affect the target fidelity and 

simultaneously make the target unrecognizable to antibiotics. A modified target can result 

from mutation in genes encoding this target, or posttranscriptional modification by an enzyme 

(Spratt 1994). 

Vancomycin resistance in VRE is an example for genetic mutation of the target. The vanHAX 

genes encode new pathways for converting the peptidoglycan terminals D-Ala-D-Ala into D-

Ala-D-lactate. The new target misses an important hydrogen bond contact with vancomycin. 

Consequently, the mutant peptidoglycan shows 1000-fold reduced affinity to the antibiotic, 

but is still valid for cross-linking by PBPs and cell wall biosynthesis (Walsh 2000). 

An example for enzyme induced target alteration is the erythromycin resistance due to N6-

methylation of the adenine residue A2058 of 23S rRNA by the erythromycin ribosome 

methylase (Erm). The methylated target has lower affinity to erythromycin and confers cross-

resistance to other macrolides, lincosamide, and streptogramin B (MLS resistance phenotype) 

(Weisblum 1995).
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Another example is the quinolone resistance transferred by the qnr gene families. These genes 

encode for pentapeptide repeat proteins (PRPs) that bind to DNA gyrase and topoisomerase 

IV and rescue them from the fluoroquinolones poisoning effect (Blair et al. 2015). A study of 

QnrB1 structure, member of PRPs, suggests that these proteins bind to and destabilize the 

DNA–topoisomerase–quinolone ternary complex. This binding triggers the release of 

quinolone and resumption of topoisomerase activity (Vetting et al. 2011). 

1.2.5 Overproduction 

Tolerance to an antibiotic can be attained through an overexpression of the corresponding 

target genes. In response to target defect by an antibiotic, bacteria overproduce this target in 

an excess to resume the blocked function. Consequently, a higher concentration of the 

antibiotic is required to switch off the surplus target entirely. Resistance in clinical isolates of 

M. tuberculosis and other Mycobacterium species to isoniazid and ethambutol are supposed to 

be in part due to the overexpression of inhA and emb genes, respectively (Chopra 1998). 

1.2.6 Bypath 

This type of bacterial resistance is typical for antibiotics targeting metabolic pathways, e.g., 

sulfonamides and trimethoprim. In this case, bacteria evolve a novel protein to take over the 

function of the inhibited native protein, however structurally different. Such a property makes 

the new target less vulnerable to the detrimental interactions of the antibiotic and sometimes 

even more efficient in its function. For instance, two new dihydrofolate reductases were 

identified in trimethoprim non-susceptible E. coli borne by the resistance plasmids R388 and 

R483. The plasmid enzymes have molecular weight different from that of the chromosomal 

enzyme, and they are less sensitive to trimethoprim (IC50 22 × 103 times higher). Interestingly, 

the dihydrofolate reductase activity of the R483 carrying E. coli is 10-fold higher than that of 

the wild type (Smith and Amyes 1984). 

1.3 Resistance Cost 

Bacteria benefit from resistance in presence of an antibiotic selective pressure, however 

resistant bacteria usually show a reduced fitness, i.e., lower growth rate and  decreased 

virulence compared to non-resistant strains in absence of antibiotics (cost of resistance) (Spratt 

1996). This is not surprising, since resistance mutations affect essential targets in bacteria (the 

antibiotic targets). Even in case of a plasmid-acquired resistance, synthesizing new nucleic 

acids and proteins imposes an energetic burden, and these macromolecules may perturb the 

physiological processes in the bacterial cell (Lenski and Nguyen 1988). 

Fitness costs can be assessed through comparing the exponential growth rates of the wild type 

and resistant strains in vitro (Figure 6a). Alternatively, running an in vitro competition assay 
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for a mixture of the wild type and resistant strains in a certain ratio. By culturing the mixture 

for several days and calculating the change of the wild type/resistant strains ratio, fitness 

variation can be evaluated (Figure 6b). This competition assay can also be performed in vivo 

using a suitable animal model for a condition more relevant to that of the clinical infection 

(Figure 6c) (Di Andersson and Hughes 2010). 

 

 
Figure 6. Determination of bacterial fitness; adapted from (Di Andersson and Hughes 2010). 

  

The costs of resistance are variable between high fitness costs to low or no-costs depending 

on the antibiotic class, mutation site, bacterial species and growth conditions (Di Andersson 

and Hughes 2010; Melnyk et al. 2015). 

Although fitness costs hint at a glimmer of hope regarding the rise of antibiotic resistance, 

adaptation to resistance costs is another nail in the coffin of currently used antibiotics. 

Evolution in low fitness resistant bacteria occurs through emergence of a compensatory or 

suppressor mutation that ameliorates the deleterious effect of the resistance mutation in order 

to reduce the fitness costs without affecting the resistance. This leads to stabilization of the 

resistant strains in the bacterial population (Di Andersson and Hughes 2010). For instance, the 

rifampicin (Rif)-resistant E. coli K12 mutants in rpoB gene encoding the β subunit of RNAP 

showed fitness costs that directly correlate with the impaired transcription efficiency. After 

200 generations of these mutants by serial passage of cultures in absence of Rif, the isolated 

clones showed increased fitness without change in the resistance level owing to the 

compensatory mutations (Reynolds 2000). 

Understanding the resistance costs may be the key to the ideal antibiotic. A careful choice of 

the antibiotic target or targets, which severely affects fitness of bacteria upon resistance 

mutations, and the compensation mutations are useless or difficult to be attained, should be 

reflected in an antibiotic with a minimum rate of resistance development (Andersson 2006).
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1.4 Strategies to Overcome Bacterial Resistance 

Efforts to cope with the antibiotic resistance problem revolve around two main axes, which 

will be mentioned briefly in the following paragraphs. 

1.4.1 Saving our Legacy of the Current Antibiotics  

Antibiotic abuse contributes significantly to the resistance problem. Therefore, several 

antibiotic stewardship policies were launched for using the antibiotics in an optimum way in 

order to reduce the prevalence of resistance (Dellit et al. 2007; Bartlett et al. 2013). An 

effective use of antibiotics can be summarized in four rights: right drug, right time, right dose, 

and right duration (Dryden et al. 2011). Inappropriate use of antibiotics for viral infections can 

be averted by using a precise diagnostic marker for bacterial infection, e.g., procalcitonin level 

(Simon et al. 2004). Alternatively, the delayed prescription would be an acceptable 

compromise, i.e., prescribing the antibiotic few days later only if symptoms do not improve, 

as viral infections are usually relieved in such period (Bartlett et al. 2013). 

Combination therapy (using multiple antibiotics acting on different targets concurrently) is 

believed to combat resistance effectively likewise the trend followed in HIV and cancer 

therapy and indeed, it showed success in TB infections (Dellit et al. 2007). However, there are 

insufficient clinical evidences supporting this strategy for routine use, in addition to other 

disadvantages such as the increased side effects, cost of medications and potential of multidrug 

resistance development (Tamma et al. 2012). 

Another approach is the combination between an antibiotic and a compound that counteracts 

the resistance mechanism toward this antibiotic. For instance, enzymatic deactivation of β-

lactams was successfully escaped by the β-lactamase inhibitors clavulanic acid and sulbactam. 

Both agents are β-lactam analogs, and they sacrifice themselves as a substrate to β-lactamases 

for the β-lactams (Walsh 2000; Drawz and Bonomo 2010). For antibiotics that suffer from 

reduced permeability through the outer membrane of Gram-negative bacteria, combination 

with permeability enhancers, e.g., polymyxins seems beneficial (Vaara 1992). Similarly, co-

administration of efflux pump inhibitors could retrieve the activity of antibiotics subjected to 

extrusion outside the cell by the efflux mechanism (Lomovskaya et al. 2001; Lomovskaya and 

Bostian 2006). 

1.4.2 Rapid Development of New Antibiotics for the Next Generations 

Besides the above-mentioned guidelines, the discovery and development of novel antibiotics 

with new scaffolds attacking known/new essential targets in bacteria have become an urgent 

need to deal with the imminent disaster of AMR. 
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Natural products remain, as they were previously, a profuse spring for antibiotics. It was 

estimated that all discovered compounds yet represent only 1% of NPs available from 

microbial sources (Fischbach and Walsh 2009). The advances in culturing and screening 

techniques for bacterial secondary metabolites should be directed to underexplored bacterial 

taxa, e.g., myxobacteria. This would accelerate the discovery of novel chemical classes of 

antibiotics that can evade the current resistance mechanisms (Fischbach and Walsh 2009). 

In addition, mining bacterial genome to identify the gene clusters involved in an antibiotic 

biosynthesis is helpful for filling the antibiotic pipelines with libraries of derivatives with 

increased molecular diversity. These “unnatural” natural products can be generated through 

genetic manipulations such as mutasynthesis and combinatorial biosynthesis using modular 

polyketide synthases (PKSs), nonribosomal peptide synthetases (NRPSs), and PKS–NRPS 

hybrids. The multidomain PKSs and NRPSs showed great utilities for assembling large 

varieties of building blocks, e.g., Acyl CoAs and amino acids (proteinogenic and 

nonproteinogenic), respectively, as well as further transformation of the functional groups into 

novel metabolites (Kirschning et al. 2007; Fischbach and Walsh 2006). Nonetheless, the 

drawbacks of unpredictable products and poor yields besides the laborious work limit the wide 

application of these techniques (Li and Vederas 2009). 

Medicinal chemistry approaches represent a wide platform for innovative antibiotic design and 

optimization. No matter whether target structural information is available or not, an 

appropriate paradigm can be tailored to fit with the available data. Starting from correlating 

the activity of a homologous series with their physicochemical properties and formulating a 

quantitative structure–activity relationship (QSAR) equation, design and optimization 

methods have grown to include the ligand-, fragment-, structure- and in silico-based 

approaches (Abraham and Burger 2003). 

Moreover, biophysical methods play a prominent role in drug discovery. Among the applied 

tools are NMR techniques, e.g., chemical-shift perturbation, STD, NOE, and INPHARMA 

(Sanchez-Pedregal et al. 2005; Pellecchia et al. 2008), fluorescence-based methods, e.g., 

fluorescence polarization and FRET (Truong and Ikura 2001; Milligan 2004), MS, SPR 

(Cooper 2002), ITC (Chaires 2008), and MST (Wienken et al. 2010). Using these techniques 

in combinations provides detailed information about the mode of ligand binding and improves 

the process of drug design (Renaud and Delsuc 2009). 
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Now the question is which design perspective to be adopted? As mentioned above, fitness 

costs should be carefully considered. Design of an antibiotic that interacts with partially or 

completely conserved binding site having an essential function in the bacterium is favorable, 

as mutations in these conserved amino acids highly attenuate the fitness, and thus the 

propensity of resistance development is reduced. Another attitude is the design of a multiple 

target antibiotic. Antimicrobial agent that can inhibit two or more different targets in bacteria 

is less vulnerable to resistance emergence, as the simultaneous multiple mutations required to 

confer resistance, if occurred, would raise the fitness cost and they are less likely to be 

compensated (Andersson 2006; Silver 2007; Brotz-Oesterhelt and Brunner 2008). Good 

examples are fluoroquinolones and the recently discovered natural antibiotic teixobactin. The 

latter binds to multiple targets in Gram-positive bacteria showing no signs of resistance (Ling 

et al. 2015). 

A completely different strategy is to prevent the pathogenicity of bacteria without inhibiting 

their growth or survival by antivirulence agents. These substances attenuate the bacterial 

virulence factors such as motility, adhesion, toxins production, etc. through the interference 

with the quorum sensing (QS) systems. The QS is a cell‐to‐cell communication in a population 

of bacteria via signaling molecules (autoinducers) for gene regulation. Autoinducers are 

released into the environment proportionally to the cell density. They accumulate until 

reaching a critical concentration, then they bind to their receptors, at cell surface or 

intracellular, to form transcriptional factors that regulate gene expression (Defoirdt et al. 2010; 

O'Connell et al. 2013). The rationale behind this strategy is that in contrast to antibiotics, 

antivirulence agents should not impose high selective pressure on bacteria, as they do not affect 

bacterial growth and thus the evolution of resistance is unlikely. Nevertheless, this interesting 

approach faced some criticism such as the narrow spectrum activity and uselessness in case of 

immunocompromised population, since it depends on the immune system for clearance of 

bacteria (Alksne and Projan 2000; Lewis 2013). Furthermore, investigations of the effect on 

fitness suggested that the emergence of resistance could also occur toward the QS inhibitors 

(Defoirdt et al. 2010). Indeed, antivirulence-resistant strains were isolated in P. aeruginosa 

(Maeda et al. 2012). Summing up, the interference with QS strategy is in its childhood and 

many questionable points have to be clarified before reaching the clinical trials as antibiotic 

surrogates (Lewis 2013; O'Connell et al. 2013).
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1.5 Bacterial RNA Polymerase 

One of the two bacterial targets I focus on in this thesis is the DNA-dependent RNA 

polymerase. It is an invaluable antibiotic target for many reasons: RNAP provides bacterial 

cell with mRNA that is essential for protein synthesis and viability assuring efficacy. In 

addition, RNAP structure is conserved among bacterial species allowing broad spectrum 

activity. However, its sequence is distinct from mammalian counterparts warranting 

therapeutic selectivity (Ho et al. 2009). One more advantage is that the atomic structure of 

RNAP was identified by X-ray crystallography giving a detailed information about the 

molecular mechanism of transcription process and more insight into the potential binding sites 

for designing novel inhibitors. These attractive features motivated many researchers and 

indeed, several chemical classes from NPs or synthetic were discovered as transcription 

blockers. The binding pockets for these inhibitors were confirmed by X-ray crystal structures. 

Interestingly, most of them are in close vicinity to each other (Figure 7) (Ho et al. 2009; 

Murakami 2015; Bae et al. 2015; Ma et al. 2016). 

 

 
Figure 7. Bacterial RNAP holoenzyme (PDB: 3EQL), and the binding sites for natural and 

synthetic inhibitors. 

 

Despite these efforts, only two classes were approved for clinical use and serve as proof of 

principle, namely the rifamycin family for TB infections and the narrow spectrum fidaxomicin 

for the treatment of Clostridium difficile-associated diarrhea (CDAD). This controversy does 

not humiliate the precious role of RNAP as a bacterial target since this limited number of 
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successful compounds is mainly attributed to the poor pharmacokinetic and physicochemical 

properties of the corresponding inhibitors, which are consequently reflected on the in vivo 

efficacy. For example, low membrane permeability (tagetitoxin, salinamide A, and GE23077), 

tight serum protein binding (myxopyronin, corallopyronin, and ripostatin), cytotoxicity 

(CBR703), insufficient solubility (myxopyronin and corallopyronin), and chemical instability 

(myxopyronin, corallopyronin, and ripostatin) (Haebich and Nussbaum 2009; Ma et al. 2016). 

The critical problem with rifamycins is the development of resistance triggered by mutations 

in the binding site. Moreover, a cross-resistance occurs against other RNAP inhibitors sharing 

or overlapping the rifamycins’ binding pocket, e.g., sorangicin (Ma et al. 2016). Even worse, 

these rifamycin-resistant strains show high fitness, due to compensatory mutations, facilitating 

the rapid prevalence of resistance as mentioned previously in section 1.3 (Comas et al. 2012). 

As shown above, the structural knowledge about RNAP and its binding sites have not been 

optimally exploited so far for developing new RNAP inhibitors appropriate for clinical 

application. 

1.5.1 The RNAP “Switch Region” 

The overall architecture of core RNAP can be illustrated as a “crab claw” shape. The largest 

subunits β and βʹ represent the arms of the claw making a channel or a cleft of 27 Å wide. 

They are assembled on α subunit dimer at the base of the cleft, where they convene forming 

the active center. This catalytic site is delineated by Mg2+ chelated to three Asp residues from 

the highly conserved NADFDGD region in βʹ subunit. At the lower backside of βʹ subunit, the 

ω subunit is situated (Figure 7) (Zhang et al. 1999). 

Opening of β and βʹ pincers is a prerequisite for the entrance of DNA strand to the active center 

cleft and transcription initiation, whereas closure of the claw is important for holding and right 

positioning of the DNA−RNA hybrid during the elongation phase (Murakami and Darst 2003). 

A 30° sway of the RNAP clamp (βʹ pincer) is mediated by a hinge called the “switch region”. 

This region is composed of five sub-regions (switch 1–5) located at the β–βʹ interface, distal 

to the catalytic center and the rifamycins’ binding site (Mukhopadhyay et al. 2008). 

Recently, the cocrystal structure of the natural antibiotic myxopyronin (Myx) with bacterial 

RNAP was isolated, and the “switch region” was discovered as its binding site 

(Mukhopadhyay et al. 2008). Mutagenesis studies in E. coli indicated that the “switch region” 

is also the target of the structurally similar α-pyrone antibiotic corallopyronin as well as the 

dissimilar macrocyclic lactone antibiotic ripostatin (Mukhopadhyay et al. 2008). The 

mechanism of action of these antibiotics was proposed to be through “hinge jamming”, i.e., 



 

 

16 1.5 Bacterial RNA Polymerase 

locking the RNAP clamp in a closed conformation that prevents entry of double-stranded 

promoter DNA to the active site cleft and transcription initiation (Mukhopadhyay et al. 2008). 

Besides being conserved in Gram-positive and Gram-negative bacteria and not conserved in 

eukaryotic RNAP I, II, and III (allowing a broad spectrum activity and selectivity), the “switch 

region” would guarantee no cross-resistance with rifamycins or any other RNAP inhibitors 

owing to the binding sites’ non-proximity (Figure 7) (Mukhopadhyay et al. 2008; Srivastava 

et al. 2011). 

Moreover, studies of the spontaneous resistance frequency to Myx in S. aureus showed that 

although the resistance rate is similar to that of Rif (4–7 × 10-8 per generation), all Myx-

resistant strains showed significant fitness costs (4–15% per generation). This was attributed 

to the vital functions of Myx binding site (the switch region segments SW1 and SW2) in 

mediating the conformational switches of the RNAP clamp and in binding of DNA. Therefore, 

mutations in these segments of the “switch region” would reduce the RNAP fidelity and harm 

the cell viability (Srivastava et al. 2012). Based on the inverse correlation between the fitness 

costs and prevalence of resistance, these results suggested that Myx resistance would be of 

low clinical incidence. Furthermore, as the nonzero fitness cost is an authentic feature of the 

“switch region”, it is not limited to Myx but also would be observed with other RNAP 

inhibitors targeting the “switch region” (Srivastava et al. 2012). These facts reveal why the 

“switch region” is a promising binding pocket for molecular intervention. 

Accordingly, several attempts to develop synthetic “switch region” inhibitors were performed.  

Derivatization of Myx delivered an orphan compound (desmethyl myxopyronin B) with better 

activity against S. aureus. Non-surprisingly, no activity against E. coli plus inadequate 

physicochemical properties were encountered like the parent compound (Doundoulakis et al. 

2004; Lira et al. 2007). 

Following a structure-based de novo design, compounds belonging to pyridyl-benzamide 

scaffold were synthesized and exhibited good RNAP inhibitory activities in the functional 

assay. However, they displayed no antibacterial effect (McPhillie et al. 2011). 

Another group applied a high throughput screening of AstraZeneca corporate compound 

collection resulting in the squaramides as “switch region” binders. Nonetheless, no activity 

(>200 µM) against S. aureus and weak antibacterial activity only in the efflux deficient E. coli 

tolC and H. influenzae acrB could be attained (Buurman et al. 2012; Molodtsov et al. 2015). 

Hybridization of Myx α-pyrone core with holothin motif from the RNAP inhibitor holomycin 

led to enhancement of the hybrid molecules’ hydrophilicity but did not achieve activity against 

Gram-negative bacteria (Yakushiji et al. 2013).
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Using a structure-based pharmacophore model based on Myx–E. coli RNAP homology model, 

a virtual screening of a chemical library (~42.000 compound) was performed. Biological hit 

validation revealed a compound of 3-ureidothiophene-2-carboxylic acid scaffold with modest 

activity. Hit optimization improved the activity against RNAP, Gram-positive and the Gram-

negative E. coli tolC bacteria (Sahner et al. 2013). The binding site of this class was suggested 

to be the “switch region” as indicated by STD NMR experiments (Fruth et al. 2014). 

As indicated above, few chemical scaffolds targeting the “switch region” were discovered with 

a partial success referring to combined RNAP inhibition and broad antibacterial activities. 

Thus, the need to discover and further develop novel classes that enrich the chemical diversity 

of RNAP inhibitors has not been met yet. 

1.6 Bacterial Topoisomerases Type IIA 

The other validated bacterial targets of main interest in this thesis are DNA gyrase 

(topoisomerase II) and topoisomerase IV belonging to topoisomerases type IIA subfamily. 

They are precious antibacterial targets for the following reasons: they are essential for DNA 

replication and cell division permitting efficacy. They are fundamental elements in all bacterial 

species allowing a broad spectrum effect. Structurally, they are distinct from their mammalian 

analogs (DNA gyrase has not even a known counterpart in human) assuring specificity. They 

possess multiple druggable binding sites for targeting. More importantly, the high sequence 

homology between DNA gyrase and topoisomerase IV gives the opportunity to inhibit both 

enzymes simultaneously by a single molecule. Such a dual targeting feature is advantageous 

regarding lowering the mutation frequency and closing the mutant selection window in order 

to restrict resistance (Drlica 2003; Bradbury and Pucci 2008). 

1.6.1 DNA Gyrase 

DNA gyrase is a heterotetramer composed of two GyrA and two GyrB subunits, which are 

assembled forming the GyrA2GyrB2 active holoenzyme (Figure 8). The GyrA subunits harbor 

the tyrosine containing active site responsible for DNA binding and processing, whereas the 

GyrB subunits involve the ATP binding sites possessing ATPase activity (Collin et al. 2011). 

Understanding the process of DNA replication highlights the crucial role of DNA gyrase for 

bacteria. In order to read the genetic code of the bacterial circular DNA by DNA polymerase, 

the hydrogen bonded DNA strands are separated by helicase forming the replication fork. As 

the DNA polymerization progresses, positive supercoiling of the DNA double helix 

accumulates that should be relaxed in order to proceed. This task is performed by DNA gyrase 

through cleavage, ATP catalyzed unwinding, and religation of DNA strands (Vos et al. 2011). 

DNA Gyrase binds covalently, however reversibly, to DNA through a phosphotyrosyine bond 
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between the active site tyrosine in each GyrA protein and a scissile phosphate group at the 5ʹ 

end of each DNA strand resulting in four base pair staggered nick in DNA. The cleaved strands 

undergo conformational movement (gate or G-segment DNA), which allow the passage of the 

other strand (transport or T-segment DNA). Further resealing of the G-segment DNA creates 

two negative supercoils in the DNA helix (Bax et al. 2010). Noteworthy, DNA gyrase is the 

unique topoisomerase that can introduce negative supercoils in DNA. Moreover, DNA gyrase 

is necessary for the transcription process as well. It untangles the positive supercoils generated 

a head of the translocating RNAP during the elongation stage (Champoux 2001). 

 

 
Figure 8. DNA gyrase (left, PDB: 5CDQ), topoisomerase IV (right, PDB: 3FOF), and the 

binding sites for natural and synthetic inhibitors. 

 

1.6.2 Topoisomerase IV 

The general architecture of topoisomerase IV is homologous to DNA gyrase. The 

heterotetramer is consisted of two ParC and two ParE subunits making the ParC2ParE2 active 

complex (Figure 8). The active site tyrosine is located in the ParC subunit, whereas the ATP 

binding site is situated in the ParE subunit (Laponogov et al. 2009). 

At the end of DNA replication, two interlinked circular DNA molecules are produced 

(catenanes). Each molecule has one original DNA strand and one new complementary DNA 

strand. Topoisomerase IV allows the interlinked DNA molecules to come apart (decatenation).
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Such a separation of the daughter chromosomes is an essential step for cell division 

(Laponogov et al. 2009; Veselkov et al. 2016). 

1.6.3. Targeting Bacterial Topoisomerases IIA 

Inhibitors of bacterial topoisomerases IIA mostly target two major binding sites namely, the 

ATP binding domain in GyrB and ParE subunits of DNA gyrase and topoisomerase IV, 

respectively, or the DNA binding domain adjacent to the active site tyrosine in GyrA and ParC 

subunits of DNA gyrase and topoisomerase IV, respectively (Figure 8). 

The natural aminocoumarin antibiotics, e.g., novobiocin and clorobiocin inhibit 

topoisomerases IIA competitively through binding to the ATPase domain. Consequently, a 

deprivation of ATP occurs hindering the negative supercoiling and decatenation tasks carried 

out by DNA gyrase and topoisomerase IV, respectively. Owing to weak activity in Gram-

negative bacteria, toxicity, and solubility issues, currently there are no inhibitors of the ATPase 

domain in clinical use (Collin et al. 2011). 

The gold standard for topoisomerases IIA inhibition is the fluoroquinolones, e.g., norfloxacin, 

ciprofloxacin, and levofloxacin. They bind at the interface between DNA and topoisomerases 

IIA contiguous with the active site tyrosines, a region also known as the quinolone resistance-

determining region (QRDR). Fluoroquinolones trap the DNA–topoisomerases IIA cleaved 

complexes through blocking the access of the 3ʹ-hydroxyl of the cleaved DNA to the scissile 

phosphate and thus preventing DNA religation (Bax et al. 2010; Wohlkonig et al. 2010; Chan 

et al. 2015). Interestingly, the fluoroquinolones’ primary target in Gram-negative bacteria is 

DNA gyrase whereas in Gram-positive species topoisomerase IV is the principal target. 

Unfortunately, resistance to fluoroquinolones has emerged via two main mechanisms. First, 

low accumulation either by reduced gene expression of porins (the fluroquinoloines’ gate into 

bacterial cells), or by overexpression of efflux pumps. Second, target mutation especially in 

the QRDR. Such mutations usually have an impact on fitness as indicated by a significant 

increase in doubling time of the fluoroquinolone-resistant E. coli mutants in gyrA and parC 

genes (Bagel et al. 1999). Similar finding using Streptococcus pneumoniae showed that the 

fitness burdens associated with gene mutations responsible for fluoroquinolone resistance are 

considerably high. This could account for the steady low frequency of fluoroquinolone-

resistant pneumococci in US. However, resistant mutants displaying no detectable fitness costs 

are found too in the same study (Rozen et al. 2007). 

Recently, new natural antibiotics were discovered exhibiting broad spectrum activity, e.g., 

cystobactamids (Baumann et al. 2014) and albicidin (Kretz et al. 2015). Their target is 

probably the DNA gyrase with a similar mode of action to that of fluoroquinolones. Such 
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compounds could be promising new chemical scaffolds to contend with the rebellious 

resistance problem. 

1.7 Molecular Similarity and Drug Design 

Finding relationships among biologically active molecules is a property of medicinal 

chemistry. Recognition of the similarities among these molecules could provide new clues for 

drug design and help better understanding of the antibiotic mode of action and mechanism of 

resistance. The following examples illustrate the utility of molecular similarity in the field of 

antibacterial drug discovery. 

1.7.1 Protein Similarity 

Generally, proteins having similar sequences are considered to possess similar structures. On 

this basis, the three dimensional structures for many sequence identified proteins were 

constructed by the homology or comparative modeling using a known crystal structure of 

protein with >30% sequence identity as a template. Such models enabled the structure based 

design approach for inhibitors of difficult crystallizable targets, e.g., membrane bound proteins 

(Schwede 2003; Cavasotto and Phatak 2009). 

On the level of AMR, the high structural homology between DNA gyrase and topoisomerase 

IV, for example, is beneficial allowing the fluoroquinolones to inhibit both enzymes 

effectively and thereby having less frequent potential toward resistance development.  

1.7.2 Binding Site Similarity 

When binding sites in different bacterial enzymes are closely related structurally and/or 

functionally, it is an attractive opportunity to medicinal chemists for developing a multiple 

target inhibitor with a minimized risk of target-mediated resistance. A good representative is 

the topoisomerase IIA inhibitor novobiocin that binds to the ATP binding sites in DNA gyrase 

GyrB subunit and topoisomerase IV ParE subunit in a similar fashion (Skedelj et al. 2011). 

Another interesting instance is the mechanistic function likeness and the common hydrophobic 

molecular surface, albeit the non-conserved sequence, between the bacterial RNAP “switch 

region” and the HIV-1 NNRTI binding pocket (Mukhopadhyay et al. 2008). Rational 

exploitation of these worthy facts could establish for a novel design concept of dual acting 

anti-infectives for the treatment of HIV-1 and the concomitant bacterial infections. 

1.7.3 Substrate–Inhibitor Similarity 

Structural analogy between a certain enzyme substrate and the corresponding inhibitor 

resulting in a disruption of the enzymatic function is a well-established mechanism of 

antibiotic action. Two previously mentioned examples: The first is the structural closeness of 

β-lactams to the substrate sequence D-Ala-D-Ala enabling to inhibit PBP and peptidoglycan 
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synthesis (Figure 3).  The second example is the folate biosynthesis inhibition through PABA 

substrate mimicry by sulfonamides (Figure 4). 

1.7.4 Small Molecule Similarity 

The premise of molecular similarity, i.e., similar compounds should have similar properties, 

has been widely employed in drug discovery for ligand-based virtual screening, prediction of 

pharmacokinetic (ADMET) profile, and estimation of physicochemical properties (Bender and 

Glen 2004). 

Nonetheless, similarity is subjective. Therefore, assigning compound A to be similar to 

compound B should denote from which aspect and to which extent. For similarity assessment, 

three components are required. First, the reference compound of known activity or 

physicochemical property. Second, molecular representation (descriptor) to characterize the 

analyzed molecules for example by topology (2D), shape (3D), or pharmacophoric features 

(polar/nonpolar, positively/negatively charged, H-bond donor/acceptor, aromatic/nonaromatic 

hydrophobic, etc.). A very popular means for molecular expression is the fingerprint. 

Molecular fingerprint is a binary- or bit string of values 1 or 0 standing for the presence or 

absence of a certain fragment or feature in the molecule. Third, a similarity coefficient to 

quantify the degree of likeness between the reference structure and the compared compounds. 

The most widespread similarity metric is Tanimoto or Jaccard coefficient, which is calculated 

from the equation 𝑇𝑐 =  
𝑐

𝑎 + 𝑏 − 𝑐
 where a and b are the number of bits in compounds A and B 

fingerprints, respectively, c is the number of common bits. Tanimoto coefficient values range 

from zero (no common bits, i.e., non-similar compounds) to one (all bits are the same, i.e., 

similar molecules) (Willett 2006). 

The other way around, dissimilarity can be derived by Soergel distance: 𝑆𝑔 = 1 − 𝑇𝑐 . 

Identification of dissimilar molecules is desired for chemical diversity enrichment (Nikolova 

and Jaworska 2003; Maggiora et al. 2014). 

Noteworthy, similarity analysis should be handled carefully, i.e., similar molecules should not 

necessarily have similar bioactivities. As calculated similarities depend on the type of 

fingerprint used and its relevance to the biological activity (Nikolova and Jaworska 2003). 

Another point, this similarity ranking is defined for the molecules solely regardless of the 

interacting milieu. In fact, molecular similarity depends on extrinsic factors above all the target 

protein (Bender and Glen 2004). 

To sum up, utilization of molecular similarity/diversity in an intelligent manner can provide 

new solutions for the stubborn AMR problem.
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2 Aim of the Thesis 

Antimicrobial resistance is rapidly mounting in Europe and all over the world. On the other 

side, the antibiotic pipelines are almost vacant and pharmaceutical companies steadily 

withdraw from the antibiotic development arena. This gloomy situation necessitates a prompt 

reaction from all public health sectors to preclude an imminent nightmare of resistance 

prevalence. 

Development of novel antibiotics less prone to AMR is a fundamental solution to the current 

crisis. In this context, I resume the words of the Infectious Diseases Society of America in its 

10 × ‘20 initiative for a global commitment to develop 10 new antibacterial drugs by 2020:“As 

a global society, we have a moral obligation to ensure, in perpetuity, that the treasure of 

antibiotics is never lost and that no infant, child, or adult dies unnecessarily of a bacterial 

infection caused by the lack of effective and safe antibiotic therapies.” (Infectious Diseases 

Society of America 2010). 

Accordingly, the aim of my thesis is to discover and develop novel chemical classes of 

antibiotics capable of slowing down the resistance rate of pathogenic bacteria. To achieve this 

goal, I followed two strategies targeting the vital DNA replication and transcription 

machineries in bacteria. 

The first approach is the development of RNAP inhibitors targeting the “switch region” 

binding site. Inspired by the 3-ureidothiophene-2-carboxylic acid class of transcription 

inhibitors (Sahner et al. 2013), new classes with various chemical scaffolds are prepared by 

regioisomers design as well as bioisosteric replacement of the thiophene core by different 

heterocyclic nuclei in order to enlarge the chemical space of RNAP inhibitors. A 

comprehensive evaluation of the frontrunners is performed including the antibacterial activity, 

cross-resistance with rifampicin, rate of resistance, effect of permeability enhancers and efflux 

pump inhibitors, and cytotoxicity to human cells. 

In an advanced step, I would make use of the known mechanistic similarity between the 

bacterial target (RNAP “switch region”) and the viral target (NNRTI binding pocket) to 

develop dual acting anti-infectives against bacteria and the AIDS pathogen HIV-1 as well. 

Precisely, the newly synthesized classes of RNAP “switch region” inhibitors together with the 

parent thiophene class are screened for the viral reverse transcriptase inhibition. Afterwards, a 

structure-based optimization for the best class with dual inhibitory activity is pursued. A 

concurrent study of structure–activity relationships would illuminate the key structural 

features for further activity enhancement. In addition, the dual inhibitors’ mechanism of action 
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against RT is investigated. Worth mentioning, HIV cases in Europe increased by 80% in 2013 

compared to 2004 (WHO 2014). This alarming situation necessitates innovative strategies for 

developing a future antiretroviral therapy. Realization of such dual acting antimicrobial agents 

could by a new hope for HIV patients that are always susceptible to bacterial co-infection. 

The second approach is the development of DNA gyrase and topoisomerase IV inhibitors 

based on the recently discovered natural antibiotics “cystobactamids” isolated from 

Cystobacter sp. (Baumann et al. 2014). The low yield fermentation and the laborious total 

synthesis impede the improvement of this promising family of antibiotics. Wherefore, I am 

concerned with not only improving the topoisomerases IIA inhibition, antibacterial activity, 

and relevant pharmacokinetic properties, but also establishment of a short and efficient 

synthetic strategy facilitating the rapid access to diverse cystobactamids/analogs. For 

optimization of DNA gyrase inhibitory activity, an interactive ligand-based design is applied. 

Besides, conclusion of the structure–activity relationships for upgrading structure and activity 

as well. Furthermore, a study of the cystobactamids’/analogs’ mode of action is accomplished. 

My rationale has the following merits: development of broad spectrum antibiotics with high 

selectivity toward bacteria by choosing conserved targets in bacteria (RNAP and DNA 

topoisomerases) but are different from (RNAP) or with no counterpart in human (DNA 

gyrase). Notably, the designed objective compounds have brand new chemical scaffolds that 

are different from those of other known antibiotics, thus the risk of cross-resistance should be 

unlikely. Finally, a low rate of resistance development can be achieved by hitting either an 

indispensable binding site with pivotal function (the “switch region”, where mutations highly 

affect bacterial fitness and compensatory mutations are helpless), or similar binding sites in 

multiple targets (DNA gyrase and topoisomerase IV). Together these approaches can give 

human the upper hand to win the restless race against resistant bacteria.
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3 Results 

3.1 Expanding the Scaffold for Bacterial RNA Polymerase Inhibitors: Design, Synthesis 

and Structure Activity Relationships of Ureido-Heterocyclic-Carboxylic Acids 

 

Reprinted with permission from Elgaher, W. A. M.; Fruth, M.; Groh, M.; Haupenthal, J.; 

Hartmann, R. W. RSC Adv. 2014, 4, 2177–2194. 

Copyright 2014 Royal Society of Chemistry. 

http://pubs.rsc.org/en/Content/ArticleLanding/2014/RA/C3RA45820B#!divAbstract 
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Abstract 

The emergence of bacterial resistance requires the development of new antibiotics with 

alternative mode of action. Based on class I, developed in our previous study, a new series of 

RNA polymerase (RNAP) inhibitors targeting the switch region was designed. Feasible 

synthetic procedures of the aryl-ureido-heterocyclic-carboxylic acids were developed 

including three regioisomeric thiophene classes (II‒IV), as well as three isosteric furan (V, VI) 

and thiazole (VII) classes. Biological evaluation using a RNAP transcription inhibition assay 

revealed that class II compounds possess the same activity as the parent class I, whereas classes 

III, V‒VII were active, however with lower potency. Structure activity relationship (SAR) 

studies, supported by molecular modeling, elucidated the structural requirements necessary 

for interaction with the binding site. Beside the RNAP inhibitory effects, the new compounds 

displayed good antibacterial activities against Gram positive bacteria and the Gram negative 

E. coli TolC strain. Moreover, they showed no cross resistance with the clinically used RNAP 

inhibitor rifampicin (Rif) and a lower rate of resistance compared to Rif. 
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Introduction 

The eternal battle against pathogenic bacteria demands the discovery and development of new 

weapons aiming vital targets, since the prevalence of antibiotic resistance poses a real threat 

to human health.1,2 Bacterial RNAP is a multisubunit enzyme responsible for transcription.3 It 

is necessary for cell survival allowing efficacy, and structurally distinguished from eukaryotic 

counterparts affording therapeutic selectivity.4 However, the only clinically used drugs 

targeting RNAP are the rifamycins which are applied to treat Mycobacterium tuberculosis 

infections, and the recently FDA approved Fidaxomicin for Clostridium difficile infections.5 

Hence, while proven as a drug target, RNAP is still underexploited. Our mission is to discover 

and optimize RNAP inhibitors with an alternative binding site compared to rifamycins, and 

consequently, with low probability of cross resistance. Recently the “switch region”, a binding 

pocket distinct from the rifamycins binding site, was discovered and proved to be a promising 

target site for antibacterial drug discovery.6‒8 The RNAP inhibitors myxopyronin B (Myx B), 

a natural α-pyrone antibiotic isolated from the myxobacterium Myxococcus fulvus,9 and its 

synthetic derivative desmethyl myxopyronin B (dMyx B),10 have been identified to bind to the 

“switch region”.6,7 Although the myxopyronins are highly active in vitro and show no cross 

resistance to rifamycins,6,11,12 their clinical application is hampered by inadequate 

physicochemical properties.13 

These facts motivated us and other research groups to develop novel “switch region” 

inhibitors. McPhillie et al. used a structure based de novo design based on the crystal structure 

of the dMyx B binding site. Although the compounds inhibited RNAP, they displayed no 

antibacterial activity.14 Buurman et al. applied a high throughput screening, identified RNAP 

inhibitors and confirmed the switch region as their target site. However, they showed only 

weak antibacterial activity.15 Yakushiji et al. pursued a hybrid strategy, combining the core α-

pyrone of Myx with holothin. The resulting RNAP inhibitor was active against Gram positive 

bacteria.16 

In a previous work of our group, based on a hit candidate discovered by virtual screening, a 

series of 5-aryl-3-ureidothiophene-2-carboxylic acids (class I) was synthesized and optimized 

based on SAR studies. Moreover, the binding mode was experimentally validated. The 

compounds showed good antibacterial activities accompanied by a low resistance frequency 

(Fig. 1).17 

In this work, we focused on finding new chemical scaffolds inspired from class I with better 

or at least retained biological activities. To achieve this goal, we followed an analog design 
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strategy accompanied by SAR exploration (Fig. 1). The study was supported by molecular 

modeling to gain deeper insights into the structural features necessary for activity. 

 
Fig. 1 Development of second generation bacterial RNAP inhibitors of the ureido-

heterocyclic-carboxylic acid type. 

 

Results and discussion 

Design strategy 

Analog design was accomplished through two approaches: via design of regioisomers of the 

parent class I, and via bioisosteric exchange of the heterocyclic core. By reversing the positions 

of ureido and carboxyl substituents of class I (class II), shifting the aryl position in class I 

(class IV), or shifting the aryl position in class II (class III), three classes of regioisomers were 

initially investigated to identify the optimum configuration of the aryl-ureido-thiophene-

carboxylic acids for interaction with the target enzyme (Fig. 2). Based on our previous 

results,17 as aryl motif phenyl rings bearing substituents with high π and σ values, namely 4-

chlorophenyl and 3,4-dichlorophenyl, were chosen. It was also shown that at the ureido motif 

hydrophobic and bulky substituents are preferred, therefore n-hexyl, benzyl and N-ethylbenzyl 

amine were employed. In the next step, the biological results of classes I‒IV were taken into 

consideration. Based on classes I and II, displaying the highest RNAP inhibitory activity, the 

classical isosteric ring equivalents –O– for –S– (classes V and VI) or –N= for –CH= (class 

VII) were investigated (Fig. 2). 
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Fig. 2 Analog design strategies based on the parent class I. 

 

Chemistry 

The synthesis of compounds 6‒11 (class I) started by reacting the acetophenones 1a,b (Scheme 

1) with POCl3 in DMF followed by NH2OH∙HCl according to a modified Vilsmeier-Haack-

Arnold reaction18 to give the β-chlorocinnamonitriles 2a,b which were cyclized using methyl 

thioglycolate under basic condition (NaOMe) to afford the methyl 5-aryl-3-aminothiophene-

2-carboxylates 3a,b.17,19 Esters were saponified to the corresponding acids 4a,b which were 

treated with triphosgene to form the thiaisatoic anhydrides 5a,b. The latter reacted with the 

appropriate amines in water followed by acidic workup to yield the desired 5-aryl-3-

ureidothiophene-2-carboxylic acids 6‒11.17,20,21 The compounds of classes II and III were 

synthesized by a straightforward procedures via Gewald reaction of the arylacetaldehydes 

12a,b or the acetophenones 1a,b (Scheme 1) with ethyl cyanoacetate and elemental sulfur 

under basic conditions in a one-pot reaction to afford the ethyl esters 13a,b and 22a,b22,23 

respectively. After saponification, synthesis of both the 5- and 4-aryl-2-ureidothiophene-3-

carboxylic acids 16‒21 and 25‒30 via the thiaisatoic anhydrides 15a,b and 24a,b was also 

successfully employed as described for the class I derivatives. The synthesis of compounds of 

class IV was achieved by treating the arylacetonitriles 31a,b (Scheme 1) with ethyl formate in 

presence of NaOMe, followed by acidic workup to furnish the 2-aryl-3-hydroxyacrylonitriles 

32a,b.24‒26 Ring closure was accomplished by activation of 32a,b using benzenesulfonyl 

chloride to yield the sulfonates 33a,b which reacted with methyl thioglycolate under basic 

condition to produce the methyl 3-amino-4-arylthiophene-2-carboxylates 34a,b.26 Further 

synthetic steps via the thiaisatoic anhydrides 36a,b proceeded smoothly to deliver the desired 

4-aryl-3-ureidothiophene-2-carboxylic acids 37‒42. 
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Scheme 1 Synthesis of compound classes I‒IV. 

 

For the synthesis of compounds 51 and 52 (class V), acetophenone 1b (Scheme 2) was 

converted to the β-ketonitrile 44 via bromination27 and subsequent nucleophilic substitution 

using KCN.28,29 Compound 44 was further reacted under Mitsunobu conditions30 with ethyl 

glycolate to the intermediate vinyl ether 45 that was cyclized under basic condition (NaH) to 

yield the ethyl 3-aminofuran-2-carboxylate 46. We initially attempted to adopt the “isatoic 

anhydride strategy” for the furan class as described for synthesis of the ureidothiophene 

analogs. Unfortunately, the required 3-aminofuran-2-carboxylic acid could not be obtained. 

Various conditions for alkaline hydrolysis of the ester 46 led to decomposition of the furan 

ring, and a ring opening product was isolated. This observation is attributed to the unusual 

instability and weak aromatic properties characterizing the aminofurans.31‒33 Therefore, we 

decided to postpone the hydrolysis to the end of the synthesis as the ureido-furan derivatives 
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are less electron rich and should be less prone to decomposition.34 To prepare the urea 

derivatives, compound 46 was treated directly with the carbamoylimidazoles35 or isocyanate36 

but no conversion was observed. Finally, an alternative route via the phenyl carbamate 47 

followed by nucleophilic substitution with the appropriate amines37 gave the desired ureido-

furan-carboxylic esters 48 and 49. The hydrolysis to the free acids proceeded smoothly under 

basic condition for the N-benzyl-N-ethylurea derivative 49 to afford 52, but for the N-benzyl 

derivative 48 cyclization yielding the uracil derivative 50 occurred. Therefore, non-

saponicative, mild dealkylation was conducted using AlCl3 in tetrahydrothiophene (THT)38 

affording the desired carboxylic acid 51. The synthesis of the regioisomeric furan system class 

VI proceeded via coupling of the phenacyl bromide 43 (Scheme 2) with ethyl cyanoacetate to 

give the intermediate 53 that was cyclized under acidic condition (TFA) to deliver the 2-

aminofuran-carboxylic ester 54. Interestingly, reaction of 54 with phenyl chloroformate 

afforded only the diacylated product 55 even when a stoichiometric amount of reagent was 

used. This is consistent with previous findings regarding the reactivity of 2-aminofurans.39 The 

subsequent transformation into the urea derivatives 57 and 58 required an excess of the amine 

to eliminate the second carbamoyl group from the intermediate 56. Finally, the acids 59 and 

60 were obtained by dealkylation using AlCl3 in THT. The thiazole class VII was prepared 

starting from the benzyl chloride 61 (Scheme 2) that was reacted with elemental sulfur and 

alkylated with methyl iodide to give the carbodithioate 62. For the ring closure, 62 was first 

reacted with cyanamide in basic medium (NaOMe) and further S-alkylated with methyl 

bromoacetate to give the intermediate 63 that was cyclized under basic conditions affording 

the 4-aminothiazole ester 64. After alkaline hydrolysis, the acid 65 was converted to the 

thiazoloisatoic anhydride 66. This intermediate reacted in the same manner as described for 

the thiophene derivatives to the ureidothiazole carboxylic acids 67 and 68. 
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Scheme 2 Synthesis of compound classes V‒VII. 

 

In vitro RNA polymerase inhibitory activity 

Compounds of classes I‒VII were tested for their inhibitory activity against E. coli RNAP and 

the results are shown in table 1. Generally compounds with 3,4-dichloro substituents exhibited 

higher activity than 4-chlorophenyl derivatives in the same class. This finding is in accordance 

with our previous study of the parent class I.17 An increase of activity was also observed with 

substituents having larger hydrophobic volume at the ureido motif with the general trend 

benzylethyl ~ n-hexyl > benzyl. Compounds of class II showed RNAP inhibitory activities as 

good as the parent class I. Interestingly, the 3,4-dichloro derivatives 19‒21 (IC50: 18, 43, and 
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21 µM respectively) showed identical activities to their analogous compounds 9‒11 of class I 

(IC50: 18, 46, and 22 µM respectively). The class III analogs 28‒30 displayed moderate 

activities (IC50: 75, 84, and 57 µM respectively, about 2‒4 fold decrease), while class IV 

derivatives 40‒42 possessed weaker activities (IC50: 74 to >100 µM, >4 fold decrease). 

 

Table 1 In vitro inhibitory activity against E. coli RNA polymerase. 

 

Compd Ar R1 R2 
Inhibition of 

E. coli RNAPa 

6 

 

H, n-Hex 68 µM 

7 H, Bn 31% 

8b Et, Bn 75 µM 

9b 

 

H, n-Hex 18 µM 

10b H, Bn 46 µM 

11b Et, Bn 22 µM 

16 

 

H, n-Hex 14% 

17 H, Bn 84 µM 

18 Et, Bn 54 µM 

19 

 

H, n-Hex 18 µM 

20 H, Bn 43µM 

21 Et, Bn 21µM 

25 

 

H, n-Hex 11% 

26 H, Bn n.i. 

27 Et, Bn 14% 

28 

 

H, n-Hex 75 µM 

29 H, Bn 84 µM 

30 Et, Bn 57 µM 

37 

 

H, n-Hex n.i. 

38 H, Bn n.i. 

39 Et, Bn n.i. 

40 

 

H, n-Hex 74 µM 

41 H, Bn 8% 

42 Et, Bn 100 µM 

 

51 

 

H, Bn 116 µM 

52 Et, Bn 61 µM 

59 

 

H, Bn 26% 

60 Et, Bn 60 µM 

67 

 

H, Bn 48 µM 

68 Et, Bn 51 µM 

Myx B   0.35 µM 

Rif   0.03 µM 
a IC50 values (µM) or % inhibition at 100 µM of E. coli RNAP; n.i. =  inhibition ≤5% at 100 µM. 
b previously reported17 
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The outstanding role of classes I and II regarding RNAP inhibition can be explained on the 

basis of molecular similarity, i.e., similar molecules exhibit similar activities.40‒42 The 

similarity of classes I‒IV was analyzed in silico by using molecular fingerprint method, where 

a graph 3-point pharmacophore (GpiDAPH3) was applied as 2D fingerprint system. As 

similarity metric the Tanimoto coefficient (TC) was used.43 Class II showed maximum 

similarity to I (TC = 1.00), followed by III (TC = 0.93), while IV exhibited low similarity (TC 

= 0.65). Another similarity assessment via flexible alignment of classes I‒IV revealed that the 

aryl, ureido, and carboxyl substituents as well as the thiophene core of I and II are coincided 

(Figure 3A). Class III also matches except that the carboxyl group is located in the opposite 

position to that of I and II, whereas neither the ureido nor the carboxyl substituents of IV fit to 

the configuration of I and II (Figure 3A). Hence class I and II are similar with respect to their 

configuration in space. Consequently they can assume the same orientation and binding mode, 

which results in the same inhibitory activities. These results were confirmed by docking of 

compounds 11, 21, and 30 representing classes I‒III respectively, in the dMyx B binding site 

of T. Thermophilus RNA polymerase (PDB code 3EQL).7 Both 11 and 21 bind to the crescent 

shape pocket in the same manner (Figure 3B, C). The thiophene core is located at the top of 

the cavity opening, anchored by hydrogen bond or ion pair interaction of the carboxyl group 

with the βʹLys610 residue. The 3,4-dichlorophenyl moiety occupies the lower part of the 

enecarbamate binding pocket of dMyx B. The ureido group carrying the lipophilic benzyl and 

ethyl substituents is located deeply in the hydrophobic pocket occupied by the dMyx B dienone 

side chain, and stabilized by CH-π interaction with βLeu1088 as well as an intramolecular 

hydrogen bond with the carboxyl group. On the other hand compound 30 (class III) binds 

mainly through CH-π interaction between the lipophilic substituted ureido moiety and 

βLeu1088, but lacks the interaction with βʹLys610, as the carboxyl group is oriented in the 

opposite direction (Figure 3D). Accordingly, a lower inhibitory activity of 30 (IC50: 57 µM) 

in comparison with compounds 11 or 21 (IC50: 22 µM, 21 µM) was observed. 
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Fig. 3 (A) Flexible alignment of compounds 10 (white), 20 (magenta), 29 (orange), and 41 

(turquoise). (B) Docking pose of compound 11 (violet) in the dMyx B (turquoise) binding site: 

hydrophobic surface (green), polar surface (pink), β chain (yellow), β′ chain (red). (C) Docking 

pose of 21 (violet). (D) Docking pose of 30 (violet). 

 

The effect of exchanging the heterocyclic core on the RNAP inhibitory activity was studied 

for compounds of classes V‒VII. The results revealed that both of the furan classes V and VI 

displayed about a threefold decrease in activity compared to the corresponding thiophene 

analogs (class I and II), whereas the thiazole class VII exhibited only a slightly lowered 

potency (Table 1). By replacement or introduction of hetero atoms the electronic properties as 

well as the size of the ring is influenced and both effects can have an impact on the affinity to 

target. The latter is more likely to be responsible for the observed differences in activity. The 

ring size influences interatomic distances, bond angles, and determines the overall shape of 

the ligand.44 According to the observed activities, thiophene is obviously most appropriate to 

keep the aryl, ureido, and carboxyl functionalities in the optimal geometry necessary for 

binding to the target enzyme. This is reflected by the relationship of the angle (α) between the 



 

 

34 3.1 Publication I 

aryl and ureido substituents and RNAP activity (pIC50) for classes I‒VII (Figure 4). A 

parabolic curve was obtained, with the optimum range for α between 150 and 159° (classes I, 

II, and VII located at the maximum). The observed exception for class III (α = 156°) can be 

explained by the different localization of the carboxyl group leading to a reduced binding 

affinity as discussed above. 

Fig. 4 Relationship between RNAP inhibitory activity (pIC50) and angle α. 

 

Antibacterial activity 

To explore the antibacterial spectrum of our RNAP inhibitors, eight compounds representing 

the most active classes were selected. Compounds with n-hexyl substituents were excluded 

due to solubility problems. The antibacterial activities were evaluated in the Gram positive 

B. subtilis and S. aureus, as well as in the Gram negative strains E. coli K12, P. aeruginosa, 

E. coli TolC, a mutant deficient in the AcrAB-TolC efflux system, and two Rif-resistant E. 

coli TolC mutants and are expressed as minimal inhibitory concentrations (MIC) values. As 

reference compounds Myx B and Rif were used (Table 2). It was found that the compounds 

possess antibacterial activities against the Gram positive strains. Regarding the Gram negative 

bacteria with the exception of E. coli TolC, compounds were not active similarly to Myx B. It 

is noteworthy that the antibacterial activity against S. aureus is well correlating with the RNAP 

inhibitory activity, whereas in case of B. subtilis and E. coli TolC the correlation was less 

pronounced. Similar discrepancies between RNAP inhibition and MIC values are also 

observed for Myx B and Rif (Table 2), and have been frequently reported.17,45,46 In the 

experiments with the Rif-resistant strains all of the five tested compounds representing 

different classes showed no reduction of antibacterial activity compared to the normal E. coli 

 

Compd Class Core R1 R2 pIC50
 α [°] 

10 
I 

 

H, Bn 4.34 155.5 

11 Et, Bn 4.66 155.0 

20 
II 

 

H, Bn 4.37 158.6 

21 Et, Bn 4.68 158.7 

29 
III 

 

H, Bn 4.08 155.9 

30 Et, Bn 4.24 156.0 

41 
IV 

 

H, Bn 3.20 105.7 

42 Et, Bn 4.00 105.7 

51 
V 

 

H, Bn 3.94 166.2 

52 Et, Bn 4.21 166.1 

59 
VI 

 

H, Bn 3.72 143.7 

60 Et, Bn 4.22 144.4 

67 
VII 

 

H, Bn 4.32 150.3 

68 Et, Bn 4.29 150.3 
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TolC strain. This demonstrates that there is no cross resistance with Rif as it has been expected 

due to the different binding sites. 

Table 2 Antibacterial activities of selected aryl-ureido-heterocyclic-carboxylic acids. 

Compd 

IC50 

RNAP 

(µM) 

MIC95 (µg/mL)a 

S. aureus B. subtilis E. coli TolC 
E. coli TolC 

β Q513Lb 

E. coli TolC 

β H526Yb 
E. coli K12 P. aeruginosa 

11 22 8 11 14 14 16 ˃25 ˃25 

18 54 20 5 11 - - ˃25 ˃25 

21 21 10 2 10 7 9 ˃25 ˃25 

29 84 80 15 10 - - ˃100 ˃100 

30 57 23 6 7 7 7 ˃100 ˃100 

52 61 33 12 30 25 25 ˃50 ˃50 

60 60 28 14 ˃50 - - ˃50 ˃50 

68 51 36 45 47 50 50 ˃50 ˃50 

Myx B 0.35 0.5 1 1 1 1 ˃25 ˃25 

Rif 0.03 0.02 5 6 >100 >100 7 13 
a > MIC determination was limited due to insufficient solubility of the test compound. 
b Rif-resistant E. coli TolC strains with mutations in the rpoB gene encoding for the RNAP β subunit. 

 

Role of cell wall penetration and drug efflux for antibacterial activity in E. coli strains 

Considering the facts that RNAP is highly conserved in bacteria,3 and our compounds were 

active against Gram positive strains as well as E. coli TolC, but not against Gram negative 

bacteria, the most likely conclusion to be drawn is that they are unable to accumulate in the 

cytoplasm to inhibit RNAP. This could be due to cell wall impermeability, i.e., slow diffusion 

through porins or the outer membrane (OM) lipid bilayer, efflux mechanisms or both. The 

observed activity in the TolC mutant lacking the OM part of the tripartite efflux machinery 

gives a strong hint that efflux plays a prominent role for our compounds. To verify this 

hypothesis and to get a better understanding of their uptake pathway, the antibacterial effect 

for selected compounds was determined in presence of the OM permeability enhancer 

polymyxin B nonapeptide (PMBN)47 or the efflux pumps inhibitor PAβN.48,49 MIC values 

were determined against E. coli TolC, E. coli D22 (LPS mutant with increased OM 

permeability) and E. coli K12 (intact cell wall system) and are shown in table 3. 

 

Table 3 Effect of PMBN and PAβN on antibacterial activities of selected aryl-ureido-

heterocyclic-carboxylic acids. 

Compd 

E. coli TolC E. coli K12 E. coli D22 

MIC95
a  

MIC95  

+ PMBN 

(1 µg/mL)  

MIC95  

+ PAβN 

(10 µg/mL) 

MIC50  

MIC50 

+ PMBN 

(1 µg/mL) 

MIC50  

+ PAβN 

(20 µg/mL) 

MIC50 

MIC50 

+ PAβN 

(20 µg/mL) 

11 14 7 1 >25 >25 >25 >50 >25 

21 10 4 1 >25 >25 4 >25 12 

30 7 5 1 >100 >100 18 40 15 

52 30 11 6 >50 >50 >50 >100 49 

68 47 22 4 >50 >50 >50 >50 >50 

a MIC values in µg/mL. 
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PMBN produced only a slight decrease in E. coli TolC MIC values (factors 1.4‒2.7) and no 

effect was observed in the K12 strain. Moreover, the compounds showed no enhanced activity 

against the E. coli D22 strain. It cannot be excluded that an increased membrane permeability 

may be counteracted by efflux.50 It is known that PMBN enhances penetration of antibiotics 

which diffuse across the OM (10‒300 fold decrease in MIC values against E. coli), but it has 

only a slight effect when antibiotics traverse through porins.47 Hence, the uptake pathway of 

our compounds into Gram negative bacteria appears to be mainly permeation through the 

porins. On the other hand, PAβN increased the susceptibility to the compounds in E. coli TolC 

by factors of 5‒14 and by factors ≥3 in the K12 and D22 strains. These results indicate that 

both the OM barrier and efflux pumps contribute to the inactivity of our compounds in Gram 

negative bacteria, however, efflux mechanisms play the major role. Obviously, beside AcrAB-

TolC other efflux systems are involved in E. coli drug efflux. 

 

Spontaneous resistance rate 

Low propensity of resistance development is a criterion for an effective antibacterial agent. 

Spontaneous resistance rate towards Myx B in S. aureus was found to be 4 to 7 × 10‒8, similar 

to that of Rif.12 However, Myx B-resistant mutants possessed higher fitness costs compared to 

Rif-resistant mutants, giving an advantage to Myx B, and other RNAP “switch region” 

inhibitors, of having a lower clinical prevalence of resistance than Rif.12 Determination of in 

vitro resistance rate for 30 in E. coli TolC at 2 × MIC revealed a significant lower rate (<4.2 × 

10‒11) compared to Rif (8.3 × 10‒8) and Myx B (7.1 × 10‒8) as previously observed for the class 

I derivatives.17 This observation indicates that the probability of resistance development is 

reduced with the ureido-thiophene-carboxylic acids compared to MyxB and Rif. An 

explanation for this finding could be that our compounds occupy only a part of the “switch 

region” whereas Myx B fills a larger space including the enecarbamate binding pocket. 

Mutations in this part, responsible for Myx resistance,6,12 should not prevent our compounds 

from binding and inhibiting the enzyme.17 Another explanation for a reduced resistance rate 

could be an additional effect on another target. 

 

Cytotoxicity 

The in vitro toxicity of selected compounds was evaluated by monitoring the cytotoxicity in 

HEK 293 cells at different time points using doxorubicin (LD50: 0.3 µM) and Rif (LD50: 80 

µM) as positive and negative controls respectively. After 72 h, the compounds displayed LD50 

values in the range of 25 to >100 µM comparable to Rif (Table 4). 
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Table 4 Cytotoxicity of selected aryl-ureido-heterocyclic-carboxylic acids. 

Compd 
LD50 (µM) 

24 h 48 h 72 h 

8 95 78 91 

10 >100 >100 >100 

11 67 50 46 

18 84 82 75 

21 61 57 62 

30 40 17 25 

52 61 61 57 

Doxorubicin 5 0.7 0.3 

Rif 24%a  38%a 80 
a at 100 µM 

Conclusion 

Following an analog design strategy novel chemical scaffolds as bacterial RNAP inhibitors 

were developed. Derived from the parent class I, a series of regioisomeric ureido-thiophene-

carboxylic acid derivatives and bioisosteric heterocyclic classes were designed and studied. 

The synthetic route via the “isatoic anhydrides” for the thiophene and thiazole derivatives was 

robust and feasible. For the synthesis of the furan derivatives the established strategy had to 

be modified due to the instability of the furan system. Thereby, class II possessing the same 

RNAP inhibitory activity as the parent class I, as well as classes III, and V‒VII with only 

slightly lowered potency were discovered. The detailed investigation of the SAR, including 

molecular alignment, docking studies and angle analysis contributed to a deeper understanding 

of the structural requirements for interaction with the protein target. The compounds were 

active against Gram positive bacteria including the pathogen S. aureus but ineffective against 

Gram negative bacteria. The non-susceptibility can be attributed to drug efflux. Nevertheless, 

the observed low mammalian cytotoxicity, the reduced resistance frequency and the activity 

against Rif-resistant strains make these novel scaffolds promising for further optimization as 

antibacterial agents against Gram positive pathogens. 

 

Experimental 

Materials and methods  

Starting materials and solvents were purchased from commercial suppliers, and used without 

further purification. All chemical yields refer to purified compounds, and were not optimized. 

Reaction progress was monitored using TLC Silica gel 60 F254 aluminium sheets, and 

visualization was accomplished by UV at 254 nm. Flash chromatography was performed using 

silica gel 60 Å (40−63 μm). Preparative RP-HPLC was carried out on a Waters Corporation 

setup contains a 2767 sample manager, a 2545 binary gradient module, a 2998 PDA detector 

and a 3100 electron spray mass spectrometer. Purification was performed using a Waters 
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XBridge column (C18, 150 × 19 mm, 5 µm), a binary solvent system A and B (A = water with 

0.1% formic acid; B = MeCN with 0.1% formic acid) as eluent, a flow rate of 20 mL/min and 

a gradient of 60% to 95% B in 8 min were applied. Melting points were determined on a Stuart 

Scientific melting point apparatus SMP3 (Bibby Sterilin, UK), and are uncorrected. NMR 

spectra were recorded either on Bruker DRX-500 (1H, 500 MHz; 13C, 126 MHz), or Bruker 

Fourier 300 (1H, 300 MHz; 13C, 75 MHz) spectrometer at 300 K. Chemical shifts are recorded 

as δ values in ppm units by reference to the hydrogenated residues of deuterated solvent as 

internal standard (CDCl3: δ = 7.26, 77.02; DMSO-d6: δ = 2.50, 39.99). Splitting patterns 

describe apparent multiplicities and are designated as s (singlet), br s (broad singlet), d 

(doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet). Coupling constants (J) 

are given in Hertz (Hz). Purity of all compounds used in biological assays was ≥95% as 

measured by LC/MS Finnigan Surveyor MSQ Plus (Thermo Fisher Scientific, Dreieich, 

Germany). The system consists of LC pump, autosampler, PDA detector, and single-

quadrupole MS detector, as well as the standard software Xcalibur for operation. RP C18 

Nucleodur 100-5 (125 × 3 mm) column (Macherey-Nagel GmbH, Dühren, Germany) was used 

as stationary phase, and a binary solvent system A and B (A = water with 0.1% TFA; B = 

MeCN with 0.1% TFA) was used as mobile phase. In a gradient run the percentage of B was 

increased from an initial concentration of 0% at 0 min to 100% at 15 min and kept at 100% 

for 5 min. The injection volume was 10 µL and flow rate was set to 800 µL/min. MS (ESI) 

analysis was carried out at a spray voltage of 3800 V, a capillary temperature of 350 °C and a 

source CID of 10 V. Spectra were acquired in positive mode from 100 to 1000 m/z and at 254 

nm for UV tracing. 

Chemistry 

Synthesis of 5-(aryl)-3-[3-(substituted)ureido]thiophene-2-carboxylic acids 6‒11 was 

previously described,17 as well as the experimental data of compounds 8‒11.17 

5-(4′-Chlorophenyl)-3-(3-hexylureido)thiophene-2-carboxylic acid 6;21 beige crystals; mp 

198–199 °C; δH (300 MHz, DMSO-d6) 0.86 (3 H, t, J = 4.8 Hz, Me), 1.19‒1.49 (8 H, m, 

Me(CH2)4CH2NH), 3.08 (2 H, m, CH2CH2NH), 7.50 (2 H, d, J = 7.8 Hz, 3′,5′Ar-H), 7.63 (1 

H, t, J = 4.8 Hz, NHCH2), 7.68 (2 H, d, J = 7.8 Hz, 2′,6′Ar-H), 8.28 (1 H, s, C4-H), 9.33 (1 H, 

br s, NHCO), 13.13 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.39 (C6″), 22.54 (C5″), 

26.56 (C3″), 29.85 (C2″), 31.47 (C4″), 39.78 (C1″), 107.40 (C2), 118.89 (C4), 127.81 (C2′, 

C6′), 129.77 (C3′, C5′), 132.23 (C1′), 134.07 (C4′), 145.64 (C5), 146.74 (C3), 154.25 (NHCO), 

165.23 (COOH); m/z (ESI+) 381 (17%, (M + H)+), 761 (33, 2M + H), 295 (40, M ‒ C6H13), 

236 (100, M ‒ C6H13, NH, CO2); tR = 14.86 min. 
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3-(3-Benzylureido)-5-(4′-chlorophenyl)thiophene-2-carboxylic acid 7;21 white crystals; 

mp 216–217 °C; δH (300 MHz, DMSO-d6) 4.31 (2 H, d, J = 5.7 Hz, CH2), 7.21‒7.38 (5 H, m, 

Ph), 7.51 (2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.70 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 8.22 (1 H, t, J = 

5.7 Hz, NHCH2), 8.30 (1 H, s, C4-H), 9.43 (1 H, br s, NHCO), 13.15 (1 H, br s, COOH); δC 

(75 MHz, DMSO-d6) 43.46 (CH2), 107.42 (C2), 118.91 (C4), 127.30 (C4″), 127.76 (C2″, C6″), 

127.87 (C2′, C6′), 128.79 (C3″, C5″), 129.79 (C3′, C5′), 132.15 (C1′), 134.15 (C4′), 140.26 

(C1″), 145.90 (C5), 146.65 (C3), 154.36 (NHCO), 165.16 (COOH); m/z (ESI+) 387 (19%, (M 

+ H)+), 772 (10, 2M), 295 (10, M ‒ C7H7), 236 (100, M ‒ C7H7, NH, CO2); tR = 13.38 min. 

 

General procedures for synthesis of 2-(aryl)acetaldehydes 12a and 12b 

To a stirred ice-cooled suspension of pyridinium chlorochromate (12.9 g, 60.0 mmol) in 

anhydrous DCM (80 mL), the appropriate 2-(aryl)ethanol51,52 (40.0 mmol) in DCM (10 mL) 

was added in one portion. The reaction mixture was allowed to warm to rt, and stirred for 2 h, 

then anhydrous Et2O (100 mL) was added, and the supernatant was decanted from the black 

gum. The insoluble residue was washed thoroughly with anhydrous Et2O (2 × 50 mL), the 

combined organic solution was passed through a short pad of silica, and the solvent was 

removed by vacuum distillation. The crude product was used directly in the next step without 

further purification. Purity was determined to be 70‒80% as indicated from 1H-NMR spectra.  

2-(4′-Chlorophenyl)acetaldehyde 12a;53 yellow oil; δH (300 MHz, CDCl3) 3.67 (2 H, d, J = 

1.0 Hz, CH2), 7.15 (2 H, d, J = 8.1 Hz, 3′,5′Ar-H), 7.33 (2 H, d, J = 8.1 Hz, 2′,6′Ar-H), 9.74 

(1 H, t, J = 1.0 Hz, CHO). 

2-(3′,4′-Dichlorophenyl)acetaldehyde 12b;54 yellow oil; δH (300 MHz, CDCl3) 3.68 (2 H, d, 

J = 1.9 Hz, CH2), 7.05 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.32 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

7.37 (1 H, d, J = 8.0 Hz, 5′Ar-H), 9.75 (1 H, t, J = 1.9 Hz, CHO). 

 

General procedures for synthesis of ethyl 2-amino-5-(aryl)thiophene-3-carboxylates 13a 

and 13b 

To a stirred suspension of the appropriate aldehyde 12a or 12b (30.0 mmol), ethyl 

cyanoacetate (3.39 g, 30.0 mmol), and sulfur (0.96 g, 30.0 mmol) in EtOH (30 mL), a solution 

of NEt3 (4.04 g, 30.0 mmol) in EtOH (5 mL) was added slowly. The reaction mixture was 

stirred at 70 °C for 12 h, then solvent was removed by vacuum distillation. The obtained 

residue was dissolved in DCM (50 mL) and washed with water (2 × 50 mL). The organic layer 

was dried (MgSO4) and concentrated. The crude material was purified by flash 

chromatography (SiO2, n-hexane/EtOAc = 6:1). 
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Ethyl 2-amino-5-(4′-chlorophenyl)thiophene-3-carboxylate 13a (5.49 g, 65%); pale yellow 

solid; mp 100–101 °C; δH (300 MHz, CDCl3) 1.36 (3 H, t, J = 7.1 Hz, Me), 4.30 (2 H, q, J = 

7.1 Hz, CH2O), 6.03 (2 H, br s, NH2), 7.21 (1 H, s, C4-H), 7.27 (2 H, d, J = 8.9 Hz, 3′,5′Ar-

H), 7.35 (2 H, d, J = 8.9 Hz, 2′,6′Ar-H); δC (75 MHz, CDCl3) 14.54 (Me), 59.94 (CH2), 108.04 

(C3), 121.79 (C4), 123.48 (C5), 125.81 (C2′, C6′), 128.91 (C3′, C5′), 132.16 (C4′), 132.56 

(C1′), 162.17 (C2), 165.29 (C=O); m/z (ESI+) 281 (8%, M+), 236 (100, M ‒ EtO); tR = 14.05 

min. 

Ethyl 2-amino-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylate 13b (6.05 g, 64%); pale 

yellow solid; mp 130–131 °C; δH (300 MHz, CDCl3) 1.37 (3 H, t, J = 7 Hz, Me), 4.30 (2 H, q, 

J = 7.0 Hz, CH2O), 6.08 (2 H, br s, NH2), 7.22 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.23 (1 H, s, 

C4-H), 7.36 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.48 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, 

CDCl3) 14.53 (Me), 60.03 (CH2), 108.11 (C3), 121.90 (C4), 122.78 (C6′), 123.74 (C5), 126.11 

(C2′), 130.04 (C4′), 130.62 (C5′), 132.91 (C3′), 134.12 (C1′), 162.48 (C2), 165.20 (C=O); m/z 

(ESI+) 315 (18%, M+), 270 (100, M ‒ EtO); tR = 15.14 min. 

 

General procedures for synthesis of 2-amino-5-(aryl)thiophene-3-carboxylic acids 14a 

and 14b 

To a stirred solution of the appropriate ester 13a or 13b (25.0 mmol) in MeOH (100 mL), 

KOH (6.17 g, 110 mmol) in water (100 mL) was added. The reaction mixture was stirred at 

reflux for 3‒5 h (TLC monitoring), then MeOH was evaporated by vacuum distillation. The 

residue was diluted with water (50 mL) and washed with EtOAc (2 × 50 mL). The aqueous 

layer was cooled in an ice bath and acidified by KHSO4 (saturated aqueous solution) to pH 3‒

4. The precipitated solid was collected by filtration, washed with cold water (2 × 30 mL), n-

hexane (2 × 30 mL), and dried over CaCl2 in amber glass vacuum desiccator. 

2-Amino-5-(4′-chlorophenyl)thiophene-3-carboxylic acid 14a (4.11 g, 65%); beige solid; 

mp 195–197 °C; δH (300 MHz, DMSO-d6) 7.26 (1 H, s, C4-H), 7.36 (2 H, d, J = 8.6 Hz, 

3′,5′Ar-H), 7.45 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.47 (2 H, br s, NH2), 12.10 (1 H, br s, COOH); 

δC (75 MHz, DMSO-d6) 106.36 (C3), 120.76 (C4), 123.19 (C5), 125.94 (C2′, C6′), 129.30 

(C3′, C5′), 130.69 (C4′), 133.31 (C1′), 163.93 (C2), 166.48 (C=O); m/z (ESI+) 253 (72%, M+), 

255 (28, [M+2]+), 236 (100, M ‒ OH), 209 (14, M ‒ CO2); tR = 10.83 min. 

2-Amino-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 14b (5.88 g, 82%); beige 

solid; mp 229–231 °C; δH (300 MHz, DMSO-d6) 7.38 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.39 

(1 H, s, C4-H), 7.52 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.55 (2 H, br s, NH2), 7.69 (1 H, d, J = 2.0 

Hz, 2′Ar-H), 12.15 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 106.57 (C3), 119.11 (C4), 
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124.37 (C6′), 124.77 (C5), 125.60 (C2′), 128.26 (C4′), 131.33 (C5′), 132.16 (C3′), 135.18 

(C1′), 164.37 (C2), 166.43 (C=O); m/z (ESI+) 287 (88%, M+), 289 (56, [M+2]+), 270 (100, M 

‒ OH), 243 (8, M ‒ CO2), 227 (25, M – CO2, NH2); tR = 11.87 min. 

General procedures for synthesis of 6-(aryl)-1H-thieno[2,3-d][1,3]oxazine-2,4-diones 15a 

and 15b 

To a stirred solution of the appropriate acid 14a or 14b (6.00 mmol) in THF (60 mL), 

triphosgene (1.29 g, 4.36 mmol) was added portionwise over 30 min. The reaction mixture 

was stirred at rt for 2 h, then NaHCO3 (saturated aqueous solution, 30 mL) was added 

cautiously, and the resulting mixture was extracted with EtOAc/THF (1:1, 2 × 50 mL). The 

combined organic layer was washed with brine (50 mL), dried (MgSO4), and the solvent was 

removed by vacuum distillation. The obtained crude material was suspended in n-

hexane/EtOAc (4:1, 50 mL), stirred in a water bath at 40 °C for 10 min, cooled, and collected 

by filtration. 

6-(4′-Chlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 15a (1.2 g, 74%); beige solid; 

mp 254–256 °C; δH (300 MHz, DMSO-d6) 7.40 (2 H, d, J = 8.7 Hz, 3′,5′Ar-H), 7.48 (1 H, s, 

C5-H), 7.60 (2 H, d, J = 8.7 Hz, 2′,6′Ar-H), 11.73 (1 H, br s, NH); δC (75 MHz, DMSO-d6) 

109.70 (C4a), 119.10 (C5), 126.74 (C2′, C6′), 128.28 (C6), 129.39 (C3′, C5′), 131.75 (C4′), 

133.00 (C1′), 150.22 (C7a), 152.83 (C2), 159.67 (C4); m/z (ESI+) 279 (20%, M+), 235 (100, 

M – CO2); tR = 10.40 min. 

6-(3′,4′-Dichlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 15b (1.5 g, 81%); beige 

solid; mp >300 °C; δH (300 MHz, DMSO-d6) 7.61 (2 H, m, 5′,6′Ar-H), 7.79 (1 H, s, C5-H), 

7.96 (1 H, s, 2′Ar-H), 12.76 (1 H, br s, NH); δC (75 MHz, DMSO-d6) 111.46 (C4a), 120.60 

(C5), 125.72 (C6′), 127.17 (C2′), 130.87 (C4′), 131.57 (C5′), 131.83 (C6), 132.50 (C3′), 133.21 

(C1′), 147.81 (C7a), 155.32 (C2), 155.82 (C4); m/z (ESI+) 313 (14%, M+), 355 (100, M + H, 

MeCN), 627 (28, 2M + H), 296 (35, M ‒ OH); tR = 11.44 min. 

 

General procedures for synthesis of 5-(aryl)-2-[3-(substituted)ureido]thiophene-3-

carboxylic acids 16‒21 

To a stirred suspension of thiaisatoic anhydride 15a or 15b (0.64 mmol) in water (8 mL), the 

appropriate amine (1.40 mmol) was added. The reaction mixture was stirred at rt for 2 h, then 

poured on ice-cooled 2M HCl (40 mL), and extracted with EtOAc/THF (1:1, 40 mL). The 

organic layer was washed with 2M HCl (40 mL), brine (40 mL), dried (MgSO4), and 

concentrated in vacuo. The obtained crude material was suspended in n-hexane/EtOAc (4:1, 

50 mL), stirred in a water bath at 40 °C for 10 min, cooled, and collected by filtration. 
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5-(4′-Chlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 16 (132 mg, 54%); 

pale brown crystals; mp 230–232 °C; δH (300 MHz, DMSO-d6) 0.87 (3 H, t, J = 6.8 Hz, Me), 

1.03‒1.57 (8 H, m, Me(CH2)4CH2NH), 3.11 (2 H, m, CH2CH2NH), 7.40 (2 H, d, J = 8.6 Hz, 

3′,5′Ar-H), 7.43 (1 H, s, C4-H), 7.59 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.94 (1 H, t, J = 4.2 Hz, 

NHCH2), 10.24 (1 H, br s, NHCO), 12.82 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.39 

(C6″), 22.54 (C5″), 26.50 (C3″), 29.71 (C2″), 31.43 (C4″), 39.86 (C1″), 111.55 (C3), 121.27 

(C4), 126.63 (C2′, C6′), 128.77 (C5), 129.45 (C3′, C5′), 131.62 (C4′), 133.17 (C1′), 151.41 

(C2), 153.88 (NHCO), 166.35 (COOH); m/z (ESI+) 380 (33%, M+), 761 (100, 2M + H), 295 

(18, M – C6H13); tR = 14.38 min. 

2-(3-Benzylureido)-5-(4′-chlorophenyl)thiophene-3-carboxylic acid 17 (136 mg, 55%); 

pale brown crystals; mp 250–252 °C; δH (300 MHz, DMSO-d6) 4.34 (2 H, d, J = 5.6 Hz, CH2), 

7.15‒7.39 (5 H, m, Ph), 7.41 (2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.45 (1 H, s, C4-H), 7.59 (2 H, d, 

J = 8.6 Hz, 2′,6′Ar-H), 8.49 (1 H, t, J = 5.3 Hz, NHCH2), 10.35 (1 H, br s, NHCO), 12.87 (1 

H, br s, COOH); δC (75 MHz, DMSO-d6) 43.67 (CH2), 111.79 (C3), 121.29 (C4), 126.68 (C2′, 

C6′), 127.45 (C4″), 127.81 (C2″, C6″), 128.86 (C3″, C5″), 129.02 (C5), 129.46 (C3′, C5′), 

131.70 (C4′), 133.09 (C1′), 139.75 (C1″), 151.20 (C2), 154.01 (NHCO), 166.29 (COOH); m/z 

(ESI+) 387 (30%, (M + H)+), 773 (22, 2M + H), 295 (26, M – C7H7), 170 (100); tR = 13.18 

min. 

2-(3-Benzyl-3-ethylureido)-5-(4′-chlorophenyl)thiophene-3-carboxylic acid 18 (136 mg, 

51%); pale brown crystals; mp 215–216 °C; δH (300 MHz, DMSO-d6) 1.16 (3 H, t, J = 7.1 Hz, 

Me), 3.42 (2 H, q, J = 7.1 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 7.24‒7.39 (5 H, m, Ph), 7.41 

(2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.48 (1 H, s, C4-H), 7.62 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 10.96 

(1 H, br s, NHCO), 13.15 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 13.52 (Me), 42.42 

(MeCH2N), 49.96 (PhCH2N), 112.30 (C3), 120.98 (C4), 126.79 (C2′, C6′), 127.64 (C4″), 

127.75 (C2″, C6″), 129.04 (C3″, C5″), 129.48 (C3′, C5′), 129.68 (C5), 131.87 (C4′), 132.97 

(C1′), 138.06 (C1″), 151.67 (C2), 153.10 (NHCO), 167.43 (COOH); m/z (ESI+) 415 (100%, 

(M + H)+), 829 (90, 2M + H); tR = 14.08 min. 

5-(3′,4′-Dichlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 19 (165 mg, 62%); 

beige crystals; mp 245–247 °C; δH (300 MHz, DMSO-d6) 0.86 (3 H, t, J = 6.8 Hz, Me), 1.16‒

1.56 (8 H, m, Me(CH2)4CH2NH), 3.11 (2 H, m, CH2CH2NH), 7.53 (1 H, dd, J = 8.0, 2.0 Hz, 

6′Ar-H), 7.56 (1 H, s, C4-H), 7.59 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.83 (1 H, d, J = 2.0 Hz, 2′Ar-

H), 7.97 (1 H, t, J = 4.7 Hz, NHCH2), 10.26 (1 H, br s, NHCO), 12.89 (1 H, br s, COOH); δC 

(75 MHz, DMSO-d6) 14.39 (C6″), 22.53 (C5″), 26.49 (C3″), 29.69 (C2″), 31.43 (C4″), 39.85 

(C1″), 111.65 (C3), 122.63 (C4), 125.03 (C6′), 126.41 (C2′), 127.27 (C5), 129.29 (C4′), 131.51 
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(C5′), 132.28 (C3′), 135.00 (C1′), 151.88 (C2), 153.85 (NHCO), 166.27 (COOH); m/z (ESI+) 

414 (100%, M+), 416 (69, [M+2]+), 829 (67, 2M + H), 329 (42, M – C6H13); tR = 15.40 min. 

2-(3-Benzylureido)-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 20 (194 mg, 

72%); white crystals; mp 256–258 °C; δH (300 MHz, DMSO-d6) 4.34 (2 H, d, J = 5.6 Hz, 

CH2), 7.22‒7.39 (5 H, m, Ph), 7.53 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.58 (1 H, s, C4-H), 

7.60 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.84 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.51 (1 H, t, J = 5.6 Hz, 

NHCH2), 10.38 (1 H, br s, NHCO), 12.93 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.68 

(CH2), 111.97 (C3), 122.68 (C4), 125.08 (C6′), 126.47 (C2′), 127.46 (C4″), 127.49 (C5), 

127.82 (C2″, C6″), 128.86 (C3″, C5″), 129.37 (C4′), 131.52 (C5′), 132.30 (C3′), 134.94 (C1′), 

139.71 (C1″), 151.63 (C2), 153.99 (NHCO), 166.24 (COOH); m/z (ESI+) 421 (47%, (M + 

H)+), 843 (100, 2M + 3H), 329 (11, M – C7H7); tR = 13.94 min. 

2-(3-Benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 21 (210 

mg, 73%); beige crystals; mp 228–230 °C; δH (300 MHz, DMSO-d6) 1.16 (3 H, t, J = 7.1 Hz, 

Me), 3.42 (2 H, q, J = 7.1 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 7.24‒7.40 (5 H, m, Ph), 7.55 

(1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.59 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.60 (1 H, s, C4-H), 7.86 

(1 H, d, J = 2.0 Hz, 2′Ar-H), 10.98 (1 H, br s, NHCO), 13.22 (1 H, br s, COOH); δC (75 MHz, 

DMSO-d6) 13.52 (Me), 42.47 (MeCH2N), 49.99 (PhCH2N), 112.45 (C3), 122.35 (C4), 125.17 

(C6′), 126.58 (C2′), 127.66 (C4″), 127.76 (C5), 128.15 (C2″, C6″), 129.04 (C3″, C5″), 129.54 

(C4′), 131.53 (C5′), 132.33 (C3′), 134.80 (C1′), 138.03 (C1″), 152.11 (C2), 153.07 (NHCO), 

167.38 (COOH); m/z (ESI+) 448 (100%, M+); tR = 14.99 min. 

 

Synthesis and characterization of ethyl 2-amino-4-(aryl)thiophene-3-carboxylates 22a22 and 

22b23 were previously described. 

Synthesis of 2-amino-4-(aryl)thiophene-3-carboxylic acids 23a and 23b were performed as 

described for 14a and 14b.   

2-Amino-4-(4′-chlorophenyl)thiophene-3-carboxylic acid 23a (3.48 g, 55%); pale brown 

solid; mp 137–139 °C; δH (300 MHz, DMSO-d6) 6.17 (1 H, s, C5-H), 7.26 (2 H, d, J = 8.6 Hz, 

3′,5′Ar-H), 7.34 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.40 (2 H, br s, NH2), 11.76 (1 H, br s, COOH); 

δC (75 MHz, DMSO-d6) 103.60 (C3), 105.90 (C5), 127.63 (C2′, C6′), 130.87 (C3′, C5′), 131.61 

(C4′), 137.69 (C4), 139.95 (C1′), 165.71 (C2), 166.66 (C=O); m/z (ESI+) 254 (48%, (M + 

H)+), 507 (4, 2M + H), 236 (100, M ‒ OH); tR = 10.16 min. 

2-Amino-4-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 23b (3.59 g, 50%); pale 

brown solid; mp 142–144 °C; δH (300 MHz, DMSO-d6) 6.27 (1 H, s, C5-H), 7.24 (1 H, dd, J 

= 8.0, 2.0 Hz, 6′Ar-H), 7.41 (2 H, br s, NH2), 7.47 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.53 (1 H, d, 
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J = 8.0 Hz, 5′Ar-H), 11.96 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 103.37 (C3), 106.79 

(C5), 129.53 (C6′), 129.75 (C5′), 130.25 (C4′), 130.32 (C2′), 130.86 (C3′), 138.52 (C4), 139.41 

(C1′), 165.78 (C2), 166.44 (C=O); m/z (ESI+) 288 (100%, (M + H)+), 575 (19, 2M + H), 270 

(77, M ‒ OH); tR = 11.04 min. 

 

Synthesis of 5-(aryl)-1H-thieno[2,3-d][1,3]oxazine-2,4-diones 24a and 24b were performed 

as described for preparation of 15a and 15b.   

5-(4′-Chlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 24a (1.2 g, 71%); pale grey 

solid; mp 235–237 °C; δH (300 MHz, DMSO-d6) 7.16 (1 H, s, C6-H), 7.46 (2 H, d, J = 8.9 Hz, 

3′,5′Ar-H), 7.51 (2 H, d, J = 8.9 Hz, 2′,6′Ar-H), 12.68 (1 H, br s, NH); δC (75 MHz, DMSO-

d6) 107.59 (C4a), 116.09 (C6), 128.36 (C2′, C6′), 131.12 (C3′, C5′), 131.35 (C4′), 133.21 (C5), 

137.56 (C1′), 147.93 (C7a), 154.98 (C2), 157.82 (C4); m/z (ESI+) 279 (100%, M+), 559 (6, 

2M + H); tR = 10.23 min. 

5-(3′,4′-Dichlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 24b (1.5 g, 80%); beige 

solid; mp 236–238 °C; δH (300 MHz, DMSO-d6) 7.27 (1 H, s, C6-H), 7.48 (1 H, dd, J = 8.0, 

2.0 Hz, 6′Ar-H), 7.68 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.75 (1 H, d, J = 2.0 Hz, 2′Ar-H), 12.70 (1 

H, br s, NH); δC (75 MHz, DMSO-d6) 107.58 (C4a), 117.07 (C6), 129.59 (C6′), 130.51 (C5′), 

131.01 (C4′), 131.13 (C2′), 131.15 (C3′), 134.83 (C5), 136.08 (C1′), 147.87 (C7a), 155.07 

(C2), 157.85 (C4); m/z (ESI+) 313 (8%, M+), 355 (100, M + H, MeCN), 626 (12, 2M), 296 

(20, M ‒ OH); tR = 10.77 min. 

 

Synthesis of 4-(aryl)-2-[3-(substituted)ureido]thiophene-3-carboxylic acids 25‒30 were 

performed as described for preparation of 16‒21. 

4-(4′-Chlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 25 (180 mg, 74%); 

pale grey crystals; mp 191–193 °C; δH (300 MHz, DMSO-d6) 0.87 (3 H, t, J = 6.7 Hz, Me), 

1.21‒1.51 (8 H, m, Me(CH2)4CH2NH), 3.10 (2 H, m, CH2CH2NH), 6.63 (1 H, s, C5-H), 7.29 

(2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.36 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.87 (1 H, t, J = 5.1 Hz, 

NHCH2), 10.39 (1 H, br s, NHCO), 12.50 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.39 

(C6″), 22.55 (C5″), 26.52 (C3″), 29.78 (C2″), 31.45 (C4″), 39.84 (C1″), 108.92 (C3), 114.32 

(C5), 127.73 (C2′, C6′), 131.06 (C3′, C5′), 131.79 (C4′), 137.31 (C4), 138.31 (C1′), 153.29 

(C2), 154.16 (NHCO), 166.76 (COOH); m/z (ESI+) 381 (100%, (M + H)+), 761 (51, 2M + H), 

295 (77, M – C6H13), 236 (58, M – C6H13, NH, CO2); tR = 13.37 min. 

2-(3-Benzylureido)-4-(4′-chlorophenyl)thiophene-3-carboxylic acid 26 (200 mg, 81%); 

pale brown crystals; mp 197–199 °C; δH (300 MHz, DMSO-d6) 4.33 (2 H, d, J = 5.7 Hz, CH2), 
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6.66 (1 H, s, C5-H), 7.24‒7.37 (9 H, m, 4′-ClC6H4, Ph), 8.40 (1 H, t, J = 4.8 Hz, NHCH2), 

10.60 (1 H, br s, NHCO), 12.56 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.57 (CH2), 

109.64 (C3), 114.39 (C5), 127.39 (C4″), 127.74 (C2″, C6″), 127.75 (C2′, C6′), 128.84 (C3″, 

C5″), 131.08 (C3′, C5′), 131.78 (C4′), 137.30 (C4), 138.44 (C1′), 139.96 (C1″), 152.79 (C2), 

154.30 (NHCO), 166.85 (COOH); m/z (ESI+) 387 (100%, (M + H)+), 773 (37, 2M + H), 295 

(44, M – C7H7), 236 (50, M – C7H7, NH, CO2); tR = 12.21 min. 

2-(3-Benzyl-3-ethylureido)-4-(4′-chlorophenyl)thiophene-3-carboxylic acid 27 (240 mg, 

90%); pale grey crystals; mp 175–177 °C; δH (300 MHz, DMSO-d6) 1.15 (3 H, t, J = 6.2 Hz, 

Me), 3.41 (2 H, q, J = 6.2 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 6.71 (1 H, s, C5-H), 7.22‒

7.50 (9 H, m, 4′-ClC6H4, Ph), 11.38 (1 H, br s, NHCO), 12.84 (1 H, br s, COOH); δC (75 MHz, 

DMSO-d6) 13.54 (Me), 42.28 (MeCH2N), 49.84 (PhCH2N), 109.67 (C3), 114.80 (C5), 127.58 

(C4″), 127.69 (C2″, C6″), 127.74 (C2′, C6′), 129.03 (C3″, C5″), 131.22 (C3′, C5′), 131.97 

(C4′), 137.03 (C4), 138.22 (C1′), 138.46 (C1″), 153.45 (C2), 153.80 (NHCO), 167.93 

(COOH); m/z (ESI+) 415 (100%, (M + H)+), 829 (6, 2M + H), 236 (12, M – C7H7, EtN, CO2); 

tR = 13.18 min. 

4-(3′,4′-Dichlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 28 (172 mg, 65%); 

pale brown crystals; mp 178–180 °C; δH (300 MHz, DMSO-d6) 0.87 (3 H, t, J = 6.8 Hz, Me), 

1.21‒1.50 (8 H, m, Me(CH2)4CH2NH), 3.10 (2 H, m, CH2CH2NH), 6.72 (1 H, s, C5-H), 7.27 

(1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.53 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.56 (1 H, d, J = 8.0 Hz, 

5′Ar-H), 7.86 (1 H, t, J = 5.0 Hz, NHCH2), 10.49 (1 H, br s, NHCO), 12.62 (1 H, br s, COOH); 

δC (75 MHz, DMSO-d6) 14.40 (C6″), 22.54 (C5″), 26.51 (C3″), 29.77 (C2″), 31.44 (C4″), 

39.82 (C1″), 109.21 (C3), 115.00 (C5), 129.67 (C6′), 129.74 (C5′), 129.82 (C4′), 130.33 (C2′), 

131.10 (C3′), 136.99 (C4), 139.16 (C1′), 153.12 (C2), 154.16 (NHCO), 166.70 (COOH); m/z 

(ESI+) 415 (100%, (M + H)+), 829 (30, 2M + H), 329 (92, M – C6H13); tR = 14.26 min. 

2-(3-Benzylureido)-4-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 29 (210 mg, 

78%); beige crystals; mp 188–190 °C; δH (300 MHz, DMSO-d6) 4.34 (2 H, d, J = 5.6 Hz, 

CH2), 6.77 (1 H, s, C5-H), 7.24‒7.39 (6 H, m, 6′Ar-H, Ph), 7.53 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

7.56 (1 H, d, J = 8.0 Hz, 5′Ar-H), 8.45 (1 H, t, J = 5.0 Hz, NHCH2), 10.51 (1 H, br s, NHCO), 

12.69 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.59 (CH2), 109.06 (C3), 115.30 (C5), 

127.42 (C4″), 127.76 (C2″, C6″), 128.85 (C3″, C5″), 129.75 (C6′), 129.78 (C5′), 129.86 (C4′), 

130.38 (C2′), 131.11 (C3′), 136.97 (C4), 139.01 (C1′), 139.88 (C1″), 153.19 (C2), 154.28 

(NHCO), 166.48 (COOH); m/z (ESI+) 421 (100%, (M + H)+), 841 (23, 2M + H), 329 (25, M 

– C7H7); tR = 12.98 min. 
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2-(3-Benzyl-3-ethylureido)-4-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 30 (172 

mg, 60%); beige crystals; mp 193–195 °C; δH (300 MHz, DMSO-d6) 1.15 (3 H, t, J = 7.0 Hz, 

Me), 3.41 (2 H, q, J = 7.0 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 6.80 (1 H, s, C5-H), 7.24‒

7.39 (6 H, m, 6′Ar-H, Ph), 7.55 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.56 (1 H, d, J = 8.0 Hz, 5′Ar-

H), 11.43 (1 H, br s, NHCO), 12.92 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 13.54 (Me), 

42.27 (MeCH2N), 49.82 (PhCH2N), 109.72 (C3), 115.50 (C5), 127.59 (C4″), 127.70 (C2″, 

C6″), 129.03 (C3″, C5″), 129.84 (C6′), 129.88 (C4′, C5′), 130.35 (C2′), 131.26 (C3′), 137.08 

(C4), 138.23 (C1′), 138.83 (C1″), 153.46 (C2), 153.78 (NHCO), 167.77 (COOH); m/z (ESI+) 

449 (100%, (M + H)+), 897 (7, 2M + H), 270 (13, M – C7H7, EtN, CO2); tR = 14.00 min. 

 

Synthesis of methyl 3-amino-4-(aryl)thiophene-2-carboxylates 34a26 and 34b were performed 

according to reported procedures.26 

Methyl 3-amino-4-(4′-chlorophenyl)thiophene-2-carboxylate 34a26 beige solid; mp 104–

105 °C (lit.,26 106 °C); δH (300 MHz, CDCl3) 3.86 (3 H, s, OMe), 5.57 (2 H, br s, NH2), 7.23 

(1 H, s, C5-H), 7.37 (2 H, d, J = 8.7 Hz, 3′,5′Ar-H), 7.43 (2 H, d, J = 8.7 Hz, 2′,6′Ar-H); δC 

(75 MHz, CDCl3) 51.39 (Me), 101.69 (C2), 128.88 (C5), 129.39 (C2′, C6′), 129.44 (C3′, C5′), 

132.08 (C4), 132.82 (C1′), 134.00 (C4′), 151.27 (C3), 165.03 (C=O); m/z (ESI+) 268 (16%, 

(M + H)+), 236 (100, M ‒ MeO); tR = 13.20 min. 

Methyl 3-amino-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylate 34b white solid; mp 

135–137 °C; δH (300 MHz, DMSO-d6) 3.76 (3 H, s, OMe), 6.38 (2 H, br s, NH2), 7.45 (1 H, 

dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.69 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.71 (1 H, d, J = 8.0 Hz, 5′Ar-

H), 7.78 (1 H, s, C5-H); δC (75 MHz, DMSO-d6) 51.65 (Me), 99.91 (C2), 128.75 (C6′), 130.31 

(C2′), 130.73 (C4′), 130.77 (C5), 131.39 (C4), 131.60 (C5′), 131.99 (C3′), 135.08 (C1′), 152.58 

(C3), 164.64 (C=O); m/z (ESI+) 302 (12%, (M + H)+), 270 (100, M ‒ MeO); tR = 12.79 min. 

 

Synthesis of 3-amino-4-(aryl)thiophene-2-carboxylic acids 35a and 35b were performed as 

described for preparation of 14a and 14b.   

3-Amino-4-(4′-chlorophenyl)thiophene-2-carboxylic acid 35a (reported as reaction 

intermediate and not isolated) 20,55 (5.38 g, 85%); white solid; mp 160–162 °C; δH (300 MHz, 

DMSO-d6) 6.45 (2 H, br s, NH2), 7.49‒7.56 (4 H, m, 4′-ClC6H4), 7.64 (1 H, s, C5-H), 11. 86 

(1 H, br s, COOH); δC (75 MHz, DMSO-d6) 101.28 (C2), 129.32 (C2′, C6′), 130.00 (C5), 

130.15 (C3′, C5′), 132.08 (C4), 132.68 (C1′), 133.62 (C4′), 152.19 (C3), 166.00 (C=O); m/z 

(ESI+) 254 (18%, (M + H)+), 236 (100, M ‒ OH); tR = 10.69 min. 
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3-Amino-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylic acid 35b (5.52 g, 77%); beige 

solid; mp 127–129 °C; δH (300 MHz, DMSO-d6) 7.46 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.70 

(1 H, d, J = 8.0 Hz, 5′Ar-H), 7.70 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.73 (1 H, s, C5-H), 7.74 (2 H, 

br s, NH2), 12.49 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 101.46 (C2), 128.67 (C6′), 

130.21 (C2′), 130.59 (C4′), 130.79 (C5), 130.81 (C5′), 131.36 (C4), 131.96 (C3′), 135.35 (C1′), 

152.16 (C3), 165.94 (C=O); m/z (ESI+) 287 (12%, M+), 270 (100, M ‒ OH); tR = 11.53 min. 

 

Synthesis of 7-(aryl)-1H-thieno[3,2-d][1,3]oxazine-2,4-diones 36a and 36b were performed 

as described for preparation of 15a and 15b.   

7-(4′-Chlorophenyl)-1H-thieno[3,2-d][1,3]oxazine-2,4-dione 36a20,55 (1.23 g, 73%); white 

solid; mp 214–216 °C (lit.,20 245 °C, lit.,55 >260 °C); δH (300 MHz, DMSO-d6) 7.49 (2 H, d, 

J = 8.8 Hz, 3′,5′Ar-H), 7.54 (2 H, d, J = 8.8 Hz, 2′,6′Ar-H), 8.25 (1 H, s, C6-H), 11.86 (1 H, 

br s, NH); δC (75 MHz, DMSO-d6) 107.66 (C4a), 129.20 (C2′, C6′), 129.35 (C7), 130.97 (C3′, 

C5′), 131.03 (C1′), 133.66 (C4′), 136.87 (C6), 147.24 (C7a), 149.41 (C2), 156.06 (C4); m/z 

(ESI+) 279 (24%, M+), 251 (100, M ‒ CO); tR = 10.18 min. 

7-(3′,4′-Dichlorophenyl)-1H-thieno[3,2-d][1,3]oxazine-2,4-dione 36b (1.36 g, 72%); beige 

solid; mp 249–251 °C; δH (300 MHz, DMSO-d6) 7.43 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.70 

(1 H, d, J = 2.0 Hz, 2′Ar-H), 7.73 (1 H, d, J = 8.0 Hz, 5′Ar-H), 8.32 (1 H, s, C6-H), 11.96 (1 

H, br s, NH); δC (75 MHz, DMSO-d6) 107.73 (C4a), 129.58 (C6′), 129.64 (C7), 131.25 (C2′), 

131.27 (C5′), 131.71 (C4′), 131.82 (C3′), 132.50 (C1′), 137.70 (C6), 146.70 (C7a), 149.24 

(C2), 155.77 (C4); m/z (ESI+) 313 (13%, M+), 627 (13, 2M + H), 285 (100, M ‒ CO); tR = 

11.14 min. 

 

Synthesis of 4-(aryl)-3-[3-(substituted)ureido]thiophene-2-carboxylic acids 37‒42 were 

performed as described for preparation of 16‒21 

4-(4′-Chlorophenyl)-3-(3-hexylureido)thiophene-2-carboxylic acid 3721 (195 mg, 80%); 

white crystals; mp 176–178 °C; δH (300 MHz, DMSO-d6) 0.86 (3 H, t, J = 6.4 Hz, Me), 1.12‒

1.30 (8 H, m, Me(CH2)4CH2NH), 2.84 (2 H, m, CH2CH2NH), 6.88 (1 H, t, J = 5.9 Hz, NHCH2), 

7.37 (2 H, d, J = 7.8 Hz, 3′,5′Ar-H), 7.42 (2 H, d, J = 7.8 Hz, 2′,6′Ar-H), 7.79 (1 H, s, C5-H), 

8.34 (1 H, br s, NHCO), 13.15 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.42 (C6″), 22.51 

(C5″), 26.31 (C3″), 30.08 (C2″), 31.49 (C4″), 39.47 (C1″), 118.68 (C2), 128.59 (C2′, C6′), 

128.70 (C3′, C5′), 129.01 (C5), 131.83 (C4′), 135.76 (C1′), 138.35 (C4), 142.42 (C3), 154.72 

(NHCO), 164.24 (COOH); m/z (ESI+) 381 (25%, (M + H)+), 761 (17, 2M + H), 295 (53, M – 

C6H13), 236 (100, M – C6H13, NH, CO2); tR = 12.71 min. 
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3-(3-Benzylureido)-4-(4′-chlorophenyl)thiophene-2-carboxylic acid 3821 (225 mg, 91%); 

white crystals; mp 196–198 °C (lit.,21 216 °C); δH (300 MHz, DMSO-d6) 4.10 (2 H, d, J = 5.9 

Hz, CH2), 7.06‒7.32 (5 H, m, Ph), 7.38‒7.46 (5H, m, 4′-ClC6H4, NHCH2), 7.82 (1 H, s, C5-

H), 8.49 (1 H, br s, NHCO), 13.23 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.06 (CH2), 

119.38 (C2), 127.05 (C4″), 127.32 (C2″, C6″), 128.54 (C3″, C5″), 128.75 (C2′, C6′), 128.88 

(C3′, C5′), 129.09 (C5), 131.92 (C4′), 135.68 (C1′), 138.63 (C4), 140.70 (C1″), 142.13 (C3), 

155.03 (NHCO), 164.17 (COOH); m/z (ESI+) 387 (40%, (M + H)+), 773 (36, 2M + H), 295 

(51, M – C7H7), 236 (100, M – C7H7, NH, CO2); tR = 10.41 min. 

3-(3-Benzyl-3-ethylureido)-4-(4′-chlorophenyl)thiophene-2-carboxylic acid 3921 (212 mg, 

80%); white crystals; mp 157–159 °C; δH (500 MHz, DMSO-d6) 1.09 (3 H, t, J = 6.3 Hz, Me), 

3.24 (2 H, q, J = 6.6 Hz, MeCH2N), 4.37 (2 H, s, PhCH2N), 7.02‒7.32 (5 H, m, Ph), 7.43 (2 

H, d, J = 8.8 Hz, 3′,5′Ar-H), 7.46 (2 H, d, J = 8.8 Hz, 2′,6′Ar-H), 7.83 (1 H, s, C5-H), 8.52 (1 

H, br s, NHCO), 13.23 (1 H, br s, COOH); δC (126 MHz, DMSO-d6) 13.04 (Me), 40.77 

(MeCH2N), 48.40 (PhCH2N), 119.87 (C2), 126.85 (C4″), 127.18 (C2″, C6″), 128.14 (C3″, 

C5″), 128.27 (C2′, C6′), 128.28 (C5), 128.66 (C3′, C5′), 131.56 (C4′), 134.97 (C1′), 138.44 

(C4), 138.48 (C1″), 142.51 (C3), 154.37 (NHCO), 163.87 (COOH); m/z (ESI+) 415 (100%, 

(M + H)+), 829 (21, 2M + H), 236 (37, M – C7H7, EtN, CO2); tR = 12.74 min. 

4-(3′,4′-Dichlorophenyl)-3-(3-hexylureido)thiophene-2-carboxylic acid 40 (220 mg, 83%); 

white crystals; mp 189–191 °C; δH (300 MHz, DMSO-d6) 0.85 (3 H, t, J = 7 Hz, Me), 1.02‒

1.39 (8 H, m, Me(CH2)4CH2NH), 2.85 (2 H, m, CH2CH2NH), 7.01 (1 H, t, J = 5.5 Hz, NHCH2), 

7.38 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.57 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.62 (1 H, d, J = 2.0 

Hz, 2′Ar-H), 7.89 (1 H, s, C5-H),  8.42 (1 H, br s, NHCO), 13.19 (1 H, br s, COOH); δC (75 

MHz, DMSO-d6) 14.42 (C6″), 22.48 (C5″), 26.29 (C3″), 30.14 (C2″), 31.47 (C4″), 39.53 

(C1″), 118.34 (C2), 127.16 (C6′), 128.59 (C2′), 129.67 (C5), 129.82 (C4′), 130.72 (C5′), 

131.31 (C3′), 136.81 (C4), 137.56 (C1′), 142.41 (C3), 154.63 (NHCO), 164.21 (COOH); m/z 

(ESI+) 415 (76%, (M + H)+), 829 (37, 2M + H), 329 (100, M – C6H13), 270 (96, M – C6H13, 

NH, CO2); tR = 12.65 min. 

3-(3-Benzylureido)-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylic acid 41 (221 mg, 

82%); off white crystals; mp 182–184 °C; δH (300 MHz, DMSO-d6) 4.12 (2 H, d, J = 5.9 Hz, 

CH2), 7.03‒7.35 (5 H, m, Ph), 7.40 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.51 (1 H, t, J = 5.9 Hz, 

NHCH2), 7.59 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.67 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.91 (1 H, s, 

C5-H),  8.54 (1 H, br s, NHCO), 12.69 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.09 

(CH2), 119.18 (C2), 127.04 (C4″), 127.19 (C2″, C6″), 127.36 (C6′), 128.58 (C3″, C5″), 128.80 

(C2′), 129.80 (C5), 129.83 (C4′), 130.90 (C5′), 131.42 (C3′), 137.15 (C4), 137.52 (C1′), 140.57 
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(C1″), 142.09 (C3), 154.98 (NHCO), 164.12 (COOH); m/z (ESI+) 421 (58%, (M + H)+), 841 

(24, 2M + H), 329 (83, M – C7H7), 270 (100, M – C7H7, NH, CO2); tR = 9.60 min. 

3-(3-Benzyl-3-ethylureido)-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylic acid 42 (236 

mg, 82%); off white crystals; mp 171–173 °C; δH (300 MHz, DMSO-d6) 1.09 (3 H, t, J = 6.8 

Hz, Me), 3.25 (2 H, q, J = 6.8 Hz, MeCH2N), 4.40 (2 H, s, PhCH2N), 6.91‒7.37 (5 H, m, Ph), 

7.43 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.63 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.70 (1 H, d, J = 2.0 

Hz, 2′Ar-H), 7.94 (1 H, s, C5-H), 8.55 (1 H, br s, NHCO), 13.36 (1 H, br s, COOH); δC (75 

MHz, DMSO-d6) 13.48 (Me), 41.32 (MeCH2N), 49.00 (PhCH2N), 120.31 (C2), 127.35 (C4″), 

127.51 (C2″, C6″), 127.70 (C6′), 128.70 (C3″, C5″), 129.01 (C2′), 129.54 (C5), 129.97 (C4′), 

130.98 (C5′), 131.50 (C3′), 137.17 (C4), 137.44 (C1′), 138.86 (C1″), 142.85 (C3), 154.80 

(NHCO), 164.28 (COOH); m/z (ESI+) 449 (100%, (M + H)+), 897 (9, 2M + H), 270 (10, M – 

C7H7, EtN, CO2); tR = 13.02 min. 

 

Ethyl 3-amino-5-(3′,4′-dichlorophenyl)furan-2-carboxylate 46 

To a stirred ice-cooled solution of triphenylphosphine (5.12 g, 19.5 mmol) in anhydrous THF 

(70 mL), diethyl azodicarboxylate (3.40 g, 19.5 mmol) was added dropwise. After 10 min, 

ethyl glycolate (2.03 g, 19.5 mmol) was added dropwise, then 4428 (3.21 g, 15.0 mmol) was 

added portionwise. The reaction mixture was allowed to warm to rt, and stirred for 15 h. 

Sodium hydride (55‒65% in mineral oil, 1.80 g, 42.0 mmol) was added, and the reaction was 

further stirred for 6 h. The reaction mixture was treated with water (10 mL), and the solvent 

was removed by vacuum distillation. The obtained residue was dissolved in EtOAc (70 mL), 

washed with water (50 mL), dried (MgSO4), and concentrated. The crude material was purified 

by flash chromatography (SiO2, n-hexane/EtOAc = 3:1). (3.90 g, 87%); white solid; mp 153–

155 °C; δH (300 MHz, CDCl3) 1.42 (3 H, t, J = 7.1 Hz, Me), 4.40 (2 H, q, J = 7.1 Hz, CH2O), 

4.64 (2 H, br s, NH2), 6.39 (1 H, s, C4-H), 7.47 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.55 (1 H, dd, J 

= 8.0, 2.0 Hz, 6′Ar-H), 7.81 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, CDCl3) 14.65 (Me), 

60.13 (CH2), 100.98 (C4), 124.03 (C6′), 126.16 (C3), 126.62 (C2′), 129.38 (C1′), 130.76 (C5′), 

132.98 (C4′), 133.16 (C3′), 144.74 (C2), 153.45 (C5), 160.37 (C=O); m/z (ESI+) 300 (83%, 

(M + H)+), 599 (6, 2M + H), 254 (100, M ‒ EtO); tR = 13.72 min. 

 

Ethyl 5-(3′,4′-dichlorophenyl)-3-(phenoxycarbonylamino)furan-2-carboxylate 47 

To a stirred ice-cooled solution of 46 (1.00 g, 3.33 mmol), and pyridine (264 mg, 3.33 mmol) 

in anhydrous DCM (20 mL), phenyl chloroformate (525 mg, 3.33 mmol) was added dropwise. 

The reaction mixture was stirred at rt for 12 h. The solvent was evaporated under vacuum, and 



 

 

50 3.1 Publication I 

the residue was dissolved in EtOAc (50 mL), washed with 1M HCl (2 × 25 mL), brine (25 

mL), dried (MgSO4), and the solvent was removed by vacuum distillation. The obtained 

material was triturated with n-hexane (20 mL), collected by filtration and dried. (1.20 g, 86%); 

pale yellow solid; mp 120–121 °C; δH (300 MHz, CDCl3) 1.46 (3 H, t, J = 7.1 Hz, Me), 4.46 

(2 H, q, J = 7.1 Hz, CH2O), 7.18‒7.45 (5 H, m, Ph), 7.48 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.51 (1 

H, s, C4-H), 7.57 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.85 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.76 (1 

H, br s, NHCO); δC (75 MHz, CDCl3) 14.51 (Me), 61.19 (CH2), 102.14 (C4), 121.43 (C2″, 

C6″), 124.09 (C6′), 126.04 (C4″), 126.68 (C2′), 128.48 (C3), 129.01 (C1′), 129.50 (C3″, C5″), 

130.93 (C5′), 133.36 (C4′), 133.42 (C3′), 136.53 (C2), 150.40 (C1″), 151.38 (NHCO), 153.68 

(C5), 160.12 (C=O); m/z (ESI+) 420 (100%, (M + H)+), 374 (7, M ‒ EtO); tR = 17.56 min. 

 

General procedures for synthesis of ethyl 3-[3-(substituted)ureido]-5-(3′,4′-

dichlorophenyl)furan-2-carboxylate 48 and 49 

To a stirred solution of 47 (300 mg, 0.71 mmol) in anhydrous DMSO (10 mL) under a nitrogen 

atmosphere, the appropriate amine (0.75 mmol) was added dropwise. The reaction mixture 

was stirred at rt for 2 h, then EtOAc (50 mL) was added. The organic layer was washed with 

2M HCl (2 × 30 mL), 1M NaOH (2 × 30 mL), brine (30 mL), dried (MgSO4), and the solvent 

was removed by vacuum distillation. The obtained residues were purified by flash 

chromatography (SiO2, n-hexane/EtOAc = 1:1). 

Ethyl 3-(3-benzylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylate 48 (283 mg, 92%,); 

white solid; mp 211–213 °C; δH (300 MHz, DMSO-d6) 1.33 (3 H, t, J = 7.1 Hz, Me), 4.33 (2 

H, d, J = 4.7 Hz, PhCH2NH), 4.35 (2 H, q, J = 7.1 Hz, CH2O), 7.23‒7.38 (5 H, m, Ph), 7.71 

(1 H, d, J = 8.0 Hz, 5′Ar-H), 7.76 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.87 (1 H, s, C4-H), 8.02 

(1 H, d, J = 2.0 Hz, 2′Ar-H), 8.06 (1 H, t, J = 5.8 Hz, NHCH2), 8.66 (1 H, br s, NHCO); δC (75 

MHz, DMSO-d6) 14.88 (Me), 43.43 (PhCH2NH), 60.70 (CH2O), 104.25 (C4), 125.12 (C6′), 

126.71 (C2′), 127.36 (C4″), 127.75 (C2″, C6″), 128.58 (C3), 128.83 (C3″, C5″), 129.77 (C1′), 

131.81 (C5′), 132.17 (C4′), 132.51 (C3′), 138.53 (C2), 140.12 (C1″), 152.57 (C5), 154.45 

(NHCO), 159.57 (C=O); m/z (ESI+) 433 (100%, (M + H)+), 865 (27, 2M + H), 341 (8, M – 

C7H7), 254 (59, M – C7H7, NCO, EtO); tR = 15.99 min. 

Ethyl 3-(3-benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylate 49 (278 

mg, 85%); reddish liquid; δH (500 MHz, CDCl3) 1.25 (3 H, t, J = 7.3 Hz, MeCH2N), 1.36 (3 

H, t, J = 7.3 Hz, MeCH2O), 3.42 (2 H, q, J = 7.3 Hz, MeCH2N), 4.36 (2 H, q, J = 7.3 Hz, 

CH2O), 4.62 (2 H, s, PhCH2N), 7.25‒7.36 (5 H, m, Ph), 7.48 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.60 

(1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.71 (1 H, s, C4-H), 7.89 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.84 
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(1 H, br s, NHCO); δC (126 MHz, CDCl3) 13.16 (MeCH2N), 14.51 (MeCH2O), 42.03 

(MeCH2N), 50.02 (PhCH2N), 60.80 (CH2O), 102.98 (C4), 124.12 (C6′), 126.73 (C2′), 127.49 

(C4″), 127.58 (C2″, C6″), 127.76 (C3), 128.76 (C3″, C5″), 129.44 (C1′), 130.87 (C5′), 133.11 

(C4′), 133.28 (C3′), 137.42 (C2), 137.70 (C1″), 152.94 (C5), 154.11 (NHCO), 159.64 (C=O); 

m/z (ESI+) 461 (100%, (M + H)+), 921 (8, 2M + H); tR = 17.00 min. 

 

3-Benzyl-6-(3′,4′-dichlorophenyl)furo[3,2-d]pyrimidine-2,4(1H,3H)-dione 50 

To a stirred solution of 48 (130 mg, 0.3 mmol) in MeOH (10 mL), NaOH (20 mg, 0.5 mmol) 

in water (10 mL) was added. The reaction mixture was stirred at 70 °C for 3 h. The mixture 

was concentrated in vacuo. The residue was diluted with water (10 mL), and washed with 

EtOAc (20 mL). The aqueous layer was cooled in ice bath and acidified with KHSO4 (saturated 

aqueous solution) to pH 3‒4. The precipitated solid was collected by filtration, washed with 

cold water (20 mL), and n-hexane (20 mL). 

(93 mg, 80%); white solid; mp 281–283 °C dec; δH (500 MHz, DMSO-d6) 5.04 (2 H, s, CH2), 

7.23‒7.32 (6 H, m, C7-H, Ph), 7.76 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.88 (1 H, dd, J = 8.0, 2.0 

Hz, 6′Ar-H), 8.20 (1 H, d, J = 2.0 Hz, 2′Ar-H), 11.87 (1 H, br s, NH); δC (126 MHz, DMSO-

d6) 43.13 (CH2), 98.87 (C7), 125.03 (C6′), 126.89 (C2′), 127.04 (C4″), 127.37 (C2″, C6″), 

128.27 (C3″, C5″), 128.81 (C7a), 129.83 (C1′), 131.39 (C5′), 132.12 (C4′), 132.45 (C3′), 

137.35 (C1″), 137.79 (C4a), 150.88 (C4), 153.00 (C2), 156.43 (C6); m/z (ESI+) 387 (68%, 

(M + H)+), 773 (29, 2M + H), 186 (100); tR = 13.16 min. 

 

General procedures for synthesis of 3-[3-(substituted)ureido]-5-(3′,4′-

dichlorophenyl)furan-2-carboxylic acid 51 and 52 

To a stirred ice-cooled solution of the appropriate ester 48 or 49 (1.00 mmol), and THT (5 mL) 

in anhydrous DCM (5 mL), AlCl3 (1.33 g, 10.0 mmol) was added portionwise. The reaction 

mixture was stirred at rt for 72 h (TLC monitoring, TLC samples were diluted with MeOH). 

The reaction mixture was concentrated under vacuum, then cold water (10 mL) was added 

followed by 1M HCl to pH 4‒5. The mixture was extracted with EtOAc (3 × 25 mL). The 

combined organic layers were dried (MgSO4), and the solvent was removed by vacuum 

distillation. The crude material was purified using preparative RP-HPLC. 

3-(3-Benzylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylic acid 51 (100 mg, 25%); 

white crystals; mp 195–197 °C dec; δH (500 MHz, DMSO-d6) 4.31 (2 H, d, J = 5.7 Hz, CH2), 

7.23‒7.37 (5 H, m, Ph), 7.71 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.77 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-

H), 7.84 (1 H, s, C4-H), 8.03 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.06 (1 H, t, J = 5.7 Hz, NHCH2), 
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8.65 (1 H, br s, NHCO), 13.23 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 42.92 (CH2), 

103.73 (C4), 124.55 (C6′), 126.11 (C2′), 126.83 (C4″), 127.24 (C2″, C6″), 127.51 (C3), 128.32 

(C3″, C5″), 129.51 (C1′), 131.30 (C5′), 131.44 (C4′), 131.99 (C3′), 137.28 (C2), 139.72 (C1″), 

151.55 (C5), 154.05 (NHCO), 160.57 (COOH); m/z (ESI+) 405 (90%, (M + H)+), 809 (14, 

2M + H), 313 (93, M – C7H7), 254 (100, M – C7H7, NH, CO2); tR = 13.60 min. 

3-(3-Benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylic acid 52 (120 mg, 

28%); pale yellow crystals; mp 160–162 °C dec; δH (500 MHz, DMSO-d6) 1.15 (3 H, t, J = 

7.2 Hz, Me), 3.38 (2 H, q, J = 6.9 Hz, MeCH2N), 4.56 (2 H, s, PhCH2N), 7.25‒7.37 (5 H, m, 

Ph), 7.72 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.79 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.82 (1 H, s, 

C4-H), 8.06 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.79 (1 H, br s, NHCO), 13.46 (1 H, br s, COOH); 

δC (125 MHz, DMSO-d6) 13.11 (Me), 41.82 (MeCH2N), 49.39 (PhCH2N), 103.45 (C4), 

124.62 (C6′), 126.23 (C2′), 126.92 (C4″), 127.16 (C2″, C6″), 127.94 (C3), 128.50 (C3″, C5″), 

129.39 (C1′), 131.31 (C5′), 131.60 (C4′), 132.02 (C3′), 137.95 (C2), 137.99 (C1″), 151.99 

(C5), 153.06 (NHCO), 161.20 (COOH); m/z (ESI+) 433 (66%, (M + H)+), 865 (8, 2M + H), 

389 (100, [M+H] ‒ CO2); tR = 13.64 min. 

 

Ethyl 2-amino-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 54 

To a stirred ice-cooled solution of 4327 (4.83 g, 18.0 mmol) in anhydrous DMF (13 mL) under 

a nitrogen atmosphere, ethyl cyanoacetate (2.05 g, 18.0 mmol), and diethylamine (3.95 g, 54.0 

mmol) were added slowly. The reaction mixture was allowed to warm to rt, and stirred for 2 

h. The mixture was diluted with DCM (100 mL), washed with 2M HCl (2 × 50 mL), dried 

(MgSO4), and concentrated under vacuum till half of the volume. Trifluoroacetic acid (50 mL) 

was added in one portion to the solution. The reaction was stirred at rt for 40 h. The solvent 

was removed by vacuum distillation. The residue was dissolved in DCM (50 mL), cautiously 

washed with NaHCO3 (saturated aqueous solution, 50 mL), the organic layer was dried 

(MgSO4), and concentrated. The crude material was purified by flash chromatography (SiO2, 

n-hexane/EtOAc = 6:1). (2.15 g, 40%); white solid; mp 110–111 °C; δH (300 MHz, CDCl3) 

1.36 (3 H, t, J = 7.1 Hz, Me), 4.29 (2 H, q, J = 7.1 Hz, CH2O), 5.62 (2 H, br s, NH2), 6.78 (1 

H, s, C4-H), 7.29 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.38 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.57 (1 

H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, CDCl3) 14.54 (Me), 59.84 (CH2), 91.80 (C3), 106.46 

(C4), 121.60 (C6′), 124.09 (C2′), 129.87 (C4′), 130.10 (C1′), 130.61 (C5′), 132.90 (C3′), 

141.30 (C5), 161.55 (C2), 164.83 (C=O); m/z (ESI+) 300 (100%, (M + H)+), 599 (79, 2M + 

H), 254 (91, M ‒ EtO); tR = 15.98 min. 
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Ethyl 2-[bis(phenoxycarbonyl)amino]-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 55 

To a stirred ice-cooled solution of 54 (1.00 g, 3.33 mmol), and pyridine (528 mg, 6.66 mmol) 

in anhydrous DCM (30 mL), phenyl chloroformate (1.05 g, 6.66 mmol) was added dropwise, 

and the reaction mixture was stirred at rt for 12 h. The solvent was evaporated under vacuum. 

The residue was dissolved in EtOAc (60 mL), washed with 1M HCl (2 × 30 mL), brine (30 

mL), dried (MgSO4), and the solvent was removed by vacuum distillation. The crude material 

was triturated with n-hexane (30 mL), collected by filtration and dried. (1.48 g, 82%); white 

solid; mp 166–168 °C; δH (300 MHz, CDCl3) 1.29 (3 H, t, J = 7.1 Hz, Me), 4.32 (2 H, q, J = 

7.1 Hz, CH2O), 7.02 (1 H, s, C4-H), 7.08‒7.34 (10 H, m, 2 Ph), 7.42 (1 H, d, J = 8.0 Hz, 5′Ar-

H), 7.46 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.72 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, 

CDCl3) 14.31 (Me), 61.37 (CH2), 107.34 (C4), 114.59 (C3), 121.10 (C2″, C6″, C2‴, C6‴), 

123.24 (C6′), 125.91 (C2′), 126.59 (C4″, C4‴), 128.97 (C4′), 129.57 (C3″, C5″, C3‴, C5‴), 

130.98 (C5′), 132.67 (C1′), 133.40 (C3′), 145.63 (C5), 149.04 (N(C=O)2), 149.64 (C2), 150.24 

(C1″, C1‴), 161.41 (C=O); m/z (ESI+) 540 (100%, (M + H)+), 494 (13, M ‒ EtO); tR = 16.97 

min. 

 

General procedures for synthesis of ethyl 2-[3-(substituted)ureido]-5-(3′,4′-

dichlorophenyl)furan-3-carboxylate 57 and 58 

To a stirred solution of 55 (300 mg, 0.55 mmol) in anhydrous DMSO (10 mL) under a nitrogen 

atmosphere, the appropriate amine (2.20 mmol) was added dropwise. The reaction mixture 

was stirred at rt for 2 h, then EtOAc (50 mL) was added. The organic layer was washed with 

2M HCl (2 × 30 mL), 1M NaOH (2 × 30 mL), brine (30 mL), dried (MgSO4), and the solvent 

was removed by vacuum distillation.  The product was purified from the sym-urea side product 

using flash chromatography (SiO2, EtOAc/THF = 4:1). 

Ethyl 2-(3-benzylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 57 (203 mg, 85%); 

white solid; mp 223–225 °C dec; δH (500 MHz, DMSO-d6) 1.28 (3 H, t, J = 7.0 Hz, Me), 4.25 

(2 H, q, J = 7.0 Hz, CH2O), 4.33 (2 H, d, J = 5.8 Hz, PhCH2NH), 7.26‒7.38 (6 H, m, C4-H, 

Ph), 7.63 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.66 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.89 (2 H, m, 

2′Ar-H, NHCH2), 9.27 (1 H, br s, NHCO); δC (125 MHz, DMSO-d6) 14.28 (Me), 43.00 

(PhCH2NH), 59.95 (CH2O), 99.11 (C3), 107.18 (C4), 122.86 (C6′), 124.32 (C2′), 126.93 

(C4″), 127.27 (C2″, C6″), 128.37 (C3″, C5″), 129.29 (C4′), 129.96 (C1′), 131.04 (C5′), 131.78 

(C3′), 139.39 (C1″), 143.37 (C5), 152.04 (NHCO), 153.33 (C2), 162.92 (C=O); m/z (ESI+) 

433 (100%, (M + H)+), 865 (60, 2M + H), 341 (15, M – C7H7), 254 (30, M – C7H7, NCO, 

EtO); tR = 15.31 min. 
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Ethyl 2-(3-benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 58 (208 

mg, 82%); reddish liquid; δH (500 MHz, CDCl3) 1.26 (3 H, t, J = 7.0 Hz, MeCH2N), 1.33 (3 

H, t, J = 7.0 Hz, MeCH2O), 3.41 (2 H, q, J = 7.0 Hz, MeCH2N), 4.27 (2 H, q, J = 7.0 Hz, 

CH2O), 4.64 (2 H, s, PhCH2N), 6.82 (1 H, s, C4-H), 7.28‒7.37 (5 H, m, Ph), 7.40 (1 H, d, J = 

8.0 Hz, 5′Ar-H), 7.49 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.72 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

9.34 (1 H, br s, NHCO); δC (126 MHz, CDCl3) 13.15 (MeCH2N), 14.39 (MeCH2O), 42.24 

(MeCH2N), 50.11 (PhCH2N), 60.56 (CH2O), 97.53 (C3), 104.74 (C4), 122.60 (C6′), 124.92 

(C2′), 127.29 (C4″), 127.56 (C2″, C6″), 128.65 (C3″, C5″), 129.71 (C4′), 130.68 (C5′), 130.89 

(C1′), 133.01 (C3′), 136.96 (C1″), 144.79 (C5), 151.77 (NHCO), 155.08 (C2), 165.16 (C=O); 

m/z (ESI+) 461 (100%, (M + H)+), 921 (25, 2M + H); tR = 16.94 min. 

 

Synthesis of 2-[3-(substituted)ureido]-5-(3′,4′-dichlorophenyl)furan-3-carboxylic acid 59 and 

60 were performed as described for preparation of 51 and 52 

2-(3-Benzylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylic acid 59 (73 mg, 18%); 

white crystals; mp 200–202 °C dec; δH (500 MHz, DMSO-d6) 4.32 (2 H, d, J = 6.0 Hz, CH2), 

7.25‒7.38 (6 H, m, C4-H, Ph), 7.61 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.66 (1 H, d, J = 8.0 

Hz, 5′Ar-H), 7.86 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.95 (1 H, t, J = 5.7 Hz, NHCH2), 9.29 (1 H, 

br s, NHCO), 12.68 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 42.95 (CH2), 99.52 (C3), 

107.73 (C4), 122.74 (C6′), 124.10 (C2′), 126.91 (C4″), 127.25 (C2″, C6″), 128.36 (C3″, C5″), 

128.97 (C4′), 130.15 (C1′), 131.10 (C5′), 131.72 (C3′), 139.42 (C1″), 142.85 (C5), 151.98 

(NHCO), 153.27 (C2), 164.63 (COOH); m/z (ESI+) 405 (100%, (M + H)+), 809 (54, 2M + H), 

313 (71, M – C7H7), 295 (24, M – C7H7, H2O) , 254 (16, M – C7H7, NH, CO2); tR = 12.54 min. 

2-(3-Benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylic acid 60 (95 mg, 

22%); white crystals; mp 175–177 °C dec; δH (500 MHz, DMSO-d6) 1.11 (3 H, t, J = 7.2 Hz, 

Me), 3.34 (2 H, q, J = 7.2 Hz, MeCH2N), 4.56 (2 H, s, PhCH2N), 7.26‒7.38 (6 H, m, C4-H, 

Ph), 7.65 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.67 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.91 (1 H, d, J 

= 2.0 Hz, 2′Ar-H), 9.25 (1 H, br s, NHCO), 12.77 (1 H, br s, COOH); δC (125 MHz, DMSO-

d6) 13.10 (Me), 41.35 (MeCH2N), 49.11 (PhCH2N), 104.55 (C3), 107.98 (C4), 123.00 (C6′), 

124.45 (C2′), 127.09 (C4″), 127.29 (C2″, C6″), 128.44 (C3″, C5″), 129.47 (C4′), 130.00 (C1′), 

131.16 (C5′), 131.81 (C3′), 138.04 (C1″), 144.24 (C5), 152.81 (NHCO), 152.87 (C2), 164.54 

(COOH); m/z (ESI+) 433 (100%, (M + H)+), 865 (16, 2M + H), 254 (5, M ‒ C7H7, EtN, CO2); 

tR = 13.71 min. 
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Methyl 3,4-dichlorobenzenecarbodithioate 62 

To a stirred mixture of sulfur (3.52 g, 110 mmol), and NEt3 (15.2 g, 150 mmol) in DMF (25 

mL), 3,4-dichlorobenzyl chloride 61 (9.77 g, 50.0 mmol) was added dropwise. The reaction 

mixture was stirred at 60 °C for 6 h then cooled in an ice bath. Iodomethane (7.81 g, 55.0 

mmol) was added slowly maintaining the temperature below 10 °C. The reaction was further 

stirred for 1 h then filtered. The filtrate was poured into stirred ice-cooled water (100 mL). The 

precipitated bright red crystals were collected by filtration, washed with water, and dried. (10.4 

g, 88%); red solid; mp 60–62 °C; δH (500 MHz, CDCl3) 2.78 (3 H, s, SMe), 7.46 (1 H, d, J = 

8.0 Hz, C5-H), 7.83 (1 H, dd, J = 8.0, 2.0 Hz, C6-H), 8.10 (1 H, d, J = 2.0 Hz, C2-H); δC (126 

MHz, CDCl3) 20.77 (Me), 125.68 (C6), 128.58 (C2), 130.22 (C5), 132.83 (C4), 136.62 (C3), 

144.03 (C1), 225.21 (C=S); m/z (ESI+) 236 (22%, M+), 187 (100, M – CH2, Cl); tR = 16.53 

min. 

Methyl 4-amino-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylate 64 

To a stirred ice-cooled solution of sodium (0.81 g, 35.0 mmol), and cyanamide (1.27 g, 30.0 

mmol) in anhydrous MeOH (50 mL) under a nitrogen atmosphere, compound 62 (7.11 g, 30 

mmol) was added portionwise, and the reaction mixture was stirred at 75 °C for 3 h. The 

solvent was removed under vacuum, and the residue was triturated with ether, and filtered. 

The intermediate 63 was dissolved in MeOH (50 mL) and methyl bromoacetate (6.88 g, 45.0 

mmol) was added dropwise. The reaction mixture was stirred at rt for 2 h then NEt3 (12.5 mL, 

90.0 mmol) was added, and the reaction was further stirred for 12 h. The solvent was removed 

by vacuum distillation, and the crude material was purified by flash chromatography (SiO2, n-

hexane/EtOAc = 3:1). (3.18 g, 35%); yellow solid; mp 156–158 °C; δH (500 MHz, CDCl3) 

3.83 (3 H, s, OMe), 5.88 (2 H, br s, NH2), 7.48 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.69 (1 H, dd, J 

= 8.0, 2.0 Hz, 6′Ar-H), 8.00 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (126 MHz, CDCl3) 51.70 (Me), 

94.46 (C5), 125.56 (C6′), 128.22 (C2′), 130.98 (C5′), 132.68 (C4′), 133.50 (C3′), 135.32 (C1′), 

163.12 (C4), 164.33 (C=O), 167.46 (C2); m/z (ESI+) 303 (17%, (M + H)+), 344 (100, M + H, 

MeCN), 271 (6, M ‒ MeO); tR = 14.39 min. 

4-Amino-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylic acid 65 

To a stirred solution of 64 (3.03 g, 10.0 mmol) in MeOH (30 mL), KOH (2.24 g, 40.0 mmol) 

in water (30 mL) was added. The reaction mixture was stirred at reflux for 2 h then the MeOH 

was evaporated by vacuum distillation. The residue was diluted with water (10 mL), and 

washed with EtOAc (20 mL). The aqueous layer was cooled in an ice bath and acidified by 

KHSO4 (saturated aqueous solution) to pH 3‒4. The precipitate was collected by filtration, 

washed with cold water (20 mL), n-hexane (20 mL), and dried over CaCl2 in amber glass 
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vacuum desiccator. (1.91 g, 66%); yellow solid; mp 131–133 °C dec; δH (500 MHz, DMSO-

d6) 6.98 (2 H, br s, NH2), 7.77 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.87 (1 H, dd, J = 8.0, 2.0 Hz, 

6′Ar-H), 8.09 (1 H, d, J = 2.0 Hz, 2′Ar-H), 12.92 (1 H, br s, COOH); δC (126 MHz, DMSO-

d6) 93.37 (C5), 126.27 (C6′), 127.48 (C2′), 131.53(C5′), 132.09 (C4′), 132.76 (C3′), 133.65 

(C1′), 163.25 (C4), 164.65 (C=O), 165.42 (C2); m/z (ESI+) 289 (20%, (M + H)+), 330 (100, 

M + H, MeCN), 271 (11, M ‒ OH); tR = 12.12 min. 

2-(3′,4′-Dichlorophenyl)-4H-[1,3]thiazolo[4,5-d][1,3]oxazine-5,7-dione 66 

The compound was prepared as described for preparation of 15a and 15b. (1.32 g, 70%); 

yellow solid; mp 219‒221 °C dec; δH (500 MHz, DMSO-d6) 7.77 (1 H, d, J = 8.0 Hz, 5′Ar-

H), 8.15 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 8.37 (1 H, d, J = 2.0 Hz, 2′Ar-H), 11.11 (1 H, br s, 

NH); δC (126 MHz, DMSO-d6) 95.81 (C7a), 128.16 (C6′), 129.87 (C2′), 130.72 (C5′), 131.21 

(C4′), 131.99 (C3′), 133.07 (C1′), 153.29 (C5), 153.56 (C3a), 164.45 (C7), 165.28 (C2); m/z 

(ESI+) 314 (100%, M+), 355 (94, M + MeCN), 629 (18, 2M + H); tR = 11.75 min. 

 

Synthesis of 2-(3′,4′-dichlorophenyl)-4-[3-(substituted)ureido]-1,3-thiazole-5-carboxylic 

acids 67 and 68 were performed as described for preparation of 16‒21. 

4-(3-Benzylureido)-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylic acid 67 (65 mg, 

24%); yellow crystals; mp 213–215 °C; δH (500 MHz, DMSO-d6) 4.48 (2 H, d, J = 5.4 Hz, 

CH2), 7.27‒7.40 (5 H, m, Ph), 7.75 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.92 (1 H, dd, J = 8.0, 2.0 Hz, 

6′Ar-H), 8.18 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.53 (1 H, t, J = 5.7 Hz, NHCH2), 9.04 (1 H, br s, 

NHCO), 13.80 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 43.38 (CH2), 102.27 (C5), 126.64 

(C6′), 126.99 (C4″), 127.13 (C2″, C6″), 127.93 (C2′), 128.48 (C3″, C5″), 131.45 (C5′), 131.79 

(C4′), 132.30 (C3′), 134.40 (C1′), 139.30 (C1″), 152.25 (NHCO), 154.44 (C4), 164.02 

(COOH), 165.77 (C2); m/z (ESI+) 422 (100%, (M + H)+), 843 (11, 2M + H), 330 (23, M – 

C7H7), 271 (24, M – C7H7, NH, CO2); tR = 14.98 min. 

4-(3-Benzyl-3-ethylureido)-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylic acid 68 (63 

mg, 22%); yellow crystals; mp 191–193 °C; δH (500 MHz, DMSO-d6) 1.14 (3 H, t, J = 6.9 Hz, 

Me), 3.37 (2 H, q, J = 6.9 Hz, MeCH2N), 4.58 (2 H, s, PhCH2N), 7.26‒7.38 (5 H, m, Ph), 7.81 

(1 H, d, J = 8.0 Hz, 5′Ar-H), 7.95 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 8.18 (1 H, d, J = 2.0 Hz, 

2′Ar-H), 9.64 (1 H, br s, NHCO), 13.57 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 13.16 

(Me), 41.44 (MeCH2N), 49.12 (PhCH2N), 102.30 (C5), 126.41 (C6′), 127.05 (C4″), 127.27 

(C2″, C6″), 127.61 (C2′), 128.43 (C3″, C5″), 131.59 (C5′), 132.15 (C4′), 132.74 (C3′), 133.76 

(C1′), 138.24 (C1″), 152.83 (NHCO), 154.86 (C4), 163.98 (COOH), 164.25 (C2); m/z (ESI+) 

450 (100%, (M + H)+), 899 (4, 2M + H), 271 (4, M – C7H7, EtN, CO2); tR = 13.14 min. 
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Biology 

Transcription assay The assay was performed as described previously56 with slight 

modifications. E. coli RNA polymerase holoenzyme was purchased from Epicentre 

Biotechnologies (Madison, WI). Final concentrations in a total volume of 30 µL were one unit 

of RNA polymerase (0.5 µg) which was used along with 60 nCi of [5,6-3H]-UTP, 400 µM of 

ATP, CTP and GTP as well as 100 µM of UTP, 20 units of RNAse inhibitor (RiboLock, 

Fermentas), 10 mM DTT, 40 mM Tris-HCl (pH 7.5), 150 mM KCl, 10 mM MgCl2 and 0.1% 

CHAPS. As a DNA template 3500 ng of religated pcDNA3.1/V5-His-TOPO were used per 

reaction. Prior to starting the experiment, the compounds were dissolved in DMSO (final 

concentration during experiment: 2%). Dilution series of the compounds were prepared using 

a liquid handling system (Janus, PerkinElmer, Waltham, MA). The components described 

above (including the compounds) were preincubated in absence of NTPs and DNA for 10 min 

at 25 °C. Transcription reaction was started by the addition of a mixture containing DNA 

template and NTPs and incubated for 10 min at 37 °C. The reaction was stopped by the 

addition of 10% TCA, followed by a transfer of this mixture to a 96-well Multiscreen GFB 

plate (Millipore, Billerica, MA) and incubation for 45 min at 4 °C. The plate underwent several 

centrifugation and washing steps with 10% TCA and 95% EtOH to remove residual 

unincorporated 3H-UTP. After that the plate was dried for 30 min at 50 °C and 30 µL of 

scintillation fluid (Optiphase Supermix, PerkinElmer) was added to each well. After 10 min 

the wells were assayed for presence of 3H-RNA by counting using Wallac MicroBeta TriLux 

system (Perkin Elmer). To obtain inhibition values for each sample, their counts were related 

to DMSO control. 

 

Determination of IC50 values Three different concentrations of the compound were chosen 

(two samples for each concentration) in the linear range of the log dose response curve (20‒

80% inhibition) including concentrations above and below the IC50 value. Values of percent 

inhibition were plotted versus the inhibitor molar concentrations on a semi-log plot. IC50 

values were calculated as the molar concentration causing 50% inhibition of RNAP activity. 

At least three independent determinations were performed for each compound (standard 

deviation <20%). 

 

Minimal inhibitory concentration determinations MIC values were determined in 96-well 

plates (Sarstedt, Nümbrecht, Germany) against Staphylococcus aureus subsp. aureus 

(Newman strain), Bacillus subtilis subsp. subtilis, Pseudomonas aeruginosa PAO1, E. coli 
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K12, E. coli TolC, and the Rif-resistant E. coli TolC mutants: E. coli TolC β Q513L and E. 

coli TolC β H526Y. As bacteria start OD600 0.03 was used in a total volume of 200 µL in 

lysogeny broth (LB) medium containing the compounds dissolved in DMSO (maximal DMSO 

concentration in the experiment: 1%). Final compound concentrations (in duplicates) were 

prepared by serial dilution ranging from 0.02‒100 µg/mL depending on their antibacterial 

activity and solubility in growth medium. The ODs were measured using a POLARstar Omega 

(BMG labtech, Offenburg, Germany) after inoculation and after incubation for 18 h at 37 °C 

with 50 rpm (200 rpm for P. aeruginosa PAO1). Given MIC values are means of two 

independent determinations (three if MIC <10 µg/mL) and defined as the lowest concentration 

of compound that reduced OD600 by ≥95%. 

 

Selection of Rif-resistant E. coli TolC spontaneous mutants An E. coli TolC culture with 

an OD600 0.70 in LB was subcultured to fresh medium containing 3-fold the MIC of Rif every 

24h with a dilution factor of 1:5. The cultures were incubated at 37 °C for 24 h with shaking. 

After 4 cycles the bacteria were transferred on LB agar plates containing 3-fold the MIC of 

Rif. The plates were incubated at 37 °C for 24 h. Single colonies were  picked and transferred 

to liquid culture in the presence of 3-fold the MIC of Rif. Rif-resistant mutants were 

characterized by sequencing of RNAP rpoB. 

 

MIC determinations in presence of polymyxin B nonapeptide (PMBN) or phenyl-

arginine-β-naphthylamide (PAβN) The same procedures followed as mentioned above with 

minor modifications: Before inoculation, bacteria were cultured in LB medium containing 

PMBN (1 µg/mL) or PAβN (20 µg/mL) (10 µg/mL in case of E. coli TolC) for 2 h and 

subsequently diluted with the same medium to OD600 0.06. Inocula of 100 µL were added to 

the wells containing 100 µL of the specific concentrations of the compounds in PMBN/PAβN 

containing medium. MIC50 values were determined for E. coli K12, and E. coli D22. 

 

Determination of resistance rate Procedures were performed according to a described 

method12 with modifications. Defined numbers of E.coli TolC cells (104‒1012) were incubated 

in LB in presence of the 2× MIC of Rif, Myx B or compound 30 in parallel (16 h, 37 °C, 50 

rpm, 0.5% DMSO). On each of the three following days, a fraction of each sample was 

supplemented with fresh compound containing LB followed by recultivation (conditions as 

before). The final cultures were plated on LB agar to determine the bacterial start concentration 
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which was needed to yield at least one colony on the plates. This threshold was determined to 

be the resistance rate. 

 

Cytotoxicity HEK 293 cells, a Human Embryonic Kidney 293 cell line, (2 × 105 cells per 

well) were seeded in 24-well, flat-bottomed plates. Culturing of cells, incubations and OD 

measurements were performed as described previously57 with slight modifications. 24 h after 

seeding the cells, the incubation was started by the addition of compounds in a final DMSO 

concentration of 1%. The living cell mass was determined after 24, 48 and 72 h followed by 

the calculation of LD50 values. 

 

Computational chemistry 

All computational work was performed using Molecular Operating Environment (MOE) 

version 2010.10, Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite 910, 

Montreal, Quebec, H3A 2R7, Canada. 

Similarity analysis A database containing the compounds 11, 21, 30, and 42 was created and 

2D fingerprint GpiDAPH3 (graph pi-donor-acceptor-polar-hydrophobe-3 point 

pharmacophore) was calculated for all entries. Compound 11 was selected as reference 

structure and sent to MOE window. In the database viewer window, similarity search was 

performed by setting the fingerprint system to GpiDAPH3, and using the similarity metric 

Tanimoto coefficient (TC) to measure similarity between molecules. TC values range from 0 

(no similarity) to 1 (complete similarity). 

Flexible alignment Four ligands (10, 20, 29, and 41 representing classes I‒IV respectively) 

were sketched using molecular builder of MOE, and each structure was subjected to energy 

minimization up to a gradient 0.05 Kcal/mol Å using the MMFF94x force field. The 

compounds were aligned using the flexible alignment mode of MOE with stochastic 

conformational search option was turned on, and configuration limit was set to 200 and 

iteration limit was set to 1000. Alignment had the best similarity score was retained and refined 

by MOE. 

Preparation of protein structure for docking X-ray crystal structure of the T. Thermophilus 

RNA polymerase holoenzyme in complex with dMyx B (Protein Data Bank (PDB) code 

3EQL)7 was used to perform the molecular docking study. In the sequence editor panel of 

MOE, chains C and D (corresponding to β and β′ subunits respectively) were selected, and all 

other chains were deleted. Hydrogen atoms were added to the receptor atoms, and the potential 

of protein was fixed. 
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Ligand-receptor docking The binding site was set to dummy atoms which were identified by 

the site finder mode, and the amino acid residues were chosen where dMyx B binds in the 

switch region. Docking placement was triangle matcher with rotate bonds option was turned 

on, the 1st rescoring was ASE with force field refinement, and the 2nd rescoring was alpha HB. 

Calculation of angle Each structure was loaded from a previously prepared database of the 

target compounds into the MOE window, then it was subjected to energy minimization up to 

gradient 0.05 Kcal/mol Å using the MMFF94x force field. Angle between the aryl group and 

the ureido side chain was determined by activating the measure button and choosing angles 

option, then selecting carbon atom no. 1 of the aryl group, the corresponding carbon atom on 

the heterocyclic ring, and nitrogen atom no. 1 of the ureido group respectively. 
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Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors  

 

Reprinted with permission from Elgaher, W. A. M.; Sharma, K. K.; Haupenthal, J.; Saladini, 

F.; Pires, M.; Real, E.; Mély, Y.; Hartmann, R. W. J. Med. Chem. 2016, 59, 7212–7222. 

Copyright 2016 American Chemical Society. 

http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00730 

 

(Publication II) 

 

 

 

ABSTRACT 

We are concerned with the development of novel anti-infectives with dual antibacterial and 

antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for 

the first time the mechanistic function similarity between the bacterial RNA polymerase 

(RNAP) “switch region” and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) 

binding site. Starting from our previously discovered RNAP inhibitors, we managed to 

develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained 

or enhanced RNAP inhibitory properties following a structure-based design approach. A 

quantitative structure–activity relationship (QSAR) analysis revealed distinct molecular 

features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that 

these compounds inhibit RT noncompetitively, through a new mechanism via closing of the 

RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent 

antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-

resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal 

cytotoxicity. 

 

 

 

 

 

 

 



 

 

64 3.2 Publication II 

INTRODUCTION 

Human immunodeficiency virus type 1 (HIV-1) is the causative agent of the acquired immune 

deficiency syndrome (AIDS), which is one of the major lethal infectious diseases endangering 

humanity. In 2014, more than 37 million people worldwide were HIV-infected with a mortality 

of approximately 1.2 million.1 The HIV-1 retrovirus targets the CD4 cells resulting in an 

impairment of the immune system. In consequence, HIV patients are a defenseless prey for 

bacterial infections, e.g., tuberculosis (TB) and methicillin-resistant Staphylococcus aureus 

(MRSA).2–4 MRSA co-infection is characterized by a high incidence rate.5 In addition, the 

emergence of multidrug resistant MRSA markedly increased among HIV patients.6,7 Current 

treatment of HIV infection requires a combination of at least three antiretroviral drugs. This 

highly active antiretroviral therapy (HAART) permits efficient suppression of virus replication 

and inhibits disease progression. However, the evolution of antiretroviral drug resistance is 

still presenting an intractable problem due to the high viral mutation rate and noncompliance 

to antiretroviral therapy (ART).8–10 Although the FDA recently approved a combined ART as 

one pill daily that could improve patient adherence,11 the resistance issue is not yet solved. 

Treatment of MRSA/HIV-1 co-infection is even more challenging. In addition to the above- 

mentioned issues, administration of antibiotics should take into consideration the ongoing 

prevalence of resistant bacteria in HIV-1 populations,6,7 as well as potential drug interactions 

between antiretroviral and antibacterial agents.12 Hence, there is an urgent need for a one 

compound therapy of MRSA/HIV-1 co-infections. Combining antibacterial and antiretroviral 

properties in a single molecule should be beneficial in different aspects: it will improve patient 

adherence to ART by reduction of medications’ regimen11 and consequently decrease the 

probability of treatment failure. Moreover, prescribing such anti-infective medication will 

avoid drug interactions,12 and lower the costs of care as well.13 

HIV-1 RT is a key target for ART. It reverse-transcribes the single-stranded viral RNA to 

double-stranded DNA, which is essential for virus replication.14 There are two main classes 

inhibiting RT: nucleoside RT inhibitors (NRTIs) and NNRTIs. NRTIs are nucleotide 

analogues that are incorporated into viral DNA leading to chain termination. Through binding 

to an allosteric binding site, NNRTIs inhibit RT noncompetitively.15,16 In bacteria, RNAP is 

an essential enzyme for bacterial viability17 and has consequently become a pivotal drug target. 

It is responsible for transcription by converting double-stranded DNA to single-stranded RNA, 

which is a prerequisite for protein synthesis. Consequently, there is a functional relationship 

between bacterial RNAP and viral RT. In this context, the clinically used RNAP inhibitor 

rifampicin does also inhibit viral RT.18 On the other side, HIV-1 RT monoclonal antibodies 
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were found to inhibit E. coli RNAP, indicating structural and functional similarities between 

both enzymes.19 Recently, a new RNAP binding site, the “switch region”, was discovered with 

a mechanistic function close to that of the NNRTI binding site.20 However, these important 

insights have not yet been exploited for drug discovery. 

In previous works, we developed new classes of RNAP “switch region” inhibitors using 

different drug design approaches.21,22 Their mode of action was confirmed by biophysical 

methods and mutation studies.23 Beside their activity against MRSA, the compounds showed 

no cross-resistance with rifampicin and a low rate of resistance development in E. coli 

TolC.22,23 Thus, our RNAP inhibitors should be a good starting point for designing such dual 

acting anti-infectives. For testing our compounds for RT inhibition, we applied our recently 

developed Förster resonance energy transfer (FRET) based polymerization assay.24 Nevirapine 

(NVP) as an NNRTI and zidovudine (AZT-TP) as an NRTI were used as references. For hit 

optimization, we employed a structure-based design approach. Indeed, we succeeded in 

developing the first anti-infectives with dual antibacterial and antiretroviral activities. 

 

RESULTS AND DISCUSSION 

Design of Compounds and SAR  

In order to identify the privileged scaffold for HIV-1 RT inhibition among various classes of 

switch region binding RNAP inhibitors, we selected eight compounds representing four 

regioisomeric ureidothiophenes (Chart 1). 

 
Chart 1. Structures of the Ureidothiophene Regioisomers Used for Finding the Privileged 

Scaffold for RT Inhibition.  
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Results revealed that only compound 4 (class II) showed a high RT inhibitory activity (IC50 = 

0.9 µM, Table 1). This indicates that the introduction of an additional chlorine substituent in 

the 3-position of the phenyl ring leads to a dramatic increase in potency (4 vs 3), which is more 

pronounced than observed for RNAP inhibition.21,22 Comparing class II compounds which are 

highly similar to compounds of class I (the only difference is the position of the S in the 

thiophene ring) and had shown similar RNAP inhibition,22 strong differences regarding the 

inhibition of RT were observed, too. This finding can be attributed to the different binding 

sites and the slight differences in the molecular properties of the ligands. Comparing the RNAP 

“switch region” and the RT allosteric binding site, it becomes apparent that both pockets are 

mainly hydrophobic. The RNAP “switch region” is U-shaped with a cavity volume of ~ 500 

Å3.25 The RT allosteric binding site is highly flexible regarding size; i.e., it is nonexistent in 

the absence of NNRTIs,26,27 whereas it possesses a cavity volume of 620–720 Å3 in presence 

of NNRTIs.14 From analysis of the molecular similarity between class I and II in silico by a 

four-point pharmacophore fingerprint method28 and the Tanimoto coefficient (TC) as a 

similarity metric, class I showed partial similarity to II (TC = 0.75). This is in contrast to the 

results obtained recently using a three-point pharmacophore as a fingerprint.22 As 4 was the 

only compound showing a strong inhibition against both enzymes, we focused on class II as 

the most appropriate scaffold for the development of dual RNAP and RT inhibitors. 

 

Table 1. In Vitro Inhibitory Activities of Compounds 1–8 against HIV-1 RT and E. coli RNAP  

compd 
% inhibition of HIV-1 RT at 1 

µM 

IC50 (µM) against E. coli 

RNAP  

1 12a 75 

2 24a 22 

3 12 54 

4 0.9b 21 

5 12 >100 

6 12 57 

7 13c >200 

8 4c 100 
a% inhibition at 25 µM. bIC50 value (µM). c% inhibition at 10 µM. 

 

In the next step, we varied the substituents at the ureido motif of 4 (compounds 9–11, Table 

2). While increasing bulkiness and lipophilicity at the ureido motif led to a potent RNAP 

inhibitory activity (10),21,22 the RT inhibitory activities observed for compounds 9-11 were 

surprising. Exchange of the ethyl substituent by a hydrogen (9) as well as by a sterically 

demanding benzyl substituent (10) reduced activity drastically. Activity was restored by 

omitting the methylene spacer of the R1 substituent in 9, i.e., exchanging the benzyl group by 
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a phenyl (11). As compound 11 shows a better ligand efficiency29 and ligand-lipophilicity 

efficiency29 compared to 4 (LE, 0.32 vs 0.29; LLE, 2.51 vs 2.33), the subsequent structure 

modifications were performed based on this compound.  

 

Table 2. In Vitro Inhibitory Activities of Compounds 9–20 against HIV-1 RT and E. coli 

RNAP  

 

compd R1 R2 
IC50 (µM) against 

HIV-1 RT  

IC50 (µM) against 

E. coli RNAP 

4 
 

 0.9 21 

9 
 

H 64a 43 

10 
  

63a 7 

11 
 

H 1.2 20 

12 

 

H 0.7 14 

13 

 

H 0.8 22 

14 

 

H 64a 53 

15 

 

H 0.6  27 

16 

 

H 0.8 40 

17 

 

H 0.3 19 

18 

 

H 0.1 26 

19 

 

H 0.9 8 

20 

 

H 0.6 23 

NVP - - 0.1 >200 

AZT-TP - - 7.0 n.d.b 

a% inhibition at 25 µM. bnot determined. 
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In order to reduce the number of compounds to be synthesized, we followed a structure-based 

design strategy. Using a high resolution cocrystal of the RT–NVP complex (PDB code 

1VRT),14 we performed an induced fit molecular docking of 11 into the RT allosteric binding 

site. The compound adopted a U-shape stabilized by an intramolecular hydrogen bond between 

the ureido NH and the carboxylate group forming a six membered ring (Figure 1). The 

thiophene core is located lowermost near the cavity entrance, while the 3,4-dichlorophenyl 

and the N-phenyl moieties are positioned uppermost overlapping the two pyridine rings of 

NVP. Four hydrophobic interactions characterize the binding of 11 to the NNRTI binding 

pocket. Two arene–H interactions can be observed between Leu100 and the thiophene core as 

well as Leu100 and the 3,4-dichlorophenyl moiety. The latter also binds to Val106 through an 

arene–H interaction from the other side. The fourth interaction is an edge-to-face (T-shaped) 

arene interaction between Trp229 and the m-position of the N-phenyl group. Binding is further 

strengthened through a hydrogen bond interaction between Lys101 and the carboxylate C=O 

group. 

 

 

Figure 1. (A) Docking pose of 11 (magenta) compared to NVP (orange) in the RT allosteric 

binding site: hydrophobic surface (green), polar surface (pink); (B) 2D ligand interactions of 

11. 

 

According to the docking results, all three aromatic motifs of 11 are essential for binding. 

Moreover, no π–π contacts between 11 and the frequently mutated amino acids Tyr181 and 

Tyr18810 were observed. Interestingly, mutations of the amino acids in contact with 11 are 

known to result in high (Trp229, Val106, Leu100) and low fitness costs (Lys101).10,30–32 
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Since Trp229, Phe227, and Leu234 belong to the polymerization-essential “primer grip” and 

are known to show low mutation frequency,14,32,33 we further optimized our compounds for 

interaction with these highly conserved residues. To achieve this goal, we exploited the space 

between the p-position of the N-phenyl moiety and this conserved region by introduction of 

diverse substituents with varying bulkiness, electronic and lipophilic properties (12–20, Table 

2). Results indicate that except for compound 14, the new modifications improve the activity 

up to 12-fold (18). The RT inhibitory activity of compound 18 is comparable to that of NVP 

and significantly higher than that of AZT-TP. Inspection of the substituent constants and 

molecular properties of the new compounds (Table S1 in Supporting Information) reveals that 

hydrophilic and hydrogen bond donor/acceptor substituents at the N-phenyl group are 

important for activity. Obviously, activity can be enhanced to a certain extent by increasing 

the conformational flexibility of the compounds. Interestingly, introduction of aromatic 

moieties (phenyl or 1,2,4-triazolyl) at the sulfonamide or the acetamide group negatively 

affects RT inhibitory activity (19 vs 18, and 16 vs 15) leading to the hypothesis that too bulky 

substituents at the ureido motif are not favorable for RT inhibition. These findings are in 

agreement with our docking model (Figure 1), as these aryl motifs elicit a steric clash with the 

amino acid residues (Tyr188, Phe227, Trp229, and Leu234) lining the deep side of the NNRTI 

binding pocket. As a consequence of this, they either are shifted in the binding cavity outward 

or adopt another conformation leading to lower binding interaction. 

For further SAR elucidation, we calculated a QSAR model for compounds 11–20 using a 

multiple regression analysis  

pIC50 = 4.83 + 1.15 PC+ - 0.12 vsa_don - 0.27 SMR                                                                           (1) 

(n = 10, R2 = 0.94, RMSE = 0.13) 

where pIC50 is -log IC50, PC+ is the total positive partial charge, vsa_don is the sum of van der 

Waals surface areas of pure hydrogen bond donors, and SMR is molecular refractivity. 

Equation 1 reveals a role of electrostatic and steric interactions for activity. Increasing the 

positive partial charge seems beneficial, whereas the number of hydrogen bond donor atoms 

at the N-phenyl moiety should be kept to a minimum (0–1 atoms). The inverse correlation with 

molecular refractivity underlines the importance of less polarizable and nonbulky substituents 

at the ureido motif for RT inhibition.    

Regarding RNAP inhibition, the modifications were tolerated or even enhanced the activity 

(12 and 19). This could be attributed to the flexibility of this class of compounds and their 

ability to adopt more than one binding mode within the RNAP “switch region”.23 
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Notably, as NVP shows no RNAP inhibitory activity, this stresses that the 2-ureidothiophen-

3-carboxylic acids present a privileged structure for dual RNAP/RT inhibition. The fact that 

the new inhibitors show different activity profiles against the two target enzymes, resulting in 

compound 10 as the most potent RNAP inhibitor and 18 as the most active RT inhibitor, 

indicates specificity of the compounds and excludes promiscuity. 

 

Mode of Action on RT Polymerization 

To characterize the mode of action through which our compounds inhibit RT, we monitored 

first their effects on the binding parameters and orientation of RT on a model primer/template 

(p/t) duplex. To this end, we used a FRET assay with RT labeled by Alexa488 and a p/t duplex 

labeled by carboxytetramethylrhodamine (TAMRA).34 The labeled RT mutant was found to 

bind to the p/t duplex with an affinity of ~3 nM (Figure S1 and Table S2), in good agreement 

with values reported for DNA p/t sequences in the literature (Table S2).35 Interestingly, similar 

affinities as well as no change in RT orientation on the duplex were observed in the presence 

of compounds 4, 11–13, and 15–20, indicating that these compounds marginally affected the 

binding of RT to the p/t duplexes, as anticipated for NNRTIs (Table S2). 

In a next step, we investigated whether these compounds had the same mode of action as 

NNRTIs. As shown above, the latter bind usually to the hydrophobic pocket in the palm 

subdomain of p66 and inhibit RT via an allosteric mechanism,26,27,36 forcing the p66 thumb 

into an open extended position with respect to the finger domain, which prevents 

deoxyribonucleotides (dNTPs) incorporation37 (Figure S2C). In order to monitor the effect of 

our compounds on the relative motions of the thumb and finger domains, we developed a 

fluorescence-based assay with a RT double mutant where both Lys287 and Trp24 residues 

were replaced by cysteine residues. 

When the two Cys residues are labeled with Bodipy dyes, the intramolecular distance changes 

associated with the motion of RT’s thumb and finger could be monitored by fluorescence 

spectroscopy.  This distance is a key parameter, as the relative separation between the thumb 

and finger subdomains defines the opening and closing of the clamp that holds and positions 

p/t duplexes at the polymerase active site (Figure S2B). A precise positioning of the primer 3ʹ-

end with respect to the polymerase active site (Asp110, Asp185, and Asp186) is required for 

the catalytic addition of a nucleotide. Due to the close proximity of the finger and thumb in 

the absence of p/t (Figure S2A), the two Bodipy probes were observed to quench each other, 

providing a low emission (Figure 2A). 
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Figure 2. Conformational changes of bodipy-labeled RT p66 W24C+K287C mutant. (A) 

Emission spectra of 60 nM bodipy-labeled RT in the absence (black line) or in the presence of 

160 nM p/t duplex (red line) or 10 µM NVP (green line). (B) Graph representing the ratio 

between the fluorescence intensities of the 100 nM doubly-labeled RT in the presence of either 

the p/t duplex (160 nM) or NVP (10 µM) or the tested compounds (3 µM) to the fluorescence 

intensity of the free form. Red line corresponds to the best fit with linear regression (y = m*x 

+ b), with values of slope m = 0.38 (±0.04) µM and intercept b = 0.25 (±0.03). Excitation 

wavelength was 490 nm and ratios were calculated at emission wavelength of 510 nm. (C) 

Stopped-flow kinetic traces of 60 nM doubly labeled RT in the absence (red trace) and the 

presence of 10 µM NVP (green trace) or compound 11 (blue trace). All traces were fitted by 

eq 2 and the rate constant values given in Table S2. Excitation wavelength was 490 nm and 

emission was collected by using a 525/50 nm band pass emission filter. 

 

In contrast, a 1.6-fold increase in Bodipy fluorescence was observed on binding to p/t (Figure 

2A and 2B), in line with the expected increase in the distance between the thumb and finger 

(Figure S2B). An even higher fluorescence increase (2-fold) was observed in the presence of 

NVP (Figure 2A and Figure 2B), as anticipated from NVP’s ability to further separate the two 

RT subdomains and block them in this open position (Figure S2C). Altogether, the data 

obtained with the Bodipy-labeled RT were fully consistent with the molecular structures of 

RT, validating this assay as a convenient means to investigate the inhibitory mechanisms of 

the synthesized RT inhibitors. In contrast to NVP and p/t duplex, a decrease in Bodipy 

fluorescence was observed with all tested compounds (Figure 2B). Since no fluorescence 

quenching was observed when free Bodipy was titrated to the compounds (data not shown), 

these compounds probably exerted an effect opposite to NVP, decreasing the distance between 

thumb and finger subdomains. Therefore, the compounds likely exert their inhibitory activity 

by blocking the RT clamp in a closed conformation. 
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To get further information on the inhibition mechanism of our compounds, we monitored the 

changes in fluorescence in real time by stopped-flow (Figure 2C and Table S2). Using NVP 

as a control, a monoexponential increase of Bodipy emission was observed (Figure 2C and 

Table S2), suggesting that the NVP-induced opening of RT clamp occurs in a single step. The 

kinetic traces were fitted by using 

))0((

0 )()(
ttk

FF
obseIIItI


                                                                                                      (2) 

where t0 is the dead time, kobs is the observed kinetic rate constant, and I0 and IF are the 

fluorescence intensities before and after addition of inhibitors, respectively. The I0 value was 

obtained from the steady-state fluorescence spectrum of the doubly labeled mutant and was 

thus fixed. 

Similarly, a monoexponential decrease in Bodipy emission was observed with all compounds 

(Figure 2C and Table S2), suggesting that they induce the closing of RT clamp, also in a single 

step. The kinetic rate constant values of all compounds were found to fluctuate in a narrow 

range, indicating that they exhibit similar mechanisms of RT inhibition. Interestingly, a clear 

correlation could be observed between the closing of the clamp and the IC50 values (Figure 

2B). This indicates that the inhibitory activity of the compounds is related to their ability to 

efficiently close the RT clamp and thus hinder the incorporation of dNTPs. 

 

Antibacterial and Antiretroviral Activities 

We complemented our in vitro results by first evaluating the activity of the new RNAP/RT 

inhibitors against S. aureus. Results revealed a high antibacterial effect for the majority of the 

compounds with minimum inhibitory concentrations (MICs) between 3 and 13 µg/mL (Table 

3). Markedly, these values correlate with the corresponding RNAP inhibitory activities. 

Second, we applied a cellular infectivity assay to assess the antiretroviral activity of our 

compounds. This assay is based on the infection of HeLa cells by a third generation of 

pseudoviral particles,38 mimicking the early steps of the HIV-1 life cycle. Most of the tested 

compounds exhibited good antiretroviral activities in the low micromolar range (Table 3). 

Noticeably, a marked difference was observed in the activity profiles when comparing the in 

vitro and in cellulo results: The compounds turned out to be less active in the cellular system. 

This might be due to the lipophilic nature of the compounds leading to an inefficient 

permeation into the cells, or an interaction with other proteins in the antiviral assay leading to 

a lowered concentration at the target enzyme.  

Next, we examined the effect of our compounds on cell viability in two different cell lines 

(HeLa and HEK 293) and found them to display only marginal or no cytotoxicity (Table 3). 
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Table 3. Antibacterial, Antiretroviral, and Cytotoxic Activities of the Dual RNAP/RT 

Inhibitors 

compd 
MIC S. aureus 

(µg/mL) 

IC50 Viral infectivity 

(µM) 

% Inhibition of HeLa cell 

viability at 25 µM 

LD50 HEK 293 

cells (µM) 

4 10 27 23 58 

11 6 20 0 61 

12 4 n.i.a 0 68 

13 8 35 12 80 

17 25 30 6 86 

18 39 30 0 >100 

19 3 n.d.b n.d.b 94 

20 13 n.d.b n.d.b >100 
aNo inhibition. bNot determined. 

 

Antiretroviral Activity in NNRTI-Resistant HIV-1 Strains 

On the basis of the docking study, the binding mode of our new NNRTIs could be 

advantageous regarding the resistance issue. The numerous interactions between our ligands 

and the NNRTI binding pocket, especially those with the highly conserved amino acids, should 

only be moderately affected by the single site mutations that result from using other NNRTIs 

and are responsible for resistance.9,10,30 To verify this point and to get more insight into the 

binding mode of our compounds, we tested the antiviral activity of compounds 11, 18, and 19 

against the HIV-1 wild-type (WT) NL4-3 and a panel of strains with multiple resistance 

mutations to clinically used NNRTIs in a TZM-bl cell line based phenotypic assay (Table 4). 

 

Table 4. Antiretroviral Activity of 11, 18, 19, and Reference NNRTIs against HIV-1 WT (114) 

and NNRTIs-Resistant Strains (12237, 12235, 12231, 12229) 

compda 

IC50 (µM) fold change in susceptibilityb (biologicalc or clinicald cutoff) 

114e 

NL4-3 (WT) 

12237e 

(V106I, Y181C, 

G190A, H221Y)f 

12235e 

(A98G, K101E, 

Y181C, G190A)f 

12231e 

(K103N, V179F, 

Y181C)f  

12229e 

(L100I, K103N, 

H221Y)f 

11 5 1 3 >4 >4 

18 5 1.5 3.5 >4 >4 

19 15 >1.5 1 >1.5 >1.5 

NVP 0.1g >200 (4.5)c >200 (4.5)c >200 (4.5)c >200 (4.5)c 

EFV 0.002g 26 (3)c >200 (3)c 90 (3)c >200 (3)c 

ETR 0.005g 6.0 (2.9)d 15 (2.9)d 8.8 (2.9)d 6.8 (2.9)d 

RPV 0.0009g 3.5 (2)c 22 (2)c 2.3 (2)c 6.3 (2)c 
aEFV = efavirenz, ETR = etravirine, RPV = rilpivirine. bResistant virus IC50/WT virus IC50 ratio 

calculated with the Phenosense assay. cThe biological cutoff was determined by in vitro analysis of 

multiple viral variants not exposed to the drug and defined as the mean fold-change plus 2 standard 

deviations with respect to the reference viral strain. It is used when a clinical cutoff has not been 

established. dThe clinical cutoff was determined by statistical analysis of clinical data and is defined as 

the fold-change value corresponding to loss of drug activity in vivo. eID of viruses refer to the NIH 

AIDS Reagent Program catalogue number. fThe NNRTIs resistance mutations. gIC50 values against WT 

were previously determined.39 
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Our results reveal that the tested compounds show good activity against the WT (IC50 values 

of 5–15 µM) as well as against the mutants 12237 and 12235. In contrast, they are unable to 

halt the replication of 12231 and 12229 strains. At the same time, the reference drugs NVP, 

EFV, and ETR show a dramatic loss of potency against all resistant mutants.  

These data indicate that our compounds are still able to bind to and to inhibit the RTs with 

mutations K101E, V106I, Y181C, and G190A, which confer high-level resistance against 

NNRTIs.10,30 This can on the one side be attributed to the presence of essential contacts 

between our ligands and the amino acid residues of high fitness costs such as Leu100, Phe227, 

and Trp229. On the other side, due to the conformational flexibility of our compounds they 

can easily adopt to the steric changes in the binding site of the mutated proteins. Interestingly, 

the K103N mutation seems to have a negative effect on our compounds’ RT inhibition and 

antiretroviral activity. This result does not contradict our predicted binding mode, since this 

mutation affects the pocket entrance.40 In addition, the L100I mutation may impair the binding 

to RT.  

These findings are consistent with the predicted binding mode of our new NNRTIs and thus 

further confirm their binding site. Moreover, the fact that no cross-resistance was observed in 

some NNRTIs-resistant strains is an important advantage over the first (NVP and EFV) and 

second generation (ETR and RPV) NNRTIs.  

Finally, we performed a docking study for the most active compound 18 (Figure 3). Compared 

to the binding of 11, the eastern part of the molecules binds identically to the protein. 

Unexpectedly, in the western part a slight change was observed as the newly introduced 

methanesulfonamido group leads to CH–π interaction with the highly conserved Trp229. As a 

consequence of this, the N-phenyl ring is slightly shifted downward away from Trp229. 

Moreover, an atypical hydrogen bond was identified between the conserved Phe227 (as donor) 

and the 3,4-dichlorophenyl motif (as acceptor). Furthermore, no π–π interaction was observed 

between Tyr181 and the N-phenyl moiety (centroid–centroid distance of >4 Å). 
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Figure 3. Docking pose of 18 in the NNRTI binding site. 

Chemistry 

Synthesis of the 5-aryl-2-ureidothiophene-3-carboxylic acids was accomplished through a 

straightforward procedure starting with 3,4-dichlorophenylacetic acid 21 (Scheme 1). 

Reduction with LiAlH4 followed by mild oxidation of the produced alcohol 22 using PCC 

delivered the arylacetaldehyde 23 in a good yield. Gewald reaction of 23 with ethyl 

cyanoacetate and elemental sulfur under basic conditions in a one-pot reaction afforded the 2-

aminothiophene-3-carboxylate 24.22 The ester was saponified to the corresponding acid 25, 

which was treated with BTC to produce the 6-arylthiaisatoic anhydride 26. Synthesis was 

finalized via coupling of 26 and the appropriate amine in water/TEA (2:1) mixture at room 

temperature followed by acidic workup to yield the 5-aryl-2-ureidothiophene-3-carboxylic 

acids 9‒20. 

Scheme 1. Synthesis of the 2-Ureidothiophene-3-carboxylic Acids 9–20a 

 
aReagents and conditions: (a) LiAlH4, THF, reflux, 2 h; (b) PCC, DCM, rt, 2 h; (c) 1/8 S8, 

NCCH2COOEt, TEA, EtOH, reflux, 12 h; (d) KOH, MeOH/H2O, reflux, 4 h; (e) BTC, THF, 

rt, 2 h; (f) R1R2NH, H2O/TEA, rt, 2 h. 
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The N-monosubstituted-p-phenylenediamines were prepared from p-nitroaniline 27 keeping 

the nitro moiety as a hidden protected amino group (Scheme 2). Reaction of 27 with acyl 

chlorides or sulfonyl chlorides in the presence of pyridine yielded the corresponding amides 

or sulfonamides, respectively. The nitro derivatives were reduced by iron/ammonium chloride 

mixture to afford the corresponding amines in excellent yields. 

Scheme 2. Synthesis of the Intermediate Aromatic Aminesa 

 
aReagents and conditions: (a) Fe/NH4Cl, EtOH, reflux, 1 h; (b) RCOCl or RSO2Cl, 

pyridine/DCM, rt, 12 h; (c) 1,2,4-triazole, K2CO3/DMF, 70 °C, 1 h. 

 

It is noteworthy that TEA is crucial for formation of the desired ureidothiophene carboxylic 

acids. Modification of the previous procedures that did not employ TEA in the coupling 

step21,22 was necessary to enhance the reaction regioselectivity. Since the utilized anilines in 

this work are weak nucleophiles, the coupling reaction using p-anisidine for example in 

absence of TEA afforded a mixture of the amide 42 and the ureidocarboxylic acid 13 in nearly 

1:1 ratio as indicated from the 1H NMR spectrum (Figure S3). In contrast, running the same 

reaction in the presence of TEA produced exclusively the ureidothiophene carboxylic acid 13 
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in 100% regioselectivity (Scheme 3). Moreover, we found that the loss of amine 

regioselectivity and reactivity is directly proportional to the electron deficiency of the 

substituted aniline, i.e., no ureidothiophene product could be obtained from the reaction of 26 

with p-nitroaniline 27 even when TEA was applied. 

Scheme 3. Reaction of 26 with p-Anisidine in Presence and Absence of TEA 

CONCLUSION 

In this work we discovered and developed 2-ureidothiophene-3-carboxylic acids as dual 

bacterial RNAP and HIV-1 RT inhibitors for the treatment of MRSA/HIV-1 co-infections. 

This development was based on an unprecedented exploitation of the functional and structural 

similarities between the RNAP “switch region” and the NNRTI allosteric binding site. First, 

we identified the privileged structure for RT inhibition by screening four regioisomeric classes 

of “switch region” binding RNAP inhibitors. Next, we explored the steric volume allowed in 

the NNRTI binding pocket through enlarging the bulkiness of the ureido moiety. Finally, we 

applied a structure-based design strategy for hit optimization. We were able to improve the RT 

inhibitory activity in parallel with enhancing, or at least maintaining, the activity against 

RNAP. SAR studies revealed the importance of hydrophilic nonbulky substituents at the 

ureido side chain for RT inhibition. A MoA investigation revealed a noncompetitive inhibition 

mechanism of our compounds, which is typical for NNRTIs. Interestingly, the compounds 

seem to act through a new mechanism via closing of the RT clamp. The new RNAP/RT 

inhibitors displayed high potency against S. aureus as well as in cellulo antiretroviral activity 

accompanied by marginal or no cytotoxicity. Furthermore, these compounds were active 

against NNRTI-resistant strains. Thus, our work establishes the basis for the development of 

a single compound therapy not only against MRSA/HIV but also against other challenging co-

infections of major public health concern especially Mtb/HIV co-infection.  
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EXPERIMENTAL SECTION 

Materials and Methods  

Starting materials and solvents were purchased from commercial suppliers, and used without 

further purification. All chemical yields refer to purified compounds and were not optimized. 

Reaction progress was monitored using TLC Silica gel 60 F254 aluminum sheets, and 

visualization was accomplished by UV at 254 nm. Flash chromatography was performed using 

silica gel 60 Å (40−63 μm). Preparative RP-HPLC was carried out on a Waters Corporation 

setup containing a 2767 sample manager, a 2545 binary gradient module, a 2998 PDA detector 

and a 3100 electron spray mass spectrometer. Purification was performed using a Waters 

XBridge column (C18, 150 mm × 19 mm, 5 µm), a binary solvent system A and B (A = water 

with 0.1% formic acid; B = MeCN with 0.1% formic acid) as eluent, a flow rate of 20 mL/min, 

and a gradient of 60% to 95% B in 8 min were applied. NMR spectra were recorded on either 

a Bruker DRX-500 (1H, 500 MHz; 13C, 126 MHz) or Bruker Fourier 300 (1H, 300 MHz; 13C, 

75 MHz) spectrometer at 300 K. Chemical shifts were recorded as δ values in ppm units by 

reference to the hydrogenated residues of deuterated solvent as internal standard (CDCl3, δ = 

7.27, 77.00; DMSO-d6, δ = 2.50, 39.51). Splitting patterns describe apparent multiplicities and 

are designated as s (singlet), br s (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), 

q (quartet), m (multiplet). Coupling constants (J) are given in Hertz (Hz). Weak or coalesced 

signals were elucidated by heteronuclear multiple quantum coherence (HMQC) and 

heteronuclear multiple bond coherence (HMBC) 2D-NMR techniques. Purity of all 

compounds used in biological assays was ≥ 95% as measured by LC/MS Finnigan Surveyor 

MSQ Plus (Thermo Fisher Scientific, Dreieich, Germany). The system consists of LC pump, 

autosampler, PDA detector, and single-quadrupole MS detector, as well as the standard 

software Xcalibur for operation. RP C18 Nucleodur 100-5 (125 mm × 3 mm) column 

(Macherey-Nagel GmbH, Dühren, Germany) was used as stationary phase, and a binary 

solvent system A and B (A = water with 0.1% TFA; B = MeCN with 0.1% TFA) was used as 

mobile phase. In a gradient run the percentage of B was increased from an initial concentration 

of 0% at 0 min to 100% at 15 min and kept at 100% for 5 min. The injection volume was 10 

µL and the flow rate was set to 800 µL/min. MS (ESI) analysis was carried out at a spray 

voltage of 3800 V, a capillary temperature of 350 °C and a source CID of 10 V. Spectra were 

acquired in positive mode from 100 to 1000 m/z and at 254 nm for UV tracing. 
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General Procedure for Synthesis of 5-(3,4-Dichlorophenyl)-2-[3-(4-(un)substituted-

phenyl)ureido]thiophene-3-carboxylic Acids 11‒20 

To a stirred suspension of the thiaisatoic anhydride 26 (150 mg, 0.48 mmol) in a mixture of 

water (6 mL) and TEA (1 mL), the appropriate amine (1.0 mmol) in TEA (2 mL) was added. 

The reaction mixture was stirred at rt overnight, then poured on ice-cooled 2 N HCl (40 mL), 

and extracted with EtOAc/THF (1:1, 40 mL). The organic layer was washed with cold 2 N 

HCl/brine (1:1, 2 × 40 mL), dried over anhydrous MgSO4, and concentrated in vacuo. The 

obtained crude material was suspended in n-hexane/EtOAc (4:1, 50 mL), stirred in a water 

bath at 40 °C for 10 min, cooled, and collected by filtration. 

5-(3,4-Dichlorophenyl)-2-(3-phenylureido)thiophene-3-carboxylic Acid (11) 

Yield 90%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 13.02 (br s, 1H), 10.61 (br s, 1H), 

10.36 (br s, 1H), 7.88 (d, J = 2.0 Hz, 1H), 7.63 (s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.58 (dd, J = 

8.0, 2.0 Hz, 1H), 7.52 (m, 2H), 7.33 (m, 2H), 7.04 (m, 1H); 13C NMR (126 MHz, DMSO-d6) 

δ 165.80, 150.98, 150.15, 138.86, 134.31, 131.87, 131.07, 129.07, 128.94 (2C), 127.72, 

126.10, 124.70, 122.77, 122.27, 118.49 (2C), 112.36; m/z (ESI+) 407 [M + H]+; tR = 14.49 

min. 

5-(3,4-Dichlorophenyl)-2-(3-(4-fluorophenyl)ureido)thiophene-3-carboxylic Acid (12) 

Yield 82%; gray solid; 1H NMR (300 MHz, DMSO-d6) δ 13.04 (br s, 1H), 10.60 (br s, 1H), 

10.39 (br s, 1H), 7.88 (d, J = 1.5 Hz, 1H), 7.63 (s, 1H), 7.59 (m, 2H), 7.51 (m, 2H), 7.17 (m, 

2H); 13C NMR (75 MHz, DMSO-d6) δ 165.81, 157.84 (d, J = 239.2 Hz, 1C), 151.00, 150.12, 

135.17 (d, J = 2.2 Hz, 1C), 134.28, 131.86, 131.07, 129.08, 127.75, 126.10, 124.70, 122.25, 

120.27 (d, J = 7.5 Hz, 2C), 115.50 (d, J = 22.4 Hz, 2C), 112.37; m/z (ESI+) 424 [M]+; tR = 

14.96 min. 

5-(3,4-Dichlorophenyl)-2-(3-(4-methoxyphenyl)ureido)thiophene-3-carboxylic Acid (13) 

Yield 86%; beige solid; 1H NMR (300 MHz, DMSO-d6) δ 12.66 (br s, 1H), 10.56 (br s, 1H), 

10.16 (br s, 1H), 7.88 (d, J = 1.0 Hz, 1H), 7.62 (s, 1H), 7.57 (m, 2H), 7.41 (d, J = 8.8 Hz, 2H), 

6.91 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 165.86, 155.11, 151.04, 

150.40, 134.37, 131.86, 131.78, 131.08, 129.01, 127.52, 126.07, 124.69, 122.27, 120.31 (2C), 

114.15 (2C), 112.16, 55.20; m/z (ESI+) 437 [M + H]+; tR = 14.36 min. 

2-(3-(4-Aminophenyl)ureido)-5-(3,4-dichlorophenyl)thiophene-3-carboxylic Acid (14) 

Yield 80%; pink solid; 1H NMR (300 MHz, DMSO-d6) δ 11.88 (br s, 1H), 10.72 (br s, 1H), 

9.83 (br s, 1H), 7.84 (d, J = 1.0 Hz, 1H), 7.57 (m, 3H), 7.14 (d, J = 8.6 Hz, 2H), 6.54 (d, J = 

8.6 Hz, 2H), 3.43 (br s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 166.19, 151.23, 150.33, 144.86, 
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134.61, 131.81, 131.06, 128.75, 127.51, 126.94, 125.90, 124.55, 122.55, 120.92 (2C), 114.12 

(2C), 112.83; m/z (ESI+) 421 [M]+; tR = 9.78 min. 

2-(3-(4-Acetamidophenyl)ureido)-5-(3,4-dichlorophenyl)thiophene-3-carboxylic Acid 

(15) 

Yield 90%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 13.04 (br s, 1H), 10.58 (br s, 1H), 

10.27 (br s, 1H), 9.87 (br s, 1H),  7.89 (d, J = 1.9 Hz, 1H), 7.63 (s, 1H), 7.61 (d, J = 8.5 Hz, 

1H), 7.58 (dd, J = 8.5, 1.9 Hz, 1H), 7.53 (d, J = 9.1 Hz, 2H), 7.42 (d, J = 9.1 Hz, 2H), 2.02 (s, 

3H); 13C NMR (126 MHz, DMSO-d6) δ 167.91, 165.79, 150.94, 150.27, 134.60, 134.34, 

133.93, 131.85, 131.07, 129.02, 127.60, 126.09, 124.70, 122.26, 119.62 (2C), 118.95 (2C), 

112.20, 23.87; m/z (ESI+) 464 [M + H]+; tR = 17.40 min. 

2-(3-(4-(2-(1H-1,2,4-Triazol-1-yl)acetamido)phenyl)ureido)-5-(3,4-dichlorophenyl)thio-

phene-3-carboxylic Acid (16) 

Yield 65%; pale gray solid; 1H NMR (500 MHz, DMSO-d6) δ 13.02 (br s, 1H), 10.94 (br s, 

1H), 10.61 (br s, 1H), 10.52 (br s, 1H), 8.65 (s, 1H), 8.04 (s, 1H), 7.89 (d, J = 1.9 Hz, 1H), 

7.63 (s, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 9.1 Hz, 2H), 7.58 (dd, J = 8.5, 1.9 Hz, 1H), 

7.47 (d, J = 9.1 Hz, 2H), 5.21 (s, 2H); 13C NMR (126 MHz, DMSO-d6) δ 165.66, 164.11, 

150.99, 150.91, 150.13, 145.44, 134.60, 134.35, 133.78, 131.84, 131.09, 129.00, 127.60, 

126.08, 124.72, 122.30, 119.83 (2C), 118.94 (2C), 112.35, 51.82; m/z (ESI+) 531 [M + H]+; 

tR = 17.10 min. 

5-(3,4-Dichlorophenyl)-2-(3-(4-((methoxycarbonyl)amino)phenyl)ureido)thiophene-3-

carboxylic Acid (17) 

Yield 65%; white solid; 1H NMR (500 MHz, DMSO-d6) δ 13.01 (br s, 1H), 10.60 (br s, 1H), 

10.25 (br s, 1H), 9.55 (br s, 1H), 7.87 (d, J = 1.9 Hz, 1H), 7.62 (s, 1H), 7.60 (d, J = 8.2 Hz, 

1H), 7.57 (dd, J = 8.2, 1.9 Hz, 1H), 7.42 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 3.65 (s, 

3H); 13C NMR (126 MHz, DMSO-d6) δ 165.87, 154.09, 151.01, 150.28, 134.39, 134.36, 

133.59, 131.89, 131.11, 129.05, 127.60, 126.10, 124.72, 122.31, 119.23 (2C), 118.91 (2C), 

112.34, 51.57; m/z (ESI+) 480 [M + H]+; tR = 13.46 min. 

5-(3,4-Dichlorophenyl)-2-(3-(4-(methylsulfonamido)phenyl)ureido)thiophene-3-

carboxylic Acid (18) 

Yield 70%; white crystals; 1H NMR (300 MHz, DMSO-d6) δ 13.01 (br s, 1H), 10.60 (br s, 

1H), 10.35 (br s, 1H), 9.54 (br s, 1H), 7.88 (d, J = 1.0 Hz, 1H), 7.62 (s, 1H), 7.58 (d, J = 8.0 

Hz, 1H), 7.56 (dd, J = 8.0, 1.0 Hz, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 2.94 

(s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 165.82, 150.97, 150.16, 135.49, 134.31, 133.08, 
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131.88, 131.08, 129.07, 127.71, 126.10, 124.72, 122.27, 121.73 (2C), 119.45 (2C), 112.36, 

38.95; m/z (ESI+) 499 [M]+; tR = 12.86 min. 

5-(3,4-Dichlorophenyl)-2-(3-(4-(phenylsulfonamido)phenyl)ureido)thiophene-3-

carboxylic Acid (19) 

Yield 88%; reddish solid; 1H NMR (500 MHz, DMSO-d6) δ 13.04 (br s, 1H), 10.56 (br s, 1H), 

10.29 (br s, 1H), 10.09 (br s, 1H), 7.88 (d, J = 2.2 Hz, 1H), 7.72 (m, 2H), 7.62 (s, 1H), 7.60 

(m, 2H), 7.55 (m, 3H), 7.36 (d, J = 9.1 Hz, 2H), 7.03 (d, J = 9.1 Hz, 2H); 13C NMR (126 MHz, 

DMSO-d6) δ 165.76, 150.87, 150.08, 139.46, 135.56, 134.28, 132.77, 132.27, 131.85, 131.07, 

129.16 (2C), 129.06, 127.69, 126.63 (2C), 126.10, 124.70, 122.26, 121.88 (2C), 119.20 (2C), 

112.33; m/z (ESI+) 561 [M]+; tR = 17.26 min. 

5-(3,4-Dichlorophenyl)-2-(3-(4-((N,N-

dimethylsulfamoyl)amino)phenyl)ureido)thiophene-3-carboxylic Acid (20) 

Yield 79%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 13.06 (br s, 1H), 10.59 (br s, 1H), 

10.31 (br s, 1H), 9.72 (br s, 1H), 7.89 (d, J = 2.2 Hz, 1H), 7.63 (s, 1H), 7.61 (d, J = 8.2 Hz, 

1H), 7.58 (dd, J = 8.2, 2.2 Hz, 1H), 7.44 (d, J = 9.1 Hz, 2H), 7.18 (d, J = 9.1 Hz, 2H), 2.69 (s, 

6H); 13C NMR (126 MHz, DMSO-d6) δ 165.78, 150.95, 150.18, 134.78, 134.31, 133.45, 

131.85, 131.07, 129.05, 127.66, 126.10, 124.70, 122.24, 120.95 (2C), 119.32 (2C), 112.27, 

37.75 (2C); m/z (ESI+) 529 [M + H]+; tR = 17.20 min. 

Experimental procedures for the synthesis of all other target compounds and necessary 

precursors together with their characterization and NMR spectra are described in detail in the 

Supporting Information. 

 

Computational Chemistry All computational work was performed using Molecular 

Operating Environment (MOE) version 2015.10, Chemical Computing Group Inc., 1010 

Sherbrooke St. West, Suite 910, Montreal, Quebec, H3A 2R7, Canada. 

Similarity Analysis A database containing compounds 2 and 4 was created, and the 

fingerprint piDAPH4 (π-donor-acceptor-polar-hydrophobe four-point pharmacophore) was 

calculated for both entries. Compound 4 was selected as a reference structure and sent to MOE 

window. In the database viewer window, similarity search was performed by setting the 

fingerprint system to piDAPH4 and using the similarity metric Tanimoto coefficient (TC) to 

measure similarity between molecules. TC values range from 0 (no similarity) to 1 (complete 

similarity). 

Preparation of Ligands and Protein Structure for Docking In the database viewer window, 

compounds 11 and 18 were selected and washed via compute | molecule | wash command. 



 

 

82 3.2 Publication II 

Deprotonation of strong acids and protonation of strong bases options were checked in the 

wash panel. X-ray crystal structure of the HIV-1 RT in complex with NVP (PDB code 

1VRT)14 was used to perform the molecular docking study. Potential was set up to 

Amber10:EHT for force field and R-field for solvation. Addition of hydrogen atoms and 

removal of water molecules were performed via LigX module. 

Ligand–Receptor Docking By use of the induced fit docking protocol, the binding site was 

set to dummy atoms which were identified by the site finder mode, and the amino acid residues 

were chosen where nevirapine binds in the RT allosteric binding site. Docking placement was 

triangle matcher with rotate bonds option. The first rescoring was ASE with force field 

refinement, and the second rescoring was alpha HB. 

QSAR Analysis A database containing compounds 11–20 was created, and each structure was 

subjected to energy minimization up to a gradient 0.01 kcal mol-1 Å-2 using the MMFF94x 

force field and distance solvation model. In the database viewer window, molecular descriptors 

were calculated for all entries via activating the compute panel, choosing descriptors calculate 

option (Table S1). The QSAR model was computed using partial least-squares (PLS) method. 

Binding Measurements were performed at 20 °C using a Fluoromax 4 spectrofluorometer 

(Jobin-Yvon Horiba) by monitoring the increase of FRET efficiency, EFRET, associated with 

the formation of the complex between Alexa488-labeled RT and TAMRA-labeled p/t 

duplexes. The FRET efficiency, calculated by EFRET = 1 - IDA/ID (where ID and IDA are the 

intensities of the Alexa 488 donor in the absence and in the presence of the TAMRA acceptor, 

respectively), was then plotted as a function of the total concentration of the labeled 

oligonucleotide (ODN) and fitted with a rewritten Scatchard equation considering a model 

with a single binding site 
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where EF corresponds to the FRET efficiency at saturation, Ltot and Mtot are respectively the 

concentration of RT and p/t duplex, and Kd is the dissociation constant. Fit parameters were 

recovered from nonlinear fits of eq 3 to the experimental data sets using a nonlinear least-

squares method and the Levenberg–Marquardt algorithm in the Origin 8 software. 

RT Inhibitory Activity of Compounds The RT inhibitory activity of compounds was 

determined as described previously.24 All measurements were carried out using a 23-mer (5′- 

CAG CAG TAC AAA TGG CAG TAT TC) DNA-primer labeled at the T19 position with 

cyanine 5 (Cy5), annealed to a 63-mer (3′-TGT CGT CAT GTT TAC CGT CAT AAG TAG 



 

 

83 3 Results 

GTG TTA CTA GTC CGA TTT CCC CTA GTC CGA CCC ATG) template labeled at the T2 

position with TAMRA. Both TAMRA and Cy5 were covalently attached via a C6 amino link 

to their respective T residues in the primer and the template. Primer and template ODN were 

annealed by heating equimolar amounts in buffer at 90 °C for 2 min, followed by cooling to 

room temperature over several hours. All measurements were performed at 20 °C using a 

Fluoromax 4 spectrofluorometer (Jobin-Yvon Horiba) or a stopped-flow apparatus (SF3, 

Biologics). The FRET donor, TAMRA, was excited at 540 nm, and its emission was recorded 

at 580 nm. Nucleotide incorporation kinetics was triggered by addition of dNTPs in excess to 

a preincubated mixture of HIV-RT and p/t duplexes at equimolar concentrations. The 

annealing kinetic traces were adequately fitted using 
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where t0 is the dead time, kobs1 and kobs2 are the observed kinetic rate constants, a is the 

amplitude of the fast component, and I0 and IF are the fluorescence intensities before dNTPs 

addition and at completion of the reaction, respectively. The I0 value was obtained from the 

steady-state fluorescence spectrum of the doubly labeled p/t duplex in the presence of RT and 

was thus fixed. All fitting procedures were carried out with Origin™ 8.6 software using 

nonlinear, least-squares methods and the Levenberg-Marquardt algorithm. 

 

HeLa Infectivity and Cytotoxicity Assay The infectivity assay was based on infection of 

HeLa cells by a third-generation of pseudoparticles38 mimicking the early steps of the HIV-1 

virus cycle. The pseudoparticles contain Gag, Gag-pol, RRE, and vesicular stomatitis virus 

(VSV)-G proteins and a RNA encoding reporter gene for luciferase. The luciferase sequence 

is incorporated in the host genome during infection by pseudoparticles which allows the 

possibility to quantify infection. A total of 5×103 HeLa cells/well were seeded in 96-wells 

plate 24 h prior to infection in Dulbecco’s modified Eagle medium (Life Technologies) 

(DMEM) complemented with 10% fetal bovine serum, penicillin (100 UI/mL), and 

streptomycin (100 μg/mL) and incubated in a 5% CO2 incubator. After medium removal, an 

amount of 50 µL of 2 times concentrated solutions of compounds was added 30 min before 

adding 50 µL of pseudoparticles, which can infect 50% of cells in the presence of polybrene 

(8 µg/mL). Cells were washed, 24 h after infection, one time by PBS and lysed with passive 

lysis buffer (Promega) supplemented with 0.5% Triton X-100 for 30 min under constant 

shaking. Luciferase activity was measured for 10 s in a luminometer (Tristar 2 multimode 

reader LB 942, Berthold) after injection of 50 µL of luciferine reagent (25 mM tricine buffer 
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pH = 7.8, 0.5 mM EDTA, pH 7.9, 5 mM MgSO4, 5 mM DTT, 0.5 mM ATP, 1.65 mM D-

luciferin sodium salt, and 0.325 mM coenzyme A sodium salt hydrate). 

For each compound, we used, as a control, cells incubated with DMEM containing the same 

percentage of DMSO (maximum 0.5% v/v) as the solutions with the tested molecules. For 

each tested molecule and concentration, we calculated the percentage of inhibition (%inh) with 

the following equation 

%𝒊𝒏𝒉 or %𝐜𝐲𝐭 =
(𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑙𝑢𝑒)−(𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒)

(𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑙𝑢𝑒)
× 100                                                          (5) 

Each concentration of tested compound was tested in sextuplicate. To determine the IC50 

values, we plotted the percentage of inhibition against the inhibitor concentration (I) and fitted 

it with a modified version of the dose-response effect equation  

 
)*))log()50(log(

101

)( 121

pII

AAA
y







                                          (6) 

where A1 and A2 represent the percentage of inhibition in the absence (0%) and in saturating 

concentrations (100%) of inhibitor, respectively. I50 represents the half maximal inhibitory 

concentration and p denotes the Hill coefficient. 

Cytotoxicity of compounds was quantified by the MTT assay (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide).41 Another plate was prepared in the same conditions as for 

the infectivity assay. 24 h after infection, medium was replaced by 110 µL of a mix containing 

100 µL of DMEM and 10 µL of 12 mM MTT solution in PBS and cells were incubated during 

4 h. In order to dissolve the insoluble purple formazan reduced by living cells, 85 µL of the 

mix was replaced by 50 µL of DMSO and gently shaken for 10 min. The absorbance was then 

measured at 540 nm in a spectrophotometer (Safas Monaco) and converted to percentage of 

cytotoxicity (% cyt), in reference to the control (DMEM + DMSO). 

 

Antiretroviral Assay against HIV-1 WT and NNRTIs-Resistant Strains The WT virus and 

the NNRTIs-resistant strains were obtained through the NIH AIDS Reagent Program (ARP, 

www.aidsreagent.org) and have been already characterized by the Phenosense assay 

(Monogram Biosciences), considered as the reference assay for phenotypic investigation of 

HIV drug resistance due to its large application in clinical trials. The infectious clones were 

first transfected in 293LX cells and then expanded in MT-2 cells. The antiretroviral assay was 

determined in a TZM-bl cell line based phenotypic assay. TZM-bl cells are characterized by 

the presence of the luciferase and β-galactosidase reporter genes integrated in the cell genome 
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under control of the HIV-1 LTR promoter. Expression of the reporter genes is regulated by the 

viral Tat protein, which is produced following transcription of the integrated provirus. TZM-

bl cells were seeded at a concentration of 30000 cells/well in a 96-well plate using DMEM 

medium without fetal bovine serum (FBS) and infected with the viruses in the presence of 20, 

10, 5, and 1 μM of each compound. After 48 h, cells were lysed by adding 40 µL of Glo lysis 

buffer (Promega) to each well for 5 min, and then an amount of 40 µL of Bright-Glo luciferase 

reagent (Promega) was added to each well for counting relative luminescence units (RLUs) 

using the Glo-Max multidetection system (Promega). RLU values from each well were 

elaborated using the GraphPad, version 5.0, software to calculate the IC50 of each compound. 

  

RNAP Inhibition, Antibacterial Activity and Cytotoxicity Transcription inhibition assay, 

determination of IC50 values, minimal inhibitory concentrations (MICs), and cytotoxicity in 

HEK 293 cells were performed as described previously.22 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at 
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Experimental procedures and analytical data for all other compounds; Substituent constants 

and molecular descriptors of compounds 11–20; Binding and mechanistic studies of the 

compounds; 1H and 13C NMR spectra (PDF) 
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3.3 Synthesis and Biological Evaluation of Cystobactamid 507: A Bacterial 

Topoisomerase Inhibitor from Cystobacter sp. 

 

Reprinted with permission from Moreno, M.; Elgaher, W. A. M.; Herrmann, J.; Schläger, N,; 

Hamed, M. M.; Baumann, S.; Müller, R.; Hartmann, R. W.; Kirschning, A. Synlett 2015, 26, 

1175–1178. 
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Abstract 

The first total synthesis of cystobactamid 507, a member of a class of new natural products 

with strong inhibitory activity towards bacterial topoisomerases, is reported. Synthetic key 

challenges are the central tetrasubstitued arene and the low chemical reactivity of anilines and 

ortho-phenolic and isopropoxy-substituted benzoic acids. Biological evaluations demonstrate 

that cystobactamid 507 inhibits several Gram-positive pathogens but at significantly lower 

concentrations than described for the larger members of this natural product family 
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Recently, Müller and co-workers reported on an unusal group of nonribosomal peptides called 

the cystobactamids 919-1, 919-2, and 507 (1–3, Figure 1), which were isolated in rather small 

amounts (<100 μg/L) from Cystobacter sp. besides several more structurally similar 

derivatives that could not be fully characterized yet.1 They are potent antibacterial agents that 

inhibit several clinically relevant Gram-negative and Gram-positive bacteria such as 

Acinetobacter baumannii (minimum inhibitory concentration, MIC = 7.4 to >59 μg/mL), 

Enterococcus faecalis (MIC = 0.1–7.4 μg/mL), Staphylococcus aureus (MIC = 0.1–32.5 

μg/mL), Streptococcus pneumoniae (MIC = 0.1–14.7 μg/mL) as well as E. coli (MIC = 0.9–

29.4 μg/mL). 

 

 

Figure 1 Structures of cystobactamids 919-1, 919-2, 507 (1–3) 

 

Most of these strains are made responsible for nosocomial infections.2 Preliminary studies 

showed1 that the cystobactamids target bacterial type IIa topoisomerases which are validated 

antibacterial targets. However, as quinolones are not suited anymore to serve as template for 

new inhibitors the cystobactamids offer new opportunities in search for new anti-infectives,3  

especially as  this novel structural scaffold and the limited cross-resistance found make the 

cystobactamids  promising  lead  structures.   Structurally, cystobactamid 507 (3) is the 

simplest member. It was reported to exert similar but lower inhibitory activity than 

cystobactamids 1 and 2. 
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En route to 1 and 2 we synthesized cystobactamid 507 (3) which additionally would allow us 

to further test its biological properties. These tests would show whether the trisaryl unit is an 

essential element for all cystobactamids and furthermore would clarify if minor impurities 

present in the natural sample did alter the assay read-outs. 

Although cystobactamids only contain p-aminobenzoic acids we experienced two major 

synthetic challenges: a) accessing the tetrasubstituted arene unit and b) the lack of reactivity 

of anilines and the lack for reactivity of ortho-substituted phenolic and isopropoxy benzoic 

acids in amide formations. This amide formation can only proceed under conditions that are 

different from those established in peptide synthesis. 

The   synthesis of the tetrasubstituted arene 9 commenced with o-bromobenzaldehyde 4. The 

bromo substituent served as ‘dummy’ group which can be removed after the selective 

introduction of the nitrogen functionality at C4. In addition, this starting material allows for 

differentiating  between the two phenolic groups and thus enables selective introduction of the 

isopropyl group at C3 (Scheme 1). 

 

 

Scheme 1 Synthesis of tetrasubstituted benzoic acid 9 
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O-Demethylation of 4, aldehyde reduction and protection of the benzylic alcohol and one 

phenolic group as benzylidene acetal yielded phenol 5. This protection paved the way for 

introducing a) the nitro group to yield nitroarene 64 and b) the isopropyl group. Palladium-

catalyzed debromination5 yielded nitroarene 7. After removal of the benzylidene protection, 

the benzylic alcohol was transformed into the carboxylate under standard conditions. The 

resulting benzoic acid 8 was temporarily methylated in order to protect the o-phenolic group, 

which finally furnished the desired p-nitrobenzoic acid 9. These final steps were crucial as 

successful amide formation could only be achieved if the o-phenolic group is protected. 

With this key building block in hand, we could finalize the synthesis of cystobactamid 507 (3) 

by coupling three p-aminobenzoic acid units. However, we had to search for conditions that 

allow for creating an amide bond between two arene moieties.  Common reagent systems such 

as HOAt, EDC, or a mixture of HOBt and EDC that are well established in peptide chemistry 

gave poor coupling yields. We made the bulky isopropoxy substituents with ortho orientation 

to the amino groups as well as the reduced reactivity of the aromatic amino groups responsible 

for the difficulties to achieve amide formation. 

We found that Ghosez’s reagent 136 is best suited to couple benzoates with anilines (Scheme 

2). First, aniline 11, which straightforwardly is accessible from benzoic acid 10, was coupled7 

with tetrasubstituted benzoic acid 9 to yield amide 12 after hydrogenation of the nitro group 

and with concomitant removal of the benzyl protecting group. Next, the second amide 

coupling8 between 12 and p-nitrobenzoic acid 14 yielded cystobactamid 507 (3) after 

simultaneous reduction of the nitro group9 and removal of the tert-butyl ester. It has to be 

noted that it became necessary to switch from a methyl to a tert-butyl ester (10 → 11) because 

the final ester hydrolysis with the corresponding methyl ester (step under basic conditions) led 

to simultaneous amide hydrolysis of the p-aminobenzoic acid moiety. 

The   NMR   spectra and chromatographic parameter (HPLC) for the synthetic material were 

identical to those collected for natural cystobactamid 507 (3). 

 

 

 

 

 

 

 

 



 

 

93 3 Results 

 

Scheme 2 Finalization of the synthesis of cystobactamid 507 (3) 

 

The synthetic hurdles that we encountered in this synthesis stemmed us to prepare a 

structurally simplified derivate 18 in which both isopropoxy groups of cystobactamid 507 are 

replaced by the smaller methoxy groups. Starting from o-vanillin the tetrasubstituted central 

arene unit 15 (Scheme 3 and Supporting Information) was straightforwardly prepared in three 

steps and coupled with arenes 14 and 16.10 

 

 

Scheme 3 Synthesis of cystobactamid derivative 1810 
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The antibacterial profile and the gyrase inhibitory properties of synthetic cystobactamid 507 

(3) and derivative 18 were assessed. We found that both compounds showed some inhibitory 

activity against certain Gram-positive bacteria and an efflux-deficient E. coli strain with MIC 

values between 16 and 128 μg/mL (Table 1). Likewise, the IC50 values (half-inhibitory 

concentration) for E. coli gyrase were in the high μM range (ca. 300–500 μM). 

 

Table 1 Biological Activity of 3 and 18a 

  3 18 CPb 

E. coli ATCC-25922 >128 >128 0.005 

E. coli DSM-1116 >128 >128 0.01 

E. coli DSM-26863c >128 >128 0.003 

E. coli DSM-26863/PMBNd 32–64 64 0.003 

B. subtilis DSM-10 32 128 0.1 

E. faecalis ATCC-29212 64–128 >128 0.8 

M. luteus DSM-1790 128 64 0.8 

S. aureus ATCC-29213 128 64 0.1 

S. pneumoniae DSM-20566 64 16 0.8 

a MIC values in µg/mL. b Ciprofloxacin. c tolC3 genotype. d Cotreatment with 3 µg/ml polymyxin B 

nonapeptide. 

 

It has to be stressed that Cystobacter sp. generates only very small amounts (<100 µg/L) of 

cystobactamids and their isolation is further hampered by the fact that the fermentation broth 

contains at least a dozen structurally closely related cystobactamids.1 It has already been 

pointed out that the natural product 3 might be contaminated with trace amounts of 

cystobactamid hexapeptides, which are responsible for the sample’s moderate antibacterial 

activity. 

Here we could demonstrate that synthetic 3 still shows some antibacterial activity mainly 

against Gram-positive bacteria, which is, however, by 1 to 2 orders of magnitudes less 

pronounced than initially described for natural cystobactamid 507. Interestingly, also the 

simpler methyl derivative 18 exhibits a comparable activity spectrum to that of synthetic 3. 

We conclude that the western part of larger cystobactamids including the β-

methoxyasparagine linker is mandatory for full biological activity in cell-based studies as well 

as in vitro topoisomerase inhibition experiments. One reason for the lack of antibacterial 

activity against Gram-negative pathogens might be explained by insufficient penetration of 3 
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and 18 through the outer bacterial membrane as demonstrated by the finding that the trisaryl 

compounds are only active against E. coli with increased permeability (Table 1). However, 

since both tested synthetic compounds 3 and 18 exhibit some residual antibacterial and gyrase 

inhibitory activity modification of the trisaryl unit might be a promising starting point for the 

optimization of the larger cystobactamid scaffold.  

In summary, we reported on the first synthesis of the new antibiotic cystobactamid 3. We were able to 

access the synthetically challenging tetrasubstituted benzoic acid 9 and establish coupling conditions 

for anilines with bulky isopropxy groups positioned in the ortho position. This work paves the way for 

preparing libraries of cystobactamid derivatives. Additonally, this work provided a first insight 

into structure–activity relationships. Clearly, all structural elements present in the larger 

cystobactamids are essential for their potent antibacterial properties. This work is important 

for initiating a medicinal chemistry program for further improving the biological profile of the 

cystobactamids. 

 

Final Synthetic Step and Analytical Data for Cystobactamid C (3) 

tert-Butyl-4-[2-hydroxy-3-isopropoxy-4-(4-nitrobenzamido)benzamido]-3-

isopropoxybenzoate (S13, 8.1 mg, 0.014 mmol) was dissolved in MeOH (1 mL). SnCl2·2H2O 

(9.2 mg, 0.041 mmol) was added, and the reaction mixture was stirred under refluxing 

conditions for 17 h. The solvent was evaporated under reduced pressure and the residue diluted 

with EtOAc. After addition of a saturated solution of NaHCO3 and separation of the phases, 

the aqueous layer was extracted with EtOAc (1×). The aqueous layer was acidified with 1 M 

HCl until pH = ca. 1 and extracted with EtOAc (3×). The combined organic layers were 

washed with brine (1×), dried over anhydrous MgSO4, and filtered. The crude product was 

purified by preparative HPLC (RP-18; run time 100 min; H2O–MeCN = 100: 0 to 0: 100; tR = 

47 min) providing the title compound 3 (2.8 mg, 5.5 mmol, 40%) as a semisolid material. 

1H NMR (400 MHz, MeOD): δ = 8.46 (d, J = 8.6 Hz, 1 H), 7.80 (d, J = 8.6 Hz, 1 H), 7.75 (d, 

J = 8.6 Hz, 1 H), 7.72 (d, J = 8.6 Hz, 2 H), 7.71–7.64 (m, 2 H), 6.74 (d, J = 8.6 Hz, 2 H), 4.78 

(hept, J = 6.1 Hz, 1 H), 4.55 (hept, J = 6.1 Hz, 1 H), 1.46 (d, J = 6.1 Hz, 6 H), 1.35 (d, J = 6.1 

Hz, 6 H) ppm. 

13C NMR (125 MHz, MeOD): δ = 167.80 (Cq), 167.02 (Cq), 154.27 (Cq), 152.92 (Cq), 148.39 

(Cq), 138.21 (Cq), 138.16 (Cq), 134.11 (Cq), 130.23 (CH), 125.50 (CH), 124.02 (CH), 122.35 

(Cq), 121.26 (CH), 116.22 (CH, Cq), 115.22 (Cq), 114.79 (CH), 114.32 (CH), 77.13 (CH), 

73.26 (CH), 22.71 (CH3), 22.32 (CH3) ppm. 

ESI-HRMS: m/z calcd for C27H30N3O7 [M + H]+: 508.2084; found: 508.2085. 
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3.4 Cystobactamid 507: Concise Synthesis and Design of Non-Covalently Bonded Rigid 

Analogs Boost Bacterial Topoisomerases IIA Inhibition, Antibacterial Activity and 

Disclose the Bioactive Conformation 

 

To the work accomplished in this section, the following names are appreciated for their 

contribution: 

Mostafa M. Hamed: designed and synthesized some cystobactamid 507 analogs.  

Sascha Baumann: performed the gyrase and topoisomerase IV inhibition assays. In addition, 

he performed the mode of binding studies. 

Jennifer Herrmann: determined the antibacterial activity of the compounds. 

Lorenz Siebenbürger: preformed the metabolic stability study. 
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ABSTRACT 

Lack of new antibiotics and the increasing antimicrobial resistance are the main concern of 

healthcare community nowadays, which necessitates the search for new antibacterial agents to 

combat resistant bacteria. Recently, we discovered a novel natural class of antibiotics called 

the cystobactamids with potent antibacterial activity. In this work, we describe a brief total 

synthesis of the natural product cystobactamid 507 (Cys507) and a successful modification 

and optimization of its structure into new analogs with superior topoisomerases IIA inhibition 

and antibacterial activity. This was accomplished through: (i) Interactive de novo design of 

conformationally restricted analogs via intramolecular hydrogen bonds (IMHBs). (ii) 

Establishment of straightforward synthetic strategies valid for versatile peptidomimetics. (iii) 

Careful study of structure–activity relationship (SAR) and identification of the bioactive 

conformation. Our findings enabled us to further develop more potent compounds with 

structure simplification of Cys507. Deeper insight into the mode of action revealed that this 

class of antibiotics uses DNA minor groove binding as part of the drug–target interaction 

without showing significant intercalation. The natural compound and the optimized analogs 

possess exceptionally high metabolic stability.  
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INTRODUCTION 

The ongoing prevalence of antibiotic resistant bacteria poses an imminent threat to humanity.1 

At the same time, big pharma companies steadily retreat from the antibiotic drug discovery 

field.2 Such a paradox exaggerates the crisis, and urgently requires more efforts to discover 

novel antibiotics with new chemical entities or alternative modes of action. Nature represents 

a rich repository of antibiotics. In the last decades, about 75% of the clinically approved 

antibacterial agents were natural products (NPs) or modified NPs.3 Markedly, only one-eighth 

of these antibiotics are unmodified NPs,3 while the major part had to be modified in order to 

optimize activity, stability and drug-like physicochemical properties. Modifications of NPs are 

pursued through two main routes. One route is the utilization of synthetic biology techniques 

where the NPs producing organisms or other hosts are exploited as experienced NPs factories. 

This necessitates the identification of the gene clusters responsible for the NPs biosynthesis. 

Genetic manipulation thereof can be used to generate a library of “unnatural” NPs.4 However, 

this combinatorial biosynthesis can have drawbacks such as low yields or unpredictable 

products besides being laborious.4 The other route is the application of medicinal chemistry 

approaches. A structure-based approach depends on the co-crystal structure of the antibiotic-

bound molecular target. Very often, this structural information is not available as numerous 

natural antibiotics act on either unknown or multiple targets.5-8 The ligand-based approach is 

more convenient. Based on the antibiotics’ structures, hundreds of derivatives can be produced 

semi-synthetically or de novo.9 However, a general characteristic of the aforementioned 

strategies is that they are committed to the antibiotics’ scaffolds. Accordingly, the possibility 

of resistance development against the new derivatives is as likely as the parent molecules. 

Hence, intelligent strategies should be introduced to develop new scaffolds from natural 

antibiotics, and avoid occurrence of a second innovation gap.10 

“Nature is the best”,11-13 this common belief is accounted by the selective natural evolution of 

antibiotics over millions of years, yet one should also consider that nature produced antibiotics 

for own purpose not for clinical use. Can human have the upper hand over Mother Nature? 

Herein we provide a proof for a previous postulation that a medicinal chemist is able to 

improve the antibacterial properties of NPs.9 

Recently, we reported the discovery of a new family of antibiotics called the cystobactamids 

isolated from Cystobacter sp. (Chart 1, compounds 1–3).14 Cystobactamid 919-1 (1) and 919-

2 (2) have hexapeptidic structures comprised of three p-aminobenzoic acid motifs (eastern 

part) and two p-nitro/aminobenzoic acids (western part) linked via β-methoxy-α-asparagine 

and β-methoxyasparagine, respectively. Cystobactamid 507 (3) is a tripeptide, representing 
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the eastern part of the full-length molecules 1 and 2. The cystobactamids display broad 

spectrum antibacterial activity through inhibition of topoisomerases type IIA in bacteria, 

namely DNA gyrase and topoisomerase IV.14 In this work, we focused on the optimization 

and SAR elaboration of the potential “drug-like” molecule and the common pharmacophoric 

feature among the cystobactamids (compound 3, Chart 1). We were able to develop synthetic 

analogs from the same/new scaffold of 3 with improved target and antibacterial activity, 

together with a high metabolic stability. This was achieved through a rational de novo design, 

understanding of the ligand–target interaction, and developing practical synthetic procedures 

following the economic synthesis guidelines.15 

 

Chart 1. Cystobactamid antibiotics 1–3 and Cys507-methyl homolog 4 

 

RESULTS AND DISCUSSION 

Compounds Design and DNA Gyrase Inhibitory Activity (SAR) 

We focused on DNA gyrase for drawing SAR, as it is the primary target of cystobactamids in 

Escherichia coli.14 Previously we described the total synthesis of 3 and the methyl homolog 4 

(Chart 1).16 Compound 4 showed a slight decrease in activity suggesting that the natural 

antibiotic 3 can be amenable to modification. Before starting an extensive synthetic program, 

we aimed at identifying the key structural features of 3 responsible for activity. Inspection of 

Cys507 structure revealed that it is reminiscent of the α-helix mimetics 3-O-alkylated 

benzamides.17 However, 3 has a unique hydroxyl group at positon 2 of the middle ring and 

unsubstituted N-terminal moiety (Chart 1). Since type of side chains and conformation are 

major factors controlling the activity of α-helix mimetics, it was rational to start with 

evaluating the importance of isopropoxy side chains for the gyrase inhibitory activity of 3. 
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Accordingly, we designed the analog 5 with a smaller alkoxy group (methoxy), and 6 with a 

halogen (chlorine) instead of the isopropoxy group at the middle ring, while keeping the other 

isopropoxy at the C-terminal ring (Chart 2). 

 
Chart 2. Structures of Cys507 analogs. 

Replacement of the isopropoxy side chain with methoxy did not show a remarkable change in 

the gyrase inhibitory activity, while replacing it with chlorine resulted in a significant loss of 

activity (Table 1). This result indicates that varied alkoxy side chains can be tolerated, and 

they are more favorable than halogens at the middle ring. This could be due to involvement of 

the alkoxy groups in the ligand–target interaction and restricting the conformation, via IMHB 

and steric effect, in an optimum orientation necessary for binding. Comparing the activity of 

4 with 5 revealed that modification of the isopropoxy group into methoxy at the C-terminal 

ring lessens the activity, suggesting that the isopropoxy side chain is preferred at the C-

terminal ring owing to its steric and hydrophobic properties. Consequently, we maintained it 

in the next steps of optimization. 

Table 1. In Vitro Inhibitory Activities of 3–16 in the Gyrase Supercoiling Assay and 

Topoisomerase IV Relaxation Assay 

Compd 
E. coli gyrase 

IC50 (µM) 

E. coli topoisomerase IV 

IC50 (µM) 
Compd 

E. coli gyrase 

IC50 (µM) 

E. coli topoisomerase IV 

IC50 (µM) 

3 (Cys507) 355 ± 25 >500 10 50 ± 10 147 ± 10 

4 463 ± 28 n.d.a 11 >1000 n.d. 

5 360 ± 26 n.d. 12 165 ± 18 n.d. 

6 >1000 n.d. 13 85 ± 12 255 ± 14 

7 115 ± 18 n.d. 14 101 ± 15 n.d. 

8 60 ± 10 175 ± 10 15 110 ± 20 n.d. 

9 195 ± 20 n.d. 16 106 ± 18 n.d. 
aNot determined. 
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As a next step, we performed in silico conformational analysis of 3–5 to identify possible 

conformations of the molecules and their relative energies. Generally, the compounds adopt 

linear conformations with a backbone curvature17 about 158° (see SI). They can assume two 

constrained conformations (anti and syn) with respect to the alkoxy side chains. These two 

conformations are controlled by the hydroxyl group at the middle ring. The lowest energy 

conformation is the anti form where the isopropoxy groups projected from two opposing sides 

of the molecule (Figure 1A). The anti conformer is stabilized by three IMHBs. First, five 

membered IMHB between C4–NH and C3–alkoxy group (restricting rotation of the C-

terminal ring around Ar–NH axis). Second, six membered IMHB between C1ʹ–CO and C2ʹ–

OH (restricting rotation of the middle ring around Ar–CO axis). Third, five membered IMHB 

between C4ʹ–NH and C3ʹ–alkoxy group (restricting rotation of the middle ring around Ar–NH 

axis). In syn conformation, the isopropoxy groups projected from the same side of the molecule 

(Figure 1B). The syn conformer is stabilized also by three IMHBs similar to the anti form 

except that C2ʹ–OH switched from HB donor to HB acceptor and formed six membered IMHB 

with C4–NH (restricting rotation of the middle ring around Ar–CO axis). Interestingly, the 

energy difference between anti and syn forms is 0.4–0.7 kcal/mol. This dE value is a minor 

energy difference, which could allow the molecules to switch between both conformations at 

ambient temperature. 

 

Figure 1. Conformational analysis of Cys507 (3): A) anti form (lowest energy conformation); 

B) syn form (dE 0.4 kcal/mol). 

 

Results of in silico analysis prompted us to investigate the privileged conformation of this type 

of compounds, containing the hydroxyl motif, experimentally in solution. Therefore, we 

performed NOESY study of compounds 3–5, their ester derivatives, and nitro esters in 
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standard NMR solvents and in a biomimetic environment.18 Results of the NOESY study were 

in agreement with molecular dynamics (MD) calculations. All compounds showed a strong 

cross peak between C4–NH and C6ʹ–H, and weak or no cross peak with C2ʹ–OH, indicating 

that these compounds exist predominantly in the anti conformation in solution (Figure 2 and 

SI). Moreover, variations at the C- and N-terminals have a little impact, if any, on 

conformational preference. Noteworthy, the same results were obtained when running the 

experiments in the usual NMR solvents (DMSO-d6, acetone-d6, and CDCl3, see SI). 

 

Figure 2. 2D-NOESY spectrum of compound 58 in a cryoprotective mixture (20% 

H2O/DMSO-d6). 

 

The fact that the anti conformer was prevalent in solution raised the question if the syn 

conformer can actually exist under physiological conditions. We assumed that both 

conformations could be available owing to the small energy difference. To verify this, 1H 

NMR experiment was performed where the chemical shift of 58 was measured at different 

temperatures (20 and 37 °C). This slight increment in temperature should enhance the 

interconversion between both conformations, which would reflect on the chemical shift of the 
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hydroxyl group. Indeed, we found that the chemical shift of C2ʹ–OH moved up field from 

12.50 ppm at 20 °C (mostly HB donor form, anti) to 12.45 ppm at 37 °C (pushing the 

conformational equilibrium to HB acceptor form, syn) (Figure 3). This indicates that these 

compounds can easily interconvert from anti to syn at physiological temperature. 

Figure 3. 1H NMR chemical shift of compound 58 at 20 °C (green) and 37 °C (blue) in CDCl3. 

 

Another evidence, by inspecting the crystal structure of the dipeptide precursor of 4 

(compound 86), we found that it adopted syn conformation (Figure 4), in spite of showing a 

prevalence of the anti conformation in solution similarly to the previous tripeptide compounds 

(see SI). This finding demonstrates that the syn conformation can even exist in the solid state. 

Thus, we could conclude that the hydroxyl group at position 2 of the middle ring plays a 

principal role in controlling the conformation of Cys507 and its congeners. It would give 

preference to the most stable anti conformation. Nevertheless, as the energy barrier between 

both conformations is low, the molecules can exist in the syn conformation as well. 

 

Figure 4. X-ray crystal structure of compound 86 adopting syn conformation via IMHB. 



 

 

104 3.4 Manuscript IV 

Moving forward to understand more about the conformation–activity relationship, since 

Cys507 and all compounds prepared so far took on the anti form mainly, we designed 

compounds that preferably exist in the syn form. This was carried out via masking the 

switchable hydroxyl motif and converting it into HB acceptor group only, which could 

stabilize the syn conformation. Accordingly, we synthesized compound 7 bearing a methoxy 

group instead of hydroxyl (Chart 2). MD calculations indicated that 7 adopted typically the 

most stable syn conformation with a large dE between the anti conformation (3.8 kcal/mol).  

NOESY study showed cross peak between C4–NH and C2ʹ–OMe, and no cross peak with 

C6ʹ–H proving that syn conformation is predominant (Figure 5 and SI). 

 
Figure 5. 2D-NOESY spectrum of compound 7 in DMSO-d6. 

 

Compound 7 showed a 3-fold more potent gyrase inhibitory activity than 3 (Table 1). This 

result revealed that the hydroxyl group is not necessary for the interaction with the target. At 

the same time, this raised a new question whether this enhancement was due to inducing the 

syn conformation, hinting at the bioactive conformation, or it was due to an additional 

hydrophobic interaction caused by the newly introduced alkoxy group at position 2 of the 

middle ring. To clarify these issues, we tested each factor separately. 
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First, we designed compound 8 (Chart 2) bearing an isopropoxy group in place of methoxy in 

7. This modification resulted in further improvement in activity (6-fold compared to 3). These 

results indicated that besides their effect on restricting the conformation to syn form, alkoxy 

groups at position 2 of the middle ring could also contribute to binding interactions with the 

target. In this aspect, the isopropoxy group is more beneficial than the methoxy. 

Second, for proving the bioactive conformation without any other influencing factors, we 

utilized IMHB in an unprecedented manner. We designed two intramolecular hydrogen 

bonded rigid Cys507 analogs with a new scaffold, namely the pyridine derivatives 9 and 10 

(Chart 3). Compound 9 can adopt solely anti conformation via replacing the exocyclic HB 

donor/acceptor hydroxyl group of 3 with an endocyclic nitrogen atom of 4-isopropoxy-5-

aminopicolinic acid, whereas 10 can adopt just syn conformation via the 6-isopropoxy 

regioisomer. Conformations are stabilized by a bifurcated IMHB between C4–NH and both 

oxygen atom of C3–isopropoxy and nitrogen atom of the pyridine ring. X-ray crystal structures 

of the compounds were in conformity with our design concept (Figure 6 and SI). We proved 

rigidity of 9 and 10 by MD calculations (no other conformation appeared up to dE 7.0 

kcal/mol), and NOESY experiments where no cross peaks were observed between C4–NH and 

pyridine C3–H. Moreover, they displayed no change in conformation at high temperature up 

to 340 K (SI). Results of gyrase inhibition assay revealed that 10 was 4–7-fold more potent 

than 9 and 3 (Table 1). This indicates that the syn conformer is indeed the bioactive 

conformation of 3 that is responsible for binding to DNA–gyrase complex and producing the 

inhibitory effect. 

 
Chart 3. Structures of the IMHB rigid Cys507 analogs 9 and 10. 

 
Figure 6. X-ray crystal structures of the nitro ester precursors of 9 (82, A) and 10 (83, B) 

adopting anti and syn conformation, respectively via IMHB. 
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Our design strategy has the advantages of improving the solubility and the ligand-lipophilicity 

efficiency19 (LLE: 3.54 for 10 vs 1.75 for 3) by introducing a polar pyridine ring in lieu of a 

benzene. In addition, removal of the hydroxyl group, while keeping the right conformation, 

lowered the molecular weight (better drug-likeness) and enhanced the ligand efficiency19 (LE: 

0.17 for 10 vs 0.13 for 3). More importantly, hopping of Cys507 scaffold, to the novel pyridine 

based core, can circumvent the probable cross-resistance against the cystobactamids.20 

Furthermore, to the best of our knowledge this is the first time proving the bioactive 

conformation via non-covalently bonded rigid structures without using the classical methods 

of cyclization and introduction of additional covalent bonds.21  

From another perspective of optimization, since structure complexity of NPs hinders the rapid 

development of drug-like molecules,9 we aimed at simplification of Cys507 structure based 

on our findings. We started with omitting either the isopropoxy or the hydroxyl group from 

the middle ring as in compounds 11 and 12, respectively (Chart 2). Removal of the isopropxy 

group resulted in a dramatic loss of activity, which emphasized the importance of alkoxy side 

chains for binding (Table 1). Interestingly, removing the hydroxyl group increased the activity 

2-fold compared to 3 (Table 1). This confirms that the hydroxyl group is not essential for 

activity, and goes together with our findings. Since presence of the hydroxyl shifted the 

conformational equilibrium in favor of the less potent anti form, removal of it permitted free 

rotation of the middle ring around Ar–CO axis, and consequently shifted the equilibrium more 

toward the bioactive syn conformation. This was evidenced in the NOESY of 12 where two 

cross peaks of equal intensities were observed between C4–NH and C2ʹ–H (syn) and C6ʹ–H 

(anti) (SI). 

Stepping forward from this point, we focused on improving the molecular recognition and 

affinity of our synthetic analogs through mimicking the steric and electrostatic properties of 

the natural ligand 3.22 Therefore, we designed compounds 13 and 14 where a hydroxyl or 

isopropoxy group was introduced at the N-terminal ring of 12 and 11, respectively (Chart 4). 

We chose this position to maintain the beneficial free rotation of the middle ring (Chart 4). 

Introducing the hydroxyl moiety at position 2 of the N-terminal ring in 13 was intended to 

mimic the overall shape of 3 by conserving the backbone curvature via IMHB (Figure 7). In 

addition, calculation of total hydrophobic-, polar-, positive-, and negative- VDW surface area 

of 3, 13, and 14 indicated that the compounds have the same values (SI). Indeed, the new 

modifications resulted in further enhancement in activity (Table 1). These results clearly 

demonstrate that the isopropxy side chains play an essential role in binding interactions (3 and 

14 vs 11). Moreover, changing the distance between them could be tolerated to some extent 
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owing to flexibility of the new analog. Furthermore, besides hydrophobic interactions and 

conformational preferences, simulation of the molecular features of Cys507 seems to be 

advantageous for improving the affinity. 

 

 

Chart 4. Structures of the freely rotating Cys507 analogs 13 and 14 

 

 

Figure 7. Electrostatic molecular surface and backbone curvature of Cys507 (A) and 13 (B): 

(red) negatively charged surface; (blue) positively charged surface; (white) neutral surface. 

 

Finally, we evaluated the relevance of the terminal carboxyl group for activity through testing 

the isopropyl esters of 5 and the most potent compounds 7, 8, 10 and 12–14. Ester derivatives 

showed 2 to >10-fold decrease in activity suggesting that the free carboxyl motif is necessary 

for activity (SI). For evaluating the role of the terminal amino group, we modified the amino 

terminals of 13 and 14 into nitro (compounds 15 and 16, respectively) bearing in mind that 

cystobactamids 1 and 2 have terminal nitro moieties. Results indicated that the amino motif 

can be replaced by nitro without affecting the gyrase inhibitory activity (Table 1). 
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Topoisomerase IV Inhibitory Activity 

We tested the effect of Cys507 and the best three gyrase inhibitors 8, 10, and 13 on 

topoisomerase IV, the second bacterial target of the cystobactamids family.14 Cys507 did not 

show detectable inhibition up to 500 µM, whereas the new analogs showed moderate 

inhibitory activity with ~ 3-fold lower potency compared to that against gyrase (Table 1). 

These results indicate that modifications applied to improve the DNA gyrase inhibitory 

activity are also valid for topoisomerase IV, possibly due to the high homology between both 

enzymes.23 Furthermore, despite different sensitivities of the enzymes, the compounds 

followed the same trend of activity order. This points that the new Cys507 analogs act with a 

similar mode of action on both targets. 

 

Mode of Action Study 

We reported that the cystobactamids are type IIA topoisomerase poisons and their primary 

binding site is located at the gyrase–DNA interface as described for the clinically used 

quinolone antibiotics.14 To gain deeper insight into the binding site of the cystobactamids, we 

were interested if and how cystobactamids and their analogs bind to the DNA part of the target 

site. There are predominantly two binding modes of small molecule ligands to DNA: minor 

groove binding or intercalation.24 Intercalation is of particular interest, as compounds utilizing 

this binding mode may trigger genotoxic effects in eukaryotes.25 DNA minor groove binding 

and intercalation can be addressed using displacement titration experiments utilizing 

fluorescent dyes whose fluorescence is increased upon DNA binding. Suitable probes for DNA 

minor groove binders in this context are the well-established Hoechst dyes.26 DNA 

intercalation based binding mode can be tracked via the DNA intercalating dye ethidium 

bromide (EtBr).27 Titration of calf thymus DNA bound Hoechst 33342 with Cys507, its 

analogs as well as 1 and 2 induced a concentration dependent loss of Hoechst 33342 

fluorescence (Figure 8A and SI). No compound-induced quenching of the Hoechst 33342 

fluorescence in absence of DNA was observed. This indicated that all the compounds were 

able to displace the Hoechst 33342 from DNA suggesting that the DNA binding site of the 

cystobactamids is the minor groove. When we performed the same experiments in presence of 

EtBr, we were pleased to find that the majority of the tested compounds (including the 

cystobactamids 1 and 2) did not show any significant intercalation activity up to concentrations 

of 500 µM (Figure 8B and SI). An exception was compound 15, which reduced EtBr 

fluorescence ~ 50% at the highest tested concentration. This finding underlines the importance 

of a parallel monitoring of the activity of the modified compounds on gyrase as well as their 
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DNA intercalative behavior as subtle changes may have an impact on the binding mode (13 

vs 15). Taken together the results indicate that Cys507 and analogs are indeed able to bind to 

DNA utilizing a minor groove binding mode. Intercalation only seems to play an insignificant 

role for this small molecule–DNA interaction. 

 

 
Figure 8. DNA interaction of Cys507: A) Concentration dependent decrease in fluorescence 

of the DNA minor groove binding dye Hoechst 33342 bound to calf thymus DNA (ct-DNA, 

15 µM each) upon titration with Cys507; B) No change in fluorescence of the ct-DNA bound 

intercalating dye EtBr upon titration with Cys507. 

 

Plotting of the Hoechst 33342 spectra maxima vs compounds’ concentrations delivered 

sigmoidal shaped curves, which could be fitted using Hill’s equation (see SI). This allowed 

the determination of a value for “50% displacement of Hoechst 33342”. Although this value 

does not contain absolute information about DNA affinity and the number of binding sites, it 

allows a “face-to-face” comparison of the apparent “minor groove affinity” of the different 

compounds (SI). Remarkably, these values do not significantly correlate with the gyrase 

activity of the respective compounds (SI). This indicates that DNA interaction by minor 

groove binding alone is only of secondary importance for the specificity of the 

cystobactamids/analogs–target interaction. The main fraction of activity-conferring 

interactions (the ligand–target specificity) could thus be interactions of the inhibitor with a 

specific conformation or state of DNA, the single or complexed proteins (GyrA and GyrB) or 

the whole DNA–protein complex. This is also underlined by the fact that all tested 

cystobactamids have a preference for gyrase over topoisomerase IV (Table 1) and up to 145-

fold for 2.14           

 

Chemistry 

We applied a retrosynthetic approach for synthesizing Cys507 and its analogs. All compounds 

are constituted of three units of either p-aminobenzoic acid or 5-aminopicolinic acid 
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derivatives linked by amide bonds. Preparation of the individual middle, C- and N-terminal 

rings was firstly performed followed by the coupling process. Synthesis of the middle rings 

was the bottleneck step, as it required long tedious steps for preparation and separation of the 

desired regioisomer in a poor yield.16, 28-30 Some substitution patterns were even unknown in 

literature, e.g., compound 26 and 34 (Scheme 1). Herein we established brief efficient 

synthetic pathways for new and reported amino acids that are precursors of other NPs.31,32 

Compounds 20, 23, 26, 34, 37, and 39 were prepared as N-protected amino acids using the 

nitro moiety as a hidden protected amino group, whereas compound 29 was prepared as C-

protected amino acid. We created a shortcut to the natural middle ring of Cys507 (compound 

20) in only four steps, instead of twelve,16 starting from a low-cost reactant (catechol). 

Nitration of catechol to the 3-nitro derivative 17 and then regioselective isopropylation of 17 

at the 2-hydroxy position using a stoichiometric amount of 2-bromopropane provided 

compound 18. Ortho formylation of 18 with paraformaldehyde in MgCl2/TEA/MeCN mixture 

under strictly dry conditions produced the p-nitrobenzaldehyde 19. Finally, compound 19 was 

oxidized using AgNO3 under basic condition to yield the corresponding acid 20. Synthesis of 

23 started via acetylation of o-vanillin followed by nitration of 21 using KNO3/trifluoroacetic 

anhydride mixture to afford the p-nitrobenzaldehyde 22. Oxidation of 22 with AgNO3 

delivered the acid 23. Universal O-demethylation and deacetylation of 22 using BBr3 produced 

the dihydroxy derivative 24. Isopropylation of 24 to the aldehyde 25 followed by oxidation 

with KMNO4 afforded the carboxylic acid 26. Structure of 26 was confirmed by X-ray (SI). 

Compound 29 was prepared through esterification of 4-nitrosalicylic acid to the methyl ester 

27. Chemical reduction of 27 via heating with iron in ethanol resulted in the corresponding 

amine 28. Chlorination of the activated 28 using N-chlorosuccinimide yielded 29. Synthesis 

of 4-isopropoxypicolinic acid 34 was accomplished via Fife reaction of 4-methoxypyridine-

N-oxide to furnish the nitrile derivative 30. Acidic hydrolysis of 30 then nitration of the 

hydrochloride salt 31 produced exclusively the O-demethylated 5-nitro derivative 32. 

Isopropylation of 32 followed by saponification of the isopropyl ester 33 gave the picolinic 

acid 34. Structure of 34 was evidenced by X-ray (SI). The 6-isopropoxypicolinic acid 37 was 

obtained from 2,6-dichloro-3-nitropyridine via the reaction with isopropyl alcohol under basic 

condition to yield 35. Stille coupling of 35 produced the vinyl derivative 36, which was 

oxidized to afford the picolinic acid 37. Compound 39 was prepared by first alkylation of 3-

hydroxy-4-nitrobenzoic acid then hydrolysis of the produced ester 38. Synthesis of the C- and 

N-terminal rings was performed similarly (SI). 
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Scheme 1. Synthetic Pathways of the C- or N-Protected Middle Rings 20, 23, 26, 29, 34, 37, 

and 39 
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In the amide coupling process three obstacles were encountered: presence of other interfering 

groups (free hydroxyl), inactivated carboxylic acids, and weakly reactive aromatic amines. We 

developed two straightforward strategies for amide coupling that could overcome these 

difficulties. Moreover, activation of carboxylic acids and OH protection31 were unnecessary, 

therefore these methods spared time, effort and money required for additional steps. For 

instance, synthesis of Cys507 was accomplished in overall 11 steps instead of 21 reported 

before.16 The first strategy (Scheme 2) started with coupling of the N-protected middle rings 

20, 23, 26, and 39–41 to the C-protected C-terminal ring 42 using either 

dichlorotriphenylphosphorane or phosphorus trichloride as coupling reagent to afford the 

dipeptides 43–48. The nitro derivatives 43–48 were chemically reduced to the corresponding 

amines 49–54. A second coupling cycle of the dipeptides 49–54 to the N-terminal rings 41, 

55, and 56 was performed to furnish the tripeptides 57–64. Compound 65 was obtained via 

alkylation of 59 with isopropyl bromide in K2CO3/DMF mixture. Further reduction of the nitro 

derivatives 57, 58, and 60–65 produced the amino esters 66–73. Finally, C-deprotection via 

ester hydrolysis yielded the amino acids 3 (Cys507), 5, 7, 8, and 11–14. The nitro acids 15 and 

16 were prepared also using the same strategy where the tripeptide nitro esters 63 and 64, 

respectively were saponified. 

Scheme 2. First Coupling Strategy for Synthesizing Compounds 3 (Cys507), 5, 7, 8, 11–16, 

and the Corresponding Estersa 

 
aReagents and conditions: (a) Cl2PPh3, CHCl3, 80 °C, 12 h; (b) PCl3, xylenes, 150 °C, 12 h; 

(c) Fe, NH4Cl, EtOH/H2O, 90 °C, 1 h; (d) 2-bromopropane, K2CO3, DMF, 80 °C, 12 h; (e) 1 

N NaOH, MeOH/THF, rt, 12 h. 
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The second strategy (Scheme 3) started with coupling of the C-protected middle ring 29 to the 

N-protected N-terminal ring 55 via dichlorotriphenylphosphorane to yield the dipeptide 74. 

Ester hydrolysis of 74 afforded the corresponding acid 75, which was coupled to the C-

terminal ring 42 using the same coupling reagent to produce the tripeptide 76. Reduction of 

76 to the corresponding amine 77 and final ester saponification afforded the amino acid 6. 

 

Scheme 3. Second Coupling Strategy for Synthesizing Compound 6a 

 
aReagents and conditions: (a) Cl2PPh3, CHCl3, 80 °C, 12 h; (b) 1 N NaOH, MeOH/THF, rt, 12 

h; (c) Fe, NH4Cl, EtOH/H2O, 90 °C, 1 h. 

 

Synthesis of the pyridine containing derivatives 9 and 10 was similar to the first strategy 

(Scheme 4). However, as the picolinic acids 34 and 37 did not contain hydroxyl group, we 

used less selective coupling reagents. The first coupling was achieved using EDC/HOBt, 

whereas the second coupling was carried out via acylation of the amino dipeptides 80 and 81 

with p-nitrobenzoyl chloride to give the tripeptides 82 and 83, respectively. Noteworthy, the 

coupling reagent dichlorotriphenylphosphorane was also tried, and efficiently produced the 

target amides in good to excellent yields. 
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Scheme 4. Synthesis of the Pyridine Containing Tripeptides 9 and 10a 

 
aReagents and conditions: (a) EDC/HOBt, DMF, CHCl3, 0 °C–rt, 12 h; (b) Fe, NH4Cl, 

EtOH/H2O, 90 °C, 1 h; (c) DCM, pyridine, rt, 24 h; (d) 1 N NaOH, MeOH/THF, rt, 12 h. 

 

 

Antibacterial Activity 

All active compounds were evaluated for their antibacterial activity against a panel of Gram-

positive and Gram-negative bacteria (Table 2). The new Cys507 analogs showed up to 8–16-

fold improved activities against Gram-positive strains compared to the parent antibiotic 

Cys507. A good correlation between the antibacterial effects and topoisomerases IIA 

inhibitory activities was observed. In contrast to 1 and 2,14 Cys507 and analogs did not show 

significant activity against E. coli wild-type, but they were active against the efflux-deficient 

E. coli tolC3 mutant. These results implied that efflux mechanisms of E. coli affected most of 

the compounds. Some compounds, e.g., 8 and 13, suffered from penetration issues through the 

Gram-negative outer membrane as indicated by the enhanced MIC values (8-fold) in presence 

of a permeability enhancer. 
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Table 2. Antibacterial Activities of Cys507 and its Synthetic Analogs    

Compd 

MIC (µg/mL) 

S. aureus 

Newman 

S. pneumoniae 

DSM-20566 

M. luteus 

DSM-1790 

E. faecalis 

ATCC-29212 

E. coli                    

DSM-1116 

E. coli                  

DSM-26863b 

E. coli  

DSM-26863 

+ PMBNc 

3 (Cys507) n.d.a 64 128 64–128 >128 >128 32–64 

5 64 16–32 >64 >64 >64 >64 >64 

7 32 16 64 32 >64 4 2 

8 8 8–16 32 16–32 >64 32 4 

10  8 >64 8–16 >64 >64 16 4 

13  32 8 >64 64 >64 32 4 

14  8 4-8 64 32 >64 16 4 

aNot determined; btolC3 genotype; c3 µg/ml polymyxin B nonapeptide. 

 

Metabolic Stability 

Besides effectiveness against bacteria, metabolic stability of antibiotic leads is a crucial feature 

of optimization.9 We investigated Cys507 and the analogs 8, 10, and 13 for their phase І and 

ІІ metabolic biotransformation using human liver S9 fraction. Cys507 and all synthetic 

compounds displayed an extraordinary high metabolic stability (t1/2 >240 min). These results 

underline the following conclusions: First, although being peptidomimetics, compounds with 

amide linkages between non-proteinogenic amino acids are highly resistant to phase I 

proteolytic enzymes. Second, the phase II vulnerable hydroxyl group of Cys507 and 13 was 

not affected by the conjugating enzymes. This is in line with our gyrase inhibition results 

confirming that this unique hydroxyl group is almost inaccessible for intermolecular 

interaction, and in principle plays an intramolecular role. Lastly, conformational modification 

(anti to syn), e.g., compounds 8 and 10 maintained the outstanding metabolic stability. 

 

CONCLUSIONS 

We improved the synthesis, topoisomerases IIA inhibition and antibacterial activity of the 

novel antibiotic Cys507 through an interactive rational design of Cys507 analogs and 

establishment of concise robust synthetic procedures. SAR revealed importance of the alkoxy 

side chains and irrelevance of the hydroxyl group for gyrase inhibition. The terminal carboxyl 

and amino/nitro moieties were necessary for activity. Moreover, simulation of Cys507 

molecular shape and electrostatic properties could also play a positive role. We exploited 

IMHB in a pioneer method to prove the bioactive conformation of Cys507 as syn form. 

Studying the privileged molecular conformation in solution as well as solid state enabled us to 

deduce the conformation–activity relationship. We found that the prevailing anti conformation 
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of Cys507 should be forced in the inverse direction (syn) or at least liberated to improve the 

activity. Modification of the Cys507 scaffold to a pyridine based structure increased chemical 

diversity, which is an intrinsic criterion to combat antibiotic resistance.10 Furthermore, we 

succeeded in simplification of Cys507 structure, bearing a middle ring with challenging 

tetrasubstitution pattern, into chemically feasible analogs while maintaining the enhanced 

activity. It could be shown that the cystobactamids’ and analogs’ mode of action is at least in 

part mediated by DNA minor groove binding and not intercalation. High activity and 

specificity seem to be mediated by further interactions with the target protein–DNA complex, 

e.g., protein contacts or binding to specific conformational states of the biomacromolecules. 

An important advantage of Cys507 and the novel analogs is the high metabolic stability. This 

work facilitates the rapid development of cystobactamids and similar antibiotics.31 Prediction 

of compound activity can be approached in silico by analyzing the preferred conformation. 

This saves efforts required for generating large futile libraries and enriches the number of 

active hits. Finally, we emphasized that medicinal chemist is able to trim and optimize natural 

antibiotics into more active drug-like compounds suitable for clinical application. Nonetheless, 

nature inspiration should be indispensable. 

 

EXPERIMENTAL SECTION 

Experimental procedures for the synthesis of the final compounds and the intermediates as 

well as their characterization, NMR spectra, computational work, biological experiments and 

X-ray crystallographic data are described in details in the Supporting Information. 
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4 Final Discussion  

In the following sections, reference to the compounds mentioned in chapter 3 is modified to 

the compound’s number accompanied by the roman number of the corresponding 

paper/manuscript, e.g., compound 3 in paper III is labeled compound 3/III for the sake of 

clarity. 

 

4.1 Structure–Activity Relationships 

Building relationships between the chemical structure and the bioactivity for a set of 

compounds is a fundamental tool in medicinal chemistry. It enables the determination of the 

structural features necessary for evoking the biological activity. By this knowledge, both 

structure optimization and activity improvement can be achieved. 

 

4.1.1 Ureido-Heterocyclic-Carboxylic Acids as E. coli RNAP Inhibitors  

The goal of the development of novel classes of RNAP “switch region” inhibitors is addressed 

in publications I and II. The starting point was the previously discovered and optimized class 

of 5-aryl-3-ureidothiophene-2-carboxylic acids (class I) (Sahner et al. 2013). Three new 

groups of regioisomers were desgined (classes II–IV) by altering the postion of the aryl ring 

or exchanging the positions of the carboxyl and ureido moieties at the thiophene nucleus. 

Compounds of class II (5-aryl-2-ureidothiophene-3-carboxylic acids) showed decent RNAP 

inhibitory activities that are equipotent to those of class I. Class III compounds (4-aryl-2-

ureidothiophene-3-carboxylic acids) exhibited moderate activities, whereas the candidates of 

class IV (4-aryl-3-ureidothiophene-2-carboxylic acids) suffered from a dramatic loss of 

activity. This indicates that the favorable arrangement of the aryl, ureido, and carboxyl motifs 

at the thiophene ring for optimum RNAP inhibition is afforded by class I and II. The exciting 

identical activities of class I and II could be clarified on molecular similarity basis. In silico 

similarity analysis, flexible alignment, and docking in the “switch region” binding site 

demonstrated that compounds of class I and II are capable of adopting the same orientation 

and binding interactions within the “switch region” leading to equivalent RNAP inhibitory 

activities. 

After establishing the proper configuration of the aryl, ureido, and carboxyl functionalities, 

the thiophene core was swapped for other five membered heterocycles generating three more 

classes. Classes V and VI bearing furan rings showed 3-fold reduced activity compared to 

classes I and II, whereas class VII with a thiazole nucleus displayed only a slight decrease in 
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activity. This result indicates that the isosteric replacement of –S– by –O– negatively affects 

the affinity to RNAP, whereas substitution of =N– for =CH– can be tolerated. This could be 

accounted by alterations in lipophilicity, electronic distribution and particularly the ring size 

of the thiophene nucleus, which controls interatomic distances, bond angles as well as the 

overall shape of the molecule. This assumption is supported by the clear relationship obtained 

from plotting the angle (α) between the aryl and ureido arms of classes I–VII (Figure 9) versus 

the corresponding RNAP inhibitory activity. The resultant parabolic curve underlines the role 

of molecular geometry in binding and reveals the optimium α values of 150°–159° for the 

activity of these classes against RNAP. 

The SARs of the substituents at the aryl and ureido groups are consistent with the former 

findings (Sahner et al. 2013). Increasing the lipophilicity and electron withdrawing properties 

at the aryl ring improves the activity, e.g., 19/I vs 16/I and 21/I vs 18/I. At the ureido group, 

substituents with large hydrophobic volume are useful, e.g., 19/I, 21/I, 10/II and 19/II. No 

wonder that the best RNAP inhibitory activity is associated with lipophilic fragments at both 

the aryl and ureido motifs of the molecule. This is ascribed to the hydrophobic nature of the 

respective binding pocket, the “switch region” (Mukhopadhyay et al. 2008). 

 

  

Figure 9. SARs of the 2-ureidothiophene-3-carboxylic acids as E. coli RNAP and HIV-1 RT 

inhibitors. 
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4.1.2 Ureidothiophene-Carboxylic Acids as RT Inhibitors  

Publication II deals with the discovery and development of dual bacterial RNAP and HIV-1 

RT inhibitors. Screening of 8 candidtates from the previously developed RNAP “switch 

region” inhibitors, representing the ureidothiophene classes I–IV, for RT inhibitory activity 

resulted in merely compound 4/II (class II) with good dual activity against both targets. This 

result indicates that the additional chloro substituent at 3-position of the aryl group has a 

positive effect on the RT inhibitory activity (4/II vs 3/II), which is more significant than that 

against RNAP. Another remark, although the assumption that similar molecules show similar 

activites holds true for 4/II (class II) and 2/II (class I) regarding RNAP inhibitory activity, it 

turns out to be improper concerning RT inhibition. This can be assigned to differences between 

the binding sites (the “switch region” and the NNRTI binding pocket) and the slight variances 

in the structure as well (Tc = 0.75 using four-point pharmacophore fingerprint). 

Optimization of compound 4/II began with modification of the ureido moiety. Substituting the 

N-benzyl-N-ethyl motif with N,N-dibenzyl group (10/II) improved RNAP inhibition 3-fold as 

expected, however the activity against RT decreased dramatically. This finding indicates that 

in contrast to RNAP inhibition, too bulky and lipophilic substituent at the ureido moiety is 

disfavored for RT inhibition. Substitution with just N-benzyl group (9/II) negatively affected 

the activity against both RNAP and RT. Interestingly, the dual activity was restored by 

omitting the methylene linker from 9/II (11/II). As compound 11/II has higher ligand 

efficiency than 4/II, it was utilized for the next step of optimization pursuing a structure-based 

design approach. 

Molecular docking of 11/II into the RT allosteric binding site suggested that all three aromatic 

motifs of 11/II are necessary for binding. They are involved in four hydrophobic interactions 

with Trp229, Val106 and Leu100, which are responsible for high fitness costs upon mutation. 

According to this binding mode, diverse substituents at p-position of the N-phenyl ring were 

introduced to make use of the volume between it and the highly conserved region (Trp229, 

Phe227, and Leu234) in order to improve the affinity and decrease the resistance propensity. 

Indeed, the new derivatives showed enhanced RT inhibition up to 12-fold (18/II) achieving 

comparable activity to that of NVP and superior potency to that of AZT-TP. Remarkably, 

addition of a phenyl or 1,2,4-triazolyl ring to the sulfonamide or the acetamide group 

negatively affects the RT inhibitory activity (19/II vs 18/II and 16/II vs 15/II). This result is 

in agreement with the previous hypothesis that too sterically demanding substituents at the 

ureido group are not preferred (Figure 9). 
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To get more insight into SARs, a QSAR model for compounds 11/II−20/II is calculated using 

a multiple regression analysis. The output equation highlights the role of electrostatic and 

steric interactions for activity. Increasing the positive partial charge stands advantageous, 

whereas the number of hydrogen bond donor atoms at the N-phenyl moiety should be kept to 

a minimum (0–1 atoms). The inverse relationship with molecular refractivity underlines the 

importance of less polarizable and non-bulky substituents at the ureido motif for RT inhibition. 

   

4.1.3 Cystobactamid 507 analogs as DNA Gyrase Inhibitors  

Publication III and manuscript IV focus on the development of novel DNA gyrase and 

topoisomerase IV inhibitors based on the natural antibiotic Cystobactamid 507 (Cys507). 

Preliminary modulation of Cys507 structure by synthesizing the methyl homolog 18/III led to 

just a slight reduction in activity indicating that the natural compound is open for modification. 

Reviewing the Cys507 structure revealed some similarity to the α-helix mimetics 3-O-

alkylated benzamides. Nonetheless, Cys507 has a unique hydroxyl group at positon 2ʹ of the 

middle ring and unsubstituted N-terminal moiety (Figure 10). As type of side chains and 

conformation are key factors controlling the activity of α-helix mimetics, a rational design was 

pursued to evaluate the role of isopropoxy side chains and conformation for the gyrase 

inhibitory activity of Cys507. 

 

 

Figure 10. SARs of the cystobactamid 507 analogs as DNA gyrase inhibitors. 
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Compound 5/IV with a methoxy group at the middle ring showed an equipotent activity to 

Cys507, whereas replacement of the isopropoxy with chlorine (6/IV) resulted in a dramatic 

loss in potency. This indicates that the alkoxy groups at the middle ring are essential for 

activity as they probably contribute in the ligand–target interaction and restrict the 

conformation, via IMHB and steric effect, in an optimum orientation necessary for binding. 

On the other side, modification of the isopropoxy group to methoxy at the C-terminal ring 

seems noxious (5/IV vs 18/III). This result suggests that the isopropoxy side chain at the C-

terminal ring is preferred due to its steric and hydrophobic features. Therefore, it was 

conserved in the next steps of optimization. 

Conformational analysis of Cys507, 18/III and 5/IV revealed that these ligands can adopt two 

constrained conformations (syn and anti) referring to the orientation of the alkoxy groups. 

Both conformers are stabilized by three IMHBs. The 2ʹ-hydroxyl group at the middle ring 

controls the conformation via either acting as a HB donor (triggering anti) or acceptor 

(triggering syn). The energetically favored conformation is anti, however interconversion to 

syn is readily accessible thanks to the low energy difference (dE = 0.4–0.7 kcal/mol). These in 

silico findings are strengthened by 2D NOESY studies in a biomimetic environment 

demonstrating that anti is the privileged conformation. In addition, the incidence of syn 

conformation is evidenced by 1H NMR experiment and X-ray crystal structure. 

Since the synthesized compounds so far adopt mainly anti conformation, new compounds 

were designed to adopt syn conformation predominantly through hiding the HB donor property 

of the 2ʹ-hydroxyl and keeping the HB acceptor function by converting it to an alkoxy group. 

The design principle is verified experimentally by 2D NOESY. Compounds 7/IV and 8/IV 

displayed 3–6-fold improved activity, respectively compared to Cys507. This result points out 

that the hydroxyl group is not essential for gyrase inhibition. Moreover, the newly introduced 

alkoxy groups at 2ʹ position of the middle ring boost the activity not only due to restricting the 

conformation to syn form, but also as they elicit additional hydrophobic interaction with the 

target. In this context, the isopropoxy group is more beneficial than the methoxy. 

To confirm that the syn conformer is the bioactive conformation, two rigid pyridine-based 

Cys507 analogs adopting only anti (9/IV) or syn (10/IV) conformation were designed. Results 

showed that 10/IV is 4–7-fold more active than 9/IV and Cys507, respectively. 

Based on the previous findings, simplification of Cys507 structure is attempted to accelerate 

the development process to a drug-like molecule. Removal of the isopropoxy side chain at the 

middle ring (11/IV) is detrimental. In contrast, omitting the hydroxyl group (12/IV) improves 

the activity 2-fold compared to Cys507. The enhanced activity of 12/IV is probably credited 
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to the increase in rotational freedom of the middle ring leading to displacing the 

conformational equilibrium in favor of the syn form. Returning the missing moieties to the 

truncated Cys507 derivatives (11/IV, 12/IV) at position 2ʺ of the N-terminal ring (13/IV, 

14/IV) further augmented the activity. These results are in line with the aforementioned 

findings underlining the importance of the alkoxy group and non-significance of the hydroxyl 

motif for activity. In addition, allowing a free rotation of the middle ring seems beneficial. 

Furthermore, simulation of Cys507 steric and electrostatic properties promotes molecular 

recognition of the synthetic analogs leading to a positive impact on the activity. 

Comparing the gyrase inhibitory activities of the active compounds to the corresponding 

isopropyl esters obviously discloses the significance of the free carboxyl group for activity. 

On the other side, replacement of the amino moiety with nitro (15/IV, 16/IV) does not affect 

the activity markedly. 

 

4.2 Mode of Action Studies  

4.2.1 Reverse Transcriptase Inhibition by 2-Ureidothiophene-3-Carboxylic Acids  

Investigations of the mechanism of action of the 2-ureidothiophene-3-carboxylic acids as RT 

inhibitors are described in publication II. The HIV-1 RT converts the single-stranded viral 

RNA to double-stranded DNA necessary for replication (reverse transcription). There are two 

major classes of RT inhibitors: nucleoside RT inhibitors (NRTIs) are nucleotide analogs that 

are incorporated into viral DNA hindering further extension of DNA chain (chain termination). 

The NNRTIs inhibit RT allosterically via binding to a hydrophobic pocket in the palm domain 

of p66 subunit. They cause the p66 thumb to be stiffened in an open extended conformation 

to the finger domain. Opening and closing of the thumb and finger domains (RT clamp) is 

crucial for grasping and positioning primer/template (p/t) duplex at the polymerase active site. 

The NNRTIs-induced interruption with this motion hinders the catalytic addition of 

nucleotides. 

First, the effect of the dual RNAP/RT inhibitors on the binding parameters of RT to a p/t 

duplex was monitored by applying a FRET assay. The binding affinity of RT to p/t duplex was 

determined to be about 3 nM.  In presence of the compounds, similar values were obtained. 

This indicates that likewise the NNRTIs, the ureidothiophenes marginally affect the binding 

of RT to p/t duplex. 

Afterwards, the effect of the compounds on the relative motions of the thumb and finger 

domains was characterized by utilizing a fluorescence-based assay. The doubly labeled RT 

showed low fluorescence in absence of p/t duplex refering to the proximity of thumb and finger
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domains. In presence of the p/t duplex, a 1.6-fold increase in fluorescence was observed 

hinting to the increased distance between the two clamp domains. More fluorescence 

amplification (2-fold) was noted in the presence of the NNRTI nevirapine as anticipated for 

its mechanism of action. In contrast, a reduction in fluorescence was observed with the 

ureidothiophenes denoting a decrease in the distance between thumb and finger domains. This 

result indicates that these compounds probably exert an opposite effect to nevirapine through 

jamming the RT clamp in a closed conformation. Interestingly, this mechanism is typical for 

the RNAP “switch region” inhibitors, e.g., myxopyronin pointing out that the dual inhibitors 

block the bacterial and viral targets almost by the same mechanism. 

Noteworthy, further evidence that the dual inhibitors bind to the NNRTI binding pocket is 

concluded from the results of the antiretroviral assays using HIV-1 resistant strains having 

mutations in the NNRTI binding site. Compounds 11/II, 18/II, and 19/II, being active against 

HIV-1 wild type, lose their activity against two out of four NNRTIs-resistant mutants. 

In conclusion, the ureidothiophenes inhibit RT non-competitively like NNRTIs. Remarkably, 

they undertake a new mechanism of action through closing of the RT clamp. 

 

4.2.2 DNA Gyrase Inhibition by Cystobactamids and their Analogs  

Cystobactamids are topoisomerases IIA poisons that bind at the gyrase–DNA interface 

partially overlapping the fluroquinolones’ binding site (Baumann et al. 2014). Deeper insight 

into the binding mode of the cystobactamids/analogs is gained in manuscript IV. The 

investigations focus on the site of binding to the DNA part of the target complex. Accordingly, 

two parallel titration experiments were performed with the cystobactamids/analogs using calf 

thymus DNA in the presence of either the DNA minor groove binding dye Hoechst 33342 or 

the DNA intercalating dye EtBr. The concentration dependent decrease in Hoechst 33342 

fluorescence with all cystobactamids/analogs reveals that they are able to displace the dye 

from DNA suggesting that their DNA binding site is the minor groove. On the other side, 

fortunately, the non-remarkable change in EtBr fluorescence with cystobactamids and most of 

the analogs indicates that they lack an intercalation activity. 

Taken together, these findings demonstrate that the cystobactamids/analogs are in fact able to 

bind to DNA targeting the minor groove as a site of interaction. Moreover, they exhibit non-

significant intercalation.
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4.3 Anti-infective Activities and Cytotoxicity to Human Cells 

Back to the “magic bullet” concept, a successful antibiotic should have a broad spectrum 

antibacterial activity and no cytotoxicity to human cells. 

4.3.1 The Dual RNAP/RT Inhibitors “Ureidothiophene Carboxylic Acids” 

Evaluation of the antibacterial activity of the developed ureidothiophene classes revealed that 

the compounds are highly active against Gram-positive bacteria, e.g., S. aureus and B. subtilis 

(MIC95 values are down to 2 µg/mL). Notably, the antibacterial effects correlate well with the 

respective RNAP inhibitory activites of the compounds. Unfortunately, they do not show 

growth inhibition of the Gram-negative wild type strains, e.g., E. coli K12 and P. aeruginosa 

O1. Interestingly, the compounds display significant antibacterial activities on the Gram-

negative E. coli TolC strain, which is a mutant lacking the outer membrane channel of the 

tripartite AcrB multidrug efflux pump. This finding implies that the novel RNAP inhibitors 

can efficiently permeate through the outer membrane of Gram-negative bacteria. However, 

they are readily recognized by an innate resistance mechanism “the efflux pumps”. 

Impressively, the antibacterial potencies of the compounds are fully retained against Rif-

resistant E. coli TolC strains. This result demonstrates that indeed the compounds possess no 

cross-resistance with rifamycins as intended for the “switch region” inhibitors. 

Assessment of the antiretroviral activities of the dual RNAP/RT inhibitors using cellular 

infectivity assay indicated that the compounds exhibit good intracellular inhibitory activities 

of HIV-1 replication in the low micromolar range (IC50 values of 5–15 µM). Moreover, the 

antiretroviral spectrum of the compounds is extended to include some HIV-1 strains with 

multiple resistance mutations to clinically used NNRTIs. The finding that these dual acting 

anti-infectives display no cross-resistance in NNRTIs-resistant HIV-1 strains presents a 

leading advantage over the first and second generation NNRTIs. 

The effect of the novel anti-infective class on human cell viability was investigated in two 

different cell lines (HeLa and HEK 293). Results indicated that the compounds exhibit only 

marginal or no cytotoxicity. 

 

4.3.2 The Topoisomerases IIA Inhibitors “Cystobactamids and Analogs” 

Determination of the antibacterial properties of the developed Cys507 analogs revealed that 

the new congeners display up to 8–16-fold improved activities against a panel of Gram-

positive strains compared to the parent antibiotic Cys507. In addition, a good correlation 

between the antibacterial effects and topoisomerases IIA inhibitory activities is observed. 

Likewise Cys507 and in contrast to Cys919-2, the new analogs lack an antibacterial effect on 
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E. coli wild type, although they show good activities against the efflux mutant E. coli tolC3. 

This refers again to the efflux issue as a major mechanism of resistance to such compounds in 

Gram-negative pathogens. 

 

4.4 Ureidothiophenes’ Uptake and Resistance Mechanisms in E. coli  

The fact that the ureidothiophene RNAP inhibitors show decent antibacterial activities toward 

Gram-positive pathogens but not toward Gram-negative species, although they are active 

against E. coli TolC strain, prompted more investigations for gaining deeper insight into the 

mechanisms of uptake and non-susceptibility in Gram-negative bacteria represented by E. coli. 

For this objective, the antibacterial effects of the ureidothiophenes were assessed on three 

different E. coli strains: E. coli K12 (wild type with intact cell wall and efflux systems), E. coli 

D22 (mutant defective in the outer membrane LPS layer), and E. coli TolC (mutant defective 

in the AcrB efflux pump). Furthermore, the antibacterial assays were performed under three 

various conditions: normal growth conditions, in the presence of PMBN (an outer membrane 

permeability enhancer), and in the presence of PAβN (a universal efflux pump inhibitor). 

Results revealed that the activities are not improved against neither the more permeable E. coli 

D22 strain nor the wild type E. coli K12 in the presence of PMBN. Just a non-significant 

decrease in MIC values (1.4–2.7-fold) is detected with E. coli TolC in the presence of PMBN. 

On the other hand, activities are markedly enhanced in the presence of PAβN against E. coli 

K12 and E. coli D22 strains (≥ 3-fold) as well as E. coli TolC (5–14-fold). 

These findings indicate that the outer membrance barrier plays a non-signifcant role in the 

resistance to the ureidothiophenes. However, the efflux pumps are most probably the main 

factor responsible for non-susceptibility in Gram-negative bacteria. Furthermore, they suggest 

that the uptake route of these compounds is primarily through the porins (Vaara 1992). 

 

4.5 Frequency of Resistance Development 

As mentioned in section 1.2, bacterial resistance is a natural incident. It is an underestimation 

of these smart microorganisms to think about an unbeatable antibacterial agent with no 

symptoms of resistance. The real thinking is to find an antibiotic that can decelerate the rate 

of resistance development. Targeting the RNAP “switch region” or the homologous DNA 

gyrase and topoisomerase IV simultaneously, as followed in this work, could be the 

appropriate approaches. 

Determination of spontaneous resistance frequency of compound 30/I as example for the new 

RNAP inhibitors revealed an outstanding (>1690-fold) lower rate than Rif and even the 
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“switch region” binder Myx. This can be clarified by the fact that the new compounds partially 

occupy the “switch region” unlike Myx that plugs the binding site entirely. Mutations in the 

Myx enecarbamate pocket, triggering Myx resistance (Srivastava et al. 2012), should not 

impair the binding nor the inhibitory activities of the compounds as proposed for their binding 

mode (Fruth et al. 2014). Molecular flexibility of this class contributes to the low resistance 

frequency too, as indicated by INPHARMA studies suggesting that the ureidothiophenes can 

adopt two different binding modes within the “switch region” (Fruth et al. 2014). Another 

reason could be an additional effect on a further target site. 

Summing up, this finding indicates that indeed the propensity of resistance development is 

significantly decreased by the ureidothiophenes compared to clinically used antibiotics such 

as rifampin. 

 

4.6 Scaffold Hopping and Identification of Cys507 Bioactive Conformation via IMHBs 

The utilities of IMHB for improving the ligand-target binding, physicochemical properties, 

and scaffold hopping are well established in medicinal chemistry (Kuhn et al. 2010). Scaffold 

hopping referes to the identification of isofunctional chemical structures with different 

molecular frameworks (Schneider et al. 1999). Hopping to a new chemical scaffold could be 

beneficial for overcoming potency, pharmacokinetic and intellectual property issues 

encountered with the parent backbone (Bohm et al. 2004; Sun et al. 2012). 

Conformational analysis of Cys507 revealed that the compound adopts two predominant 

conformations (anti or syn) stabilized by IMHBs with more tendency toward the anti form in 

solution (Figure 11). Identification of the bioactive conformation (the target-bound 

conformation) is a valuable tool in drug design for increasing the binding affinity to the target. 

This bound conformation can be determined by X-ray structure or NMR spectroscopy 

(Gonnella et al. 1995; Abraham and Burger 2003; Jimenez-Barbero et al. 2006). Nevertheless, 

these techniques have some limitations (Abraham and Burger 2003; Hawkins et al. 2008). 

Alternatively, the bioactive conformation can be designated by monitoring the effect of 

freezing the compound in its putative conformations on activity. The classical approaches 

followed for this purpose are restriction of the conformational freedom by cyclization or 

multiple bond formation and increasing the rotation barriers by steric hinderance. 

Manuscript IV describes a pioneer method to recognize the bioactive conformation of Cys507 

utilizing IMHB.  Through replacement of the phenolic core with a pyridine system, two IMHB 

rigid Cys507 analogs (9/IV and 10/IV) preorganized in anti and syn conformation, 

respectively, are designed (Figure 11). Molecular rigidity of these ligands is confirmed by MD
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calculations, in solution (2D NOESY at variable temperature) as well as in solid state (X-ray 

crystal structure). Results revealed that compound 10/IV (syn) is 4–7-fold more potent than 

9/IV (anti) and Cys507 indicating that the syn form is most likely the target bound 

conformation of Cys507. 

 

 

Figure 11. Proving the bioactive conformation of Cys507 via IMHB rigid analogs. 

 

This novel approach for detecting the bioactive conformation via non-covalently bonded rigid 

structures presents several advantages: First, ligand efficiency is improved by omitting the 

hydroxyl group and conserving the syn conformation merely via IMHB in lieu of additional 

rings or bulky moieties. Second, solubility and ligand-lipophilicity efficiency are increased by 

substitution of a polar pyridine ring for benzene. Third, binding affinity of the rigid ligand is 

enhanced by reducing the unfavorable entropic contribution to the Gibbs free energy of 

binding ∆𝐺 =  ∆𝐻 −  𝑇∆𝑆  (Klebe 2015). Last but most importantly, leaping of Cys507 

scaffold to the novel pyridine-based chemotype with a conformationally-locked property could 

circumvent the potential resistance to the cystobactamids (Bastida et al. 2006; Fischbach and 

Walsh 2009).
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4.7 Summary and Outlook  

4.7.1 Evolution of the First Small Molecule Dual Bacterial RNAP and HIV-1 RT 

Inhibitors 

Novel classes of bacterial RNAP “switch region” inhibitors are discovered through two analog 

design strategies. The new compounds exhibit potent antibacterial activities on Gram-positive 

pathogens and only the efflux mutant Gram-negative bacteria. They are characterized by a 

significant low rate of resistance development, no cross-resistance with other RNAP inhibitors 

and marginal cytotoxicity to human cells. These promising features were the cornerstone for 

further improvement by targeting the HIV-1 NNRTI binding site to develop the first small 

molecule bacterial RNAP and HIV-1 RT inhibitors. The highlight of them is the ability to 

prevent the replication of some HIV-1 NNRTI-resistant strains. 

Altogether, these ureidothiophene-based RNAP/RT inhibitors possessing novel chemical 

scaffold launch a new hope toward the development of dual acting anti-infectives with low 

resistance propensity for the treatment of HIV and bacterial co-infection. 

High lipophilicity of these classes that might be a drawback can be circumvented by decoration 

with hydrophilic substituents at the solvent exposed positions of the structure. Alternatively, 

scaffold hopping could be an appropriate solution, especially after establishing the binding 

mode of these compounds within the RNAP “switch region” (Fruth et al. 2014). 

 

4.7.2 Improvement of Cystobactamids’ Synthesis, Topoisomerases IIA Inhibition and 

Antibacterial Activities 

The natural antibiotic family of cystobactamids targeting the bacterial topoisomerases IIA 

looks very attractive as a competent solution for AMR problem. In this thesis, a multifaceted 

medicinal chemistry optimization of the cystobactamid class has been achieved. 

Based on Cys507, numerous tripeptidic analogs are developed with enhanced inhibitory 

effects up to 7-fold on the bacterial targets (DNA gyrase and topoisomerase IV) and 8–16-fold 

more potent antibacterial activities against Gram-positive species. In addition, the new Cys507 

analogs are characterized by an excellent metabolic stability. 

Pruning the Cys507 structure is attained by a careful study of SARs and conformation– activity 

relationships. Moreover, the bioactive conformation is recognized by an innovative method 

using IMHBs instead of covalent bonds for conformation restriction. Furthermore, scaffold 

hopping of Cys507 to pyridine-based surrogates meets the need for increasing molecular 

diversity and enlargement of the chemical space of antibiotics.  
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Total synthesis feasibility is improved too through establishment of definitely brief and 

economic synthetic route for Cys507 and its building blocks common to all other 

cystobactamids. This new synthetic shortcut would accelerate the optimization process of the 

more potent members of cystobactamid family, e.g., Cys919-2 and other Cys507 scaffold-

bearing hexapeptides. 
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6 Supporting Information 

This chapter contains the supporting information of the studies presented in chapter 3. It 

includes further experimental procedures and results, as well as additional figures. 

 

6.1 Supporting Information for Publication II 

Full supporting information is available on the ACS Publications website at: 

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b00730. 

 
6.1.1 Chemistry 

Synthesis and experimental data of compounds 1–9 and 22–26 were described in a previous work1 and 

references therein. Compounds 21 and 27 are commercially available. 

2-(3,3-Dibenzylureido)-5-(3,4-dichlorophenyl)thiophene-3-carboxylic acid (10) 

 

Synthesis of compound 10 was performed as described previously for 9.1 

Yield 90%; beige solid; 1H NMR (300 MHz, DMSO-d6) δ 12.91 (br s, 1H), 10.99 (br s, 1H), 7.87 (d, 

J = 1.0 Hz, 1H), 7.58 (m, 3H), 7.34 (m, 10H), 4.67 (s, 4H); 13C NMR (75 MHz, DMSO-d6) δ 166.70, 

153.17, 151.30, 136.89 (2C), 134.26, 131.85, 131.05, 129.11, 128.60 (4C), 127.85, 127.39 (2C), 127.14 

(4C), 126.14, 124.72, 121.86, 112.22, 50.34 (2C); m/z (ESI+) 510 [M]+; tR = 16.01 min. 

 

General procedure for synthesis of N-(substituted)-4-nitroanilines 29, 30, 33–35 and 39  

To a stirred solution of 4-nitroaniline 27 (1.38 g, 10 mmol), and pyridine (0.9 mL, 11 mmol) in DCM 

(50 mL), the appropriate acyl/sulfonyl/sulfamoyl chloride (11 mmol) was added drop wise. The 

reaction mixture was stirred at room temperature overnight then solvent was removed by vacuum 

distillation. The obtained material was triturated with cold 1 N HCl (50 mL) and collected by filtration, 

washed with cold 1 N HCl, water then n-hexane. 

N-(4-Nitrophenyl)acetamide (29) 
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Yield 94%; greenish yellow solid; 1H NMR (300 MHz, DMSO-d6) δ 9.73 (br s, 1H), 7.94 (d, J = 9.1 

Hz, 2H), 7.60 (d, J = 9.1 Hz, 2H), 1.99 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 169.03, 144.65, 

142.13, 124.14 (2C), 118.33 (2C), 23.87; m/z (ESI+) 181 [M + H]+; tR = 9.52 min. 

Methyl (4-nitrophenyl)carbamate (30) 

 

Yield 93%; greenish yellow solid; 1H NMR (300 MHz, DMSO-d6) δ 10.37 (br s, 1H), 8.19 (d, J = 9.2 

Hz, 2H), 7.68 (d, J = 9.2 Hz, 2H), 3.72 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 153.82, 145.75, 

141.74, 125.14 (2C), 117.71 (2C), 52.28; m/z (ESI+) 197 [M + H]+; tR = 8.95 min. 

N-(4-Nitrophenyl)methanesulfonamide (33) 

 

Yield 75%; greenish yellow solid; 1H NMR (300 MHz, DMSO-d6) δ 10.73 (br s, 1H), 8.22 (d, J = 9.2 

Hz, 2H), 7.37 (d, J = 9.2 Hz, 2H), 3.18 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 145.38, 143.28, 

126.28 (2C), 118.64 (2C), 40.78; m/z (ESI+) 216 [M]+; tR = 7.77 min. 

N,N-Dimethyl-N'-(4-nitrophenyl)sulfamide (34) 

 

Yield 70%; yellow solid. 

N-(4-Nitrophenyl)benzenesulfonamide (35) 
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Yield 92%; yellow crystal; 1H NMR (300 MHz, DMSO-d6) δ 10.44 (br s, 1H), 8.04 (d, J = 9.1 Hz, 2H), 

7.87 (dd, J = 8.3, 1.2 Hz, 2H), 7.50 (m, 3H), 7.29 (d, J = 9.1 Hz, 2H); 13C NMR (75 MHz, DMSO-d6) 

δ 143.80, 142.85, 139.02, 132.82, 128.81 (2C), 126.70 (2C), 124.76 (2C), 117.88 (2C); m/z (ESI+) 278 

[M]+; tR = 12.32 min. 

2-Chloro-N-(4-nitrophenyl)acetamide (39) 

 

Yield 98%; greenish yellow solid; 1H NMR (300 MHz, DMSO-d6) δ 10.87 (br s, 1H), 8.23 (d, J = 9.2 

Hz, 2H), 7.83 (d, J = 9.2 Hz, 2H), 4.33 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 165.57, 144.56, 

142.61, 125.02 (2C), 119. 08 (2C), 43.56; m/z (ESI+) 214 [M]+; tR = 10.63 min. 

 

N-(4-Nitrophenyl)-2-(1H-1,2,4-triazol-1-yl)acetamide (40) 

 

To a stirred mixture of 1,2,4-triazole (1.04 g, 15 mmol) and K2CO3 (2.42 g, 17.5 mmol) in DMF (40 

mL), 2-chloro-N-(4-nitrophenyl)acetamide 39 (3.22 g, 15 mmol) was added. The reaction was stirred 

at 70 °C for 1 h and at room temperature for further 1 h, then it was poured onto ice cooled water (50 

mL). The precipitate was collected by filtration, washed with cold water then n-hexane. 

Yield 96%; yellow solid; 1H NMR (300 MHz, DMSO-d6) δ 11.00 (br s, 1H), 8.57 (s, 1H), 8.24 (d, J = 

9.2 Hz, 2H), 8.01 (s, 1H), 7.82 (d, J = 9.2 Hz, 2H), 5.22 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 

165.64, 151.43, 145.65, 144.49, 142.60, 125.08 (2C), 119.03 (2C), 51.86; m/z (ESI+) 248 [M + H]+; 

tR = 8.84 min. 

 

General procedure for synthesis of N-((un)substituted)-1,4-phenylenediamines 28, 31, 32, 36–38 

and 41  

To a stirred solution of 4-nitroaniline 27 or derivatives (5 mmol) in EtOH (30 mL), iron powder (1.40 

g, 25 mmol) was added at 55 °C followed by NH4Cl (133 mg, 2.5 mmol) solution in water (15 mL). 

The reaction was heated at 90 °C for 1 h, then iron was filtered while hot and the filtrate was 

concentrated in vacuo. The residue was diluted with water (15 mL) and basified by NaHCO3 (saturated 

aqueous solution) to pH 7–8. The mixture was extracted with EtOAc (3 × 20 mL). The combined 
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organic extract was washed with brine, dried over anhydrous MgSO4, and the solvent was removed by 

vacuum distillation. The obtained material was triturated with n-hexane, and collected by filtration. 

1,4-Phenylenediamine (28) 

 

Yield 65%; pink crystals; 1H NMR (300 MHz, CDCl3) δ 6.58 (s, 4H), 3.33 (br s, 4H); 13C NMR (75 

MHz, CDCl3) δ 138.54 (2C), 116.69 (4C); m/z (ESI+) 150 [M + H + MeCN]+; tR = 0.88 min. 

N-(4-Aminophenyl)acetamide (31) 

 

Yield 86%; buff solid; 1H NMR (300 MHz, DMSO-d6) δ 8.98 (br s, 1H), 7.20 (d, J = 8.6 Hz, 2H), 6.52 

(d, J = 8.6 Hz, 2H), 3.89 (br s, 2H), 1.99 (s, 3H); 13C NMR (75 MHz, DMSO-d6) δ 167.83, 142.94, 

129.19, 121.18 (2C), 114.36 (2C), 23.41; m/z (ESI+) 151 [M + H]+; tR = 1.08 min. 

Methyl (4-aminophenyl)carbamate (32) 

 

Yield 82%; pink solid; 1H NMR (500 MHz, CDCl3) δ 7.14 (br s, 2H), 6.64 (d, J = 8.8 Hz, 2H), 6.49 

(br s, 1H), 3.75 (s, 3H), 3.58 (br s, 2H); 13C NMR (126 MHz, CDCl3) δ 154.53, 142.74, 129.15, 121.03 

(2C), 115.54 (2C), 52.16; m/z (ESI+) 167 [M + H]+; tR = 4.58 min. 

N-(4-Aminophenyl)methanesulfonamide (36) 

 

Yield 85%; reddish solid; 1H NMR (500 MHz, DMSO-d6) δ 8.90 (br s, 1H), 6.89 (d, J = 8.8 Hz, 2H), 

6.52 (d, J = 8.8 Hz, 2H), 5.01 (br s, 2H), 2.80 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 146.68, 

125.99, 124.83 (2C), 114.11 (2C), 38.16; m/z (ESI+) 187 [M + H]+; tR = 2.50 min. 
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N'-(4-Aminophenyl)-N,N-dimethylsulfamide (37) 

 

Yield 68%; beige crystals; 1H NMR (300 MHz, DMSO-d6) δ 8.90 (br s, 1H), 6.91 (d, J = 6.5 Hz, 2H), 

6.48 (d, J = 6.5 Hz, 2H), 4.41 (br s, 2H), 2.64 (s, 6H); 13C NMR (75 MHz, DMSO-d6) δ 144.92, 126.99, 

123.59 (2C), 114.21 (2C), 37.72 (2C); m/z (ESI+) 216 [M + H]+; tR = 2.11 min. 

N-(4-Aminophenyl)benzenesulfonamide (38) 

 

Yield 90%; pink solid; 1H NMR (300 MHz, DMSO-d6) δ 9.11 (br s, 1H), 7.62 (m, 2H), 7.43 (m, 1H), 

7.34 (m, 2H), 6.72 (d, J = 8.6 Hz, 2H), 6.40 (d, J = 8.6 Hz, 2H), 4.02 (br s, 2H); 13C NMR (75 MHz, 

DMSO-d6) δ 145.00, 139.47, 131.77, 128.20 (2C), 126.59 (2C), 126.33, 124.60 (2C), 114.47 (2C); m/z 

(ESI+) 249 [M + H]+; tR = 8.27 min. 

N-(4-Aminophenyl)-2-(1H-1,2,4-triazol-1-yl)acetamide (41) 

 

Yield 75%; pale grey solid; 1H NMR (300 MHz, DMSO-d6) δ 9.82 (br s, 1H), 8.36 (s, 1H), 7.84 (s, 

1H), 7.21 (s, 2H), 6.52 (s, 2H), 4.98 (s, 2H), 4.39 (br s, 2H); 13C NMR (75 MHz, DMSO-d6) δ 162.93, 

150.92, 144.72, 144.27, 127.77, 120.90 (2C), 114.01 (2C), 51.71; m/z (ESI+) 218 [M + H]+; tR = 0.91 

min. 
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6.1.2 Substituent Constants and Molecular Descriptors 
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6.1.3 Binding and Mechanistic Studies of the Compounds 

To perform binding studies, RT labeled with Alexa488 at position 69 in the finger subdomain of p66, 

was titrated with increasing concentrations of a model p/t duplex, where the template oligonucleotide 

sequence was labeled by carboxytetramethylrhodamine (TAMRA) at 7 nt away from the 3ʹ-OH end of 

the primer (Figure S1A). The FRET efficiency is also sensitive to RT orientation on the duplex, with 

high FRET being obtained when RT is bound in polymerase orientation (polymerization site is towards 

3ʹ-OH end of primer). Binding affinities were obtained by fitting the FRET efficiency at different 

concentrations of p/t duplexes (Figure S1B) to eq 3, by assuming a single binding site for RT on the 

p/t. 

 

 

Figure S1. Effect of compounds 4 and 17 on the binding of RT to p/t duplex: (A) Sequence of the p/t 

duplex used in this study. The FRET acceptor fluorophore, TAMRA, is attached to the Thr residue in 

red in the template sequence; (B) The FRET efficiencies for 60 nM Alexa488-labelled RT are plotted 

against increasing concentrations of TAMRA-labeled p/t duplex in the absence (black squares) and in 

the presence of compound 4 (blue triangle) or compound 17 (violet triangle). FRET efficiencies were 

calculated as described in the methods section. Red lines represent the best fits of the experimental data 

to eq 3 and the values given in Table S2. 
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Table S2. Binding and Kinetic Parameters of the Interaction between RT and p/t Duplex in the 

Presence of the Inhibitors 

Sample Kd (nM)a Kinetic rate constants, kobs (s-1), × 103b 

RT 2.6 (±0.2) -- 

RT + NVP 3.5 (±0.2) 223 (±10) 

RT + 4 3.0 (±0.3) 67 (±5) 

RT + 11 2.2 (±0.2) 41 (±10) 

RT + 12 3.4 (±0.1) 52 (±6) 

RT + 13 1.9 (±0.2) 60 (±7) 

RT + 15 3.1 (±0.3) 76 (±8) 

RT + 16 3.7 (±0.4) 49 (±6) 

RT + 17 3.5 (±0.4) 87 (±5) 

RT + 18 2.9 (±0.3) 97 (±10) 

RT + 19 3.3 (±0.4) 50 (±5) 

RT + 20 2.8 (±0.4) 47 (±9) 

aBinding parameters were obtained as described in the materials and methods section. RT was labeled 

at position 69 of the p66 domain with alexa488 dye. Experiments were repeated at least 3 times; bA RT 

mutant doubly labeled at positions 24 and 287 with bodipy dyes was used. Rate constants are calculated 

by using eq 2. 

 

 

 

 

Figure S2. Distance changes between thumb and finger subdomains of RT: 3D structure of HIV-1 RT 

in the absence (A) and presence of either DNA/DNA p/t (B) or nevirapine (red oval) (C). The 

recombinantly engineered cysteines in thumb and finger are shown by gray spheres. The average 

distance between finger and thumb varies from ~ 13 Å (in the absence of duplex) to ~ 43 Å (in the 

presence of NVP). The figures were prepared by using structures in protein data bank (PDB ID: 1DLO, 

1R0A and 1S1U). 
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Figure S3. 1H NMR spectrum (300 MHz, DMSO-d6) indicating the formation of a mixture of the 

ureidothiophene 13 (blue) and the thiophenamide 42 (red) in 1.00:0.85 ratio, respectively from the 

reaction of compound 26 with p-anisidine in absence of TEA.  
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6.2 Supporting Information for Publication III 

Full supporting information is available on the Thieme E-Journals website at: 

http://dx.doi.org/10.1055/s-0034-1380509. 

 

6.2.1 General Information 

All reactions were performed in oven dried glassware under an atmosphere of nitrogen gas unless 

otherwise stated. 1H-NMR spectra were recorded at 300 MHz with a Bruker Fourier 300 or 400 MHz 

with a Bruker AVS-400 or at 500 MHz with a Bruker DRX-500. 13C-NMR spectra were recorded at 

75 MHz with a Bruker Fourier 300 or 100 MHz with a Bruker AVS-400 or 125 MHz with a Bruker 

DRX-500. Multiplicities are described using the following abbreviations: s = singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet, hept = heptuplet, b = broad. Chemical shift values of 1H and 13C 

NMR spectra are commonly reported as values in ppm relative to residual solvent signal as internal 

standard. The multiplicities refer to the resonances in the off-resonance decoupled spectra. These were 

elucidated using the distortionless enhancement by polarization transfer (DEPT) spectral editing 

technique, with secondary pulses at 90° and 135°, and/or Heteronuclear Multiple Quantum Coherence 

(HMQC) and Heteronuclear Multiple Bond Coherence (HMBC) 2D-NMR techniques. Multiplicities 

are reported using the following abbreviations: s = singlet (due to quaternary carbon), d = doublet 

(methine), t = triplet (methylene), q = quartet (methyl). Mass spectra (EI) were obtained at 70 eV with 

a type VG Autospec spectrometer (Micromass), with a type LCT (ESI) (Micromass) or with a type Q-

TOF (Micromass) spectrometer in combination with a Waters Aquity Ultraperformance LC system, or 

by LC/MS Finnigan Surveyor MSQ Plus (Thermo Fisher Scientific, Dreieich, Germany). The system 

consists of LC pump, autosampler, PDA detector, and single-quadrupole MS detector, as well as the 

standard software Xcalibur for operation. Analytical thin-layer chromatography was performed using 

precoated silica gel 60 F254 plates (Merck, Darmstadt), and the spots were visualized with UV light at 

254 nm or alternatively by staining with potassium permanganate, phosphomolybdic acid, 2,4-

dinitrophenol or p-anisaldehyde solutions. Tetrahydrofuran (THF) was distilled under nitrogen from 

sodium/benzophenone. Dichloromethane (CH2Cl2) was dried using a Solvent Purification System 

(SPS). Commercially available reagents were used as supplied. Preparative high performance liquid 

chromatography using a Merck Hitachi LaChrom system (pump L- 7150, interface D-7000, diode array 

detector L-7450 (λ = 220-400 nm, preferred monitoring at λ = 230 nm)) with column (abbreviation 

referred to in the experimental part given in parentheses): Trentec Reprosil-Pur 120 C18 AQ 5 μm, 250 

× 8 mm, with guard column, 40 × 8 mm (C18-SP). Flash column chromatography was performed on 

Merck silica gel 60 (230-400 mesh). Eluents used for flash chromatography were distilled prior to use. 

Melting points were measured using a SRS OptiMelt apparatus or a Stuart Scientific melting point 

apparatus SMP3 (Bibby Sterilin, UK). Arenes 5, 11 and p-nitrobenzoic acid 15 are commercially 

available. 
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6.2.2 Synthesis of Cystobactamid 507 

Methyl 3-hydroxy-4-nitrobenzoate (S1) 

 

3-Hydroxy-2-nitrobenzoic acid (10) (5.10 g, 27.85 mmol) was dissolved in MeOH (43 mL) and cooled 

to 0 ºC. SOCl2 (3.20 mL, 43.69 mmol) was slowly added and the reaction mixture was stirred under 

refluxing conditions for 17 hours. The residual oil was redissolved in MeOH and concentrated (4× in 

order to remove the excess of SOCl2), to yield the title compound S1 (5.49 g, 27.85 mmol, quantitative) 

as a yellow solid.  

mp: 91–92 °C; 1H NMR (400 MHz, CDCl3) δ 10.49 (s, 1H-OH), 8.17 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 

1.8 Hz, 1H), 7.61 (dd, J = 8.8, 1.8 Hz, 1H), 3.96 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3) δ 164.96 

(Cq), 154.81 (Cq), 138.14 (Cq), 135.95 (Cq), 125.41 (CH), 121.81 (CH), 120.74 (CH), 53.06 (CH3) 

ppm; HRMS (ESI): Calculated for C8H6NO5 (M-H)-: 196.0246, found: 196.0249. 

Methyl 3-isopropoxy-4-nitrobenzoate (S2) 

 

Methyl 3-hydroxy-4-nitrobenzoate S1 (5.47 g, 27.75 mmol) was dissolved in DMF (32.4 mL). K2CO3 

(19.17 g, 138.73 mmol) and iPrI (3.90 mL, 38.85 mmol) were added, and the reaction mixture was 

stirred at 50 ºC for 17 hours. The resulting mixture was poured into ethyl acetate (100 mL) and washed 

with H2O (2×) and brine (1×). The organic layer was dried over MgSO4, filtered and the solvent was 

evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum 

ether/ethyl acetate= 8:2) to yield the title compound S2 (5.66 g, 23.66 mmol, 85%) as a yellow oil. 

1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.4 Hz, 2H), 7.64 (dd, J = 8.4, 1.6 Hz, 1H), 4.77 (hept, J = 

6.1 Hz, 1H), 3.95 (s, 3H), 1.41 (d, J = 6.1 Hz, 6H) ppm; 13C NMR (100 MHz, CDCl3) δ 165.48 (Cq), 

150.92 (Cq), 143.90 (Cq), 134.57 (Cq), 125.20 (CH), 121.24 (CH), 117.08 (CH), 73.15 (CH), 52.92 

(CH3), 21.93 (CH3) ppm; HRMS (Qtof): Calculated for C11H13NO5Na (M+Na)+: 262.0691, found: 

262.0700. 

3-Isopropoxy-4-nitrobenzoic acid (S3) 

 

Methyl 3-isopropoxy-4-nitrobenzoate (S2) (4.75 g, 19.87 mmol) was dissolved in a mixture of 

THF/H2O (105 mL/105 mL). Then, solid LiOH (4.76 g, 198.68 mmol) was added and the reaction 
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mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1 M HCl 

until pH~1 was reached and extracted with ethyl acetate (3×). The organic extracts were combined, 

dried over anhydrous MgSO4 and filtered. The solvent was concentrated in vacuo to yield the title 

compound S3 (4.12 g, 18.29 mmol, 92%) as a pale yellow solid. 

mp: 178–180 °C; 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 1.5 Hz, 1H), 7.79 (d, J = 9.0 Hz, 1H), 7.74 

(dd, J = 9.0, 1.5 Hz, 1H), 4.79 (hept, J = 6.0 Hz, 1H), 1.43 (d, J = 6.0 Hz, 6H) ppm; 13C NMR (100 

MHz, CDCl3) δ 169.91 (Cq), 150.93 (Cq), 144.52 (Cq), 133.44 (Cq), 125.30 (CH), 121.91 (CH), 117.49 

(CH), 73.29 (CH), 21.92 (CH3) ppm; HRMS (ESI): Calculated for C10H10NO5 (M-H)-: 224.0559, 

found: 224.0557. 

tert-Butyl-3-isopropoxy-4-nitrobenzoate (S4) 

 

3-Isopropoxy-4-nitrobenzoic acid (S3) (0.40 g, 1.77 mmol) was dissolved in toluene (8 mL). 

Dimethylformamide di-tert-butyl acetal (5.1 ml, 21.32 mmol) was added at room temperature and the 

resulting reaction mixture was heated up to 80 °C and stirred for 17 hours. The solvent was removed 

under reduced pressure and the crude product was purified by flash column chromatography (petroleum 

ether/ethyl acetate= 95:5) to afford the title compound S4 (0.47 g, 1.65 mmol, 94% yield) as a pale 

yellow solid. 

mp: 68–70 °C; 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 7.59 

(dd, J = 8.4, 1.6 Hz, 1H), 4.77 (hept, J = 6.0 Hz, 1H), 1.63 (s, 9H), 1.43 (d, J = 6.0 Hz, 6H) ppm; 13C 

NMR (100 MHz, CDCl3) δ 164.08 (Cq), 150.92 (Cq), 143.56 (Cq), 136.56 (Cq), 125.06 (CH), 121.06 

(CH), 116.99 (CH), 82.59 (Cq), 73.11 (CH), 28.23 (CH3), 21.97 (CH3) ppm; HRMS (ESI): Calculated 

for C10H10NO5 (M+Na)+: 304.1161, found: 304.1161. 

tert-Butyl 4-amino-3-isopropoxybenzoate (11) 

 

tert-Butyl 3-isopropoxy-4-nitrobenzoate (S4) (0.43 g, 1.54 mmol) was dissolved in MeOH (13 mL) 

and degassed. Pd/C (10% wt., 82.0 mg, 0.077 mmol) was added and vacuum was applied under cooling 

to remove air. The flask was flushed with H2 gas and the suspension was stirred for 2 days at room 

temperature. The catalyst was filtered over Celite® and washed with MeOH. The solvent was removed 

under reduced pressure to yield the title compound 11 (0.39 g, 1.54 mmol, quantitative) as a dark oil. 

1H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 8.1, 1.8 Hz, 1H), 7.43 (d, J = 1.8 Hz, 1H), 6.64 (d, J = 8.1 

Hz, 1H), 4.61 (hept, J = 6.0 Hz, 1H), 4.16 (s, 2H-NH2), 1.57 (s, 9H), 1.36 (d, J = 6.0 Hz, 6H) ppm; 13C 
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NMR (100 MHz, CDCl3) δ 166.33 (Cq), 144.35 (Cq), 141.83 (Cq), 123.71 (CH), 121.68 (Cq), 114.19 

(CH), 113.45 (CH), 80.19 (Cq), 70.98 (CH), 28.46 (CH3), 22.37 (CH3) ppm; HRMS (ESI): Calculated 

for C14H22NO3 (M+H)+: 252.1600, found: 252.1597. 

6-Bromo-2,3-dihydroxybenzaldehyde (S5) 

 

To a solution of 6-bromo-2-hydroxy-3-methoxybenzaldehyde (4) (25.0 g, 108.2 mmol) in CH2Cl2 (270 

mL) at -30 °C was slowly added BBr3 (1 M in CH2Cl2, 200.0 mL, 200.0 mmol) via dropping funnel 

over a period of 45 minutes. The solution was allowed to warm to room temperature and stirred 17 

hours. H2O was added and the reaction mixture was stirred for additional 30 minutes. The solution was 

then extracted with ethyl acetate (3×) and washed with H2O (1×). The combined, organic layers were 

dried over anhydrous MgSO4, filtered and concentrated in vacuo to give the title compound S5 (22.16 

g, 102.11 mmol, 95%) as a yellow solid. 

mp: 135–136 °C; 1H NMR (400 MHz, CDCl3) δ 12.13 (d, J = 0.5 Hz, 1H-OH), 10.27 (s, 1H-CHO), 7.07 

(d, J = 8.5 Hz, 1H), 7.02 (dd, J = 8.5, 0.5 Hz, 1H), 5.67 (b, 1H-OH) ppm; 13C NMR (100 MHz, CDCl3) 

δ 198.42 (Cq), 151.19 (Cq), 144.99 (Cq), 124.40 (CH), 121.96 (CH), 117.45 (Cq), 116.05 (Cq) ppm; 

HRMS (ESI): Calculated for C7H4BrO3 (M-H)-: 214.9344, found: 214.9343. 

4-Bromo-3-hydroxymethylbenzene-1,2-diol (S6) 

 

To a solution of 6-bromo-2,3-dihydroxybenzaldehyde (S5) (22.16 g, 102.10 mmol) in THF (650 mL) 

at -40 °C was added NaBH4 (3.86 g, 102.10 mmol) in three portions. The resulting mixture was stirred 

for 30 minutes at room temperature. A saturated aqueous solution of NH4Cl (300 mL) was added and 

the mixture was stirred for another 10 minutes, before being finally treated with 1 M HCl (300 mL). 

After 10 minutes of additional stirring, the aqueous phase was extracted with ethyl acetate (3×). The 

combined, organic extracts were dried over anhydrous MgSO4 and filtered .The solvent was removed 

under reduced pressure to yield the title compound S6 (20.27 g, 92.53 mmol, 91%) as a colorless solid. 

mp: 90–92 °C; 1H NMR (400 MHz, MeOD) δ 6.88 (d, J = 8.5 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 4.82 

(s, 2H) ppm; 13C NMR (100 MHz, MeOD) δ 147.06 (Cq), 146.07 (Cq), 126.88 (Cq), 123.86 (CH), 

116.55 (CH), 114.41 (Cq), 61.13 (CH2) ppm; HRMS (ESI): Calculated for C7H6BrO3 (M-H)-: 

216.9500, found: 216.9505. 
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5-Bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (5) 

 

A solution of 4-bromo-3-hydroxymethylbenzene-1,2-diol (S6) (20.27 g, 92.53 mmol) in THF (550 mL) 

was treated with PhCH(OMe)2 (20.8 mL, 138.8 mmol) and pTsOH.H2O (0.19 g, 1.02 mmol). The 

mixture was stirred at room temperature for 5 days. CH2Cl2 was added and then washed successively 

with 5% aqueous NaHCO3 (1×) and brine (1×). The aqueous phase was extracted with ethyl acetate 

(3×). The combined, organic extracts were dried over anhydrous MgSO4, filtered and the solvent was 

removed under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate= 

95/5) afforded 5-bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (5) (16.02 g, 52.16 mmol, 56%) as a 

colorless solid. 

mp: 89–91 °C; 1H NMR (400 MHz, CDCl3) δ 7.62–7.55 (m, 2H), 7.50–7.43 (m, 3H), 7.07 (d, J = 8.6 

Hz, 1H), 6.78 (d, J = 8.6 Hz, 1H), 5.97 (s, 1H), 5.40 (s, 1H-OH), 4.99 (s, 2H) ppm; 13C NMR (100 MHz, 

CDCl3) δ 143.99 (Cq), 141.77 (Cq), 136.14 (Cq), 130.13 (CH), 128.79 (CH), 126.68 (CH), 124.90 

(CH), 120.95 (Cq), 115.00 (CH), 109.40 (Cq), 99.98 (CH), 67.8 (CH2) ppm; HRMS (ESI): Calculated 

for C14H10BrO3 (M-H)-: 304.9813, found: 304.9813. 

5-Bromo-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (6) 

 

5-Bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (5) (6.00 g, 19.54 mmol; max. amount) was dissolved 

in acetone (250 mL). Then, Ni(NO3)2.5H2O (5.68 g, 19.54 mmol) and pTSA.H2O (3.72 g, 19.54 mmol) 

were added. The mixture was stirred at room temperature for 2.5 hours. The reaction mixture was 

filtered through a pad of Celite®, washed with CH2Cl2 and concentrated in vacuo. Purification by flash 

chromatography (dry load: SiO2 + CH2Cl2; petroleum ether/ethyl acetate= 9:1) yielded the titel 

compound 6 (5.08 g, 14.43 mmol, 74%) as a bright yellow solid. 

mp: 154–156 °C; 1H NMR (400 MHz, CDCl3) δ 10.60 (b, 1H-OH), 7.96 (s, 1H), 7.65–7.57 (m, 2H), 

7.48–7.42 (m, 3H), 6.02 (s, 1H), 4.99 (s, 2H) ppm; 13C NMR (100 MHz, CDCl3) δ 144.88 (Cq), 135.45 

(Cq), 133.17 (Cq), 130.16 (CH), 128.95 (Cq), 128.86 (CH), 126.65 (CH), 119.17 (CH), 109.16 (Cq), 

99.87 (CH), 67.37 (CH2) ppm; HRMS (ESI): Calculated for C14H9BrNO5 (M-H)-: 349.9664, found: 

349.9660. 
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5-Bromo-8-isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin (S7) 

 

5-Bromo-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (6) (13.79 g, 39.16 mmol) was dissolved in 

THF (429 mL). iPrOH (4.00 mL, 50.91 mmol) and PPh3 (13.87 g, 52.87 mmol) were added, and the 

mixture was stirred until all components were dissolved. DEAD (2.2 M in toluene, 23.1 mL, 50.91 

mmol) was slowly added via syringe pump and the mixture was stirred at room temperature 17 hours. 

The solvent was evaporated in vacuo to give an oily residue, which was purified by flash 

chromatography (petroleum ether/ethyl acetate= 96:4) to yield the title compound S7 (13. 08 g, 33.18 

mmol, 85%) as a colorless solid. 

mp: 87–89 °C; 1H NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 7.59–7.54 (m, 2H), 7.50–7.43 (m, 3H), 5.97 

(s, 1H), 5.00 (s, 2H), 4.69 (hept, J = 6.2 Hz, 1H), 1.31 (d, J = 6.2 Hz, 3H), 1.28 (d, J = 6.2 Hz, 3H) 

ppm; 13C NMR (100 MHz, CDCl3) δ 149.04 (Cq), 144.46 (Cq), 139.87 (Cq), 135.71 (Cq), 130.05 (CH), 

128.80 (CH), 126.36 (CH), 126.15 (Cq), 119.80 (CH), 112.67 (Cq), 99.66 (CH), 78.10 (CH), 67.63 

(CH2), 22.63 (CH3), 22.37 (CH3) ppm; HRMS (Qtof): Calculated for C17H16BrNO5Na (M+Na)+: 

416.0110, found: 416.0101. 

8-Isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin (7) 

 

5-Bromo-8-isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin (S7) (4.00 g, 10.15 mmol), Pd2(dba)3 

(0.93 g, 1.01 mmol), (PhO)3P (0.53 mL, 2.03 mmol), Cs2CO3 (4.30 g, 13.19 mmol) and iPrOH (4.7 

mL, 60.88 mmol) were dissolved in 1,4-dioxane (28 mL). The oil bath was preheated to 60°C and the 

mixture was stirred at 80°C for 1.5 hours. The reaction mixture was filtered through a pad of Celite® 

and washed with ethyl acetate. The combined, organic extracts were dried over anhydrous MgSO4, 

filtered and concentrated in vacuo. The crude material was purified by flash chromatography 

(petroleum ether/ethyl acetate= 96:4) to yield the title compound 7 (2.24 g, 7.10 mmol, 70%) as a pale 

yellow solid. 

mp: 80–82 °C; 1H NMR (400 MHz, CDCl3) δ 7.65–7.55 (m, 2H), 7.51–7.41 (m, 3H), 7.37 (d, J = 8.5 

Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 6.01 (s, 1H), 5.19 (d, J = 15.5 Hz, 1H), 5.03 (d, J = 15.5 Hz, 1H), 

4.71 (hept, J = 6.2 Hz, 1H), 1.32 (d, J = 6.2 Hz, 3H), 1.28 (d, J = 6.2 Hz, 3H) ppm; 13C NMR (100 

MHz, CDCl3) δ 147.67 (Cq), 144.27 (Cq), 140.55 (Cq), 136.26 (Cq), 129.85 (CH), 128.72 (CH), 126.54 

(Cq), 126.34 (CH), 118.82 (CH), 116.69 (CH), 99.61 (CH), 77.71 (CH), 66.44 (CH2), 22.65 (CH3), 

22.41 (CH3) ppm; HRMS (QTof): Calculated for C17H17NO5Na (M+Na)+: 338.1004. Found: 338.1003. 
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6-Hydroxymethyl-2-isopropoxy-3-nitrophenol (S8) 

 

To a mixture of 8-isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin (7) (4.24 g, 13.43 mmol) in 

MeOH (102 mL) and CH2Cl2 (42 mL) at 0 °C was added camphor sulfonic acid (3.12 g, 13.43 mmol). 

The mixture was stirred at room temperature for 17 hours. The reaction mixture was quenched with 

Et3N until pH~8, concentrated in vacuo and purified by flash chromatography (petroleum ether/ethyl 

acetate= 7:3) to yield the title compound S8 (2.75 g, 12.09 mmol, 90%) as a light brown solid. 

mp: 39–41°C; 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 7.4 Hz, 1H), 7.12 (d, J = 7.4 Hz, 1H), 6.61 

(s, 1H-OH), 4.81 (d, J = 3.5 Hz, 2H), 4.39 (hept, J = 7.4 Hz, 1H), 1.36 (d, J = 6.2 Hz, 6H) ppm; 13C 

NMR (100 MHz, CDCl3) δ 149.07 (Cq), 138.67 (Cq), 132.55 (Cq), 122.28 (CH), 116.63 (CH), 79.38 

(CH), 61.47 (CH2), 22.65 (CH3) ppm; HRMS (ESI): Calculated for C10H12NO5 (M-H)-: 226.0715, 

found: 226.0717. 

2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde (S9) 

 

6-Hydroxymethyl-2-isopropoxy-3-nitrophenol (S8) (2.97 g, 13.05 mmol) was dissolved in CH2Cl2 (58 

mL). Then MnO2 (11.35 g, 130.53 mmol) was added and the mixture was stirred at room temperature 

for 17 hours. The mixture was filtered through a pad of Celite® and washed with CH2Cl2. The solvent 

was concentrated to give the title compound S9 (2.38 g, 10.57 mmol, 81%) as a brown oil. 

1H NMR (400 MHz, CDCl3) δ 11.44 (s, 1H-CHO), 9.97 (s, 1H-OH), 7.39 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 

8.4 Hz, 1H), 4.88 (hept, J = 6.2 Hz, 1H), 1.33 (d, J = 6.2 Hz, 6H) ppm; 13C NMR (100 MHz, CDCl3) 

δ 196.39 (Cq), 156.53 (Cq), 149.36 (Cq), 139.74 (Cq), 127.28 (CH), 122.57 (Cq), 114.32 (CH), 77.42 

(CH), 22.51 (CH3) ppm; HRMS (ESI): Calculated for C10H10NO5 (M-H)-: 224.0559. Found: 224.0535. 

2-Hydroxy-3-isopropoxy-4-nitrobenzoic acid (8) 

 

2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde (S9) (2.36 g, 10.49 mmol) was dissolved in tert-butanol 

(71 mL). 2-Methyl-2-butene (2M in THF, 36.7 mL, 73.45 mmol) and a solution of NaClO2 (2.85 g, 

31.48 mmol) and NaH2PO4 (6.32 g, 47.22 mmol) in H2O (51 mL) were added in sequential order. The 
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reaction mixture was stirred at room temperature for 17 hours. 6 M NaOH was added until pH10 and 

the solvent was concentrated in vacuo. H2O was added and the organic layer was extracted with 

petroleum ether (2×). The aqueous layer was acidified with 6 M HCl until pH~1 and extracted with 

ethyl acetate (3×). The organic extracts were combined, dried over MgSO4 and filtered. The solvent 

was concentrated in vacuo to yield the title compound 8 (1.90 g, 7.87 mmol, 75%) as a yellow semisolid 

material. 

1H NMR (400 MHz, MeOD) δ 7.72 (d, J = 8.7 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 4.86–4.82 (m, 1H), 

1.27 (d, J = 6.2 Hz, 6H) ppm; 13C NMR (100 MHz, MeOD) δ 172.74 (Cq), 158.01 (Cq), 149.63 (Cq), 

139.97 (Cq), 125.8 (CH), 117.41 (Cq), 113.75 (CH), 77.54 (CH), 22.59 (CH3) ppm; HRMS (ESI): 

Calculated for C10H10NO6 (M-H)-: 240.0508, found: 240.0511. 

Methyl 2-hydroxy-3-isopropoxy-4-nitrobenzoate (S10) 

 

TMSCHN2 (2.0 M in Et2O, 0.87 mL, 1.75 mmol) was added to a solution of 2-hydroxy-3-isopropoxy-

4-nitrobenzoic acid (8) (0.32 g, 1.35 mmol) in a mixture 5/1 of toluene/MeOH (10.4/2 mL) at 0 °C. 

After stirring at 0 °C for 1 hour, the reaction was terminated by addition of acetic acid. The solvent 

was evaporated in vacuo to give an oily residue, which was purified by flash chromatography 

(petroleum ether/ethyl acetate= 95:5) to yield the title compound S10 (0.72 g, 2.82 mmol, 80%) as a 

yellow oil. 

1H NMR (400 MHz, CDCl3) δ 11.29 (s, 1H-OH), 7.63 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), 4.84 

(hept, J = 6.2 Hz, 1H), 4.00 (s, 3H), 1.32 (d, J = 6.2 Hz, 6H) ppm; 13C NMR (100 MHz, CDCl3) δ 

169.98 (Cq), 157.03 (Cq), 149.21 (Cq), 139.84 (Cq), 123.92 (CH), 115.68 (Cq), 113.35 (CH), 77.36 

(CH), 53.21 (CH3), 22.47 (CH3) ppm; HRMS (ESI): Calculated for C11H12NO6 (M-H)-: 254.0665, 

found: 254.0666. 

Methyl 2-benzyloxy-3-isopropoxy-4-nitrobenzoate (S11) 

 

Methyl 2-hydroxy-3-isopropoxy-4-nitrobenzoate (S10) (0.87 g, 3.47 mmol) was dissolved in THF (38 

mL). BnOH (0.47 mL, 4.51 mmol) and PPh3 (1.23 g, 4.68 mmol) were added, and the mixture was 

stirred until all components are dissolved. DEAD (2.2 M in toluene, 2.05 mL, 4.51 mmol) was slowly 

added via syringe pump and the mixture was stirred at room temperature 17 hours. The solvent was 
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evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum 

ether/ethyl acetate= 95:5) to yield the title compound S11 (0.84 g, 2.43 mmol, 70%) as a colorless oil. 

1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 7.48–7.44 (m, 2H), 

7.42–7.35 (m, 3H), 5.14 (s, 2H), 4.74 (hept, J = 6.2 Hz, 1H), 3.86 (s, 3H), 1.28 (d, J = 6.2 Hz, 6H) 

ppm; 13C NMR (100 MHz, CDCl3) δ 165.27 (Cq), 153.38 (Cq), 148.37 (Cq), 145.65 (Cq), 136.36 (Cq), 

130.85 (Cq), 128.72 (CH), 128.71 (CH), 128.65 (CH), 125.07 (CH), 119.29 (CH), 78.18 (CH), 76.39 

(CH2), 52.81 (CH3), 22.45 (CH3) ppm; HRMS (QTof): Calculated for C18H19NO6Na (M+Na)+: 

368.1110, found: 368.1112. 

2-Benzyloxy-3-isopropoxy-4-nitrobenzoic acid (9) 

 

Methyl 2-benzyloxy-3-isopropoxy-4-nitrobenzoate (S11) (0.82 g, 2.38 mmol) was dissolved in a 

mixture 1/1 of THF/H2O (12.6/12.6 mL). Then, solid LiOH (0.57 g, 23.76 mmol) was added and the 

reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1 

M HCl until pH~1 and extracted with ethyl acetate (3×). The organic extracts were combined, dried 

over anhydrous MgSO4 and filtered. The solvent was concentrated in vacuo to yield the title compound 

9 (0.75 g, 2.26 mmol, 95%) as a yellow semisolid material. 

1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.39–7.41 (m, 5H), 

5.35 (s, 2H), 4.67 (hept, J = 6.0 Hz, 1H), 1.35 (d, J = 6.0 Hz, 6H) ppm; 13C NMR (100 MHz, CDCl3) 

δ 163.55 (Cq), 152.60 (Cq), 149.55 (Cq), 144.60 (Cq), 133.91 (Cq), 129.91 (CH), 129.45 (CH), 129.28 

(CH), 127.15 (Cq), 127.11 (CH), 120.13 (CH), 79.15 (CH), 77.89 (CH2), 22.52 (CH3) ppm; HRMS 

(ESI): Calculated for C17H16NO6 (M-H)-: 330.0978, found: 330.0976. 

tert-Butyl 4-[2-(benzyloxy)-3-isopropoxy-4-nitrobenzamido]-3-isopropoxybenzoate (S12) 

 

2-Benzyloxy-3-isopropoxy-4-nitrobenzoic acid (9) (23.3 mg, 0.070 mmol) was dissolved in CH2Cl2 

(3.5 mL) and preactivated with Ghosez´s reagent (13) (37.2 µL, 0.28 mmol) for 1 day at 40 °C. tert-

Butyl 4-amino-3-isopropoxybenzoate (11) (61.6 mg, 0.25 mmol) was dissolved in CH2Cl2 (3.5 mL) 

and N,N-diisopropylethylamine (DIPEA) was added (0.10 mL, 0.57 mmol). The solution containing 

the acyl chloride was then added and the reaction mixture was stirred for 1 day at 40 °C. The solvent 

was removed and the crude product was purified by preparative HPLC (RP-18; run time 100 min; 
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H2O/MeCN= 100 : 0 → 0 : 100; tr = 62 min) providing the title compound S12 (0.32 g, 0.056 mmol, 

80%) as a light orange oil. 

1H NMR (400 MHz, CDCl3) δ 10.33 (s, 1H-NH), 8.52 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.63 

(dd, J = 8.6, 1.7 Hz, 1H), 7.59 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 1.7 Hz, 1H), 7.24–7.13 (m, 5H), 5.25 

(s, 2H), 4.70 (hept, J = 6.1 Hz, 1H), 4.63 (hept, J = 6.1 Hz, 1H), 1.61 (s, 9H), 1.39 (d, J = 6.1 Hz, 6H), 

1.27 (d, J = 6.1 Hz, 6H) ppm; 13C NMR (100 MHz, CDCl3) δ 165.72 (Cq), 161.32 (Cq), 151.06 (Cq), 

147.88 (Cq), 146.06 (Cq), 145.21 (Cq), 134.13 (Cq), 133.02 (CH), 132.42 (Cq), 130.00 (CH), 129.40 

(CH), 128.66 (CH), 127.57 (Cq), 125.77 (CH), 123.06 (CH), 120.03 (CH), 119.34 (CH), 113.18 (CH), 

81.19 (Cq), 78.88 (CH), 77.37 (CH2), 71.67 (CH), 28.40 (CH3), 22.57 (CH3), 22.11 (CH3) ppm; HRMS 

(ESI): Calculated for C31H36N2O8Na (M+Na)+: 587.2369, found: 587.2368. 

tert-Butyl 4-(4-amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate (12) 

 

tert-Butyl 4-[2-(benzyloxy)-3-isopropoxy-4-nitrobenzamido]-3-isopropoxybenzoate (S12) (59.0 mg, 

0.10 mmol) was dissolved in MeOH (1.0 mL) and degassed. Pd/C (10% wt., 10.0 mg, 0.0095 mmol) 

was added and vacuum was applied under cooling to remove air. The flask was flushed with H2 gas 

and the suspension was stirred for 2 hours at room temperature. The catalyst was filtered off over a pad 

of Celite®, washed with MeOH and the solvent was removed under reduced pressure. The title 

compound 12 (42.1 mg, 0.095 mmol, 91%) was obtained as a yellow oil. 

1H NMR (400 MHz, CDCl3) δ 12.27 (s, 1H-OH), 8.79 (s, 1H-NH), 8.46 (d, J = 8.6 Hz, 1H), 7.63 (dd, J = 

8.6, 1.8 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.28 (d, J = 8.6 Hz, 1H), 4.74 (hept, 

J = 6.2 Hz, 1H), 4.68 (hept, J = 6.2 Hz, 1H), 4.27 (b, 2H-NH2), 1.60 (s, 9H), 1.43 (d, J = 6.1 Hz, 6H), 

1.34 (d, J = 6.1 Hz, 6H) ppm; 13C NMR (100 MHz, CDCl3) δ 168.49 (Cq), 165.70 (Cq), 156.38 (Cq), 

146.38 (Cq), 145.96 (Cq), 132.29 (Cq), 131.98 (Cq), 127.06 (Cq), 123.16 (CH), 121.43 (CH), 118.92 

(CH), 113.32 (CH), 106.56 (Cq), 106.25 (CH), 81.09 (Cq), 74.41 (CH), 72.02 (CH), 28.39 (CH3), 22.87 

(CH3), 22.40 (CH3) ppm; HRMS (ESI): Calculated for C24H33N2O6 (M+H)+: 445.2339, found: 

445.2337. 

tert-Butyl 4-(2-hydroxy-3-isopropoxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 

(S13) 
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tert-Butyl 4-(4-amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate (12) (29.0 mg, 

0.065 mmol) and p-nitrobenzoic acid (14) (21.8 mg, 0.13 mmol) were dissolved in CH2Cl2 (0.65 mL). 

PPh3Cl2 (0.13 g, 0.39 mmol) was added and the mixture was stirred under refluxing conditions for 17 

hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash 

chromatography (petroleum ether/ethyl acetate= 8:2) to yield the title compound S13 (28.7 mg, 0.048 

mmol, 78%) as a yellow semisolid. 

1H NMR (400 MHz, CDCl3) δ 12.49 (s, 1H-OH), 8.96 (s, 1H-NH), 8.93 (s, 1H-NH), 8.47 (d, J = 8.8 Hz, 

1H), 8.40 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 7.65 (dd, J = 8.8, 1.6 

Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 7.29 (d, J = 8.8 Hz, 1H), 4.93 (hept, J = 6.1 Hz, 1H), 4.77 (hept, J = 

6.1 Hz, 1H), 1.61 (s, 9H), 1.46 (d, J = 6.1 Hz, 6H), 1.38 (d, J = 6.1 Hz, 6H) ppm; 13C NMR (100 MHz, 

CDCl3) δ 168.03 (Cq), 165.52 (Cq), 163.22 (Cq), 155.07 (Cq), 150.12 (Cq), 146.18 (Cq), 140.19 (Cq), 

136.64 (Cq), 135.05 (Cq), 131.48 (Cq), 128.32 (CH), 127.88 (Cq), 124.41 (CH), 123.06 (CH), 120.67 

(CH), 119.12 (CH), 113.30 (CH), 112.23 (Cq), 109.93 (CH), 81.29 (Cq), 75.60 (CH), 72.21 (CH), 

28.37 (CH3), 23.09 (CH3), 22.40 (CH3) ppm; HRMS (ESI): Calculated for C31H36N3O9 (M+H)+: 

594.2452, found: 594.2454. 

Cystobactamid C (3) 

 

tert-Butyl 4-(2-hydroxy-3-isopropoxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate (S13) 

(8.1 mg, 0.014 mmol) was dissolved in MeOH (1 mL). SnCl2.2H2O (9.2 mg, 0.041 mmol) was added 

and the reaction mixture was stirred under refluxing conditions for 17 hours. The solvent was 

evaporated under reduced pressure and the residue diluted with EtOAc. After addition of a saturated 

solution of NaHCO3 and separation of the phases, the aqueous layer was extracted with EtOAc (1×). 

The aqueous layer was acidified with 1 M HCl until pH~1 and extracted with EtOAc (3×). The 

combined organic layers were washed with brine (1×), dried over anhydrous MgSO4 and filtered. The 

crude product was purified by preparative HPLC (RP-18; run time 100 min; H2O/MeCN= 100 : 0 → 0 

: 100; tr = 47 min) providing the title compound 3 (2.8 mg, 5.5 mmol, 40%) as a semisolid material. 

1H NMR (400 MHz, MeOD) δ 8.46 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.75 (d, J = 8.6 Hz, 

1H), 7.72 (d, J = 8.6 Hz, 2H), 7.71–7.64 (m, 2H), 6.74 (d, J = 8.6 Hz, 2H), 4.78 (hept, J = 6.1 Hz, 1H), 

4.55 (hept, J = 6.1 Hz, 1H), 1.46 (d, J = 6.1 Hz, 6H), 1.35 (d, J = 6.1 Hz, 6H) ppm; 13C NMR (125 

MHz, MeOD) δ 167.80 (Cq), 167.02 (Cq), 154.27 (Cq), 152.92 (Cq), 148.39 (Cq), 138.21 (Cq), 138.16 

(Cq), 134.11 (Cq), 130.23 (CH), 125.50 (CH), 124.02 (CH), 122.35 (Cq), 121.26 (CH), 116.22 (CH, 

Cq), 115.22 (Cq), 114.79 (CH), 114.32 (CH), 77.13 (CH), 73.26 (CH), 22.71 (CH3), 22.32 (CH3) ppm; 

HRMS (ESI): Calculated for C27H30N3O7 (M+H)+: 508.2084, found: 508.2085. 
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6.2.3 Synthesis of cystobactamid 507 derivative 18 

Scheme S1. Overview on the synthesis of compound 18 
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2-Formyl-6-methoxyphenyl acetate (S14) 

 

To a stirred solution of o-vanillin (4.56 g, 30 mmol), and pyridine (2.43 mL, 30 mmol) in CH2Cl2 (40 

mL), acetyl chloride (2.36 g, 30 mmol) was added drop wise. The reaction was stirred at room 

temperature overnight then the solvent was removed by vacuum distillation. The obtained material was 

triturated with cold dil. HCl and collected by filtration, washed with cold water and then with n-hexane. 

Yield 94% (off-white solid); mp: 75–76 °C; 1H NMRS1 (300 MHz, CDCl3) δ 10.14 (s, 1H), 7.47 (dd, J 

= 8.1, 1.6 Hz, 1H), 7.34 (t, J = 8.1 Hz, 1H), 7.22 (dd, J = 8.1, 1.6 Hz, 1H), 3.89 (s, 3H), 2.41 (s, 3H); 

13C NMR (75 MHz, CDCl3) δ 188.68 (CH), 168.68 (Cq), 151.76 (Cq), 141.54 (Cq), 129.22 (Cq), 

126.77 (CH), 121.29 (CH), 117.83 (CH), 56.35 (CH3), 20.39 (CH3); m/z (ESI+) 195 [M + H]+. 

6-Formyl-2-methoxy-3-nitrophenyl acetate (S15) 

 

To a stirred ice-cold suspension of S14 (1.94 g, 10 mmol), and KNO3 (1.01 g, 10 mmol) in CHCl3 (15 

mL), trifluoroacetic anhydride (12 mL) was added. The reaction was stirred in an ice bath for 2 h then 

at room temperature overnight. The reaction was diluted very carefully with water (50 mL) and 

extracted with CHCl3 (3 × 30 mL). The combined organic extracts were dried with anhydrous MgSO4, 

and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified 

using flash chromatography (SiO2, n-hexane/EtOAc = 3:1). 

Yield 45% (yellow oil); 1H NMRS2 (300 MHz, CDCl3) δ 10.10 (s, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.72 

(d, J = 8.6 Hz, 1H), 3.99 (s, 3H), 2.48 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 186.95 (CH), 168.14 (Cq), 

147.71 (Cq), 146.92 (Cq), 146.74 (Cq), 132.13 (Cq), 124.98 (CH), 122.22 (CH), 62.91 (CH3), 20.43 

(CH3); m/z (ESI+) 239 [M]+. 

2-Hydroxy-3-methoxy-4-nitrobenzoic acid (15) 

 

To a stirred suspension of S15 (957 mg, 4 mmol) in water (50 mL), NaOH (0.8 g, 20 mmol) was added. 

The reaction was heated under refluxing conditions for 2 h then cooled to room temperature. AgNO3 

(3.4 g, 20 mmol) was added portionwise and the reaction mixture was heated under refluxing conditions  

overnight before it was  cooled and filtered through a pad of CeliteTM. The filtrate was cooled in an ice 
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bath and acidified by HCl 37% to pH 3–4. The precipitated solid was collected by filtration, washed 

with cold water and then with n-hexane. 

Yield 65% (beige solid); mp: 203–205 °C; 1H NMRS2 (300 MHz, DMSO-d6) δ 13.67 (br s, 1H), 7.69 

(d, J = 8.7 Hz, 1H), 7.32 (d, J = 8.7 Hz, 1H), 5.70 (br s, 1H), 3.93 (s, 3H); 13C NMR (75 MHz, DMSO-

d6) δ 170.81 (Cq), 155.95 (Cq), 147.25 (Cq), 140.53 (Cq), 125.22 (CH), 117.88 (Cq), 112.69 (CH), 

61.42 (CH3); m/z (ESI+) 213 [M]+. 

Methyl 3-methoxy-4-nitrobenzoate (S16) 

 

To a stirred mixture of 3-hydroxy-4-nitrobenzoic acid (9.16 g, 50 mmol) and K2CO3 (15.2 g, 110 mmol) 

in DMF (150 mL), dimethyl sulfate (25.2 g, 200 mmol) was added portionwise. The reaction mixture 

was heated at 90 °C overnight and then cooled to room temperature. The reaction mixture was poured 

onto ice-cooled water (400 mL), the precipitate was collected by filtration, washed with cold water and 

then with n-hexane. 

Yield 95% (pale yellow solid); mp: 90–91 °C; 1H NMRS3 (300 MHz, CDCl3) δ 7.84 (d, J = 8.4 Hz, 

1H), 7.77 (d, J = 1.6 Hz, 1H), 7.70 (dd, J = 8.4, 1.6 Hz, 1H), 4.02 (s, 3H), 3.97 (s, 3H); 13C NMRS3 (75 

MHz, CDCl3) δ 165.22 (Cq), 152.46 (Cq), 142.41 (Cq), 134.90 (Cq), 125.34 (CH), 121.40 (CH), 114.63 

(CH), 56.76 (CH3), 52.84 (CH3); m/z (ESI+) 212 [M + H]+. 

Methyl 4-amino-3-methoxybenzoate (16) 

 

To a stirred solution of S16 (2.11 g, 10 mmol) in EtOH (60 mL), iron powder (2.80 g, 50 mmol) was 

added at 55 °C followed by an aqueous solution of NH4Cl (266 mg, 5 mmol in 30 mL). The reaction 

mixture was heated at 90 °C for 1 h, then iron was filtered off while the suspension was still hot and 

the filtrate was concentrated in vacuo. The residue was diluted with water (30 mL) and treated with a 

saturated aqueous solution of NaHCO3 (to pH 7–8). The reaction mixture was extracted with EtOAc 

(3 × 30 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO4, 

and the solvent was removed by vacuum distillation. The obtained material was triturated with n-

hexane, and collected by filtration. 
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Yield 85% (beige crystals); mp: 130–132 °C; 1H NMRS3 (500 MHz, CDCl3) δ 7.55 (dd, J = 8.2, 1.6 

Hz, 1H), 7.46 (d, J = 1.6 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 4.24 (br s, 2H), 3.90 (s, 3H), 3.87 (s, 3H); 

13C NMRS3 (126 MHz, CDCl3) δ 167.29 (Cq), 146.09 (Cq), 140.99 (Cq), 124.02 (CH), 119.49 (Cq), 

113.11 (CH), 111.10 (CH), 55.56 (CH3), 51.68 (CH3); m/z (ESI+) 182 [M + H]+. 

Methyl 4-(2-hydroxy-3-methoxy-4-nitrobenzamido)-3-methoxybenzoate (17) 

 

To a stirred solution of arene 15 (213 mg, 1 mmol) in a mixture of xylenes (30 mL) and CH2Cl2 (5 

mL), arene 16 (181 mg, 1 mmol) was added. The reaction mixture was heated to 60 °C and then PCl3 

(0.05 mL, 0.5 mmol) was added. The reaction mixture was heated at 150 °C for 12 h. The solvent was 

removed by vacuum distillation. The residue was dissolved in MeOH and mixed with silica gel and the 

resulting paste was dried in vacuo. The silica adsorbed material was purified using flash 

chromatography (SiO2, n-hexane/EtOAc = 1:1). 

Yield 50% (yellow solid); mp: 189–191 °C; 1H NMR (500 MHz, CDCl3) δ 12.07 (br s, 1H), 9.02 (br 

s, 1H), 8.51 (d, J = 8.5 Hz, 1H), 7.77 (dd, J = 8.5, 1.9 Hz, 1H), 7.64 (d, J = 1.9 Hz, 1H), 7.43 (d, J = 

8.8 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 4.09 (s, 3H), 4.05 (s, 3H), 3.94 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 166.43 (Cq), 166.32 (Cq), 156.64 (Cq), 147.93 (Cq), 146.76 (Cq), 142.87 (Cq), 130.28 (Cq), 

126.55 (Cq), 123.35 (CH), 120.54 (CH), 119.47 (CH), 118.99 (Cq), 113.54 (CH), 110.94 (CH), 62.01 

(CH3), 56.34 (CH3), 52.28 (CH3); m/z (ESI+) 377 [M + H]+. 

Methyl 4-(4-amino-2-hydroxy-3-methoxybenzamido)-3-methoxybenzoate (S17) 

 

To a stirred solution of 17 (150 mg, 0.4 mmol) in EtOH (20 mL), iron powder (112 mg, 2 mmol) was 

added at 55 °C followed by NH4Cl (11 mg, 0.2 mmol) solution in water (2 mL). The reaction was 

heated at 90 °C for 1 h, then iron was filtered while hot and the filtrate was concentrated in vacuo. The 

residue was diluted with water (20 mL) and treated with a saturated aqueous solution NaHCO3 (to pH 

7–8). The reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic extracts 

were washed with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum 

distillation. The obtained material was triturated with n-hexane, and collected by filtration. 

Yield 95% (pale yellow solid); m/z (ESI+) 347 [M + H]+. 
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Methyl 4-[2-hydroxy-3-methoxy-4-(4-nitrobenzamido)benzamido]-3-methoxybenzoate (S18) 

 

To a stirred solution of S17 (115 mg, 0.33 mmol), 14 (56 mg, 0.33 mmol) in anhydrous CHCl3 (30 mL) 

under a nitrogen atmosphere, dichlorotriphenylphosphorane (500 mg, 1.5 mmol) was added. The 

reaction mixture was heated at 80 °C for 12 h. The solvent was removed by vacuum distillation. The 

residue was dissolved in toluene and purified by flash chromatography (SiO2, n-hexane/EtOAc = 1:1). 

Yield 92% (yellow crystals); m/z (ESI+) 496 [M + H]+. 

Methyl 4-[4-(4-aminobenzamido)-2-hydroxy-3-methoxybenzamido]-3-methoxybenzoate (S19) 

 

To a stirred solution of S18 (124 mg, 0.25 mmol) in EtOH (20 mL), iron powder (70 mg, 1.25 mmol) 

was added at 55 °C followed by an aqueous solution of NH4Cl (7 mg, 0.12 mmol in 2 mL). The reaction 

mixture was heated at 90 °C for 1 h, then iron was filtered while hot and the filtrate was concentrated 

in vacuo. The residue was diluted with water (15 mL) and treated with a saturated aqueous solution of 

NaHCO3 (to pH 7–8). The reaction mixture was extracted with EtOAc/THF (1:1, 3 × 20 mL). The 

combined organic extracts were washed with brine, dried over anhydrous MgSO4, and the solvent was 

removed by vacuum distillation. The obtained material was triturated with n-hexane/EtOAc (6:1, 50 

mL), and collected by filtration. 

Yield 90% (white crystals); m/z (ESI+) 466 [M + H]+. 

4-[4-(4-Aminobenzamido)-2-hydroxy-3-methoxybenzamido]-3-methoxybenzoic acid (18) 

 

To a stirred solution of S19 (46 mg, 0.1 mmol) in a mixture of MeOH (3 mL) and THF (1 mL), NaOH 

1 M (0.5 mL) was added. The reaction mixture was stirred at room temperature overnight. The solvent 

was evaporated in vacuo. The remaining residue was dissolved in water (10 mL), cooled in an ice bath 

and acidified by a saturated aqueous solution KHSO4 (to pH 6), then extracted with EtOAc/THF (1:1, 
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3 × 20 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO4, and 

the solvent was removed by vacuum distillation. The obtained material was triturated with n-

hexane/EtOAc (4:1, 25 mL), and collected by filtration. 

Yield 82% (pale yellow crystals); mp: 219–221 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.71 (br s, 1H), 

11.55 (br s, 1H), 10.96 (br s, 1H), 9.16 (br s, 1H), 8.46 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 

7.71 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 8.8 Hz, 1H), 7.62 (dd, J = 8.2, 1.6 Hz, 1H), 7.57 (d, J = 1.6 Hz, 

1H), 6.63 (d, J = 8.8 Hz, 2H), 5.86 (br s, 2H), 3.97 (s, 3H), 3.78 (s, 3H); 13C NMR (126 MHz, DMSO-

d6) δ 166.99 (Cq), 165.03 (Cq), 163.83 (Cq), 152.60 (Cq), 149.96 (Cq), 148.43 (Cq), 139.10 (Cq), 

136.47 (Cq), 131.95 (Cq), 129.42 (2CH), 125.91 (Cq), 125.23 (CH), 122.68 (CH), 120.25 (Cq), 119.63 

(CH), 115.01 (Cq), 113.63 (CH), 112.77 (2CH), 111.15 (CH), 60.44 (CH3), 56.17 (CH3); m/z (ESI+) 

452 [M + H]+. 

 

6.2.4 Biological evaluation 

Compounds 3 and 18 have been tested in antimicrobial susceptibility and in vitro gyrase assays as 

described previously.S4 The IC50 values on E. coli gyrase of synthetic 3 and 18 were 328 µM and 463 

µM, respectively. 
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6.3 Supporting Information for Manuscript IV 

6.3.1 Materials and Methods  

Starting materials and solvents were purchased from commercial suppliers, and used without further 

purification. All chemical yields refer to purified compounds and were not optimized. Reaction 

progress was monitored using TLC silica gel 60 F254 aluminum sheets, and visualization was 

accomplished by UV at 254 nm. Flash chromatography was performed using silica gel 60 Å (40−63 

μm). Preparative RP-HPLC was carried out on a Waters Corporation setup containing a 2767 sample 

manager, a 2545 binary gradient module, a 2998 PDA detector and a 3100 electron spray mass 

spectrometer. Purification was performed using a Waters XBridge column (C18, 150 mm × 19 mm, 5 

µm), a binary solvent system A and B (A = water with 0.1% formic acid; B = MeCN with 0.1% formic 

acid) as eluent, a flow rate of 20 mL/min, and a gradient of 60% to 95% B in 8 min were applied. 

Melting points were determined on a Stuart Scientific melting point apparatus SMP3 (Bibby Sterilin, 

UK), and are uncorrected. NMR spectra were recorded on either a Bruker DRX-500 (1H, 500 MHz; 

13C, 126 MHz) or Bruker Fourier 300 (1H, 300 MHz; 13C, 75 MHz) spectrometer at 300 K. Chemical 

shifts were recorded as δ values in ppm units by reference to the hydrogenated residues of deuterated 

solvent as internal standard (CDCl3, δ = 7.27, 77.00; DMSO-d6, δ = 2.50, 39.51, acetone-d6: δ = 2.05, 

29.92, 206.68). Splitting patterns describe apparent multiplicities and are designated as s (singlet), br s 

(broad singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet). Coupling 

constants (J) are given in hertz (Hz). Weak or coalesced signals were elucidated by heteronuclear 

multiple quantum coherence (HMQC) and heteronuclear multiple bond coherence (HMBC) 2D-NMR 

techniques. Purity of all compounds used in biological assays was ≥ 95% as measured by LC/MS 

Finnigan Surveyor MSQ Plus (Thermo Fisher Scientific, Dreieich, Germany). The system consists of 

LC pump, autosampler, PDA detector, and single-quadrupole MS detector, as well as the standard 

software Xcalibur for operation. RP C18 Nucleodur 100-5 (125 mm × 3 mm) column (Macherey-Nagel 

GmbH, Dühren, Germany) was used as stationary phase, and a binary solvent system A and B (A = 

water with 0.1% TFA; B = MeCN with 0.1% TFA) was used as mobile phase. In a gradient run the 

percentage of B was increased from an initial concentration of 0% at 0 min to 100% at 15 min and kept 

at 100% for 5 min. The injection volume was 10 µL and flow rate was set to 800 µL/min. MS (ESI) 

analysis was carried out at a spray voltage of 3800 V, a capillary temperature of 350 °C, and a source 

CID of 10 V. Spectra were acquired in positive mode from 100 to 1000 m/z and at 254 nm for UV 

tracing. 

6.3.2 Chemistry 

Synthesis and experimental data of compounds 21–23 and 86 were described in a previous work.1 

Compounds 40, 41 and 55 are commercially available. 

3-Nitrobenzene-1,2-diol 17 
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To a stirred solution of catechol (20.0 g, 182 mmol) in diethyl ether (450 mL) cooled at 0 °C in an ice 

bath, fuming HNO3 (9 mL) was added dropwise. The reaction mixture was allowed to warm to room 

temperature and was further stirred for 24 h. Solvent was removed in vacuo. The residue was dissolved 

in EtOAc and purified using flash chromatography (SiO2, n-hexane–EtOAc = 4:1). 

Yield 50%; yellow crystals; 1H NMR (300 MHz, CDCl3) δ 10.63 (br s, 1H), 7.66 (dd, J = 8.7, 1.4 Hz, 

1H), 7.25 (dq, J = 8.1, 0.7 Hz, 1H), 6.91 (dd, J = 8.7, 8.1 Hz, 1H), 5.87 (br s, 1H); 13C NMR (75 MHz, 

CDCl3) δ 146.50, 142.77, 133.74, 121.67, 119.74, 115.80; m/z (ESI+) 155 [M]+. 

2-Isopropoxy-3-nitrophenol 18 

 

To a stirred mixture of 17 (12.41 g, 80 mmol) and K2CO3 (11.06 g, 80 mmol) in DMF (120 mL), 2-

bromopropane (9.84 g, 80 mmol) was added. The reaction mixture was stirred at 90 °C overnight. 

Solvent was evaporated in vacuo. The residue was diluted with water (200 mL) and the medium was 

acidified cautiously by KHSO4 (saturated aqueous solution) to pH 4–5. The resulting mixture was 

extracted with EtOAc (3 × 200 mL). The combined organic extract was washed with brine, dried over 

anhydrous MgSO4, and the solvent was removed by vacuum distillation. The residue was purified using 

flash chromatography (SiO2, n-hexane–EtOAc = 5:1 to 3:1). 

Yield 60%; yellow oil; 1H NMR (300 MHz, CDCl3) δ 7.47 (dd, J = 8.2, 1.7 Hz, 1H), 7.22 (dd, J = 8.2, 

1.7 Hz, 1H), 7.09 (t, J = 8.2 Hz, 1H), 6.05 (br s, 1H), 4.32 (septet, J = 6.1 Hz, 1H), 1.37 (d, J = 6.1 Hz, 

6H); 13C NMR (75 MHz, CDCl3) δ 151.35, 142.97, 138.61, 123.95, 120.07, 116.97, 79.58, 22.46 (2C); 

m/z (ESI+) 198 [M + H]+. 

2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde 19 

 

To a stirred mixture of 18 (2.96 g, 15 mmol), anhydrous MgCl2 (7.14 g, 75 mmol) and dry TEA (Na) 

(15.18 g, 150 mmol) in dry MeCN (molecular sieve) (75 mL), dry paraformaldehyde (Al2O3) (3.15 g, 

105 mmol) was added under a nitrogen atmosphere. The reaction mixture was stirred at 90 °C for 24 

h. The reaction was quenched with water (100 mL) and the medium was acidified by 37% HCl to pH 

4–5. The mixture was extracted with EtOAc (3 × 100 mL). The combined organic extract was washed 

with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The 

residue was purified using flash chromatography (SiO2, n-hexane–EtOAc = 3:1). 

Yield 40%; yellow oil; 1H NMR (500 MHz, CDCl3) δ 11.44 (br s, 1H), 9.98 (s, 1H), 7.39 (d, J = 8.5 

Hz, 1H), 7.24 (d, J = 8.5 Hz, 1H), 4.89 (septet, J = 6.3 Hz, 1H), 1.33 (d, J = 6.3 Hz, 6H); 13C NMR 
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(126 MHz, CDCl3) δ 196.24, 156.36, 149.19, 139.57, 127.12, 122.42, 114.15, 77.25, 22.32 (2C); m/z 

(ESI+) 225 [M]+. 

2-Hydroxy-3-isopropoxy-4-nitrobenzoic acid 20 

 
To a stirred solution of 19 (901 mg, 4 mmol) and NaOH (640 mg, 16 mmol) in water (30 mL), AgNO3 

(2.04 g, 12 mmol) was added. The reaction mixture was stirred at 100 °C overnight. The medium was 

adjusted to pH 9–10 by NaHCO3 (saturated aqueous solution), if necessary, and was filtered through a 

pad of diatomaceous earth. The filtrate was cooled in an ice bath and was carefully acidified by 37% 

HCl to pH 3–4. The precipitated solid was collected by filtration, washed with cold water then n-

hexane. 

Yield 55%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 7.66 (d, J = 8.8 Hz, 1H), 7.28 (d, J = 8.8 

Hz, 1H), 4.75 (septet, J = 6.0 Hz, 1H), 1.20 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 

171.22, 155.94, 148.28, 138.01, 124.75, 116.98, 112.63, 75.87, 22.08 (2C); m/z (ESI+) 241 [M]+. 

2,3-Dihydroxy-4-nitrobenzaldehyde 24 

 
To a stirred solution of 22 (1.2 g, 5 mmol) in DCM (10 mL) cooled at 0 °C in an ice bath, BBr3 (1 M 

solution in DCM, 20 mL) was added carefully under a nitrogen atmosphere. The reaction mixture was 

allowed to warm to room temperature and was further stirred overnight. Solvent was removed in vacuo. 

The residue was cautiously diluted with water (50 mL) and the medium was acidified by 2 N HCl to 

pH 4–5, if necessary. The mixture was extracted with EtOAc (3 × 30 mL). The combined organic 

extract was washed with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum 

distillation. The residue was dissolved in CHCl3 and purified using flash chromatography (SiO2, DCM–

MeOH = 98:2). 

Yield 68%; red crystals; 1H NMR (500 MHz, CDCl3) δ 11.20 (br s, 1H), 10.60 (br s, 1H), 10.04 (s, 

1H), 7.75 (d, J = 8.8 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 195.87, 152.88, 

145.63, 136.27, 123.09, 121.42, 114.52; m/z (ESI+) 183 [M]+; tR = 9.54 min. 

2,3-Diisopropoxy-4-nitrobenzaldehyde 25 
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To a stirred mixture of 24 (732 mg, 4 mmol) and K2CO3 (1.38 g, 10 mmol) in DMF (20 mL), 2-

bromopropane (1.48 g, 12 mmol) was added. The reaction mixture was stirred at 80 °C overnight. 

Solvent was evaporated in vacuo, and the residue was diluated with water (30 mL). The resulting 

mixture was extracted with EtOAc (3 × 30 mL). The combined organic extract was washed with brine, 

dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The residue was 

dissolved in toluene and purified using flash chromatography (SiO2, n-hexane–EtOAc = 6:1). 

Yield 76%; yellow oil; 1H NMR (500 MHz, CDCl3) δ 10.42 (s, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.48 (d, 

J = 8.5 Hz, 1H), 4.82 (septet, J = 6.0 Hz, 1H), 4.70 (septet, J = 6.3 Hz, 1H), 1.35 (d, J = 6.0 Hz, 6H), 

1.31 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 189.07, 155.51, 150.01, 145.03, 133.69, 

122.21, 118.94, 77.56, 77.21, 22.24 (2C), 22.22 (2C); m/z (ESI+) 267 [M]+; tR = 16.45 min. 

2,3-Diisopropoxy-4-nitrobenzoic acid 26 

 

To a stirred solution of 25 (1.07 g, 4 mmol) in acetone (12 mL), KMnO4 (1.26 g, 8 mmol) solution in 

50% aq. acetone (28 mL) was added. The reaction mixture was stirred at room temperature for 24 h, 

then 1 N NaOH (5 mL) was added. The resulting mixture was filtered through a pad of diatomaceous 

earth, and the filtrate was concentrated in vacuo. The residue was cooled in an ice bath and carefully 

acidified by KHSO4 (saturated aqueous solution) to pH 4–5, then extracted with EtOAc (3 × 25 mL). 

The combined organic extract was washed with brine, dried over anhydrous MgSO4, and the solvent 

was removed by vacuum distillation. The obtained material was triturated with n-hexane (25 mL), and 

collected by filtration. 

Yield 90%; beige crystals; 1H NMR (500 MHz, DMSO-d6) δ 13.43 (br s, 1H), 7.61 (d, J = 8.5 Hz, 1H), 

7.48 (d, J = 8.5 Hz, 1H), 4.68 (septet, J = 6.0 Hz, 1H), 4.49 (septet, J = 6.3 Hz, 1H), 1.22 (d, J = 6.3 

Hz, 6H), 1.18 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 166.37, 150.26, 147.38, 143.72, 

132.73, 124.38, 118.36, 76.81, 76.40, 22.04 (2C), 21.93 (2C); m/z (ESI+) 283 [M]+; tR = 14.09 min. 

Methyl 2-hydroxy-4-nitrobenzoate 27 

 

To a stirred solution of 2-hydroxy-4-nitrobenzoic acid 41 (1.10 g, 6 mmol) in MeOH (20 mL), concd 

H2SO4 (2 mL) was added drop wise. The reaction mixture was stirred at 70 °C overnight, then solvent 

was concentrated in vacuo. The residue was diluted with water (25 mL) and neutralized by Na2CO3 

(saturated aqueous solution) to pH 7–8. The mixture was extracted with EtOAc (3 × 25 mL). The 
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combined organic extract was washed with brine, dried over anhydrous MgSO4, and the solvent was 

evaporated by vacuum distillation. The obtained material was triturated with n-hexane (50 mL), and 

collected by filtration. 

Yield 96%; yellow crystals; 1H NMR (300 MHz, CDCl3) δ 10.98 (br s, 1H), 8.03 (d, J = 8.8 Hz, 1H), 

7.82 (d, J = 2.2 Hz, 1H), 7.71 (dd, J = 8.8, 2.2 Hz, 1H), 4.03 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 

169.24, 161.99, 152.15, 131.21, 117.14, 113.50, 113.04, 53.09; m/z (ESI+) 198 [M + H]+; tR = 13.68 

min. 

Methyl 4-amino-2-hydroxybenzoate 28 

 

To a stirred solution of 27 (986 mg, 5 mmol) in EtOH (40 mL), iron powder (1.40 g, 25 mmol) was 

added at 55 °C followed by NH4Cl (134 mg, 2.5 mmol) solution in water (15 mL). The reaction mixture 

was stirred at 90 °C for 1 h, then iron was filtered on hot and the filtrate was concentrated in vacuo. 

The residue was diluted with water (25 mL) and basified by NaHCO3 (saturated aqueous solution) to 

pH 8–9. The mixture was extracted with EtOAc (3 × 25 mL). The combined organic extract was washed 

with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The 

obtained material was triturated with n-hexane (25 mL), and collected by filtration. 

Yield 80%; beige crystals; 1H NMR (300 MHz, CDCl3) δ 10.93 (br s, 1H), 7.62 (d, J = 8.9 Hz, 1H), 

6.17 (d, J = 2.2 Hz, 1H), 6.15 (dd, J = 8.9, 2.2 Hz, 1H), 4.10 (br s, 2H), 3.88 (s, 3H); 13C NMR (75 

MHz, CDCl3) δ 170.45, 163.58, 153.33, 131.63, 106.80, 103.05, 100.76, 51.72; m/z (ESI+) 168 [M + 

H]+; tR = 9.83 min. 

Methyl 4-amino-3-chloro-2-hydroxybenzoate 29 

 

To a stirred solution of 28 (1 g, 6 mmol) in DMF (20 mL), N-chlorosuccinimide (801 mg, 6 mmol) 

solution in DMF (5 mL) was added drop wise. The reaction mixture was stirred at 40 °C overnight, 

then solvent was removed in vacuo. The residue was diluted with water (50 mL) and basified by 

Na2CO3 (saturated aqueous solution) to pH 8–9. The mixture was extracted with EtOAc (3 × 30 mL). 

The combined organic extract was washed with brine, dried over anhydrous MgSO4, and the solvent 

was removed by vacuum distillation. The residue was dissolved in CHCl3 and purified using flash 

chromatography (SiO2, n-hexane–EtOAc = 4:1). 
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Yield 70%; white crystals; 1H NMR (300 MHz, CDCl3) δ 11.61 (br s, 1H), 7.57 (d, J = 8.8 Hz, 1H), 

6.28 (d, J = 8.8 Hz, 1H), 4.59 (br s, 2H), 3.91 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 170.42, 158.90, 

149.26, 128.78, 106.10, 104.93, 103.31, 52.01; m/z (ESI+) 202 [M + H]+; tR = 13.10 min. 

4-Methoxypicolinonitrile 30 

 

To a stirred solution of 4-methoxypyridine-N-oxide hydrate (2.50 g, 20 mmol) in DCM (25 mL), 

trimethylsilyl cyanide (2.58 g, 26 mmol) was added. The reaction mixture was stirred at room 

temperature for 10 min, then dimethylcarbamoyl chloride (2.80 g, 26 mmol) was added portion wise, 

and the reaction was further stirred at room temperature for 24 h. The reaction was quenched carefully 

with K2CO3 10% (25 mL) and allowed to stir for 15 min. The organic layer was separated and aqueous 

layer was extracted with DCM (2 × 20 mL) then diethyl ether (1 × 20 mL). The combined organic 

extract was dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The 

residue was triturated with n-hexane (50 mL), and collected by filtration. 

Yield 70%; white crystals; 1H NMR (300 MHz, CDCl3) δ 8.51 (d, J = 5.8 Hz, 1H), 7.22 (d, J = 2.5 Hz, 

1H), 7.01 (dd, J = 5.8, 2.5 Hz, 1H), 3.91 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 165.92, 152.23, 134.99, 

117.12, 115.37, 112.61, 55.80; m/z (ESI+) 135 [M + H]+; tR = 8.27 min. 

2-Carboxy-4-methoxypyridin-1-ium chloride 31 

 

To the picolinonitrile 30 (1.61 g, 12 mmol), 5 N HCl (40 mL) was added. The reaction mixture was 

stirred at 100 °C overnight, then solvent was evaporated to dryness. The obtained material was 

triturated with n-hexane (50 mL), and collected by filtration. 

Yield 95%; white crystals; 1H NMR (300 MHz, DMSO-d6) δ 9.80 (br s, 1H), 8.71 (d, J = 6.5 Hz, 1H), 

7.81 (d, J = 2.7 Hz, 1H), 7.62 (dd, J = 6.5, 2.7 Hz, 1H), 7.47 (t, J = 50.0 Hz, 3H), 4.10 (s, 3H); 13C 

NMR (75 MHz, DMSO-d6) δ 171.09, 161.45, 145.70, 144.30, 114.16, 112.97, 57.77; m/z (ESI+) 154 

[M - Cl]+; tR = 1.48 min. 

4-Hydroxy-5-nitropicolinic acid 32 

 

To the picolinic acid hydrchloride salt 31 (3.79 g, 20 mmol), concd H2SO4 (8 mL) was carefully added. 

The mixture was stirred for 5 min then a mixture of concd H2SO4 (2 mL) and fuming HNO3 (10 mL) 
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was added. The reaction mixture was stirred at 150 °C for 48 h, then it was cooled in an ice bath and 

carefully neutralized with NH4OH 25% till pH 6–7. The pale yellow precipitate was collected by 

filtration, washed with cold water and n-hexane. Filtrate was extracted with THF (3 × 30 mL). The 

combined organic extract was dried over anhydrous MgSO4, and the solvent was removed by vacuum 

distillation. The residue was triturated with n-hexane (50 mL), and filtered to afford a second crop of 

the product. 

Yield 50%; pale yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 8.50 (s, 1H), 7.56 (br  s, 2H), 6.77 (s, 

1H); 13C NMR (126 MHz, DMSO-d6) δ 169.66, 161.54, 145.32, 139.14, 137.77, 120.95; m/z (ESI+) 

185 [M + H]+; tR = 1.16 min. 

Isopropyl 4-isopropoxy-5-nitropicolinate 33 

 

To a stirred mixture of 32 (921 mg, 5 mmol) and K2CO3 (1.38 g, 10 mmol) in DMF (25 mL), 2-

bromopropane (1.84 g, 15 mmol) was added. The reaction mixture was stirred at 90 °C overnight. 

Solvent was evaporated in vacuo, and the residue was diluated with water (30 mL). The resulting 

mixture was extracted with EtOAc (3 × 30 mL). The combined organic extract was washed with brine, 

dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The residue was 

dissolved in toluene and purified using flash chromatography (SiO2, n-hexane–EtOAc = 1:1). 

Yield 75%; pale yellow crystals; 1H NMR (500 MHz, CDCl3) δ 8.93 (s, 1H), 7.77 (s, 1H), 5.28 (septet, 

J = 6.3 Hz, 1H), 4.88 (septet, J = 6.0 Hz, 1H), 1.42 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H); 13C 

NMR (126 MHz, CDCl3) δ 163.24, 157.82, 152.31, 146.56, 138.47, 111.21, 73.77, 70.58, 21.56 (2C), 

21.39 (2C); m/z (ESI+) 269 [M + H]+; tR = 15.57 min. 

4-Isopropoxy-5-nitropicolinic acid 34 

 

To a stirred solution of 33 (536 mg, 2 mmol) in MeOH (10 mL), 1 N NaOH (5 mL) was added. The 

reaction was stirred at room temperature overnight. Solvent was evaporated in vacuo. The remaining 

residue was dissolved in water (15 mL), cooled in an ice bath and acidified by KHSO4 (saturated 

aqueous solution) to pH 6, then extracted with EtOAc/THF (1:1, 3 × 30 mL). The combined organic 

extract was washed with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum 

distillation. The obtained material was triturated with n-hexane (30 mL), and collected by filtration. 
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Yield 85%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 13.76 (br s, 1H), 9.03 (s, 1H), 7.90 (s, 1H), 

5.13 (septet, J = 6.0 Hz, 1H), 1.35 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.97, 

157.17, 152.76, 146.07, 138.42, 111.53, 73.62, 21.28 (2C); m/z (ESI+) 227 [M + H]+; tR = 12.88 min. 

6-Chloro-2-isopropoxy-3-nitropyridine 35 

 
To a stirred solution of 2,6-dichloro-3-nitropyridine (3.86 g, 20 mmol) in toluene (30 mL) cooled at 0 

°C in an ice bath, 2-propanol (1.44 g, 24 mmol) was added. The reaction mixture was stirred at 0 °C 

for 15 min, then NaH (50–60% in mineral oil, 1.22 g, 28 mmol) was added portion wise under a 

nitrogen atmosphere, and the reaction was further stirred at room temperature overnight. The reaction 

was quenched with brine, then diluted with water and extracted with EtOAc (3 × 30 mL). The combined 

organic extract was dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. 

The residue was dissolved in toluene and purified using flash chromatography (SiO2, n-hexane–EtOAc 

= 5:1). 

Yield 70%; yellowish white crystals; 1H NMR (300 MHz, CDCl3) δ 8.22 (d, J = 8.2 Hz, 1H), 6.98 (d, 

J = 8.2 Hz, 1H), 5.51 (septet, J = 6.2 Hz, 1H), 1.44 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 

155.71, 152.72, 137.33, 132.66, 115.88, 72.48, 21.71 (2C); m/z (ESI+) 217 [M + H]+; tR = 12.82 min. 

2-Isopropoxy-3-nitro-6-vinylpyridine 36 

 

To a stirred solution of 35 (650 mg, 3 mmol), and tributyl(vinyl)tin (1.0 g, 3.15 mmol) in toluene (20 

mL) under a nitrogen atmosphere, tetrakis(triphenylphosphine) palladium(0) (175 mg, 0.15 mmol) was 

added. The reaction mixture was stirred at 110 °C overnight. The reaction was quenched with brine, 

then extracted with EtOAc (3 × 25 mL). The combined organic extract was dried over anhydrous 

MgSO4, and the solvent was removed by vacuum distillation. The obtained material was purified using 

flash chromatography (SiO2, n-hexane–EtOAc = 6:1). 

Yield 90%; yellow oil; 1H NMR (500 MHz, CDCl3) δ 8.22 (d, J = 8.2 Hz, 1H), 6.90 (d, J = 8.2 Hz, 

1H), 6.73 (dd, J = 17.3, 10.7 Hz, 1H); 6.38 (dd, J = 17.3, 1.6 Hz, 1H); 5.63 (dd, J = 10.7, 1.6 Hz, 1H); 

5.58 (septet, J = 6.3 Hz, 1H), 1.44 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 157.40, 155.57, 

135.88, 134.92, 132.83, 122.37, 113.86, 70.67, 21.79 (2C); m/z (ESI+) 208 [M]+; tR = 13.37 min. 

6-isopropoxy-5-nitropicolinic acid 37 
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To a stirred solution of 36 (625 mg, 3 mmol) in acetone (10 mL), KMnO4 (1.90 g, 12 mmol) solution 

in 50% aq. acetone (50 mL) was added. The reaction mixture was stirred at room temperature for 24 

h, then 1 N NaOH (3 mL) was added. The resulting mixture was filtered through a pad of diatomaceous 

earth, and the filtrate was concentrated in vacuo. The residue was cooled in an ice bath and carefully 

acidified by KHSO4 (saturated aqueous solution) to pH 4–5, then extracted with EtOAc (3 × 25 mL). 

The combined organic extract was washed with brine, dried over anhydrous MgSO4, and the solvent 

was removed by vacuum distillation. The obtained material was triturated with n-hexane (25 mL), and 

collected by filtration. 

Yield 75%; beige crystals; 1H NMR (500 MHz, DMSO-d6) δ 13.64 (br s, 1H), 8.50 (d, J = 7.9 Hz, 1H), 

7.75 (d, J = 7.9 Hz, 1H), 5.52 (septet, J = 6.0 Hz, 1H), 1.35 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, 

DMSO-d6) δ 164.37, 154.12, 149.14, 136.17, 136.09, 117.71, 71.00, 21.51 (2C); m/z (ESI+) 227 [M + 

H]+; tR = 9.01 min. 

Isopropyl 3-isopropoxy-4-nitrobenzoate 38 

 

To a stirred mixture of 3-hydroxy-4-nitrobenzoic acid (7.33 g, 40 mmol) and K2CO3 (13.8 g, 100 mmol) 

in DMF (120 mL), 2-bromopropane (14.8 g, 120 mmol) was added. The reaction mixture was stirred 

at 90 °C overnight. The mixture was poured on to ice cooled water (400 mL) and extracted with EtOAc 

(3 × 100 mL). The combined organic extract was washed with brine, dried over anhydrous MgSO4, 

and the solvent was removed by vacuum distillation. The obtained material was used directly in the 

next step without further purification. 

Yield 95%; pale yellow liquid; 1H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 2.0 

Hz, 1H), 7.61 (dd, J = 8.0, 2.0 Hz, 1H), 5.24 (septet, J = 6.3 Hz, 1H), 4.75 (septet, J = 6.0 Hz, 1H), 

1.39 (d, J = 6.0 Hz, 6H), 1.37 (d, J = 6.3 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 164.25, 150.67, 143.56, 

135.19, 124.86, 120.92, 116.89, 72.92, 69.54, 21.75 (2C), 21.71 (2C); m/z (ESI+) 268 [M + H]+; tR = 

13.69 min. 

3-Isopropoxy-4-nitrobenzoic acid 39 

 

To a stirred solution of 38 (2.67 g, 10 mmol) in MeOH (25 mL), 1 N NaOH (50 mL) was added. The 

reaction was stirred at at 100 °C for 2 h, then solvent was concentrated in vacuo. The remaining residue 
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was diluted with water (25 mL), cooled in an ice bath and acidified by KHSO4 (saturated aqueous 

solution) to pH 3–4. The precipitate was collected by filtration, washed with water, then n-hexane. 

Yield 93%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 13.62 (br s, 1H), 7.91 (d, J = 8.5 Hz, 1H), 

7.76 (d, J = 1.6 Hz, 1H), 7.61 (dd, J = 8.5, 1.6 Hz, 1H), 4.90 (septet, J = 6.0 Hz, 1H), 1.29 (d, J = 6.0 

Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 165.86, 149.61, 143.27, 135.43, 124.88, 121.25, 116.53, 

72.45, 21.51 (2C); m/z (ESI+) 226 [M + H]+; tR = 9.69 min. 

Isopropyl 4-amino-3-isopropoxybenzoate 42 

 

To a stirred solution of 38 (2.67 g, 10 mmol) in EtOH (60 mL), iron powder (2.80 g, 50 mmol) was 

added at 55 °C followed by NH4Cl (266 mg, 5 mmol) solution in water (30 mL). The reaction mixture 

was stirred at 90 °C for 1 h, then iron was filtered on hot and the filtrate was concentrated in vacuo. 

The residue was diluted with water (30 mL) and basified by NaHCO3 (saturated aqueous solution) to 

pH 8–9. The mixture was extracted with EtOAc (3 × 30 mL). The combined organic extract was washed 

with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The 

obtained material was used directly in the next step without further purification. 

Yield 90%; pale green liquid; 1H NMR (300 MHz, CDCl3) δ 7.54 (dd, J = 8.1, 2.0 Hz, 1H), 7.50 (d, J 

= 2.0 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 5.21 (septet, J = 6.2 Hz, 1H), 4.82 (br s, 2H), 4.65 (septet, J = 

6.0 Hz, 1H), 1.38 (d, J = 6.0 Hz, 6H), 1.35 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 166.22, 

144.94, 139.89, 123.49, 121.73, 114.62, 114.16, 71.00, 67.72, 22.12 (2C), 21.99 (2C); m/z (ESI+) 238 

[M + H]+; tR = 11.62 min. 

2-Isopropoxy-4-nitrobenzoic acid 56 

 

Synthesis of 56 was performed similarly as described for 39 starting with the carboxylic acid 41. 

Yield 87%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 12.85 (br s, 1H), 7.84 (d, J = 2.1 Hz, 1H), 

7.80 (dd, J = 8.4, 2.1 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 4.83 (septet, J = 6.0 Hz, 1H), 1.30 (d, J = 6.0 

Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 166.60, 155.94, 149.68, 130.70, 129.73, 114.99, 109.38, 

71.84, 21.54 (2C); m/z (ESI+) 226 [M + H]+; tR = 9.48 min. 
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General procedure for amide coupling using dichlorotriphenylphosphorane 

To a stirred solution of the N-protected carboxylic acid (1 mmol) and the C-protected amine (1 mmol) 

in anhydrous CHCl3 (50 mL) under a nitrogen atmosphere, dichlorotriphenylphosphorane (1.5 g, 4.5 

mmol) was added. The reaction mixture was heated at 80 °C overnight. Solvent was removed by 

vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography 

(SiO2, n-hexane–EtOAc = 4:1 or 2:1 or 1:1). 

General procedure for amide coupling using phosphorus trichloride 

To a stirred solution of the N-protected carboxylic acid (1 mmol) in a mixture of xylenes (30 mL) and 

DCM (5 mL), the C-protected amine (1 mmol) was added. The reaction was warmed to 60 °C then 

phosphorus trichloride (0.05 mL, 0.5 mmol) was added. The reaction mixture was heated at 150 °C 

overnight. Solvent was removed by vacuum distillation. The residue was dissolved in MeOH and 

mixed with silica gel and the resulting paste was dried in vacuo. The silica adsorbed material was 

purified using flash chromatography (SiO2, n-hexane–EtOAc = 1:1). 

Isopropyl 4-(2-hydroxy-3-isopropoxy-4-nitrobenzamido)-3-isopropoxybenzoate 43 

 

Yield 87%; yellow solid; 1H NMR (500 MHz, CDCl3) δ 11.86 (br s, 1H), 9.20 (br s, 1H), 8.51 (d, J = 

8.5 Hz, 1H), 7.72 (dd, J = 8.5, 1.9 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.29 (d, 

J = 8.8 Hz, 1H), 5.26 (septet, J = 6.3 Hz, 1H), 4.85 (septet, J = 6.0 Hz, 1H), 4.80 (septet, J = 6.0 Hz, 

1H), 1.46 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H), 1.36 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ 166.02, 165.56, 156.26, 147.20, 146.15, 140.59, 131.15, 127.14, 122.95, 120.00, 119.37, 

118.88, 113.73, 113.19, 77.59, 72.02, 68.61, 22.37 (2C), 22.17 (2C), 21.94 (2C); m/z (ESI+) 461 [M + 

H]+. 

Isopropyl 4-(2-hydroxy-3-methoxy-4-nitrobenzamido)-3-isopropoxybenzoate 44 

 

Yield 85%; yellow solid; 1H NMR (500 MHz, CDCl3) δ 12.14 (br s, 1H), 9.12 (br s, 1H), 8.50 (d, J = 

8.5 Hz, 1H), 7.73 (dd, J = 8.5, 1.6 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.32 (d, 

J = 8.8 Hz, 1H), 5.26 (septet, J = 6.3 Hz, 1H), 4.81 (septet, J = 6.0 Hz, 1H), 4.10 (s, 3H), 1.47 (d, J = 
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6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 166.14, 165.52, 156.70, 146.68, 

146.16, 142.93, 130.94, 127.28, 122.93, 120.19, 119.40, 119.16, 113.64, 113.18, 72.06, 68.64, 62.01, 

22.18 (2C), 21.94 (2C); m/z (ESI+) 433 [M + H]+; tR = 16.84 min. 

Isopropyl 4-(3-hydroxy-2-methoxy-4-nitrobenzamido)-3-isopropoxybenzoate 45 

 

Yield 68%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 10.99 (br s, 1H), 10.72 (s, 1H), 8.56 (d, J 

= 8.4 Hz, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.60 (dd, J = 8.4, 1.7 Hz, 1H), 7.58 (m, 2H), 5.12 (septet, J = 

6.3 Hz,  1H), 4.85 (septet, J = 6.0 Hz, 1H), 3.99 (s, 3H), 1.39 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.3 Hz, 

6H); 13C NMR (126 MHz, DMSO-d6) δ 164.79, 161.19, 148.52, 146.16, 146.07, 139.79, 132.53, 

130.59, 125.72, 122.22, 119.87, 119.82, 119.29, 112.95, 71.25, 68.10, 62.21, 21.67 (2C), 21.61 (2C); 

m/z (ESI+) 433 [M + H]+; tR = 16.85 min. 

Isopropyl 4-(2,3-diisopropoxy-4-nitrobenzamido)-3-isopropoxybenzoate 46 

 

Yield 70%; yellowish orange solid; 1H NMR (500 MHz, DMSO-d6) δ 10.22 (s, 1H), 8.54 (d, J = 8.5 

Hz, 1H), 7.78 (s, 2H), 7.61 (m, 2H), 5.13 (septet, J = 6.2 Hz, 1H), 4.78 (septet, J = 6.1 Hz, 1H), 4.68 

(septet, J = 6.3 Hz, 1H), 4.59 (septet, J = 6.0 Hz, 1H), 1.34 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.3 Hz, 

6H), 1.27 (d, J = 6.1 Hz, 6H), 1.25 (d, J = 6.2 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.75, 

161.91, 149.68, 147.63, 146.13, 143.89, 133.18, 132.42, 125.84, 125.22, 122.49, 119.44, 119.17, 

113.73, 78.32, 77.38, 72.01, 68.12, 22.02 (2C), 21.88 (2C), 21.70 (2C), 21.68 (2C); m/z (ESI+) 503 

[M + H]+; tR = 17.52 min. 

Isopropyl 4-(2-hydroxy-4-nitrobenzamido)-3-isopropoxybenzoate 47 

 
Yield 55%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 12.73 (br s, 1H), 11.20 (s, 1H), 8.62 (d, J 

= 8.5 Hz, 1H), 8.26 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 2.2 Hz, 1H), 7.80 (dd, J = 8.7, 2.3 Hz, 1H), 7.59 

(dd, J = 8.5, 1.7 Hz, 1H), 7.56 (d, J = 1.7 Hz, 1H), 5.12 (septet, J = 6.3 Hz, 1H), 4.80 (septet, J = 6.0 

Hz, 1H), 1.38 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.79, 
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161.32, 156.36, 150.01, 145.89, 133.28, 132.79, 125.36, 124.35, 122.51, 118.86, 114.03, 113.39, 

111.69, 71.67, 68.03, 21.74 (2C), 21.67 (2C); m/z (ESI+) 403 [M + H]+; tR = 14.18 min. 

Isopropyl 3-isopropoxy-4-(3-isopropoxy-4-nitrobenzamido)benzoate 48 

 

Yield 98%; yellow solid; 1H NMR (500 MHz, CDCl3) δ 8.79 (br s, 1H), 8.56 (d, J = 8.5 Hz, 1H), 7.85 

(d, J = 8.5 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 7.68 (s, 1H), 7.60 (s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 5.24 

(septet, J = 6.3 Hz, 1H), 4.80 (septet, J = 6.0 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 1H), 1.43 (d, J = 6.0 

Hz, 12H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.58, 163.05, 151.46, 145.81, 

142.79, 139.47, 131.97, 126.58, 125.67, 122.99, 118.72, 117.19, 115.37, 113.08, 73.05, 71.84, 68.44, 

22.13 (2C), 21.90 (2C), 21.76 (2C); m/z (ESI+) 445 [M + H]+; tR = 15.79 min. 

Isopropyl 4-(2-hydroxy-3-isopropoxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 

57 

 
Yield 62%; yellow solid; 1H NMR (500 MHz, CDCl3) δ 12.47 (br s, 1H), 8.98 (br s, 1H), 8.94 (br s, 

1H), 8.50 (d, J = 8.5 Hz, 1H), 8.41 (d, J = 8.8 Hz, 2H), 8.18 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 8.8 Hz, 

2H), 7.72 (dd, J = 8.5, 1.6 Hz, 1H), 7.62 (d, J = 1.6 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 5.26 (septet, J = 

6.3 Hz, 1H), 4.94 (septet, J = 6.3 Hz, 1H), 4.80 (septet, J = 6.0 Hz, 1H), 1.48 (d, J = 6.0 Hz, 6H), 1.39 

(d, J = 6.3 Hz, 12H); 13C NMR (126 MHz, CDCl3) δ 167.90, 165.65, 163.05, 154.91, 149.97, 146.04, 

140.02, 136.51, 134.90, 131.60, 128.16 (2C), 126.58, 124.23 (2C), 123.01, 120.50, 119.04, 113.25, 

112.04, 109.80, 75.43, 72.08, 68.49, 22.91 (2C), 22.21 (2C), 21.95 (2C); m/z (ESI+) 580 [M + H]+. 

Isopropyl 4-(2-hydroxy-3-methoxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 58 
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Yield 94%; yellow crystals; 1H NMR (500 MHz, CDCl3) δ 12.48 (br s, 1H), 8.97 (br s, 1H), 8.81 (br 

s, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.40 (d, J = 9.1 Hz, 2H), 8.17 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 9.1 Hz, 

2H), 7.72 (dd, J = 8.5, 1.9 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H), 5.26 (septet, J = 

6.3 Hz, 1H), 4.80 (septet, J = 6.0 Hz, 1H), 4.10 (s, 3H), 1.48 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 

6H); 13C NMR (126 MHz, CDCl3) δ 167.79, 165.65, 163.42, 154.84, 150.01, 146.06, 139.98, 136.99, 

135.63, 131.55, 128.37 (2C), 126.65, 124.19 (2C), 123.01, 120.84, 119.07, 113.27, 112.21, 109.94, 

72.10, 68.52, 60.91, 22.21 (2C), 21.96 (2C); 1H NMR (500 MHz, DMSO-d6) δ 11.48 (br s, 1H), 11.07 

(br s, 1H), 10.26 (br s, 1H), 8.61 (d, J = 8.5 Hz, 1H), 8.38 (d, J = 8.8 Hz, 2H), 8.19 (d, J = 8.8 Hz, 2H), 

7.85 (d, J = 8.8 Hz, 1H), 7.60 (dd, J = 8.5, 1.6 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 7.52 (d, J = 8.8 Hz, 

1H), 5.12 (septet, J = 6.0 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 1H), 3.77 (s, 3H), 1.40 (d, J = 6.0 Hz, 6H), 

1.32 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.91, 164.43, 162.97, 149.73, 149.30, 

146.12, 141.00, 140.13, 135.25, 133.77, 129.45 (2C), 125.64, 125.02, 123.64 (2C), 122.53, 119.18, 

117.22, 115.49, 113.62, 71.94, 68.02, 60.59, 21.73 (2C), 21.72 (2C); m/z (ESI+) 552 [M + H]+; tR = 

16.56 min. 

Isopropyl 4-(3-hydroxy-2-methoxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 59 

 

Yield 63%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 10.87 (s, 1H), 10.21 (br s, 1H), 9.81 (br s, 

1H), 8.66 (d, J = 8.4 Hz, 1H), 8.39 (m, 2H), 8.23 (m, 2H), 7.61 (m, 3H), 7.58 (d, J = 1.8 Hz, 1H), 5.13 

(septet, J = 6.3 Hz, 1H), 4.87 (septet, J = 6.0 Hz, 1H), 3.98 (s, 3H), 1.41 (d, J = 6.0 Hz, 6H), 1.33 (d, J 

= 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.87, 164.24, 162.18, 149.32, 147.44, 145.69, 

143.03, 139.80, 133.22, 131.04, 129.40 (2C), 125.01, 123.58 (2C), 122.46, 122.36, 120.83, 120.17, 

118.79, 112.86, 71.18, 68.01, 61.75, 21.69 (2C), 21.67 (2C); m/z (ESI+) 552 [M + H]+; tR = 16.53 min. 

Isopropyl 4-(2,3-diisopropoxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 60 

 

Yield 63%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 10.39 (br s, 1H), 10.15 (br s, 1H), 8.61 (d, 

J = 8.5 Hz, 1H), 8.39 (d, J = 8.8 Hz, 2H), 8.21 (d, J = 8.8 Hz, 2H), 7.79 (d, J = 8.8 Hz, 1H), 7.78 (d, J 

= 8.8 Hz, 1H), 7.62 (dd, J = 8.5, 1.9 Hz, 1H), 7.59 (d, J = 1.9 Hz, 1H), 5.13 (septet, J = 6.3 Hz, 1H), 

4.76 (septet, J = 6.0 Hz, 1H), 4.63 (septet, J = 6.3 Hz, 1H), 4.47 (septet, J = 6.3 Hz, 1H), 1.35 (d, J = 

6.0 Hz, 6H), 1.33 (d, J = 6.3 Hz, 6H), 1.28 (d, J = 6.3 Hz, 6H), 1.27 (d, J = 6.3 Hz, 6H); 13C NMR (126 



 

 

180 6.3 Supporting Information for Manuscript IV 

MHz, DMSO-d6) δ 164.78, 163.81, 162.70, 149.35, 149.09, 145.82, 143.60, 139.69, 136.49, 133.09, 

129.14 (2C), 125.53, 125.22, 125.19, 123.74 (2C), 122.65, 120.25, 118.71, 113.87, 77.31, 76.02, 72.23, 

68.00, 22.21 (2C), 21.89 (2C), 21.76 (2C), 21.68 (2C); m/z (ESI+) 622 [M + H]+; tR = 17.56 min. 

Isopropyl 4-(2-hydroxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 61 

 
Yield 50%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 11.82 (s, 1H), 11.18 (s, 1H), 10.78 (s, 1H), 

8.65 (d, J = 8.5 Hz, 1H), 8.38 (m, 2H), 8.19 (m, 2H), 8.03 (d, J = 8.7 Hz, 1H), 7.90 (d, J = 2.0 Hz, 1H), 

7.58 (m, 2H), 7.29 (dd, J = 8.8, 2.0 Hz, 1H), 5.12 (septet, J = 6.2 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 

1H), 1.38 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.2 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.91, 

164.48, 162.82, 156.51, 149.26, 145.68, 143.30, 140.38, 134.18, 131.68, 129.39 (2C), 124.53, 123.55 

(2C), 122.61, 118.49, 114.55, 113.45, 111.81, 107.42, 71.63, 67.90, 21.74 (2C), 21.70 (2C); m/z (ESI+) 

522 [M + H]+; tR = 13.95 min. 

Isopropyl 3-isopropoxy-4-(3-isopropoxy-4-(4-nitrobenzamido)benzamido)benzoate 62 

 
Yield 93%; yellow solid; 1H NMR (500 MHz, CDCl3) δ 8.88 (br s, 1H), 8.81 (br s, 1H), 8.68 (d, J = 

8.5 Hz, 1H), 8.62 (d, J = 8.5 Hz, 1H), 8.41 (d, J = 8.8 Hz, 2H), 8.08 (d, J = 8.8 Hz, 2H), 7.73 (dd, J = 

8.5, 1.9 Hz, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 7.44 (dd, J = 8.5, 1.9 Hz, 1H), 5.26 

(septet, J = 6.3 Hz, 1H), 4.85 (septet, J = 6.0 Hz, 1H), 4.79 (septet, J = 6.0 Hz, 1H), 1.48 (d, J = 6.0 

Hz, 6H), 1.46 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.82, 

164.31, 163.07, 149.85, 146.68, 145.77, 140.28, 132.75, 131.23, 130.76, 128.19 (2C), 125.94, 124.22 

(2C), 123.17, 119.28, 118.72, 118.50, 113.19, 111.90, 71.97, 71.89, 68.37, 22.24 (2C), 22.21 (2C), 

21.98 (2C); m/z (ESI+) 564 [M + H]+; tR = 16.49 min. 

Isopropyl 4-(4-(2-hydroxy-4-nitrobenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoate 

63 
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Yield 49%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 12.73 (br s, 1H), 11.19 (s, 1H), 9.33 (s, 

1H), 8.66 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 1.5 Hz, 

1H), 7.82 (dd, J = 8.5, 1.5 Hz, 1H), 7.64 (d, J = 1.5 Hz, 1H), 7.58 (m, 3H), 5.13 (septet, J = 4.7 Hz, 

1H), 4.88 (septet, J = 5.0 Hz, 1H), 4.73 (septet, J = 5.4 Hz, 1H), 1.42 (d, J = 5.0 Hz, 6H), 1.36 (d, J = 

5.4 Hz, 6H), 1.33 (d, J = 4.7 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.85, 164.17, 161.29, 

156.29, 150.01, 147.66, 146.08, 132.79, 132.74, 132.15, 129.40, 126.08, 124.42, 122.01, 121.32, 

120.34, 119.08, 114.11, 113.81, 112.01, 111.69, 71.58, 71.50, 68.09, 21.84 (2C), 21.68 (4C); m/z 

(ESI+) 580 [M + H]+; tR = 17.67 min. 

Isopropyl 4-(2-hydroxy-4-(2-isopropoxy-4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 

64 

 
Yield 41%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 11.80 (s, 1H), 11.17 (s, 1H), 10.54 (s, 1H), 

8.65 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.90 (m, 2H), 7.83 (m, 2H), 7.56 (m, 2H), 7.16 (dd, 

J = 8.7, 1.9 Hz, 1H), 5.12 (septet, J = 6.2 Hz, 1H), 4.89 (septet, J = 6.0 Hz, 1H), 4.78 (septet, J = 6.0 

Hz, 1H), 1.38 (d, J = 6.0 Hz, 6H), 1.35 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.2 Hz, 6H); 13C NMR (126 

MHz, DMSO-d6) δ 164.91, 163.79, 162.80, 156.66, 155.22, 149.47, 145.66, 143.13, 134.21, 132.33, 

131.89, 130.46, 124.50, 122.61, 118.45, 115.31, 114.36, 113.45, 111.06, 108.87, 106.68, 72.36, 71.63, 

67.90, 21.73 (2C), 21.70 (2C), 21.58 (2C); m/z (ESI+) 580 [M + H]+; tR = 15.71 min. 

Methyl 3-chloro-2-hydroxy-4-(4-nitrobenzamido)benzoate 74 

 
Yield 90%; yellow crystals; 1H NMR (500 MHz, CDCl3) δ 11.62 (br s, 1H), 8.39 (d, J = 9.1 Hz, 2H), 

8.36 (d, J = 9.1 Hz, 2H), 7.85 (d, J = 8.5 Hz, 1H), 7.27 (br s, 1H), 6.53 (d, J = 8.5 Hz, 1H), 4.01 (s, 

3H); 13C NMR (126 MHz, CDCl3) δ 170.08, 158.62, 150.84, 150.27, 145.28, 139.73, 130.59 (2C), 

128.50, 123.70 (2C), 112.23, 110.85, 110.21, 52.73; m/z (ESI+) 351 [M + H]+; tR = 15.02 min. 

Isopropyl 4-(3-chloro-2-hydroxy-4-(4-nitrobenzamido)benzamido)-3-isopropoxybenzoate 76 
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Yield 92%; beige solid; 1H NMR (500 MHz, CDCl3) δ 13.06 (br s, 1H), 8.98 (br s, 1H), 8.71 (br s, 1H), 

8.48 (d, J = 8.5 Hz, 1H), 8.41 (d, J = 8.8 Hz, 2H), 8.28 (d, J = 9.1 Hz, 1H), 8.12 (d, J = 8.8 Hz, 2H), 

7.71 (dd, J = 8.5, 1.9 Hz, 1H), 7.63 (d, J = 1.9 Hz, 1H), 7.50 (d, J = 9.1 Hz, 1H), 5.26 (septet, J = 6.3 

Hz, 1H), 4.81 (septet, J = 6.0 Hz, 1H), 1.49 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR 

(126 MHz, CDCl3) δ 167.06, 165.58, 163.38, 158.33, 150.20, 146.09, 139.47, 139.32, 131.22, 128.44 

(2C), 126.94, 124.31, 124.29 (2C), 122.99, 119.20, 113.23, 111.90, 111.46, 110.75, 72.13, 68.58, 22.22 

(2C), 21.95 (2C); m/z (ESI+) 556 [M + H]+; tR = 16.99 min. 

Isopropyl 3-isopropoxy-4-(3-isopropoxy-2-methoxy-4-(4-nitrobenzamido)benzamido)benzoate 

65 

 

To a stirred mixture of 59 (138 mg, 0.25 mmol) and K2CO3 (35 mg, 0.25 mmol) in DMF (10 mL), 2-

bromopropane (37 mg, 0.3 mmol) was added. The reaction mixture was stirred at 90 °C overnight. 

Solvent was evaporated in vacuo, and the residue was diluated with water (20 mL). The resulting 

mixture was extracted with EtOAc (3 × 20 mL). The combined organic extract was washed with brine, 

dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The residue was 

dissolved in toluene and purified using flash chromatography (SiO2, n-hexane–EtOAc = 2:1). 

Yield 67%; pale yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 10.92 (br s, 1H), 10.18 (br s, 1H), 

8.63 (d, J = 8.5 Hz, 1H), 8.40 (d, J = 8.8 Hz, 2H), 8.21 (d, J = 8.8 Hz, 2H), 7.88 (d, J = 8.8 Hz, 1H), 

7.83 (d, J = 8.8 Hz, 1H), 7.61 (dd, J = 8.5, 1.6 Hz, 1H), 7.59 (d, J = 1.6 Hz, 1H), 5.13 (septet, J = 6.3 

Hz, 1H), 4.86 (septet, J = 6.0 Hz, 1H), 4.43 (septet, J = 6.3 Hz, 1H), 4.06 (s, 3H), 1.40 (d, J = 6.0 Hz, 

6H), 1.33 (d, J = 6.3 Hz, 6H), 1.29 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.85, 

163.82, 161.78, 152.04, 149.37, 145.70, 143.11, 139.66, 136.83, 133.22, 129.16 (2C), 125.51, 125.07, 

123.76 (2C), 122.66, 122.46, 120.03, 118.70, 113.06, 76.67, 71.36, 68.02, 61.89, 22.27 (2C), 21.68 

(2C), 21.62 (2C); m/z (ESI+) 594 [M + H]+; tR = 17.26 min. 

 

General procedure for synthesis of the dipeptides 78 and 79. 

To a stirred solution of the 5-nitropicolinic acid 34 or 37 (226 mg, 1 mmol), and 42 (237 mg, 1 mmol) 

in a mixture of anhydrous CHCl3 (50 mL) and DMF (1 mL) cooled at 0 °C in an ice bath, HOBt (676 

mg, 5 mmol) was added under a nitrogen atmosphere followed by EDC (958 mg, 5 mmol). The reaction 

was stirred at 0 °C for 2 h, then at room temperature overnight. Solvent was removed by vacuum 

distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO2, n-

hexane–EtOAc = 2:1). 
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Isopropyl 3-isopropoxy-4-(4-isopropoxy-5-nitropicolinamido)benzoate 78 

 

Yield 70%; pale yellow solid; 1H NMR (500 MHz, CDCl3) δ 10.80 (br s, 1H), 8.98 (s, 1H), 8.62 (d, J 

= 8.5 Hz, 1H), 8.01 (s, 1H), 7.73 (dd, J = 8.5, 1.9 Hz, 1H), 7.63 (d, J = 1.9 Hz, 1H), 5.26 (septet, J = 

6.3 Hz, 1H), 4.99 (septet, J = 6.0 Hz, 1H), 4.75 (septet, J = 6.0 Hz, 1H), 1.50 (d, J = 6.0 Hz, 6H), 1.47 

(d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.72, 160.29, 158.81, 

154.12, 146.66, 145.93, 138.43, 132.10, 126.68, 123.05, 118.68, 113.92, 108.61, 74.06, 72.21, 68.43, 

22.11 (2C), 21.96 (2C), 21.60 (2C); m/z (ESI+) 446 [M + H]+; tR = 19.75 min. 

Isopropyl 3-isopropoxy-4-(6-isopropoxy-5-nitropicolinamido)benzoate 79 

 

Yield 90%; yellow solid; 1H NMR (500 MHz, CDCl3) δ 10.30 (br s, 1H), 8.70 (d, J = 8.5 Hz, 1H), 8.38 

(d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 8.5, 1.9 Hz, 1H), 7.63 (d, J = 1.9 Hz, 1H), 

5.71 (septet, J = 6.3 Hz, 1H), 5.26 (septet, J = 6.0 Hz, 1H), 4.84 (septet, J = 6.3 Hz, 1H), 1.52 (d, J = 

6.3 Hz, 6H), 1.44 (d, J = 6.3 Hz, 6H), 1.39 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.72, 

160.07, 154.66, 150.44, 146.20, 136.53, 136.47, 131.64, 126.65, 122.90, 118.89, 115.18, 112.97, 71.38, 

71.22, 68.48, 22.09 (2C), 21.96 (2C), 21.79 (2C); m/z (ESI+) 446 [M + H]+; tR = 20.00 min. 

 

General procedure for synthesis of the tripeptides 82 and 83. 

To a stirred solution of the amino ester 80 or 81 (207 mg, 0.5 mmol), and pyridine (0.1 mL) in DCM 

(20 mL), 4-nitrobenzoyl chloride (185 mg, 1 mmol) was added. The reaction mixture was stirred at 

room temperature for 24 h then water (20 mL) and 1 N HCl (2 mL) were added. The mixture was 

extracted with DCM (2 × 20 mL) then EtOAc (1 × 20 mL). The combined organic extract was dried 

over anhydrous MgSO4, and the solvent was removed by vacuum distillation. The residue was 

dissolved in toluene and purified using flash chromatography (SiO2, n-hexane–EtOAc = 1:1). 
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Isopropyl 3-isopropoxy-4-(4-isopropoxy-5-(4-nitrobenzamido)picolinamido)benzoate 82 

 
Yield 90%; pale yellow crystals; 1H NMR (500 MHz, CDCl3) δ 10.91 (br s, 1H), 9.72 (s, 1H), 8.65 (d, 

J = 8.5 Hz, 1H), 8.51 (br s, 1H), 8.42 (d, J = 9.1 Hz, 2H), 8.08 (d, J = 9.1 Hz, 2H), 7.89 (s, 1H), 7.73 

(dd, J = 8.5, 1.9 Hz, 1H), 7.63 (d, J = 1.9 Hz, 1H), 5.25 (septet, J = 6.3 Hz, 1H), 4.96 (septet, J = 6.0 

Hz, 1H), 4.74 (septet, J = 6.0 Hz, 1H), 1.51 (d, J = 6.0 Hz, 6H), 1.49 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 

6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.87, 162.95, 161.98, 153.17, 150.02, 147.07, 146.57, 

139.65, 139.60, 132.89, 128.30 (2C), 127.08, 125.95, 124.26 (2C), 123.15, 118.39, 114.12, 105.44, 

72.59, 72.29, 68.27, 22.14 (2C), 21.97 (2C), 21.94 (2C); m/z (ESI+) 565 [M + H]+; tR = 19.73 min. 

Isopropyl 3-isopropoxy-4-(6-isopropoxy-5-(4-nitrobenzamido)picolinamido)benzoate 83 

 
Yield 80%; yellow crystals; 1H NMR (500 MHz, CDCl3) δ 10.33 (br s, 1H), 8.95 (d, J = 8.2 Hz, 1H), 

8.74 (d, J = 8.5 Hz, 1H), 8.59 (br s, 1H), 8.41 (d, J = 8.8 Hz, 2H), 8.07 (d, J = 8.8 Hz, 2H), 8.01 (d, J 

= 8.2 Hz, 1H), 7.72 (dd, J = 8.5, 1.6 Hz, 1H), 7.62 (d, J = 1.6 Hz, 1H), 5.69 (septet, J = 6.3 Hz, 1H), 

5.25 (septet, J = 6.0 Hz, 1H), 4.83 (septet, J = 6.3 Hz, 1H), 1.54 (d, J = 6.3 Hz, 6H), 1.45 (d, J = 6.3 

Hz, 6H), 1.39 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.90, 163.44, 161.81, 150.71, 

150.03, 146.02, 141.18, 139.62, 132.47, 128.25 (2C), 127.14, 125.85, 125.59, 124.26 (2C), 123.01, 

118.66, 117.18, 113.00, 71.11, 70.03, 68.34, 22.15 (2C), 22.13 (2C), 21.97 (2C); m/z (ESI+) 565 [M + 

H]+; tR = 16.93 min. 

General procedure for reduction of the nitro derivatives. 

To a stirred solution of the nitro ester (0.4 mmol) in EtOH (20 mL), iron powder (112 mg, 2 mmol) 

was added at 55 °C followed by NH4Cl (11 mg, 0.2 mmol) solution in water (2 mL). The reaction was 

heated at 90 °C for 1 h, then iron was filtered on hot and the filtrate was concentrated in vacuo. The 

residue was diluted with water (20 mL) and basified by NaHCO3 (saturated aqueous solution) to pH 

7–8. The mixture was extracted with EtOAc/THF (1:1, 3 × 20 mL). The combined organic extract was 

washed with brine, dried over anhydrous MgSO4, and the solvent was removed by vacuum distillation. 
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The obtained material was dissolved in toluene and purified using flash chromatography (SiO2, n-

hexane–EtOAc = 2:1 or 1:1). 

Isopropyl 4-(4-amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate 49 

 
Yield 90%; colorless crystals; 1H NMR (500 MHz, CDCl3) δ 12.26 (br s, 1H), 8.82 (br s, 1H), 8.49 (d, 

J = 8.5 Hz, 1H), 7.69 (dd, J = 8.5, 1.9 Hz, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 6.29 

(d, J = 8.8 Hz, 1H), 5.25 (septet, J = 6.3 Hz, 1H), 4.76 (septet, J = 6.0 Hz, 1H), 4.69 (septet, J = 6.0 

Hz, 1H), 4.29 (br s, 2H), 1.44 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H), 1.34 (d, J = 6.0 Hz, 6H); 

13C NMR (126 MHz, CDCl3) δ 168.34, 165.83, 156.21, 146.27, 145.80, 132.40, 131.79, 125.73, 

123.10, 121.30, 118.83, 113.26, 106.35, 106.11, 74.25, 71.86, 68.34, 22.70 (2C), 22.20 (2C), 21.96 

(2C); m/z (ESI+) 431 [M + H]+. 

Isopropyl 4-(4-amino-2-hydroxy-3-methoxybenzamido)-3-isopropoxybenzoate 50 

 
Yield 92%; beige crystals; 1H NMR (500 MHz, CDCl3) δ 12.31 (br s, 1H), 8.80 (br s, 1H), 8.49 (d, J 

= 8.5 Hz, 1H), 7.69 (dd, J = 8.5, 1.6 Hz, 1H), 7.59 (d, J = 1.6 Hz, 1H), 7.09 (d, J = 8.8 Hz, 1H), 6.30 

(d, J = 8.8 Hz, 1H), 5.25 (septet, J = 6.3 Hz, 1H), 4.76 (septet, J = 6.0 Hz, 1H), 4.33 (br s, 2H), 3.92 (s, 

3H), 1.44 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 168.26, 165.80, 

156.15, 145.81, 145.32, 134.04, 132.28, 125.81, 123.08, 121.64, 118.84, 113.26, 106.40, 106.14, 71.87, 

68.36, 59.72, 22.20 (2C), 21.96 (2C); m/z (ESI+) 403 [M + H]+; tR = 15.56 min. 

Isopropyl 4-(4-amino-3-hydroxy-2-methoxybenzamido)-3-isopropoxybenzoate 51 

 
Yield 71%; orange solid; 1H NMR (500 MHz, DMSO-d6) δ 10.74 (s, 1H), 8.74 (s, 1H), 8.66 (d, J = 8.5 

Hz, 1H), 7.56 (m, 2H), 7.40 (d, J = 8.6 Hz, 1H), 6.52 (d, J = 8.6 Hz, 1H), 5.50 (s, 2H), 5.12 (septet, J 

= 6.2 Hz, 1H), 4.83 (septet, J = 6.3 Hz, 1H), 3.87 (s, 3H), 1.40 (d, J = 5.9 Hz, 6H), 1.32 (d, J = 6.1 Hz, 
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6H); 13C NMR (126 MHz, DMSO-d6) δ 164.95, 163.07, 147.39, 145.32, 144.09, 134.86, 134.04, 

124.07, 123.13, 122.41, 118.31, 112.73, 112.24, 109.60, 71.00, 67.86, 61.37, 21.70 (2C), 21.67 (2C); 

m/z (ESI+) 403 [M + H]+; tR = 14.99 min. 

Isopropyl 4-(4-amino-2,3-diisopropoxybenzamido)-3-isopropoxybenzoate 52 

 
Yield 68%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 10.37 (s, 1H), 8.59 (d, J = 8.5 Hz, 1H), 

7.57 (dd, J = 8.4, 1.8 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 8.7 Hz, 1H), 6.56 (d, J = 8.7 Hz, 

1H), 5.62 (s, 2H), 5.11 (septet, J = 6.3 Hz, 1H), 4.71 (septet, J = 6.1 Hz, 1H), 4.59 (septet, J = 6.2 Hz, 

1H), 4.44 (septet, J = 6.1 Hz, 1H), 1.34 (d, J = 6.1 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H), 1.28 (d, J = 6.1 

Hz, 6H), 1.23 (d, J = 6.2 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.87, 163.56, 149.71, 148.04, 

145.61, 135.22, 134.00, 126.43, 124.26, 122.72, 118.45, 115.06, 114.01, 110.04, 76.24, 73.55, 72.29, 

67.84, 22.11 (2C), 21.92 (2C), 21.79 (2C), 21.69 (2C); m/z (ESI+) 473 [M + H]+; tR = 16.86 min. 

Isopropyl 4-(4-amino-2-hydroxybenzamido)-3-isopropoxybenzoate 53 

 

Yield 87%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 11.05 (s, 1H), 10.90 (s, 1H), 8.62 (d, J = 8.5 

Hz, 1H), 7.69 (d, J = 9.2 Hz, 1H), 7.55 (dd, J = 8.5, 1.7 Hz, 1H), 7.52 (d, J = 1.7 Hz, 1H), 6.18 (m, 

2H), 5.84 (s, 2H), 5.11 (septet, J = 6.3 Hz, 1H), 4.73 (septet, J = 6.0 Hz, 1H), 1.35 (d, J = 6.0 Hz, 6H), 

1.31 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.99, 163.82, 157.64, 153.98, 145.46, 

134.93, 132.41, 123.70, 122.64, 118.22, 113.46, 106.77, 106.69, 99.37, 71.52, 67.77, 21.75 (2C), 21.71 

(2C); m/z (ESI+) 373 [M + H]+; tR = 12.26 min. 

Isopropyl 4-(4-amino-3-isopropoxybenzamido)-3-isopropoxybenzoate 54 

 
Yield 99%; beige solid; 1H NMR (500 MHz, CDCl3) δ 8.75 (br s, 1H), 8.62 (d, J = 8.5 Hz, 1H), 7.71 

(dd, J = 8.5, 1.9 Hz, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.46 (d, J = 1.9 Hz, 1H), 7.27 (dd, J = 8.2, 1.9 Hz, 
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1H), 6.74 (d, J = 8.2 Hz, 1H), 5.25 (septet, J = 6.3 Hz, 1H), 4.76 (septet, J = 6.0 Hz, 1H), 4.69 (septet, 

J = 6.0 Hz, 1H), 4.22 (br s, 2H), 1.44 (d, J = 6.0 Hz, 6H), 1.41 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 

6H); 13C NMR (126 MHz, CDCl3) δ 165.95, 165.06, 145.56, 144.85, 141.33, 133.40, 125.21, 124.17, 

123.25, 119.83, 118.30, 113.59, 113.18, 112.36, 71.70, 70.81, 68.23, 22.22 (2C), 22.19 (2C), 21.97 

(2C); m/z (ESI+) 415 [M + H]+; tR = 14.82 min. 

Isopropyl 4-(4-(4-aminobenzamido)-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate 

66 

 

Yield 85%; white solid; 1H NMR (500 MHz, CDCl3) δ 12.38 (br s, 1H), 8.96 (br s, 1H), 8.81 (br s, 

1H), 8.50 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 9.1 Hz, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.71 (dd, J = 8.5, 1.9 

Hz, 1H), 7.61 (d, J = 1.9 Hz, 1H), 7.27 (d, J = 9.1 Hz, 1H), 6.75 (d, J = 8.8 Hz, 2H), 5.26 (septet, J = 

6.3 Hz, 1H), 4.88 (septet, J = 6.3 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 1H), 4.10 (br s, 2H), 1.47 (d, J = 

6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 168.13, 

165.72, 164.91, 154.92, 150.25, 146.01, 137.97, 134.36, 131.87, 128.97 (2C), 126.32, 123.85, 123.02, 

120.58, 118.95, 114.33 (2C), 113.26, 110.84, 109.83, 75.12, 72.07, 68.43, 22.83 (2C), 22.19 (2C), 

21.95 (2C); m/z (ESI+) 550 [M + H]+. 

Isopropyl 4-(4-(4-aminobenzamido)-2-hydroxy-3-methoxybenzamido)-3-isopropoxybenzoate 67 

 

Yield 90%; pale yellow crystals; 1H NMR (500 MHz, CDCl3) δ 12.39 (br s, 1H), 8.95 (br s, 1H), 8.69 

(br s, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 9.1 Hz, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.71 (dd, J = 

8.5, 1.9 Hz, 1H), 7.61 (d, J = 1.9 Hz, 1H), 7.28 (d, J = 9.1 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 5.26 

(septet, J = 6.3 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 1H), 4.11 (br s, 2H), 4.05 (s, 3H), 1.47 (d, J = 6.0 Hz, 

6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 168.01, 165.71, 165.20, 154.86, 150.36, 

146.03, 137.08, 136.57, 131.80, 129.15 (2C), 126.39, 123.77, 123.03, 120.96, 118.98, 114.28 (2C), 

113.28, 111.00, 109.96, 72.10, 68.45, 60.68, 22.20 (2C), 21.96 (2C); m/z (ESI+) 522 [M + H]+; tR = 

16.20 min. 
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Isopropyl 4-(4-(4-aminobenzamido)-3-isopropoxy-2-methoxybenzamido)-3-isopropoxybenzoate 

68 

 

Yield 65%; pale orange solid; 1H NMR (500 MHz, DMSO-d6) δ 10.90 (br s, 1H), 9.08 (br s, 1H), 8.63 

(d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.61 

(dd, J = 8.5, 1.6 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 6.64 (d, J = 8.8 Hz, 2H), 5.91 (br s, 2H), 5.13 (septet, 

J = 6.3 Hz, 1H), 4.85 (septet, J = 6.0 Hz, 1H), 4.47 (septet, J = 6.3 Hz, 1H), 4.04 (s, 3H), 1.40 (d, J = 

6.0 Hz, 6H), 1.33 (d, J = 6.3 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 

164.86, 164.44, 161.90, 152.73, 151.59, 145.62, 140.67, 138.06, 133.35, 129.10 (2C), 125.78, 124.92, 

122.47, 120.54, 119.78, 118.61, 117.27, 113.01, 112.87 (2C), 76.48, 71.33, 68.00, 61.77, 22.34 (2C), 

21.68 (2C), 21.62 (2C); m/z (ESI+) 564 [M + H]+; tR = 16.82 min. 

Isopropyl 4-(4-(4-aminobenzamido)-2,3-diisopropoxybenzamido)-3-isopropoxybenzoate 69 

 

Yield 51%; white solid; 1H NMR (500 MHz, DMSO-d6) δ 10.38 (br s, 1H), 9.07 (br s, 1H), 8.62 (d, J 

= 8.2 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.61 (dd, J 

= 8.2, 1.6 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 6.63 (d, J = 8.8 Hz, 2H), 5.89 (br s, 2H), 5.13 (septet, J = 

6.3 Hz, 1H), 4.76 (septet, J = 6.0 Hz, 1H), 4.62 (septet, J = 6.0 Hz, 1H), 4.52 (septet, J = 6.3 Hz, 1H), 

1.35 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.3 Hz, 6H), 1.31 (d, J = 6.3 Hz, 6H), 1.27 (d, J = 6.0 Hz, 6H); 

13C NMR (126 MHz, DMSO-d6) δ 164.79, 164.45, 162.81, 152.68, 148.61, 145.77, 141.15, 137.73, 

133.22, 129.08 (2C), 125.43, 125.03, 123.45, 122.65, 119.84, 118.65, 117.51, 113.86, 112.85 (2C), 

77.15, 75.70, 72.23, 67.97, 22.24 (2C), 21.89 (2C), 21.76 (2C), 21.67 (2C); m/z (ESI+) 592 [M + H]+; 

tR = 17.23 min. 

Isopropyl 4-(4-(4-aminobenzamido)-2-hydroxybenzamido)-3-isopropoxybenzoate 70 
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Yield 79%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 11.67 (s, 1H), 11.17 (s, 1H), 9.98 (s, 1H), 

8.65 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.90 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 8.7 Hz, 2H), 

7.57 (m, 2H), 7.24 (dd, J = 8.8, 2.0 Hz, 1H), 6.61 (d, J = 8.7 Hz, 2H), 5.82 (s, 2H), 5.12 (septet, J = 6.2 

Hz, 1H), 4.77 (septet, J = 6.0 Hz, 1H), 1.37 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.2 Hz, 6H); 13C NMR 

(126 MHz, DMSO-d6) δ 165.68, 164.93, 163.05, 156.50, 152.46, 145.65, 144.56, 134.34, 131.35, 

129.63 (2C), 124.38, 122.61, 120.67, 118.46, 113.46, 113.31, 112.51 (2C), 111.53, 106.82, 71.63, 

67.88, 64.89, 21.73 (2C), 21.70 (2C); m/z (ESI+) 492 [M + H]+; tR = 12.94 min. 

Isopropyl 4-(4-(4-aminobenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoate 71 

 

Yield 96%; white solid; 1H NMR (500 MHz, CDCl3) δ 8.88 (br s, 1H), 8.70 (br s, 1H), 8.69 (d, J = 8.5 

Hz, 1H), 8.62 (d, J = 8.5 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.72 (dd, J = 8.5, 1.6 Hz, 1H), 7.62 (d, J = 

1.9 Hz, 1H), 7.61 (d, J = 1.6 Hz, 1H), 7.41 (dd, J = 8.5, 1.9 Hz, 1H), 6.75 (d, J = 8.8 Hz, 2H), 5.25 

(septet, J = 6.3 Hz, 1H), 4.80 (septet, J = 6.0 Hz, 1H), 4.77 (septet, J = 6.0 Hz, 1H), 4.09 (br s, 2H), 

1.47 (d, J = 6.0 Hz, 6H), 1.45 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ 165.87, 164.98, 164.63, 150.16, 146.40, 145.74, 132.98, 132.65, 129.23, 128.94 (2C), 125.69, 

124.17, 123.17, 118.88, 118.78, 118.42, 114.32 (2C), 113.19, 111.87, 71.88, 71.73, 68.30, 22.21 (4C), 

21.97 (2C); m/z (ESI+) 534 [M + H]+; tR = 15.30 min. 

Isopropyl 4-(4-(4-amino-2-hydroxybenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoate 

72 

 

Yield 41%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 11.06 (s, 1H), 10.87 (s, 1H), 9.26 (s, 1H), 

8.65 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 9.1 Hz, 1H), 7.60 (dd, J = 8.5, 1.9 Hz, 

1H), 7.58 (d, J = 1.9 Hz, 1H), 7.57 (d, J = 1.9 Hz, 1H), 7.53 (dd, J = 8.5, 1.9 Hz, 1H), 6.18 (m, 2H), 

5.83 (s, 2H), 5.13 (septet, J = 6.3 Hz, 1H), 4.81 (septet, J = 6.0 Hz, 1H), 4.74 (septet, J = 6.0 Hz, 1H), 

1.39 (d, J = 6.0 Hz, 6H), 1.36 (d, J = 6.0 Hz, 6H), 1.33 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, 

DMSO-d6) δ 164.85, 164.29, 163.83, 157.64, 153.92, 147.46, 145.67, 133.77, 132.93, 132.36, 127.68, 
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125.86, 122.05, 121.03, 120.33, 118.48, 113.76, 111.98, 106.78, 106.65, 99.37, 71.57, 71.28, 68.05, 

21.84 (2C), 21.66 (4C); m/z (ESI+) 550 [M + H]+; tR = 16.67 min. 

Isopropyl 4-(4-(4-amino-2-isopropoxybenzamido)-2-hydroxybenzamido)-3-isopropoxybenzoate 

73 

 
Yield 73%; pale orange solid; 1H NMR (500 MHz, DMSO-d6) δ 11.72 (s, 1H), 11.15 (s, 1H), 10.18 (s, 

1H), 8.65 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 1.9 Hz, 1H), 7.71 (d, J = 8.5 Hz, 

1H), 7.58 (dd, J = 8.5, 1.6 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H),), 7.04 (dd, J = 8.5, 1.9 Hz, 1H), 6.33 (d, 

J = 1.9 Hz, 1H), 6.27 (dd, J = 8.5, 1.9 Hz, 1H), 5.92 (br s, 2H), 5.12 (septet, J = 6.3 Hz, 1H), 4.78 

(septet, J = 6.0 Hz, 1H), 4.72 (septet, J = 6.0 Hz, 1H), 1.46 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.0 Hz, 

6H), 1.32 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 164.91, 163.64, 162.89, 157.15, 

156.79, 154.19, 145.62, 143.70, 134.28, 132.95, 131.92, 124.39, 122.60, 118.41, 113.45, 113.43, 

110.69, 108.97, 106.85, 106.11, 97.87, 71.59, 71.49, 67.88, 21.95 (2C), 21.73 (2C), 21.69 (2C); m/z 

(ESI+) 550 [M + H]+; tR = 14.40 min. 

Isopropyl 4-(4-(4-aminobenzamido)-3-chloro-2-hydroxybenzamido)-3-isopropoxybenzoate 77 

 
Yield 92%; white solid; 1H NMR (500 MHz, CDCl3) δ 12.98 (br s, 1H), 8.96 (br s, 1H), 8.62 (br s, 

1H), 8.48 (d, J = 8.5 Hz, 1H), 8.31 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.5 Hz, 2H), 7.70 (dd, J = 8.5, 1.6 

Hz, 1H), 7.61 (d, J = 1.6 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 6.74 (d, J = 8.5 Hz, 2H), 5.25 (septet, J = 

6.3 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 1H), 4.20 (br s, 2H), 1.47 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 

6H); 13C NMR (126 MHz, CDCl3) δ 167.33, 165.63, 165.07, 158.19, 150.76, 146.04, 140.65, 131.46, 

129.22 (2C), 126.65, 124.18, 123.08, 122.97, 119.09, 114.29 (2C), 113.22, 110.74, 110.61, 110.56, 

72.10, 68.48, 22.17 (2C), 21.92 (2C); m/z (ESI+) 526 [M + H]+; tR = 16.82 min. 

Isopropyl 4-(5-amino-4-isopropoxypicolinamido)-3-isopropoxybenzoate 80 
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Yield 95%; white crystals; 1H NMR (500 MHz, CDCl3) δ 10.73 (br s, 1H), 8.65 (d, J = 8.5 Hz, 1H), 

7.98 (s, 1H), 7.72 (dd, J = 8.5, 1.9 Hz, 1H), 7.71 (s, 1H), 7.61 (d, J = 1.9 Hz, 1H), 5.24 (septet, J = 6.3 

Hz, 1H), 4.82 (septet, J = 6.0 Hz, 1H), 4.70 (septet, J = 6.0 Hz, 1H), 4.09 (br s, 2H), 1.46 (d, J = 6.0 

Hz, 6H), 1.42 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 166.00, 

163.08, 151.07, 146.39, 141.90, 136.09, 134.22, 133.52, 125.29, 123.28, 118.24, 114.24, 105.70, 72.18, 

70.84, 68.15, 22.13 (2C), 21.97 (2C), 21.92 (2C); m/z (ESI+) 416 [M + H]+; tR = 18.92 min. 

Isopropyl 4-(5-amino-6-isopropoxypicolinamido)-3-isopropoxybenzoate 81 

 

Yield 92%; beige crystals; 1H NMR (500 MHz, CDCl3) δ 10.31 (br s, 1H), 8.74 (d, J = 8.5 Hz, 1H), 

7.77 (d, J = 7.9 Hz, 1H), 7.70 (dd, J = 8.5, 1.9 Hz, 1H), 7.60 (d, J = 1.9 Hz, 1H), 6.97 (d, J = 7.9 Hz, 

1H), 5.59 (septet, J = 6.3 Hz, 1H), 5.25 (septet, J = 6.3 Hz, 1H), 4.80 (septet, J = 6.0 Hz, 1H), 4.22 (br 

s, 2H), 1.45 (d, J = 6.3 Hz, 6H), 1.44 (d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ 166.04, 163.03, 149.67, 145.96, 135.41, 134.92, 133.22, 125.18, 123.07, 119.16, 118.42, 

117.67, 113.08, 71.13, 68.31, 68.17, 22.15 (2C), 22.11 (2C), 21.98 (2C); m/z (ESI+) 416 [M + H]+; tR 

= 15.35 min. 

Isopropyl 4-(5-(4-aminobenzamido)-4-isopropoxypicolinamido)-3-isopropoxybenzoate 84 

 

Yield 95%; white crystals; mp 196–198 °C; 1H NMR (500 MHz, CDCl3) δ 10.95 (br s, 1H), 9.74 (s, 

1H), 8.65 (d, J = 8.2 Hz, 1H), 8.40 (br s, 1H), 7.84 (s, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.73 (dd, J = 8.2, 

1.9 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 6.75 (d, J = 8.8 Hz, 2H), 5.25 (septet, J = 6.3 Hz, 1H), 4.92 

(septet, J = 6.0 Hz, 1H), 4.72 (septet, J = 6.0 Hz, 1H), 4.13 (br s, 2H), 1.50 (d, J = 6.0 Hz, 6H), 1.48 

(d, J = 6.0 Hz, 6H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.94, 164.74, 162.38, 

152.72, 150.36, 146.57, 145.72, 139.25, 133.16, 129.08 (2C), 128.25, 125.71, 123.41, 123.20, 118.30, 

114.30 (2C), 114.21, 105.25, 72.33, 72.09, 68.21, 22.12 (2C), 21.97 (2C), 21.94 (2C); m/z (ESI+) 535 

[M + H]+; tR = 19.36 min. 
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Isopropyl 4-(5-(4-aminobenzamido)-6-isopropoxypicolinamido)-3-isopropoxybenzoate 85 

 

Yield 95%; beige crystals; 1H NMR (500 MHz, CDCl3) δ 10.34 (br s, 1H), 8.95 (d, J = 8.2 Hz, 1H), 

8.75 (d, J = 8.5 Hz, 1H), 8.49 (br s, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.72 (dd, J 

= 8.5, 1.9 Hz, 1H), 7.62 (d, J = 1.9 Hz, 1H), 6.75 (d, J = 8.5 Hz, 2H), 5.67 (septet, J = 6.3 Hz, 1H), 

5.25 (septet, J = 6.3 Hz, 1H), 4.82 (septet, J = 6.3 Hz, 1H), 4.12 (br s, 2H), 1.52 (d, J = 6.3 Hz, 6H), 

1.45 (d, J = 6.3 Hz, 6H), 1.39 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 165.97, 165.27, 

162.22, 150.52, 150.40, 146.03, 139.77, 132.78, 129.02 (2C), 126.87, 126.29, 125.63, 123.55, 123.07, 

118.64, 117.35, 114.30 (2C), 113.07, 71.15, 69.52, 68.26, 22.17 (2C), 22.13 (2C), 21.98 (2C); m/z 

(ESI+) 535 [M + H]+; tR = 16.12 min. 

 

General procedure for synthesis of the carboxylic acids 3 (Cys507), 5‒16 and 75. 

To a stirred solution of the amino/nitro ester (0.2 mmol) in a mixture of MeOH (6 mL) and THF (2 

mL), 1 N NaOH (1 mL) was added. The reaction was stirred at room temperature overnight. Solvent 

was concentrated in vacuo. The remaining residue was dissolved in water (10 mL), cooled in an ice 

bath and acidified by KHSO4 (saturated aqueous solution) to pH 6, then extracted with EtOAc/THF 

(1:1, 3 × 20 mL). The combined organic extract was washed with brine, dried over anhydrous MgSO4, 

and the solvent was removed by vacuum distillation. The obtained material was triturated with n-

hexane/EtOAc (4:1, 25 mL), and collected by filtration. 

 

4-(4-(4-Aminobenzamido)-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoic acid 3 

 

Yield 96%; beige solid; m/z (ESI+) 508 [M + H]+. 

 

 

 

 



 

 

193 6 Supporting Information 

Table S1. 1H and 13C NMR data of Cys507 in DMSO-d6 and acetone-d6.
a  

Position 
DMSO-d6 Acetone-d6 

δH (multi., J in Hz) δC δH (multi., J in Hz) δC 

1 - 125.80 - 127.11 

2 7.57 (d, 1.9) 113.91 7.69 (d, 1.6) 114.63 

3 - 146.47 - 147.84 

4 - 133.24 - 133.36 

5 8.48 (d, 8.2) 119.76 8.50 (d, 8.5) 120.79 

6 7.59 (dd, 8.2, 1.9) 122.61 7.72 (dd, 8.5, 1.6) 123.70 

C1–COOH 12.77 166.97 not appeared 167.26 

C3–OCH(CH3)2 4.75 (sept, 6.0) 71.73 4.88 (sept, 6.0) 72.89 

C3–OCH(CH3)2 1.37 (d, 6.0) 21.69 1.47 (d, 6.0) 22.26 

C4–NH 10.92 (br s) - 9.64 (br s) - 

1ʹ 
- 115.51 

- 112.39 
- 115.66 

2ʹ - 150.33 - 154.45 

3ʹ 
- 137.16 

- 135.22 
- 137.39 

4ʹ 
- 136.88 

- 139.16 
- 136.99 

5ʹ 
7.64 (d, 8.8) 114.20 

8.18 (d, 8.8) 111.31 
7.67 (d, 8.8) 113.91 

6ʹ 7.78 (d, 8.8) 124.95 7.65 (d, 8.8) 123.38 

C1ʹ–C=O 
- 163.86 

- 168.26 
- 163.89 

C2ʹ–OH 11.22 (br s) - not appeared - 

C3ʹ–OCH(CH3)2 4.35 (sept, 6.0) 75.38 4.78 (sept, 6.0) 76.02 

C3ʹ–OCH(CH3)2 
1.28 (d, 6.0) 22.05 

1.38 (d, 6.0) 22.90 
1.29 (d, 6.0) 22.05 

C4ʹ–NH 
9.10 (br s) - 

8.82 (br s) - 
9.20 (br s) - 

1ʺ 
- 120.14 

- 122.59 
- 121.02 

2ʺ, 6ʺ 
7.70 (d, 8.8) 129.12 

7.75 (d, 8.8) 129.85 
7.79 (d, 8.8) 129.00 

3ʺ, 5ʺ 
6.63 (d, 8.8) 112.83 

6.79 (d, 8.8) 114.39 
6.82 (d, 8.8) 111.72 

4ʺ 
- 150.77 

- 153.49 
- 152.59 

C1ʺ–C=O 
- 164.49 

- 165.26 
- 164.53 

C4ʺ–NH2 

4.63 (t, 5.7) - 

5.43 (br s) - 5.87 (br s) - 

7.20 (t, 5.7) - 
aTwo rotamers of Cys507 were observed in DMSO-d6. By changing the solvent, only single values 

were observed in acetone-d6. 
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4-(4-(4-Aminobenzamido)-2-hydroxy-3-methoxybenzamido)-3-isopropoxybenzoic acid 5 

 

Yield 85%; pale yellow crystals; 1H NMR (500 MHz, DMSO-d6) δ 12.79 (br s, 1H), 11.38 (br s, 1H), 

10.98 (br s, 1H), 9.22 (br s, 1H), 8.56 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.73 (d, J = 8.5 Hz, 

2H), 7.65 (d, J = 8.8 Hz, 1H), 7.59 (dd, J = 8.5, 1.6 Hz, 1H), 7.57 (d, J = 1.6 Hz, 1H), 6.69 (d, J = 8.5 

Hz, 2H), 5.39 (br s, 2H), 4.76 (septet, J = 6.0 Hz, 1H), 3.78 (s, 3H), 1.39 (d, J = 6.0 Hz, 6H); 13C NMR 

(126 MHz, DMSO-d6) δ 166.99, 165.03, 163.28, 151.46, 149.53, 146.13, 139.38, 136.34, 133.45, 

129.43 (2C), 125.62, 125.55, 122.65, 121.21, 119.28, 115.71, 113.89, 113.75, 113.43 (2C), 71.72, 

60.40, 21.73 (2C); m/z (ESI+) 480 [M + H]+; tR = 14.53 min. 

4-(4-(4-Aminobenzamido)-3-chloro-2-hydroxybenzamido)-3-isopropoxybenzoic acid 6 

 

Yield 90%; pale yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 12.82 (br s, 1H), 11.96 (br s, 1H), 

10.88 (br s, 1H), 9.44 (br s, 1H), 8.39 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 8.8 Hz, 

2H), 7.60 (dd, J = 8.2, 1.6 Hz, 1H), 7.59 (d, J = 1.6 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 6.63 (d, J = 8.8 

Hz, 2H), 5.99 (br s, 2H), 4.77 (septet, J = 6.3 Hz, 1H), 1.38 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, 

DMSO-d6) δ 166.95, 164.88, 163.82, 153.43, 152.73, 147.09, 140.51, 132.57, 129.56 (2C), 128.25, 

126.50, 122.40, 120.72, 119.82, 116.44, 116.30, 116.12, 113.81, 112.70 (2C), 71.54, 21.71 (2C); m/z 

(ESI+) 484 [M + H]+; tR = 15.32 min. 

4-(4-(4-Aminobenzamido)-3-isopropoxy-2-methoxybenzamido)-3-isopropoxybenzoic acid 7 

 

Yield 43%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 12.82 (br s, 1H), 10.90 (br s, 1H), 9.09 (br 

s, 1H), 8.62 (d, J = 8.2 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 8.5 Hz, 

2H), 7.60 (dd, J = 8.2, 1.6 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 6.63 (d, J = 8.5 Hz, 2H), 5.92 (br s, 2H), 

4.85 (septet, J = 6.0 Hz, 1H), 4.47 (septet, J = 6.0 Hz, 1H), 4.04 (s, 3H), 1.40 (d, J = 6.0 Hz, 6H), 1.32 
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(d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 166.96, 164.45, 161.87, 152.74, 151.59, 145.55, 

140.72, 138.04, 133.03, 129.11 (2C), 125.79, 125.47, 122.67, 120.61, 119.78, 118.58, 117.31, 113.14, 

112.87 (2C), 76.50, 71.14, 61.78, 22.36 (2C), 21.66 (2C); m/z (ESI+) 522 [M + H]+; tR = 15.58 min. 

4-(4-(4-Aminobenzamido)-2,3-diisopropoxybenzamido)-3-isopropoxybenzoic acid 8 

 
Yield 81%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 12.82 (br s, 1H), 10.36 (br s, 1H), 9.06 (br 

s, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 8.8 Hz, 

2H), 7.61 (dd, J = 8.5, 1.9 Hz, 1H), 7.58 (d, J = 1.9 Hz, 1H), 6.63 (d, J = 8.8 Hz, 2H), 5.90 (br s, 2H), 

4.75 (septet, J = 6.0 Hz, 1H), 4.63 (septet, J = 6.3 Hz, 1H), 4.52 (septet, J = 6.0 Hz, 1H), 1.35 (d, J = 

6.0 Hz, 6H), 1.31 (d, J = 6.0 Hz, 6H), 1.27 (d, J = 6.3 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 

166.88, 164.45, 162.79, 152.66, 148.60, 145.71, 141.15, 137.69, 132.89, 129.08 (2C), 125.58, 125.44, 

123.52, 122.83, 119.87, 118.64, 117.50, 113.94, 112.87 (2C), 77.12, 75.70, 72.02, 22.25 (2C), 21.90 

(2C), 21.79 (2C); m/z (ESI+) 550 [M + H]+; tR = 13.10 min. 

4-(5-(4-Aminobenzamido)-4-isopropoxypicolinamido)-3-isopropoxybenzoic acid 9 

 
Yield 93%; beige solid; mp 299–301 °C; 1H NMR (500 MHz, DMSO-d6) δ 12.87 (br s, 1H), 10.79 (br 

s, 1H), 9.15 (s, 1H), 9.07 (br s, 1H), 8.56 (d, J = 8.5 Hz, 1H), 7.80 (s, 1H), 7.70 (d, J = 8.5 Hz, 2H), 

7.64 (dd, J = 8.5, 1.6 Hz, 1H), 7.60 (d, J = 1.6 Hz, 1H), 6.63 (d, J = 8.5 Hz, 2H), 5.92 (br s, 2H), 4.99 

(septet, J = 6.0 Hz, 1H), 4.77 (septet, J = 6.0 Hz, 1H), 1.40 (d, J = 6.0 Hz, 6H), 1.39 (d, J = 6.0 Hz, 

6H); 13C NMR (126 MHz, DMSO-d6) δ 166.92, 164.88, 161.48, 155.39, 152.80, 146.01, 145.67, 

142.30, 132.39, 129.52 (2C), 128.30, 125.85, 123.02, 119.68, 117.75, 114.22, 112.74 (2C), 106.03, 

72.03, 71.69, 21.86 (2C), 21.42 (2C); m/z (ESI+) 493 [M + H]+; tR = 18.34 min. 

4-(5-(4-Aminobenzamido)-6-isopropoxypicolinamido)-3-isopropoxybenzoic acid 10 
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Yield 90%; off-white crystals; 1H NMR (500 MHz, DMSO-d6) δ 13.61 (br s, 1H), 10.31 (br s, 1H), 

8.99 (br s, 1H), 8.62 (d, J = 7.9 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.67 (d, J 

= 8.5 Hz, 2H), 7.62 (dd, J = 8.2, 1.6 Hz, 1H), 7.61 (d, J = 1.6 Hz, 1H), 6.64 (d, J = 8.5 Hz, 2H), 5.93 

(br s, 2H), 5.54 (septet, J = 6.3 Hz, 1H), 4.86 (septet, J = 6.0 Hz, 1H), 1.47 (d, J = 6.3 Hz, 6H), 1.38 

(d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 167.12, 165.07, 161.33, 152.91, 151.88, 145.61, 

139.36, 131.67, 129.34 (2C), 128.38, 127.07, 126.58, 122.54, 119.69, 117.80, 116.33, 113.16, 112.82 

(2C), 71.07, 69.26, 21.70 (2C), 21.64 (2C); m/z (ESI+) 493 [M + H]+; tR = 12.75 min. 

4-(4-(4-Aminobenzamido)-2-hydroxybenzamido)-3-isopropoxybenzoic acid 11 

 

Yield 73%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 12.75 (br s, 1H), 11.67 (s, 1H), 11.15 (s, 

1H), 10.00 (s, 1H), 8.63 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.75 (d, 

J = 8.5 Hz, 2H), 7.58 (dd, J = 8.5, 1.6 Hz, 1H), 7.56 (d, J = 1.6 Hz, 1H), 7.25 (dd, J = 8.5, 1.6 Hz, 1H), 

6.65 (d, J = 8.5 Hz, 2H), 5.85 (br s, 2H), 4.77 (septet, J = 6.0 Hz, 1H), 1.37 (d, J = 6.0 Hz, 6H); 13C 

NMR (126 MHz, DMSO-d6) δ 167.03, 165.66, 163.04, 156.50, 151.79, 145.58, 144.49, 133.99, 131.36, 

129.63 (2C), 124.93, 122.79, 121.18, 118.44, 113.55, 113.40, 112.91 (2C), 111.54, 106.86, 71.43, 

21.77 (2C); m/z (ESI+) 450 [M + H]+; tR = 9.33 min. 

4-(4-(4-Aminobenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoic acid 12 

 

Yield 94%; white solid; 1H NMR (500 MHz, DMSO-d6) δ 12.69 (br s, 1H), 9.29 (br s, 1H), 8.89 (br s, 

1H), 8.32 (d, J = 8.2 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.60 (dd, J = 8.2, 1.6 

Hz, 1H), 7.60 (d, J = 1.6 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 7.55 (dd, J = 8.2, 1.6 Hz, 1H), 6.64 (d, J = 

8.5 Hz, 2H), 5.89 (br s, 2H), 4.80 (septet, J = 6.0 Hz, 1H), 4.72 (septet, J = 6.0 Hz, 1H), 1.40 (d, J = 

6.0 Hz, 6H), 1.36 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 167.02, 164.48, 164.31, 

152.67, 147.58, 146.90, 132.48, 132.34, 129.11, 128.96 (2C), 126.75, 122.23, 121.24, 120.23, 120.19, 

120.04, 113.92, 112.95 (2C), 112.14, 71.44, 71.41, 21.81 (2C), 21.73 (2C); m/z (ESI+) 492 [M + H]+; 

tR = 12.06 min. 
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4-(4-(4-Amino-2-hydroxybenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoic acid 13 

 
Yield 70%; beige solid; 1H NMR (500 MHz, DMSO-d6) δ 11.20 (s, 1H), 10.91 (s, 1H), 9.26 (s, 1H), 

8.65 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.59 (dd, J = 8.2, 1.6 Hz, 

1H), 7.58 (d, J = 1.9 Hz, 1H), 7.56 (d, J = 1.6 Hz, 1H), 7.53 (dd, J = 8.5, 1.9 Hz, 1H), 6.24 (d, J = 1.6 

Hz, 1H), 6.20 (dd, J = 8.5, 1.6 Hz, 1H), 5.97 (br s, 3H), 4.81 (septet, J = 6.0 Hz, 1H), 4.73 (septet, J = 

6.0 Hz, 1H), 1.39 (d, J = 6.0 Hz, 6H), 1.36 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 

167.00, 164.34, 163.80, 157.68, 153.29, 147.50, 145.69, 133.77, 132.59, 132.43, 127.81, 126.50, 

122.25, 121.13, 120.41, 118.49, 113.86, 111.98, 107.18, 106.99, 99.89, 71.37, 71.33, 21.89 (2C), 21.73 

(2C); m/z (ESI+) 508 [M + H]+; tR = 15.23 min. 

4-(4-(4-Amino-2-isopropoxybenzamido)-2-hydroxybenzamido)-3-isopropoxybenzoic acid 14 

 

Yield 69%; beige solid; 1H NMR (500 MHz, DMSO-d6) 12.77 (br s, 1H), 11.72 (s, 1H), 11.13 (s, 1H), 

10.18 (s, 1H), 8.63 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 1.6 Hz, 1H), 7.71 (d, J = 

8.5 Hz, 1H), 7.58 (dd, J = 8.5, 1.6 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.05 (dd, J = 8.8, 1.6 Hz, 1H), 

6.33 (d, J = 1.6 Hz, 1H), 6.27 (dd, J = 8.5, 1.6 Hz, 1H), 5.91 (br s, 2H), 4.77 (septet, J = 6.0 Hz, 1H), 

4.72 (septet, J = 6.0 Hz, 1H), 1.46 (d, J = 6.0 Hz, 6H), 1.37 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, 

DMSO-d6) δ 167.05, 163.67, 162.92, 157.19, 156.82, 154.22, 145.59, 143.70, 133.96, 132.99, 131.96, 

124.98, 122.81, 118.45, 113.55, 113.54, 110.72, 109.00, 106.89, 106.15, 97.92, 71.54, 71.43, 21.97 

(2C), 21.79 (2C); m/z (ESI+) 508 [M + H]+; tR = 11.35 min. 

4-(4-(2-Hydroxy-4-nitrobenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoic acid 15 
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Yield 76%; yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 12.36 (br s, 2H), 11.38 (br s, 1H), 9.29 (s, 

1H), 8.67 (d, J = 8.5 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.19 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 1.9 Hz, 

1H), 7.77 (dd, J = 8.8, 1.9 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.60 (dd, J = 8.5, 1.6 Hz, 1H), 7.58 (dd, 

J = 8.5, 1.6 Hz, 1H), 7.57 (d, J = 1.6 Hz, 1H), 4.87 (septet, J = 6.0 Hz, 1H), 4.73 (septet, J = 6.0 Hz, 

1H), 1.41 (d, J = 6.0 Hz, 6H), 1.36 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 167.02, 

164.16, 161.51, 157.13, 150.03, 147.56, 146.11, 132.69, 132.42, 132.25, 129.38, 126.75, 124.44, 

122.19, 121.21, 120.30, 119.10, 113.91, 113.51, 111.99, 111.85, 71.47, 71.39, 21.80 (2C), 21.69 (2C); 

m/z (ESI+) 538 [M + H]+; tR = 14.46 min. 

4-(2-Hydroxy-4-(2-isopropoxy-4-nitrobenzamido)benzamido)-3-isopropoxybenzoic acid 16 

 

Yield 75%; pale yellow solid; 1H NMR (500 MHz, DMSO-d6) δ 12.75 (br s, 1H), 11.79 (s, 1H), 11.15 

(s, 1H), 10.54 (s, 1H), 8.63 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.90 (m, 2H), 7.81 (m, 2H), 

7.56 (m, 2H), 7.16 (dd, J = 8.7, 1.8 Hz, 1H), 4.89 (septet, J = 6.0 Hz, 1H), 4.78 (septet, J = 6.0 Hz, 

1H), 1.38 (d, J = 6.0 Hz, 6H), 1.35 (d, J = 6.0 Hz, 6H); 13C NMR (126 MHz, DMSO-d6) δ 167.00, 

163.80, 162.78, 156.65, 155.22, 149.47, 145.59, 143.09, 133.86, 132.35, 131.89, 130.46, 125.06, 

122.78, 118.45, 115.32, 114.41, 113.54, 111.05, 108.88, 106.69, 72.37, 71.42, 21.77 (2C), 21.59 (2C); 

m/z (ESI+) 538 [M + H]+; tR = 16.01 min. 

3-Chloro-2-hydroxy-4-(4-nitrobenzamido)benzoic acid 75 

 

Yield 75%; pale yellow solid; m/z (ESI+) 337 [M + H]+; tR = 17.50 min. 
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6.3.3 2D-NOESY Measurement in a Cryoprotective Mixture 

NMR spectrum was recorded on Bruker DRX-500 spectrometer at 300 K. Compound 58 was prepared 

as 20 mM solution in H2O/DMSO-d6 (20% V/V). Sample was degased via flushing the tube with 

nitrogen gas, cooling in liquid nitrogen until freezing, then application of vacuum until attaining the 

room temperature. The process was repeated three times and then the tube was covered and sealed with 

parafilm. 

Conformational Interconversion at physiological Temperature 

1H NMR spectra were determined for compound 58 (20 mM solution in CDCl3) at 293 and 310 K. 

Analysis of spectra was performed using ACD/NMR Processor Academic Edition version 12.01. 

Effect of Temperature on Rigidity 2D-NOESY was measured for compound 9 in DMSO-d6 at 

diffrent temperaturs (300, 320, 340, and 360 K). No change in NOESY spectra up to 340 K. At 360 K, 

a very weak cross peak between the C4–NH and the pyridine C3–H started to appear (Figure S19 and 

S20). 

 
Figure S1. 2D-NOESY spectrum of Cys507 (3) in acetone-d6 



 

 

200 6.3 Supporting Information for Manuscript IV 

 

Figure S2. 2D-NOESY spectrum of Cys507 (3) in DMSO-d6 
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Figure S3. 2D-NOESY spectrum of compound 66 in CDCl3 
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Figure S4. 2D-NOESY spectrum of compound 57 in CDCl3 
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Figure S5. 2D-NOESY spectrum of compound 4 in DMSO-d6 
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Figure S6. 2D-NOESY spectrum of compound 5 in DMSO-d6 
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Figure S7. 2D-NOESY spectrum of compound 67 in CDCl3 
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Figure S8. 2D-NOESY spectrum of compound 58 in CDCl3 
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Figure S9. 2D-NOESY spectrum of compound 58 in DMSO-d6 
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Figure S10. 2D-NOESY spectrum of compound 86 in CDCl3 
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Figure S11. 2D-NOESY spectrum of compound 6 in DMSO-d6 
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Figure S12. 2D-NOESY spectrum of compound 77 in CDCl3 
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Figure S13. 2D-NOESY spectrum of compound 76 in CDCl3 
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Figure S14. 2D-NOESY spectrum of compound 68 in DMSO-d6 
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Figure S15. 2D-NOESY spectrum of compound 65 in DMSO-d6 

 

 

 

 



 

 

214 6.3 Supporting Information for Manuscript IV 

Figure S16. 2D-NOESY spectrum of compound 8 in DMSO-d6 
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Figure S17. 2D-NOESY spectrum of compound 69 in DMSO-d6 
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Figure S18. 2D-NOESY spectrum of compound 60 in DMSO-d6 
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Figure S19. 2D-NOESY spectrum of compound 9 in DMSO-d6 at 300 K 
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Figure S20. 2D-NOESY spectrum of compound 9 in DMSO-d6 at 360 K 

 



 

 

219 6 Supporting Information 

Figure S21. 2D-NOESY spectrum of compound 84 in CDCl3 
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Figure S22. 2D-NOESY spectrum of compound 82 in CDCl3 
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Figure S23. 2D-NOESY spectrum of compound 10 in DMSO-d6 
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Figure S24. 2D-NOESY spectrum of compound 85 in CDCl3 
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Figure S25. 2D-NOESY spectrum of compound 83 in CDCl3 
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Figure S26. 2D-NOESY spectrum of compound 12 in DMSO-d6 
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6.3.4 Computational Chemistry 

All computational work was performed using Molecular Operating Environment (MOE) version 

2015.10, Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite 910, Montreal, Quebec, 

H3A 2R7, Canada. 

Conformational Analysis A database containing Cys507 and all analogues was created, and each 

structure was subjected to energy minimization up to a gradient 0.01 kcal/mol/Å using the MMFF94x 

force field and distance solvation model. Conformational search was performed using low mode MD 

method, with energy window of 7.0 kcal/mol and conformation limit of 10000 as conformer filters. 

Backbone Curvature Calculation Structures of anti or syn conformation were loaded separately from 

the previously prepared conformational database into the MOE window. Angle of inclination of the 

aryl rings on each other was determined via activating the measure button, choosing angles option, 

then selecting the carbon atom of the aryl ring bound to the amide nitrogen atom, the carbon atom on 

the corresponding aryl ring bound to the amide carbonyl group, and the γ carbon atom on the same ring 

respectively. 

 

Figure S27. Conformational analysis of 4: A) anti-form (lowest energy conformation); B) syn-form 

(dE 0.7 kcal/mol). 

 

Figure S28. Conformational analysis of 5: A) anti-form (lowest energy conformation); B) syn-form 

(dE 0.5 kcal/mol). 
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Figure S29. Conformational analysis of 7: A) syn-form (lowest energy conformation); B) anti-form 

(dE 3.8 kcal/mol). 

 
Figure S30. Conformational analysis of 8: A) syn-form (lowest energy conformation); B) anti-form 

(dE 4.6 kcal/mol). 

 

Calculation of Electrostatic Surface Structure of Cys507 or 13 was loaded from the previously 

prepared conformational database into the MOE window. Electrostatic surface was calculated via 

activating the compute panel, choosing surfaces and maps, then molecular surface option. Atoms were 

selected as ligand atoms near ligand atoms and color as electrostatics. Electrostatic field was calculated 

using Gaussian screened Coulomb potential. 

Calculation of Molecular Descriptors In the database viewer window, molecular descriptors were 

calculated for all entries via activating the compute panel, choosing descriptors calculate option. 

Cys507, 13, and 14 have the same values. 

Compound Cys507, 13, 14 

Total hydrophobic vdw surface area (Q_VSA_HYD) 335.4886 

Total polar vdw surface area (Q_VSA_POL) 173.7101 

Total positive vdw surface area (Q_VSA_POS) 330.7362 

Total negative vdw surface area (Q_VSA_NEG) 178.4624 
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6.3.5 X-ray Structure Determination 

Compounds were dissolved either in EtOAc (26), THF (82), n-hexane:EtOAc, 1:1 (85) or CDCl3 (80, 

83 and 86) at room temperature. Crystals were obtained by slow evaporation of solvent. Single crystal 

X-ray diffraction data were collected at 152 K on a Bruker AXS X8APEX CCD diffractometer 

operating with graphite-monochromatized Mo Kα radiation. Frames of 0.5° oscillation were exposed. 

Deriving reflections were in the θ range of 2–29° with a completeness of ~ 99%. Structure solution and 

full least-squares refinement with anisotropic thermal parameters of all non-hydrogen atoms were 

performed using SHELX.2  

Crystallographic data of the compounds: 

26: Monoclinic, P21/c, a = 11.3140(4), b = 8.3739(3), c = 15.1390(6) Å, β = 107.3082(18)°. 

80: Monoclinic, P21/n, a = 8.5870(5), b = 21.3246(11), c = 12.3202(5) Å, β = 102.7567(8)°. 

82: Triclinic, P-1, a = 11.1067(15), b = 12.0269(18), c = 12.2433(17) Å, α = 71.838(7), β = 69.391(6), 

γ = 69.464(7)°. 

83: Orthorhombic, Pca21, a = 23.9033(8), b = 10.6916(3), c = 22.4998(7) Å. 

85: Monoclinic, P21/c, a = 13.4709(10), b = 21.9747(16), c = 9.5297(6) Å, β = 97.940(2)°. 

86: Triclinic, P-1, a = 7.5890(3), b = 10.7739(5), c = 11.6933(6) Å, α = 64.668(2), β = 83.738(2), γ = 

71.654(2)°. 

 

 

Figure S31. Crystal structures of compounds 26 (A), 80 (B) and 85 (C). 
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6.3.6 Biology 

Cloning, Expression and Purification of E. coli GyrA and GyrB 

GyrA and GyrB full-length genes were amplified by PCR from E. coli genomic DNA (Phusion 

polymerase, Thermo Scientific) using the following primer pairs (Sigma-Aldrich): 

GyrA Forward (NdeI): ATCATATGAGCGACCTTGCGAGAGAAATTAC  

GyrA Reverse (XhoI): ATCTCGAGTTCTTCTTCTGGCTCGTCGTCAACG  

GyrB Forward (NdeI): ATCATATGTCGAATTCTTATGACTCCTCCAG 

GyrB Reverse (XhoI): ATCTCGAGAATATCGATATTCGCCGCTTTCAGG 

The obtained amplicons were ligated into the pET-28b expression vector system (N-terminal His6-

tag)(Novagen) using an NdeI/XhoI strategy and transformed into E. coli HS996 cells for selection 

(kanamycin). Positive clones were picked and verified by Sanger sequencing. For protein expression 

the constructs pET28-GyrA and pET28-GyrB were transformed into E. coli BL21 cells. 1–2 L of LB-

medium were inoculated 1:10 with fresh overnight cultures and incubated for 1–2 h at 37 °C, 200 rpm. 

The cultures were then transferred to 16 °C, 200 rpm and the expression was induced after 30 min by 

the addition of 0.1 mM IPTG. The cells were harvested after 24 h, washed with ice-cold 50 mM 

NaH2PO4/Na2HPO4 pH 8.0, 300 mM NaCl buffer and the cell pellet was stored at -80 °C. 

For purification, protein crude extracts were prepared by ultrasonification in ice-cold 50 mM 

NaH2PO4/Na2HPO4 pH 8.0, 300 mM NaCl, 40 mM imidazole (2 mL/g cell fresh weight). The N-

terminally His6-tagged GyrA and GyrB fusion constructs were then purified using Ni2+-NTA affinity 

chromatography (ÄKTA FPLC system + 5mL Ni2+-NTA columns, GE Healthcare) followed by size-

exclusion chromatography (Superdex 200 increase 10/300 GL, GE Healthcare). The purity of the 

protein constructs was verified by 15% SDS-PAGE. Standard yields for GyrA and GyrB were in the 

range of 5–10 mg fusion protein per liter culture. Purified GyrA and GyrB were desalted using PD10 

columns and stored in GyrA storage buffer (50 mM Tris-HCl pH 7.5, 100 mM KCl, 1 mM EDTA, 2 

mM dithiothreitol, 20% (v/v) glycerol)3 and GyrB storage buffer (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1 mM EDTA, 2 mM dithiothreitol, 20% (v/v) glycerol)3 at -80 °C, respectively. Molar 

concentrations were determined by UV spectroscopy using the following extinction coefficients: 

e280(GyrA): 48270 M-1 cm-1; e280(GyrB): 68020 M-1 cm-1.  

Reconstitution of E. coli Gyrase 

E. coli gyrase tetramers were reconstituted by mixing 5 µM of each subunit. Final concentration of the 

gyrase stock: 1.25 µM. 

Cloning, Expression and Purification of E. coli Topoisomerase (TopA) 

The TopA full-length gene were amplified by PCR from E. coli genomic DNA (Phusion polymerase, 

Thermo Scientific) using the following primer pairs (Sigma-Aldrich): 

TopA Forward (Nde): ATCATATGGGTAAAGCTCTTGTCATCG 

TopA Reverse (Xho): ATCTCGAGTTATTTTTTTCCTTCAACCCATTTGC 



 

 

229 6 Supporting Information 

The obtained amplicons were ligated into the pET-28b expression vector system (N-terminal His6-tag) 

(Novagen) using an NdeI/XhoI strategy and transformed into E. coli HS996 cells for selection 

(kanamycin). Positive clones were picked and verified by Sanger sequencing. For protein expression 

the constructs pET28-TopA was transformed into E. coli BL21 cells. 1–2 L of LB-medium were 

inoculated 1:10 with fresh overnight cultures and incubated for 1–2 h at 37 °C, 200 rpm. The cultures 

were then transferred to 16 °C, 200 rpm and the expression was induced after 30 min by the addition 

of 0.1 mM IPTG. The cells were harvested after 24 h, washed with ice-cold 50 mM NaH2PO4/Na2HPO4 

pH 8.0, 300 mM NaCl buffer and the cell pellet was stored at -80 °C.  

For purification, protein crude extracts were prepared by ultrasonification in ice-cold 50 mM 

NaH2PO4/Na2HPO4 pH 8.0, 300 mM NaCl, 40 mM imidazole (2 mL/g cell fresh weight). The N-

terminally His6-tagged TopA fusion constructs was then purified using Ni2+-NTA affinity 

chromatography (ÄKTA FPLC system + 5mL Ni2+-NTA columns, GE Healthcare) followed by size-

exclusion chromatography (Superdex 200 increase 10/300 GL, GE Healthcare). The purity of the 

protein constructs was verified by 15% SDS-PAGE. Standard yields for TopA were in the range of 5–

10 mg fusion protein per liter culture. Purified TopA was desalted using PD10 columns and stored in 

TopA storage buffer (25 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol, 20% 

(v/v) glycerol)3 at -80 °C. Molar concentrations were determined by UV spectroscopy using the 

following extinction coefficient: e280(TopA): 95700 M-1 cm-1.  

Preparation of pBR322 Plasmid Substrate 

An original batch of pBR322 plasmid was purchased from Inspiralis (Norwich, UK), transformed into 

E. coli HS996 for amplification (selection using ampicillin) and stored at -80 °C as glycerol stock. For 

plasmid preparation 5 L of LB medium (ampicillin) were inoculated using this strain and grown over 

night at 37 °C, 220 rpm. The plasmids were isolated using the Qiagen GigaPrep Kit (Qiagen, Hilden, 

Germany) and stored in MilliQ-H2O at -20 °C. The plasmid isolated by this strategy is 100% 

supercoiled and could be used for TopA assays directly. 

For the preparation of 100% relaxed plasmid as substrate for gyrase assays, 2 mg/mL plasmid were 

combined with 1 µM E. coli TopA in TopA raction buffer (20 mM Tris-HCl pH 8.0, 50 mM potassium 

acetate, 10 mM magnesium acetate, 2 mM dithiothreitol and 100 µg/mL (w/v) bovine serum albumin) 

at 37 °C for 2 h.3 After phenol-chloroform extraction, the DNA was precipitated using EtOH/sodium 

acetate method, dissolved in MilliQ-H2O and stored at -20 °C.  

Gyrase Supercoiling Assay  

N-terminally His-tagged E. coli gyrase was used. For standard reactions 0.5 µg relaxed plasmid were 

mixed with 1 unit (20.5 nM) gyrase in 1× reaction buffer (35 mM Tris-HCl pH 7.6, 24 mM KCl, 2 mM 

dithiothreitol, 4 mM MgCl2, 1.8 mM spermidine, 0.1 mg/mL bovine serum albumin, 1 mM ATP, 5% 

(v/v) glycerol) (30 µL final volume) and incubated for 30 min at 37 °C. The reactions were quenched 

by the addition of DNA gel loading buffer containing 1% (w/v) SDS. The samples were separated on 

0.8% (w/v) agarose gels and DNA was visualized using ethidium bromide. All NPs and compounds 
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stock solutions and dilutions were prepared in DMSO and added to the supercoiling reactions giving a 

final DMSO concentration of 5% (v/v). Control reactions were: no enzyme and a standard reaction in 

presence of 5% (v/v) DMSO.  All reaction samples were equilibrated for 15 min at room temperature 

in the absence of DNA. Then the relaxed plasmid was added to start the reaction. All reactions were 

performed in triplicates 

Topoisomerase IV Relaxation Assay 

Commercial E. coli topoisomerase IV relaxing kits (Inspiralis, Norwich, UK) were used. For standard 

reactions 0.5 µg supercoiled plasmid were mixed with 1 unit (~20.5 nM) topoisomerase IV in 1× 

reaction buffer (see kit manual) and incubated for 30 min at 37 °C. The reactions were quenched by 

the addition of DNA gel loading buffer containing 1% (w/v) SDS. The samples were separated on 0.8% 

(w/v) agarose gels and DNA was visualized using ethidium bromide. Control reactions were: no 

enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated 

for 15 min at room temperature in the absence of DNA. Then the relaxed plasmid was added to start 

the reaction. All reactions were performed in triplicates. 

Quantification and Analysis 

To determine IC50 values, agarose gels were digitalized using standard gel documentation instruments 

and supercoiled (gyrase) and relaxed (topoisomerase IV) plasmid was quantified using Adobe 

Photoshop (Histogram mode). Intensities were normalized (% enzyme activity = SC / (SC + relaxed)). 

Plotting of these values versus the compound concentration yielded sigmoidal shaped curves, which 

were fitted using Hill’s equation (Origin Pro 8.5).4 All determined IC50 values are the averages of three 

independent experiments. 

 

Table S2. In vitro inhibitory activities of esterified Cys507 analogues and their parent compounds in 

the gyrase supercoiling assay. 

Free acid IC50 E. coli gyrase (µM) Corresponding ester IC50 E. coli gyrase (µM) 

5 360 ± 26 67 >500 

7 115 ± 18 68 >500 

8 60 ± 10 69 >500 

10 50 ± 10 85 >500 

12 165 ± 18 71 >500 

13 85 ± 12 72 473 ± 20 

14 101 ± 15 73 180 ± 38 
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DNA Competition Assay Using Hoechst 33342 and Ethidium Bromide (EtBr) 

EtBr and Hoechst 33342 competitive binding assays were performed5 by recording the emission spectra 

of solutions (30 µL) containing varying concentrations of cystobactamid derivatives (in DMSO; 500–

0.1 µM and 5% DMSO final), 15 µM calf thymus DNA (Sigma-Aldrich) and 15 µM of EtBr or Hoechst 

33342 in 25 mM sodium phosphate buffer (pH 7.5), 150 mM NaCl.  

All measurements (triplicates) were performed in 384 well plates (black, low volume) (Corning, 

Corning, NY, USA) using a Tecan infinite II reader (Tecan, Switzerland) using the following (standard) 

parameters: Bandwidth 20 nm, 10 flashes, integration time 20 µs, no delay, no pause, Z: 20000 

Hoechst 33342: λex: 355 nm, λem: 370–850 nm in 20 nm steps 

Ethidium bromide: λex: 480 nm, λem: 490–850 nm in 20 nm steps 

All samples were mixed and incubated at room temperature for 30 min before each measurement.  

Quantification and Analysis 

To determine apparent values for the compounds’ “minor groove affinities” (50% displacement of 

Hoechst 33342), the values of the Hoechst 33342 fluorescence spectra peak maxima were plotted vs. 

compound concentration (in µM) and fitted using Hill’s equation (Origin Pro 8.5).4 All determined 

values are the averages of three independent experiments. 

 

Figure S32. Competition titration of ct-DNA (15 µM) bound Hoechst 33342 (15 µM) (A, B) and EtBr 

(15 µM) (C, D) with Cys507 analogues (A, C) and natural cystobactamids (B, D). The relative 

fluorescence intensity at the peak maximum (470 nm for Hoechst 33342 and 630 nm for EtBr, 

respectively) is plotted vs the respective Cys507 analogue concentration. The solid- and dashed line 

represent the fluorescence intensity of the ct-DNA bound and DNA-free dyes, respectively. 



 

 

232 6.3 Supporting Information for Manuscript IV 

Table S3. Apparent “minor groove affinities” (50% displacement of Hoechst 33342) and IC50 values 

(gyrase supercoiling) for 1–16 

Compound 50% Displacement of Hoechst 33342 (µM) IC50 E. coli gyrase (µM) 

1 83 ± 10 21 ± 6 

2 24 ± 4 0.26 ± 0.06 

3 85 ± 18 355 ± 25 

4 61 ± 5 463 ± 28 

5 51 ±3 360 ± 26 

6 83 ± 21 >1000 

7 123 ± 33 115 ± 18 

8 89 ± 4 60 ± 10 

9 n.d. 195 ± 20 

10 31 ± 5 50 ± 10 

11 49 ± 7 >1000 

12 89 ± 34 165 ± 18 

13 45 ± 8 85 ± 12 

14 44 ± 16 101 ± 15 

15 29 ± 6 110 ± 20 

16 18 ± 3 106 ± 18 

 

 

Figure S33. Scatterplot of apparent “minor groove affinities” (50% displacement of Hoechst 33342) vs 

the IC50 values (gyrase supercoiling) for 1–16 

 

 

 

 

 



 

 

233 6 Supporting Information 

Minimal Inhibitory Concentration (MIC) Determination 

MIC values were determined as described elsewhere.4 Bacterial cultures were handled according to 

standard procedures and were obtained from the German Collection of Microorganisms and Cell 

Cultures (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ), the American Type 

Culture Collection (ATCC) or were part of our internal strain collection. In brief, bacteria in mid-log 

phase were diluted to achieve a final inoculum of ca. 5 × 105‒5 × 106 cfu/mL in Tryptic Soy broth 

(1.7% peptone casein, 0.3% peptone soymeal, 0.25% glucose, 0.5% NaCl, 0.25% K2HPO4; pH 7.3; 

E. faecalis, S. pneumoniae), or Mueller-Hinton broth (1.75% casein hydrolysate, 0.2% beef infusion, 

0.15% starch; pH 7.4; used for all other listed bacteria). E. faecalis and S. pneumoniae cultures were 

grown under microaerophilic conditions without shaking and all other listed microorganisms were 

grown on a shaker (200 rpm) at 37 °C. E. coli DSM-26863 was grown with or without PMBN 

(polymyxin B nonapeptide) at sublethal concentration (3 µg/mL) for permeabilization. Serial dilutions 

of the compounds were prepared from DMSO stocks in sterile 96-well plates. The cell suspension was 

added and microorganisms were grown for 16‒20 h. Growth inhibition was assessed by visual 

inspection and given MIC values determined in two independent experiments are the lowest 

concentration of antibiotic at which no visible growth was observed.  

 

Metabolic Stability Assay 

Metabolic stability of compounds 3, 8, 10, and 13 was determined by incubation of 1 µM compound 

with 1 mg/mL pooled mammalian liver S9 fraction (BD Gentest), 2 mM NADPH regenerating system, 

1 mM UDPGA, 0.1 mM PAPS and 10 mM magnesium chloride in 200 mM potassium hydrogen 

phosphate buffer (pH 7.4) at 37 °C for 0, 5, 15 and 60 min. At the given time points, two volumes of 

acetonitrile containing internal standard were added to stop the incubation. Concentration of the 

remaining test compound was determined using LC-MS/MS and used to determine the half-life (t1/2). 
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