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Short abstract

In this thesis we present a detailed study of the phase diagram of ultracold boso-
nic atoms con�ned along a tight atomic wave guide, along which they experience
an optical lattice potential. In this quasi-one dimensional model we analyse the
interplay between interactions and quantum �uctuations in (i) determining the
non-equilibrium steady state after a quench and (ii) giving rise to novel equi-
librium phases, when the interactions combine the s-wave contact interaction
and the anisotropic long range dipole-dipole interactions. In detail, in the �rst
part of the thesis we study the depinning of a gas of impenetrable bosons fol-
lowing the sudden switch o� of the optical lattice. By means of a Bose-Fermi
mapping we infer the exact quantum dynamical evolution and show that in the
thermodynamic limit the system is in a non-equilibrium steady state without
quasi-long range order. In the second part of the thesis, we study the e�ect
of quantum �uctuations on the linear-zigzag instability in the ground state of
ultracold dipolar bosons, as a function of the strength of the transverse con�-
nement. We �rst analyse the linear-zigzag instability in the classical regime,
and then use our results to develop a multi-mode Bose-Hubbard model for the
system. We then develop several numerical methods, to determine the ground
state.
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Zusammenfassung

In dieser Arbeit präsentieren wir die detaillierte Untersuchung des Phasendia-
grams von ultrakalten bosonischen Atomen, welche in einem engen Wellenleiter
gefangen sind, entlang dessen ein optischen Gitter läuft. In diesem eindimensio-
nalen Model analysieren wir das Zwischenspiel zwischen Wechselwirkungen und
Quanten�uktuationen und (i) bestimmen den Nichtgleichgewichtszustand nach
einem Quench und (ii) führen zu neuen Quantenphasen, in denen die Wech-
selwirkung sich aus der s-Wellen-Kontaktwechselwirkung und den anisotropen
langreichweitigen Dipol-Dipol-Wechselwirkung zusammensetzen. Im Detail wird
im ersten Teil der Arbeit das Depinning von einem Bose-Gas mit harten Ker-
nen untersucht, nachdem das optische Gittern plötzlich ausgeschaltet wird. Mit
Hilfe eines Bose-Fermi-Mappings kann man die exakte dynamische Entwick-
lung ableiten und zeigen, dass im thermodynamischen Limes das System sich
in einen Zustand ohne quasi-langreichweitige Korrelationen begibt. Im zweiten
Teil wird der E�ekt von Quanten�uktuationen auf den Linear-Zigzag-Übergang
im Grundzustand ultrakalter dipolaren Bosonen als Funktion der transversalen
Falle untersucht. Zuerst analysieren wir die Instabilität im klassischen Bereich
und benutzen dann unsere Resultate um ein Bose-Hubbard-Model mit mehre-
ren Moden aufzustellen. Wir benutzen mehrere numerische Methoden um den
Grundzustand zu bestimmen und sagen ein reiches Phasendiagram voraus.
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Résumé

Cette thèse étudie les phases classiques et quantiques des systèmes atomiques
ou moléculaires de basse dimension en mettant un accent particulier sur le
crossover dimensionnel de une à deux dimensions.

La première partie de la thèse est consacrée à la description d'un système
d'atomes froids interagissants avec un potentiel de contact. Plus précisément,
nous étudions le dé-piégeage dynamique qui, suite à l'extinction rapide d'un
réseau optique, s'opère dans un gaz composé de bosons impénétrables dans
un guide d'onde atomique linéaire. Nous employons une solution exacte, ba-
sée sur une correspondance entre bosons en forte interaction et fermions sans
interaction pour déduire l'évolution dynamique quantique exacte. Dans la li-
mite thermodynamique, nous observons l'approche vers un état stationnaire
hors équilibre, caractérisé par l'absence d'ordre hors diagonal à longue distance
et une visibilité réduite de la distribution en impulsions. Des caractéristiques
similaires sont observées dans un système de taille �nie pour des temps corres-
pondant à la moitié du temps de récurrence, lors desquels nous observons que
le système approche un état quasi-stationnaire auquel le système s'approche
avec une dépendance temporelle en loi de puissance.

La deuxième partie de la thèse analyse l'e�et des interactions dipolaires sur
l'état fondamental du système. L'inclusion de l'interaction dipôle-dipôle donne
lieu à de nouvelles phases quantiques du système unidimensionnel, mais peut
également entraîner une instabilité transverse.

Cette instabilité est tout d'abord analysée dans le régime classique. Nous
considérons des particules classiques avec interactions dipolaires, con�nés sur
un anneau par un potentiel harmonique radiale. Les dipôles sont polarisés per-
pendiculairement au plan de con�nement. En diminuant le con�nement dans
la direction radiale, les particules classique montrent une transition entre une
chaîne simple et une chaîne double (en zigzag). Nous montrons que cette tran-
sition est faiblement du premier ordre. Nous expliquons que la nature de cette
transition est déterminée par le couplage entre les modes d'excitation trans-
versaux et axiaux de la chaîne des dipôles. Ce résultat est très di�érent du
comportement observé dans les systèmes Coulombiens, où la transition entre
la chaîne linéaire et la chaîne en zigzag est continue et appartient à la classe
d'universalité de la transition ferromagnétique. Nos résultats s'appliquent aux
systèmes dipolaires classiques et aux atomes Rydberg, qui peuvent constituer
un banc d'essai pour simuler le comportement critique des aimants couplés à
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des grilles.
Dans le régime quantique, nous considérons un système des bosons dipolaires

sur un réseaux optique, con�nés par un potentiel harmonique anisotrope. Dans
le régime favorisant l'instabilité d'une chaîne simple, nous démontrons que le
système peut être décrit par un modèle de Bose-Hubbard étendu à plusieurs
modes couplés entre eux, dont les coe�cients peuvent être déterminés en uti-
lisant une théorie de basse énergie. La méthode d'intégrale de chemin Monte
Carlo, la diagonalisation exacte et TEBD sont utilisés pour déterminer l'état
fondamental de modèle de Bose-Hubbard étendu et démontrent que ce modèle
capture la transition entre la chaîne linéaire et la chaîne en zigzag.
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Abstract

In this work, the classical and quantum phases of low-dimensional atomic or
molecular systems is studied with a particular focus on the regime where a
system goes over from a strictly one-dimensional to a two dimensional system.

The �rst part of the thesis is dedicated to atoms interacting via contact
interactions. In particular, we study the dynamical depinning following a sud-
den turn o� of an optical lattice for a gas of impenetrable bosons in a tight
atomic waveguide. We use an exact solution, which is based on an equivalence
between strongly interacting bosons and noninteraction fermions, in order to
derive the exact quantum dynamical evolution. At long times, in the ther-
modynamic limit, we observe the approach to a nonequilibrium steady state,
characterized by the absence of quasi-long-range order and a reduced visibility
in the momentum distribution. Similar features are found in a �nite-size system
at times corresponding to half the revival time, where we �nd that the system
approaches a quasisteady state with a power-law behavior.

In the second part, we study the e�ect of additional dipolar interactions on
the ground state of the system. The inclusion of dipole-dipole interaction leads
to new quantum phases of the one-dimensional system, but can also lead to a
transverse instability.

This instability is �rst analyzed in the classical regime. We study classical
particles with dipolar interactions, that are con�ned on a chain by a harmonic
potential. The dipoles are polarised perpendicular to the plane of con�nement.
Classical particles with repulsive power-law interactions undergo a transition
from a single to a double chain (zigzag) by decreasing the con�nement in the
transverse direction. We theoretically characterize this transition when the
particles are classical dipoles, polarized perpendicularly to the plane in which
the motion occurs, and argue that this transition is of �rst order, even though
weakly. The nature of the transition is determined by the coupling between
transverse and axial modes of the chain and contrasts with the behavior found in
Coulomb systems, where the linear-zigzag transition is continuous and belongs
to the universality class of the ferromagnetic transition. Our results hold for
classical dipolar systems and Rydberg atoms, which can o�er a test bed for
simulating the critical behavior of magnets with lattice coupling.

In the quantum regime, we consider dipolar bosons in an optical lattice,
tightly con�ned by an anisotropic harmonic potential. In the regime where a
single chain becomes unstable, we show that the system can be mapped onto
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an extended multi-mode Bose-Hubbard model, where the coe�cients can be
determined by means of a low energy theory. A path integral Monte Carlo
method, exact diagonalization and TEBD are used to determine the ground
state of the extended Bose-Hubbard models. and show that the model captures
the linear to zigzag transition.
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Chapter 1

Introduction

The realization of isolated quantum systems has become an experimental reality
with ultracold quantum gases. These systems indeed provide a unique platform
for simulating dynamics and models predicted for condensed-phase systems,
statistical mechanics, as well as to test quantum-�eld theoretical hypotheses.
Strongly correlated ensembles of trapped ions, atoms and dipolar systems allow
one to study and simulate Wigner crystallization [DO99, BDL+07, ABKL07],
supersolidity [GSL02], and quantum magnetism [PC04, FSG+08, KCK+10], to
mention a few. The interplay of quantum �uctuations, external con�nement
and interactions in gases of ultracold bosons is the subject of this thesis. We
analyze the quantum phases under di�erent settings and characterize the e�ect
of quantum �uctuations at the onset of quantum and classical structures.

In chapter 2 we introduce some basic concepts of ultracold atoms in optical
lattices, which will be useful for the discussion in the following chapters.

In chapter 3 we focus on hard-core bosons in one dimension and con�ned by
an optical lattice, when the lattice is suddenly switched o�. The ground state
of the Hamiltonian before and after the quench is a gapped insulating state and
a super�uid, respectively [BBZ03]. The steady state reached after the quench,
however, is out-of-equilibrium and displays no quasi long-range order.

In chapters 4-6 we additionally consider that the bosons interact repulsively
along the wave-guide by means of the dipole-dipole interaction and analyse the
quantum phases as a function of the transverse con�nement. The ratio between
the on-site repulsion and the dipolar interaction gives rise to transitions between
the Mott insulator, charge density wave and in one dimension the Haldane insu-
lator. The interplay with the kinetic energy is expected to originate super�uid,
supersolid and pair super�uid phases, whose appearance is controlled, amongst
others, by the transverse density distribution.

At the same time, the transverse con�nement also controls the structural
stability of dipolar arrays: For repulsive interactions, when the transverse trap
frequency reaches a critical value controlled by the linear density, one dimen-
sional arrays become unstable and the dipoles tend to form a zigzag struc-
ture [AMDCB08]. While the interplay between quantum �uctuations and struc-



2 Introduction

Figure 1.1 � Schematic representation of the linear to zigzag transition. In strong
anisotropic con�nement repulsively interacting particles arrange in a linear con�gu-
ration (left). If the transverse con�nement is relaxed, the linear chain splits into a
zigzag (right).

tural order is relevant to several experimental setups, yet the associated prop-
erties of the phase diagram are still unknown. This transverse instability has
been studied extensively in linear arrays of ions [BKW92]. If the transverse
con�nement is lowered below a critical value, the ion chain will split into two,
a zigzag, as shown in �gure 1.1. The transition is described by a Landau
model [FDCCM08], is continuous and is a quantum phase transition in the
quantum regime [SMF11, SDCC+13, MML07].

In chapter 5 we �rst analyse the properties of the linear-zigzag instability
when the particles interact via the dipole-dipole interaction. This is the starting
point for the systematic derivation of a multi-mode Bose-Hubbard model, which
is performed in chapter 6. This model is valid deep in the quantum regime,
setting the basis for a systematic numerical characterization of the phase di-
agram. Here, the structure of the numerical programs, which are based on a
path-integral Monte Carlo and on a TEBD method, is then detailed.



PART I

Neutral atoms in optical lattices





Chapter 2

Ultracold atoms in optical lattices

In this thesis we will study the phases of ultracold bosonic particles in periodic
potentials. The purpose of this chapter is to introduce some basic concepts,
which will be useful for the discussion in the following chapters.

2.1 The optical lattice

In the dipole approximation, the interaction of an atom or molecule with an
electric �eld is given by

Hopt = −d ·E, (2.1)

where E is the electric �eld and d is the electric dipole moment. If the electric
�eld stems from a laser which is far detuned from any atomic or molecular
transitions, the interaction is described by the AC Stark shift and leads to the
energy correction[PS08]

∆Eopt = −α(ωL)
〈 ∣∣E(r)

∣∣ 2
〉
t
, (2.2)

where α(ωL) is the dynamic polarizability and 〈. . .〉t is the time average over
one oscillation period of the electric �eld. If the laser is far detuned from the
particle resonances, the laser �eld acts as an e�ective potential in which the
particles move. In this dressed atom picture the energy shift is

∆Eopt ∝
〈 |E(r) | 2〉t

~∆
, (2.3)

where ∆ is the detuning of the laser to the next particle resonance.
For red-detuned light (∆ < 0), the particles are pushed towards regions of

high intensity of the laser, whereas for blue detuned light (∆ > 0) they are
pulled towards regions of low light intensity.
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Figure 2.1 � Picture of an optical lattice potential taken from Bloch et al. [BDZ08].
(a) a 2D square lattice creating an array of tightly con�ning tubes; b) a 3D cubic lattice
potential.

By crossing three sets of counter-propagating lasers, it is possible to produce
regular patterns of high and low intensity. If the lasers are aligned to produce
a simple cubic pattern, the potential that the particles feel is

Vopt(r) = Vx sin2(kx x) + Vy sin2(ky y) + Vz sin2(kz z), (2.4)

where the lattice heights Vν are tuned by the intensity of the lasers, and kν
depend on the laser frequencies. By varying the laser frequencies and lattice
heights, it is possible to create quasi-1d or 2d lattices, in which the particles will
arrange in. For the following calculations, we will assume that the optical lattice
is simple cubic and the wave vectors are given by k = kx = ky = kz = π/a,
where a is the distance between two lattice sites.

The scattering length and the e�ective contact interaction

For low energies elastic s-wave scattering dominates the scattering problem of
two particles. The scattering problem for two particles is described by a single
parameter, the scattering length, which is to lowest order [PS08]

a3D =
m

4π~

∫
dr Uint(r). (2.5)
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The low-energy description of the two body interaction can be thought arising
from an e�ective interaction

g =

∫
d3rUeff(r) =

4π~a3D

m
. (2.6)

The scattering remains the only important quantity for dilute gases, where
three particle collisions are rare compared to two particle ones and the interac-
tion potential falls o� rapidly enough. This is for example correct for typical
experiments using Alkali atoms, that interact via van-der-Waals interactions.
The interaction between two particles sitting at position r and r′ is thus pro-
portional to a contact interaction,

Ueff(r − r′) = gδ(r − r′). (2.7)

The scattering length can be interpreted as the radius of the atom or molecule.
With Feshbach resonances it is possible to tune the scattering length by vary-
ing external magnetic �elds. One can even reach regimes where the e�ective
interaction is attractive with a3D < 0, or the hard core limit with a3D →∞.

In addition, the scattering length can be changed via the transverse con-
�nement in low dimensional settings. If the atom is in the ground state of a
transverse harmonic oscillator with oscillator length a⊥ =

√
~/mω⊥, where ω⊥

is the oscillator frequency, the transverse wavefunction can be approximated
by φ⊥(ρ) = e−ρ

2/a2⊥/(a⊥
√
π). Integrating out the transversal density in the 3D

pseudopoential allows one to �nd the one dimensional one as [Ols98]

g1Dδ(r) =

∫
dρ ρ2π|φ⊥(ρ)|2g3Dδ(r) (2.8)

=
2~2a3D

ma2
⊥
δ(r). (2.9)

This result is a good approximation of the weakly interacting system, but if the
radial con�nement approaches the transverse one, it breaks down and an addi-
tional term has to be included [Ols98]. The e�ective one dimensional coupling
is then given by

g1D =
2~2a3D

ma2
⊥

1

1− C a3D/(a⊥)
, (2.10)

where C = −ζ(1/2) and ζ(x) is the Riemann zeta-function [Ols98]. Therefore,
the radial con�nement can lead to scattering resonances of the e�ective one-
dimensional interaction.
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2.2 Strong lattices

2.2.1 Wannier functions

In this section, we want to review the Bose-Hubbard model, and introduce the
nomenclature for the next sections. The Hamiltonian of atomic gases in optical
lattices in second quantization is H = H0 +Hint, with

H0 =

∫
d3rΨ†(r)

[
−~2∇2

2m
+ Vopt(r)− µ

]
Ψ(r), (2.11)

Hint =
g

2

∫
d3rΨ†(r)Ψ†(r)Ψ(r)Ψ(r), (2.12)

where Ψ(r) is the bosonic �eld operator of the atoms and Vopt is the optical
lattice potential with period a. We work in the grand-canonical ensemble, where
the number of particles is �xed by the chemical potential µ. If the amplitude
of the optical lattice is large compared to the recoil energy VL & 6ER, and
the temperature is low enough, it is su�cient to only consider the lowest Bloch
band, provided that the interactions between the particles are small enough that
they do not induce transition between the di�erent bands. In an experiment,
there is an additional harmonic con�nement superimposed to the optical lattice.
However, if the harmonic con�nement changes on scales much larger than the
optical lattice period, one may take into account the e�ect of con�nement in
an approximate way through a local-density approximation on the results of
the homogeneous system. Hence, in the rest of this thesis we will not treat the
e�ects of harmonic con�nement.

As most of the thesis will discuss quasi one-dimensional systems, we will
restrict the following calculations to the one-dimensional case. (The calculation
for the three dimensions is identical to the one shown here.) The non interacting
HamiltonianH0 can be diagonalized by expanding the �eld operator on the basis
of the �rst band Bloch's functions χq(x) according to [EFG+05]

Ψ(x) =
∑
q

χq(x)aq (2.13)

where aq is a bosonic �eld operator satisfying the commutation relations
[aq, a

†
p] = δp,q, χq(x) are the solutions of the single-particle Schroedinger equa-

tion (
− ~2

2m

∂2

∂x2
+ Vopt(x)

)
χ(x) = Eχ(x)

and π/a < q < π/a is the quasi-momentum.
When taking into account the full interacting Hamiltonian, it is more con-
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venient to write the Hamiltonian in the basis of Wannier functions, which are
de�ned as the Fourier transform of Bloch functions [EFG+05]

w(x) =
1

M

∑
q

e−iqxχq(x), (2.14)

where M is the number of lattice sites. Just as the Bloch functions, Wannier
functions form a complete set of the non-interacting Hamiltonian and the �eld
operator can be expanded in Wannier functions

Ψ(x) =
∑
i

w(x− xi)ai, (2.15)

where ai destroys a particle in the site xi. By representing the interaction part
of the Hamiltonian (2.12) using the Wannier function basis (2.15) for the �eld
operator we obtain

H = −
∑
j,l

Jj,la
†
jal +

1

2

∑
i,j,k,l

Uijkla
†
ia
†
jakal − µ

∑
j

a†jaj, (2.16)

where

Jj,l =−
∫
d3r w∗(x− xj)

[
−~2∇2

2m
+ Vopt(x)

]
w(x− xl), (2.17)

Ui,j,k,l =g

∫
d3r w∗(x− xi)w∗(x− xj)w(x− xk)w(x− xl). (2.18)

Figure 2.2 shows the shape of the Wannier function for di�erent lattice depths.
The Wannier function w(x− xj) is centered at lattice site xj and for increasing
optical lattice depth, the Wannier functions become more localized. For this
reason it is su�cient to only take into account the on-site and the nearest
neighbor contributions for large optical lattice depths. In this tight-binding
limit, one �nds the well known Bose-Hubbard Hamiltonian [JBC+98, LSA+07]

HBH = −J
∑
j

(a†jaj+1 + a†j+1aj) + +
U

2

∑
j

nj(nj − 1)− µ̄
∑
j

nj, (2.19)

where J = Jj,j+1, U = Uj,j,j,j and µ̄ = µ− Jj,j.

2.2.2 The ground state

The Bose-Hubbard Hamiltonian (2.19) has two di�erent phases: a super�uid
(SF) and a Mott insulator (MI). This can best be understood by considering
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Figure 2.2 � The 1d lowest Bloch band Wannier function centered at x = 0 (black
line). The dashed lines show the Wannier functions centered at adjacent lattice sites.
Left for a small lattice depth VL = 3ER, right for VL = 10ER. The Wannier functions
become more localized for increasing optical lattice depth.

the two limiting cases of large and small tunneling.
In the limit of small interactions U/|J | � 1 the eigensates are Bloch states,

which are completely delocalized over the whole lattice. This gapless super�uid
state is well approximated by [BDZ08]

|Ψ〉 ∼

(
M∑
j=1

a†j

)N

|vac〉 ,

where N is the number of particles, M the number of lattice sites and |vac〉
denotes the vacuum state.

In the limit U/|J | → ∞, the density �uctuations are fully suppressed and
in the ground state there is an integer number of particles at each site. This
gapped ground state is called the Mott Insulator. If n̄ is the particle number
per site, the ground state wave function is [BDZ08]

|Ψ(n̄)〉 =
M∏
j=1

(a†j)
n̄

√
n̄
|vac〉 .

The chemical potential must be in the range n̄− 1 < µ/U < n̄, for it to be the
ground state.

The MI as well as the SF phase extends to �nite values of U/|J | and the
regions of �xed density per site with zero density �uctuations are called Mott
lobes. The boundary between the two phases can be estimated using a mean
�eld approach or can be calculated numerically. In Chapter 6.4.3, we show how
to calculate the ground state using a path integral Monte Carlo method, and
in chapter 6.5 we discuss a TEBD method that can be used to calculate the
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ground state.

2.3 Weak lattices

If the optical lattice is commensurate with the particle density, i.e. the atom
density is inversely proportional to the lattice spacing n ∼ 1/a, for strong in-
teractions, any arbitrarily weak optical lattice will pin the particles in a gapped
state and only for no optical lattice the ground state is gapless. This is called
pinning transition [HHM+10].

For weak optical lattices, it is not possible to expand the wave function in
the lowest Bloch band Wannier functions, as the particles can occupy multiple
vibrational bands. The system may be rather described by including the lattice
as a perturbation on top of an interacting, homogenenous quantum �uid. A low
energy description is given by the sine-Gordon Hamiltonian [BBZ03]

H =
~vs
2π

∫
dx

[
(∂xθ)

2 + (∂xφ)2 +
VLnπ

~vs
cos
(√

4Kθ
)]

, (2.20)

which describes a one dimensional gas, where θ and φ are the density and phase
�elds, respectively and vs is the sound velocity. Phase and density are related
via the commutation relation [∂xθ(x), φ(x′)] = iπδ(x− x′).

The sine-Gordon Hamiltonian has been studied extensively in solid state and
high energy physics [GNT04]. The Luttinger parameter K = ~πn

mvs
determines

the quasi long-range order of correlation functions of the unperturbed Hamil-
tonian with VL = 0, such as 〈n(0)n(x)〉 ∼ |x|−2K . For weak optical lattices, a
perturbative renormalization group approach predicts that the system under-
goes a quantum phase transition at K = KC = 2. For K < KC the system is
in a Mott state, for K > KC in an ungapped super�uid phase.

In the regime of strong interactions, the Luttinger parameter is related to
the Lieb-Liniger parameter γ viaK = (1 + 2/γ)2[BBZ03], where γ = mg/(~2n).
Feshbach resonances allow one to tune the interaction strength and thus γ and
K. In the Tonks-Girardeau limit (γ � 1) any arbitrarily weak optical lattice
is enough to push the system into an insulating phase. This pinning transition
has been �rst predicted in [BBZ03] and �rst observed in [HHM+10]. In chapter
3, we study a quench across the pinning transition.

Ultracold atomic gases con�ned by tight waveguides have been experimen-
tally realized and the strongly interacting regime has been reached and char-
acterized in detail [PWM+04, KWW04, vAvEW+08, PZSK09]. In this one-
dimensional geometry, the pinning transition has been experimentally observed
for atoms subjected to a longitudinal weak optical lattice [HHM+10].





Chapter 3

Dynamical depinning of a Tonks Girardeau gas

This chapter is based on:

• Florian Cartarius, Eiji Kawasaki, and Anna Minguzzi,

Dynamical depinning of a Tonks-Girardeau gas,
Phys. Rev. A 92, 063605 (2015).

The study of the dynamics following a quantum quench in isolated quan-
tum systems allows one to address fundamental questions in quantum many-
body systems (see, e.g., Ref. [CC06] as well as Ref. [SC14] and references
therein). In one-dimensional integrable systems a relevant issue is the absence
of thermalization as observed in the paradigmatic quantum Newton's cradle ex-
periment [KWW06]. The concept of the generalized Gibbs ensemble has been
introduced and developed to describe the state of integrable systems at long
times [RDYO07, Caz06, CK12, IC09].

In this chapter we analyze a quench across the pinning transition. In detail,
we start in the pinned phase and consider a bosonic gas in the limit of in�nite
interactions in an optical lattice that is commensurate with the bosonic den-
sity [L�BG12]. We follow its time evolution following a sudden turn o� of the
lattice while keeping the one-dimensional waveguide still present. This allows us
to study the quench from an initially pinned, insulating ground state to an out-
of-equilibrium depinned state. We describe the dynamical evolution of the sys-
tem at arbitrary times using an exact mapping solution due to Girardeau [Gir60]
and Girardeau and Wright [GW00]. This exact solution allows us to obtain the
full dynamical solution for the quantum dynamics, going beyond the low-energy
Luttinger-liquid model or conformal �eld theory approaches. Our method al-
lows us also to study the approach in time to the non-equilibrium steady state.
Finally, we focus on the experimentally relevant condition of a �nite-size system,
choosing a geometry that is amenable to experimental realization with ultracold
atoms, e.g., by implementing a one-dimensional box-potential con�nement to
which an optical lattice is superimposed.
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3.1 Model and exact solution

Figure 3.1 � Time evolution of the particle density n(L/7, t) at position x = L/7
as a function of time t for a commensurately �lled lattice for various values of boson
numbers as indicated in each panel. The horizontal dashed lines correspond to the
(quasi) steady-state prediction in Eq. (3.9).

We consider M bosons of mass m at zero temperature, con�ned by a longi-
tudinal box trap of size L. They are described by the Hamiltonian

H =
∑
j

[
− ~2

2m

∂2

∂x2
j

+ V (xj)

]
+ g

∑
j<`

δ(xj − x`). (3.1)

The atoms are subjected to an optical lattice and to a box potential, ie
V (x) = VL cos2(kLx) + Vb(x), where kL = Mπ/L and the box trap Vb(x) is
described by imposing hard-walls boundary conditions on the interval [0, L].
The number of bosons is chosen such as to ensure unitary �lling of the lat-
tice. The interactions among the atoms is modelled by contact interactions
of strength g. In the following we shall focus on the impenetrable-boson or
Tonks-Girardeau limit corresponding to the limit g → ∞. This amounts to
replacing the interaction term in the Hamiltonian (3.1) by the cusp condition
Ψ(...xj = x`...) = 0, imposing the vanishing of the wavefunction at contact for
each pair of particles {j, `}.

At time t = 0− we assume that the gas is at equilibrium in the optical
lattice. We study the time evolution of the gas following a sudden quench of
the lattice amplitude VL to zero. The exact dynamics is described by the time-
dependent Bose-Fermi mapping, stating that the time evolution of the bosonic
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wavefunction ΨB(x1...xM , t) can be obtained in terms of the one of a non-
interacting Fermi gas subjected to the same time-dependent external potential
according to

ΨB(x1...xM , t) = Π1≤j<`≤M sign(xj − x`)ΨF (x1, x2.., xM , t), (3.2)

where ΨF (x1, x2.., xM , t) = 1√
M !

det[ψj(xk, t)]. Note that the solution (3.2) sat-
is�es the cusp condition at all times. The single-particle orbitals ψj(xk, t) are
the solution of the time-dependent one-body Schrödinger equation

− ~2

2m
∂2
xψj(x, t) + Vb(x)ψj(x, t) = i~∂tψj(x, t), (3.3)

As initial condition ψj(x, 0) we take the equilibrium single-particle problem in
the presence of the lattice, corresponding to a Mathieu equation with hard walls
boundary conditions,

− ~2

2m
∂2
xψj(x) + [VL cos2(kLx) + Vb(x)]ψj(x) = Ejψj(x). (3.4)

In the following it will be useful to scale all the energies in units of the recoil
energy ER = ~2k2

L/2m, and set λ = VL/ER. The solution of Eq.(3.4) is given
by a generalization of Mathieu functions. It amounts to search for a solution
of the form ψj(x) =

√
2/L

∑
n b

(j)
n sin(nπx/L) and determine the coe�cients

b
(j)
n . Substitution onto the Schrödinger equation (3.4) yields the linear algebra
problem ∑

n

sin(nkLx)(b(j)
n (n2/M2 − a) + q(b

(j)
n+2M + b

(j)
n−2M)) = 0 (3.5)

where a = Ej/ER − λ/2, q = λ/4. Equation (3.5) corresponds to an eigenvalue
problem on a semi-in�nite matrix. For the ground state of the TG gas we are
interested in the �rst M eigenvalues and eigenvectors. These are obtained by
numerical diagonalization, performing a truncation to a matrix size S � M .
The time evolution of the single-particle orbitals after the sudden depinning is
then readily given by

ψj(x, t) =
√

2/L
∑
n

b(j)
n e−iεnt/~ sin(nπx/L), (3.6)

where εn = ~2(nπ/L)2/2m.
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3.2 Time evolution of the density pro�les

In order to explore the post-quench dynamics we analyze the time evolution of
various observables. We consider �rst the time evolution of the density pro�le.
This is obtained, using the Bose-Fermi mapping, as the one of the corresponding
Fermi gas,

n(x, t) =
M∑
j

|ψj(x, t)|2. (3.7)

Substitution of the explicit solution for the lattice problem yields

n(x, t) =
2

L

M∑
j

∑
n,n′

e−i(εn−εn′ )t/~b(j)
n b

(j)
n′

× sin(nπx/L) sin(n′πx/L). (3.8)

The time evolution of the density is shown in Fig. 3.1 for various numbers of
bosons and several �xed sizes, at constant �lling of one boson per site. Recur-
rences are clearly visible, as expected for a �nite-size system. While one could
estimate as trivial recurrence time T = 2π~/ε1, we note that the density pro�les
show revivals at earlier time TR = T/4M . This property is speci�c to our choice
of system and initial state. The time evolution in Eq. (3.8) is determined by the
energy di�erence εn − εn′ ∝ (n2 − n′2); the most important contribution in the
coe�cients b(j)

n is for n′ − n = 0 mod 2M , as one can infer from the numerical
solution of Eq. (3.5) as well as from a perturbative approach [L�BG12] at weak
lattice strength, thereby yielding the observed recurrence time TR.

A special point is the center of the box. The system will be in the same
state as the initial one, once the unpinned excitations traveled to both borders
of the box and back again. As the box is perfectly symmetric around its center,
the central density is restored at a rate that is half the revival time of all other
points.

3.3 The non-equilibrium steady state

For a value of M su�ciently large to be outside the mesoscopic regime of a few
particles (M ≥ 11 in our case) and for su�ciently long times (ie at about half
revival time) we observe in Fig. 3.1 that the system tends to a (quasi) steady
state � as we shall denote this state for a �nite-size system. 1 This state tends
to a truly steady state once the thermodynamic limit is taken (see Section 3.4

1According to our numerical solution, the density pro�le is very close to the steady-state
prediction (3.9) except for travelling wiggles due to re�ections against the walls.
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below for details). The (quasi) steady state can be well described by neglecting
the oscillating terms in Eq. (3.8)

n(x, t)→ nSS(x) =
2

L

∞∑
n=1

fn sin2(nπx/L) (3.9)

with nonthermal occupation numbers fn given by fn =
∑N

j=1 |b
(j)
n |2. The above

result (3.9) is illustrated as horizontal dashed lines in Fig.3.1. In the absence
of the lattice fn is given by a Fermi distribution at zero temperature. At
increasing height of the initial lattice the (quasi) steady state is characterized
by the occupation of more and more excited bands, as shown in Fig. 3.2. We
notice that the occupation numbers fn vanishes for n = M + 1 to 2M , and
similarly for higher excited levels corresponding to even bands. This is due
to the fact that the optical lattice acts as a backscattering potential creating
excitations with wavevector 2kL, which corresponds to 2kF = 2Mπ/L in our
choice of lattice �lling. In energy space, this allows to excite only levels with
quantum number di�erence ∆n = 2M . Mathematically, the result follows from
the linear algebra problem in equation (5): the optical lattice gives rise to o�-
diagonal terms into the matrix that are a distance 2M from the diagonal. The
corresponding eigenvectors have mostly zero components except b(j)

n 6= 0,∀n =
2M+1. Combining this property with the de�nition of the occupation numbers
fn we obtain the result shown in Fig.2.

Furthermore, our exact solution allows also to explore the approach to steady
state. By an extensive analysis of various systems sizes, we have found a power-
law approach to the steady state ie, n(x, t)− nSS(x) ∼ 1/t as times approaches
TR/2, which corresponds to the large-time limit in our �nite-size system. This
is illustrated in Fig.3.3 for various values of particle number M .

3.4 First-order coherence and momentum distri-

bution

In order to further characterize the properties of the (quasi) steady state we
study the time-dependent one-body density matrix

ρ1(x, y, t) = M

∫
dx2.. dxNΨ∗B(x, x2, ...xM , t)ΨB(y, x2, ...xM , t).

This allows to determine the coherence properties of this state and in partic-
ular the presence of quasi-o�-diagonal long-range order (QODLRO). Further-
more, this allows to obtain the momentum distribution of the gas n(k, t) =∫

dx
∫

dyρ1(x, y, t)eik(x−y), which is experimentally accessible with a high pre-
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Figure 3.2 � Occupation numbers fn as a function of the quantum number n for
M = 50 particles, for various values of the dimensionless lattice strength, from left to
right, λ = 0, 4, 50.

Figure 3.3 � Approach to nonequilibrium steady-state: time evolution (time in
units of TR) in double logarithmic scale for the di�erence between the particle density
and its corresponding steady-state value |n(x, t) − nSS(x)| (in units of n0 = M/L),
evaluated at x = L/7 and for λ = 40, for 81 (blue), 111 (red), 151 (orange) and
201 particles (purple). The particle density has been time averaged over a short time
interval ∆t = 0.001TR in order to decrease the noise in the �gure. The dashed line
indicates the 1/t power law decay.
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cision (see eg [JFB+12]).

Following the approach of Ref. [PB07] the one-body density matrix of a
time-evolving Tonks-Girardeau gas is given by

ρ1(x, y, t) =
M∑
j,l=1

ψ∗j (x, t)Ajl(x, y, t)ψl(y, t). (3.10)

where the matrix
A(x, y, t) = (P−1)TdetP,

P (x, y, t) = 1−Q, with

Qjl(x, y) = 2 sign(y − x)

∫ y

x

dx′ψ∗j (x
′, t)ψl(x

′, t).

For our speci�c case, the matrix elements Qjl(x, y) are readily evaluated ana-
lytically using Eq. (3.6).

The resulting density matrices are illustrated in Fig.3.4 for 15 bosons. As
compared with the equilibrium case in absence of the lattice (panels a) and d)),
the e�ect of the lattice at time t = 0 is a pinning along the diagonal x = y
and and a reduction of the o�-diagonal coherences, as evident from the sections
taken along the direction x = −y (panels e) and f)). As a main result, we
�nd that the (quasi) steady state at time t = TR/2 displays no QODLRO, and
the one-body density matrix decays exponentially 2. This is especially striking
since the system is evolving in a homogeneous box, ie it is depinned: While the
corresponding equilibrium state in the box displays QODLRO, ie the well-known
power-law decay with power exponent -1/2, as shown in panel d) of Fig. 3.4,
quite remarkably, the non-equilibrium aspect of the gas in�uences dramatically
its coherence properties. This feature is found quite generally in integrable
models, and has been �rst predicted by conformal-�eld methods for the state
of the system at long times following a quench across a quantum critical point
[CC06].

For weak lattice strength, the exponential decay of the one-body density
matrix for the (quasi) steady state can be analytically obtained: the main
contribution to the weights bjn is given by the term δn,j, yielding for the matrix

2This result was checked by studying the density matrices for systems up to 31 bosons and
an initial lattice strength of λ = 10. We have also checked that a similar behaviour is found
for times close but not equal to TR/2. Because of the symmetry around the center of the box,
at the revival time t = TR/2 the central density is restored and the quasi-steady state is not
reached. This is also the reason why at the o�-diagonal x = L/2− 2 of the one-body density
matrix in Fig. 3.4 (c), the pattern of the optical lattice is visible.
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Figure 3.4 � Real part of the one-body density matrix ρ1(x, y) in units of n0 = M/L
as a function of the coordinates of the spatial coordinates x and y for M = 15 bosons.
Top panels: top view, bottom panels: corresponding cuts at �xed x + y = L/2 as a
function of the relative distance |x − y|. a) and d) equilibrium state in absence of
the lattice. b) and e) equilibrium state in presence of the lattice, with lattice strength
λ = 10. c) and f) depinned quasi steady state at time t = TR/2 (blue line) after a
quench of the lattice to zero. The dashed line in panel e) is a guide to the eye and
in panel f) indicates the exponential decay e−2n|x−y| predicted in Eq.(3.11). The black
line in f) shows the the depinned steady state at a time t = 0.45TR.

elements

Pi,j = δi,j

[
1− 2

∣∣∣∣x− yL
− sin(2πjx/L)− sin(2πjy/L)

2πj

∣∣∣∣] .
At large relative distances one may set

Pi,j ' δi,j(1− 2|x− y|/L),

and thereby obtaining

A = 1(1− 2|x− y|/L)(N−1).

Taking the thermodynamic limit M → ∞ and L → ∞ at �xed n = M/L we
�nd

A = 1 exp(−2n|x− y|)

and �nally using (3.10) we obtain the bosonic quasi-steady state one-body den-
sity matrix

ρ1(x, y, t→∞) = ρ1F (x, y, t→∞) e−2n|x−y|, (3.11)
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where ρ1F (x, y, t) =
∑M

j=1 ψ
∗
j (x, t)ψj(y, t) is the fermionic one-body density ma-

trix. This result coincides with the one obtained in [CSC13] for the release of a
harmonically trapped TG gas onto a ring: as expected, boundary conditions do
not a�ect the result in the thermodynamic limit. Notice however the di�erent
way the steady state is reached: while in Ref. [CSC13] the long-time state is
obtained by summing up all the periodically repeated images on the ring, in
our case it is obtained by multiple re�ections at the boundaries. Notice that
our result can then be linked to the concept of Generalized Gibbs ensemble
(GGE) for the thermodynamic limit of our model: as in [CSC13], the average
of the fermionic occupation numbers 〈c†kck〉, obtained from the initial fermionic
one-body density matrix according to

〈c†kck〉 =
1

2π

∫
dx

∫
dyρ1F (x, y, 0)eik(x−y)

are conserved in the time evolution and can be used to determine the Lagrange
multipliers λk de�ning the density matrix of the system at long times: ρ̂GGE ∼
exp(−

∑
k λkc

†
kck).

From the knowledge of the bosonic one-body density matrix ρ1(x, y, t) we
�nally obtain the exact momentum distribution of the gas. We stress that our
exact approach allows us to cover all the ranges of momenta, beyond the low-
momentum region accessible by conformal-�eld methods. As shown in Fig.3.5,
the momentum distribution of the (quasi) steady state is considerably di�erent
from the equilibrium ones both in absence and in presence of the lattice: it
displays a considerably reduced intensity at low momenta, and does not show
the typical backscattering peak at k = 2kF found for the equilibrium gas in the
presence of the lattice.

3.5 Conclusions and outlook

In conclusion, we have studied the exact time evolution of a Tonks-Girardeau
gas following its sudden depinning o� a weak optical lattice. We have identi-
�ed a suitable long-time limit where a non-equilibrium steady state is reached
in the thermodynamic limit, and we have shown a power-law approach to the
steady state. Furthermore, we have shown that this state is characterized by
the absence of quasi-long-range order ie an exponential decay of one-body cor-
relations, in agreement with the predictions of the Generalized Gibbs Ensemble.
Our numerical analysis for a system of �nite size shows that this scenario could
be reached with experimentally realistic numbers of bosons in a tight atomic
waveguide, and that the time-dependent momentum distribution yields relevant
information about this state. Our work opens to the study of the details of the
quench depinning dynamics of a Lieb-Liniger gas at arbitrary interactions and
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Figure 3.5 � Momentum distribution n(k) as a function of wave vector k for
M = 15 particles. Left: equilibrium state in absence of the lattice, center: equilibrium
state in presence of a lattice with λ = 10, right: quasi steady state at time t = TR/2
after a quench of the lattice to zero.

to further tests of the GGE hypothesis with hard walls boundary conditions
(see eg [GA15]).



PART II

Interacting dipoles





Chapter 4

Atomic Dipolar gases

The previous part examined the commensurate-incommensurate transition of
cold atoms in ultracold lattices where the transition can be observed by varying
the height of the optical lattice compared to the contact interactions. In the
following, we will consider particles with dipole-dipole interaction, which are
generally anisotropic, are more long range than van-der-Waals interactions and
will lead to new quantum phases. Before the new phases are discussed, this
chapter will give an overview of the dipolar interactions in low dimensional
lattices.

4.1 Dipole-Dipole interaction

The interaction energy of two particles with dipole moments p1 and p2 that are
a distance r apart is

Udd = c
p1p2 − 3(p1r̂)(p2r̂)

r3
, (4.1)

where r̂ = r/r and c is a constant that depends on the type of dipoles. The
constant is

c =
1

4πε
(4.2)

with the permitivity ε in case of electric dipoles and

c =
µ0

4π
(4.3)

with the permeability µ0 in case of magnetic dipoles.
By applying a strong external magnetic or electric �eld, all the dipole mo-

ments arrange parallel to the external �eld, p1 = p2 = p, and the resulting



26 Atomic Dipolar gases

(a) (b)

(c)

Figure 4.1 � Figure (a): two dipoles do not interact, if the angle between the dipole
moment and the relative vector is θ = arccos(

√
1/3). In (b) the dipole moment is

parallel to the vector that connects two dipoles, the interaction is attractive. In (c)
the particles are con�ned in a two dimensional plane and the dipoles are polarized
orthogonal to it. The dipolar interaction is then isotropic and repulsive within the
plane.

dipole-dipole interaction is

Udd = CD
1− 3 (p̂ · r̂)2

r3
, (4.4)

with CD = c · p2. In the following, we will always assume that the dipoles are
polarized by an external electric �eld and the interaction is given by (4.4).

This makes the interactions between dipoles fundamentally anisotropic,
which has a big in�uence on the stability of the system. If the particles are
con�ned in an highly anisotropic trap, where the con�nement ωz along z is
much larger than ωx, ωy, the particles will arrange in a pancake shaped con�g-
uration. If the dipoles are polarized in the x-y plain, the interaction is mainly
attractive and the gas is not stable, while, if the polarization is along z, the
interaction between dipoles is mainly repulsive and the cloud will always be
stable [KLM+08]. However, as we shall discuss later, the interaction also con-
tains an attractive on-site contribution that changes the s-wave value of the
contact interaction.
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4.2 Interacting dipoles in low dimensions

In this work we always consider quasi one-dimensional systems, where in the
thermodynamic limit, the system is translationally invariant along one axis, but
not along the other two. In a physical system, this assumption is correct, as long
as the con�nement is highly anisotropic, and if the chemical potential and the
temperature are smaller than the transverse trapping frequency µ, kBT < ~ω⊥.
To �nd the correct one-dimensional theory, the other directions are integrated
out assuming the system is in the lowest vibrational state of the transverse
oscillators.

As was discussed in the �rst part of this thesis, particles in optical lattices
with contact interactions are either in an insulating (Mott) phase, or an un-
gapped (super�uid) phase. If the particles now interact via an additional dipole
moment, it is generally not su�cient to only include s-wave scattering, as it
is the case for dilute gases with van der Waals interactions. The dipole-dipole
interaction is long-range in three dimensions, as it decays as V ∼ r−3. Also in a
quasi one-dimensional system, the e�ect of the interaction has to be taken into
account explicitly.1 For example in the tight-binding limit, the Bose-Hubbard
model must be extended in order to describe dipoles by including interactions
between nearest neighbour sites. Extended Bose-Hubbard models have been
the subject of increased interest in the last years [SDH+12, BSRG13], as the
phase diagram can include supersolid, density wave and Haldane phases.

In a quasi-one dimensional system with tunable transverse trapping fre-
quency ω⊥, there is another feature associated to dipolar interactions, namely
a transverse instability. Let's consider that in a one dimensional optical lattice
with commensurate �lling (n ∝ 1/a) all the dipole moments are polarized such
that the dipolar interaction is repulsive along the chain. In a classical system,
the ground state needs to ful�ll a balance between the con�ning potential and
the interaction energy. If the interaction energy becomes of the same order
as the con�ning potential, CD/a3 ≈ 1

2
mω2

⊥a
2, then the quasi one-dimensional

approximation can break down and the single chain will split into two chains.
In the next sections, we study the how the classical and the quantum ef-

fects of dipolar interactions come together to determine the full phase diagram.
First, we will study the classical e�ect of the interactions, where we determine

1Interactions are de�ned to be long-range, if the interactions decay as 1/rα [LPR+14], in
d dimensions if α ≤ d. Systems with long-range interactions are not extensive or additive,
which makes it hard to de�ne thermodynamic limits. If a system of N particles in volume V
interacts via a short range interaction within the range γ, then a particle will interact with
Nγ2/V particles. The internal energy can be written as U(N,V ) = Nu(N/V ), where u(n)
depends on the microscopic properties of the system. This is also true for interactions that
do not have a cuto� γ, but decay rapidly enough, i.e. α > d. Therefore dipolar systems are
short-range in one dimension and long-range in three [FR66].
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the nature of the linear instability. After this, we turn to the study of the
corresponding quantum problem in optical lattices.



Chapter 5

The classical limit

This chapter is based on:

• Florian Cartarius, Giovanna Morigi, and Anna Minguzzi,

Structural transitions of nearly second order in classical dipolar gases,
Phys. Rev. A 90, 053601 (2014).

Classical dipoles in one dimension can arrange in linear strings. By relaxing
the transverse con�nement, this linear con�guration splits into a zigzag. In this
chapter we study the classical structural transition before studying the quantum
phase diagram in the next chapter. A low energy theory is introduced that
describes the system close to the transition and provides a means to characterize
the nature of the transition.

5.1 Microscopic model

In this section we consider N classical particles of mass m con�ned by an
anisotropic trap on the x−y plane, assuming a very tight con�nement along the
z direction. If all the dipoles are polarized along the z direction, the interaction
potential (4.4) simpli�es and the particles interact via a power-law repulsive
potential of the form

Vint(r1, . . . , rN) =
CD
2

∑
j 6=l

1

|rj − rl|α
, (5.1)

where CD = p2

4πε0
is the interaction strength and rj = (xj, yj) is the position of

particle j = 1, . . . , N . Here we introduced the generic power-law exponent α.
While for dipolar particles α = 3, we will study also what con�gurations can be
found for di�erent power law interactions. For instance, this includes the case
of for Van-der-Waals interactions where α = 6 or Coulomb interactions with
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α = 1. The particles are con�ned by a ring-shaped harmonic trap,

Vtrap(r1, . . . , rN) =
1

2
mω2

t

N∑
j=1

(rj −R0)2 , (5.2)

with rj = |rj| and ωt the frequency in the radial direction. Such trapping
potential is currently realized for quantum gases [GMM+05, MCL+06, RAC+07,
HNSF08, HRMB09, MBS+12]. For large radii it approaches a linear trap with
periodic boundary conditions, which is studied in section 5.3.1 with a focus on
con�gurations with more than two chains.

We will numerically seek in Sec.5.3 for the con�guration which minimizes
the energy in the total potential

V = Vint + Vtrap , (5.3)

close to the linear-zigzag instability. It is intuitive that for large trap frequen-
cies ωt all the particles are pushes onto a perfectly ring shaped con�guration,
while for a weak trap strength, this single ring (linear) con�guration cannot be
stable. The regime of structural stability of the linear con�guration is analyti-
cally identi�ed by means of a Taylor expansion of the potential about the linear
array. This has been performed in Refs. [AMDCB08, ACMB09]. In the next
section we report the basic steps, here applied to the speci�c con�guration of a
ring trap. In section 5.3.1, we will study the con�gurations that are found for
smaller trap frequencies with more than two chains in the limit of large trap
radii.

5.2 Stability of the linear chain

Before studying the minimum energy con�gurations that are found in the sys-
tem, this section will study the structural stability of the single ring con�gu-
ration. This is done in a similar way in [AM76]. A single ring con�guration
is stable if the force is zero and the Hessian of the potential energy has only
positive eigenvalues, i.e. all eigenfrequencies are real and positive. In order to
analyse the stability properties of the ring chain, we �rst rewrite the interaction
potential Vint, Eq. (5.1), in terms of polar coordinates, such that

Vint = (1/2)
∑
j,l 6=j

U(rj, φj, rl, φl),

and
U(rj, φj, rl, φl) =

CD(
r2
j + r2

l − 2rjrl cos(φj − φl)
)α/2 .
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We denote by R the ring radius, which results to be R > R0 due to the
interparticle repulsion. Moreover, we denote by a the uniform interparticle
distance along the ring, such that a = 2πR/N . Assuming that one dipole of
the ring is pinned, the single ring is a regular structure which exhibits discrete
translational invariance where the particles are located at radial position rj = R
and at angles φj = 2πj/N (j = 0, . . . , N−1). This con�guration corresponds to
equilibrium since the �rst derivatives of the total potential V , Eq. (5.3), vanish.
In order to verify that the equilibrium is stable, we call δj the displacement out
of the equilibrium position, and consider the second-order Taylor expansion

Vtot ≈ V eq +
1

2

∑
j,l

δTj D(j − l)δl, (5.4)

whereD is called the dynamical matrix [AM76]. The equation of motion of the
j-th particle is then

maj = −gradrj
Vtot. (5.5)

Because of the discrete periodicity, the equation of motion is diagonalized by
the ansatz

δj = εei(qja−ωt), (5.6)

where q ∈ [−π
a
, π
a
] is the wave vector. Substituting (5.6) into the equation of

motion (5.5) leads to the eigenvalue problem

mω2

(
εr
εφ

)
=

(
D11 D12

D21 D22

)(
εr
εφ

)
, (5.7)

where the components of the dynamical matrix are given by

D11 =mω2
t +

N−1∑
m=1

[
∂2U(m)

∂r2
j

+
∂2U(m)

∂rj∂rl
eiqma

]
(5.8)

D12 =
1

R

N−1∑
m=1

[
∂2U(m)

∂rj∂φj
+
∂2U(m)

∂rj∂φl
eiqma

]
(5.9)

D21 =
1

R

N−1∑
m=1

[
∂2U(m)

∂rj∂φj
+
∂2U(m)

∂rl∂φj
eiqma

]
(5.10)

D22 =
1

R2

N−1∑
m=1

[
∂2U(m)

∂φ2
j

+
∂2U(m)

∂φj∂φl
eiqma

]
, (5.11)
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and we used the shorthand notation U(m) = U(R, 0, R, 2πm/N).
Figure 5.1 shows the eigenmdoes of the linear con�guration. By decreasing

the trap frequency ωt one of the eigenfrequencies at the edge of the Brillouin zone
at q = π/a will become imaginary. Unlike in linear traps, the ring symmetry
always leads to a coupling of angular and radial eigenmodes, at the edge of the
Brillouin zone (q = π/a), the modes are decoupled, as D12 = D21 = 0. This
means that the critical trap frequency is given by ωt = ω

(c)
t (N), with

(
ω

(c)
t (N)

)2

= −CD
m

N−1∑
m=1

[
∂2U(m)

∂r2
j

+
∂2U(m)

∂rj∂rl
eiπm

]
. (5.12)

For R,N → ∞, but keeping a = 2πR/N constant, we can de�ne a thermody-
namic limit. In this limit the critical trap frequency approaches

lim
N→∞

ω
(c)
t (N) =

√
α(4− 2−α)ζ(α + 2)

CD
maα+2

,

and ζ(x) the Riemann's zeta function. For the Coulomb interaction this insta-
bility is a second-order phase transition which is classically described by the
Landau model [FDCCM08]. The mode at |q| = π/a is then the soft mode
driving the instability, and the order parameter the displacement rj −R in the
radial direction. In Refs. [AMDCB08, SMF11, PHP10, RDTHA12] it has been
conjectured that this may hold for any power-law repulsive interaction with
α ≥ 1.

5.3 Minimum con�gurations

We proceed now in determining the minimum energy con�gurations of the total
potential energy V = Vtrap + Vint for di�erent values of the trap frequency ωt
using the Basin-Hopping Monte-Carlo method [WD97], with which we identify
the equilibrium con�gurations corresponding to the global minimum of the po-
tential energy for N ranging from 16 to 1100. We note that the con�gurations
we �nd are expected to reproduce the correct ground state at T = 0 when the
interaction energy exceeds the kinetic energy, hence at su�ciently high densities
and for large permanent dipoles [AMDCB08, CODPC07, SDCC+13, SCMM14].

As a result of the minimization procedure, for su�ciently large frequencies
ωt (or, alternatively, small linear densities 1/a), we �nd a single array, or linear
con�guration, as in Fig. 5.2(a). Its equilibrium radius R is larger than the con-
�ning radius R0 due to the repulsive interactions. For ωt < ω

(c)
t and a su�ciently

large number of particles the minimal energy con�gurations determined numer-
ically are inhomogeneous. In particular, they result to be a mixture of single-
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Figure 5.1 � The vibrational spectrum of a linear ring con�guration above (a) and
at (b) the critical trap frequency. Because the radial and angular modes couple, the
there is a band gap between the two excitation branches.
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(a) ωt = 1.1 ω
(c)
t (b) ωt = 0.99 ω

(c)
t (c) ωt = 0.8 ω

(c)
t

Figure 5.2 � Side view (main panels) and top view (insets) of the various con�g-
urations found in the Monte-Carlo simulations: single ring (linear chain) (a), inho-
mogeneous con�guration (b), and double ring (zigzag chain) (c) of classical dipolar
particles con�ned in the plane perpendicular to the polarizing electric �eld. The dif-
ferent con�gurations correspond to three decreasing values of the radial con�nement
in the ring trap. The inhomogeneous con�gurations as in (b) indicate a coexistence
of linear and zigzag structures, and are numerically found using periodic boundary
conditions. Similar structures are found as well in a box with hard walls by varying
the transverse frequency or the linear density.

and two-ring structures, as shown in Fig. 5.2(b). The inhomogeneous con�g-
urations appear when the number of dipoles exceeds a certain value N0 > 32,
and they are thus absent for N = 16, which was the case reported in Ref.
[AMDCB08, ACMB09]. For this parameter range the homogeneous double ring
(zigzag con�guration) is metastable, separated by a small energy barrier from
the linear chain. Both structures are at higher energy than the inhomogeneous
one, which exhibits domains of linear and zigzag con�gurations. By further de-
creasing ωt the global minimum is the zigzag con�guration, whose equilibrium
positions are given by rj = R+ (−1)jb and φj = 2πj/N , where b > 0 is half the
radial distance between the two rings. The zigzag con�guration is illustrated in
Fig. 5.2(c). The zigzag con�guration is found provided the number of particles
is even, while for odd N the structure exhibits topological defects [CCM13]. By
further decreasing the trap frequency, the two chain con�guration will eventu-
ally split into more chains, as can be seen in Sec. 5.3.1.

A good indicator of the presence of the inhomogeneous con�guration is the
average displacement b of the linear con�guration. Figure 5.3 (a) shows the dis-
placement as a function of the trapping frequency as obtained by the numerical
minimization. The region of inhomogeneous con�gurations is clearly visible as
a deviation from the expected square-root behaviour predicted by the Landau
theory for a second-order phase transition [FDCCM08, AMDCB08]. A zoom
on the transition region also illustrates how the actual transition occurs quite
suddenly (within the numerical accuracy) and at a frequency which is slightly
larger than the frequency ω(c)

t . The frequency ωt below which inhomogeneous
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Figure 5.3 � (a) Average transverse displacement b (solid line) along the ring (in

units of the interparticle distance along the ring) as a function of ωt/ω
(c)
t for N=500

dipoles. The dashed line indicates the average displacement of a continuous transition,
that is obtained by only allowing transverse particle movement. The inset shows the
displacement b close to the transition region for 1100 dipoles. (b) Trap frequency below
which inhomogeneous con�gurations are the minimal energy solutions in the numerical
simulations as a function of 1/N , where N is the number of particles along the ring.

The red line is a linear �t ωt/ω
(c)
t = a + b/N with parameters a = 1.0011 ± 0.0009

and b = −0.77± 0.08.

con�gurations are found tends asymptotically to the value ωt = 1.0011(9)ω
(c)
t .

Finite-size corrections scale linearly with 1/N , as illustrated in Fig.5.3 (b).
But are these inhomogeneous con�gurations a special case of the dipole in-

teractions? To answer this, one can look for the minimum energy con�gurations
for ions, with power-law interaction coe�cient α = 1, and particles that inter-
act via van der Waals' interaction with α = 6. For the long-range Coulomb
interaction no inhomogeneous ground-state solutions can be found, in agree-
ment with the results of Ref. [FDCCM08]. In the Coulomb case, indeed, the
inhomogeneous con�gurations are excitations [LRB+13], and the linear-zigzag
transition is continuous [FDCCM08]. On the other hand for the short-range
van der Waals' interaction, inhomogeneous solutions are present and in general,
our numerical results clearly indicate that the structural transition for dipolar
gases (and in general for α > 2) deviates from the behaviour predicted from the
Landau theory for second-order phase transitions.

5.3.1 The limit of the linear trap

In the previous section it was shown that chains of particles with short-range
power-law interaction display inhomogeneous con�gurations in a ring trap. At
this point it is not clear, whether the con�gurations are a special case of the
ring trap, or the boundary conditions. For this reason, in this section a linear
trap geometry is chosen to see whether these con�gurations also appear in other
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Figure 5.4 � The minimum energy con�guration of 120 dipoles found by the Monte-
Carlo minimization for di�erent trap frequencies in a linear trap with periodic bound-
ary condition along x. The x and y coordinates are given in units of the linear density
a.

traps. As we are interested in the limit of large system sizes, we consider no
con�nement along x and take either periodic or open boundaries along x. The
con�nement along y is given by an harmonic trap,

Vlin(r1, . . . , rN) =
1

2
mω2

t

N∑
j=1

y2
j . (5.13)

The trapping potential (5.13) with periodic boundary condition along x is the
limit of (5.2) for large R0.

Figure 5.4 shows typical minimum energy con�gurations found in the system.
Similarly to the case of the ring trap, the particles arrange in a single chain
for su�ciently high trap frequencies ωty. Around ωt = ω

(c)
t inhomogeneous

con�gurations the inhomogeneous con�gurations that were found previously are
found once more, which will turn into regular zigzag structures for lower trap
frequencies. The inhomogeneous con�gurations are therefore not a peculiarity
of the ring trap. We also �nd them using open boundary conditions.

By further decreasing the radial con�nement, the minimum energy con�g-
uration will eventually consist of more than two chains. With decreasing trap
frequency, the minimum energy con�guration consists of 1 chain, 2 chains, 4
chains, 3 chains, 4 chains, more chains. This order is the same for ions [PHP10].

To check if the transition to multiple chains is continuous or of �rst order,



5.4. Low energy description of the transition 37

we calculate the energy of the two, three and 4 chain con�guration. Assuming
translational symmetry along x, the energy of up to four chains is given by

E1/N =
CD
a3

∑
j 6=0

1

j3
,

E2/N =
1

2
mω2

yb
2 +

1

16

CD
a3

∑
j 6=0

1

|j|3
+
CD
2a3

∑
j 6=0

1

((2j + 1)2 + (b/a)2)3/2
,

E3/N =
1

3
mωyb

2 +
1

18
· CD
a3

∑
j 6=0

|j|−3 +
CD
a3

∑
j

1

(9(j + 1
2
)2 + (b/a)2)3/2

+
1

2

CD
a3

∑
j

1

(9j2 + 4(b/a)2)3/2
,

E4/N =
1

4
mω2

y(b
2 + c2) +

1

32

CD
a3

∑
j 6=0

1

|j|3

+
CD
2

∑
j

1

16(j2a2 + 4c2)3/2
+ CD

∑
j

1

(16(j + 1
2
)2a2 + (c− b)2)3/2

+ CD
∑
j

1

(16(j + 1
2
)2 + (c+ b)2)3/2

+
CD
2

∑
j

1

(16j2a2 + 4b2)3/2
,

where En is the ground state energy of n chains and b and c are the distance of
the particles along y.

By minimizing the energy with respect to the parameters, b and c, we ob-
tain the minimum energy of the respective con�gurations. Fig. 5.5 shows the
derivative of the energy of the minimum energy. A discontinuity of the derivative
indicates a �rst-order transition. As for ions [PHP10], the transition between
2, 4, and 3 chains are all of �rst order.

5.4 Low energy description of the transition

In this section, we will derive a low-energy model that describes the linear to
zigzag transition. To accomplish this, we perform a systematic expansion of the
interaction energy about the con�guration in which the ions form a single ring.
To facilitate the expansion we use the center-of-mass and relative coordinates
Rjl = (rj + rl)/2, ρjl = rj − rl and φjl = φj − φl, and cast U(rj, φj, rl, φl) into
the form

U (Rjl, ρjl, φjl) =
CD

[ρ2
jl cos2(φjl/2) + 4R2

jl sin
2(φjl/2)]

α
2

. (5.14)
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Figure 5.5 � The derivative of the minimum energy dE
dωt

con�guration versus the
trap frequency. The blue curve indicates the 2 chain con�guration, the yellow and
green the 4 chain, and the red one the 3 chain con�guration.

We then perform a systematic expansion of the interaction energy about the
con�guration in which the ions form a single ring, with the equilibrium positions
rj = R, φj = 2πj/N , see section 5.2. Setting rj = R + aΨj and φj = 2πj/N +
aΘj/R, the expansion reads

Vint =
1

2

N∑
j=1

N∑
l 6=j

∑
0≤n1+n2+n3≤6

1

n1!n2!n3!

an1+n2+n3

2n1Rn3

∂nU
(
R, 0, φ

(0)
j − φ

(0)
l

)
∂Rn1∂ρn2∂φn3

× (Ψj + Ψl)
n1(Ψj −Ψl)

n2(Θj −Θl)
n3 , (5.15)

where n1, n2, n3 are positive integers. In these derivatives all even-order deriva-
tives in ρ vanish because of the symmetry of the single-ring con�guration.

Next we write the deviations from the equilibrium positions in the eigen-
modes of the single ring con�guration,

Ψj =
1√
N

∑
k

Ψ̃ke
i(2πkj/N), (5.16)

Θj =
1√
N

∑
k

Θ̃ke
i(2πkj/N). (5.17)

These eigenmodes are the ones discussed in section 5.2, written in dimensionless
units. We substitute eq. (5.16) and eq. (5.17) into equation (5.15) to obtain
the Fourier transform of the expanded potential. For instance, the second order
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terms are

V
(2)
k = a2

∑
l 6=0

[∣∣∣Ψ̃k

∣∣∣2 1

4

∂2U(R, 0, 2πl/N)

∂R2
cos2 (kla/2)

+
∣∣∣Ψ̃k

∣∣∣2 ∂2U(R, 0, 2πl/N)

∂ρ2
sin2 (kla/2)

+
∣∣∣Θ̃k

∣∣∣2 1

R2

∂2U(R, 0, 2πl/N)

∂φ2
sin2 (kla/2)

+Θ̃kΨ̃−k
1

4R

∂2U(R, 0, 2πl/N)

∂φ∂R
sin (kla)

]
. (5.18)

The eigenmodes at the point where the single ring becomes mechanically un-
stable are shown in �gure 5.1. The low energy eigenmodes are short wave-
length ones in radial direction (Ψ) and long wavelength in the angular di-
rection (Θ). To get a low energy description, the eigenmodes are expaned
k/N = k0/N + δk/(2π) up to second order about k0 = N/2 for the ra-
dial modes, and about k0 = 0 for the angular ones. Speci�cally, we set
|Ψ̃k|2 cos2(πlk/N) ≈ |Ψ̃k|2(cos2(lπ/2)− 1

4
(−1)∆l∆2

l δk
2), where

∆l =

{
l, if l ≤ N/2

N − l, if l > N/2
(5.19)

accounts for the periodicity of the cosine, and similarly for the other terms in
eq. (5.18), yielding

V (2) =
∑
k

[
|Ψ̃k|2

∑
l 6=0

∂2U(R, 0, 2πl/N)

∂R2

1

4

(
cos2(lπ/2)− 1

4
(−1)∆l∆2

l δk
2

)
+ |Ψ̃k|2

∑
l 6=0

∂2U(R, 0, 2πl/N)

∂ρ2

(
sin2(lπ/2) +

1

4
(−1)∆l∆2

l δk
2

)

+|Θ̃k|2
∑
l 6=0

1

R2

∂2U(R, 0, 2πl/N)

∂φ2

1

4
∆2
l δk

2

]
. (5.20)

Next, we go over to a continuum description, setting Θj → Θ(x) and
(−1)jΨj → Ψ(x), where the staggered �eld Ψ(x) is now the position-depended
order parameter for the zigzag chain. The continuous �elds are related to the
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discrete Fourier components through the inverse transform

Ψk =
1√
N

∫
dxei2πδk·xΨ(x), (5.21)

Θk =
1√
N

∫
dxei2πδk·xΘ(x), (5.22)

where x is a dimensionless quantity that runs along the ring from dipole to
dipole between 0 and N − 1. The sum over k can be replaced by integrals for
a large number of particles, setting

∑
k =

∫
d(δk). We do the above procedure

for all terms in the Taylor expansion (5.15), yielding the �nal expression in the
low-energy limit for the complete potential energy, V0 = V eq + V0, where V eq is
the equilibrium energy of the single ring and

V0 =
CD
aα

∫
dx
[
h2

1(∂xΘ)2+ h2
2(∂xΨ)2+ ∆Ψ2+ e(∂xΘ)Ψ2 + fΨ4

+r(∂xΨ)2Ψ2 + `(∂xΘ)2Ψ2 + tΨ6 + p(∂xΘ)3 + qΨ4∂xΘ
]
, (5.23)

where the expansion coe�cients are given by

h2
1 =

1

4

∑
l 6=0

l2
a2

R2

∂2Ũ(l)

∂φ2
(5.24)

h2
2 =− 1

4

∑
l 6=0

(−1)l(la)2

(
∂2Ũ(l)

∂ρ2
− 1

4

∂2Ũ(l)

∂R2

)
(5.25)

∆ =(ω2
t − ω

(c)2
t )

maα+2

CD
(5.26)

e =
∑
l 6=0

l2
a3

R

(
1

4
cos2

(
lπ

2

)
∂3Ũ(l)

∂R2∂φ
− sin2

(
lπ

2

)
∂3Ũ(l)

∂ρ2∂φ

)
(5.27)

f =
1

3

∑
l 6=0

a4

(
∂4Ũ(l)

∂ρ4
sin4

(
lπ

2

)
+

1

16

∂4Ũ(l)

∂R4
cos4

(
lπ

2

))
(5.28)

` =
∑
l 6=0

l2
a4

R2

(
1

8
cos2

(
lπ

2

)
∂4Ũ(l)

∂R2∂φ2
− 1

2
sin2

(
lπ

2

)
∂4Ũ(l)

∂ρ2∂φ2

)
(5.29)

r =
∑
l 6=0

l2a4

(
1

2
sin4

(
lπ

2

)
∂4Ũ(l)

∂ρ4
− 1

32
cos4

(
lπ

2

)
∂4Ũ(l)

∂R4
+

1

8

∂4Ũ(l)

∂R2∂ρ2

)
(5.30)

t =
∑
l 6=0

a6

(
− 2

45
sin6

(
lπ

2

)
∂6Ũ(l)

∂ρ6
+

1

1440
cos6

(
lπ

2

)
∂6Ũ(l)

∂R6

)
(5.31)
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p =
1

12

∑
l 6=0

l3
a3

R3

∂3Ũ(l)

∂φ3
(5.32)

q =
∑
l 6=0

l
a5

R

(
−1

3
sin4

(
πl

2

)
∂5Ũ(l)

∂ρ4∂φ
− 1

48
cos4

(
πl

2

)
∂5Ũ(l)

∂R4∂φ

)
, (5.33)

and we introduced Ũ = U/(CD/(a
α)). All the dimensionless parameters above,

depend only on the interaction, except ∆ which contains the trap frequency. If
∆ > 0 the single ring is mechanically stable, if ∆ < 0 it is not.

5.4.1 First-order transition

In this section, we will now look for uniform solutions for the �elds Ψ and
Θ′ = ∂xΘ minimizing the long-wavelength potential energy (5.23) for di�erent
values of ∆, and thus of ωt. This allows us to �nd an analytical solution, with
which we can verify whether there exists a parameter regime where the linear
and the zigzag con�gurations are both local minima of the potential energy. The
solutions are extrema of the potential, satisfying ∂V0/∂Θ′ = 0 and ∂V0/∂Ψ = 0
with positive-de�nite Hessian matrix. We determine an e�ective potential for
the transverse-displacement �eld Ψ by eliminating the solution for Θ′, which in
the small-Ψ limit reads

Θ′ = − 1

2h2
1

Ψ2

[
e+

(
q − el

h2
1

+
3e2p

4h4
1

)
Ψ2

]
. (5.34)

Note that there is a second solution for Θ′, which is �nite at small Ψ, and thus
inconsistent with our initial assumptions. Substitution of Eq. (5.34) in the
expression (5.23) leads to the e�ective potential density

Veff ∝ ∆Ψ2 + ueffΨ4/4 + λΨ6 , (5.35)

where ueff = (4f − e2/h2
1) and λ =

(
le2

4h41
− e3p

8h61
− eq

2h21
+ t
)
. Using the explicit

form of the coe�cients for the case of dipolar interactions we obtain that ueff < 0
and λ > 0. The e�ective model thus describes a �rst-order phase transition at
∆ = 0. It is interesting to point out that the sign of the quartic term is negative
due to the coupling with the axial vibrations. Figure 5.6 shows the energy of
the local minima and the corresponding displacement �eld Ψ obtained from the
low-energy e�ective model as a function of the control parameter ∆.

This solution predicts a sudden jump into two stable local minima near
the dynamical instability of the single ring, which is characteristic of a �rst-
order transition. Note that this solution is restricted to uniform transverse
�elds. Numerically, we �nd that the inhomogeneous solution is at lower energy,
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Figure 5.6 � (a) Local minima of the energy in Eq. (5.23) for homogeneous solutions
(Ψ′ = 0) and (b) corresponding transverse-displacement �eld (in units of distance a
along the chain) as a function of ∆ (dimensionless) and in the thermodynamic limit.
The region of coexistence of phases is in the interval ∆ ∈ [0, 0.0009], corresponding to

ω
(c)
t ≤ ωt ≤ 1.000075 ω

(c)
t .

corresponding to the coexistence of the zigzag and linear con�gurations. Quite
remarkably, the parameter region of coexistence of phases is very narrow and
close to the frequency ω(c)

t . Therefore, this transition is of 'weakly �rst-order'
or of nearly second order [LP69, Imr74].

5.5 Finite-size system

We now address the predictions of the low-energy model for the displacement
�elds Θ and Ψ in a ring of �nite size. An analytical solution can be obtained
if we keep just the leading order in the transverse-axial coupling, after setting
r, `, t, p, q = 0 in Eq. (5.23). This corresponds to a truncation of the e�ective
potential to fourth order. This approach is clearly not capable to describe
the nature of the phase in the thermodynamic limit, since it misses the sixth-
order terms which stabilize the uniform solution. Nevertheless, in the �nite-size
ring, the solution is inhomogeneous, stabilized by the presence of the gradient
terms in (5.23) and can be employed to account for the observed inhomogeneous
con�gurations close to the transition point.

Using the variational principle we determine the equations for Ψ(x) and
Θ(x) which minimize Eq.(5.23),

d

dx

(
2h2

1(Θ′) + eΨ2
)

=0 , (5.36)

2h2
2Ψ′′ − 2∆Ψ− 2eΘ′Ψ− 4fΨ3 =0 . (5.37)

To �nd a solution to the Euler-Lagrange equations, we start by integrating
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Eq. (5.36), obtaining

Θ′ =
1

2
B − 1

2

e

h2
1

Ψ2, (5.38)

where B is an integration constant. Substituting Eq. (5.38) into Eq. (5.37) gives

−2h2
2Ψ′′ + 2∆eff Ψ + ueff Ψ3 = 0, (5.39)

where ∆eff = ∆ + eB/2 and ueff = 4f − e2/h2
1 are the renormalized constants

entering the resulting e�ective potential-energy functional

Veff =
CD
aα

∫
dx
[
h2

2(Ψ′)2 + ∆eff Ψ2 +
ueff

4
Ψ4
]
.

Note that in the �nite ring the boundary conditions e�ects yield a renormal-
ization of the constant ∆. This explains why the region of phase coexistence
extends to negative values of ∆ for �nite systems (see Fig. 5.3). Multiplying
Eq. (5.39) by Ψ′ and a subsequent integration leads to

(Ψ′)2 =
1

h2
2

∆eff Ψ2 +
1

4h2
2

ueff Ψ4 +
1

4
A, (5.40)

where A is another integration constant. As this equation only depends on Ψ2,
we perform the substitution y = Ψ2 and obtain

(y′)2 =
4

h2
2

∆eff y
2 +

1

h2
2

ueff y
3 + Ay. (5.41)

This equation can be solved by separating the variables [CLR00, KCU08]. We
de�ne the zeros of the right hand side of Eq.(5.41) as y1 < y2 < y3 and set
g = −ueff/4h

2
2. Eq. (5.41) can be integrated as∫ x

0

dx̃ =

∫ y

y3

dỹ√
−g(ỹ − y1)(ỹ − y2)(ỹ − y3)

. (5.42)

Finally we perform the substitution t2 = ỹ−y2
y3−y2 and with

m =
y3 − y2

y3 − y1

= 1−m′, (5.43)

we arrive at ∫ x

0

dx̃ =
2√

g(y3 − y1)

∫ Y

1

dt√
(1− t2)(mt2 +m′)

, (5.44)
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where Y =
√

(y − y2)/(y3 − y2). This equation can be solved as

y(x) = Ψ2(x) = y3 cn2

(√
g(y3 − y1)

2
x|m

)
, (5.45)

where cn(x|m) is a Jacobi elliptic function. The soliton discussed here is given
by the case y2 = 0. As our system is periodic, we will shift x by N/2, to center it
between 0 and N . Substituting the eq. (5.45) into (5.38) gives then the solution
for the angular displacements

Θ′(x) =
1

2
B − 1

2

e

h2
1

Ψ2(x). (5.46)

The remaining constants y1 and y3 depend on the constants in the potential
energy density in Eq. (5.23) and the integration constants A and B, which are
determined by the boundary conditions,

y(0) =y(N), (5.47)
Θ(0) =Θ(N). (5.48)

Combining both boundary conditions, we �nd

2K(m)

N
=

√
g(y3 − y1)

2
, (5.49)

B =16
e

gh2
1

1

N2
K(m) (E(m) + (m− 1)K(m)) , (5.50)

where K(m) and E(m) are the complete elliptic integrals of the �rst and second
kind, respectively and by solving eqs. (5.49) and (5.50), the two integration con-
stants can be determined. By substituting eq. (5.45) into the long wavelength
potential energy we �nally determine the energy of the soliton solution.

Figure 5.7 displays the behaviour predicted by Eqs. (5.45-5.46) along the
chain and the corresponding numerical results, showing a very good agree-
ment within the model's regime of validity. The energy of the inhomogeneous
con�gurations is obtained by substituting the corresponding solutions into the
potential-energy density. It is found to be smaller than the energy of the zigzag
case, in full agreement with the numerical observations. Inspection of Fig. 5.3
shows that in the numerical calculations for a �nite ring the parameter region
of phase coexistence is larger than in the thermodynamic limit, extending to
negative values of ∆. This can be explained noticing that boundary e�ects yield
a renormalized control parameter ∆eff for the transition.



5.5. Finite-size system 45

Figure 5.7 � (a) Transverse squared displacement Ψ2(x) and (b) axial displacement
Θ(x) (in units of distance a along the chain) as a function of distance x along the chain
(in units of a) for the minimal energy con�gurations on a ring with N = 90 particles.
Numerical Monte-Carlo data (circles) are compared to the solutions of Eqs. (5.45)-
(5.46) (solid lines). From top to bottom, the blue, red and black curves correspond to

trap frequencies ωt = 0.9915ω
(c)
t , 0.99ω

(c)
t , 0.985ω

(c)
t , respectively.

5.5.1 In�uence of thermal �uctuations

Our predictions are strictly valid when the e�ect of �uctuations is negligi-
ble. To study the e�ect of thermal �uctuations on the various con�gurations
found at zero temperature, we have performed a �nite temperature Monte-
Carlo calculation, and determined the pair correlation function g2(r, φ) =
〈
∑

i,j 6=i δ(r − (ri − rj))δ(φ− (φi − φj))〉 for temperatures which are lower than
the di�erence between the inhomogeneus and zigzag energies. Figure 5.8 dis-
plays the two-particle correlation functions for di�erent values of ∆ < 0. The
inhomogeneous con�gurations are clearly visible as the correlation is smeared
along the radial direction in a semicircular shape, indicating varying radial dis-
placements (thus, inhomogeneous Ψ(x)). This result for the pair-correlation
function is considerably di�erent from both the one for the linear con�guration,
characterized by a periodic structure only along the tangential (axial) direction,
and the one for a uniform two-ring con�guration, where radially the only possi-
ble relative distances allowed are ±Ψ and 0. The clear distinction between the
various con�gurations is lost for temperatures higher than the energy barrier
between the various con�gurations. Taking the value of the dipolar moment
of LiCs molecules [DGR+08] and typical densities of the ongoing experiments
[WPA+12], we estimate that the energy gap between the inhomogeneous and
uniform con�gurations corresponds to a temperature of 0.2 nK. Although this
value is still quite challenging from an experimental point of view, it can rapidly
increase at increasing the density and the dipolar moment of the gases.

To estimate the parameter range for which the system is in a classical regime,
we can compare the length scale associated with the quantum �uctuations a,
with the length scale associated with the interactions r0, which can be estimated
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Figure 5.8 � Two-particle correlator g2(r, φ) of 90 dipoles evaluated numerically and
at T = 8× 10−4 CD/(a

3kB). The con�gurations correspond to a uniform single-ring

(top, ωt = 1.05ω
(c)
t ), an inhomogeneous structure (center, ωt = 0.98ω

(c)
t ) and uniform

two-ring con�guration (bottom, ωt = 0.7ω
(c)
t ).

to be r0 = mCD/~2 [AMDCB08]. If a � r0, the ground state energy of the
system is well approximated by the classical ground state energy. In this regime,
the quantum �uctuations have a similar e�ect as the temperature has in a
classical system [ACMB09]. For LiCs molecules, the characteristic length is
given by r0 = 63µm. Taking a Gaussian wave packet of the same size, the
kinetic energy of a molecule can be estimated to be E ≈ kB · 9µK, which is
larger than the energy gap of 0.2 nK. Thus, for the parameters of LiCs molecular
gases, it is expected that quantum �uctuations will smear the transition.

In conclusion, we have shown that the linear-zigzag instability for power-law
interactions α > 2 is a �rst-order phase transition, even though weak, whose
hallmark is the appearance of inhomogeneous soliton-like structures which min-
imize the energy of �nite systems. The instability is thus not described by a
φ4 model, since the coupling with the axial vibrations substantially modi�es
the properties of the transition. This is di�erent from Coulomb systems, where
the dispersion relation of the axial modes leads just to a renormalization of the
coe�cient of the φ4 model in the critical region, without changing its nature
[S+]. The dipolar system therefore realizes an example of Ising model coupled
to axial phonons [LP69, Imr74]. Whether the weakly �rst-order nature of the
transition survives the inclusion of quantum �uctuations is a question for fu-
ture work. In the quantum regime, the instability is expected to exhibit the
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existence of a critical point with enhance symmetry and non-universal critical
exponents, in analogy to the model discussed in Ref. [SRM+09]. While the
study of the quantum problem on the continuum remains open, in the next
chapter we present the study of the equivalent problem on a lattice.





Chapter 6

The quantum regime

In this chapter, we analyze the linear to zigzag transition of trapped polar-
ized dipolar particles in the quantum regime. A similar setup as in chapter 5
is used, where the con�nement of the dipoles is released along one direction,
while keeping a tight axial con�nement in the plain perpendicular to the dipole
orientations. For the quantum case, in addition to the external harmonic con-
�nement, we consider the case where an optical lattice is superimposed along
the chain. In the tight-binding limit, we obtain a multi-mode extended Bose-
Hubbard Hamiltonian to describe the system. The derivation is based on a low
energy model, similar to the one introduced in chapter 5, but in this case the
transverse motion is completely decoupled from the axial one, since the presence
of the optical lattice pins the dipoles and suppresses the coupling of longitudinal
and transverse excitations.

6.1 The structural transition for pinned particles

The dynamics we intend to analyse merges two models which have been recently
studied in the literature. One is the extended Bose Hubbard model along one
dimension [DTBA06, BSRG13]. The other is the transverse structural instabil-
ity due to the repulsive interatomic potential. The structural instability has a
classical and a quantum component: The �rst is important in order to choose
a convenient single-particle basis set for the purpose of deriving an appropriate
Bose-Hubbard model catching the relevant features of the system.

In this section we review the basic properties of the linear-zigzag instability,
assuming an array of dipoles which are con�ned on a plane (which we choose
to be the x − y plane) and are pinned at equidistant positions along x, such
that xj = ja with j = 1, . . . , N . The only motion the dipoles can perform is
thus along the y axis, where they are con�ned by an external harmonic trap.
Depending of the trap's frequency ωy and on the interparticle distance a, the
classical ground state of the dipoles is either a linear array or a zigzag structure.
In section 5.4 we derived a low energy model to describe the structural transition
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when the motion along x is allowed. Using the same method, we highlight the
main steps that were used to map the system to a φ4 model if the particles are
pinned.

The transition of the pinned particles was studied by Silvi et al. [SCMM14]
in the quantum regime. We will in the following review the formalism that was
introduced in [SCMM14] and later expand it to also include the motion along
x.

6.1.1 Low energy model

We assume N particles with massM and dipolar moment p, which are polarized
along the z-axis by an external electric �eld.1 Their interaction potential as a
function of the interparticle distance r reads

Ud(r) =
p2

r3
− 3(p · r)2

r5
, (6.1)

and because of the polarizing �eld it is repulsive on the x− y plane.
The particles are con�ned in the y- and z-direction by an anisotropic har-

monic trap, with potential

Vtrap(r) =
1

2
M(ω2

yy
2 + ω2

zz
2) . (6.2)

The motion along z is freezed out by assuming ωy � ωz and su�ciently low
energies. Therefore, the particles motion is constrained on the x−y plane where
the dipole-dipole interaction is repulsive and is governed by the Hamiltonian:

H =
N∑
j=1

[
p2
j,y

2M
+
Mω2

y

2
y2
j

]
+
CD
2

∑
i 6=j

[
a2(i− j)2 + (yi − yj)2

]−3/2
, (6.3)

where pj and yj are the transverse momentum and position of dipole j and
we assumed that the particles are pinned in the x direction corresponding to
y = z = 0. For convenience we adopt dimensionless units and rescale ỹj = yj/a,
H̃ = H/E0, p̃j = py,j/

√
ME0, and �nally ω̃ = ωy/

√
E0/Ma2, with E0 = CD/a

3

the energy scale, and rewrite Eq. (6.3) as

H̃=
1

2

N∑
j=1

(
p̃2
j + ω̃2ỹ2

j +
∑
i 6=j

1

[(i− j)2 + (ỹi − ỹj)2]3/2

)
, (6.4)

where now quantum �uctuations are determined by the e�ective Planck's con-
1For the sake of simplicity we consider electric dipoles, but the derivation holds also for

magnetic dipoles, once they are aligned by a magnetic �eld.
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stant g̃, g̃ =
√

~2a/(M CD), such that the commutator [ỹi, p̃j] = ig̃δi,j. In
position representation, hence, p̃j = −ig̃(∂/∂ỹj).

6.1.2 Low-energy theory

In the limit in which the dipoles are localized about the chain axis, the dipole-
dipole interaction can be expanded in a Taylor series. In second-order, the
analysis of the dispersion relation obtained for the quadratic form of Eq. (6.4)
delivers the mean-�eld critical point, at which one eigenfrequency vanishes. The
chain instability is driven by the zigzag mode ỹj = (−1)jy0, with y0 a constant
amplitude. Close to the instability, a low-energy expansion yields the e�ective
Hamiltonian

H̃ =
1

2

N∑
j=1

[
−g̃2 ∂

2

∂ỹ2
j

+
(
ω̃2 −M1

)
ỹ2
j+ +N1 (ỹj + ỹj+1)2 +M2 ỹ

4
j

]
, (6.5)

which describes short-ranged interactions. This property is the result of a map-
ping, which is strictly valid in the low energy limit. The dimensionless coe�-
cients read N1 = (9/4)ζ(3), and

Mq=1,2 =
(23+2q − 1) Γ(q + 3

2
)

q! 4 Γ(3
2
)

ζ(3 + 2q) ,

with ζ(`) Riemann's zeta function and Γ(z) the Gamma's function [AS64]. From
the form of Hamiltonian (6.5) one can directly read the mean-�eld critical fre-
quency, at which the chain becomes unstable. We denote it by ω̃c =

√
M1, such

that in physical units it reads

ωc =
√
M1p2/(Ma5) . (6.6)

For later convenience, we observe that we can recast Hamiltonian (6.5) in
the sum of a local and of an interaction component:

H̃ =
∑
j

(
H

(j)
loc +H

(j,j+1)
int

)
,

with

Hloc =
1

2

[
−g2 ∂

2

∂ỹ2
+
(
ω̃2 −M1

)
ỹ2 +M2 ỹ

4

]
. (6.7)

This decomposition turns out to be convenient as it allows one to map this
Hamiltonian to a φ4 Landau model, treat Hint as a perturbation, and it will
be important in order to de�ne the single-particle basis set for developing the
multi-mode Bose-Hubbard model.
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6.1.3 Motion along the chain

The above derivation assumes that transverse and axial motion are decoupled,
which is a valid assumption when the particles are pinned or in general when
the chain is incompressible. The latter condition can be realised with ions in-
teracting via the Coulomb repulsion: In this case transverse and axial modes
e�ectively decouple and the transverse instability is described by a φ4 model.
For dipoles, instead, the chain is incompressible if the dipoles are trapped by a
su�ciently deep optical lattice, forming a Mott-Insulator. In this case, there is
an energy gap between axial and transverse excitations that allows to decouple
their motion at su�ciently low energies. When instead the chain is compress-
ible, for instance in the super�uid phase, we expect that this coupling becomes
relevant, changing the nature of the transition. In the next section we will sys-
tematically develop a Bose-Hubbard model for the dynamics of ultracold dipolar
bosons in a tube and analyse the interplay between dipolar repulsion, quantum
�uctuations, and transverse con�nement.

6.2 Derivation of the multi-mode Bose-Hubbard

model

We now assume the same geometry as in the previous section, where now the
dipolar molecules are ultracold, they obey Bose-Einstein statistics, and interact
via the dipolar interaction and s-wave collision. They are con�ned by an optical
lattice along the x direction, where a now is the lattice constant, and we account
for their quantum �uctuations in all three directions of space. To establish a
clear connection to the linear to zigzag transition of pinned particles, we will
later split the dipolar interaction into the part of the pinned linear to zigzag
transition, and the part that contains all remaining terms, such that the dipolar
interaction energy is Uint = Uincomp + Urest, with

Uincomp =
CD
2

∑
[j 6=l]

[
1

((j − l)2a2 + (yj − yl)2)3/2

]
,

Urest =
CD
2

∑
j 6=l

[
1

|rj − rl|3
− 3(zj − zl)2

|rj − rl|5

]
(1− δ(xj − ja)δ(xl − la)δ(zj)δ(zl)) .

For now, the Hamiltonian H governing their quantum dynamics is reported
in second quantization, with Ψ(r) the molecular �eld operator annihilating a
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boson at position r such that [Ψ(r),Ψ(r′)†] = δ(3)(r − r′):

H =

∫
d3rΨ†(r)

[
− ~2

2M
∇2 + VL cos2(πx/a) + Vtrap(r)

]
Ψ(r)

+
1

2

∫
d3r

∫
d3r′Ψ†(r)Ψ†(r′)U(r − r′)Ψ(r′)Ψ(r) , (6.8)

where VL is the depth of the optical lattice and U(r) = Ud(r) + Ug(r) is the
sum of the dipolar and of the contact interaction, where Ug(r) = gδ(r) and g a
function of the s-wave scattering length.

6.2.1 Complete set of �eld operators

In the following we assume that the molecules are tightly bound at the minima of
the optical lattice and we perform the single-band approximation. In this limit
we denote by wj(x) the real-valued Wannier function for the one-dimensional
single-particle lattice Hamiltonian along x. The single-particle eigenstate in
the y and z directions are the eigenstates of the corresponding single particle
potentials with quantum numbers m,n and eigenfunction φm(y) and θn(z). In
particular, φm(y) are the eigenstates of the local Hamiltonian (6.7), rescaled by
E0, while θn(z) are the eigenstates of the harmonic oscillator in the z direction.
Using the eigenbasis {|j,m, n〉} we decompose the �eld operator as

Ψ(r) =
∑
j,m,n

wj(x)φm(y)θn(z)ajmn, (6.9)

where ajmn is the bosonic operator which annihilates a particle in the state
|j,m, n〉.

We further assume that ωz is chosen to be su�ciently large that we can
assume a quasi two-dimensional geometry, where only the lowest eigenstate
θ0(z) of the z-oscillator is occupied. Thus we restrict the basis to the states

Ψ(r) =
∑
j,m

wj(x)φm(y)θ0(z)ajm , (6.10)

where ajm ≡ ajm0.

6.2.2 Multi-mode Bose-Hubbard model

Substituting Eq. (6.10) in Hamiltonian (6.8) and keeping only nearest neighbor
interactions, we then obtain that the Hamiltonian can be decomposed as the
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sum of the motion along x, the motion along y, and their interaction,

HBH = Hx +Hy +HI . (6.11)

In detail, Hx =
∑

mH
x
m with

Hx
m = −Jx

∑
j

(
a†jmaj+1,m + H.c.

)
+
∑
j

εnjm

+
Ux
m

2

∑
j

nj,m(nj,m − 1) + V x
m

∑
j

nj,mnj+1,m

+
P x
m

2

∑
j

(
a†jma

†
jmaj+1,maj+1,m + H.c.

)
−T xm

∑
j

a†jm(njm + nj+1,m)aj+1,m (6.12)

and nj,m = a†jmajm. The �rst three terms on the right-hand side are the typi-
cal terms of the Bose-Hubbard model, with ε the single-particle energy in the
lattice. This time, however, the coe�cients depend on the excitation m in the
transverse direction and the on-site interaction term contains the contribution
of the dipole-dipole interaction. All other terms are solely due to dipole-dipole
interaction. For m = 0, this Hamiltonian is the same as in Ref. [SDH+12]. Dis-
carding the pair hopping term, proportional to P x

m, and the density-dependent
tunnelling, proportional to T xm, the Hamiltonian reduces to the extended Bose-
Hubbard model studied in Refs. [DTBA06], [BSRG13], [BRSG14].

The Hamiltonian governing the motion along y, coupling di�erent excita-
tions m keeping j �xed, takes the form Hy =

∑
j H

y
j

Hy
j =

∑
m

E0εmnj,m −
∑
m,n

Jym,na
†
j,maj,n +

∑
l,m,n,q

′
Uy
l,m,p,qa

†
jla
†
jmaj,naj,q

+
∑
l,m,n,q

′
P y
l,m,n,qa

†
jla
†
jmaj,naj,q , (6.13)

where
∑′ indicates that at least one of the indices l,m, p, q is di�erent from the

others and εm is the eigenenergy of state φm(y) for Hamiltonian Hloc. Note that
the coe�cients are independent of the site j in the lattice being the Hamiltonian
invariant per discrete translation.

Finally, HI describes the interaction between excitations along the x and
the y direction, it is solely due to the dipolar interaction and can be cast in the
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sum HI =
∑

j

∑
l1,l2,l3 6=j

∑′
mnqr hj:l1l2l3:mnqr with

hj:l1l2l3:mnqr = Vl1l2l3:mnqra
†
jma

†
l1,n
al2,qal3,r (6.14)

6.2.3 The Bose-Hubbard parameters

The purpose of this and the following sections is to determine the ground state
of this multi-mode extended Bose-Hubbard model as a function of the relevant
physical parameters, namely: (i) the size of quantum �uctuations Jx, which
are controlled by the depth of the optical lattice VL, (ii) the on-site interaction
coe�cients Ux

m and Uy
l,m,p,q, which are tuned by the s-wave scattering length,

the lattice height VL and the dipole moment; (iii) the transverse frequency ωy
which determines the form of the transverse potential and thus a�ects the form
of these coe�cients; (iv) the dipole-dipole interaction, which can be tuned by
changing the interparticle distance a; (v) the size of the ground state along z,
which a�ects the form of the dipolar interaction. Below we discuss in detail the
form of the Bose-Hubbard parameters.

The tunneling term Jx, Jy speci�cally read

Jx =

∫
dxwj(x)

(
~2

2M

∂2

∂x2
− VL sin2(kx)

)
wj+1(x) , (6.15)

Jymn =− E0

∫
dy φm(y)N1y

2φn(x) , (6.16)

while the on-site interaction coe�cients take the form

Ux
m =

∫
d3r1

∫
d3r2U(r1 − r2)wj(x1)2φ2

m(y1)θ2
0(z1)wj(x2)2φ2

m(y2)θ2
0(z2) ,

(6.17)

Uy
l,m,p,q =

∫
d3r1

∫
d3r2U(r1 − r2)w2

j (x1)θ2
0(z1)w2

j (x2)θ2
0(z2)φl(y1)φm(y2)φn(y1)φq(y2) ,

(6.18)

where
U(r1 − r2) = Ug(r1 − r2) + Ud(r1 − r2)

includes the dipolar interaction and the interaction due to s-wave scattering.
Finally, the terms due to the dipole dipole interaction are given by the

following integrals

V x
m =

∫
d3r1

∫
d3r2 U

′
d(r1 − r2)wj(x1)2wj+1(x2)2|φm(y1)φm(y2)|2|θ0(z1)θ0(z2)|2 ,

(6.19)
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P x
m =

∫
d3r1

∫
d3r2 U

′
d(r1 − r2)wj(x1)wj+1(x1)wj(x2)wj+1(x2)|φm(y1)φm(y2)|2|θ0(z1)θ0(z2)|2 ,

(6.20)

T xm = −
∫
d3r1

∫
d3r2 U

′
d(r1 − r2)wj(x1)2wj(x2)wj+1(x2)|φm(y1)φm(y2)|2|θ0(z1)θ0(z2)|2 ,

(6.21)

P y
l,m,n,q =

∫
d3r1

∫
d3r2 U

′
d(r1 − r2)wj(x1)2wj(x2)2φ∗l (y1)φ∗m(y2)φn(y2)φq(y1)|θ0(z1)θ0(z2)|2 ,

(6.22)

Vl1l2l3:mnqr =

∫
d3r1

∫
d3r2 U

′
d(r1 − r2)wj(x1)wl1(x2)wl2(x2)wl3(x1)

× φ∗m(y1)φ∗n(y2)φq(y1)φr(y2)|θ0(z1)θ0(z2)|2

+ δj,l2δl1,l3 E0N1

∫
dy1φm(y1)y1φq(y1)

∫
dy2φn(y2)y2φr(y2) . (6.23)

Here U ′d(r) corresponds to the term

U ′d(r) = Ud(r)(1− δ(x− a)δ(z)) . (6.24)

The numerical calculation of the integrals is performed by �rst integrating out
the z variables in Fourier space, as we show in Appendix A.

These integrals show explicitly the dependence on the con�nement in the z
direction, which enters through the wavepacket

θ0(z) =
1√√
πσz

exp

(
− z2

2σ2
z

)
, (6.25)

where σz =
√
~/(Mωz). Its e�ect is important: In fact, �uctuations along z are

a�ected by the attractive component of the dipole-dipole interaction. As they
increase, they can modify substantially the behaviour of some coe�cients. One
example is provided in Fig. 6.1, where it becomes visible that increasing σz can
change the on-site interaction from repulsive to attractive.

6.3 Observables and Phases

The multi-mode Bose-Hubbard model we have derived contains several com-
ponents, some of them correspond to a limit that has been discussed in the
literature. We �rst focus on the one-dimensional model, which we obtain for
ωy well above the critical value, such that there is an energy gap between the
lowest and the �rst excitation of the transverse harmonic oscillator. In this
case the model is e�ectively one-dimensional, and the phase diagram is de-
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Figure 6.1 � The on site interaction coe�cients Ux0 (in units of |Jx|) and as a

function of ωy/ω
(c)
y for σz = 0.3375a (solid lines) and σz = 0.18a (dashed lines) for

an optical lattice depth of VL = 10ER for di�erent trap frequencies ωy. Blue shows
Uxm for m = 0, red for m = 1 and yellow for m = 2.
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scribed by Hamiltonian of Eq. (6.12) for m = 0 derived in Ref. [SDH+12]. For
vanishing dipolar interactions, this Hamiltonian reduces to the Bose-Hubbard
Hamiltonian that was introduced in chapter 2.2 and predicts the existence of
Mott-insulating (MI) or super�uid (SF) phases, depending on the ratio between
hopping and on-site interaction energy, Jx/Ux. The super�uid is characterized
by long-range order in the o� diagonal elements

〈
a†jal

〉
and a non-zero super-

�uid density. The quantities which are used in order to di�erentiate between
these two phases in small systems are the local compressibility δnj and the
o�-diagonal correlations (one-particle correlation function) φ, namely:

∆nj =〈δnj〉2 ,

φ =
∑
j

〈a†j(aj+1 + aj−1)〉 ,

where
δnj = nj − 〈nj〉 (6.26)

and the expectation value is taken over the ground state of the Hamiltonian
and we use periodic boundary conditions. Note that the phase is incompressible
when δnj vanishes at all sites j. While the correlation function φ is not exactly
zero in the Mott insulting phase of a large system, it displays a sharp decrease
from the value found in the super�uid and is an e�ective measure for exact
diagonalization. For our multi-mode model and a numerical procedure based
on exact diagonalization, we adopt a generalization of these quantities, such
that

∆nj → ∆nj =
∑
m

〈n2
j,m〉 − 〈nj,m〉2, (6.27)

φ→ φ =
∑
j,m

〈a†j,m(aj+1,m + aj−1,m)〉. (6.28)

By taking the Hamiltonian (6.12) and including solely the term scaling with
the coe�cient V x

m (thus arbitrarily setting T xm = P x
m = 0) the Hamiltonian for

m = 0 takes the form of the extended Bose-Hubbard model studied by Batrouni
et al. [BSRG13] and Dalla Torre et al. [DTBA06], amonst others. The presence
of V x tends to induce a density modulation along x, that is signaled by a static
structure form factor Sx(q) with non vanishing component at q = π, where

Sx(q) = N−2

N∑
j,l=1

eı(j−l)q (〈njnl〉 − 〈nj〉〈nl〉) . (6.29)
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Figure 6.2 � Phase diagram of the single-band extended Bose-Hubbard Hamiltonian
taken from Batrouni et al. [BRSG14] for the �lling ρ = 〈ni〉 = 1. The on-site
interaction U and the nearest neighbor interaction V is given in units of Jx.

Provided Sx(π) 6= 0, when o�-diagonal correlations do not vanish, the phase is
super-solid (SS). When otherwise the phase is incompressible, then the phase
is a charge-density wave (CDW) [KPS05]. For our multi-mode model, we will
check for possible SS or CDW phases by monitoring the structure factor for the
total density nj =

∑
m nj,m.

Nevertheless, recent works also highlighted the existence of the Haldane-
insulator (HI) phase, which appears by varying V between the MI and the CDW
in systems with �lling ρ = 〈ni〉 = 1, which is incompressible and characterised
by S(π) = 0. At �lling 〈ni〉 = 1 more than two particles per site for large
V and U are very unlikely. Dalla Torre et al. [DTBA06] showed that, if the
Hilbert space is cut to a maximum of two occupations per site (nj = 0, 1, 2),
the Hamiltonian (6.12) with T xm = 0 = P x

m can be mapped onto a spin model,
Szj = δnj = nj − 〈nj〉, with S = 1, leading to

Hsp = J
∑
j

(
SjS

−
j+1 + h.c

)
+ V

∑
j

SzjS
z
j+1 +

U

2

∑
j

(Szj )2. (6.30)

The phase diagram of this e�ective spin-1 XXZ chain, has already been studied
in the literature [dNR89, KT92, Sch86], and is known to display a Haldane
insulator sandwiched between the Mott and the density wave phase. The full
phase diagram taken from Batrouni et al. [BRSG14] of the the single-band
extended Hamiltonian (6.12) for T xm = 0 = P x

m and �lling ρ = 〈ni〉 = 1 is shown
in Fig. 6.2. In accordance to the spin model, one de�nes the string order that
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φ Os ∆ni Op Sx(π) Φ
SF 6= 0 0 6= 0 0 0 0
SS 6= 0 0 6= 0 0 6= 0 0
MI 0 0 0 6= 0 0 0
CDW 0 6= 0 0 6= 0 6= 0 0
HI 0 6= 0 0 0 0 0
PSF 6= 0 0 6= 0 0 0 6= 0

Table 6.1 � Salient properties for identifying the phases of the BH model of Eq.
(6.12) by exact diagonalization. The corresponding observables are de�ned in the text.

characterizes the Haldane insulating phase as

Os(|j − l|) =
〈
δnj(−1)

∑l
k=j δnkδnl

〉
, (6.31)

and parity order that characterizes the Mott insulating phase and is given by

Op(|j − l|) =
〈

(−1)
∑l
k=j δnk

〉
. (6.32)

In the limit |j− l| → ∞, the parameters Op and Os become the order parameter
of the Mott insulator to Haldane insulator transition. The string order is zero
in the Mott insulator, and not zero in the Haldane phase, while the parity order
this is reversed. In practice, one takes the largest distance |j − l| = L/2 in
simulations with periodic boundaries to evaluate the string and parity order
parameters.

The phases summarized so far characterize the phase diagram of the ex-
tended Bose-Hubbard model. The Hamiltonian in Eq. (6.12) also includes pair
tunnelling terms, which can give rise to pair super�uidity (PSF) [SDH+12]. Its
appearance is signaled by a non-vanishing expectation value of operator

Φ =
∑
j,m

(
a†j,ma

†
j,maj+1,maj+1,m + a†j,ma

†
j,maj−1,maj−1,m

)
, (6.33)

giving pair-correlation functions. The salient known properties of the phases
discussed so far are summarized in Table 6.1.

The observable with which we characterize the structural linear zigzag tran-
sition is the structure form factor for at the (dimensionless) wave number qy = π,
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namely:

Sy(π) =
1

N2

∑
j 6=l

(−1)j−l〈yjyl〉 (6.34)

(6.35)

where
yj =

∑
m,n

Ymna
†
j,maj,n, (6.36)

and Ym,n =
∫
dyφ∗m(y)φn(y)y is a real matrix that depends on the parameters

of the system. In particular, Ym,n = 0, if both m and n labels eigenstates of the
same local Hamiltonian with the same parity. Therefore, the operator yj only
couples states with opposite parity. When Sy(π) 6= 0, the dipoles form a zigzag
transverse structure.

6.4 Phase diagrams

In the following we analyse the phase diagrams in some limits. We use the
parameters of 85Rb-133Cs bosonic molecules with electric dipole moment of 1.15
Debye, con�ned by an optical lattice along x at the interparticle distance a =
395 ·10−9 nm, corresponding to half wavelength of the standing-wave laser. The
phase diagrams are calculated by means of the exact diagonalization of a 4 to
12 sites Hamiltonian, depending on the number of states of the local basis we
consider. In this section, moreover, we will restrict to the �lling of one particle
per site j, unless we explicitly say otherwise.

6.4.1 The classical vs quantum linear-zigzag transition

We �rst start benchmarking how many states of the local basis we shall take
as a function of the values of the transverse frequency we explore. For this
purpose we take 4 sites along x with open boundary conditions and compare
the predictions of the full Hamiltonian, Eq. (6.11) for large lattice depths VL
(which we take VL = 100Er, with Er the recoil energy) and tight con�nement
along z (σz = 10−4a), with the ones of the classical Hamiltonian, obtained
by discarding quantum �uctuations in Eq. (6.5). We take the mass of RbCs
bosonic molecules, but modify arbitrarily the strength of the dipole moment p so
to explore regimes with very di�erent values of the e�ective Planck constant g,
thus sweeping from a more classical (g � 1) to a quantum dynamics (g > 0.001).
While this value of σz is extremely small, it is appropriate for theoretically
approaching the classical limit. We plot the squared root of Eq. (6.34) taken
ξ =

√
Sy(π), taking for the full Hamiltonian the three lowest eigenstates of the
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Figure 6.3 � Parameter ξ =
√
Sy(π) as a function of ωy (in units of ω

(c)
y ) for 4

particles and open boundary conditions. The purple curve shows the classical result,
the other curves display the result for the ground state of H3D taking σz = 0.01 a
and VL = 100Er and a local basis composed by the �rst three low energy states
{φ0(y), φ1(y), φ2(y)}. The color code is explained in the legenda, where p1 refers to
a calculation where we took the dipole moment of RbCs molecules, p10 (p100) means
that we increased p in the dipole-dipole interaction by a factor 10 (100). The third
local excited state results to have occupation nj,2 = 0.001 (red), 0.08 (green), 0.15
(blue).
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Figure 6.4 � (a) Single-particle correlation φ, (b) two-particle correlations Φ, and
(c) S(π)as a function of p for a lattice of 12 sites �lled with 6 particles with periodic
boundary conditions. The blue curve is for the ground state of Hamiltonian Hx

0 , the
black curve to the result found when we arbitrarily set T x = P x = 0.

transverse local Hamiltonian. Figure 6.3 shows the behaviour of ξ as a function
of ωy for the classical prediction and the full simulation for values of the dipole
moment which vary in the interval [1 : 100]p, with p the dipole moment of the
RbCs molecule. As the dipole moment is increased the occupation of higher
internal states increases, the same order of magnitude is found which by taking
also a chain of 6 sites. Thus truncating the local basis to the �rst three states
is justi�ed only deep in the quantum regime. In this regime, however, the
behaviour of the order parameter is a crossover, the typical features of the
Landau phase transitions are lost. A more accurate calculation with TEBD
and larger chain sizes will be done in section 6.5.

6.4.2 Benchmark: The quasi-one dimensional model

We then check whether our model reproduces the results of Ref. [SDH+12],
where the phase diagram of dipolar molecules in a two-dimensional optical lat-
tices was calculated in the regime where the Bose-Hubbard Hamiltonian can be
reduced to Hx

0 , namely, Eq. (6.12) with m = 0. There, it was found that the
density assisted tunneling terms T x0 and the pair tunneling terms P x

0 can lead
to the appearance of pair super�uid phases. We then calculate the ground state
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of the full Hamiltonian, (6.11), for m = 0 and using exact diagonalization for a
lattice with depth VL = 6Er, a = 100a0, and for σz = 0.2279 a. We �rst veri�ed
that the behaviour of the coe�cients of the Bose-Hubbard model as a function
of σz follows the behaviour reported in Ref. [SDH+12]. Below we show the
behaviour of some observables, such as the single particle correlation φ, Fig.
6.4(a), the two-particle correlations Φ, Fig. 6.4(b), and the structure factor
Sx(π), Fig. 6.4(c), as a function of p for 12 sites at half-�lling with periodic
boundary conditions. For each value of p we take the trap frequency ωy such
that the lowest eigenfunction of Hloc has the same width as the Wannier func-
tion,

∫
dx x2w2(x) =

∫
dy y2φ2

0(y). Note that the model is valid when ωy > ω
(c)
y ,

otherwise one shall take further eigenfunctions φm(y). For the parameters we
choose we veri�ed that this is ful�lled for a dipole moment of less than 3 Debye.
Our calculations reproduce the results of Ref. [SDH+12]. In order to highlight
the role of pair and density dependent tunneling, in all �gures we also give the
value obtained by setting T x = P x = 0. We see that these terms are essential
for the appearance of two-particle correlations, signaling pair super�uidity. This
occurs at su�ciently large value of p, which in turn scales the corresponding T x

and P x coe�cients. Our calculations reproduce the results of Ref. [SDH+12].
While the results in [SDH+12] are for small �llings, we are mainly interested

in the ground state for the �lling 〈nj〉 = 1. For this reason, we explore the
phase diagram for this �lling for various values of the s-wave scattering length
and dipole moments. Figs. 6.5a-6.5c show the single particle correlation φ, the
two particle correlation Φ and the structure factor Sx(π) calculated by exact
diagonalization for 10 particles using a = 50 a0, ωy = 1.45ω

(c)
y and σz = 0.25 a.

For small dipole moments, the interaction, the neighbour interaction coe�cient
V x
m ≈ 0 and the ground state has non-zero one- and two-particle correlations.

We also veri�ed that the local compressibility κi is zero in this region, which
indicates a super�uid state. (This agrees with the prediction of the simple Bose-
Hubbard Hamiltonian [BS92].) For large dipole moments and large transverse
width σz, the on-site interaction coe�cients Ux

0 become negative. In these
regions, the system is unstable (marked in red) as it favours con�gurations where
all particles sit on one-site. Surrounding the unstable region is a checkerboard
or density-wave region. It is characterized by a non-zero structure factor, while
the single and two particle correlations φ, Φ vanish. Interestingly φ and Φ are
not zero just at the border to the density-wave phase, which might hint at a
small region of supersolidity.

Finally the ground state for a constant dipole moment of p = 1.15 Debye
is calculated for various values of the contact interaction g and widths ωz.
Figures 6.6a-6.6c show the three observables φ, Φ and S(π). A super�uid phase
appears for a large range of s-wave scattering lengths, but a small interval of
the transverse width σz. For slightly smaller values of σz the system is in a MI,
for slightly larger values in a DW. The unstable region where Ux

0 < 0 occurs for
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Figure 6.5 � The single particle correlations φ (a), the two particle correlations Φ
(b) and the structure factor S(π) (c) for λ = 20ER, a = 50a0 for varying σz and
dipole moment p in units of p0 = 1.15 Debye. The red area is the region where the
on-site interaction Ux0 is negative.
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Figure 6.6 � The single particle correlations φ (a), the two particle correlations Φ
(b) and the structure factor S(π) (c) for λ = 20ER, a = 50a0 for varying σz and
dipole moment p in units of p0 = 1.15 Debye. The red area is the region where the
on-site interaction Ux0 is negative.

large σz.
In the next few section we will use two numerical methods that allow the

study of larger systems. The �rst method is a �nite temperature path integral
Monte-Carlo (PIMC), that we use to analyze the single-band Hamiltonian and
recover the exotic Haldane insulator phase. We also show in Appendix B that
the PIMC is not able to analyze the full Hamiltonian, as there is the occurence
of a sign problem. For this reason, we resort to a second numerical method,
the TEBD algorithm that is based on the Matrix Product State formalism to
calculate the ground state of the system.

6.4.3 The results of the PIMC applied to the EBH

In the following, we will study the single band Hamiltonian (6.12) for T x =
P x = 0, with the world line path integral Monte Carlo algorithm described
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Figure 6.7 � The Fourier transform of the pseudo-current correlator Cj(ω) at
U/|Jx| = 40 for 32 sites for 32 particles (left) and 31 particles (right). The super�uid
density is proportional to the value extrapolated at ω → 0.

in Appendix B, where it is also explained why the full Hamiltonian cannot be
studied with this algorithm.

First, we study the case of zero dipolar moment. In this limit, we benchmark
the algorithm by checking that we recover the super�uid and Mott insulating
phase. We identify the Mott lobes by calculating the kinetic energy for various
numbers of particles at a �xed number of lattice sites. For commensurate �llings,
the kinetic energy is minimal, indicating a Mott insulator. Figure 6.8a shows
the kinetic energy for various �llings calculated with the PIMC.

Another feature of Mott insulators is the vanishing compressibility κ =
∂ρ/∂µ, where µ is the chemical potential. Figure 6.8b shows the density ρ as
a function of the chemical potential µ = E(N + 1)− E(N). The super�uid to
Mott transition is clearly visible by observing the density plateaus for varying
values of the chemical potential.

Figure 6.7 shows the Fourier transform of the pseudo-current correlation
function inside the Mott insulator and outside. As it is proportional to the
super�uid density, it is zero in the Mott insulator, and non-zero in the super�uid.

If the dipole moment is not zero, one expects a new Haldane phase to appear.
We check this by �xing the density to one particle per site ρ = 〈n〉 = 1 and
calculate the string, parity order and the structure factor as described in section
6.3. We move horizontally in the phase diagram of Fig. 6.9 starting from small
nearest neighbour interactions V/Jx at �xed onsite interactions U/Jx. We �nd
that the structure factor is zero and the string order parameter is zero, while the
parity order is not, signaling a Mott insulator. For increasing values of V/Jx,
the string order increases while the structure factor is still vanishing. This is
an indication of the Haldane phase. At further increasing V/Jx the structure
factor increases thus entering the density wave phase. We therefore recover
the results of Dalla Torre et al. [DTBA06] and Batrouni et al. [BSRG13].
For smaller U/Jx and V/Jx, the system was found to be in a super�uid phase
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(a) The kinetic energy versus the den-
sity at V = 0 and U/|Jx| = 40 at
β = 32. The kinetic energy is mini-
mal in the Mott insulator. The cusps
signal the MI to SF transition.

(b) Density versus the chemical poten-
tial. This was calculated at U/t = 40,
β = 32 for 32 sites. The plateaus in
the density as a function of the chem-
ical potential correspond to the incom-
pressible Mott phase.

Figure 6.8

[DTBA06, BSRG13], while for small U/Jx but large V/Jx the system is expected
to be in a mixed supersolid and super�uid phase [BRSG14].

However, the PIMC that we employed does not converge in the region where
the tunneling is large and the dipole moment is not zero, where one expects to
�nd the super�uid to Haldane insulator transition, or the region of phase separa-
tion that was seen in [BRSG14]. For this reason we resorted to other numerical
techniques, such as exact diagonalization or time evolving block decimation.

6.5 Time Evolving Block Decimation

In the previous section a Path integral Monte Carlo method was used to an-
alyze the extended Bose-Hubbard Hamiltonian. However, it was only possible
to analyze the phases when one set T x = P x = 0, as these terms lead to a sign
problem in the formulation of the algorithm. Therefore, we resort to another
way to numerically analyze the ground state, a Time Evolving Block Decima-
tion (TEBD) method [Vid04, Vid03], which does not have a sign problem (see
Appendix C).

6.5.1 Results for the single band Hamiltonian

First we apply the TEBD algorithm to the single band Hamiltonian (6.12)
for m = 0 for the same parameters as in section 6.4, where we saw that the
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Figure 6.9 � The string order, parity order and structure factor S(π) at U = 4 at
β = 32. The parity order for 64 and 32 particles is shown as red and green circles,
respectively. The string order parameter is shown in blue (64) and black (32) triangles,
the structure factor in magenta (32) and yellow (64) squares .
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Figure 6.10 � The single particle correlations for neighboring sites φ for the param-
eters in Fig. 6.4 for 40 sites (dashed line) and 12 sites (solid line).

pair tunneling terms P x
m and the density assisted tunneling terms T xm cannot

be neglected when discussing small systems. By using TEBD, we are able to
study larger systems and test whether these new phases are still found for a
larger number of particles. Figure 6.10 shows the single particle correlation
function φ for exactly the same parameters as in Fig. 6.4, but this time for
40 sites. The single particle correlations show qualitatively the same behavior
for small and large systems, but the single particle correlations are increased
for larger systems. Beside the nearest neighbour correlator φ, we also calculate
the long-range correlations for the o�-diagonal elements Φj,j+l = a†jaj+l and the
density-density correlations 〈njnj+l〉. Both are shown in Figs. 6.11-6.13 for
di�erent dipole moments.

For small dipole moments, we indeed have a super�uid phase, as the o�-
diagonal correlations span over many sites. At the same time the density-density
correlations show now apparent structure. A density-wave phase can be found
at intermediate dipole moments of 1 Debye, where there are no long-range o�-
diagonal correlations, but long-range density correlations. At even larger dipole
moments, one �nds a di�erent checkerboard phase, that is not a super�uid, but
is brought upon by the density assisted and pair tunneling terms. The bosons
occur in pairs, as can be seen in the density-density correlations.
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Figure 6.11 � The single particle correlations a†jal (left) and the density-density

correlations n†jnl (right) of a lattice of 40 sites for the dipole moment p = 0.1 Debye
and the same parameters as in Fig. 6.4.

Figure 6.12 � The single particle correlations a†jal (left) and the density-density

correlations n†jnl (right) of a lattice of 40 sites for the dipole moment p = 1 Debye
and the same parameters as in Fig. 6.4.
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Figure 6.13 � The single particle correlations a†jal (left) and the density-density

correlations n†jnl (right) of a lattice of 40 sites for the dipole moment p = 3 Debye
and the same parameters as in Fig. 6.4.

6.5.2 The zigzag transition

By using exact diagonalization, we already studied in section 6.4.1 the ground
state of a few particles deep in the tight-binding limit (VL = 20ER) for very
tight anisotropic con�nement. This is a similar regime as the one studied in Ref.
[SCMM14], where a completely incompressible chain was studied. In particular,
we found that the linear to zigzag transition was lost for realistic values of polar
molecules for deep optical lattices.

In the following, we present the ground state of multiple bands close to the
transition using TEBD for larger systems and shallower optical lattices where
we expect that the quantum �uctuations will have an in�uence on the transition.
The results presented here are, as in section 6.4, for the polar molecule 85Rb-
133Cs. The system is tightly con�ned in a plane with σz = 0.013 a and the
analysis of section 6.4 expects to �nd a Mott insulator for tight con�nements
ωy. We then study the calculate the ground state for various frequencies ωy
down to the regime, where a single dipolar chain is not classically stable.

Figure 6.14 shows the zigzag order parameter ξ for di�erent numbers calcu-
lated by TEBD for a shallow optical lattice of VL = 6ER. For 4 particles the
TEBD gives the same result as the exact diagonalization within numerical ac-
curacy. For larger numbers of particles, the ground state can only be calculated
using TEBD, as the memory and runtime requirement is too large for the exact
diagonalization. For particle numbers there is a clear increase in the structure
factor ξ that indicates zigzag order for decreasing trap frequency. Interestingly,
this increase starts at trap frequencies that are larger than the classical critical
trap frequency. For all values of the trap frequency ωy value of ξ increases with
increasing particle number, showing no clear transition between a linear and
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Figure 6.14 � The structure factor ξ indicating zigzag order for σz = 0.013 a at an
optical lattice depth of VL = 6ER for various numbers of particles.

a zigzag phase. This parameter range lies at the border of the validity of our
analysis with a basis of three internal states, as the average occupation in the
third orbital is here about 6%.

For slightly deeper optical lattice of VL = 15ER this behaviour changes
signi�cantly, here the occupation is less than 0.1%. Figure 6.15 shows the
order parameter ξ. In the linear phase, the structure factor ξ decreases with
increasing particle number, while it increases at small trap frequencies ωy with
the particle number. Furthermore, ξ shows a clear increase that appears for trap
frequencies that are smaller than the classical critical frequency. The curves of ξ
for di�erent particle numbers intersect at the same point around ωy = 0.5ω

(c)
y . A

more detailed study with larger particle numbers is necessary to reveal whether
a �nite size scaling similar to the one in [SCMM14] can be done in this regime.

6.6 Conclusion and Outlook

We have analyzed the ground state of dipolar bosons in a quasi-one dimensional
optical lattice near the regime where the classical linear to zigzag instability is
found. We have introduced a multi-mode extended Bose-Hubbard model that
is valid in the tight binding limit and is based on the low energy classical theory
of the structural instability. In the linear phase our model reduces to a single
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Figure 6.15 � The structure factor ξ indicating zigzag order for σz = 0.013 a at an
optical lattice depth of VL = 15ER for 4 particles (red points), 10 particles (green) 20
particles (blue points).

band Hamiltonian and, using exact diagonalization, we �nd the same phases
as the ones reported in [SDH+12]. When the trap frequency is large, deep in
the tight-binding limit and for experimentally achievable dipole moments our
analysis shows that it is su�cient to take only the three lowest bands into
account. For realistic values of polar molecules, we explored the phase diagram
of the single band Hamiltonian using exact diagonalization.

By setting the pair and density assisted tunneling terms to zero, a PIMC
algorithm was used to explore the ground states for a larger number of particles,
where we found the Haldane that was also seen in Refs. [DTBA06, BSRG13].
The PIMC has two shortcomings: a) for large tunneling and small on-site in-
teraction the convergence is too slow, and b) Due to a sign problem, the full
Hamiltonian cannot be studied with this algorithm.

For these reasons, a TEBD algorithm was used to solve the full Hamiltonian,
where the sign problem does not play a role. We studied the multiband model
in the regime of tight con�nement along z for various strength of the optical
lattice for commensurate �llings. For deep optical lattices the motion along
the x axis is practically decoupled, and there is no tunneling between di�erent
lattice sites. For realistic values of experiments the e�ective Planck constant g
is large, e�ectively destroying the linear to zigzag transition (see Fig. 6.3). On
the other hand, in weak optical lattices the zigzag correlation increases with
decreasing transverse con�nement signi�cantly, but there is no clear transition
visible. In this regime the tunneling between di�erent sites will lead to non-



6.6. Conclusion and Outlook 75

negligible population in the third bands and a more detailed analysis with more
internal states is necessary here.

However, for an intermediate optical lattice strength of VL = 15ER, the lin-
ear to zigzag transition is visible and appears at smaller values of the critical
frequency, expanding the linear phase. Further studies can focus on this inter-
mediate regime, where it appears that the the tunneling along x acts in a similar
way as the quantum �uctuations in incompressible ion chains [SCMM14], which
increase the unordered phase. By taking into account a larger local basis, future
works could be able to see whether the linear to zigzag transition also survives
for weak optical lattices.

As we have seen, the Bose-Hubbard parameters depend strongly on the
con�nement along z, and in this work the multi-band model was always studied
for parameters where the system is compressible in the linear chain. A natural
extension of this work is the exploration of the system for smaller σz near
one of the other phases of the single band model, such as super�uidity or the
Haldane insulator. According to a long-wavelength analysis [AMPC10] the pair
tunneling and density assisted tunneling terms are irrelevant for the criticality
of the Haldane insulator, and our full multi-mode model might also display a
Haldane phase.

The optical lattice in our model was used to make the dipolar chain incom-
pressible, and reduce the coupling between axial and transverse modes. In the
classical case, we saw that this coupling leads to a modi�cation of the critical be-
haviour. Future studies could extend our analysis to weak lattices and explore
whether the nearly second order character survives the inclusion of quantum
e�ects.





Chapter 7

Conclusions

In this thesis we theoretically discussed several situations in which the inter-
play of quantum �uctuations, interactions, and dimensionality is essential in
determining the state of ultracold bosonic atoms. We focused on quasi-one
dimensional systems, which can be realized by means of a tight atomic wave
guide, and considered the e�ect of a one-dimensional optical lattice along the
wave guide. In the �rst part we analyzed the out-of equilibrium dynamics of
hard-core bosons, forming initially a gapped insulating state, when the opti-
cal lattice is suddenly switched o�. We derived an exact solution valid in the
limit of in�nite interactions and in the thermodynamic limit we showed that
the system reaches a non-equilibrium steady-state characterized by the absence
of quasi-long-range order that is approached in time with a power law.

We then analyzed the quantum phases of ultracold dipolar bosons in the
same geometry, when the dipoles are aligned perpendicularly to the wave guide
and the transverse con�nement is relaxed. Classically, we showed that the struc-
tural transition from a linear array to a zigzag structure is a �rst-order phase
transition. The quantum mechanical state is analyzed in an optical lattice and
is described by a multi-mode Bose-Hubbard model, which we derive in detail
and which reduces in the one-dimensional limit to an extended Bose-Hubbard
model. We then analyzed the phase diagram by means of exact diagonaliza-
tion, and found signatures of a rich phase diagram where the onset of long-range
zigzag diagonal order can be observed. We then set the stage for a path-integral
and a TEBD based numerical simulations, which shall give a quantitative pre-
diction of the complex phase diagram. The numerical analysis based on these
methods is underway. Among the speci�c predictions on the phase diagram as
a function of the various physical parameters, we are speci�cally interested in
verifying whether an incompressible Mott-insulator state of dipolar bosons in
one dimension undergoes a structural instability to a zigzag structure described
by quantum Ising model in transverse �elds. This is expected on the basis of
studies performed on ion chains [MML07, SMF11, SDCC+13], where due to the
Coulomb interaction the chain is incompressible and the classical transition is
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of second order. The other question is then what is the nature of the transi-
tion if the bosons are in a super�uid state? More generally, how do quantum
�uctuations a�ect the crossover between one- and two-dimensional geometries?

Experimentally, ultracold dipolar gases with these geometries can be re-
alized with molecules and Rydberg atoms [MP14]. Analogous dynamics are
also expected in systems of ultracold atoms in driven optical resonators, where
multiple-photon scattering induces the formation of long-range order also in one
dimension [BGBE10]. The interplay between long-range and contact interac-
tion is here at the basis of a rich phase diagram, including charge density wave,
Mott insulator, super�uid and supersolid phases [LHD+16].

Our analysis sets also the basis for a systematic study of quenches across
the linear-zigzag phase transition. Of particular interest is to understand how
interaction-induced pair super�uidity - giving rise to non-trivial o�-diagonal
order- and the classical part of the dipolar interaction - giving rise to structural
defects - a�ect the onset of equilibrium.



Appendix A

The 2d e�ective potential

In this Appendix the e�ective dipole-dipole interaction in two dimensions is
calculated, which is needed for the numerical calculation of the Bose-Hubbard
coe�cients. In general one needs to determine integrals of the form

Vj,k,l,m =

∫
dxdy

∫
dx′dy′Aj,l(x, y)I(r − r′)Blm(x, y), (A.1)

where I is the e�ective dipole-dipole interaction and the z-direction has been
integrated out. This integral can be calculated using a Bloch expansion or a
convolution method [WC13]. We will choose the latter and write the integral
as

Vj,k,l,m =

∫
dxdyA(r)F−1

k→r [Fr→k [I(r)]Fr→k [B(r)]] , (A.2)

where F is the Fourier transform and we dropped the indices for convenience.
This allows one to calculate the integral by computing a 2d Fourier transform
and a 2d integration instead of integrating a four dimensional integral in real
space, which this saves computing time, and allows one to use a �ner grid of
discretization.

We start by integrating out the center of mass in

V2d(x, y) =

∫
dz1dz2 θ

2
0(z1)θ2

0(z2)Ud(r1 − r2), (A.3)

to arrive at

V2D(x, y) =

∫
dz

1√
2πσz

e−z
2/(2σ2)Ud(x, y, z). (A.4)
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Going into Fourier space gives

V2D(x, y) =

∫
dz

1

2π

∫
dk′z Ã(k′z)e

ik′zz
1

(2π)3

∫
d3k Ũ(k)eik·r (A.5)

=

∫
dkx dky e

i(kxx+kyy) 1

(2π)3

∫
dkz Ã(−kz)Ũ(kx, ky, kz) (A.6)

=
1

(2π)2

∫
dkx dky e

i(kxx+kyy)Ṽ2D(kx, ky), (A.7)

where

Ã(kz) = e−k
2
zσ

2
z/2, (A.8)

and

Ũ(k) =

∫
d3r e−ik·rUd(r) = CD

4π

3

(
3

k2
z

k2
x + k2

y + k2
z

− 1

)
. (A.9)

This integral can be calculated analytically, and the Fourier transform of
the 2d e�ective potential is

Ṽ2D(q =
√
k2
x + k2

y) =
1

2π

∫
dkz Ã(kz)Ũ(kx, ky, kz) (A.10)

=
CD2π

σz

[
2

3

√
2

π
− qσz erfcx(qσz/

√
2)

]
, (A.11)

where erfx(x) is the scaled complementary error function1. This expression is
identical to the one in Ref. [BD12], except for the constant term, which modi�es
the on-site interaction [DCR13]

In real space, the e�ective integral of the interaction potential is:

V2d(x, y) = p2

[
1√

8πσ5
z

e
ρ2

4σ2z

(
(ρ2 + 2σ2

z)K0

(
ρ2

4σ2
z

)
− ρ2K1

(
ρ2

4σ2
z

))
−
√

2π

3σz
δ(x, y)

]
.

1erfcx(x) = ex
2

erfc(x)



Appendix B

Path Integral Monte Carlo

In this appendix the method of Path-Integral Monte Carlo method (PIMC)
is described, which was introduced by Batrouni et al. [BS92], and also was
successfully used to study the Bose-Hubbard Hamiltonian with long-range
interactions[HWP+13]. We will then present an overview of the results that
we obtained using the PIMC, in particular the occurence of a Haldane insulat-
ing phase. Finally, we will discuss why the PIMC cannot be extended to treat
the problem of a multi-band extended Bose-Hubbard Hamiltonian. This will
bring us to resort to exact diagonalization in section 6.5.

In general, Monte-Carlo methods allow one to approximate integrals,

I =

∫ b

a

dx f(x)p(x),

where we have written the integral as a product of two functions f and p. One
can approximate this integral by the discrete sum

I ≈
L∑
j=1

f(xj)p(xj), (B.1)

where xj are uniformly chosen random points in [a, b]. With increasing number
of points L, the sum converges to the value of the integral as 1/

√
N .

If p(x) is positive and
∫ b
a
p(x) = 1, one can interpret the function p as

a probability. Instead of choosing uniformly distributed random values, we
will chose L points xp generated with the probability p(x). Then, the integral
approximation is simply

I ≈
L∑
p=1

f(xp). (B.2)

This makes the convergence towards the exact value of the integral faster, es-
pecially if the probability distribution p(x) is sharply peaked.
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A common strategy to generate points according to the probability p(x) is
the Metropolis-Hastings algorithm. From a random con�guration xi, new trial
con�gurations x′ are randomly chosen according to a distribution g(x′, x). The
trial state is accepted according to [HAS70]

A(xo, x
′) = min

(
p(x′)g(xo, x

′)

p(xo)g(x′, xo)

)
. (B.3)

If new con�guration is accepted, the system transitions to the new point, if
not it remains in the same state. States that are generated according to this
algorithm are distributed randomly with p(x).

In our case, we need to calculate the expectation values of operators O, that
in a canonical ensemble are given by

〈O〉 = Tr
(
O e−βH

)
/Z, (B.4)

where Z is the partition function and β the inverse temperature.

The trace can be written as a path integral

〈O〉 =

∫
DxO(x)e−βH∫
Dxe−βH

. (B.5)

If we set T x0 = 0 = P x
0 one can split the lattice Hamiltonian (6.12) into an even

and an odd part

H = Heven +Hodd, (B.6)

with Heven =
∑

j Hj,j+1, and Hodd = Hj+1,j+2, and

Hj,j+1 = Kj,j+1 +
1

2
(Pj + Pj+1) + Pj,j+1, (B.7)

where we further decomposed the Hamilton into parts that are diagonal in the
Fock number representation and those which are not,

Kj,j+1 =Jx(a†jaj+1 + aja
†
j+1), (B.8)

Pj =Unj(nj − 1), (B.9)
Pj,j+1 =V njnj+1. (B.10)

In the following, we de�ne τ = β/m and write the partition function as

Z = lim
m→∞

Zm, (B.11)
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Zm =
∑

Ψ1,...Ψ2m

〈Ψ1| e−τHeven |Ψ2〉 · . . . · 〈Ψ2m−1| e−τHeven |Ψ2m〉 〈Ψ2m| e−τHodd |Ψ1〉 ,

(B.12)

where |Ψ〉 is a complete set of occupation number states. Now the expectation
value of an operator that is diagonal in the basis Ψ can be written as

〈O〉 =
∑

Ψ1,...,Ψ2m

O(Ψ1)P (Ψ1, . . . ,Ψ2m), (B.13)

where

P (Ψ1, . . . ,Ψ2m) =

∏m−1
l=0 〈Ψ2l+1| eHeven |Ψ2l+2〉 〈Ψ2l+2| eHodd |Ψ2l+3〉∑

Ψ1,...Ψ2m

∏m−1
l=0 〈Ψ2l+1| eHeven |Ψ2l+2〉 〈Ψ2l+2| eHodd |Ψ2l+3〉

(B.14)

is the weight of the con�guration and Ψ1 = Ψ2m+1. If P (Ψ1, . . . ,Ψ2m) > 0 we
can interpret it as the probability of the con�guration.

The numerical algorithm will generate con�gurations with the probability
that is given by the weight of the con�guration. The expectation value of an
operator is then simply calculated by averaging over all generated con�gura-
tions.

Every term 〈Ψm| eβH |Ψm+1〉 consists of a product of independent two-site
problems. For the numerical algorithm, we �rst need to calculate all the matrix
elements of the two-site problems, where we used the Fock basis as the basis of
the Hilbert space. The matrix elements that have to be computed are

M = 〈njnj+1| exp(−τHj,j+1) |mjmj+1〉 . (B.15)

Here, (n) denotes the occupation numbers at the bottom of a squares, and (m)
the occupation numbers at the top of a squares. For small values of τ we can
use the Trotter decomposition to write the Matrix elements as

M = 〈nj, nj+1| e−
τ
2
P (1− τK)e−

τ
2
P |mj,mj+1〉 , (B.16)

where we divided the contribution of the potential energy into two equal parts,
one for the bottom and one for the top of the square.

To sample the phase space we start in a random con�guration and then
change it by local moves in a way that ensures that the probability of the gen-
eration of new con�gurations is given by eq. (B.14). In addition, we add global
updates, that insert and delete straight world lines to improve convergence.
If the simulation was done in a grand-canonical ensemble, these global moves
would be necessary, but in our case they are only optional.
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Figure B.1 � Example con�guration of two bosons in an optical lattice of eight sites.
The dashed line shows a possible local update.

The partition function is given by the product over all �squares�, which we
can imagine being ordered in a two dimensional lattice, see Fig. B.1. Because
we divided the Hamiltonian into a sum over even and odd contributions, at
times 2l only the pairs j = (1, 2), (3, 4), . . . interact and at times 2l+ 1 only the
pairs (N, 1), (2, 3), . . . interact. This means that in Fig. B.1 the particle number
in each shaded cube must be conserved, and the acceptance probability (B.3)
is easy to calculate as a few squares of the hole system change.

All quantities that are diagonal in the Fock basis are easy to measure using
this world line algorithm. For example the density is averaged over all slices

〈nj〉 =
1

2L

2L−1∑
l=0

n(j, l). (B.17)

Quantities that are not diagonal in the particle number representation are
more challenging to evaluate. The super�uid density is therefore usually calcu-
lated in the in the world line algorithm over the winding number W , which is
the number of world lines that are wound along the lattice. The mean square
of the winding number is related to the super�uid density by

ρs = N
〈W 2〉
2βtx

. (B.18)

But because the algorithm works in the canonical ensemble, the number of
particles is conserved and the winding number is constraint to W = 0, but it
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still can be computed via the pseudo-current,

j(l) =
1

2

N−1∑
j=0

[
n(j, l)− n(j + 1, l)n(j, l + 1) + n(j + 1, l + 1)

]
, (B.19)

that measures at a given time slices l the number of particles moving right
minus the number of particles moving left. In the simulation, one measures the
pseudo-current correlator

Cj(l) = 〈j(l)j(0)〉 . (B.20)

One can show that the Fourier transform of the pseudo-current correlator,
Cj(ω) =

∑
l e
ilωnCj(l), is related to the winding number, via [PC87]

〈
W 2
〉

= Cj(0)
2L

N2
. (B.21)

While the pseudo-current correlator is restricted to zero at ω = 0, one can
estimate its value via the extrapolation ω → 0.

The full extended Bose-Hubbard

The full single band Hamiltonian (6.12), cannot be studied with the PIMC
for realistic parameter ranges. If one decomposes the lattice Hamiltonian in
a similar way as before, one �nds two additional kinetic energy terms in the
decomposition (B.7):

KT =T x0
∑
j

(
a†j (nj + nj+1) aj+1 + h.c

)
, (B.22)

KP =P x
0

∑
j

(
a†ja
†
jaj+1aj+1 + h.c

)
. (B.23)

The matrix elements of the Trotter decomposition (B.16) give

M = 〈nj, nj+1| e−
τ
2
P (1− τ(K +KT +KP )e−

τ
2
P |mj,mj+1〉 . (B.24)

Here we can see that if T = P = 0, all the matrix elements are positive, as
tx < 0, which allows us to interpret the above decomposition as probability for
the Metropolis sampling. But as T > 0 for dipolar gases in optical lattices,
the matrix elements are not strictly positive, if we include pair tunneling and
density assisted tunneling. This means that we cannot interpret the matrix
element as the weight of a con�guration. Therefore, the PIMC can only be
used in regimes where T and P can be neglected.





Appendix C

Time Evolving Block Decimation

This appendix gives information about the TEBD [Vid04, Vid03] algorithm
that used in 6.5. The TEBD algorithm was provided by Ferdinand Tschirsich,
Pietro Silvi and Simone Montangero from the Institute for Complex Quantum
Systems at the University of Ulm.

For the algorithm to work, the Hilbert space must be written as a tensor
product of local Hilbert spaces of �nite dimension. The system Hamiltonian
must then be a sum of at most neighbor interactions between the local Hilbert
spaces with open boundary conditions. The full Hamiltonian of dipoles in opti-
cal lattices (6.8) has continuous quantum variables and is therefore not suitable
to be calculated using TEBD. However, the Bose-Hubbard Hamiltonian (6.11)
can be used, provided that the local Hilbert space is cut to a few particles per
lattice site, which is correct for su�ciently strong interactions.

It works by applying the imaginary time evolution operator U = exp(−dtH)
to a (random) initial product state for small time steps dt via Trotter decom-
position to the MPS representation of the quantum state.

In particular, we cut the local Hamiltonian such that:

• the number of orbitals is restricted m ≤ M , where M is the maximum
occupied band,

• the maximum number of particles per site is restricted, nj =
∑

m nj,m ≤
C, where nj,m is the particle number at site j in band m,

• the maximum number of particles per orbital is smaller than a given value,
nj,m ≤ D.

When multiple bands are simulated, we typically chose M = 3, C = 3 and
D = 2, which gives a total of 17 possible local states |Ψq〉 with q = 0, 1, . . . 16.
Via tensor product states of the single-site basis states |Ψq〉1⊗|Ψq〉2⊗· · ·⊗|Ψq〉L
the resulting many-body computational state is constructed. For the simulation
all operators in the Hamiltonian, as well as all measurement operators must be
written in the reduced local basis.
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While we used the particle number per site and band to represent the ground
state of the system for the exact diagonalization and for the PIMC, it is best
to use a basis that uses the largest local symmetry group under which our
Hamiltonian is invariant for the TEBD. By specifying local symmetries of the
Hamiltonian and by using a symmetry-aware representation of the Hamiltonian,
the computational cost and memory requirements can be substantially reduced.
The reason for this is that if a Hamiltonian commutes with an Abelian group
of operations, then the Hilbert space can be decomposed into dynamically un-
coupled sectors, which are invariant under the action of the Hamiltonian.

Our Hamiltonian has two symmetries. The �rst is the number of particles,
[H,N ] = 0. The second is the parity: the structure of Bose-Hubbard coe�cients
in eq. (6.11) is such that the number of particles in even and odd orbitals is
conserved. This is because we the Bose-Hubbard Hamiltonian was found by
expanding the wave function as Ψ(r) ∼

∑
j,mwj(x)φm(y), where φm(y) are

the eigenstates of the local Hamiltonian (6.7). As this local Hamiltonian is
invariant under sign change, y → −y, the parity is also conserved for the global
Hamiltonian. The additional symmetries are encoded within this local basis.
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