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„Man sollte alles so einfach wie möglich sehen - aber 

auch nicht einfacher“ 

Albert Einstein 
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SUMMARY 

The rising number of resistant bacteria combined with the innovation gap in the antibiotic 

development has become a huge health problem. Such infections are insufficient to be treated with the 

approved antibiotic agents on the market resulting in an increasing number of deaths and a financial 

burden on the healthcare system. Thus, there is a need for antiinfectives with new modes of action. 

P. aeruginosa, a Gram-negative pathogen often associated with antibiotic resistance, controls the 

production of major virulence factors and biofilm formation via a quorum sensing system. PqsD and 

PqsR are key player proteins in this system. The interruption of their function by small molecules 

should lower virulence of the bacterium without exerting a selection pressure on it. A biophysical 

method-guided binding mode characterization supports the optimization of these small molecules. 

Influence of the compounds on biofilm formation validates their pharmacological efficiency on this 

lifestyle characteristic for chronic infections. 

M. tuberculosis that still kills millions of people worldwide is hard to be eradicated because of a 

dormant state and a huge number of resistances. The high content of CYP enzymes encoded in the 

genome provides a promising base for new drug targets. CYP121 is essential for growth in vitro; 

CYP125 plays an important role for survival in vivo. Biophysical and biochemical test systems are 

used for identification and characterization of the first hit molecules.  
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ZUSAMMENFASSUNG 

Das zunehmende Auftreten von resistenten Bakterien verbunden mit einer Innovationslücke in der 

Antibiotikaentwicklung führen zu einer ansteigenden Zahl an Todesopfern und einer finanziellen 

Belastung des Gesundheitssystems. Folglich besteht ein dringender Bedarf an Antiinfektiva mit neuen 

Wirkmechanismen. 

P. aeruginosa, ein Gram-negativer Krankheitserreger, der oft im Zusammenhang mit 

Antibiotikaresistenzen steht, kontrolliert die Produktion von Virulenzfaktoren sowie die 

Biofilmbildung mittels eines „Quorum Sensing-Systems“. PqsD und PqsR sind Schlüsselproteine in 

diesem System. Das Stören ihrer Wirkungsweise mittels kleiner Moleküle sollte die Virulenz des 

Bakteriums herabsetzen, ohne einen Selektionsdruck auszuüben. Eine biophysikalische Methode zur 

Aufklärung des Bindungsmodus dieser kleinen Moleküle unterstützt hier auch deren Optimierung. Der 

Einfluss der Verbindungen auf die Biofilmbildung, die für chronische Infektionen essentiell ist, 

validiert deren pharmakologische Wirksamkeit.  

M. tuberculosis tötet immer noch Million Menschen auf der ganzen Welt und ist wegen seiner 

Dormanz und einer großen Anzahl an Resistenzen schwer zu behandeln. Eine hohe Anzahl an CYP 

Enzymen im Genom dieser Bakterien bietet eine vielversprechende Grundlage für neue 

Wirkstofftargets. CYP121 ist essentiell für das in vitro Wachstum; CYP125 spielt eine wichtige Rolle 

für das in vivo Überleben. Biophysikalische und biochemische Methoden werden verwendet, um Hit-

Verbindungen zu identifizieren und biologisch zu charakterisieren. 
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1 Introduction 

In the so-called “pre-antibiotic era”, infectious diseases were among the major causes for human 

morbidity and mortality. 
[1]

 At the beginning of the 20
th
 century, first progress in medical science 

yielded decisive breakthroughs, which were able to change this unsatisfactory situation. Especially, 

the research of Paul Ehrlich resulting in atoxyl, the first synthetic antimicrobial drug, and the 

discovery of the natural product penicillin by Alexander Fleming heralded a period designated as the 

“antibiotic era”. 
[2,3]

 These early success stories were followed by the “golden era of antibiotic 

discovery” from the 1950s to 1970s, which culminated in a hasty statement of the Surgeon General of 

the United States of America, William Stewart, in 1967: “The time has come to close the book on 

infectious diseases. We have basically wiped out infection in the United States.” 
[4,5]

 Indeed, 

introduction of antibiotics on the market significantly lowered the mortality rate of bacterial infections. 

[6]
 However, the occurrence of the first clinically observed resistances destroyed all hopes to close the 

books of infectious diseases. Interestingly, in the 1930s, first reports about a sulfonamide-resistant 

Streptoccoccus pyogenes in the military environment came out, where the antibiotic was used 

prophylactically. 
[7]

 The emergence of multi drug-resistant (MDR) bacteria is associated with severe 

clinical problems and increasing healthcare costs. 
[8]

 The World Health Organization (WHO) specifies 

different groups of patients in modern medicine that rely on appropriate antibiotic therapy like, for 

instance, immunocompromised, surgical, or critically ill patients. Now that the antibiotic sources have 

run out, these patients are threatened by an increasing number of resistant bacteria. 
[9]

 Such resistances 

can occur endogenously by gene mutations under selection pressure or exogenously through 

transmission of genetic material. These genetic changes encode for different mechanisms of resistance 

like mutations of the target, efflux pumps, reduced permeability etc. The responsible genes are 

summarized under the term “resistome”. 
[10]

 A closer look into the time line of antibiotics introduction 

to the market and the development of resistances against them efficiently demonstrates the challenge 

of this issue (Figure 1.). 
[11]

 Moreover, the misuse or overuse of antibiotics in clinics and agriculture 

accelerated the appearance of resistant mutants. 
[12]

 Tempted by the early success story and the 

negligence concerning the increased inefficiency of available drugs between 1962 and 2000, no new 

antibiotic class was introduced to the market. 
[13]

 These facts demonstrate that there is an urgent need 

for new strategies to overcome aforementioned bacterial resistances. Unfortunately, identification of 

new potent candidates seems to be difficult to realize. The majority of approved antibiotics originate 

from natural sources like Streptomycetes (Waksman platform), which, however, seem to be exploited. 

Furthermore, high throughput screenings and rational drug design campaigns of pharmaceutical 

companies completely failed. 
[14]

  

There is a need for novel ways of thinking, especially in case of rational design of new antibiotics. Our 

concepts of how to develop a drug against bacteria have to be reconsidered to overcome the problems 

that led to the failure of previous development campaigns. 
[15]

 Besides addressing special requirements 

directly linked to characteristics of a new bacterial target, there are additional parameters that have to 
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be taken into account. For example, it is necessary to keep in mind that physicochemical properties 

needed to enter bacterial cells follow different rules than those defined for eukaryotic cells. 

Furthermore, structural properties that could be recognized by efflux pumps have to be excluded from 

design concepts. Hence, an early proof of intracellular activity is important. Apart from the typical 

antibiotic concept, new approaches have to be followed to overcome the resistance crisis. An example 

is to avoid targets associated with direct killing of bacteria and, instead, focus on pathways that control 

their pathogenicity. This anti-virulence strategy could possibly prevent resistance development by 

supporting the patient’s immune clearance. 
[10,14,16]

 

 

 

 

Figure 1. Link between antibiotic deployment and observation of resistant bacterial strains [adapted 

from Clatworthy, Pierson et. al 
[11]

]  

 

 Mycobacterium tuberculosis 1.1

M. tuberculosis (Mtb) is the leading cause for the infectious disease ‘tuberculosis’ (TB). 
[17]

 The 

bacterium has a long history. Archaeological discoveries of skeletons with bone TB older than 4000 

years gave evidence for the age of the disease. 
[18]

 In 1882, Robert Koch described the connection 

between the symptoms of TB and the bacterium Mtb for the first time, leading to a deeper 



3 Introduction 

 

 

understanding of the disease. 
[17]

 Most common transmission route of the bacterium is a droplet 

infection. Mtb typically affects the alveolar macrophages of the lungs and survives inside of these 

cells. The result is an attraction of polymorphonuclear leukocytes to the infection side and an 

immunoreaction that ends in the development of granuloma. Furthermore, Mtb is able to enhance the 

survival rate in macrophages by blocking phagosome maturation. 
[19]

 In an advanced stage, the bacteria 

are able to adopt a dormant state, which is not easy to be treated with conventional antibiotics. 
[20]

 

The development of chemotherapeutics against Mtb started with the discovery of streptomycin in the 

early 19
th
 century. 

[21]
 Initial success stories culminated in a broad range of first line (isoniazid, 

rifampicin, ethambutol, and pyrazinamide) and second line (kanamycin, amikacin, mifloxacin, 

ethionamid, etc.) antimycobacterial agents, which are deployed depending on susceptibility of the 

bacterium or physical condition of the patient. 
[22]

 Despite versatile options for the treatment, TB is 

still a major cause of death by a bacterial infection. The WHO registered 1.5 million deaths caused by 

TB and 9 million new infections in the year 2013. 
[23]

 One key problem making the treatment 

challenging is the insusceptible dormant state demanding the need for a long term therapy. 
[24]

 This 

fact hampers the eradication especially in economically weak countries. 
[25]

 Additionally, there is an 

increased global rate of multidrug-resistant and extensively drug-resistant TB (MDR‑TB and XDR ‑

TB). 
[21]

 The emergence of totally drug-resistant TB (TDR‑TB) emphasises the urgent need for new 

anti-TB drugs. 
[26]

 

1.1.1 Mycobacterial CYP enzymes 

The elucidation of the Mtb genome in 1998 created a base for the identification of new potential drug 

targets. 
[27]

 Surprisingly, the sequencing uncovered an unexpectedly high content of genes encoding 

for cytochrome P450 (CYP) enzymes. The occurrence of such CYP enzymes distinguishes Mtb from 

most other pathogenic bacteria. With respect to the differences in their size, the percentage of CYP 

enzymes (20 Mtb CYPs) in Mtb is higher than that in the human genome. 
[28]

 CYP enzymes typically 

catalyze an oxygenation with the help of the cofactor heme (iron protoporphyrin IX). 
[29]

 The name 

P450 originates from the spectroscopically observed absorbance maximum at 450 nm after the 

complexation of carbon monoxide in the reduced iron stage. 
[30]

 The addition of the oxygen to the 

substrate occurs in several steps depicted in Figure 2. b). 
[31]

 A large number of studies confirm a 

contribution of CYP enzymes to viability and virulence of Mtb. 
[29,32]

 

CYP121 came in the focus of drug development as it was shown to be essential for Mtb viability. A 

deletion of CYP121 gene resulted in an Mtb mutant that was not able to grow in vitro. Furthermore, 

the affinity of different azole antifungals to CYP121 correlated with their ability to inhibit 

mycobacterial growth. 
[33,34]

 The enzymatic function of CYP121 was elucidated by a detailed look at 

the adjacent gene clusters. 
[35]

 The enzyme is responsible for the conversion of cyclodityrosine (cYY) 

to mycocyclosin (Figure 2. a)). However, the function of substrate or product in the biological context 

is still unknown. 
[35,36]

 The fact that CYP121 is essential for viability promoted the development of 
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selective inhibitors for this enzyme. However, no inhibitory effects on Mtb cells have been reported. 

[32]
 Although the CYP121-binding azole antifungals possess a promising in vitro and in vivo anti-TB 

activity, their clinical use for this indication is difficult due to their problematic selectivity and 

pharmacokinetic profile. Given by the fact that the azoles with the best antimycobacterial efficancy 

only have a low oral bioavailability, high dose are needed for a sufficient effect. This high dose 

combined with the long term treatment of Mtb infection increases the possibility of adverse effects. 
[37–

44]
  

 

 

 

Figure 2. a) Proposal for the detailed mechanism of cYY conversion to mycocyclosin by CYP121 

[adapted from Belin et al. 
[35]

]. b) CYP121 as an example for the P450 catalytic cycle mechanism 

[adapted from Munro et al. 
[31]

]. 

 

A second P450 enzyme, CYP125 was shown to be essential for Mtb survival in mice. 
[29]

 The 

discovery of CYP125 as a target enzyme started with identification of a region in the Mtb genome, 

which was required for survival in macrophages and mice. 
[45,46]

 The following studies renamed the 

region “igr” (defect in intracellular growth), which encodes for several proteins. 
[47]

 Further 

investigations identified the igr region as a major player in cholesterol metabolism. 
[48]

 Although the 

role of igr was clarified, there was still a missing link between cholesterol and intracellular growth. 

Two studies answered the question by producing knock-out mutants in Mycobacterium bovis (close 
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relative to Mtb) and two Mtb strains. CYP 125 seemed to be the key player in the igr operon. A 

knock-out leads to an intoxication of the bacteria under cholesterol pressure by the metabolite cholest-

4-en-3-one (Figure 3.). 
[49,50]

 Even though there is a bypass enzyme (CYP 142) in the Mtb lab strain, 

clinical isolates seem to lack such a surrogate. 
[49,51]

 Furthermore, cholesterol is a nutrition source and 

degradation products are used in the production of virulence factors. 
[52]

 Additionally, cholesterol 

seems to play a role in persistence. 
[53]

 These findings render CYP125 an attractive target for drug 

design. 
[52]

 

 

 

 

Figure 3. Cholesterol metabolism in Mtb with focus on the side chain degradation by CYP125 

[adapted from Ouellet et al. 
[52]

]. 

 Pseudomonas aeruginosa 1.2

Pseudomonas aeruginosa is a common opportunistic pathogen that belongs to the group of Gram-

negative bacteria. 
[54]

 The natural habitat includes soil and surfaces in aqueous environment. P. 

aeruginosa demonstrates a high degree of adaptability and resistance to antibiotic agents. 
[55]

 

Therefore, it is not surprising that this pathogen is able to colonize a variety of human tissues. 

Frequent occurrence of infections in the bloodstream, ear, respiratory and urinary tract could be 

observed, especially as a secondary infection of immunocompromised patients. In this context, there is 

a high incidence of nosocomial infections in patients suffering from cystic fibrosis. Due to a high 



1.2 Pseudomonas aeruginosa 6 

 

 

intrinsic resistance to common antibiotic therapy and a strong tendency to form new resistance 

mechanism, such an infection is hard to be treated. 
[56]

 Examples for intrinsic and acquired resistances 

are efflux pumps (e.g., cephalosporins, carbapenems, aminoglycosides and quinolones), outer 

membrane impermeability (e.g., carbapenems, aminoglycosides, and quinolones), ß-lactamases (e.g., 

penicillins), target mutations of gyrase (e.g., quinolones), and membrane changes of lipid A (e.g., 

aminoglycosides, polymyxins). 
[57]

 Accordingly, there is an urgent need for new therapeutic options. A 

problem with standard bacteriostatic or bactericidal approaches is the fact that these lead to a selection 

pressure, which again supports the formation of resistance. Therefore, a promising concept could be a 

so-called “anti-virulence strategy”. 
[58]

 Virulence factors are molecules produced by the pathogen to 

invade the host or escape from defence mechanisms. 
[59]

 That means, in theory, that blocking virulence 

factor production decreases pathogenicity and facilitates the clearance of pathogens by the immune 

system. An advantage of this strategy over conventional antimicrobial therapy concepts is the 

avoidance of selection pressure towards the bacteria and, consequently, of resistance development. 
[58]

 

In P. aeruginosa, certain virulence factors and resistance mechanisms are controlled by special signal 

systems, which represent a more comprehensive target for interference with pathogenicity. 
[60]

  

1.2.1 Quorum sensing systems in P. aeruginosa  

A first description of such a signal system was made in 1979 for the marine bacteria Vibrio fischeri 

and Vibrio harveyi, where it served as a control mechanism for group behaviour like bioluminescence. 

[61]
 Later, the concept of bacterial communication was defined as “quorum sensing (QS)”. 

[62]
 The 

principle came more and more into focus as similar signalling systems were described for other 

bacterial species, among those also human pathogens. Studies have shown that several pathogens 

control the expression of certain virulence factors via a QS system. 
[63]

 P. aeruginosa uses QS for the 

cell density-dependent control of virulence factors expression and biofilm formation. 
[64]

 This system 

offers an innovative point of attack for a comprehensive anti-virulence strategy to overcome resistance 

development.  

The P. aeruginosa QS system consists of three major control cycles (las, rhl, pqs). 
[64]

 Every cycle is 

composed of three main parts: the signal molecules, their biosynthesis enzymes, and the receptors. 

Signal molecule concentration regulates the activity of the specific control cycles. At a crucial 

threshold, these signals trigger their own expression and thus, they are designated as “autoinducers”. 

The second key component is the receptor that regulates gene expression after QS signal binding. 

Those genes include clusters encoding for biosynthesis enzymes of the QS signal molecules and 

virulence factors. 
[64]

 As depicted in Figure 4, the las system consists of the QS signal molecule (N-(3-

oxododecanoylhomoserine lactone (3-oxo-C12-HSL)), the synthase of the QS signal (LasI), and the 

transcription regulation receptor (LasR). 
[65]

 The same basic structure can be transferred to the rhl 

system with N-butanoylhomoserine lactone (C4-HSL) as QS signal, RhlI as the signal synthase, and 

RhlR as receptor. 
[66]

 On top of that, P. aeruginosa deploys a third unique control cycle, the so-called 
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“Pseudomonas quinolone signal” (pqs). The pqs system is only present in Pseudomonas and 

Burkholderia species. 
[67]

 Signal molecules of the system originate from the family of 2-alkyl-4-

quinolones (AQs). 
[68]

 The main autoinducers, which interact with the receptor and trigger their own 

production, are 3,4-dihydroxy-2-heptylquinoline (PQS) and its precursor 4-hydroxy-2-heptylquinoline 

(HHQ). 
[69]

 An early precursor molecule of AQ synthesis is anthranilic acid, which is synthesized from 

a complex encoded by genes that are located adjacent to the pqs operon. 
[70]

 The pqs operon itself 

(pqsABCDE) contains the genes encoding for PqsA, PqsD, PqsB, and PqsC required for the synthesis 

of AQs. 
[71]

 The precise function of PqsE is still under discussion. Results from different studies 

suggest that PqsE acts as an effector of AQ execution or is a part of the AQ biosynthesis pathway. 

[60,72]
 PqsH, which is necessary for the conversion of HHQ to PQS, is not encoded within the pqs 

operon. 
[70]

 However, both signal molecules bind to pqs receptor (PqsR) and increase its activity as a 

transcription regulator. 
[69]

 This leads to activation of pqs operon and a direct or indirect expression of 

virulence factor-associated genes. 
[67]

 Las, rhl, and pqs are not separated from each other. On the 

contrary, these control cycles are able to interconnect with each other. 
[60]

 The detailed mechanism of 

cooperation is still not completely understood, but a rough overview can be seen in Figure 4. The las 

system increases the activation of the rhl and the pqs system. The pqs system positively regulates rhl 

in contrast to the negative feedback of rhl on pqs. 
[64]

 The overall picture is completed by a forth 

integrated system. The so-called “iqs” is able to take over the functions of other systems. 
[73]

 The main 

task of the control cycles (las, rhl and pqs) is the adaption of virulence factor production to 

environmental situation. Especially, the pqs system with its important role in the control of virulence 

factors and biofilm formation might be an attractive target system for a global anti-virulence therapy 

[74]
 and will be discussed in the next two chapters.  
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Figure 4. The overview represents the interconnection of the quorum sensing systems in P. 

aeruginosa. [adapted from Lee et al. and Dubern et.al 
[64,67]

]  

 

1.2.2 The “Pseudomonas Quinolone Signal” and its influence on virulence factors and biofilm 

P. aeruginosa produces a broad arsenal of virulence factors used for establishment in host and 

competition with the immune system. The pqs system directly and indirectly takes over control of 

essential virulence factors. A major virulence factor directly controlled by PqsR is pyocyanin. 
[71,75]

 

This redox active blue-green pigment damages human lung epithelial cells. 
[76,77]

 A second virulence 
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factor regulated by PQS is elastase, also called lasB 
[68]

 This metalloprotease is capable of damaging 

tissues and degrading various immune components. 
[78]

 Furthermore, it was shown that production of 

hydrogen cyanide, a toxin that acts via blockage of the cell respiration cascade, is affected by pqs 

genes. 
[71]

 Indirectly, the pqs system influences the pyoverdin and rhamnolipid production by 

interfering with the rhl system. 
[71,79]

 Pyoverdin is an iron scavenger molecule and important for 

virulence in a mouse model. 
[80]

 Rhamnolipids are known to lyse several types of immune cells. 
[81]

 On 

top of that, PQS directly induces a downregulation of the host’s immune response. 
[82]

 Besides the 

described influence on important virulence factors, the role of pqs system on biofilm formation and 

persister cells should not be underestimated. 
[74,83]

  

1.2.3 Biofilm and persistence 

A biofilm is an extracellular polymeric matrix consisting of various molecular structures surrounding 

living bacterial cells. The biofilm embed bacteria of different species and protect them from a hostile 

environment like for example the immune system of a host. P. aeruginosa also produces biofilms in 

the human body. 
[84]

 The main components of a biofilm are polysaccharides (Psl, Pel, and alginate), 

extracellular DNA (eDNA), proteins, rhamnolipids, and surface components of bacterial cells. The 

biofilm maturation occurs in several steps, which are summarized in Figure 5. 
[84,85]

  Biofilms and 

persister cells play a crucial role in chronic Pseudomonas infections of cystic fibrosis patients. 
[86]

 

Persister cells are dormant cells with a low level of metabolism and a high tolerance to antibiotics. 

However, these persisters can be cleared by the immune system. In contrast, biofilm does not only 

block several antibiotics but also protects the bacteria from the attack of the immune system. This 

means persister cells inside a biofilm can form a source of relapsing and chronic infections. 
[87]

  

The pqs system regulates the formation of different biofilm components. In a ΔpqsE mutant, no 

galactophilic lectin, LecA, is produced. LecA is necessary to complete biofilm formation 
[88,89]

 

Furthermore, the eDNA as a major component of a biofilm is also controlled by the pqs system. 
[83,90]

 

Moreover, PqsR antagonists and PqsD inhibitors were shown to decrease biofilm formation. 
[91,92]

 An 

interesting result described in a recent study is the influence of the pqs system on persister cells. The 

blockade of PqsR results in a decreased number of P. aeruginosa persister cells. 
[74]
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Figure 5. A summary of the individual biofilm components and the maturation of a biofilm population 

[adapted from Wei et al. 
[84]

] 

 

1.2.4 PqsD as a key enzyme in the synthesis of HHQ and PQS 

PqsD was shown to completely catalyse HHQ synthesis in vitro by utilizing the two precursor 

molecules anthraniloyl coenzyme A (ACoA) and ß-ketodecanoic acid. However, recent results 

indicate a different in cellulo biosynthesis route. This pathway assumes that PqsD catalyses the 

reaction of ACoA and malonyl-CoA producing 2-aminobenzoylacetate (2-ABA). 2-ABA is further 

used by the PqsB/C complex to synthesize HHQ. 
[93]

 Nevertheless, both theories confirm PqsD as a 

key enzyme in the signal molecule synthesis (Figure 6.). In crystallographic studies, PqsD forms a 

dimer and shows a similarity to FabH and chalcone synthase, which are enzymes from fatty acid and 

polyketide metabolism. Especially, the polar amino acids Cys112, His257, and Asn287 in the catalytic 

centre represent interesting residues for possible ligand-receptor interactions. Most probably only 

Cys112 and His257 are involved in the first step of the enzyme reaction. 
[94]

 In this reaction anthranilic 

acid is transferred from ACoA to Cys112. 
[95]

 An inhibition of PqsD was shown to inhibit signal 

molecule (HHQ and PQS) production and biofilm formation. 
[91]
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Figure 6. This depiction describes the biosynthesis pathway of HHQ and PQS as the major signalling 

molecules of the pqs system. The gray box highlights PqsD as a key enzyme in the system. [adapted 

from Dulcey et al. and Drees et al. 
[72,93]

] 

 

 Rational Drug Design 1.3

The term rational drug design summarises techniques for the identification of new therapeutics under 

consideration of all information known about physiological and pathophysiological targets. 
[96]

 The 

technique can be divided into two major approaches: the ligand-based and the structure-based concept. 

[97]
 

The origin of rational drug design is deeply rooted in the early antibiotic research successes. Driven by 

the first theories in organic chemistry at the end of the 18
th
 century, e.g. Avogadro’s atomic 

hypothesis, a more directed synthesis of molecules was possible. This influenced the production of 

particular dyes, which were the base for Paul Ehrlich´s theory of the “chemoreceptors” and, thus, for 

pharmacology and rational drug design. 
[98]

 From that point on, academic working groups and 

pharmaceutical companies made many efforts in the identification of natural and synthetic compounds 

with pharmacological efficiency. This early drug discovery was dominated by phenotypic screening 

approaches and derivatization of natural products. The first steps to modern rational drug design were 

made in the 1960s with the identification of receptor function and ion channels. 
[99]

 Pioneering works 

from researchers like Topliss and Hansch provided the basis for the so-called ligand-based approach; a 
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today’s often used method in drug discovery. 
[100–102]

 Another ground-breaking event took place as 

David C. Phillips described the elucidation of the first 3D-protein structure of an enzyme in 1965. 
[103]

 

This was the fundamental starting point for the structure-based design. Several years ago, Kendrew 

reported the first protein crystal structure originating from sperm whale myoglobin. 
[104]

 The rise of the 

genomic era in 1990 provided more information about reasons for the occurrence of diseases and the 

biochemical background. 
[105]

 Together with the better understanding of diseases, more and more 

techniques and approaches were invented facilitating rational drug design. 
[106]

 Examples will be 

discussed in the following sections.  

1.3.1 Ligand-based approaches 

The ligand-based approach relies on the knowledge of ligands that bind to the target structure. 
[107]

 It is 

not necessary to have information about the 3D-structure of the target. Only those chemical properties 

that are essential for affinity are taken into consideration. 
[108]

 In principle, the concept starts with the 

determination of a pharmacophore model, which is defined by IUPAC (International Union of Pure 

and Applied Chemistry) in the following way: “A pharmacophore is the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a specific 

biological target structure and to trigger (or to block) its biological response”. 
[109]

 

Early methods described for example by Hansch, Topliss, and Andrews combined statistical and 

experimental data to simple rules useful for rational compound evaluation and optimization. Hansch 

and coworkers created a tool for the comparison of biological activity and physicochemical properties 

to create a quantitative-structure-activity-relationship (QSAR). This resulted in a mathematical 

equation known as the “Hansch-Analysis”. 
[102,110]

 In further studies, Topliss revealed a method that 

applied the Hansch-Analysis to medicinal chemistry by introduction of simple synthesis schemes. 

[100,101]
 Another method invented by Andrews to characterize a hit compound originating, for example, 

from an experimental screening should simplify the optimization process. 
[111]

 

Modern methods are computer-based to analyse a more complicated set of data. The aims are similar 

to the older approaches and include the interpretation of physicochemical properties, which are 

important for the desired interactions. A prominent example is the Comparative Molecular Field 

Analysis (CoMFA), which facilitates a QSAR in a three-dimensional room (3D-QSAR). For this 

purpose the method combines molecular interaction fields and physicochemical properties of the 

molecules without any structural information about the target. 
[112]

 

1.3.2 Structure-based approaches 

The IUPAC defines this process roughly as drug design based on the 3D-structure of the target. 
[109]

 

The aforementioned elucidation of the myoglobine and lysozyme as the first X-ray structures of 

proteins were basic work for this approach. 
[103,104]

 Today, structural data of the enzymes originate 

from X-ray crystallography, Nuclear Magnetic Resonance Spectroscopy (NMR), or homology 
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modelling. 
[111]

 An observed protein structure can be used in different ways as a starting point for the 

finding of a potential drug candidate.  

Often used approaches for the finding of first hit candidates are computer methods. A pharmacophore 

model build up from the protein structure can be used for a virtual screening or a de novo design. 

[112,113]
 Virtual screening is a method, where a large database of compounds undergoes various docking 

steps based on the pocket of the target protein. Following definitions for the two terms are given by 

IUPAC: “Docking studies are molecular modelling studies aiming at finding a proper fit between a 

ligand and its binding site”; “De novo design is the design of bioactive compounds by incremental 

construction of a ligand model within a model of the receptor or enzyme active site, the structure of 

which is known from X-ray or NMR data.” 
[109]

 The procedures are followed by an experimental 

confirmation of the hit in a biochemical or biophysical assay. 
[114]

  

More precise information could be obtained via a co-crystallization of compounds identified by virtual 

or experimental screening. Depending on the quality of the structure it is possible to identify all 

important interactions (hydrogen bonds (H-bonds), Van-der-Waals, or electrostatic interactions etc.). 

This information can be used as a template for straightforward optimization. The data guide a directed 

targeting of important amino acids or empty site pockets at the target protein to increase affinity and 

selectivity of a hit compound. 
[106,115]

 The aforementioned approach is often used for hit or lead 

optimization. In case of fragment-based hit finding strategies, a co-crystallization is indispensable. 

Fragments are compounds with a molecular weight lower than 300 Da. Dependant on their structure 

and molecular interaction properties they can bind in different parts of the target protein. Merging or 

linking of these fragments guided by co-crystal structure can lead to a high-affinity ligand. 
[106,114]

 

Driven by the advancements in protein crystallization new approaches combine fragment-based drug 

design and crystallography to an elegant screening method, which extends the applicability of 

structure based drug design. 
[116]

 

 

1.3.3 Biochemical and molecular biological assay systems in rational drug design 

Before a rational drug design process can be applied, a biological structure has to be identified and 

validated as a suitable target. 
[117]

 If the target discovery is successfully completed, first hits for the 

selected target have to be identified. Despite technical advances in the biophysical field, a routine hit 

identification is based on biochemical or molecular biological screening systems. Furthermore, 

biological assays play an important role in subsequent hit and lead characterization steps of drug 

development. 
[117]

 Since the early concepts in the 1930s defined enzymes and receptors as suitable 

drug targets, the development of applicable biochemical test systems has been accelerated. 
[98]

 In the 

field of biochemical and molecular biological methods, two trends can be distinguished: cell-based or 

target-based assay systems. 
[118,119]

 Depending on the expected outcome both methods have their 

advantages and disadvantages. 
[120–122]

 Caused by the diversity of target systems and their 
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requirements, a lot of different assays have been developed. Widely used techniques are for example: 

fluorescence resonance energy transfer (FRET) coupled enzyme assays, and fluorescence polarization. 

These in vitro test systems can be divided in simple binding and functional assays. However, the latter 

normally provide more information about the tested compound, because natural ligand or substrate is 

involved in the molecular interplay. 
[123]

. During the course of an assay development or even a protocol 

adaption procedure, a lot of parameters have to be taken into consideration. Buffer pH, ion strength, 

temperature, solvent composition, and concentrations of substrate, enzyme and cofactors are crucial 

parameters influencing enzyme reaction. 
[121]

 One of the most commonly used metrics to assess the 

quality of a test system is the Z´-value. This improved the signal-to-noise ratio as a quality factor by 

the introduction of a positive and a negative control. 
[123]

. Special binding and functional assays, as 

well as cell based assay systems were used in this thesis to characterize biological behaviour of our 

compounds. Further describtions of these approaches can be found in the following sections. 

1.3.3.1 Binding assay: UV/Vis-assay for P450 enzyme interaction 

A binding assay is a simple method used in drug discovery to determine the affinity of a compound to 

the target. The outcome of this method is typically the association constant (KA) or the dissociation 

constant (KD) of a ligand-target interaction. 
[124,125]

 An often used method for determination of binding 

to CYP enzymes is the UV/Vis spectroscopic heme coordination assay (A more detailed specification 

of CYP enzymes can be found in chapter: 1.1.1). It is based on the interaction of a compound with the 

heme iron in the catalytic centre of the protein. 
[126,127]

 The interaction with the heme iron leads to a 

shift of the enzyme Soret band (Soret band: typical absorbance band of CYP enzymes at a wavelength 

of approximately 420 nm). A direct coordination of the heme shifts the iron from the high- to the low-

spin state with a maximum between 425 – 430 nm. This behaviour is designated as “type-II-binding”. 

The coordination blocks binding of the substrate and hinders the first iron reduction step in the enzyme 

reaction. Approved CYP enzyme inhibitors that show a type II profile contain sp
2
-hybridzed nitrogen 

as a structural element (e.g., pyridine, imidazole, and triazole derivatives). 
[30,128–146]

 Type I binders 

shifted the maximum of the spectra to lower wavelength. This is often associated with the 

spectroscopic behaviour of the substrate and caused by a water-bridged coordination of the heme iron. 

[29]
 There is also an intermediate mechanism, the so-called “reversed type I” binding. This originates 

from an increased low-spin absorbance band at 420 nm combined with an indirect water-bridged 

compound-iron interaction 
[147,148]

  

UV/Vis spectroscopic heme coordination assays provide information on the binding mode and can be 

used for affinity determination. The KD values are obtained by titration of the compound against the 

CYP enzyme (Figure 7.).  
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Figure 7. UV/Vis spectrum of CYP enzyme monitored with and without a ligand. Crystal structure of 

heme coordinating ligand [adapted from PDB:4G44 
[32]

]. a) Picture of the enzyme’s (continues line) 

absorbance spectrum and ligand titrated in different concentrations against the enzyme (dotted line). b) 

Difference spectrum of native enzyme and ligand complex. c) Binding curve for KD determination, 

calculated from the difference spectrum. 

 

1.3.3.2 Functional assay: LC-MS quantification of enzyme reaction 

A functional assay can directly quantify the efficiency of an enzyme inhibition by a specific 

compound. This provides information about the biological relevance of an inhibitor. Normally, the 

inhibitory strength is described as IC50 (defined as the concentration of inhibitor required to produce 

50% inhibition of an enzyme reaction at a specific substrate concentration). 
[149]

 Nevertheless, new 

theories suggested that the residence time of inhibitors to their target could be a better parameter to 

judge biological efficiency. 
[150]

  

There is a broad arsenal of in vitro assays to determine effectiveness of an inhibitor. Depending on the 

biological system an appropriate assay has to be selected. 
[117]

 First descriptions using Liquid 

Chromatography (LC) or High Pressure LC (HPLC) for the detection of an enzyme reaction were 
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reported in the 1970s. The biggest advantage of the LC/ HPLC systems is the potential to separate 

different components of the enzyme reaction before the detection. The separation is based on a 

variable distribution of the mixture components between a mobile and a stationary phase. This is 

necessary in reactions composed of products and/or substrates with similar physicochemical 

properties. Depending on the method used for analysing the sample similar properties could interfere 

with the quantification process. Furthermore, the chromatography step is combinable with wide range 

of detection methods like, for example, spectrophotometric, fluorimetric, electrochemical, and 

radiometric ones. This provides a broad flexibility concerning physicochemical properties of the 

components in a reaction mixture. 
[151]

  

Especially, the mass spectrometry offers a good compromise between sensitivity for a quantification 

process and flexibility concerning compound characteristics (Figure 8.). 
[152]

 Mass spectrometry (MS) 

is based on the ionization of a compound and the analysis by the mass to charge ratio. In development 

of functional assays using MS detection, several points have to be taken into consideration. First of all, 

the aforementioned parameters governing the enzyme reaction are crucial 
[121]

 , secondly, the different 

steps in the analytical procedure consisting of sample preparation, choice of reference and internal 

standards, selection of the ion source, optimization of MS parameters, and LC separation. 
[153]

  

 

 

 

Figure 8. Schematic overview of HPLC-MS/MS based assay procedure [adapted from Hess, Meier, 

Zeeh et. al. 
[154]

] 
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1.3.3.3 Cell-based assays part 1: Determination of cytotoxicity to eukaryotes and prokaryotes 

In the development of new antibiotics, it is highly important to find selective compounds with low 

toxicity in human cell lines. The most antibiotics display an on target efficiency in an acceptable 

range. However, due to a lowered penetration through the bacterial cell membrane, antibiotic effects 

are often in the micromolar range. This is two to three magnitudes higher compared to drugs with 

eukaryotic targets. The higher doses needed to overcome this disadvantage increases the possibility of 

in vivo toxicity. 
[14]

 This emphasizes the relevance of appropriate assay systems to specify cell toxicity 

to both genera (eukaryotes and prokaryotes).  

An often used approach to quantify the effect of an antibiotic compound on bacteria is the 

determination of the minimum inhibitory concentration (MIC). MIC is defined as the lowest 

concentration that inhibits bacterial growth. 
[155]

 Besides the common agar plate methods, the broth 

dilution test is the standard approach to determine MIC values (Figure 9 b)). It is based on bacterial 

growth in a liquid medium under different concentrations of antibiotic. The growth is monitored by 

differences in turbidity of the medium (Optical density at 600 nm: OD600). 
[156]

 Depending on the 

growth behaviour of some bacterial strains, using OD600 could be imprecise. For example, bacteria of 

the species mycobacteria tend to grow in a clumped fashion. Besides the usage of detergents, 

colorimetric, fluorescent, or luminescent measuring methods can be applied to circumvent this 

problem. One example is the alamarBlue® assay that works via the reduction of resazurin by 

respiratory chain metabolism of a living cell. The reaction can be monitored by colorimetry- or 

fluorescence- based methods. A similar system is the MTT assay, where the reduction of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan can be detected by the 

change of the color. The third approach detects the concentration of adenosine triphosphate (ATP), 

which correlates with cell viability. In this protocol, an ATP/luciferase reaction produces a 

chemiluminescent dye. 
[157,158]

 The aforementioned methods are also suitable with regards to 

eukaryotic cells (Figure 9a)). Though MTT- and ATP-based methods are simple and accurate, they 

could be influenced by metabolic interference. Thus, the result of such approaches should be 

confirmed by secondary screens based on cell death markers. 
[159]
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Figure 9. a) MTT assay of HEK293 cells to measure toxicity on human cell lines. b) MIC 

determination of Mycobacterium bovis BCGT growth under antibacterial pressure by OD600 in 48-well 

plates. 

 

1.3.3.4 Cell-based assays part 2: Biofilm assay  

As already discussed in chapter 1.2.3 biofilm plays a crucial role in the pathogenesis of P. aeruginosa 

infections, especially in chronic ones. Accordingly, a biofilm inhibition might be a good strategy for 

the treatment of such infections. 
[160,161]

 The efforts of finding compounds with such promising 

activities resulted in the development of several in vitro, ex vivo, and in vivo biofilm assay systems. 

The in vitro models can be divided in static (e.g., microtiter plate) and open systems (e.g., flow cell) as 

well as microcosms (e.g., reconstituted human epithelia). Although these are only simplified systems, 

they are useful to address fundamental questions. Especially, the microtiter plate approach is suitable 

for high throughput compound testing. 
[160]

 

The principle of the latter can be summarized as follows: bacteria are grown in plates or modified 

plate systems and components of the biofilm are stained by suitable dyes. Depending on the aim of the 

study, three modifications of assays can be performed. These include biomass assays (quantification of 

matrix and cells), viability assays (quantification of living cells), and matrix assays (staining of 



19 Introduction 

 

 

selected matrix components). 
[162]

 A common method for the quantification of the whole biomass is the 

crystal violet staining. Crystal violet (CV) is a positively charged dye that binds to polysaccharides 

and negatively charged cell surface molecules (Figure 10.). Using this system it is not possible to 

distinguish between living and dead cells. 
[163]

 A second dye, the fluorogenic Syto9
®
 can also be used 

to measure biomass volume. This is based on attachment to DNA in living and dead cells as well as to 

eDNA. 
[164]

 Experimental procedures such as antibiotic susceptibility assays require discrimination 

between living and dead cells within the biofilm. Available test systems to assess this task are 

described in chapter 1.3.3.3 and work via MTT, resazurin, and ATP bioluminescence. Applicability of 

these staining methods to biofilm scenarios was shown by Sanchez, Pettit, and Adam et al. 
[165–167]

. 

Another interesting modification of biofilm assay can be used for the quantification of matrix 

components. As mentioned before some major components of biofilm are polysaccharides and eDNA. 

[84]
 The polysaccharides are detectable via a congo red staining and 1,9-dimethyl-methylene blue 

(DMMB). 
[168,169]

 DMMB binds to sulphated polysaccharide forming an insoluble complex. 
[169]

 A 

selective staining of eDNA is possible with propidium iodide (PI), which is not able to cross the 

bacterial cell wall (Figure 10.). The dye shows a specific fluorescence after intercalation into the 

DNA. 
[83,90]

 Moreover, there are several examples described in literature that illustrate the combination 

of staining methods with confocal laser scanning microscopy (CLSM) detection. This provides a more 

detailed view on the composition of the biofilm. 
[161]
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Figure 10. Upper part demonstrates the effect of a biofilm inhibitor on the whole biomass (CV) and 

specific component eDNA (PI). Lower part of the figure depicts schematically the development of 

biofilm with and without a biofilm inhibitor [adapted from Wei et al. 
[84]

]. PI: propidium iodine; CV: 

crystal violet.  

 

1.3.4 Biophysical methods in rational drug design 

Besides the typical functional assays that are based on biochemical or cellular methods, biophysical 

test systems offer an alternative platform for evaluation of ligand-target interactions. 
[170]

 Important 

examples for these methods are X-ray crystallography, NMR, Isothermal Titration Calorimetry (ITC), 

SPR, Differential Scanning Fluorimetry (DSF), and different fluorescence-based techniques. These are 

widely used in hit identification and parametrization to gather information for a directed optimization 

process. 
[171]

 

1.3.4.1 Differential scanning fluorimetry 

DSF technique detects the thermal unfolding of proteins. Binding of a compound to the protein is 

represented by a shift of the melting temperature (defined as the temperature, at which half of the 

protein molecules are unfolded). A binder stabilizes the protein, which increases the temperature of 

unfolding (Figure 11.). Monitoring of the experiment is possible via a dye that shows fluorescence in 

a nonpolar environment. The denaturation exposes hydrophobic parts in the protein, which can then be 

occupied by the dye. Thus, the fluorescence level correlates with the amount of unfolded protein. The 

whole reaction can be quantified by the use of, for example, a real-time detection polymerase chain 

reaction machine (RTD-PCR). 
[172]
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Figure 11. a) Interaction of 2-(Nitrophenyl)-methanol derivative and PqsD detected by differential 

scanning fluorimetry (unpublished results); b) Principle of DSF binding assay [adapted from 

Cummings et al. 
[173]

]. 

 

1.3.4.2 Isothermal Titration Calorimetry 

Hit finding in the pharmaceutical environment often starts with a large number of compounds. 
[174]

 In 

this crucial step it is often hard to make a selection on best candidate. The main focus lies here on the 

assessment of binding affinity. However, thermodynamically, ligand-protein interactions can be 

dissected in two terms, entropy and enthalpy of binding.
[174]

 Often, a compound’s affinity is dominated 

by entropy-driven interaction based on the hydrophobic character of the molecule. 
[175]

 These 

hydrophobic interactions are problematic due to the potential of making a compound unselective. 

Furthermore, one should keep in mind that an improvement of the enthalpy contribution of interaction 

is more difficult. To understand this fact it is necessary to have a closer look on the thermodynamic 

processes that take place during ligand binding. The interaction goes along with a loss of enthalpy (H-

bonds with water molecules, i.e. desolvation enthalpy) and entropy (conformational degree), which 

must be compensated or overcompensated by a gain of energy (hydrogen bonds to target and release 

of water). The entropy term is dominated by a loss of conformational degrees of freedom and release 

of water molecules. These are non-directed interactions in contrast to the enthalpy term, which 

predominantly reflects H-bonds. Directed interactions (e.g H-bonds) are hard to generate in an 

optimization process as distances and angles of the bonds have to be formed in an ideal way. This 
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highlights the importance of a starting molecule with favourable enthalpy (Figure 12.). The ITC 

represents a tool that helps finding suitable candidates. 
[175]

  

 

 

 

Figure 12. Scheme of ITC shows sample and reference cell. The ligand is titrated stepwise into the 

protein solution. Interaction of ligand (red) and target (orange) zoomed out for a detailed view on the 

single events of interaction. The interaction of an exemplary molecule and a protein (brown) is shown 

in the upper part.[Adapted from Freire et al. 
[175]

]. ITC: isothermal titration calorimetry.  

   

A typical ITC instrument consists of a sample cell filled with the target protein and a reference cell 

containing buffer. Both cells are thermally shielded from environmental influences. The sample is 

titrated stepwise to the target solution, while the solution is stirred. Differences in temperature are 

calculated between sample and reference cell. The ITC experiment provides information about the 

enthalpy (ΔH) of binding, the affinity of the ligand (KD), and the stoichiometry of the reaction (N). 

With these data it is possible to calculate the free energy (ΔG) and the entropy (ΔS) using two 

thermodynamic equations (Eq. 1and Eq. 2) 
[176]

 (Figure 12. and 13.).  

 

Eq. 1: ΔG = ΔH – TΔS  
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Eq. 2: ΔG = RTlnKA = -RTlnKD 

 

 

 

Figure 13. a) Representative example for an ITC titration curve (black) and the integrated enthalpy 

proportion (red). Enthalpy (ΔH) of binding, the affinity of the ligand (KD), and, the stoichiometry of 

the reaction (N) can be calculated from red sigmoidal curve. Other parameters can be received via the 

equation (Eq. 1 and Eq. 2). b) Example for 2 compounds with different thermodynamic profile 

concerning enthalpy and entropy. 

 

1.3.4.3 Site-directed mutagenesis / alanine scan 

The gold standard in structure-based drug design is a co-crystal structure of the inhibitor with the 

target protein. Despite the fact that a lot of native protein structures can be found in databases, co-

crystal structures are not always available. 
[177,178]

 The so-called “alanine scan” is based on the site-

directed mutagenesis of amino acids possibly involved in binding to a possible molecular interaction 

partner (replaced by alanine because of the less bulky and inert side chain). This is an often used tool 

in molecular biology to determine hot spots of interaction. 
[179]

 Combined with a suitable assay system 

the technique can be applied to identify structures that interact with ligands and consequently elucidate 

the binding modes of the molecules. That means, for example, that the exchange of serine in the 

catalytic pocket of an enzyme as a possible H-bond donor by an alanine should lead to a decreased 

affinity of an inhibitor, if there is an interaction with this motif. Accordingly, the inhibitor shows a 

decreased efficiency against the mutated enzyme, which indicates serine to be an important interaction 

partner. 
[177]

 A drawback of an enzymatic test system is given by the fact that the amino acids needed 

for substrate conversion have to be excluded from the study. This could be overcome by the utilization 

of methods only focusing on binding such as ITC or SPR. 
[180]

 Taking into account results of docking 

studies can increase the informational content and give new ideas for optimization (Figure 14.). 
[181,182]
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Figure 14. A combined analysis of ITC and site-directed mutagenesis illustrates changed compound X 

affinity and thermodynamic profile to mutant and wild type (wt). The loss of H-bond interaction 

causes a loss in enthalpy of binding. [Model of compound X bound to PqsD wt and H257F mutant]. 

ITC: isothermal titration calorimetry.  

 

1.3.4.4 Surface Plasmon Resonance spectroscopy 

SPR is a biophysical method with a broad applicability at various steps of drug discovery. This covers 

the whole process from target identification to clinical phases. Here, SPR supports the discovery 

process in the hit screening phases as well as mode of action studies. 
[183]

 The advantage of the 

technology is that it is a good compromise between a high throughput screening and low material 

consumption. 
[184]

 Additionally, it is possible to monitor the binding event in real time and determine 

binding kinetics, which can in some cases be more important than the affinity itself. 
[150,185]

 

The sensing of the binding event is based on a surface plasmon wave (SPW), which means quasi-free 

electron plasma between gold surface (component of the sensor chip) and medium. Such SPW is 

extremely sensitive concerning a variation of the refractive index of the medium. An interaction of a 

biomolecule (e.g. protein) bound to the surface and a ligand (e.g. inhibitor) leads to an increase of the 

refraction index and the SPW propagation constant. This change can be measured optically by the 

extinction of polarized light of a laser source. Here, polarization is generated by a prism and the light 

is totally reflected on the surface. Depending on the sensor the binding event, this induces a difference 
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in refraction index and, consequently, in the SPW propagation constant, can be detected by changes in 

angle, wavelength, or intensity of the reflected light. 
[186,187]

 The construction of a SPR spectroscope 

can be seen in Figure 15. 

 

 

 

Figure 15. Simplified setup of two SPR experiments used for the detection of protein-small molecule 

interaction. The left box represents the flow channel with amino-coupled protein probe. The right one 

shows a protein-biotin construct immobilized via a biotin-streptavidin interaction. [adapted from 

Cooper et al. 
[183]

]. SPR: surface plasmon resonance spectroscopy. 

 

A critical step of an SPR experiment is the immobilization of the protein on the sensor chip. 
[183]

 The 

most common polymer coat on the chip is carboxymethyl dextran. 
[188]

 Depending on the nature of the 

protein several methods for coupling to the carboxymethyl dextran surface are available. Examples 

are: different ways of covalent attachment, biotin- or streptavidin-presenting surfaces, (Figure 15.), 

monoclonal antibodies, metal-coordinating groups. 
[183,185,187]

  

After immobilization, the test compounds are flushed over the sensor chip. The result of an SPR 

experiment is a sensorgram, which shows the real-time response of interactions divided in four major 

steps (Figure 16.). 
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Figure 16. Sensogram as a result of an SPR experiment originating from an ligand-protein interaction 

[adapted from Cooper et al. 
[183]

]. SPR: surface plasmon resonance spectroscopy. 

 

The intensity of the signal is described in response units (RU). The first phase begins after injection of 

the ligand and describes the association to the immobilized protein (Kon). At the steady-state, the 

protein-binding site is completely occupied by the ligand molecules. This phase could be used for the 

measurement of KD values. In the dissociation phase, continuous flow of buffer removes bound ligand 

from the binding site (Koff) until the baseline is again represented. A kinetic fit of Kon and Koff value 

could also be used for affinity determination. 
[187]

 

 

All biochemical, molecular biological and biophysical methods described in this introduction are 

imporant parts of this thesis. The methods were used in different ways depending on the scope of the 

corresponding manuscript or paper. 



 

 

2 Aims of the thesis 

The innovation gap in antibiotic research from 1962 to 2000 resulting from the false conviction that 

bacterial infections were successfully eradicated createsnew challenges. A wide range of pathogenic 

bacteria already developed resistance towards most antibiotics in clinical use. Due to a lack of last-

resort antibiotics there is an increased mortality rate in the field of infectious diseases. Furthermore, 

the costlines of such therapies might turn into an economical problem in the future. Thus, there is an 

urgent need for new therapeutic options. A possible strategy is the identification of drugs acting on a 

new target system. One the one hand, this approach overcomes target-dependent resistance 

mechanisms (point mutations). On the other hand, there is a creation of new structural space avoiding 

drug-dependent resistance mechanisms (efflux pumps). A second possible approach is to lower 

bacterial pathogenicity without affecting viability. The so-called “anti-virulence” strategy should 

prevent resistance development and additionally facilitate the clearance by the host’s immune system. 

Apart from these concepts, a third approach aims at targeting of structures, which are essential for in 

vivo detoxification. This thesis deals with the three aforementioned aspects in development of new 

anti-invectives.  

The first part of the thesis describes the identification of compounds targeting mycobacterial CYP 

enzymes as a new therapeutic strategy for the treatment of tuberculosis. One aim was the identification 

of first selective CYP 121 inhibitors with an in cellulo activity to Mtb. Early studies confirmed 

CYP 121 to be essential for in vitro growth. To validate the enzyme as a drug target and create a 

reliable starting point for a rational optimization process, we planned a screening campaign based on a 

focused in-house library. Compounds out of this library bear chemical properties that privilege these 

structures for interaction with P450 enzymes. Binders resulting from a biochemical and biophysical 

screening were considered for in cellulo activity tests against Mycobacterium bovis BCG and Mtb. 

Further studies on selectivity and in vitro activity were conducted to confirm CYP121 as the main 

target and to exclude toxicity.  

Another enzyme of interest is the mycobacterial P450 enzyme CYP125. It was shown to be essential 

for in vivo growth and is a key enzyme in cholesterol metabolism of Mtb. The aim of our studies was 

the identification of first high-affinity binders for the evaluation of CYP125 as a starting point for the 

development of antimycobacterial agents with a new mode of action. For this purpose the same in-

house library used in the CYP121 screening was tested for CYP125 binding. Consequently, same 

biophysical and biochemical approaches proven successful in the first project were pursued for 

CYP125. Furthermore, we were also interested in selectivity towards human and other mycobacterial 

CYP enzymes to provide information for specific optimization processes. 

A third strategy, we are following to overcome bacterial resistance, is the interference with quorum 

sensing systems. P. aeruginosa controls the production of major virulence factors and components of 

biofilm via the pqs communication system. Former studies confirmed that PqsD inhibitors 

(biosynthesis enzyme of signal molecules PQS and HHQ) sufficiently lower signal molecule 
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concentration and inhibit biofilm formation. A desirable aim was the determination of the PqsD 

inhibitors’ binding mode. The lack of co-crystal structures was circumvented by the use of a 

straightforward approach combining biophysical methods, site directed mutagenesis, and molecular 

modelling. Such investigations were carried out for several inhibitor classes.  

Biofilm formation plays a key role in chronic infections with P. aeruginosa. The objective was to 

establish a biofilm assay system to characterize phenotypic outcome of PqsD inhibitors (PqsD and 

PqsR as target structures). The use of selective staining reagents represents a suitable tool to 

investigate influence on various biofilm components. Furthermore, this assay enables us to perform 

combination experiments with quorum sensing inhibitors and antibiotic agents.  
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3 Results 

A Biophysical Screening of a Focused Library for the Discovery of Novel 

Antimycobacterials targeting CYP121  

 

 

Manuscript A 

 

The experimental contributions to this manuscript made by the respective persons are 

summarized below: 

 

Christian Brengel: He heterologously expressed CYP121 and executed the LC-MS/MS-based 

functional enzyme assay. He was involved in the synthesis of Mycocyclosin. Furthermore, he 

performed the SPR and heme assay screening. Additionally, he determined the MIC values on 

M. bovis BCGT. 

 

Andreas Thomann: He heterologously expressed CYP121. He performed molecular docking 

studies. Furthermore, he executed heme assay screening. Additionally, he determined the MIC 

values on M. bovis BCGT.  

 

Alexander Schifrin: He measured the CO-spectra of and CYP121. 

 

Giuseppe Allegretta: He developed LC-MS/MS method of mycocyclosin and cYY. 

 

Ahmed Kamal: He synthesized cYY. 

 

Sang Hyun Cho: He determined MIC values on M. tuberculosis. 
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ABSTRACT: The appearance of multi-drug resistance (MDR) combined with a generally 

complicated long-term treatment hamper the therapy of Mycobacterium tuberculosis (Mtb) infections. 

Therefore, the development of novel antimycobacterial agents with new modes of action is urgently 

required. CYP121 was shown to be a promising novel target for inhibition of mycobacterial growth. 

However, besides the identification of azole antifungals as molecules that interfere with this system, 

not many efforts have been made to develop new inhibitors. In this study, we describe the rational 

discovery of new CYP121 inhibitors by a systematic screening based on biophysical and 

microbiological methods. Best hits originating from only one structural class gave first information 

about molecular motifs required for binding and activity. The initial screening procedure was followed 

by mode of action studies and further biological characterizations. The results demonstrate a superior 

antimycobacterial efficacy and a reduced toxicity profile of our frontrunner compound compared to 

the reference econazole. Due to its low molecular weight, promising biological profile and 

advantageous physicochemical properties this compound displays an excellent starting point for 

further rational optimization.  
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Tuberculosis belongs to the most lethal infectious diseases caused by bacteria. According to the WHO 

Global Tuberculosis Report,
1
 1.5 million people died in 2013 due to infections caused by Mtb. This 

goes along with an estimated amount of 9 million new cases of Mtb infections arising each year. 

Despite a broad spectrum of first and second line antimycobacterial drugs, there is an antibiotic gap 

for the treatment of infections with multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) 

Mtb.
1
 Additionally, alarming reports have been published describing totally-drug-resistant Mtb (TDR-

TB).
2,3

 Moreover, tuberculosis still requires long-term treatment leading to an increased probability for 

non-compliance which impairs the therapeutic outcome.
4
 Hence, there is an urgent need for new 

antimycobacterial agents with novel modes of action which in best case could also lead to shorter 

treatment periods. 

Driven by the elucidation of the Mtb genome in 1998
5
, new potential drug targets were identified.

6
 

Interestingly, Mtb exhibits an unusual high number of twenty P450 enzymes in contrast to other 

bacteria. Further studies have revealed some of them to be essential for viability, survival and/or 

pathogenicity.
7
 Out of these, CYP121 was shown to be essential for bacterial growth by an in vitro 

knock out study.
8
 Moreover, the deficient strain could be revived by a complementary plasmid.

8,9
 The 

first evidence of CYP121 function in Mtb was derived from its gene position which is located in an 

operon harboring two enzymes involved in the formation of cyclo-di-l-tyrosine (cYY).
10

 In vitro 

studies provided proof, that CYP121 catalyzes the reaction of cYY to mycocyclosin with high 

substrate specificity.
10,11

 The role of its substrate and product in the cellular setting remains to be 

elucidated. However, the variety of biological functions of diketopiperazines is well described e.g. as 

quorum sensing signals.
12

 Thus, besides development of antimycobacterials targeting CYP121, a small 

selective molecule with in cellulo efficiency may help to understand the precise function of CYP121.  

Despite the fact that CYP121 is a potential target for Mtb treatment only little efforts have been 

undertaken to identify potent inhibitors. Hudson et al. published several compounds designed for 

selective CYP121 binding and inhibition. However, none of them were shown to be effective against 

Mtb.
13

 Fonveille et al. described a CYP121 inhibitory effect of cYY derivatives without data on 

bacterial growth.
11,14

 Regarding compounds with cellular activity, it was shown that azole antifungals 

bind tightly to CYP121 and exhibit an in vitro and in vivo activity against Mtb.
15–20

 



33 Results 

 

 

 

Scheme 1. Hit finding progress. The initial library (139 compounds) was built of inhibitors designed 

for inhibition of human CYP11B1/2, CYP17 and CYP19 with regard to structural diversity. A positive 

SPR screening hit was defined by the coefficient of its response divided by the response of the positive 

control (econazole) which had to be above 0.5 (R/Rpos > 0.5). This resulted in 44 positives. From this 

preselection, eight compounds coordinated iron-heme with a KD < 15 µM. These compounds were 

tested against BCGT and three showed a MICBCGT < 10 mg/L. Finally, one compound was highly 

active on Mtb with a MICMtb < 1 mg/L. 

 

Furthermore, the binding to the enzyme was in good correlation with the antimycobacterial effect.
8,20

 

As the azole antifungals are active on Mtb cells and effective in mice infection models  they display a 

valuable reference for antimycobacterial CYP inhibitors.
15–20

 

The essential role of CYP121 for Mtb survival and our expertise in developing potent and selective 

human steroidogenic CYP enzyme inhibitors, motivated us to identify novel CYP121 inhibitors with 

increased efficiency and improved properties compared to the azole antifungals.
21–25

 Potential 

antimycobacterial activity could provide further evidence of target validity, drugability and stimulate 

development of respective inhibitors towards new therapeutic agents bearing the potential to treat 

MDR and XDR Mtb infections. For these reasons, we established a screening strategy based on in 

vitro and cell-based assays (Scheme 1). By the use of a small highly diverse library composed of our 
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CYP-inhibitors, we could identify a CYP121 inhibitor with increased antimycobacterial potency 

compared to positive control econazole. 

 

 

Figure 1. Classes of the library used for screening against CYP121 with their respective number of 

representatives stated in brackets. The structures represent the core scaffold of the compound where R 

is a substituent, X represent the position of either nitrogen or CH, and []n the alkyl chain length of n 

methylene units. 

 

This compound possesses desirable physicochemical properties, low toxicity towards human cells and 

high antibacterial selectivity against Mtb, rendering it an appropriate candidate for further 

optimization.  

RESULTS AND DISCUSSION 

Library generation. For hit discovery we selected 139 compounds from our in-house CYP-inhibitor 

library designed for inhibition of CYP17, CYP19, CYP11B1 and B2 (Supporting Information). The 

screening library is composed of six different scaffolds to ensure a broad structural diversity (Figure 

1). Additionally, known pharmacological profiles, drug-likeness, and established synthetic routes of 

the compounds provide an ideal starting point for future optimization. As a reference compound we 

chose econazole which was shown to have the highest reported affinity to CYP121 (UV/Vis heme 

P450 binding assay) and the strongest inhibition of mycobacterial growth in the class of azole 

antifungals. 
17,20
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Enzyme expression, characterization and initial SPR Screening. As starting point for SPR 

screening we expressed CYP121 in a heterologous host (E. coli K12 BL21) and purified the protein by 

ion affinity chromatography (IMAC). Notably, addition of 1% Triton-X-100 into the lysis buffer 

during purification increased the protein yield by about 10-fold.
26

 The purity of the enzyme was deter 

mined by SDS-PAGE (Supp. Data, section 2, Figure S1). 

 

Figure 2. SPR screening results: compounds plotted versus their R/Rpos values. Econazole (100 µM) 

was used as a positive control and its SPR response was set to 1 (Rpos). The compounds were tested at 

a concentration of 100 µM and their response (R) was divided through the response of positive control 

(R/Rpos). Hit compounds possess R/Rpos values > 0.5 (horizontal solid grey line). Vertical dashed lines 

separate the six classes. 

To ensure active protein conformation we conducted enzymatic in vitro activity tests. A first 

experiment to gain information about activity of P450 enzymes is the determination of CO-binding 

spectra.
27

 50% of the expressed enzyme showed the typical P450 band of CO-bound heme after 

dithionate reduction (Supp. Data, section 3, Figure S2 and S3). Using the same experimental 

conditions but replacing sodium dithionate, we were able to identify Etp1fd (516-618) as ferredoxin 

and Arh1_A18G as ferredoxin reductase, two proteins of the fungus/fission yeast 

Schizosaccharomyces pombe,
28,29

 as suitable heterologous electron transfer system for CYP121. 

Additionally, utilizing the latter system, we could show conversion of cYY to mycocyclosin proving 

enzymatic activity of CYP121 (Supp. Data, section 4, Figure S4 and S5).  
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For SPR immobilization of the protein we used the biotin-streptavidin interaction.
30

 Prior to 

immobilization we conjugated a biotin tag to CYP121. To confirm applicability of the SPR method, 

we determined a response curve of econazole to the target protein (Supp. Data, section 5, Figure S6).
8
 

The SPR signal of econazole, measured in response units (RU), was set to one (Rpos). The binding 

event of library compounds (R) was referenced to the positive control and declared as R/Rpos. We 

defined R/Rpos > 0.5 as the threshold for hits from SPR screening procedure. Using this approach, we 

identified 44 binders out of 139 compounds with representatives from all of the six classes (Figure 2). 

Notably, we found 17 compounds with higher responses than econazole (Supp. Data, section 6, Table 

S1).  

Binding mode and affinity characterization via UV/Vis heme binding assay. The 44 SPR binders 

were investigated for their ability to interact with the iron(II)-heme by monitoring the shift of the 

characteristic absorbance band at 416 nm of CYP121 (Figure 3).
8,13

 In addition to the 44 SPR hits, we 

also took two weak SPR binders into consideration (I:1 and I:33, R/Rpos < 0.5) to conduct a 

retrospective evaluation of the reliability of our SPR screening. McLean et al. reported that econazole 

has a tight-binding profile to CYP121 with a KD = 0.02 µM.
8
 However, we observed a KD of 3 µM. 

This discrepancy could be due to a difference in UV/Vis spectrometric devices used and, thus, limited 

sensitivity. To provide a higher throughput employing 96-well plates, we were limited to a higher 

enzyme concentration which impairs measurement in lower nanomolar ranges. Compounds were 

initially tested at a concentration of 100 µM to identify iron-heme interactions and distinguish between 

type I (water bridged iron-interaction) and type II (direct iron-interaction) binding. 
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Figure 3. Binding of I:47 to CYP121 as determined from heme coordination assay. (a): UV/Vis 

spectrum (left inset) and difference spectra (upper right inset) were recorded of the enzyme in the 

presence of I:47 (100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39, 0.20, 0,10 µM; dotted lines) and in the 

absence of I:47 (solid line). (b): The KD value of I:47 was derived by non-linear fitting of the data 

using Equations 1 and the difference in absorption at 430 and 410 nm. 

 

30 compounds showed a type II shift while none showed type I binding behavior. The latter 

compounds appear in class I, II, III and IV indicating that the catalytic center accepts imidazolyl- and 

pyridinyl-moieties for iron-heme coordination. I:1 and I:33 (weak SPR binders) did not coordinate the 

heme-iron which emphasizes the suitability of our SPR screening procedure. The identified type II 

binders were further investigated regarding their KD. For eight binders an affinity better than 15 µM 

was observed (Supp. Data, section 6, Table S1). Interestingly, this subset of compounds only arose 

from classes I and II. Pyridinyl (class II) as well as imidazolyl (class I) motifs were tolerated as heme 

coordinators while the imidazolyl ligands showed higher affinities (Supp. Data, section 6, Table S1). 

With regard to class I the highest affinity could be found for compounds decorated with hydrophobic 

and space-demanding moieties connected to the benzylimidazole substructure. This is also a structural 

trend in the class of antimycobacterial azoles (e.g. econazole, clotrimazole).
8
 The most affine binder 

I:16 showed three-fold improved KD compared to econazole (KD = 3 µM) (Supp. Data, section 6, 

Table S1). Furthermore, two linearized, para-substituted biphenyl compounds of this class (I:47 and 
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I:48) possessed a CYP121 affinity comparable to econazole. As mentioned before, molecules with 

linear biphenyl units bearing an N-methylenbenzimidazoyl moiety instead of an unsubstituted 

benzylimidazolyl scaffold did not bind to the heme (I:33). Additionally, replacement of the 

interconnecting phenyl group within this class by pyridinyl resulted in inactive compounds (I:1). 

Moreover, the analysis of all regioisomers of benzylimidazol scaffolds substituted with phenyl 

revealed that the para- (I:32) and meta- (I:30) position lead to comparable affinities. A phenyl group 

at the ortho-position (I:15) impairs binding. The para-benzodioxine substituent of I:48 and the para-

benzodioxole substituent of I:47 increase the affinity by about two-to threefold (Supp. Data, section 6 

Table S1). However, compared to econazole our most active compounds showed similar (e.g.: I:47; 5 

µM and I:48; 5 µM) or slightly better KD (I:16; 1 µM) (Supp. Data, section 7, Figure S7).  

MIC determination in BCGT and Mtb. For investigating cellular activity we focused on those 

compounds with a KD lower than 15 µM, but also added selected compounds showing low affinity to 

CYP121 as negative controls (Supp. Data, section 6, Table S1). In this setting, econazole was used as 

described antimycobacterial reference compound.
31

 For initial screening on mycobacterial growth 

inhibition we used the bovine strain BCGT. The strain serves as a suitable substitute for Mtb as it 

carries a copy of CYP121 in its genome with an overall amino acid identity of 100% in comparison to 

its Mtb congener (Supp. Data, section 8, Figure S8).
32

 Regarding the more complex situation in the 

cellular context, the six identified classes have to be discussed separately. In case of subset III to VI, 

we could only detect weak growth inhibition (MICBCGT > 10 mg/L; Supp. Data, section 6, Table S1). 

In class II three compounds were found to have a KD value below 15 µM but none of them had 

MICBCGT below 10 mg/L (II:20, see Supp. Data, section 6, Table S1). For econazole, we observed a 

MICBCGT= 5.4 mg/L which is in good correlation to previous findings.
31

 Most active compounds were 

observed in class I (Supp. Data, section 9, Figure S9 and S10). The best heme-binder to CYP121 

(I:16) with a three-fold increased affinity compared to econazole showed a MICBCGT of 1.6 mg/L. For 

I:47 and I:48 we could determine MICBCGTs = 0.3 mg/L and 2 mg/L which renders I:47 to be the most 

potent antimycobacterial compound in this subset. The MIC tests of negative controls out of class I 

(I:1 and I:33) showed no significant growth inhibition. Within class I results of the MIC assay are in 

good correlation to the KD values on the target enzyme CYP121 (Table 1).  

To test the potency of the most effective antimycobacterial compounds against the human pathogen 

Mtb, we used the MABA assay system. For MICMtb determination we chose the common laboratory 

strain H37Rv. In several studies the MICMtb value of econazole was determined ranging from 0.12 mg/L 

to 8 mg/L.
8,18

 To facilitate comparability of the MICMtb values, we referenced them to results made in 

our assay system where a MICMtb for econazole of 4.2 mg/L was determined previously.
31

 The most 

effective compounds were I:47 with MICMtb = 0.3 mg/L followed by I:16 (MICMtb = 1.9 mg/L) and 

I:48 (MICMtb = 3.5 mg/L, see Table 1). Notably, in terms of cellular efficiency metrics, I:47 has an 

AE = 0.39 and hence, a higher AE than econazole (0.24) and rifampicin (0.16) (Supp. Data, section 10, 

Table S2). 
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Table 1. Structures, relative SPR responses (R/Rpos), binding affinities (KD) and antimycobacterial 

activities of econazole, most active hits (I:16, I:47, I:48), examples for negatives (I:1, I:33) and for 

moderately active hits (I:15, I:30, I:32).  

 

Cmpd

. 

SPR 

[R/Rpos] 

Haem KD 

[µM] 

MICBCGT  

[mg/L] 

MICBCGT  

[µM] 

MICMtb  

[mg/L] 

MICMtb  

[µM] 

Eco
a 1 3 5.4 14 4.2

b 
11

b
 

I:1 0.4 >100 >25 >100 - - 

I:15 0.3 34 9.6 41 - - 

I:16 1.2 1 1.6 5 1.9 6 

I:30 1.4 11 2.6 11 11.2 48 

I:32 1.1 14 7.0 30 9.6 41 

I:33 0.1 >100 >25 >100 - - 

I:47 0.6 5 0.3 1 0.3 1 

I:48 0.6 5 2.0 7 3.5 12 

a 
Eco = econazole, 

b 
MICMtb determined previously.

31
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Table 2. Comparison of human cellular toxicity and anti-Mtb effect.  

Compound 
MICMtb  

[mg/L] 

LD50 HEK 293 cells 

[mg/L] 

Toxicity factor 

MICMtb/LD50
a
 

Eco 4.2 6.0 1.4 

I:16 1.9 6.1 3.2 

I:47 0.3 18.6 62.0 

I:48 3.5 22.3 6.4 

a 
Toxicity factor (MICMtb (Mtb) divided by LD50 (HEK293)) was used to enhance comparability of 

compounds with regard to their antimycobacterial effect. 

 

Toxicity on human cell lines. The azole antifungals are known to attenuate growth of several human 

cell lines.
33,34

 To compare cellular toxicity of econazole with our three most promising hits we used 

HEK293 cells in a MTT-based assay.
35

 6.0 mg/L of econazole killed 50% of HEK 293 cell population 

after 48 h. Notably, the toxicity of our most active antimycobacterial compounds was lower compared 

to the azole antifungal drug (I:16 LD50 = 6.1 mg/L; I:47 LD50 = 18.6 mg/L; I:48 22.3 mg/L). For 

comparability reasons, we calculated the toxicity factor for I:47 (MICMtb/LD50), which revealed a 44-

fold improvement compared to econazole (Table 2). One of the most prominent undesirable effects of 

azole antifungals is their hepatotoxicity observed in mice.
34,36

 For this reason, we also conducted 

toxicity experiments employing HepG2 cells. We could observe an approximately 2-fold increased 

toxicity for econazole (3.1 mg/L) and I:16 (3.9 mg/L) compared to HEK293 cells. The LD50 of I:47 

was 17.1 mg/L which is close to the toxicity seen in HEK cells. (vide supra, Supp. Data, section 11, 

Table S3). 

In vitro and in cellulo mode of action studies. In addition to the binding constant, we determined 

inhibition of CYP121 enzymatic reaction by I:47. The enzyme catalyzes the formation of an 

intramolecular C-C bond between the carbon atoms in ortho-position to the hydroxyl-group of the 

phenol-moiety of cYY resulting in the production of mycocyclosin.
10

 For assessing CYP121 activity 

we used an artificial redox-system from Schizosaccharomyces pombe (ferredoxin Etp1fd (516-618) 

and ferredoxin reductase Arh1_A18G).
29

 This redox-system is known for its broad applicability as 

electron-donor for CYP enzymatic reactions but firstly described for CYP121 herein. Indeed, we could 

observe an inhibition of product formation confirming I:47 to be a potent inhibitor of mycocyclosin 

production by interference with CYP121 in vitro (Supp. Data, SI section 1). 
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Figure 4. Molecular docking of I:47 against the prepared co-crystal structure of CYP121. Heme 

coordination was a prerequisite for the docking process which was achieve by placing a 

pharmacophore feature on the interacting metal and ligand position. Resulting docking poses were 

sorted by score (E_refine) and the highest scored pose is depicted as 3D model (a) and 2D-interaction 

chart (b). I:47 shows close van der Waals contacts to surrounding amino acids but also possibilities for 

compound enlargement (b). The grey surface in panel (a) represents the van der Waals surface of the 

protein, which is also shown as dotted lines in panel (b). 

 

To gather further evidence for target-based mycobacterial selectivity towards other bacteria, we 

assessed the activity of our compounds on growth of E. coli TolC as a representative for Gram-

negative bacteria and S. aureus Newmann strain for Gram-positive. The results show no significant 

growth inhibition of I:47 and I:48 against the latter bacteria (MICMtb > 100µM or > 25 mg/L). In 

contrast to econazole and I:16 that showed certain inhibitory effects for E. coli and S. aureus in higher 

concentrations (Supp. Data, section 12, Figure S11). 

Physicochemical and selectivity profile of I:47. The aforementioned compounds were originally 

designed as inhibitors of human CYP17, CYP19 and CYP11B1/2 known to be involved in steroid 

biosynthesis. I:47 was initially synthesized as an inhibitor of CYP17. The compound showed only a 

low activity on CYP17 compared to other inhibitors with an IC50 = 3.1 µM. Additionally, only a 48 % 

inhibition of aromatase at a concentration of 25 µM was observed.
37
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Regarding physicochemical properties suitable for permeation through the cellular membranes, one 

has to differentiate between biological barriers of human and mycobacterial origin. For humans, a 

guidepost for appropriate physicochemical properties is the Lipinski’s rule of five for oral 

bioavailability of drugs (< 5 hydrogen bond donors, ≤ 10 hydrogen bond acceptors, MW < 500 Da, 

logP ≤ 5).
38

 Our frontrunner compound I:47 fulfils all four criteria (0 hydrogen bond donors, 3 

hydrogen bond acceptors, MW = 278 Da, log P = 3.1) (Supp. Data, section 13). To the best of our 

knowledge, akin correlations for physicochemical properties with mycobacterial membrane passage 

were not set up, yet. Thus, a respective guide for compound development is still missing.
39

 

Molecular modelling studies on the binding mode of I:47. As a type II binding profile was observed 

for I:47, we set up a constrained docking protocol to predict its binding mode to the heme center of 

CYP121. Docking to the active site of CYP121 was restricted by two essential pharmacophore 

features reflecting the direct interaction between the coordinated iron and I:47 (type II binding). The 

resulting docking poses were sorted by their predicted binding energies and the best scored docking 

pose was chosen for further studies (Figure 4). This modelling approach revealed new possibilities for 

further derivatization or rigidification. For instance, intramolecular linking of the methylene bridge at 

the imidazolyl unit with the ortho-position of phenyl using e.g. a five-membered ring should be 

tolerated by CYP121 and increase affinity through reduction of entropic penalties upon binding. 

Furthermore, the central hydrophobic aromatic moiety shows Van-der-Waals contacts to flanking 

hydrophobic amino acids Phe-168 and Met-62. Regarding steric factors, the ring could easily rotate in 

this position. This degree of rotatable freedom might be necessary to place the aforementioned phenyl 

in a suitable position to grant access to a large flat subpocket (composed of Met-61, Asn-84 and the 

backbone of Asn-83) which could then be reached by substituents at its 2-postion. The 1,3-

benzodioxole moiety was placed in a hydrophilic subpocket, formed by Arg-72, Asn-74 and Thr-65, 

which is in good accordance with the low lipophilicity of this motif (cLogP = 0.27). Moreover, the 5-

position of 1,3-benzodioxole holds great potential for further enlargement of the molecule, as it 

directly points to another subpocket which is decorated with several hydrophobic amino acids, namely 

Leu-73, Phe-280, Leu-284 and the sidechain of Gln-385. 

 

CONCLUSION 

Despite the fact that CYP121 had been reported to be a potential target for the treatment of Mtb 

infections, not many inhibitors with cellular activity had been discovered. Herein we have presented a 

rational screening approach to address CYP121 by a small library focused on privileged scaffolds for 

CYP enzyme inhibition. The identified compounds could help to clarify the hitherto unknown role of 

CYP121 in Mtb metabolism and provide a good starting point for a drug optimization program. 

Our search for new inhibitors of CYP121 started with an initial SPR screen of the aforementioned 

focused library. As the compounds were designed for P450 inhibition we observed a high number of 

binders (32%). The identified compound classes differed highly with regard to their structures. 
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Obviously, the large pocket of CYP121 (1350 Å
3
) which is necessary for the sterically demanding 

enzyme reaction can accept a large variety of differently shaped molecules.
8,10,40,41

 However, it has to 

be noted that the SPR method does not exclude compound attachment outside the enzymes active site. 

For rational design approaches it is of high interest to clarify the binding mode and affinity of our hit 

compounds. A common method for P450 enzymes to address this issue is the heme coordination 

assay.
8
 All SPR-binders from classes III, IV, V and VI had only weak affinity to the heme-iron (KD > 

100µM). IV:13 is the only compound from this subset that could be titrated and gave a KD of 62 µM 

(Supp. Data, section 6, Table 1). Therefore, we conclude that most of the compounds from these 

classes do not bind directly to heme but address another unknown site. This information could, 

however, be valuable for fragment-linking approaches at a later stage of drug development. For classes 

I and II we identified eight compounds with KD values below 15 µM. Notably, the best compounds of 

class II (II:20 and II:34) contained a space-demanding trityl-moiety. It was discussed for a crystal 

structure of CYP121 (PDB-ID: 1N40) that Arg-386 may restrict access of voluminous moieties to the 

iron-heme.
40

 Nevertheless, we observed that the enzyme can accommodate space-demanding 

molecules at the heme-site as shown by our UV/Vis experiments. Binders with the best affinity were 

found in class I. A comparison of compound structures and binding efficiencies within this class gave 

first evidence for properties needed to gain affinity towards CYP121. Imidazolyl head group linked by 

an methylene bridge to a hydrophobic core can be considered as an important basic structure for a 

good binding efficiency (I:16, I:47 and I:48). In case of the linearized compounds, an N- 

methylenbenzimidazoyl head group (I:33), ortho-substituted biphenyl system (I:15), and an 

interconnecting pyridinyl (I:1) ring had unfavorable binding properties. In a hit optimization process 

these structural characteristics should be avoided. In contrast to this observation, a para-benzodioxine 

substituent (I:48) and a para-benzodioxole substituent (I:47) linked to the biphenyl system increases 

affinity. This might provide a possible position for further derivatization. Our docking study supports 

this result as this motif was predicted to be placed in a subpocket having a great potential for new 

interactions. 

A straightforward approach for target validation is to correlate on-target potency and cellular activity. 

Although it has to be noted, that such a correlation can be flawed by the fact that compounds might 

also be inefficient due to e.g. poor membrane penetration. We hypothesized that class II might be a 

prime example for compounds that poorly permeate the membrane of mycobacteria and, thus, cannot 

reach their intracellular target. This could be an explanation for the lack of in cellulo activity although 

a moderate affinity to the target was measured. 

Class I is the most remarkable of the six classes showing reasonable affinity towards CYP121 and, 

more importantly, also high activity in cellulo against Mtb and BCGT. Furthermore, the on-target 

affinity of class I compounds directly correlates with their activity on mycobacteria which provides 

further evidence of a CYP121-dependent effect. In detail, on-target inactive compounds like I:1 and 

I:33 had no activity against BCGT, while moderate binders e.g. I:15, I:30 and I:32 had low 
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antimycobacterial effects. Finally, compounds with highest affinity (I:16, I:47, I:48) were the most 

potent in the cellular setting. Especially, compounds I:16, I:47, and I:48 are even more effective on 

mycobacteria than the positive control, econazole, although no optimization has been undertaken, yet 

(Table 1). In terms of antibacterial efficiency (AE), I:47 is superior to econazole and the first-line drug 

rifampicin indicating an excellent optimization potential of this novel inhibitor class. Moreover, we 

could provide data that I:47 does not only bind to CYP121 but does also inhibit the enzyme reaction 

(Supp. Data, section 4). The correlation between MIC and KD bares minor inconsistences, which might 

be due to poor penetration through the mycobacterial cell wall of some compounds (see e.g. I:47 and 

econazole). A highly lipophilic molecule (e.g. econazole cLogP = 5.3 vs. I:47 cLogP = 3.1) might be 

trapped in this lipophilic barrier containing mycolic acids and slowly or only partially released into the 

mycobacterial cytoplasm. This results in lower cellular activity than expected from on-target affinities. 

A second explanation for the differences in MIC and KD, at least for econazole, is its promiscuous 

behavior in different growth inhibition assays. This suggests that there are additional targets for 

econazole. An explanation for the antibacterial activity of econazole against E. coli and S. aureus was 

already provided before. In these studies econazole was described as an inhibitor of 

Flavohemoglobin.
42,43

 Further possible target systems of azole antifungals within Mtb metabolism 

have also been described.
44–46

  However, evaluation of I:47 and I:48 leads to the conclusion that these 

novel structures are of improved selectivity towards Mtb with a good correlation of CYP121 affinity 

and antimycobacterial activity. Furthermore, the two compounds possess lower toxicity against human 

cells than determined for econazole. Although toxicity to hepatocyctes was low, it is of high interest to 

clarify potential inhibition of metabolizing CYP enzymes (e.g. CYP3A4). These results further 

underline the target-based mycobacterial specificity of our compounds, at least in the subset of 

bacterial and human cells tested. Taken together the in vitro and cell-based studies conducted herein, 

CYP121 is most certainly the major target of I:47 and I:48.  

In summary, we have reported a biophysical screening procedure employing a focused library of 

privileged scaffolds, which ultimately lead to the discovery of novel CYP121 inhibitors. From this 

process, I:47 turned out to be the most promising hit compound pairing convincing antimycobacterial 

activity and bacterial selectivity with a good toxicity profile. Furthermore, this compound exhibits a 

fragment-like molecular weight and preferable physiochemical properties that fulfil the Lipinski rules 

for oral bioavailability (Supp. Data, section 13). Thus, I:47 is an excellent starting point for rational 

structure-based drug discovery. Our in silico studies revealed several possible modifications to be 

investigated in future optimization steps. Additionally, the inhibitor might be a suitable candidate for 

an in vivo proof-of-concept study towards validation of CYP121 as a drug target. 

 

METHODS 
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SPR-Screening: SPR binding studies were performed using a Reichert SR7500DC instrument optical 

biosensor (Reichert Technologies, Munich, DE) and SAD500m sensor chips obtained from XanTec 

Bioanalytics. 

CYP121 was immobilized on a SAD500m sensor chip at 12 °C using standard biotin-streptavidin 

complexation. The surface of both channels was quenched by a 3 min injection of 0.003 mg/mL biotin. 

CYP121 was immobilized at densities between 5000 and 6000 RU for binding studies.  

UV/Vis heme P450 binding assay. Optical titration experiments were performed in 96 well plates 

(Greiner, Kremsmünster, AT; transparent round bottom). The data were recorded using Tecan infinite 

M200Pro Nano Quant (Tecan Groupe Ltd., Männedorf, DE). Absorbance of enzyme and enzyme-

inhibitor complex was measured between 350 and 500 nm in 1 nm steps with 10 flashes. Compounds 

were titrated from DMSO stock solutions maintaining a final DMSO concentration of 1%. CYP121 

was used in a concentration of 0.25 µM. Data were plotted as optical shift versus ligand concentration. 

Equation 1 (Eq. 1) was used for non-linear regression of the resulting dose–response curves employing 

the Levenberg–Marquardt algorithm of Sigma Plot 12 (Systat Software GmbH, Erkrath, DE). 

 𝑓 =  𝑦𝑚𝑖𝑛 +
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

1+(
𝑥

𝐾𝐷
)

−𝑠𝑙𝑜𝑝𝑒 

Equation 1. f is the observed difference in absorbance at wavelengths 410 nm and 430 nm within the 

difference spectrum (see Figure 3) at ligand concentration x. This difference spectrum is obtained by 

subtracting the pure heme absorption spectrum from those with ligand present. ymax refers to the 

absorbance change at ligand saturation, ymin is the extrapolated minimal difference in absorbance; KD 

refers to the dissociation constant of the CYP121 ligand complex.
20

 

Determination of BCGT MICBCGT by OD600 assay. A pre-culture of BCGT was grown in 7H9 

medium supplemented with ADC Enrichment for 10 days. The assay was performed in 48 well plates 

(Greiner, Kremsmünster, AT). Prior to culture addition, compounds were serially diluted in DMSO to 

fit a final DMSO concentration of 1%. For compound susceptibility the pre-culture was diluted 1:100 

with fresh medium (7H9 + ADC enrichment). After 168 h of incubation at 37 °C and 80% air 

moisture, bacterial growth was measured by determination of OD600. Absorption data was recorded on 

a Polarstar Omega Multidetection Plate Reader (BMG LABTECH, Ortenberg, DE). Graphs were 

plotted with GraphPad Prism using OneSite Log IC50 model provided by the software. MICBCGT was 

defined as the concentration at which 50 percent of growth was detected in accordance with previous 

methods used.
31

  

In analogy to ligand efficiency, which relates activity of compounds to their number of heavy atoms, a 

new metric has been introduced: antibacterial efficiency (AE).
47,48

 This coefficient was developed for 

better comparability of antimicrobial compounds differing in molecular weight (Eq.2). 

𝐴𝐸 =  −𝑙𝑛 (
𝑀𝐼𝐶

𝑁𝐻𝐴
) 
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Equation 2. AE refers to the antibacterial efficiency, MIC is the minimal inhibitory concentration, and 

NHA equals the number of heavy atoms in a given compound. 

Human cytotoxicity assay. HEK 293 cells (2×10
5
 cells per well) were seeded in 24-well, flat-

bottomed plates (Greiner Bioscience, Kremsmünster, AT). Culturing of cells, incubations and OD 

measurements were performed as described previously
35

 with minor modifications. 24 h after seeding 

of the cells the incubation was started by the addition of the compounds from DMSO stock solutions 

to a final DMSO concentration of 1%. The living cell mass was determined 48 h after addition of the 

compounds and was followed by the calculation of LD50 values. The calculation of the LC50 values 

was performed by plotting the percent inhibition vs. the concentration of inhibitor on a semi-

logarithmic plot. From this, the molar concentration causing 50% reduction of the living cell mass was 

calculated. At least three independent experiments were performed for each compound. 
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The experimental contributions to this manuscript made by the respective persons are 

summarized below: 

 

Christian Brengel: He heterologously expressed CYP121, CP125, and CYP142. Furthermore, 

he executed the SPR mesurement, heme assay and the MTT assay.  

 

Andreas Thomann: He heterologously expressed CYP121, CP125. Furthermore, he executed 

heme assay.  

 

Alexander Schifrin: He measured the CO-spectra of CYP125 and CYP121 
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Abstract: Tuberculosis which is predominantly caused by Mycobacterium tuberculosis (Mtb) is still 

the most lethal bacterial infection with 1.5 million casualties in 2014. Moreover, appearance of 

resistant mutants and the long term treatment being coupled with economic problems of developing 

countries hamper an efficient therapy. The interference with the essential cholesterol metabolism of 

Mtb could be a promising novel strategy to fight Mtb infections. CYP125, a P450 enzyme in Mtb, was 

shown to play an important role in this metabolic pathway. For this reason, we used a combined 

screening approach of surface plasmon resonance spectroscopy (SPR) and heme coordination assay to 

identify new CYP125 binders employing a focused P450-inhibitor library. We could identify first hits 

with high affinity and favourable ligand efficiencies (LE). Furthermore, frontrunner compounds 

showed also selectivity towards CYP121 specific to Mtb and required for its survival. To date, these 

are the first compounds targeting CYP125 with low nanomolar affinity. 

Introduction 

Since the discovery of first drugs for the therapy of tuberculosis (TB) in the 1940´s many new 

compounds and therapeutic regimes have been developed to improve treatment of TB.
[1,2]

 Despite 

these great successes, the World Health Organization (WHO) registered 9 million new infections and 

1.5 million cases of death caused by the disease in 2014.
[3]

 Key problems are the long term treatment 

of at least 6 months, resistance development against anti-TB drugs and co-infections with human 

immunodeficiency virus (HIV). In this respect, new anti-TB drugs, should address these circumstances 

and most preferably reduce hospitalization and increase therapeutic success of treatment-resistant 

TB.
[2,4]

 For these reasons, there is an urgent need for new drug targets with novel modes of action to 

improve the portfolio of anti-TB drugs. 

In 2007 Chang et al. identified an interesting sequence in the genome of Mtb which is required for 

mycobacterial growth in macrophages. The so called “igr” operon (derived from “intracellular 

growth”) was also confirmed to be essential for Mtb’s full virulence in an in vivo scenario.
[5]

 In 

subsequent studies it could be shown that the respective operon is involved in cholesterol metabolism 

of Mtb. Therein, a Δigr mutant was not able to grow on cholesterol and the supplementation of an 

additional source of nutrition demonstrated only insufficient recovery of growth. These findings 

suggested an intoxicating effect caused by the sterol.
[6]

 In the same year CYP125, a P450 enzyme 

encoded in the igr operon, was reported to efficiently metabolize cholesterol.
[7]

 Capyk et al. could 

generate a Δcyp125 knock-out strain of M. bovis BCG which was unable to survive on cholesterol 

supplemented medium indicating the CYP-enzyme to be a key player for cholesterol detoxification. 

However, this finding could not be confirmed by a Δcyp125 mutant of M. tuberculosis H37Rv.
[8]

 

Further investigations explained this observation with the presence of a compensatory enzyme, namely 

CYP142 in the laboratory strain H37Rv. However, the latter enzyme is not present in the clinical isolate 

CDC1551, questioning the clinical relevance of this bypass.
[9,10]

 Moreover, in this study the previous 
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results found for BCG were corroborated which still render CYP125 as a key enzyme  for cholesterol 

metabolism.
[9]

 

As metabolism of cholesterol plays an essential role in persistence and virulence of Mtb, interference 

with the key player CYP125 could be a new promising strategy for TB treatment.
[6,9,11]

 Until today, 

besides the azole-antifungals, there is only one inhibitor of CYP125 described: LP10.
[7,12]

 

Interestingly, LP10 was not designed for inhibition of CYP125 but was discovered as an inhibitor of 

CYP51 from Trypanosoma cruzi.
[13]

 CYP125 inhibition was only moderate which was explained with 

its lower affinity compared to the substrate cholest-4-en-3-one (CHN).
[12]

  

Herein, we employed a combined biophysical screening approach for the discovery of new CYP125 

binders with increased affinity and favorable Ligand Efficiency (LE).
[14]

  The compounds discovered 

showed 7 to 70 times higher affinity for CYP125 than its substrate CHN rendering promising starting 

points for future drug optimization campaigns. 

Results and Discussion 

Library generation 

 

 

Figure 1. Result of the SPR screening. 22 out of 132 compounds were hits with R/Rpos ≥1 with R = 

response of econazole (Eco), Rpos = response of library compound. 

 

For the SPR guided identification of CYP125 binders we started with a hand-picked selection of 132 

compounds from our in-house CYP inhibitor library focusing on structural diversity. The library 

contains compounds designed for inhibition of human steroidal P450 enzymes, especially CYP17, 

CYP11B1/2 and CYP19.
[15–36]

 These inhibitors are privileged to interact with P450 enzymes because 

of their nitrogen containing heterocycle enabling coordination to the iron(II) center of the heme.
[15]

 In 
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general huge benefits arise from the use of focused libraries: the hit rates are usually much higher, the 

biological activities are already known for the compounds and derivatization is often easy as synthetic 

routes are already established. Thus, for our compounds inhibition data for steroidogenic and hepatic 

CYP enzymes as well as cytotoxicity data were available.  

For the evaluation of our library compounds, two described inhibitors of CYP125, namely econazole 

(Eco) and LP10 served as reference compounds.
[7,12]

 

 

SPR screening 

CYP125 used for in vitro experiments was expressed in the heterologous host E.coli BL21 DE3 and 

was purified by affinity chromatography. The correct folding and function of the enzyme was 

confirmed with carbon monoxide binding spectra.
[37]

 In these studies we were also able to identify a 

new heterologous electron transfer system composed of Etp1fd (516-618) as ferrodoxin and 

Arh1_A18G as reductase.
[38,39]

 Biotinylated CYP125 was bound to the streptavidine labelled SPR 

sensor-chip.
[40]

  

The reference compound Eco is reported to form a type II complex with CYP125’s heme-iron.
[7]

 For 

initial validation of our SPR technique, we confirmed Eco binding at a concentration of 100 µM to 

immobilized CYP125. (SI Figure 1) For all library compounds the binding response of Eco (Rpos) was 

set to 1. The compounds were tested in the same concentration (100 µM) and their binding response 

(R) was referenced to the response of the positive control (R/Rpos). All compounds with an R/Rpos 

value ≥1 were regarded as hits in the following experiments and defined as SPR binders. The 

screening of the in-house library consisting of 132 compounds resulted in 22 binders which showed a 

broad structural variety. The observed hit rate (approximately 17%) is high confirming our initial 

hypothesis that choosing privileged structures results in lower attrition rates (Figure 1). 

 

UV-VIS heme P450 binding assay 

To derive detailed information of compound binding behavior we chose the UV-Vis heme 

coordination assay for P450 enzyme interaction.
[41]

 The assay was used to determine the binding 

affinity and the putative binding mode of our SPR hits. Such experiments, employing CYP125 are 

already described for Eco, the substrate CHN and LP10.
[7,9,12]

 In our study, we selected these three 

compounds as positive- and three weak SPR binders (C25, C53, C59) as negative controls (R/Rpos < 1, 

SI Table 1, Figure 2).
[7]

 LP10 and CHN bound as previously reported to CYP125 with slight 

differences in the KD values (KD CHN = 6.1 µM, KD LP10 = 4.6 µM; KD CHNLit = 1.2 µM, KD 

LP10lit = 1.7 µM).
[9,12]

 For LP10 an increase in absorbance of the low spin band at 420 nm is 

described (such compounds are defined as reverse type I binders), which we could confirm in our 

experiments.
[12]

 Interestingly, for econazole we observed a type I binding behavior with a KD of 

0.94 µM which differs from the type II profile with a KD of 11 µM described by McLean et al.
[7]

 

Notably, the co-crystal structure of econazole bound to CYP125 (PDB-ID: 3IW2) shows a water-
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bridge interaction with the iron-heme which supports our finding.
[7]

 From the initial 22 SPR binders, 

we identified 14 compounds that showed binding to the CYP125 heme with a KD < 30 µM (SI Table 

1). It is described, that the iron of the native enzyme is in equilibrium between low spin and high 

spin.
[7]

 Thus, a reverse type I binding as seen for LP10 might be possible for some of our compounds 

as well.
[12]

 Out of the 14 heme coordinators, nine show a characteristic type II or reverse type I profile. 

Their binding resulted in an absorbance maximum at a higher wavelength compared to LP10 (SI 

Table 2) and, hence, a type II interaction might be more plausible than a reverse type I. Nevertheless, a 

precise binding mode determination might require an analysis of the co-crystal structure of our hits 

and CYP125. For convenience we use in the following the term type II shift profile.  

With regard to type I binding behavior, we could identify further seven compounds fulfilling this 

profile. Five SPR hits do not seem to exhibit a heme coordination behavior (SI Table 1).The binders 

with highest affinity, C24 (type I: 0.26 µM) as well as C127, C128, and C130 (type II: C127 = 

0.85 µM; C128 = 0.084 µM; C130 = 0.17 µM) displayed a KD in the nanomolar range which, to the 

best of our knowledge, renders them the most affine compounds to CYP125 described to date (SI 

Table 1). The weak SPR binders (R/Rpos < 1) with a high structural relationship to strong binders were 

chosen for SPR screening procedure validation (SI Table 1; C25, C59, C53): 
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Figure 2. Chemical structures of the 22 SPR hits. 

C25 is an example for a weak binder which is structurally strongly related to the strong SPR and heme 

binders C23 and C24 (Figure 2). As expected, C25 did not interact with the heme iron (SI Table 1). 

Furthermore, C53 and C59 showing distinct structural analogy to Eco had exhibited low affinity in the 

SPR experiment. Thus, we were interested whether these compounds were false positives and tested 

them for heme coordination. Again, none of these compounds showed binding to CYP125 in the 

UV/VIS assay which validates our initial screen. Notably, we obtained several compounds (SI Table 

1; C45, C52, C83, C87, C90, and C119) with a stronger SPR response than Eco (R/Rpos ≥ 1) that did 

not interact with the heme iron. Such compounds are expected to bind to other binding sites of the 

protein without interacting with the iron in the catalytic center. They were excluded from the screening 

procedure but are still interesting as they might function as fragments in merging or linking strategies 

with type I or type II binders. However, with the information of the respective binding modes, one can 

faster and more rationally decide how to modify the binders or even combine given structures to 

generate inhibitors of higher activity. 

  

Structure binding relationships and Ligand Efficiencies 
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The gathered data from the two binding assays provide fundamental information for preliminary 

structure binding relationships (Table 1 and SI Table 1). The ligand efficiency (LE) as a classification 

index is not only indicative of the affinity of a compound but takes also its molecular weight into 

consideration: the LE is the free energy contribution for binding (expressed in kcal) per heavy atom 

(HA) of the molecule.
[14]

 These data were calculated to give estimation if a compound is suitable for 

efficient drug discovery with regard to its size and affinity (LE > 0.3). Having a look at the head 

groups needed for interaction with the heme iron a first SAR observation can be made. In case of the 

methylene-bridged imidazole residues only Eco binds in the nanomolar range (SI Table 1).
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Table 1. Heme binding affinity data, binding profiles and selectivity factors of CYP125 binders 

against Mtb CYP121 and the bypass enzyme CYP142. 

Cmpd 

CYP125 CYP142 CYP121 SF
[a] 

type 
KD 

[µM] 

LE  

[kcal/mol] 
type 

KD 

[µM] 

LE  

[kcal/mol] 
type 

KD 

[µM] 
142 vs. 125 121 vs. 125 

C3 
[19] II 19 0.35 II 0.893 0.45 weak >100 0.047 >5.26 

C5 
[18] II 28 0.29 II 6.265 0.14 weak >100 0.224 >3.57 

C16 
[17] I 16 0.32 I 19.71 0.31 II >100 1.232 >6.25 

C23 
[21] I 1.5 0.37 I 1.789 0.17 II 7.20 1.193 4.80 

C24 
[21] I 0.26 0.42 I 1.533 0.18 II 11.7 5.896 45.00 

C36 
[27,28] I 1.3 0.46 I 3.428 0.19 no >100 2.637 >76.92 

C37 
[27,28] I 1.1 0.49 no 100 0.33 no >100 90.909 >90.91 

C43 
[27,28] II 13.1 0.26 II 0.143 0.37 II 8.8 0.011 0.67 

C60 
[27,28] I 0.28 0.42 I 0.183 0.43 no >100 0.654 >357.14 

C126 
[20] II 2.1 0.27 no >100 --- no >100 >47.619 >47.62 

C127 
[20] II 0.85 0.47 II 0.096 0.55 II 2.6 0.113 3.06 

C128 
[20] II 0.084 0.50 II 0.008 0.57 II 1.33 0.095 15.83 

C129 
[20] II 1.34 0.41 II 0.062 0.50 II 2.5 0.046 1.87 

C130 
[20] II 0.174 0.53 II 0.252 0.51 II 1.8 1.448 10.34 

LP10 
[12] II 6.1 0.24 II 5.02 0.25 II 34.3 0.823 5.62 

Eco
[b] [7] I 0.941 0.35 II 0.767 0.36 II 2.8 0.815 2.98 

CHN
[c] [7] I 4.6 0.27 I 0.948 0.30 no >100 1.896 >200.00 

[a] SF = selectivity factor,[b] Eco = econazole, [c] CHN = Cholest-4-en-3-one 

 

All other compounds containing such a structure were only week binders or did not show any heme 

iron coordination respectively. (C16, C43, C52). In contrast to this, most of pyridinyl and 

benzimidazolyl head groups linked to different core structures are tolerated by the enzyme. In these 

subgroups, we identified type I as well as type II binders depending on the core structure. Notably, all 

benzimidazolyl-substituted compounds showed binding to CYP125 in both test systems (Figure 2), 

especially C60, with a KD value of 0.28 µM and a LE of 0.42 kcal/HA. The two derivatives of this 

subset having the phenyl residue replaced by a methyl group showed an even higher LE score (C36: 

0.46 kcal/HA, C37: 0.49 kcal/HA) (SI Table 1). This underlines the potential of the 1-benzyl-1H-

benzo[d]imidazole class as a promising starting point for hit optimization, as these compounds are still 

in the molecular weight range of fragments (< 300 Da). The SPR screening yielded various 

compounds bearing a pyridinyl head group linked to different core structures (Figure 2). In general, 

compounds with an 4-(indolin-5-yl)isoquinoline or 3-(indolin-5-yl)pyridine scaffold did not show 

heme interaction at the tested concentrations and were therefore excluded from further investigations. 
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The isonicotinamid and corresponding retroamid compounds (C3, C5) share some degree of structural 

similarity to literature described CYP125 inhibitor LP10. Both compounds generate a type II shift. KD 

values and LE (LP10: 6.1 µM and 0.24 kcal/HA; C5: 28 µM and 0.29 kcal/HA) are in an acceptable 

range but lower than seen for other high affinity ligands from the focused library. These structures 

should be regarded as second choice if the more affine compounds fail in a subsequent optimization 

process. The binders found in the 1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one class were of 

moderate affinity with a type II binding profile (Table 1). Because of their low affinity combined with 

their high molecular weight, C80 and C119 are not suitable for structural optimization regarding 

CYP125 inhibition. High affinity binders were identified in the 1,4-disubstituted 2-

(phenylethoxy)benzene and 4-benzylpyridine substituted subset (Figure 2). The latter derivatives bind 

in a type I mode to the enzyme. Interestingly, repositioning of the coordinating nitrogen from para to 

meta in the heteroaromatic ring of this compound class results in a 6-fold increase in binding affinity 

for C24 (KD = 0.26 µM) compared to C23 (KD = 1.5 µM) (Table 1). A reason for this increase could 

be a privileged angle for interaction of nitrogen with the coordinating water molecule linked to the 

heme iron or a more favorable interaction with other residues of the protein. With a LE score of 

0.42 kcal/HA C24 provides a considerable potential for further optimization. Most interestingly, 

highly activate compounds could also be observed in the group of 4-benzylpyridines. Three of the four 

compounds bind with low micromolar to nanomolar affinity to CYP125 (C127: 0.85 µM; C128: 

0.085 µM; C129: 1.34 µM; C130: 0.17 µM). Moreover, the low molecular weight of these compounds 

results in remarkable LE scores (C127: 0.47 kcal/HA; C128: 0.50 kcal/HA; C129: 0.41 kcal/HA; 

C130: 0.53 kcal/HA.). The p-hydroxyphenyl residue increases the affinity in comparison to the p-

fluorophenyl group. Presumably, an electron rich aromatic system is preferred or the hydroxyl-group 

undergoes additional interactions with the target. Regarding five-membered heterocycles, the electron-

rich thiophene compounds (C127, C130) showed also high affinity. In particular, we observed a 

difference between the thiophene regional isomers in the class of the aforementioned derivatives 

whereby the 2-substituted C127 compound is superior in terms of affinity over the 3-substituted 

congener C130 (Table 2). From the 132 initially tested compounds, C128 was the one with the highest 

affinity to CYP125 and is the most affine compound described in literature to date. With a 55-fold 

lower KD-value than the substrate CHN (KD = 4.6 µM), C128 should be a highly efficient inhibitor of 

the enzyme reaction.  

 

Selectivity among P450 enzymes 

As the library compounds were originally designed for the inhibition of human steroidogenic enzymes 

it was important to compare their activities towards human steroidogenic and hepatic as well as 

bacterial CYP enzymes (Table 2). Most compounds from our library are active in the nanomolar range 

against their respective target.
[15–36]

 From our 14 heme-binders we selected five, based on their LE 

score, to be the most promising hits (C24, C60, C127, C128, C130) for further selectivity evaluation. 
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Compounds out of the 2-(phenylethoxy)benzene class are potent inhibitors of CYP11B1 and 

CYP11B2. Although C24 showed good binding affinity to CYP125 (KD = 0.26 µM), an improvement 

of selectivity towards CYP11B1 and CYP11B2 enzymes is necessary (IC50 CYP11B1: 51°µM, IC50 

CYP11B2: 84°µM). The frontrunner compound of the 1-benzyl-1H-benzo[d]imidazole class, that is 

C60 (KD = 0.28 µM), was not active against CYP17 (6% inhibition at 2 µM) and CYP19 (2% 

inhibition at 0.5 µM) and showed only a weak inhibition of CYP11B2. The IC50 against CYP11B1 

(IC50 = 0.197 µM) is in a similar range as the KD value against CYP125. However, it should be noted 

that KD values are typically lower than IC50 values.
[42]

 Looking at the activity of 4-substituted 4-

benzylpyridines we observed similar values for C127 and C130 on CYP125, CYP17 and CYP11B1 

and CYP11B2 but with C128 an exception, as it showed a moderate selectivity over CYP17, CYP19, 

CYP11B1, CYP11B2 and CYP3A4 (Table 2). 

As the basis of our strategy is to interfere with a crucial function during host adaptation of Mtb we 

were interested to study whether the herein found inhibitors might also bind to an essential 

consistently expressed CYP enzyme of Mtb. 
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Table 2. Selectivity profile of most affine CYP125 heme ligands (KD < 1 

µM) versus human CYP enzymes. 

Cmpd. 

CYP125 

KD 

[nM] 

CYP17 

IC50 

[nM] 

CYP11B1 

IC50 

[nM] 

CYP11B2 

IC50 

[nM] 

CYP19 

IC50 

[nM] 

CYP3A4 

IC50 

[nM] 

C24 260 - 51 84 - - 

C60 280 
6% at 

2000 
197 1903 

2% at 

500 
 

C127 850 577 422 331 - - 

C128 84 248 251 341 3070 3210 

C130 174 647 415 796 - - 

 

 

We chose CYP121, an enzyme essential for Mtb in vitro, for the latter mentioned counter screen. In 

addition, we incorporated CYP142, the bypass enzyme of the CYP125 enzyme-reaction in Mtb H37Rv, 

to study the possibility of a dual target strategy.
[10,43]

 Here we determined selectivity factors (SF) to 

enhance comparability. When looking at the compounds with nanomolar binding affinity to CYP125 

we obtained different profiles depending on the compound class (Table 1). C24 is a selective binder of 

CYP125, with regard to CYP142, showing less selectivity to CYP121 (SFCYP142: 6; SFCYP121: 45). In 

contrast to C60 which also binds tightly to the bypass enzyme CYP142 and is a much weaker inhibitor 

of CYP121 (SFCYP142: 0.6; SFCYP121 > 350). With regard to CYP142, selectivity might not be desirable 

as blockage of the bypass could increase the effectivity of cholesterol metabolism targeted approach, 

at least in the lab strain H37Rv. In general, the 4-benzylpyridines C127, C128, C130 possess a tight 

binding profile and convincing LE scores on CYP142 and selectivity towards CYP121 with C128 

being the most promising compound overall (C128: SFCYP142: 1; SFCYP121: 16, Table 1).  

Conclusions 

In this study, 132 compounds of a focused CYP inhibitor library were subsequently screened using 

two biophysical assays to identify nanomolar binders to CYP125. This procedure led to the 

identification of 22 hit-compounds with high structural diversity. Further investigations employing a 

UV/Vis heme coordination assay characterized five compounds as type I and nine as type II binders 

with KD values below 30 µM. Five out of these compounds (type II: C127 = 0.85 µM, 

C128 = 0.085 µM, and C130 = 0.174 µM; type I: C24 = 0.26 µM, C60 = 0.28 µM) bind in the 

nanomolar range to the heme site of CYP125. Thereby, their affinity is higher than the affinity of the 
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substrate CHN which makes them interesting candidates with a possibly high inhibitory potential. 

Furthermore, these compounds showed a 7 to 70-fold increased affinity to CYP125 in comparison to 

the reported inhibitor LP10. Frontrunner compound C128 is - to the best of our knowledge - the first 

described low nanomolar CYP125 binder. In addition, this compound tightly binds to the bypass 

enzyme of CYP125 (CYP142) providing a good starting point for in cellulo proof of principle studies 

in Mtb lab strain H37Rv. The selectivity among human (CYP11B1/B2, CYP19, CYP17, CYP3A4) and 

another essential Mtb P450 enzyme (CYP121) is given for some inhibitors investigated in this study. 

However, an improvement of selectivity is important to circumvent potential later stage side effects 

originated from blockage of steroid and/or xenobiotic metabolism by CYP enzymes in humans. 

Moreover, compounds identified in this study might be also useful as scientific tools to further support 

the investigation of the intensively discussed cholesterol metabolism in Mtb as some of them block 

both enzymes known for CHN transformation (CYP125 and CYP142). Furthermore, due to their low 

molecular weight, excellent water solubility, and high LE the herein reported compounds are 

promising first hits for the development of novel antimycobacterial drugs targeting an essential 

metabolic pathway in Mtb. 
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 Experimental Section 

Bacterial strains and growth conditions. Bacterial strain used in this study was E. coli K12 BL21 

DE3 for protein expression.  

Chemical synthesis and analytical characterization. Compounds for testing (LP10, econazole (Eco) 

and choleste-3-en-4-one (CHN)) were purchased from commercial suppliers and used without further 

purification. Procedures for the synthesis of library compounds were reported before.
[15–36]

 Detailed 

information can be found in SI section 6. 

Protein expression, purification and biotinylation. E. coli K12 BL21 DE3 cells were transformed 

with plasmid harbouring cyp125 gene (CYP125A1/pCWori).
[9]

 The previously described enzyme 

expression and purification method was slightly modified and used for CYP125, CYP142 and 

CYP121 constructs.
[7,44]

 His6-tagged protein was expressed in E. coli K12 BL21 DE3 and purified 

using a single affinity chromatography step. Briefly, E. coli K12 BL21 DE3 cells containing the 

plasmid were grown in terrific broth medium containing 100 μg/mL ampicillin at 37 °C until an OD600 
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of approximately 0.8 mAU was reached. Protein expression was then induced by the addition of 

0.5 mM IPTG and 0.5 mM δ-aminolevolinic acid and the bacteria were grown for additional 36 h at 

25 °C and 200 rpm. The cells were harvested by centrifugation (5000 rpm, 10 min, 4 °C), and the cell 

pellet was resuspended in 100 mL of binding buffer containing 1% Triton-X-100 (50 mM tris-HCl, 

300 mM NaCl, 20 mM imidazol, 10% glycerol, pH = 7.2) and lysed by sonication for a total process 

time of 2.5 min. Cellular debris was removed by centrifugation (18500 rpm, 40 min, 4 °C), and the 

supernatant was filtered through a syringe filter (0.2 μm). The clear lysate was immediately applied to 

a Ni-NTA affinity column, washed with binding buffer, and eluted with an one-step gradient of 

500 mM imidazole. The protein containing fractions were buffer-exchanged to storage buffer 

(140 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4 and 10% glycerol (v/v), pH = 7.2), 

using a PD10 column (GE Healthcare) and judged pure by SDS-PAGE analysis. Protein was stored in 

aliquots at −80 °C at a final concentration of 50 µM. Before SPR streptavidin immobilization CYP125 

was biotinylated. For biotinylation, EZ-linked Sulfo-NHS-LC-LC-Biotin (Thermo Science) was 

dissolved in storage buffer (140 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4 and 10% 

glycerol (v/v)) with CYP125 in 1:1 molar ratio. The solution was incubated on ice for 2 h and mixed 

carefully every 30 minutes. The biotinylated CYP 121 was purified by size exclusion column using 

storage buffer and stored at -80 °C at a final concentration of 10 µM.
[40]

  

Spectroscopic characterization of enzyme activity. Ferredoxin Etp1fd (516-618) and ferredoxin 

reductase Arh1_A18G from the fission yeast Schizosaccharomyces pombe were expressed and 

purified as described previously.
[38,39]

 Functionality of CYP125 and electron transfer was assayed by 

the occurrence of the characteristic peak at ~450 nm, related to the reduced, CO-bound heme complex. 

The assay was conducted as described with slight modifications.
[37]

 CYP125 (2 µM) was reduced 

through the addition of a few grains of sodium dithionite or incubation with NADPH (100 µM), 

Etp1fd (516618) (40 µM), and Arh1_A18G (2 µM) and divided in two cuvettes to record a baseline. 

One of the samples was saturated with carbon monoxide for 60 s and difference spectra were recorded 

until the peak at ~450 nm reached saturation.  

SPR-Screening. SPR binding studies were performed using a Reichert SR7500DC instrument optical 

biosensor (Reichert Technologies) and SAD500m sensor chips obtained from XanTec Bioanalytics. 

CYP125 was immobilized on a SAD500m sensor chip at 12 °C using standard biotin-streptavidin 

complexation. The surface of both channels was quenched by a 3 min injection of 3 µg/mL biotin. 

CYP125 was immobilized at densities between 5000 and 6000 RU for binding studies.  

UV-VIS Heme P450 binding assay. Optical titration experiments were performed in 96 well plates 

(Greiner; transparent round-bottom). The data were recorded using Tecan infinite M200Pro (Nano 

Quant). Absorbance of enzyme and enzyme-inhibitor complex was measured between 350 and 500 nm 

in 1 nm steps with 10 flashes. Compounds were titrated from DMSO stock solutions to a final DMSO 
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concentration of 1%. CYP125, CYP121, and CYP142 were used in a concentration of 0.25 µM. Data 

were plotted by optical shift versus ligand concentration. Variable slope model was used for nonlinear 

regression of resulting dose–response curves employing GraphPad Prism 5. 

Keywords: CYP-Inhibitors • Mycobacterium tuberculosis • Screening • Anti-infectives • Biophysical 

Methods 
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ABSTRACT 

 

Anti-virulence strategies addressing bacterial pathogenicity without exhibiting growth inhibition 

effects represent a novel approach to overcome today’s crisis in antibiotic development. In recent 

studies, we examined various inhibitors of PqsD, an enzyme involved in formation of Pseudomonas 

aeruginosa cell-to-cell signaling molecules, and observed desired cellular effects for 2-nitrophenyl 

derivatives. Herein, we investigated the binding characteristics of this interesting compound class 

using several biochemical and biophysical methods. The inhibitors showed time-dependent activity, 

tight-binding behavior and interactions with the catalytic center. Furthermore, isothermal titration 

calorimetry (ITC) experiments with separated enantiomers revealed contrary thermodynamic 

signatures showing either enthalpy- or entropy-driven affinity. A combination of site-directed 

mutagenesis and thermodynamic profiling was used to identify key residues involved in inhibitor 

binding. This information allowed the proposal of experimentally confirmed docking poses. Although 

originally designed as transition state analogs, our results suggest an altered position for both 

enantiomers. Interestingly, the main difference between stereoisomers was found in the orientation of 

the hydroxyl group at the stereogenic center. The predicted binding modes are in accordance with 

experimental data and, thus, allow future structure-guided optimization. 

 

INTRODUCTION 

 

Antimicrobial resistance is a worldwide emerging problem since current treatment becomes more and 

more inefficient (1). In P. aeruginosa, which is considered as the major cause of mortality in cystic 

fibrosis patients (2), several resistance mechanisms against commonly used antibiotics are known. For 

example, the limited permeability of the outer membrane (3) in combination with broad spectrum 

multidrug efflux systems (4) can result in a dramatically lowered intracellular drug concentration. 

Thus, it is all the more important that the compound blocks its target efficiently providing sufficient 

drug residence time to achieve the desired effects. In the case of competitive inhibitors interacting with 

the same binding site as the substrate, effectiveness can be drastically diminished by mass-action 

competition with the substrate. Thus, it was proposed to avoid this unfavorable situation through 

(pseudo-) irreversible inhibition (5). 

Bacteria apply cell-to-cell communication to coordinate group behavior, a phenomenon which became 

known as quorum sensing (QS). Thereby, small diffusible signal molecules are produced by bacterial 

cells and released into the environment. The extracellular concentration reflects the cell density of the 

population, which can be in turn measured by single members of the colony. Once a special threshold 

is reached, the population collectively alters its gene expression pattern. Multiple QS systems based on 
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various signal molecules are present in beneficial as well as pathogenic bacteria. P. aeruginosa utilizes 

the quinolone-based pqs system, which is characteristic for particular Pseudomonas and Burkholderia 

species (6). The pqs system is reported to have crucial influence on biofilm formation and virulence 

factor production (7, 8). In this regard, inhibition of the pqs system is an attractive strategy to 

overcome biofilm mediated resistance. Furthermore, QS inhibitors might ideally address pathogenicity 

without affecting bacterial cell viability. Hence, compared to the current treatment by bactericidal and 

bacteriostatic antibiotics, less selection pressure to develop resistance against this novel mode of 

action is expected (9). Another advantage of pqs inhibitors is the absence of quinolone signals in 

beneficial bacteria, and therefore, the natural microbial flora should not be affected.  

PqsD is a key enzyme in the biosynthesis of the pqs signal molecules 2-heptyl-4-hydroxyquinoline 

(HHQ) and 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal, PQS) (Scheme 1) (10). 

For this reason, we consider PqsD as an attractive target for the development of novel anti-infectives 

(11). We have identified the first PqsD inhibitors by testing known inhibitors of FabH, a structurally 

and functionally related enzyme (10). Structural optimization decreased IC50 values to 1.2 µM 

(Scheme 1, 1 and 2) (12). However, these compounds were not capable of potently reducing the 

extracellular signal molecule levels in P. aeruginosa PA14 (unpublished data).  

 

 

Scheme 1. PqsD mediated formation of HHQ and PQS and structures of known PqsD inhibitors
a
 

 

a
IC50 values were taken from refs. (11) and (12) and were measured using the screening procedure 

described in the methods section. 

Recently, we have identified 2-nitrophenyl derivatives as potent PqsD inhibitors in a ligand-based 

approach (Scheme 1, 3-5, 7) (11). The most active compound of this series 3 was capable of reducing 

the HHQ and PQS levels as well as the biofilm volume in P. aeruginosa PA14 without affecting cell 

viability. In our original concept, (2-aminophenyl)methanol derivative 6 was designed as transition 

state analog of the reaction between PqsD and its primary substrate anthraniloyl-CoA (ACoA) 

(Scheme 1). Since transition states are the most tightly bound species of a catalytic reaction, transition 

state analogs are a reasonable strategy to achieve high potency (13). But unexpectedly, no activity was 
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observed for 6, while the corresponding nitro compound 7 effectively inhibited PqsD. Thus, it is open 

to question how the optimized nitro compound 3 interacts with PqsD on a molecular level. 

To address this question, we conducted a surface plasmon resonance (SPR) competition experiment 

to validate the binding site. Various modifications of the in vitro assay were used to elucidate time 

dependency of inhibition as well as functional reversibility. Mass spectrometry was applied to 

investigate the nature of interaction between the protein and the inhibitors. Site-directed mutagenesis 

in combination with ITC analysis revealed key interaction features responsible for affinity and 

astonishing differences in the thermodynamic profile of the separated enantiomers. This information 

was used to deduce plausible binding modes, which may explain the efficacy of the compound class. 

 

RESULTS AND DISCUSSION 

 

Binding site analysis by SPR. To investigate whether our compounds bind in the active site, we 

performed binding experiments using SPR. Compound 2, which was described as a channel blocker 

interacting in the upper part of the tunnel (12) and 3 were separately added to PqsD immobilized on an 

SPR sensor chip. Figures 1A/B show the resulting response curves, indicating affinity to the enzyme 

for both compounds.  
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Figure 1. Elucidation of the binding site by SPR. Addition of inhibitor to native PqsD leads to 

response curves (A) and (B) for compounds 2 and 3, respectively. In contrast to compound 2 (C), no 

response curve for 3 (D) is observed after addition to PqsD pretreated with ACoA. (E) Binding pocket 

of PqsD and space-filling model of covalent anthranilate adduct (wireframe). Picture was generated 

using the crystal structure [Protein Data Bank (PDB) entry 3H77] (14). 

 

In a second experiment, the first substrate of PqsD, ACoA, was added until saturation of all active-site 

Cys112 by formation of an anthranilate thioester was reached (Figure 1E). Noteworthy, the X-ray 

structure of this key intermediate shows no significant conformational changes compared to untreated 

PqsD (14), which eliminates the possibility of allosteric effects. Addition of inhibitors 2 or 3 was 

subsequently repeated. In the case of 2, response curves were very similar to those obtained using 

unmodified enzyme (Figure 1C). Thus, affinity of 2 is not affected by covalently bound anthranilate, 

which is consistent with previous results (12). In contrast, no response was observed for 3 (Figure 1D), 

indicating that the binding site of 3 is blocked by anthranilate. Moreover, this experiment shows that 

the binding pocket around Cys112 is the only target site of 3. This is supported by a 1:1 interaction 

stoichiometry determined in the ITC experiment (11).
 

To gather further evidence for the proposed binding site, we preincubated PqsD with ACoA prior to 

continuation of the original assay procedure. In the case of the FabH inhibitor-derived compounds 1 

and 2, no significant differences in IC50 values determined by both procedures were observed (IC50,mod 

values in Supplementary Table S2). In contrast to this, the IC50 values of 3-5 were increased at least 
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threefold when PqsD was preincubated with the substrate. This provides further evidence that 

nitrophenyl derivatives and the anthraniloyl moiety share a common binding site.  

 

Time-dependent inhibition and reversibility. To investigate the time dependency of PqsD inhibition 

by 3, the protein was added to a mixture of substrates and inhibitor before HHQ formation was 

measured at different time points. Figure 2A (blue) shows decreasing HHQ production over time 

compared to the untreated control, indicating slow binding kinetics for 3. For reference compound 2 

(red), a nearly constant HHQ formation rate is observed, which is due to a rapid establishment of 

binding equilibrium with the enzyme.  

 

 

 

Figure 2. Mode of action analysis. (A) Time dependency of PqsD inhibition by 3 µM of FabH 

inhibitor-derived compound 2 (■) and 6 µM of 2-nitrophenyl derivative 3 (●) compared to untreated 

control (▼). Values are given in the supporting information. (B) Reversibility of PqsD inhibition by 

compounds 2-5. Centrifugal filter devices with a molecular weight limit of 10k were used to remove at 

least 95% inhibitor by three diafiltration steps as controlled by HPLC analysis, while PqsD was 

retained. (C-E) HPLC-ESI mass spectra of untreated PqsD (C) and after preincubation with 5 mM 

ACoA (D) or 2.5 mM of compound 3 (E), respectively. 

 

Inhibition by 3 has not reached the equilibrium after 10 min, which is the standard preincubation 

time in the in vitro assay. Consequently, IC50 data and structure-activity relationships derived in this 

compound class are dependent on the rate of complex formation. Furthermore, the potency is 

underestimated compared to the FabH inhibitor-derived compound class. This becomes apparent when 

the preincubation period was extended from 10 min (IC50) to 30 min (IC50,ext values in Supplementary 

Table S2). While the inhibitory potency of 1 and 2 did not increase, the IC50,ext of 3-5 showed 

significantly lowered values. This effect is most pronounced for the alcohol 3, which is probably due 

to the slowest binding kinetics.  
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There are two general modes of interaction between enzyme and inhibitor resulting in time-dependent 

inhibition. First, the enzyme inactivation is practically irreversible, for example by covalent binding. 

As the reaction progresses, enzyme inhibition will be increased. In the second case, slow binding 

kinetics can lead to an equilibrium establishment of a reversible inhibition, which is slow compared to 

enzyme turnover. To address this issue, we examined the reversibility by modification of our in vitro 

functional assay. Therefore, PqsD was preincubated with inhibitor and the remaining HHQ formation 

was quantified with and without removal of unbound inhibitor by diafiltration. After preincubation 

with 7 µM of the FabH inhibitor-derived compound 2, 46% of HHQ formation remained compared to 

the untreated control. After removal of unbound inhibitor, PqsD activity was fully restored, since 

binding of the inhibitor is non-permanent (Figure 2B). In the case of the 2-nitrophenyl derivatives 3-5, 

PqsD activity was not significantly increased. But providing reversible inhibition, HHQ formation 

should be very sensitive to changes in inhibitor concentration, since the dose-inhibition curves are 

very steep at the concentrations used (Supplementary Figure S1 for compound 3). Hence, inhibition by 

this compound class is apparently irreversible. However, it should be mentioned that the time available 

for dissociation between the diafiltration steps is limited due to enzyme denaturation (t1/2≈ 100 min at 

room temperature). Thus, the irreversible behavior of 3-5 may be restricted to the time period which is 

covered by the experiment. 

To distinguish between irreversible inhibition by formation of a covalent bond or tight-binding 

characterized by slow off-rates, mass spectrometry (MS) techniques were applied. First, PqsD was 

incubated with or without ACoA as well as compound 3, and the samples were subjected to HPLC-

ESI analysis (Figure 2C). In absence of any additives, the main signal was observed at m/z = 36688.1, 

which corresponds to the calculated average mass of PqsD (36688.1 Da). Formation of the 

anthranilate-PqsD complex by addition of the substrate led to the expected mass shift of + 119.2 

towards 36806.9 (calculated: 36807.2). In presence of a 100 fold excess of inhibitor 3 no covalent 

adduct or oxidation product was observed. This was also the case, when any reductive reagents were 

avoided (Supplementary Figure S2). Thus, we exclude a redox-based inhibition mechanism.  

To exclude a possible dissociation during HPLC, we also analyzed PqsD with or without compound 

3 by Maldi-TOF after tryptic digestion. In the case of unmodified PqsD, more than 99% of the 

sequence was covered by the peptides observed in the mass spectra. (Results are shown and discussed 

in detail in the Maldi-TOF section of the Supporting Information.) Thus, apart from 6 of 340 amino 

acids, which are unlikely to be involved in inhibitor binding, the modification should be captured by 

this technique. However, no novel signal appeared after preincubation of PqsD with compound 3 

(Supplementary Table S4). The only difference compared to untreated PqsD is the disappearance of 

one fragment, which is not involved in substrate or inhibitor binding, since it is located far away from 

the active site. This fragment is also unresolved in the X-ray structure of PqsD, which is probably due 

to conformational flexibility. Thus, possible allosteric effects are unlikely. Considering both 

experiments, we exclude covalent binding, simultaneously denoting 3 as a tight-binding inhibitor.  
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Elucidation of the binding mode. The data presented so far were obtained using a racemic mixture 

of 3 since we have already shown that both enantiomers possess very similar IC50 values (11). The 

SPR experiment using the separated stereoisomers revealed that both enantiomers bind near the active 

site residues deep in the binding channel and in an exclusive manner with respect to one another 

(Supplementary Figures S9). Furthermore, (R)-3 and (S)-3 showed the same behavior as the racemic 

mixture 3 in the diafiltration experiment (Supplementary Figure S10). But when we analyzed the 

thermodynamic profile of binding to PqsD by ITC, surprising differences between both enantiomers 

were observed, even though very similar values for ∆G were determined (Figure 3 and Table 1). 

 

 

 

 

Figure 3. ITC analysis of thermodynamic profiles of enantiomers binding to PqsD wild-type.  

 

Whereas the affinity of (R)-3 is driven enthalpically, (S)-3 shows a pronounced entropic binding 

profile. The combination of the values obtained for both enantiomers is in accordance with the 

balanced profile determined for their racemic mixture (∆H= –3.47 kcal mol
–1

, –T∆S= –3.20 kcal mol
–

1
). The differences in the thermodynamic profiles are evident, even if uncertainties in ∆H, and thus 

also in T∆S, of ~24% have to be expected for the technique (value determined by an interlaboratory 

comparison) (16).  

With respect to the dissimilar thermodynamic profiles, we were interested whether differences in the 

interaction with the amino acid residues are detectable. Because of a lack in co-crystal structure, we 

decided to execute a combined approach of site-directed mutagenesis and ITC as a promising method 

to identify specific spots of interaction (17). Due to the SPR results, the binding site of both 

enantiomers should be located near the catalytic triad characterized by Cys112, His257 and Asn287. 

Furthermore, the adjacent Ser317 represents another possible interaction partner. Thus, we mutated the 

aforementioned amino acids. Only S317A possessed catalytic activity comparable to the wild-type. 

C112S retained 8% activity, whereas all other mutations led to inactivity (Supplementary Table S1). 

However, the aforementioned PqsD variants allowed to investigate the contribution of the respective 

residue side chains to inhibitor binding.   
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ITC analyses using (R)-3 revealed Cys112 and His257 as mainly interacting residues, since 

mutation led to a loss of affinity by more than factor 2.3, as measured by deterioration in ∆G by more 

than 0.5 kcal mol
–1

 (Table 1). Binding affinity of (S)-3 does not seem to be significantly changed by 

any of these mutations with the exception of a small loss in affinity for both Ser317 mutants. For 

C112A standard deviations in ∆G are too high for a reliable interpretation.  
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(R)-3

b 

 
 

 

(S)-3
b
 

 
 

 

ΔG 

[kcal mol
–1

] 

ΔH 

[kcal mol
–1

] 

–TΔS 

[kcal mol
–1

] 

ΔG 

[kcal mol
–1

] 

ΔH 

[kcal mol
–1

] 

–TΔS 

[kcal mol
–1

] 

WT –6.56±0.14 –6.99±1.02 0.43±1.15  –6.13±0.20 –1.11±0.34 –5.02±0.18 

        

 
ΔΔG 

[kcal mol
–1

] 

ΔΔH 

[kcal mol
–1

] 

–TΔΔS 

[kcal mol
–1

] 
 

ΔΔG 

[kcal mol
–1

] 

ΔΔH 

[kcal mol
–1

] 

–TΔΔS 

[kcal mol
–1

] 

C112A –0.82±0.11
c
 –5.36±0.60

c
 4.54±0.86

c
 

 
0.10±0.40 –0.30±0.53 0.40±0.22 

C112S –0.75±0.14
c
 –5.87±0.78

c
 5.12±0.86

c
 

 
–0.03±0.10 –0.39±0.36 0.36±0.36 

S317F –0.58±0.14
c
 –6.09±0.72

c
 5.51±0.86

c
 

 
–0.30±0.10

c
 –0.78±0.22

c
 0.40±0.20 

S317A 0.10±0.10 –1.10±0.67 1.26±0.76 
 

–0.22±0.10
c
 0.14±0.36 –0.36±0.36 

N287A –0.18±0.10 –1.16±0.61 0.98±0.70 
 

–0.02±0.10 –0.02±0.20 –0.01±0.20 

H257F –0.61±0.30
c
 –5.83±0.67

c
 5.22±0.76

c
 

 
0.03±0.30 –0.19±0.36 0.22±0.36 

 

Table 1. Effects of mutated amino acids on thermodynamic profiles of the enantiomers of 3
a 

 

a
ΔΔG, ΔΔH, and –TΔΔS are ΔGWT – ΔGmutant, ΔHWT – ΔHmutant, and –T(ΔSWT – ΔSmutant), 

respectively. Negative values indicate a loss; positive values, a gain compared to wild-type. 

Significance: effect of the mutations on thermodynamic parameters of ligand binding compared to 

wild-type indicates a difference in interaction. 
b
Absolute configurations were derived from 

measurement of the optical rotation and comparison to literature (15). 
c
p< 0.05. 

 

 

Based on these results, we docked both enantiomers to propose binding poses. Calculation of the 

protonation state revealed that the Cys112 and His257 residues exist in a neutral form at physiological 

pH. In all high-ranked docking poses, the scaffold of both enantiomers had the same position, whereas 

one phenyl ring was located directly adjacent to the bottom of the channel and the other oriented 

towards the tunnel entrance (Figure 4A). For (R)-3, the nitro group was observed at both phenyl rings. 

But since both enantiomers retained comparable inhibitory activity even for elongated substituents 

instead of phenyl (data not shown), we concluded that the nitro-phenyl moiety is apparently located at 

the bottom of the channel. Thereby, the nitro group forms an asymmetrical bifurcated hydrogen bond 

(2.85 and 3.10 Å) to the backbone NH of Ser317 (Figure 4B) (18). The hydroxyl group is involved in 

a hydrogen bond network between the side chains of Cys112 (3.07 Å) and His257 (2.90 Å). The 

observed distances are typical for weak hydrogen bonds (19, 20), which explains the loss in affinity 
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and enthalpy for the C112A and H257F mutants. The C112S mutant showed strongly reduced affinity, 

which is probably due to the shorter van der Waals radius of oxygen compared to sulfur (21), leading 

to an interruption of the hydrogen bond network. No interaction was observed with the side chains of 

Asn287 and Ser317, which is in accordance with the collected ITC data (Table 1). However, 

introduction of a bulky phenyl ring in S317F probably results in sterical hindrance.  

 

 

 

Figure 4. (A) Superimposition of the covalent anthranilate-PqsD complex (PDP entry 3H77) and 

docking poses for both enantiomers. Observed hydrogen bonds and CH-π interactions of R-enantiomer 

(B) and the S-enantiomer (C/D) of compound 3 in PqsD wild-type. Nitrogen: blue, oxygen: red, sulfur: 

yellow, carbons of PqsD: grey, carbons of R-enantiomer: light blue, carbons of S-enantiomer: orange, 

hydrogen left out for clarity.  

 

In the case of (S)-3, docking results were unambiguous with respect to the positioning of the nitro 

group, since in all high-ranked poses a short hydrogen bond between NO2 and NH of Ser317 was 

observed (Figure 4C/D). However, the hydroxyl group was involved in different interactions, either 

facing towards Asn287 or His256/Cys112. We speculate that no singular mutation of the 

aforementioned residues significantly reduced affinity, since the hydroxyl group is able to switch to an 

alternative interaction mode. Noteworthy, this is not possible for the R-enantiomer due to the different 

orientation of the OH functionality.  

Recently, two enantiomers with similar binding affinity for acetylcholinesterase but different 

thermodynamic profiles were reported (22). X-ray co-crystal structures revealed multiple 
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conformations stabilized by weak interactions for one enantiomer, leading to a gain in TΔS of 2.4 kcal 

mol
–1

 compared to its counterpart. A similar effect might be contributing to the significant change in 

TΔS of 5.3 kcal mol
–1

 for our compounds. Furthermore, a gain in entropy is characteristic for the 

classical hydrophobic effect (23). Thereby, the release of ordered water from well-solvated 

hydrophobic pockets upon ligand binding increases the water molecules degree of freedom (24). 

However, we were not able to identify such a displacement of water when comparing our docking 

results with the published X-ray structures.  

Since small changes in structure without significant effect on ΔG can lead to large changes in ΔH and 

TΔS, the phenomenon of entropy-enthalpy compensation may also help to explain the contrary 

thermodynamic profiles of the enantiomers (25). The physical origin of the compensation is still not 

fully understood and it has been repeatedly discussed whether a structural interpretation is even 

possible (25, 26). According to this, the altered position of OH may well be the source of the shift in 

thermodynamic contributions.  

Nevertheless, besides the interpretation of the thermodynamic profile, the proposed models should 

enable us to perform structure-guided optimization. Thus, the docking poses have to be in accordance 

with previous structure-activity relationship observations (11). Firstly, as soon as the amino group of 6 

was substituted by nitro, the compounds turned active. As has been described above, (2-

nitrophenyl)(phenyl)methanol 3 was originally designed as transition state analog. However, in the 

transition state, which has formed by attack of Cys112 on the thioester bond of ACoA, the generated 

oxyanion is stabilized by backbone nitrogen atoms of Cys112 and Ser317 (14). In our model, this 

position is in each case rather occupied by the nitro group (Figure 4A), which cannot be mimicked by 

the corresponding amine geometrically and spatially. As a consequence, this compound does not 

interact with PqsD as expected for a transition state analog. Furthermore, it is noteworthy that the 

nitrophenyl moiety aligns quite accurately with the benzoate moiety in an X-ray structure of 

anthranilate bound to a C112A mutant (14). This indicates the preference for this kind of isoelectronic 

groups at this point of the channel. Secondly, a carbonyl linker between both phenyl rings, which 

conjugates the π-systems, leads to inactivity. This can now be explained, as the banana-shaped bottom 

of the channel is not able to accommodate the planar molecule anymore. Furthermore, substitution of 

the methylene-H abolished inhibitory activity, either due to a steric clash with Asn287 (R), or because 

a substitution is followed by a twist of the molecule, which destabilizes the biological active 

conformation (S). Hence, the experimental results are in good accordance with our binding model.  

 

Conclusions. 2-Nitrophenyl derivatives and FabH inhibitor-derived compounds show similar IC50 

values, but only congeners of the former class are capable of significantly reducing signal molecule 

production and biofilm formation in P. aeruginosa PA14. We have shown that both inhibitor classes 

possess fundamentally different profiles regarding binding site, time-dependent inhibition and 
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reversibility. And besides possible advantages in cell permeability of the (2-nitrophenyl)methanol 

derivatives due to their low molecular weight, the deeply buried binding site at the bottom of the 

substrate channel and the apparent irreversibility could be crucial factors for their intracellular 

efficacy. 

Furthermore, the calorimetric characterization of two enantiomers revealed remarkable differences in 

their thermodynamic signatures. The detailed binding modes were examined by a combined approach 

using site-directed mutagenesis, ITC, and docking. This enabled us to propose binding poses for both 

enantiomers only differing in the position of the hydroxyl group. Notably, the nitro group occupies the 

oxyanion hole forming strong interactions with the enzyme backbone. However, this site was expected 

to accommodate the aforementioned hydroxyl group. Hence, the position of the scaffold is altered 

compared to the transition state (Figure 4A). The predicted enzyme-inhibitor complexes explain the 

reported structure-activity relationship and, therefore, enable the structure-guided design of PqsD 

inhibitors towards improved inhibitory activity. 

 

METHODS 

 

Preparation of PqsD Mutants. PqsD mutants were generated using the QuikChange Site-Directed 

Mutagenesis Kit (Stratagene) according to the manufacturer’s instructions using the pET28b(+)/pqsD 

plasmid as a template. Briefly, pqsD gene was amplified through 16 cycles of PCR. After treatment 

with DpnI, the PCR product was transformed into E. coli strain XL1-Blue. Plasmid DNA was purified 

using the GenElute
TM

 HP Plasmid Miniprep Kit (Sigma-Aldrich) and sequenced to confirm the site-

directed mutations. For the primer sequence of the mutations see Supporting Information. 

Expression and Purification of Recombinant PqsD Wild-type and Mutants in E. coli. E. coli 

BL21 (λDE3) cells were transformed with plasmid harboring PqsD (pET28b(+)/pqsD) (10). 

Overexpression, purification, and storage of the His6-tagged PqsD was performed as described 

recently (11).
 

Screening Assay Procedures for In Vitro PqsD Inhibition. The standard assay for determination 

of IC50 values was performed monitoring the enzyme activity by measuring the HHQ concentration as 

described recently (10). PqsD was preincubated with inhibitor for 10 min prior to addition of the 

substrates ACoA and β-ketodecanoic acid. The concentration of PqsD applied in the assay was 0.1 

µM. Quantification of HHQ was performed analogously, but with some modifications: The flow rate 

was set to 750 µl min
–1

 and an Accucore RP-MS column, 150 x 2.1 mm, 2.6 µm, (Thermo Scientific) 

was used. All test compound reactions were performed in sextuplicate. Synthesis of ACoA and β-

ketodecanoic acid was performed as described in the Supporting Information. In the modified protocol 

used for the determination of IC50,mod, PqsD and the first substrate ACoA were preincubated for 30 min 

prior to adding them to the test compounds. Then, β-ketodecanoic acid was added and the further steps 
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were performed identical to the standard protocol. IC50,ext values were determined analogously to the 

normal IC50 values, with the sole exception that PqsD was preincubated with inhibitor for 30 min.  

Surface Plasmon Resonance (SPR) Spectrometry. SPR binding studies were performed using a 

Reichert SR7500DC instrument optical biosensor (Reichert Technologies) and CMD500M sensor 

chips obtained from XanTec Bioanalytics. PqsD was immobilized on a CMD500M 

(carboxymethyldextran-coated) sensor chip at 12°C using standard amine coupling conditions 

according to the manufacturers’ instructions. PqsD was diluted with sodium acetate buffer (10 mM, pH 

4.5) to a final concentration of 100 µg ml
–1

. PqsD was immobilized at densities of 2217 RU and 2918 

RU. 

SPR Competition Study. The binding studies were performed at a constant flow rate of 50 µl min
–1

 in 

instrument running buffer (50 mM MOPS, pH 8.0, 150 mM NaCl, 5% DMSO (v/v), 0.1% Triton X-

100 (v/v)). 10 mM stock solutions of compounds 2 and 3 in DMSO were directly diluted to a 

concentration of 500 µM (50 mM MOPS, pH 8.0, 150 mM NaCl, 0.1% Triton X-100 (v/v)) and then 

diluted to a final concentration of 100 µM (3) and 20 µM (2) in running buffer. Before the compounds 

were injected, 6 warm-up blank injections were performed. Buffer blank injections and DMSO 

calibration were included for double referencing. The compounds were injected for 180 s association 

and 300 s dissociation times. Experiments were performed twice with two independently prepared 

PqsD coated CMD500M sensor chips. Scrubber software was used for processing and analyzing the 

data. 

Compounds 2 and 3 were first tested in the absence of ACoA. In the second experiment ACoA (100 

µM) was injected for 40 minutes with a constant flow of 5 µl min
–1

 to reach saturation of the active-

site Cys112. After this, the flow rate was increased to 50 µl min
–1

 for 30 minutes in order to remove 

residual reagents. Once the baseline signal was stable, additional ACoA (10 µM) was injected to 

assure that the anthranilate binding site is completely saturated (no additional signal was observed). 

Afterwards compounds 2 (20 µM) and 3 (100 µM) were consecutively injected. 

Elucidation of Time-Dependent PqsD Inhibition. The assay was performed analogously to the 

screening assay procedure for in vitro PqsD inhibition described above, except that inhibitor and 

substrate were mixed and the reaction was started by addition of enzyme. The reactions were stopped 

after 3, 6, 9, 12, 15, 20, 25 and 30 min by addition of methanol containing 1 µM amitriptyline as 

internal standard. Percentage of inhibition was determined as the mean value of duplicates and HHQ 

concentrations measured without inhibitor at each time point were set to 100%. The uncertainty was 

calculated assuming uncorrelated standard deviations of the HHQ levels with or without inhibitor 

using a first-order Taylor series expansion. Percentages of inhibition are given in the Supporting 

Information.  

Examination of Reversibility by Diafiltration. The diafiltration experiment was performed using 

identical conditions as for the screening assay procedure, but with doubled enzyme concentration (0.2 
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µM). PqsD was preincubated with inhibitor for 10 min and the solutions were divided into two 

fractions. While the first one was stored under 4°C, the second was diafiltrated (3x) at 1200 g for 

6 min at 4°C using Nanosep® Centrifugal Devices equipped with a Omega™ membrane (MWCO = 

10K), which were obtained from Pall Corporation. Between diafiltration steps, the samples were 

diluted from 30 µl to 500 µl with buffer (identical chemical composition as used for preincubation). 

The enzyme inhibitor complex was allowed to dissociate for 1 min at room temperature. Afterwards, 

the substrates ACoA and β-ketodecanoic acid were added to both fractions and the assay was 

continued as described in the screening assay procedure. 

HPLC-ESI Experiment. PqsD (25 µM) was preincubated with compound 9 (2.5 mM) for 60 min at 

37°C in Tris-HCl buffer (50 mM, pH 8.0) with 0.5% DMSO (v/v). Dithiothreitol was added and the 

samples were analyzed by HPLC-ESI. All ESI-MS-measurements were performed on a Dionex 

Ultimate 3000 RSLC system using an Aeris Widepore XB-C8, 150 x 2.1 mm, 3.6 µm dp column 

(Phenomenex). Separation of 2 µl samples were achieved by a linear gradient from (A) H2O + 0.05% 

TFA (v/v) to (B) ACN + 0.05% TFA (v/v) at a flow rate of 250 µl min
–1

 and 45°C. The gradient was 

initiated by a 1.0 min isocratic step at 15% B, followed by an increase to 80% B within 4.5 min to end 

up with a 6 min step at 80% B before re-equilibration with initial conditions. UV spectra were 

recorded by a DAD in a range from 200 to 600 nm. The LC flow was split to 75 µl min
–1

 before 

entering the maXis 4G hr-ToF mass spectrometer (Bruker Daltonics) using the standard Bruker ESI 

source. In the source region, the temperature was set to 180°C, the capillary voltage was 4000 V, the 

dry-gas flow was 6.0 l min
–1

 and the nebulizer was set to 1.1 bar. Mass spectra were acquired in 

positive ionization mode ranging from 600 to 1800 m/z at 2.5 Hz scan rate. Protein masses were 

deconvoluted using the Maximum Entropy algorithm (Copyright 1991–2004 Spectrum Square 

Associates, Inc.). 

Maldi-TOF Experiment. PqsD (10 µM) was preincubated with compound 3 (2.5 mM) for 60 min at 

37°C using identical buffer composition as in the screening assay procedure (50 mM MOPS, pH 7.0 

with 0.005% (v/v) Triton X-100 and 0.5% DMSO (v/v)). The buffer was exchanged by an NH4HCO3 

buffer (50 mM, pH 8.1) in three diafiltration steps. Diafiltration was performed at 1200 g for 6 min at 

4°C in Nanosep® Centrifugal Devices (MWCO = 10K) of Pall Corporation. The protein was digested 

with trypsin overnight and dithiothreitol was added. α-Cyano-4-hydroxycinnamic acid was used as 

matrix component. Analysis of the peptides were performed on a 4800 TOF/TOF Analyzer mass 

spectrometer (Applied Biosystems) in positive reflector mode using a pulsed 200 Hz solid state 

Nd:YAG laser with a wavelength of 355 nm. Laser energy was set to 2000–2300 units for standards 

and to 2700–3200 units for real samples. Source 1 voltage was set to 20 kV with a grid voltage of 16 

kV. Reflector detector voltage was 2.19 kV. Spectra of standard peptides used for wide range 

calibration ranging from 0.8 to 4 kDa (des-arg1-bradykinin, angiotensin I, glu1-fibrinopeptide B, 

ACTH 1–17 clip, ACTH 18–39 clip and ACTH 7–38 clip) were measured with a delay time of 600 ns. 

One single mass spectrum was formed from 20 subspectra per spot using 25 accepted laser impulses 
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each. From the standard peptides exclusively monoisotopic ions were used with a minimum signal-to-

noise (S/N) ratio of 20 and a resolution >10000. Mass tolerance was set to 0.3 Da with maximum 

outlier of 5 ppm. Accepted calibration settings were used to measure real sample spectra in the range 

of 1 to 3.5 kDa with a minimum S/N range of 10 and a resolution >8000. An internal algorithm 

defined the isotope cluster area subsequently named intensity (I), based on the peptides’ molecular 

weight and their general elemental composition. MALDI-TOF MS resulted in pmfs consisting of 

mass-intensity spectra (m/z–Iabs, ai). 

Isothermal Titration Calorimetry (ITC). ITC experiments were carried out using an ITC200 

instrument (Microcal Inc., GE Healthcare). Final ligand concentrations were obtained by dilution 1:20 

(v/v) in the experimental buffer resulting in a final DMSO concentration of 5% (v/v). Protein 

concentration was determined by measuring the absorbance at 280 nm using a theoretical molarity 

extinction coefficient of 17,780 M
−1

 cm
−1

. DMSO concentration in the protein solution was adjusted to 

5% (v/v). ITC measurements were routinely performed at 25°C in PBS-buffer, pH 7.4, 10% glycerol 

(v/v), 5% DMSO (v/v). The titrations were performed on 83–102 μM PqsD-His6 and mutants-His6 in 

the 200 µl sample cell using 2 µl injections of 3.5 mM ligand solution every 180 s. Raw data were 

collected and the area under each peak was integrated. To correct for heats of dilution and mixing, the 

final baseline consisting of small peaks of the same size at the end of the experiment was subtracted. 

The experimental data were fitted to a theoretical titration curve (one site binding model) using 

MicroCal Origin 7 software, with ΔH (enthalpy change in kcal mol
–1

), KA (association constant in M
–

1
), and N (number of binding sites) as adjustable parameters. Thermodynamic parameters were 

calculated from equation 

ΔG = ΔH – TΔS = RT ln KA = –RT ln KD 

where ΔG, ΔH, and ΔS are the changes in Gibbs free energy, enthalpy, and entropy of binding, 

respectively. T is the absolute temperature, and R = 1.98 cal mol
–1

 K
–1

. For every mutant, three 

independent experiments were performed.  

In Silico Experiments. Docking poses of PqsD inhibitors (R)-3 and (S)-3 were generated with 

YASARA structure (YASARA Biosciences) using the AMBER03 force field on an Intel® Core™ i7-

2600 workstation with 8 virtual cores (27, 28). Receptor coordinates were prepared using a crystal 

structure of the PqsD-anthraniloyl complex (PDB entry 3H77)(14). 

First, the covalent and non-covalent ligands were removed without altering the dihedral angle of the 

Cys112 side chain and protonation states were assigned automatically at pH 7.4. Then, a grid box of 

27×20×20 Å³ was set up around the residues forming the active site tunnel of PqsD. Finally, the 

binding mode of the ligandswas calculated using the flexible local docking procedure of the 

implemented AutoDock 4 algorithm with 999 docking runs (29). In every case, at least the 5 highest-

ranked poses were found to belong to one cluster. Predicted PqsD-inhibitor complexes were further 

refined by an additional energy minimization step with fixed receptor backbone atoms and then 

analysed using MOE 2012 (Chemical Computing Group)(30). 
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ABSTRACT 

The present work deals with the optimization of an inhibitor of PqsD, an enzyme essential for 

Pseudomonas aeruginosa quorum sensing apparatus. Molecular docking studies, supported by 

biophysical methods (surface plasmon resonance, isothermal titration calorimetry, saturation transfer 

difference NMR), were used to illuminate the binding mode of the 5-aryl-ureidothiophene-2-

carboxylic acids. Enabled to make profound predictions, structure-based optimization led to increased 

inhibitory potency. Finally a covalent inhibitor was obtained. Binding to the active site was confirmed 

by LC-ESI-MS and MALDI-TOF-MS experiments. Following this rational approach, potent PqsD 

inhibitors were efficiently developed within a short period of time. This example shows that a 

combination and careful application of in silico and biophysical methods represents a powerful 

complement to co-crystallography. 

INTRODUCTION 

Structure-based drug design is a rational strategy to develop bioactive molecules without the necessity 

of performing many rounds of modifications to derive structure activity relationships (SAR). 

Frequently data from X-ray co-crystallography are used to accelerate the lead optimization process. 

Although this method is undeniably efficient, there are some drawbacks: a co-crystal structure does 

not necessarily represent the biological state, as it results in a single “frozen” conformation that is 

affected by the crystallization conditions.
1,2

 Furthermore, especially the ligand may not be well defined 

even at high resolution.
3
 In some cases, attempts of co-crystallizing ligands and their targets were not 

successful forcing the research groups to make use of alternative strategies. The described problems 

can be overcome by the use of biophysical methods such as surface plasmon resonance (SPR), nuclear 

magnetic resonance (NMR) and isothermal titration calorimetry (ITC). An advantage of SPR, NMR 

and ITC is that they can be performed in aqueous solution, which can be considered almost 

“physiological” conditions.  

In the forefront of this work, compound 1 (Figure 1a) was identified as an inhibitor of PqsD. The 

target protein PqsD, is a key player in the quorum sensing system of P. aeruginosa. It mediates the 

formation of heptyl-4-hydroxy-quinoline (HHQ) which is the precursor of Pseudomonas quinolone 

signal (PQS) (Scheme 1). Both molecules are potent virulence factors and function as signal molecules 

of P. aeruginosa, coordinating group behavior like the formation of biofilms.
4,5

 The substrate channel 

of PqsD is about 15 Å long and rather narrow.
6
 The channel can be divided into three parts. A 

positively charged entrance followed by a mainly hydrophobic middle segment, ending in a polar 

bottom part. The latter is delimited by the catalytic residues Cys112, His257 and Asp287. Suppression 

of PqsD activity has been shown recently by our group to inhibit biofilm formation.
7
 This makes PqsD 
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an attractive target for the therapy of chronic P. aeruginosa infections, especially in 

immunosuppressed individuals.
8–10

 

Herein, we report on the optimization of 1 supported by biophysical methods and molecular docking. 

The approach described in the following, represents a hit to lead optimization process that does not 

involve co-crystallographic structure determination.
 

 

Scheme 1. Biosynthesis of signaling molecules HHQ and PQS in Pseudomonas aeruginosa.
a 

 

a
 Anthranilate is transferred to PqsD via thio-esterification of ACoA with Cys112. The next step is a 

condensation with acetyl carrier protein (ACP) bound -ketodecanoic acid to form HHQ, which is 

finally transformed to PQS by PqsH. 

 

RESULTS AND DISCUSSION 

The IC50 value of compound 1 (Figure 1a) against PqsD was determined in a functional enzyme 

assay
11

 to be 6 µM. The same compound has recently been reported as a weak inhibitor of bacterial 

RNA polymerase (IC50: 241 µM)
12

, a classical target for antibacterial therapy. While targeting quorum 

sensing an antibacterial effect is not desired to avoid selection pressure inevitably leading to the 

development of resistant strains.
13

 Thus, other potential hit candidates from the 5-aryl-

ureidothiophene-2-carboxylic acid class, displaying poor selectivity, were not considered for further 

optimization (see Table S1 in Supporting Information). 
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Figure 1. a) Compound 1. Biophysical characterization of 1: b) Thermogram (red) and titration curve 

(black) obtained from ITC of PqsD with 1; c) SPR experiment: ACoA binds to PqsD (black). ACoA 

binding is inhibited by preincubation with 1 (red). The reference signal is shown in grey. 

 

 

Attempts to obtain a co-crystal-structure of 1 and PqsD, using soaking techniques, were not 

successful. Therefore, a combination of biophysical methods and molecular docking was used to 

elucidate the binding mode of 1. To exclude a non-specific binding behavior (e.g. via aggregation), 1 

was examined in an isothermal titration calorimetry (ITC) experiment to ensure stoichiometric 

binding. Thereby an equimolar binding ratio (0.82 ± 0.05) with a KD of 6.3 ± 2.6 µM was determined 

(Figure 1b), confirming that the discovered class of compounds represents a promising starting point 

for further optimization. 

In order to clarify the binding site on PqsD, SPR experiments were conducted. It was shown, that the 

natural substrate ACoA can no longer bind to the enzyme when PqsD was preincubated with 1 (Figure 

1c). This result indicates that 1 binds inside the ACoA-channel, thus blocking the first step of the 

catalytic reaction.  

From docking simulations with 1, two putative binding modes with similar scoring values but reverse 

orientations were obtained. In the first pose (Figure 2; orange), the ureido N-ethyl-benzyl moiety 

points to the bottom of the pocket (delimited by Cys112, His257 and Asn287), whereas in the second 

pose (Figure 2; green), the methoxy-group is placed in this position.  
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Figure 2. Docking poses of 1 within the ACoA channel of PqsD: (orange; Vina-Score: 8.3 kcal mol
−1

) 

(green; Vina-Score: 8.2 kcal mol
−1

). 

 

Figure 3. a) Schematic illustration of the SPR competition experiments: PqsD was preincubated with 

competitor compounds A and B binding to the ACoA-channel, delimited by Cys112. The model 

compounds 1−3 were subsequently added and the influence of A or B on their binding behaviors was 

investigated. The results shed light on the binding mode of the aryl-ureidothiophene-2-carboxylic 

acids. b) Structures of the model compounds 1−3 c) Results from SPR-competition experiments 

suggest the aryloxy-moiety to point into the pocket. 
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To get a reliable starting point for a structure-based optimization, discrimination between the two 

poses was necessary. Therefore, we designed an SPR competition experiment with model compounds 

1−3 from the 5-aryl-ureidothiophene-2-carboxylic acid class, differently substituted in the ureido and 

aryloxy parts (Figure 3b). As competitor compounds the 2-nitrophenyl-methanols A and B were used 

(Figure 3a). They were recently reported as PqsD inhibitors
7 

and were shown to interact with the 

catalytic residues, especially Cys112, at the bottom of the ACoA-channel.
14

 

As illustrated in Figure 3a, the presence of A and B should influence the binding of the 

ureidothiophene model compounds depending on their substitution pattern. Compared with 2, 1 bears 

a large substituent at the ureido part, whereas 3 is elongated in the aryloxy part, at the opposite site. If 

the ureido part points to the bottom of the pocket, one would expect that 1 is more sterically hindered 

than 2 and 3, when the competitors are present. In contrast, the longer aryloxy part of 3 should lead to 

a reduced binding if the ureidothiophenes bind in the reversed orientation. In the absence of a 

competitor compound, 1−3 displayed comparable responses (Figure 3c). When the sterically less 

demanding 2-nitrophenyl-methanol derivative A was present, a reduction of affinity was observed 

exclusively for 3 bearing a bulky phenyl substituent in the aryloxy part. In contrast, the ethyl-benzyl 

moiety at the ureido motif of 1 did not prevent a binding. These results fit to the docking prediction 

with the aryloxy part pointing into the pocket (Figure 2, green). In competition with B, the binding 

affinity of all three compounds was reduced as expected from the docking results. (see Figure S1 and 

S2) Thus a deeper insight into the position of the new inhibitors in the binding channel was provided.  

As the starting point for structure activity exploration compound 2 was chosen, a truncated derivative 

of the initial hit 1. It displays comparable ligand efficiency (LE, Table 1) whilst being more suitable 

for further modification at the ureido motif. The docking pose of 2 (Figure 4a) suggests an anchoring 

of the ureido moiety by interaction of the carbonyl oxygen with Arg223. To validate this assumption, 

binding of 2 to the R223A mutant, that should display weaker affinity, was investigated by SPR. The 

response of compound 2 was reduced to 6 response units (RU) in comparison to 25 RU for the wild 

type enzyme (see Figure S4), confirming this hypothesis. Arg262, placed in the upper part of the 

binding pocket, should be a potential interaction partner for a negatively charged moiety. The 

introduction of a carboxylate resulting in compounds 4 and 5 (Table 1) indeed led to an increased 

activity, confirming this prediction. In the docking pose, the introduced carboxylic acid moiety of 4 is 

located closely to Arg262 enabling the formation of a new interaction (Figure 4b). Based on the 

finding that 4 is more active than 5, we concluded that a methylene linker is more appropriate than a 

longer spacer unit. This allowed making use of α amino acids for simple variations in the next steps, 

taking advantage of their hydrophilicity to increase the polarity of the inhibitors, as low lipophilicity is 

an important requirement for drugs targeting Gram negative bacteria. A study of O’Shea et al. shows 

that almost all antibiotics, effective against P. aeruginosa, possess a clogD7.4 value below 0.
15

 While 

our hit compound 1 (logD7.4: 2.58) did not meet this criterion, amino acid derivative 4 (logD7.4: −1.62) 

did. 
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Figure 4. a) Docking pose of 2, the starting point for structure-based optimization. b) Docking pose of 

glycine derivative 4. c) Docking pose of optimized compound 7. d) Illustration of the limited space in 

the narrow cleft formed by Arg223 and Phe226. e) Close-up of the benzyl moiety of 7, perfectly fitting 

into the narrow cleft. 

 

 

As illustrated in Figure 4b, docking simulations predict that the glycine derivative 4 is anchored by an 

interaction of the carboxylate group with Arg262. The narrow cleft, subjacent to the α-position of 4 

and delimited by Arg223 and Phe226, is supposed to be addressable by expansion of 4. A targeted 

approach should replace the pro-S hydrogen since the space adjacent to the pro-R hydrogen is blocked 

by Arg223, which could lead to a sterical clash (Figure 4d). Following this strategy, the introduction of 

S-amino acid residues improved the activity resulting in up to submicromolar IC50 values in case of the 
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S-alanine and S-phenylalanine derivative 6 and 7 (Figure 4b−e). Compound 8, the counterpart of 7 that 

lacks the COOH group next to the ureido moiety displays a significantly weaker inhibition. This again 

highlights the importance of the carboxylic acid group, which is in accordance with our binding 

hypothesis. 

In order to complete the picture, the R-enantiomers 9 and 10 were investigated. In both cases the 

activity decreased dramatically. These data corroborate the highly selective three-dimensional 

interaction formed by the S-enantiomeric moieties with the target enzyme. To evaluate whether the 

decreased activity of the R-enantiomer 9 is due to a sterical clash, as expected, or associated with the 

absence of the S-methyl group of 6, the dimethyl compound 11 was investigated. The fact that 11 was 

less active than 4 and 6 confirms the prediction of a sterical collision. 

 

To test for selectivity towards bacterial RNA polymerase, the most potent derivatives 6 and 7 were 

tested for inhibition of this enzyme. Both displayed only slight inhibitory potency (~10−20%) at a 

concentration of 200 µM. 
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Table 1. Inhibition of PqsD in vitro, ligand efficiencies and clogD7.4 values of compounds 1−11  

 

Cpd R IC50 

PqsD 

LE
[a] 

clogD7.4
[b] 

1 

 

 

6 µM 0.25 2.58 

2 
 

170 µM 0.26 0.15 

4 

 

7 µM 0.30 −1.62 

5 
 

37 µM 0.25 −1.47 

6 

 

2 µM 0.32 −1.27 

7 

 

0.5 µM 0.28 0.59 

8 

 

58 µM 0.21 2.61 

9 

 

54 µM 0.24 −1.27 

10 

 

26 µM 0.19 0.59 

11 

 

56 µM 0.23 −0.93 

[a] 
Ligand efficiency calculated as LE = 1.4 x 

(pIC50/HAC) 

[b]
 clogD7.4 calculated with ACDLabs Percepta 2012 

 

Saturation transfer difference (STD) NMR
16

 was used to identify the binding epitopes of 7 (Figure S5). 

Strong STD enhancements were observed for all protons of 7 with the methylene linker protons 

exhibiting the strongest enhancements. This is consistent with the docking simulations, which predict 

these methylene protons to be positioned at the entrance of the narrow subpocket delimited by Arg223 
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and Phe226. Moreover, the fact that the other protons of 7 also displayed strong STD enhancements 

suggests that 7 is nearly completely surrounded by PqsD.  

To confirm that the optimized inhibitors bind in a similar way as the model compounds 1−3, the SPR-

competition experiment with A and B was conducted for compound 7. As expected, the binding 

response was only significantly reduced in the presence of B (Figure S3). In addition, we performed an 

STD-NMR competition experiment to validate the SPR results. Increasing amounts of compound B 

were added to a 100:1 complex of 7/PqsD (Figure 5). Difference spectra were monitored for a change 

in intensity of signals belonging to either 7 or B during titration. As seen in the spectral expansions 

showing the aromatic region, stepwise addition of up to 3.0 equivalents of B with respect to 7 resulted 

in a uniform decrease in intensity for signals corresponding to 7 while signals ascribable to B appeared 

and steadily increased. This confirms that 7 binds deep inside the ACoA-channel of PqsD. 

 

Figure 5. Competition of 7 and B binding to PqsD by STD NMR. Expanded 
1
H STD NMR spectrum 

of 7 (1 mM) in the presence of PqsD (10 µM) (black curve). STD NMR spectra recorded on the same 

sample after addition of 0.5 (purple), 1.0 (green), 2.0 (red) and 3.0 (blue) equivalents of compound B. 

Signals of 7 are labeled in black, from B in blue. 

 

 

Finally, we focused on the substituted 5-aryl ring that is predicted to be located near the active site 

within the ACoA channel (Figure 4). As already shown with phenoxy compound 3 (IC50 = 20 µM), 

larger substituents are tolerated in this part of the binding pocket. As Cys112 is pivotal for the catalytic 

activity of PqsD, a covalent trapping of this amino acid should lead to an effective blockade of the 
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enzymatic machinery. For that purpose a β-chloroacetyl moiety was introduced, as an “electrophilic 

warhead”,
17

 at the appropriate position, linked to the 5-aryl ring via an amide function (Figure 6a). 

Figure 6. a) Schematic illustration of the proposed trapping of Cys112 by the introduced electrophilic 

warhead of 12. MALDI-TOF-MS after tryptic digestion. The mass of the fragment containing Cys112 

is highlighted in red b) PqsD c) PqsD after incubation with 12. Signals below 3% intensity were 

removed for the sake of clarity (raw data is shown in Figure S6 and S7). 

 

 

The resulting compound 12 (clogD7.4: −0.59) displays an IC50 value of 2 µM. The covalent binding of 

12 to PqsD was demonstrated by LC-ESI-MS. The PqsD peak (m/z = 36687.5 [M+H]
+
) shifted after 

preincubation with 12 to the calculated adduct mass (m/z = 37153.1 [M+H]
+
) (Figure S8). To evaluate 

whether indeed Cys112 is targeted by 12, the tryptically digested protein was analyzed by MALDI-

TOF-MS. The signal of the fragment containing Cys112, with a calculated m/z = 1510.8 [M+H]
+
, was 

found in the reference sample without inhibitor. In the sample treated with 12, this signal was absent 

while two new peaks at m/z = 1975.9 and 1931.9 [M+H]
+
 appeared (Figure 6b,c). The former fits to 

the Cys112 fragment with covalently bound 12. The latter refers to its fragmentation product missing a 

carboxylic acid moiety. Taking into account that a long residence time at the active site is considered 

important for in vivo potency of the inhibitor,
18

 covalently binding compound 12 carries the potential 

of strong biological effects.  
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CONCLUSIONS 

In conclusion, we optimized the PqsD inhibitor 1, following a novel approach. First, an equimolar 

binding behavior to the target protein PqsD was determined by ITC. The binding mode was elucidated 

by examination of three model compounds (1−3) in SPR competition experiments. To the best of our 

knowledge, this is the first example of such an approach. These findings allowed profound docking 

calculations guiding our subsequent structure-based optimization process. This approach culminated in 

an irreversible inhibitor, which covalently binds to the active site of PqsD as predicted. The 

optimization of activity was accompanied by reduced lipophilicity (Table 1), caused by the 

introduction of amino acids at the ureido motif. According to the literature, this should facilitate 

permeation into Gram negative cells.
15 

 

For several drug targets, inhibitors with known binding sites and the protein crystal structures are 

available. In such cases, the presented approach of determining the binding mode can be helpful to 

guide a structure-based design of new inhibitors, especially if co-crystallization fails. 

While we mainly focused on the inhibitory potency at this early point of development, structural 

variations leading to more drug-like properties (e.g. bio-isosteric exchange of the carboxylic groups) 

remains a challenging task and will be an element of future work. Additional efforts will also include 

studies on intracellular activity and inhibition of biofilm formation in P. aeruginosa. In the present 

study, shortcomings of in silico docking simulations (prediction of multiple binding modes) were 

compensated by the use of biophysical methods. This rational approach represents a powerful 

complement to X-ray co-crystallography and should be applicable to many drug targets with known 

ligands.  

 

EXPERIMENTAL SECTION 

Materials and Methods. Starting materials were purchased from commercial suppliers and used 

without further purification. Column flash chromatography was performed on silica gel (40–63 µM), 

and reaction progress was monitored by TLC on TLC Silica Gel 60 F254 (Merck). All moisture-

sensitive reactions were performed under nitrogen atmosphere using oven-dried glassware and 

anhydrous solvents. 
1
H and 

13
C NMR spectra were recorded on Bruker Fourier spectrometers (500/300 

or 176/126/75 MHz) at ambient temperature with the chemical shifts recorded as δ values in ppm units 

by reference to the hydrogenated residues of deuteriated solvent as internal standard. Coupling 

constants (J) are given in Hz and signal patterns are indicated as follows: s, singlet; d, doublet; dd, 

doublet of doublets; t, triplet; m, multiplet, br., broad signal. The purity of the final compounds was 

>95% except for 12 (90%) measured by HPLC. The Surveyor LC system consisted of a pump, an 

autosampler, and a PDA detector. Mass spectrometry was performed on a MSQ electrospray mass 

spectrometer (ThermoFisher, Dreieich, Germany). The system was operated by the standard software 

Xcalibur. A RP C18 NUCLEODUR 100-5 (125 mm x 3 mm) column (Macherey-Nagel GmbH, 
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Dühren, Germany) was used as the stationary phase. All solvents were HPLC grade. In a gradient run 

the percentage of acetonitrile (containing 0.1% trifluoroacetic acid) was increased from an initial 

concentration of 0% at 0 min to 100% at 15 min and kept at 100% for 5 min. The injection volume 

was 10 µL, and flow rate was set to 800 µL/min. MS analysis was carried out at a spray voltage of 

3800 V and a capillary temperature of 350 °C and a source CID of 10 V. Spectra were acquired in 

positive mode from 100 to 1000 m/z at 254 nm for the UV trace. 

Chemistry 

General synthesis procedures.  

Experimental details on synthesis of 12 can be found in the Supporting Information. 

Scheme S1: Synthesis of 5-aryl-3-ureidothiophene-2-carboxylic acids. 

 

 

Method A, general procedure for the synthesis of 5-aryl-3-amino-2-carboxylic acid methylester (II):
19

  

POCl3 (26.1 g, 0.17 mol) was added dropwise to DMF (24.9 g, 0.34 mol) maintaining the temperature 

below 25 °C (cooling in ice bath) and stirred for additional 15 min. The acteophenone I (85.0 mmol) 

was added slowly and the temperature was kept between 40 and 60 °C. After complete addition, the 

mixture was stirred for 30 minutes at room temperature. Hydroxylamine hydrochloride (23.6 g, 0.34 

mol) was carefully added portionwise (exothermic reaction!) and the reaction was stirred for additional 

30 min without heating. After cooling to room temperature, the mixture was poured into ice water (300 

mL). The precipitated β-chloro-cinnamonitrile was collected by filtration, washed with H2O (2 x 50 

mL) and dried under reduced pressure over CaCl2. In the next step sodium (1.93 g, 84.0 mmol.) was 

dissolved in MeOH (85 mL) and methylthioglycolate (6.97 g, 65.6 mmol) was added to the stirred 

solution. The β-chloro-cinnamonitrile (61.1 mmol) was added and the mixture was heated to reflux for 

30 min. After cooling to room temperature, the mixture was poured in ice water (300 mL). The 

precipitated solid was collected by filtration, washed with H2O (2 x 50 mL) and dried under reduced 

pressure over CaCl2. If necessary, recrystallisation was performed from EtOH.  

Method B, general procedure for the synthesis of 5-aryl-3-amino-2-carboxylic acid (III):  

The 5-aryl-3-amino-2-carboxylic acid methyl ester II (16.6 mmol) was added to a solution of KOH 

(60 mL, 0.6M in H2O) and MeOH (60 mL). The mixture was heated to reflux for 3 h, concentrated, 

and washed with EtOAc (2 x 50 mL). The aqueous layer was cooled with ice and acidified with a 
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saturated aqueous solution of KHSO4. The precipitated solid was collected by filtration, washed with 

H2O (2 x 30 mL) and dried under reduced pressure over CaCl2. 

 

Method C, general procedure for the synthesis of 5-aryl-2-thiaisatoic-anhydrid (IV):
20,21

 

To a solution of the 5-aryl-3-amino-2-carboxylic acid (III) (5.28 mmol) in THF (50 mL) a solution of 

phosgene (6.10 mL, 20 wt% in toluene, 11.6 mmol) was added dropwise over a period of 30 min. The 

reaction mixture was stirred for 2 h at room temperature, followed by the addition of saturated aqueous 

solution of NaHCO3 (30 mL) and H2O (50 mL). The resulting mixture was extracted with EtOAc/THF 

(1:1, 3 x 100 mL). The organic layer was washed with saturated aqueous NaCl (100 mL), dried 

(MgSO4) and concentrated. The crude material was suspended in a mixture of n-hexane/EtOAc (2:1, 

50 mL) heated to 50 °C and after cooling to room temperature separated via filtration. 

 

Method D, general procedure for the synthesis of of 5-aryl-3-ureidothiophene-2-carboxylic acid (V):
22

 

The 5-aryl-2-thiaisatoic-anhydrid (IV) (0.46 mmol) was suspended in water (7.5 mL) and the 

appropriate amine (4.60 mmol) was added. The reaction mixture was stirred, heated to 100 °C and 

then cooled to room temperature. The reaction mixture was poured into a mixture of concentrated HCl 

and ice (1:1) and extracted with EtOAc/THF (1:1, 60 mL). The organic layer was washed with 

aqueous HCl (2M), followed by saturated aqueous NaCl (2 x 50 mL), dried (MgSO4) and 

concentrated. The crude material was suspended in a mixture of n-hexane/EtOAc (2:1, 20 mL) heated 

to 50 °C and after cooling to room temperature separated via filtration. 

 

Spectroscopic data of final compounds and intermediates can be found in the Supporting Information. 

Compound 7 is presented as example. 

(S)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (7).  

1
H NMR (DMSO-d6, 300 MHz): δ = 12.84 (br. s., 2 H, COOH), 9.42 (s, 1 H), 8.15 (d, J = 7.9 Hz, 1 

H), 8.09 (s, 1 H), 7.69−7.51 (m, J = 8.8 Hz, 2 H), 7.37−7.25 (m, 4 H), 7.25−7.17 (m, 1 H), 7.03−6.97 

(m, J = 8.8 Hz, 2 H), 4.56−4.28 (m, 1 H), 3.79 (s, 3 H, OCH3), 3.11 (dd, J = 13.9, 4.6 Hz, 1 H), 2.88 

(dd, J = 13.9, 9.8 Hz, 1 H) ppm.  

13
C NMR (DMSO-d6, 75 MHz): δ = 173.6, 164.6, 160.1, 153.7, 147.1, 145.9, 137.7, 129.0, 128.2, 

127.1, 126.4, 125.4, 116.7, 114.7, 105.8, 55.3, 54.4, 36.9 ppm. 

Biology and Biophysics 

General procedure for expression and purification of recombinant PqsD WT and R223A mutant 

in E. coli. His6-tagged PqsD (H6-PqsD) and mutants were expressed in E. coli and purified using a 

single affinity chromatography step. Briefly, E. coli BL21 (λDE3) cells containing the 

pET28b(+)/pqsD (kindly provided by Prof. Rolf Müller) were grown in LB medium containing 50 

µg/mL kanamycin at 37 °C to an OD600 of approximately 0.8 units and induced with 0.2 mM IPTG for 
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16 h at 16 °C. The cells were harvested by centrifugation (5,000 rpm, 10 min, 4 °C) and the cell pellet 

was resuspended in 100 mL binding buffer (10 mM Na2HPO4, 2 mM KH2PO4 pH 7.4, 3 mM KCl, 137 

mM NaCl, 20 mM imidazole, 10% glycerol (v/v)) and lysed by sonication for a total process time of 

2.5 min. Cell debris were removed by centrifugation (18500 rpm, 40 min, 4 °C) and the supernatant 

was filtered through a syringe filter (0.20 μm). The clarified lysate was immediately applied to a Ni-

NTA column, washed with binding buffer and eluted with 500 mM imidazole. The protein containing 

fractions were buffer-exchanged into 125 mM Na2HPO4, 50 mM KH2PO4 pH 7.6, 50 mM NaCl, 10% 

glycerol (v/v), using a PD10 column and judged pure by SDS-PAGE analysis. Then protein was stored 

in aliquots at –80 °C. 

 

Screening assay procedure for in vitro PqsD inhibition.
11

 The assay was performed monitoring 

enzyme activity by measuring HHQ formed by condensation of anthraniloyl-CoA and β-ketodecanoic 

acid. The reaction mixture contained MOPS buffer (0.05 M, pH 7.0) with 0.005% (w/v) Triton X-100, 

0.1 µM of the purified enzyme and inhibitor. The test compounds were dissolved in DMSO and 

diluted with buffer. The final DMSO concentration was 0.5%. After 10 min preincubation at 37 °C, the 

reaction was started by the addition anthraniloyl-CoA to a final concentration of 5 µM and -

ketodecanoic acid to a final concentration of 70 µM. Reactions were stopped by addition of MeOH 

containing 1 µM amitriptyline as internal standard for LC/MS-MS analysis. HHQ was quantified using 

a HPLC-MS/MS mass spectrometer (ThermoFisher, Dreieich, Germany) in ESI mode. Ionization of 

HHQ and the internal standard amitriptyline was optimized in each case. The solvent system consisted 

of 10 mM ammonium acetate (A) and acetonitrile (B), both containing 0.1% trifluoroacetic acid. The 

initial concentration of B in A was 45%, increasing the percentage of B to 100% in 2.8 min and 

keeping it at 98% for 0.7 min with a flow of 500 µL/min. The column used was a NUCLEODUR-C18, 

100-3/125-3 (Macherey & Nagel, Duehren, Germany). Control reactions without the inhibitor, but 

including identical amounts of DMSO, were performed in parallel and the amount of HHQ produced 

was set to 100%. All reactions were performed in triplicates. 

 

RNAP-transcription assay. E. coli RNA polymerase holo enzyme was purchased from Epicentre 

Biotechnologies (Madison, WI). Final concentrations in a total volume of 30 µL were one unit of RNA 

polymerase (0.5 µg) which were used along with 60 nCi of [5,6-
3
H]-UTP, 400 µM of ATP, CTP and 

GTP as well as 100 µM of UTP, 20 units of RNAse inhibitor (RiboLock, Fermentas), 10 mM DTT, 40 

mM Tris-HCl (pH 7.5), 150 mM KCl, 10 mM MgCl2 and 0.1% CHAPS. As a DNA template 3500 ng 

of religated pcDNA3.1/V5-His-TOPO were used per reaction.
23

 Prior to starting the experiment, the 

compounds were dissolved in DMSO (final concentration during experiments: 2%). Dilution series of 

compounds were prepared using a liquid handling system (Janus, Perkin Elmer, Waltham, MA). The 

components described above (including the inhibitors) were preincubated in absence of NTPs and 

DNA for 10 min at 25 °C. Transcription reactions were started by the addition of a mixture containing 
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DNA template and NTPs and incubated for 10 min at 37 °C. The reaction was stopped by the addition 

of 10% TCA, followed by a transfer of this mixture to a 96 well Multiscreen GFB plate (Millipore, 

Billerica, MA) and incubation for 45 min at 4 °C. The plate underwent several centrifugation and 

washing steps with 10% TCA and 95% ethanol to remove residual unincorporated 
3
H-UTP. After that 

the plate was dried (30 min, 50 °C) and 30 µL of scintillation fluid (Optiphase Supermix, Perkin 

Elmer) was added to each well. After 10 min the wells were assayed for presence of 
3
H-RNA by 

counting using a Wallac MicroBeta TriLux system (Perkin Elmer). To obtain inhibition values for 

each sample, their counts were related to DMSO controls. 

 

Surface plasmon resonance. SPR binding studies were performed using a Reichert SR7500DC 

instrument optical biosensor (Reichert Technologies, Depew, NY, USA) and CMD500M 

(carboxymethyl dextrane-coated) sensor chips obtained from XanTec (XanTec Bioanalytics, 

Düsseldorf, Germany). 

Immobilization of wild type PqsD and R223A mutant. PqsD was immobilized on a CMD500M  sensor 

chip at 12 °C using standard amine coupling analogous to the manufacturers’ instructions. PqsD was 

diluted into sodium acetate buffer (10 mM, pH 4.5) to a final concentration of 100 µg/mL. PqsD was 

immobilized at densities between 5000-6000 RU for binding studies and for mutagenesis studies. The 

PqsD mutant was immobilized analogously to the wild type. 

Competition studies. The competition studies were performed at a constant flow rate of 50 µL/min in 

instrument running buffer (50 mM MOPS, pH 8.0, 150 mM NaCl, 5% DMSO (v/v), 0.1% Triton X 

100 (v/v)). 10 mM stock solutions of compounds 1, 2 and 3 in DMSO were directly diluted to a 

concentration of 500 µM (50 mM MOPS, pH 8.0, 150 mM NaCl, 0.1% Triton X-100 (v/v)) and then 

diluted to a final concentration of 100 µM in running buffer (50 mM MOPS, pH 8.0, 150 mM NaCl, 

5% DMSO (v/v), 0.1% Triton X 100 (v/v)). Final concentration of DMSO was retained at 5% (v/v). 

Before the compounds were injected, 6 warm-up blank injections were performed. Buffer blank 

injections and DMSO calibration were included for double referencing. 

ACoA competition. PqsD was preincubated with compound 1, therefore 1 was added to the running 

buffer (100 µM). The sensor chip surface was flushed for several hours at a constant flow rate of 

50 µL/min until the baseline was stable. Afterwards the flow rate was decreased to 10 µL/min and 

ACoA was injected (100 µM) twice for 120 s association and 15 min dissociation times. 

Competitor competition. PqsD was preincubated with compounds A or B, therefore the competitor 

compound was added to the running buffer (100 µM). The sensor chip surface was flushed for several 

hours at a constant flow rate of 50 µL/min until the baseline was stable. Afterwards the flow rate was 

decreased to 10 µL/min and compound 1, 2 or 3 were injected (100 µM) twice for 120 s association 

and 300 s dissociation times. Due to a slow koff rate of the competitor compounds, kD values referring 

to the concentrations do not play a decisive role during the competition experiment. 
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Studies with R223A mutant. The experiments were performed at a constant flow rate of 50 µL/min in 

instrument running buffer (50 mM MOPS, pH 8.0, 150 mM NaCl, 5% DMSO (v/v), 0.1% Triton X 

100 (v/v)) at 12 °C. 10 mM stock solutions of compounds 1 or 2 in DMSO were diluted to a 

concentration of 100 µM analogous to the binding studies. Before the compound was injected, twelve 

warm-up blank injections were performed. The obtained data were referenced against blank injections 

and DMSO calibration. The compounds were injected twice for 120 s association and 300 s 

dissociation time. Scrubber software was used for processing and analysing data. 

 

Isothermal titration calorimetry. ITC experiments were carried out using an ITC200 instrument 

(Microcal Inc., GE Healthcare). Concentration of the ligand in DMSO stock solutions was 20 mM. 

Final ligand concentrations were achieved by diluting 1:20 (v/v) in the experimental buffer resulting in 

a final DMSO concentration of 5% (v/v). Protein concentration was determined by measuring the 

absorbance at 280 nm using a theoretical molarity extinction coefficient of 17,780 M
−1

 cm
−1

. DMSO 

concentration in the protein solution was adjusted to 5% (v/v). ITC measurements were routinely 

performed at 25 °C in PBS-buffer, pH 7.4, 10% glycerol (v/v), 5% DMSO (v/v). The titrations were 

performed on 100 μM PqsD-His6 in the 200 µL sample cell using 2 µL injections of 1.0 mM ligand 

solution every 180 s. Raw data were collected and the area under each peak was integrated. To correct 

for heats of dilution and mixing the final baseline consisting of small peaks of the same size at the end 

of the experiment was subtracted. The experimental data were fitted to a theoretical titration curve 

(one site binding model) using MicroCal Origin 7 software, with ΔH (enthalpy change in kcal mol
−1

), 

KA (association constant in M
−1

), and N (number of binding sites) as adjustable parameters. 

Thermodynamic parameters were calculated from equation: 

ΔG = ΔH−TΔS = RT ln KA = −RT ln KD 

where ΔG, ΔH, and ΔS are the changes in free energy, enthalpy, and entropy of binding, respectively, 

T is the absolute temperature, and R = 1.98 cal mol
−1

 K
−1

. For compound 1 four independent 

experiments were performed. 

 

Saturation transfer difference NMR. All NMR data were recorded at 298 K on a Bruker Avance 

500 NMR instrument equipped with a cryogenically cooled z-shielded gradient probe. Experiments 

were recorded with the carrier set at -2 ppm for on-resonance irradiation and 40 ppm for off-resonance 

irradiation. Control spectra were recorded under identical conditions on samples containing free 

compound 7 to test for artifacts. Selective protein saturation (3 s) was accomplished using a train of 50 

ms Gauss-shaped pulses, each separated by a 1 ms delay, at an experimental determined optimal 

power (50 dB on our probe); a T1ρ filter (15 ms) was incorporated to suppress protein resonances. 

Experiments were recorded using a minimum of 512 scans and 32K points. On- and off-resonance 

spectra were processed independently, and subtracted to provide a difference spectrum. Samples 
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containing 7 and PqsD at final concentrations of 1 mM and 10 µM, respectively, were prepared in 20 

mM sodium phosphate, 50 mM NaCl, and 5 mM MgCl2, pH 7.0. 

 

LC-ESI-MS. PqsD (25 µM) was preincubated with compound 12 (25 µM) for 30 min at 37°C in Tris-

HCl buffer (0.05 M, pH 8.0) with 0.5% DMSO. Dithiothreitol was added and the samples were 

analyzed by HPLC-ESI. All ESI-MS-measurements were performed on a Dionex Ultimate 3000 

RSLC system using an Aeris Widepore XB-C8, 150 x 2.1 mm, 3.6 µm dp column (Phenomenex, 

USA). Separation of 2 µl sample was achieved by a linear gradient from (A) H2O + 0.05% TFA to (B) 

ACN + 0.05% TFA at a flow rate of 250 µl/min and 45 °C. The gradient was initiated by a 1.0 min 

isocratic step at 15% B, followed by an increase to 80% B in 4.5 min to end up with a 6 min step at 

80% B before re-equilibration with initial conditions. UV spectra were recorded by a DAD in the 

range from 200 to 600 nm. The LC flow was split to 75 µl/min before entering the maXis 4G hr-ToF 

mass spectrometer (Bruker Daltonics, Bremen, Germany) using the standard Bruker ESI source. In the 

source region, the temperature was set to 180°C, the capillary voltage was 4000 V, the dry-gas flow 

was 6.0 l/min and the nebulizer was set to 1.1 bar. Mass spectra were acquired in positive ionization 

mode ranging from 600 – 1800 m/z at 2.5 Hz scan rate. Protein masses were deconvoluted by using 

the Maximum Entropy algorithm (Copyright 1991-2004 Spectrum Square Associates, Inc.). 

 

MALDI-TOF-MS. PqsD (10 µM) was preincubated with compound 12 (10 µM) for 60 min at 37°C 

using identical buffer composition as in the screening assay procedure (0.05 M MOPS, pH 7.0 with 

0.005 % (w/v) Triton X-100 and 0.5 % DMSO). The buffer was exchanged by an NH4HCO3 buffer 

(0.05 M, pH 8.1) in three diafiltration steps. Diafiltration was performed at 1200 g for 6 min at 4°C in 

Nanosep® Centrifugal Devices (MWCO = 10K) of Pall Corporation (Port Washington, NY, USA). 

The protein was digested with trypsin overnight and dithiothreitol was added. α-Cyano-4-

hydroxycinnamic acid was used as matrix component. Analyzes of the peptides were performed on a 

4800 TOF/TOF Analyzer mass spectrometer (Applied Biosystems, Darmstadt, Germany) in positive 

reflector mode using a pulsed 200 Hz solid state Nd:YAG laser with a wavelength of 355 nm. Laser 

energy was set to 2000–2300 units for standards and to 2700–3200 units for real samples. Source 1 

voltage was set to 20 kV with a grid voltage of 16 kV. Reflector detector voltage was 2.19 kV. Spectra 

of standard peptides used for wide range calibration ranging from 0.8 to 4 kDa (des-arg1-bradykinin, 

angiotensin I, glu1-fibrinopeptide B, ACTH 1–17 clip, ACTH 18–39 clip and ACTH 7–38 clip) were 

measured with a delay time of 600 ns. One single mass spectrum was formed from 20 subspectra per 

spot using 25 accepted laser impulses each. From the standard peptides exclusively monoisotopic ions 

were used with a minimum signal-to-noise (S/N) ratio of 20 and a resolution >10000. Mass tolerance 

was set to 0.3 Da with maximum outlier of 5 ppm. Accepted calibration settings were used to measure 

real sample spectra in the range of 1 to 3.5 kDa with a minimum S/N range of 10 and a resolution 

>8000. An internal algorithm defined the isotope cluster area subsequently named intensity (I), based 
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on the peptides’ molecular weight and their general elemental composition. MALDI-TOF-MS resulted 

in pmfs consisting of mass-intensity spectra (m/z–Iabs, ai). 

 

Molecular Modeling 

Docking. Inhibitors were built in Molecular Operating Environment (MOE).
24

 The receptor was 

derived from the co-crystal structure of anthraniloyl coenzyme A with PqsD (PDB Code: 3H77)
6
 

ACoA, the covalently bound anthranilate and H2O were removed and Cys112 was restored 

considering its conformation in 3H76.
6
 AutoDockTools V.1.5.6 was used to add polar hydrogens and 

to save the protein in the appropriate file formate for docking with Vina. For docking AutoDockVina 

was used.
25

 The docking parameters were kept at their default values. The docking grid was sized 18 Å 

x 24 Å x 24 Å, covering the entire ACoA channel. 
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ABSTRACT 

Pseudomonas aeruginosa employs a characteristic pqs quorum sensing (QS) system that functions via 

the signal molecules PQS and its precursor HHQ. They control the production of a number of 

virulence factors and biofilm formation. Recently, we have shown that sulfonamide substituted 2-

benzamidobenzoic acids, which are known FabH inhibitors, are also able to inhibit PqsD, the enzyme 

catalyzing the last and key step in the biosynthesis of HHQ. Here, we describe the further optimization 

and characterization of this class of compounds as PqsD inhibitors. Structural modifications showed 

that both the carboxylic acid ortho to the amide and 3'-sulfonamide are essential for binding. 

Introduction of substituents in the anthranilic part of the molecule resulted in compounds with IC50 

values in the low micromolar range. Binding mode investigations by SPR with wild-type and mutated 

PqsD revealed that this compound class does not bind into the active center of PqsD, but in the ACoA 

channel preventing the substrate from accessing the active site. This binding mode was further 

confirmed by docking studies and STD NMR. 

 

INTRODUCTION 

The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that is 

commonly associated with hospital-acquired life-threatening infections. Especially patients with 

severe burns and immunocompromised individuals,
1
 like those undergoing chemotherapy or having 

HIV/AIDS
2 

are highly susceptible to infections with P. aeruginosa. A wide variety of infection sites 

can be observed, such as ocular, ear, urinary tract, bloodstream, skin and soft tissue infections, and 

hospital-acquired pneumonia. Furthermore it is the dominant cause of chronic lung infections in the 

majority of people with cystic fibrosis (CF).
3-5

 Due to the high intrinsic resistance of P. aeruginosa to 

many antimicrobial agents, antimicrobial therapy is challenging. The resistance arises from the 

combination of low outer membrane permeability and resistance mechanisms such as efficient 

multidrug efflux pumps and β-lactamases.
6
 Treatment is further hampered when the bacterium is 

growing in biofilms.
7, 8

 As a consequence infections caused by bacterial biofilms are generally chronic 

and very difficult to eradicate.
9
 Due to the rising levels of resistance to conventional antibiotics, there 

is an urgent need for new therapeutic options. 

The production of several virulence factors as well as biofilm formation
10, 11

 is coordinated by a cell 

density dependent mechanism termed quorum sensing (QS) using a number of QS signal molecules.
12, 

13
 This mechanism of communication enables bacteria to coordinate the regulation of gene expression 

with subsequent effects on metabolism, protein synthesis and virulence.
14

 Three different QS systems 

are known for P. aeruginosa. The las
15, 16

 and rhl
17, 18

 systems use 3-oxo-C12-HSL (N-(3-

oxododecanoyl) homoserine lactone) and C4-HSL (N-butyryl homoserine lactone), respectively, as 
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signal molecules, whereas the pqs system utilizes the 2-heptyl-3-hydroxy-4(1H)-quinolone, called 

Pseudomonas Quinolone Signal (PQS) and its immediate precursor 2-heptyl-4-quinolone (HHQ).
19, 20

 

Both PQS and HHQ bind to the transcriptional regulator PqsR, the receptor of the pqs system. Among 

other factors, this system is involved in the regulation of multiple virulence determinants
21, 22

 such as 

elastase, rhamnolipids and pyocyanin and also influences biofilm formation.
23, 24

 Therefore PqsD is 

considered as an attractive therapeutic target for drug development and treatment of P. aeruginosa 

infections. It is believed that disrupting the cell-to-cell communication instead of killing the bacteria 

will result in less selective pressure than with conventional antibacterial agents such as antibiotics
25

 

and thus will circumvent the problem of resistance.  

Using a ligand-based approach we developed the first highly potent competitive PqsR antagonists, 

which were able to reduce the production of the virulence factor pyocyanin.
26, 27 

As HHQ and PQS 

activate PqsR, inhibition of their synthesis should lead to a decrease of virulence factor production 

without interfering with bacterial growth.
28, 29 

PqsD is an essential enzyme in the biosynthesis of HHQ 

and PQS as it catalyzes the last step in HHQ formation, the condensation of anthraniloyl-CoA (ACoA) 

with ß-ketodecanoic acid (Scheme 1).
30

 

 

Scheme 1. Biosynthesis of signal molecules HHQ and PQS  

 

 

Recently we have shown for the first time that inhibition of PqsD with a small molecule (compound I, 

Scheme 2) leads to a strong reduction of extracellular HHQ and PQS levels and a significant reduction 

of biofilm volume.
31

 Structurally, PqsD most closely resembles β-ketoacyl-ACP synthase (FabH) 

having the same catalytic triad consisting of Cys112, His257 and Asn287. Therefore, we postulated 

that inhibitors of FabH might also act as PqsD inhibitors. For three FabH inhibitors (compound II, III 

and IV, Scheme 2)
30, 32, 33

, two of them were anthranilic acid derived, 
 
we could demonstrate that they 

indeed inhibit PqsD.  

 

Scheme 2. Structures of the PqsD inhibitor I and the FabH inhibitors II, III and IV as well as the 

according PqsD IC50 values. V represents the general structure of synthesized compounds.  
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In the current work, we report about the optimization of compound II for which a series of 3-

sulfonamide substituted benzamidobenzoic acids (general structure V) were synthesized. The binding 

mode of the potent inhibitors was investigated using surface plasmon resonance spectroscopy (SPR), 

molecular docking studies and saturation transfer difference nuclear magnetic resonance (STD NMR). 

 

RESULTS AND DISSCUSSION 

Chemistry Reaction of amines 1, 3, 7-8 and 11-12 with the appropriate acid chloride afforded the 

amides 2a, 4a, 9a-10a and 13a-14a (see SI). Subsequent basic hydrolysis of the carboxylic ester 

groups yielded the corresponding acids 2, 4, 9-10 and 13-14. Carboxamide 6 was prepared from 2-

aminobenzamide (5) and 3-(N,N-diethylsulfamoyl)benzoyl chloride (Scheme 3).  

 

Scheme 3. Reaction of benzoyl chlorides with methyl aminobenzoates and 2-aminobenzamide
a
 

 

 

a
Reagents and conditions: (a) 3-(N,N-diethylsulfamoyl)benzoyl chloride 1, 3: K2CO3, N-

methylimidazole, TMEDA, CH3CN; 5: toluene; (b) 4-(N,N-diethylsulfamoyl)benzoyl chloride; K2CO3, 

N-methylimidazole, TMEDA, CH3CN; (c) 3-(diethylcarbamoyl)benzoyl chloride, K2CO3, N-

methylimidazole, TMEDA, CH3CN; (d) 1N NaOH (aq.), MeOH, THF (not 5). 
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As outlined in Scheme 4 the synthesis of 3-sulfamoylbenzoic acids 22-33 started from para-

substituted benzoic acids 15-17, which were converted into 3-(chlorosulfonyl)benzoic acids 18-20 

by reaction with chlorosulfonic acid at 100 °C in 82-88% yield. 

 

Scheme 4. Synthesis of 3'-sulfonamide substituted benzamidobenzoic acids and their 

intermediates
a
 

 

 

a
Reagents and conditions: (a) ClSO3H, 100 °C, overnight; (b) HNR

2
R

3
, CH2Cl2; (c) (i) SOCl2, DMF 

(cat.), CH2Cl2, overnight or SOCl2, DMF (cat.), toluene, 80 °C, 4h; (ii) methyl anthranilate; (iii) 1N 

NaOH (aq.), MeOH, THF, rt; (d) phenylboronic acid, cesium carbonate, DME/water 1/1, 100 °C, 3.5 

h. 

 

Compound 21 was commercially available. The sulfonyl chlorides 18-21 were then reacted with 

ammonia or a secondary amine to afford 3-sulfamoylbenzoic acids 22-33. Reaction of the carboxylic 

acids with thionyl chloride, either in dichloromethane at room temperature or in toluene at 80 °C gave 

the corresponding acid chlorides, which were reacted under standard conditions with the methyl ester 

of anthranilic acids. The resulting compounds 34a-52a and 57a-64a (see SI) were hydrolyzed with a 

mixture of 1N NaOH (aq.), MeOH and THF, yielding the corresponding 2-(3'-(sulfamoyl)benzamido) 

benzoic acids 34-52 and 57-64. Phenyl substituted compounds 53-56 were obtained in 60-76% yield 

by means of a Suzuki reaction of methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl) benzamido) benzoate 

(43a) with phenylboronic acids. Under the reaction conditions used, the intermediate methyl esters 

were already hydrolyzed to the desired carboxylic acids.  

 

PqsD inhibition In order to investigate the importance of the carboxylic acid and the sulfonamide 

moiety of the 3'-sulfonamide substituted benzamidobenzoic acids (general structure V) 2-(3'-(N,N-

diethylsulfamoyl)benzamido)benzoic acid (2) and two regioisomers (4 and 9) were synthesized. 
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Furthermore, the carboxylic acid and sulfonamide were replaced by a carboxamide (6 and 13, Scheme 

5).  

Scheme 5. Influence of sulfonamide and benzoic acid modifications on PqsD inhibition. 

 

Compound 2 lacking the Br substituent showed reduced activity compared to 34 (IC50 = 19.8 vs 6.9 

µM). The carboxylic acid ortho to the NH turned out to be essential for activity. Changing the position 

of the carboxylic acid to the meta position (4) as well as replacement with a carboxamide (6) led to a 

dramatic loss in activity. Shifting the N,N-diethylsulfamoyl group from 3'-position to 4'-position
34

 (9) 

also resulted in reduced activity, whereas replacement with an N,N-diethylcarboxamide (13) gave an 

inactive compound. As the structure of compound 2, having a carboxylic group next to the amide and 

with the sulfonamide in 3'-position, seemed to be optimal, we turned our attention to the introduction 

of additional substituents on both aromatic rings (Table 1).  

 

Table 1. PqsD inhibition by compounds 10, 14 and 2-(3'-sulfamoyl)benzamido)benzoic acids 2 and 

34-64.  

 

 

Compd R
1
 R

2
 R

3
 IC50 (µM)  

2 H 3'-SO2NEt2  19.8 ± 4.5 

34 H 4'-Br, 3'-SO2NEt2  6.9  ± 0.8 

35 H 4'-Me, 3'-SO2NEt2  27.3 ± 1.9 

36 H 4'-Et, 3'-SO2NEt2  39%* 

37 4-Cl 3'-SO2NEt2  9.4 ± 1.3 

38 4-F 3'-SO2NEt2  8.0 ± 1.2 

39 4-NO2 3'-SO2NEt2  6.3 ± 1.1 

40 5-Me 3'-SO2NEt2  18.4 ± 3.2 
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41 5-CF3 3'-SO2NEt2  12.4 ± 3.0 

42 5-F 3'-SO2NEt2  11.4 ± 1.9 

43 5-Br 3'-SO2NEt2  9.9 ± 2.1 

44 5-CN 3'-SO2NEt2  26.2 ± 10.4 

45 5-NO2 3'-SO2NEt2  8.9 ± 1.8 

10 5-Br 4'-SO2NEt2  13.0 ± 1.8 

14 5-Br 3'-C(O)NEt2  25.5 ± 5.5 

46 5-F 4'-Br, 3'-SO2NEt2  6.6 ± 0.1 

47 5-Br 4'-Br, 3'-SO2NEt2  3.8 ± 1.0 

48 5-Ph 3'-SO2NEt2  3.0 ± 0.7 

49 6-OMe 3'-SO2NEt2  44 %* 

50 6-Cl 3'-SO2NEt2  39.0 ± 1.9 

51 6-F 3'-SO2NEt2  24.9 ± 4.0 

52 6-OH 3'-SO2NEt2  1.2 ± 0.1 

53  3'-SO2NEt2 3''-C(O)NH2- 3.8 ± 0.4 

54  3'-SO2NEt2 4''-C(O)NH2 1.9 ± 0.1 

55  3'-SO2NEt2 3''-CO2H 1.5 ± 0.3 

56  3'-SO2NEt2 4''-CO2H 2.7 ± 0.3 

57 H 3'-SO2NH2  43.6 ± 1.3 

58 H 3'-SO2NMe2  35%* 

59 H 3'-SO2N(n-Pr)2  5.4 ± 1.0 

60 H 
 

 
47%*  

61 H 
 

 
14.4 ± 2.4 

62 H 
 

 
14.8 ± 2.4 

63 H 
 

 
16%*  

64 H 
 

 
16.5 ± 3.8 

Data shown are mean ± SD, n = 3. * Inhibition at 50 µM  

 

 

Binding mode characterization 
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SPR measurements In order to gain some insight into the binding mode of the potent inhibitors SPR 

experiments were performed. At first compounds 43 and 48 were tested in absence of ACoA and 

strong interactions with PqsD were observed (Figure 1A). In a second experiment the PqsD loaded 

sensor chip was first treated with ACoA. Nucleophilic attack of Cys112 to the thioester of ACoA and 

subsequent elimination of CoA is known to result in an anthranilate-PqsD complex,
36

 in which the 

catalytic center is occupied by the covalent bound anthranilate. Subsequent injection of compounds 43 

and 48 resulted in Figure 1B showing comparable signals for the ACoA-treated and the -untreated 

PqsD. This indicates that the compounds do not occupy the catalytic site of PqsD. These results are in 

contrast to what was observed for the sulfone (IV) (Figure 1C and 1D). Performing the experiment in 

the same way no signal for IV was observed when injected after preincubation with ACoA, indicating 

that this compound is competing with anthranilate for the same binding site. 

 

Figure 1. SPR binding studies of compounds 43, 48 and IV. A) Binding of 43 (blue) and 48 (red) to 

PqsD. B) Binding of 43 (blue) and 48 (red) after pretreatment of the chip with ACoA, which results in 

a covalent anthranilate-Cys112-PqsD complex with part of the active site being blocked. C-D) Same 

experiments performed with IV.  

 

This also means that the two inhibitor classes have different modes of action: compound IV is 

competing with the catalytic triad, whereas the anthranilic acid derivatives are “channel blockers”. 

Another SPR experiment was performed inverting the compound order. PqsD was preincubated with 

48 and ACoA was injected subsequently. The finding that in contrast to the untreated surface no 

binding of ACoA to PqsD was observed indicates that 48 blocks the ACoA channel and prevents 

ACoA from reaching its binding site.  

 

Further support for this mode of action comes from our screening assay. In the standard procedure 

purified PqsD is first incubated with test compound. After 10 minutes ACoA and ß-ketodecanoic acid 

are added and the enzyme activity is monitored by measuring the amount of HHQ being formed 

during 40 minutes reaction time. In a modified assay procedure, a 30 min preincubated enzyme / 

ACoA mixture is first added to the test compound. After 10 minutes, the reaction is started by addition 
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of ß-ketodecanoic acid and the enzyme activity is monitored as mentioned before. In contrast to 

experiments with compound IV, very similar IC50 values were observed in both settings, indicating 

that the benzamidobenzoic acids do not compete in the active site of PqsD with the covalently bound 

anthranilate (Table 2).  

 

Table 2. Comparison of IC50 values obtained with standard procedure (SP) and modified procedure 

(MP).  

Compd IC50 [µM] SP IC50 [µM] MP 

IV 0.15 ± 0.1 1.1 ± 0.1 

2 19.8 ± 4.5 19.4 ± 0.8 

43 9.9 ± 2.1 7.0 ± 0.4 

48 3.0 ± 0.7 4.2 ± 0.3 

52 1.2 ± 0.1 1.1 ± 0. 2 

55 1.5 ± 0.3 1.6 ± 0.1 

56 2.7 ± 0.3 2.0 ± 0.2 

64 16.5 ± 3.8 12.9 ± 0.1 

Data shown are mean ± SD, n = 3. 

For further binding mode investigation, additional SPR experiments were performed with compounds 

34, 43 and 48 differing in the size of the substituents in position 5 of the anthranilate. To investigate 

how deep they reach into the channel the compounds were tested on wild-type and on three PqsD 

mutants in which active site residues were exchanged (Ser317Phe, Cys112Ala and His257Phe). 

Notably, different binding behaviors were observed. For compound 34 no differences in binding 

signals were seen, indicating that the binding is not influenced by the amino acid exchanges. 

Increasing the size of the substituent (H to Br, 43) resulted in slightly decreased binding signals 

compared to wild-type PqsD. This observation is more pronounced for compound 48, where the 

additional phenyl ring leads to strongly reduced binding signals (Table 3).  
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Table 3. SPR based binding studies with wild-type and mutated PqsD (Ser317Phe, Cys112Ala, and 

His257Phe), for compounds 34, 43 and 48 (n=2).  

Compound Wild-type Ser317Phe Cys112Ala His257Phe 

 

34 
 

 

  

 

43 
 

  
 

 

48 
 

 

 

 

 

These results suggest that bulky substituents on the anthranilate are likely to reach the active center 

potentially interacting with Ser317, Cys112 and His257. The decreased binding signals observed in 

the mutants might either be due to missing interactions caused by amino acid replacement or due to 

conformational changes in the active site. The fact that the three investigated compounds are 

differently influenced by the amino acid exchanges is very likely to be caused by the size of the 

substituents the more bulky ones reaching deeper into the catalytic center.  

Docking studies In order to rationalize the SPR experiments and to establish a basis to explain the 

SAR of the PqsD inhibitors molecular docking studies were performed with selected compounds. For 

compound 2 three main binding clusters were found all localized within the ACoA channel (Figure 2 

and S1). In binding mode I (Figure 2I) 2 is placed deep into the channel: it is stabilized by hydrogen 

bonds to Cys112 (carboxylic acid) and Arg262 (sulfonamide oxygens), CH-π interactions to Leu193 

(anthranilic ring) and Asn260 (N,N-diethylsulfonamidebenzene moiety), and hydrophobic interactions 

with further amino acids. In binding mode II (Figure 2II) the inhibitor is placed more central in the 

channel: hydrogen bonds are formed to Asn287 (carboxylic acid) and Arg36/Arg223 (sulfonamide 

oxygens), π-stackings to Pro259/Met225 (anthranilic ring) and Met220 and Arg262 

(sulfonamidebenzene), and additional hydrophobic interactions. In mode III (Figure 2III) 2 is rotated 

180 degrees placing the anthranilic ring at the channel entrance: the carboxylic acid binds to Arg262 

and Arg36, while CH-π interactions with Thr37, Pro259 and Ile263 stabilize the aromatic scaffold. 

The N,N-diethyl group is buried into to the catalytic center forming hydrophobic interactions  
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Figure 2. Three main binding modes I, II and III of compound 2 in the ACoA channel of PqsD and 

(IV) superimposition of the three main binding modes of compound 2 shown as orange (binding mode 

I), green (binding mode II) and cyan (binding mode III) sticks. The main interacting amino acids are 

shown as lines and key interactions are highlighted as dotted lines (polar in yellow, hydrophobic in 

dark cyan).  
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In the most common pose of compound 48 the phenyl ring in position 5 is sandwiched between 

Met225 and Pro259, as seen for the anthranilic ring of compound 2 in binding mode II. The rest of the 

molecule is slightly pushed outwards (Figure 3 and S1) with the anthranilate forming hydrogen bonds 

to Arg262, Asn154 or Asn260. In contrast to compound 2 no hydrogen bonds are found to the 

sulfonamide oxygens. π-Stacking with Phe226 (anthranilic ring) and Phe32 (diethyl-sulfonamide-

benzene) and hydrophobic interactions (Figure S1) further stabilize the inhibitor.  

 

Figure 3. Docking pose of compound 2 (binding mode II; green) and 48 (magenta). 

For compound 48 a dissociation constant (KD) of 5.2 µM was determined by ITC (Figure 4). An 

explanation for these results could be that the main interactions for this compound are hydrophobic. 

The low value of enthalpy could be due to a desolvation penalty (ΔG = -7.2 kcal/mol, ΔH = -2.3 

kcal/mol, -TΔS = -5.0 kcal/mol). In two of the PqsD structures (3H76 and 3H78) a water molecule is 

present bridging to the catalytic residues Cys112, His257 and Asn287. When this water molecule was 

included in the docking process as part of the protein compound 52 was found deeper in the channel. 

The OH group forms an intramolecular hydrogen bond to the carboxylic acid (maintaining its 

planarity), which binds to Asn287, but also interacts via the structural water molecule with Cys112 

and His257 (Figure S2). This would explain the strong increase in activity and is further supported by 

the fact that for the methoxy derivative less than 50% inhibition at 50 µM is observed. 



Publikation E 122 

 

 

 

Figure 4. ITC experiments with compound 48 and wild-type PqsD. A: Integrated heats (black squares) 

plotted against the molar ratio of the reactants. B: Thermodynamic profile of 48. Data shown are mean 

± SD, n = 3. 

 

STD NMR studies To identify the orientation and mode of binding to PqsD, we recorded Saturation 

Transfer Difference (STD) NMR
37

 spectra of 2, 48, 52, and 64 in the presence of PqsD (Figure 5 and 

S4-S7). STD NMR is a powerful technique that allows the precise definition of binding epitopes on 

small molecule ligands. Samples contained an 80-fold excess of the compounds relative to PqsD with 

respective concentrations of 0.8 mM and 10 µM were recorded at 298 K. As seen in Figure 5 for 

compound 2, normalization of the signal of greatest intensity (H-6) in the difference spectrum (red) to 

the one of the reference spectrum (black) showed signals for the anthranilate protons H-5 (95%), H-4 

(86%), and H-3 (81%) to display the strongest enhancements. Signals for the benzene protons H-2' and 

H-4', H-5', and H-6' showed enhancements of ~70% while significantly reduced enhancements were 

observed for the methylene (42%) and methyl protons (39%, Figure S4). These results indicate that the 

protons of the anthranilic acid ring of 2 are in closer contact to the protein. 
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Figure 5. Reference (black) and STD NMR difference (red) spectra of 2 in complex with PqsD. 

Samples contained an 80-fold excess of the compounds relative to PqsD with respective 

concentrations of 0.8 mM and 10 µM were recorded at 298 K. Overlaid spectra were normalized to the 

signal for H-6 (δ 7.90), which gave the strongest enhancement. 

 

Similar epitope binding profiles were observed for 52 where once again the anthranilate protons 

showed the strongest enhancements (Figure S5). The STD NMR spectrum of 64 in presence of PqsD 

(Figure S6) displayed the strongest enhancements for anthranilate protons H-6 (100%), H-4 (99%), 

and H-3 (90%), for benzene proton H-5' (93%), and for the N-benzylic proton H-4'''(90%). It is 

worthwhile to note that enhancements of 87 and 80% were observed for methylene protons H-1'' and 

methyl protons H-2'', respectively. The spectra of 2, 52 and 64 revealed a similar binding mode for all 

compounds, which is independent of the substitution on the anthranilic acid ring or on the sulfonamide 

moiety. Low signal to noise ratio and spectral overlap did not allow to integrate individual peaks 

corresponding to the benzene protons of 48 in the STD NMR spectrum (Figure S7). However, it was 

clear that the benzene protons together with the methylene protons showed the highest intensities.  

 

The results of SPR, STD NMR and docking as presented are consistent with binding mode II, where 

the methylene protons are within van der Waals contact distances (2,5- 3,5 Å) to Pro259 and Met225. 

In particular, the SPR experiment with ACoA injection after pretreatment with inhibitor clearly speaks 

in favor of a channel-blocking mechanism for these inhibitors. Further, NMR results exclude binding 

mode III, where the anthranilic ring is almost exposed at the entrance of the ACoA channel (no 

correspondence between the intense signals and close enough residues), and disfavor binding mode I, 

where the methyl groups are predicted to be in closer contact to the protein. 
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SAR Discussion 

From binding mode II of 2 it becomes apparent that an important interaction partner is the carboxylic 

acid group in ortho position to the NH, which forms hydrogen bonds with Asn 287. Shifting to meta 

position (4) as well derivatization to carboxamide (6) strongly reduces activity (Scheme 5), as this 

interaction can no longer be sustained. Also of high importance is the 3-position of the N,N-

diethylsulfamoyl group to perfectly fit into the channel, and which must not be exchanged by N,N-

diethylcarboxamide as only the sulfur oxygens can establish hydrogen bonds with Arg 36 and Arg 223 

(compounds 9 and 13, respectively, Scheme 5).  

The finding that the sulfonamides lacking the diethyl residues (57- 64) exhibit weak or no inhibition 

can be explained by the strong interactions between the methylene and methyl protons with the 

protons of the protein as shown in the NMR experiments. Introduction of substituents in 2 resulted in 

different effects which are in accordance with the proposed binding mode II. An example is the Br 

substitution ortho to the sulfonamide group, which showed improved binding (34, 46 - 47) compared 

to the unsubstituted parent compounds. In binding mode II the benzene ring is oriented in a way in 

which the Br can build orthogonal halogen bonds with amino acids of the protein backbone for 

example with Arg36 and Thr37 (Figure S8). A reduced activity depending on the size of the 

substituents is observed when they were introduced into the 6-position of the anthranilic acid ring (49 - 

51).This is possibly due to a steric interference with the carboxylic acid group, which in turn can no 

longer optimally interact with Asn287. 52 is an exception, where introduction of OH in 6-position 

leads to a high inhibitory activity. As shown above, a plausible reason for this could be the ability of 

the OH group to build a hydrogen bond network with the carboxylic acid group and the amino acid 

residues of the active site (ITC and docking results). The introduction of small substituents in 4 and 5 

position of the anthranilic acid ring leads to increased PqsD inhibition (37 - 47). As shown in the SPR 

experiments with mutated PqsD, the docking results and NMR experiments the anthranilic acid ring is 

oriented towards the active center, whereby substituents at positions 4 and 5 reach deeper into the 

channel and thus can form additional interactions. This effect is more pronounced for 48, where a 

phenyl ring is attached in 5-position, leading to a slight shift in the binding mode compared to 

compound 2 (see above). Obviously, the gain in binding activity by the phenyl ring sandwiched 

between Met225 and Pro259 is higher than the loss of binding activity due to the missing interactions 

of the sulfonamide ethyl groups. The introduction of an amide or carboxylic acid group in meta or 

para-position (53-56) to address Asn 287 and His257 however, led only to slightly improved 

inhibition compared to the parent compound 48. 
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CONCLUSION 

In summary, we synthesized a series of sulfonamide substituted 2-benzamidobenzoic acids which 

inhibit PqsD in the low µM range. The carboxylic acid was essential for activity. Systematic variation 

of substituents in 4- and 5-position of the 2-aminobenzoic acid part of the scaffold resulted in the most 

potent PqsD inhibitors. Activity was reduced significantly when substituents were introduced in 6-

position. However, introduction of a hydroxyl group in this position resulted in a compound with 

increased potency (IC50 = 1.2 µM). SPR, ITC, modeling, and NMR experiments suggest these 

inhibitors to bind within the ACoA channel of PqsD, thereby acting as entropy-driven channel-

blockers that prevent ACoA from reaching the catalytic site. Further biological evaluation of our 

compounds is under investigation. 

 

EXPERIMENTAL SECTION 

Chemical Synthesis. General Methods. Chemicals were purchased from commercial sources and used 

without further purification. 
1
H NMR spectra were recorded on a Bruker DRX-500 (500 MHz) and a 

Bruker Fourier 300 (300 MHz) spectrometer. Chemical shifts are given in parts per million (ppm) with 

the solvent resonance as internal standard. Data are reported as follows; chemical shift, multiplicity (s 

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad signal or as a combination of 

these, e.g. dd, dt, etc.), coupling constants (Hz) and integration. 
13

C NMR spectra were recorded on a 

Bruker DRX-500 (125 MHz) with complete proton decoupling. Chemical shifts are given in parts per 

million (ppm) with the solvent resonance as internal standard. Mass spectrometry (HPLC/MS) was 

performed on a MSQ
®
 electro spray mass spectrometer (Thermo Fisher). The system was operated by 

the standard software Xcalibur®. A RP C18 NUCLEODUR
®
 100-5 (125  3 mm) column (Macherey 

- Nagel GmbH) was used as stationary phase. The mobile phase was a mixture of CH3CN (0.1% TFA) 

and H2O (0.1% TFA). All solvents were HPLC grade. Flash chromatography was performed on silica 

gel 60, 70-230 mesh (Fluka) and the reaction progress was determined by thin-layer chromatography 

(TLC) analyses on silica gel 60, F254 (Merck). Visualization was accomplished with UV light and 

staining with basic potassium permanganate (KMnO4). Melting points were determined in open 

capillaries using a SMP3 melting point apparatus of Bibby Sterilin Ltd with a gradient of 2 °C/min. 

The reported yields are the actual isolated yields of purified material, unless stated otherwise, and are 

not optimized. Purities of all test compounds used in the biological assays were determined by 

HPLC/MS using the area percentage method on the UV trace recorded at a wave length of 254 nm. All 

compounds were found to have ≥95% purity. Yields and characterization of all compounds are 

provided in the Supporting Information. 

General Procedure A for the Preparation of 3-Sulfamoylbenzoic Acids. At 0 °C the amine (30.0 mmol) 

was added to a stirred solution of 3-(chlorosulfonyl)benzoic acid (2.21 g, 10.0 mmol) in 

dichloromethane (25 mL). After stirring overnight at room temperature 1N HCl (aq., 25 mL) was 
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added. The organic solvent was removed by evaporation under reduced pressure. The solid was 

isolated by suction filtration, washed thoroughly with water and dried under reduced pressure at 50 °C. 

General Procedure B for the Preparation of 3-Sulfamoylbenzoyl Chlorides. Thionyl chloride (2.9 mL, 

40.0 mmol) was added slowly to a stirred solution of 3-sulfamoylbenzoic acid (4.00 mmol) in 

dichloromethane (25 mL) followed by 1-2 drops of DMF. After stirring overnight at room temperature 

the solution was evaporated under reduced pressure. The crude 3-sulfamoylbenzoyl chloride was used 

without further purification. 

General Procedures C for the Preparation of 2-Benzamidobenzoic Acid Methyl Esters. Procedure C1. 

3-(N,N-Diethylsulfamoyl)benzoyl chloride (1.00 mmol) was added to a stirred solution of anthranilic 

acid methyl ester (1.00 mmol) in pyridine (4 mL). After stirring overnight the solvent was removed by 

evaporation under reduced pressure. The residue was stirred with 1N HCl (aq., 4 mL). The solid was 

isolated by suction filtration, washed with water and heated briefly with a small amount of methanol. 

After cooling to room temperature the product was isolated by suction filtration, washed with some 

methanol and dried under reduced pressure at 50 °C. 

Procedure C2. 3-(N,N-Diethylsulfamoyl)benzoyl chloride (1.50 mmol) was added to a stirred 

suspension of anthranilic acid methyl ester (1.00 mmol), potassium carbonate (207 mg, 1.50 mmol) 

N-methylimidazole (8 mg, 0.10 mmol) and N,N,N’,N’-tetramethylethylenediamine (12 mg, 0.10 

mmol) in acetonitrile (1 mL). After stirring for 2.5 h at room temperature 1N HCl (aq.) was added. 

The solid was isolated by suction filtration, washed thoroughly with water and heated briefly with a 

small amount of methanol (2 mL). After cooling to room temperature the product was isolated by 

suction filtration, washed with some methanol and dried under reduced pressure at 50 °C. 

Procedure C3. A solution of 3-(N,N-diethylsulfamoyl)benzoyl chloride (3.00 mmol) and anthranilic 

acid methyl ester (3.00 mmol) in toluene (10 mL) was heated to reflux for 1.5 h. The solvent was 

evaporated under reduced pressure and the residue was heated briefly with a small amount of 

methanol. After cooling to room temperature the solid was isolated by suction filtration, washed with 

some methanol and dried under reduced pressure at 50 °C. 

General Procedure D for the Hydrolysis of 2-Benzamidobenzoic Acid Methyl Esters. A mixture of 2-

benzamidobenzoic acid methyl ester (1.30 mmol), THF/MeOH 2/1 (9 mL) and 1N NaOH (aq., 2.6 

mL, 2.6 mmol) was stirred overnight at room temperature. 1N HCl (aq., 2.6 mL, 2.6 mmol) was added 

and the solid was isolated by suction filtration, washed with water and dried under reduced pressure.  

Procedure for the Synthesis of compound IV. 1,4-Naphtoquinone (31.6 mmol) was dissolved in DCM 

(45 mL). Than TFA (2.45 mL) and p-toluensulfinate (33.18 mmol) dissolved in water (30 mL) were 

added and the mixture was stirred for 1 hour. Solid precipitates were obtained. The solution was 

purified over a column and stirred for additional 5 hours. The solid was filtered off and washed several 

times with water and DCM.
32, 38

 

Screening assay procedure for in vitro PqsD inhibition. The assay was performed monitoring the 

enzyme activity by measuring the HHQ formation as described by Storz and coworkers
31

. 
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Quantification of HHQ was performed analogous to Storz et al.,
31

 but with some modifications: the 

flow rate amounted 750 µL/min and an Accucore RP-MS column, 150 x 2.1 mm, 2.6 µm (Thermo 

Scientific, Waltham, Massachusetts, USA), was used. All test compound reactions were performed in 

triplicate in three independent runs. In the modified protocol, PqsD and the first substrate were 

preincubated for 30 min prior to adding them to the test compounds. Than ß-ketodecanoic acid was 

added and the further steps were performed analogous to the standard protocol. 

Surface Plasmon Resonance. SPR binding studies were performed using a Reichert SR7500DC 

instrument optical biosensor (Reichert Technologies, Depew, NY, USA) and CMD500M sensor chips 

obtained from XanTec (XanTec Bioanalytics, Düsseldorf, Germany). Scrubber software was used for 

processing and analyzing data.  

Preparation of PqsD mutants. Ser317Phe, Cys112Ala and His257Phe PqsD mutants were generated 

using the QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA) according to the 

manufacturer’s instructions using the pET28b(+)/pqsD plasmid as a template. Briefly, pqsD gene was 

amplified through 16 cycles of PCR. After treatment with DpnI, the PCR product was transformed 

into E. coli strain XL1-Blue. Plasmid DNA was purified using the GenElute
TM

 HP Plasmid Miniprep 

Kit (Sigma-Aldrich, St. Louis, MO) and sequenced to confirm the site-directed mutations. For the 

primer sequence of the mutations see Supporting Information. 

Expression and purification of recombinant PqsD wild-type and mutants in E. coli. E. coli 

BL21 (λDE3) cells were transformed with plasmid harboring PqsD (PET28b(+)/pqsD).
30

 

Overexpression, purification and storage of the His6-tagged PqsD was performed as described by Storz 

et al..
31

 The expression and purification of recombinant PqsD used for the NMR-studies is described in 

SI 

Immobilization of His6-PqsD. PqsD (38 kDA, >90% pure based on SDS-PAGE) was immobilized on a 

CMD500M (carboxymethyldextran-coated) sensor chip at 12 °C analogous to the method described by 

Henn and coworkers.
39

 The PqsD immobilization levels were 2217 RU for the binding studies with 

ACoA and 3085 RU in the mutagenesis studies to serve as reference. The PqsD mutants were 

immobilized analogous to the wild-type at densities of 6789 RU (Ser317Phe), 3903 RU (Cys112Ala) 

and 4272 RU (His257Phe). 

Binding studies. The binding studies were performed at a constant flow rate of 50 µL/min in 

instrument running buffer (50 mM MOPS, pH 8.0, 150 mM NaCl, 5% DMSO (v/v), 0.1% Triton-X 

100 (v/v)). IV (100 µM), 43 and 48 (20 µM) were injected consecutively for 180 s association and 300 

s dissociation times. Experiments were performed twice. In the second experiment ACoA (100 µM) 

was injected for 40 minutes with a constant flow of 5 µL/min to reach saturation of the ACoA binding 

site. Afterwards the flow rate was increased to 50 µL/min (30 min) in order to flush all CoA away. 

Once the baseline signal is stable additional ACoA (10 µM) was injected to assure that the 

anthraniloyl binding site is completely saturated (no additional signal was observed). Afterwards IV 

(100 µM), 43 and 48 (20 µM) were consecutively injected.  
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In the experiment with inverted compound order PqsD was preincubated with compound 48, therefore 

the compound was added to the running buffer (20 µM). The sensor chip surface was flushed for 

several hours at a constant flow rate of 50 µL/min until the baseline was stable. Afterwards the flow 

rate was decreased to 10 µL/min and ACoA was injected (100 µM) twice for 120 s association and 15 

min dissociation. The binding studies with PqsD mutants were performed analogously to the wild-type 

experiments. The compounds were injected twice for 120 s association and 300 s dissociation time.  

Molecular Docking. Molecular docking studies were performed by means of GOLDv5.0
40, 41

 using 

the CHEMPLP scoring function. 100 runs per molecule were performed. Default GOLD parameters 

were used with carbons, halogens, and non-polar sulfur atoms matching hydrophobic regions. All 

three 3D-structures of PqsD (PDB-id 3H76, 3H77, 3H78) were used. For 3H77 (anthranilate-Cys112) 

and 3H78 (Ala112) the residue 112 of both chain A and B was mutated back into wild-type Cys112. 

Before docking geometry optimization of the enzymes has been performed using the LigX module of 

Molecular Operating Environment (MOE).
42

 The active site was determined including all residues 

within 8 Å of the co-crystallized ACoA molecule of 3H77. 

Saturation-Transfer Difference NMR. Experiments were recorded with the carrier set at -2 ppm for 

on-resonance irradiation and 40 ppm for off-resonance irradiation. Control spectra were recorded 

under identical conditions on samples containing free compound 2 to test for artifacts. Selective 

protein saturation (2 s) was accomplished using a train of 50 ms Gauss-shaped pulses, each separated 

by a 1 ms delay, at an experimentally determined optimal power (60 dB on our probe); a T1ρ filter (25 

ms) was incorporated to suppress protein resonances. Experiments were recorded using a minimum of 

2048 scans and 32K points. On- and off-resonance spectra were processed independently, and 

subtracted to provide a difference spectrum. The expression and purification of recombinant PqsD 

from E. coli for STD NMR analysis is described in Supporting Information. 

Isothermal Titration Calorimetry. ITC experiments were carried out using an ITC200 instrument 

(Microcal Inc., GE Healthcare). ITC measurements were routinely performed at 25 °C in PBS-buffer, 

pH 7.4, 10% glycerol (v/v), 5% DMSO (v/v). The titrations were performed on 83-102 μM His6-PqsD 

in the 200 µL sample cell using 2 µL injections of 1.0 mM ligand solution every 180 s. Raw data were 

collected and the area under each peak was integrated. To correct for heats of dilution and mixing the 

final baseline consisting of small peaks of the same size at the end of the experiment was subtracted. 

The experimental data were fitted to a theoretical titration curve (one site binding model) using 

MicroCal Origin 7 software, with ΔH (enthalpy change in kcal mol
−1

), KA (association constant in 

M
−1

), and N (number of binding sites) as adjustable parameters. Thermodynamic parameters were 

calculated from equation; 

 

ΔG = ΔH − TΔS = RT ln KA = −RT ln KD 
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where ΔG, ΔH, and ΔS are the changes in free energy, enthalpy, and entropy of binding, respectively, 

T is the absolute temperature, and R = 1.98 cal mol
−1

 K
−1

. For compound 48 four independent 

experiments were performed.  
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ABSTRACT: The Pseudomonas aeruginosa quorum-sensing (QS) is a sophisticated network of 

genome-wide regulation triggered in response to population density. A major component is the self-

inducing pseudomonas quinolone signal (PQS) QS system that regulates the production of several 

non-vital virulence- and biofilm-related determinants. Hence, QS circuitry is an attractive target for 

anti-virulence agents with lowered resistance development potential and a good model to study the 

concept of polypharmacology in auto-loop regulated systems per se. Based on the finding that a 

combination of PqsR antagonist and PqsD inhibitor synergistically lowers pyocyanin, we have 

developed a dual-inhibitor compound of low molecular weight and high solubility that targets PQS 

transcriptional regulator (PqsR) and PqsD, a key enzyme in the biosynthesis of PQS-QS signal 

molecules (HHQ and PQS). In vitro, this compound markedly reduced virulence factor production and 

biofilm formation accompanied by a diminished content of extracellular DNA (eDNA). Additionally, 

co-administration with ciprofloxacin increased susceptibility of PA14 to antibiotic treatment under 

biofilm conditions. Finally, disruption of pathogenicity mechanisms was also assessed in vivo, with 

significantly increased survival of challenged larvae in a Galleria mellonella infection model. 

Favorable physicochemical properties and effects on virulence/biofilm establish a promising starting 

point for further optimization. In particular, the ability to address two targets of the PQS auto-

induction cycle at the same time with a single compound holds great promise in achieving enhanced 

synergistic cellular effects while potentially lowering rates of resistance development.  
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Polypharmacology, or addressing two or more disease-related targets at the same time, has proven to 

have a significant impact on the treatment efficacy of e.g. cancer,
1,2

 bacterial
3,4

 and viral infections,
5
 

high blood pressure,
6
 asthma

7
 and hormone-related diseases

8
 in clinical setups. These multi-target 

effects are in most cases achieved by a combination of selective single target agents. Drug 

combinations can either act synergistically, whereby the combined effect is greater than the sum of 

their separate responses, or additively, when the resulting activity is the outcome of their combined 

individual effects. Both of which are shown to have favorable outcomes on lowered resistance 

development in cancer,
9
 and microbial

10
 infections.

11
 Unfortunately, such multi-drug cocktails may 

incur in several drawbacks, such as undesired drug-drug interactions and increasingly complex dosing 

schemes resulting in a lesser compliance of patients to follow the prescribed intake schedules.
12

 To 

reduce those problems, development of multi-target drugs is a worthwhile endeavor. In many of the 

abovementioned intricate systems self-inducing auto-loop cycles can be found. In this study we 

describe the concept of such multi-target approach in positively regulated auto-loop systems to 

achieve beneficial and synergistic inhibitory effects against Pseudomonas aeruginosa (PA) infections. 

Auto-inducing pathways are widely spread in mammalian,
13

 plant
14

 and bacterial kingdoms
15

 and 

regulate vital functions in a variety of organisms.  

 

Figure 1. Schematic representation of the Pseudomonas quinolone signal (PQS) quorum-sensing 

system, involved in virulence factor production and biofilm formation. Anthranilate is converted by 

the pqsABCDE gene products into 2-heptyl-4-quinolone (HHQ), which can be converted 

intracellularly into PQS by the action of PqsH. HHQ and PQS are ligands of the Pqs Receptor (PqsR). 

Simultaneous inhibition of PQS synthesis (e.g. through PqsD) and interference with the auto-loop 

transcriptional regulator PqsR lead to increased reduction of pathogenicity-associated biomarkers. 
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As one model system to provide proof of this concept we chose the cell density-dependent
16

 

Pseudomonas quinolone signal quorum-sensing system (PQS-QS) of Pseudomonas aeruginosa which 

was intensively studied by us in the past.
17–19

 In PA, PQS and 2-heptyl-4-quinolone (HHQ) are the 

natural agonists of PqsR which is the transcriptional regulator of the pqsABCDE operon (Figure 1).
20

 

This operon harbors the genes encoding for the synthases responsible for PQS production. Thus, as 

soon as PQS and/or HHQ activate PqsR they induce their own production and the concentration of 

signal molecules rise exponentially (Figure 1).
21

 Interference experiments, combined with mutational 

analysis, revealed PqsR and PqsD to be attractive drug targets for reducing pathogenicity of PA in 

vivo.
17,22

 Thus, PQS-QS displays an ideal and relevant model to study the concept of 

polypharmacology in such positive feedback loops with the possibility to directly transfer the results 

herein towards other similarly controlled biological systems. Furthermore, we directly put the lessons 

learned from drug combination experiments to an application for the straightforward rational design of 

the first drug-like dual-target PqsD/R inhibitors. Additionally, an optimized compound was achieved 

that shows promising reduction of two major virulence factors and biofilm inhibition in vitro. Finally, 

this optimized dual inhibitor displayed convincing activity in an in vivo acute PA infection model. 

 

RESULTS AND DISCUSSION 

Combination of PqsD inhibitor and PqsR antagonist prominently reduces relevant marker 

pyocyanin through synergistic activity. As proof of principle to assess the amenability of the PQS-

QS system to dual-target inhibition with improved outcome, we initially investigated the 

combinatorial effect of a PqsD inhibitor and a PqsR antagonist on a QS-dependent PA-exclusive 

secondary metabolite, pyocyanin.
23,24

 Pyocyanin is one of PA’s most prominent virulence factors with 

distinct roles in acute infection establishment and biofilm formation. Pyocyanin also substantially 

contributes to the generation of reactive oxygen species (ROS) by inhibiting the activity of catalase in 

eukaryotic cells. ROS is one of pseudomonas’ adaptations to environmental competition against other 

microbes and is the cause for its cytotoxicity towards eukaryotic cells.
25

 As a consequence, pyocyanin 

production is linked to increased inflammation, modulation of iron metabolism and tissue necrosis.
26

 

Its important physiological role in diseased states and correlation with the QS system suggest that by 

monitoring pyocyanin levels we may gain relevant insights into the suitability of dual inhibition that 

efficiently targets PA virulence. 
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Figure 2. Synergistic activity of PqsD inhibitor 1 and PqsR antagonist 2 on pyocyanin inhibition in 

PA14 wild type. Treatment with 500 M of 1 alone did not alter pyocyanin production. However, 

basal pyocyanin production under inhibition with 15 M of 2 is significantly increased upon 

combinatorial titrated administration of 1 (100 M, 300 M and 500 M, respectively), indicative of 

synergistic activity. All values are relative to a control without inhibitors. Error bars represent the 

standard deviation of three independent experiments (n = 3). * = p < 0.05, ** = p < 0.005. 

 

We cultured P. aeruginosa (PA14) wild type in the presence of different concentrations of a PqsD 

inhibitor 1
19

 and PqsR antagonist 2,
17

 as single treatment or combination therapy. As seen in Figure 2, 

500 M of 1 alone does not influence the production of pyocyanin but, interestingly, when added in 

combination with 15 M of 2, we observed a dose-dependent decrease in pyocyanin production. 

Notably, from 38% (2 alone) to 34%, 23% and 18% (2 added of 100 M, 300 M and 500 M of 1, 

respectively) that is highly significant at higher concentrations of 1, corroborating the synergistic 

activity of two PQS-QS inhibitors with different modes of action. These results further demonstrate 

that a biomarker negative synthase inhibitor (e.g. compound 1) can indirectly increase the potency of a 

receptor antagonist (e.g. 2) presumably by decreasing the natural ligand concentration and thus 

lowering competition to the receptor’s binding site. However, when extending the exposure of PA14 

to PqsD inhibitor 1, we observed a slight, yet significant, reduction of pyocyanin after 48 h of 

incubation (see Supporting Information, section IIc). Obviously, a continuous attenuation of 

PQS/HHQ production through PqsD inhibition can result in an antivirulence effect. 

Application of concept study towards the rational design of dual PqsD/R inhibitors. Having 

demonstrated the potential of combining synthase inhibition and receptor antagonism, we searched 
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through our in-house inhibitor library with regard to structural similarity of selective PqsD and PqsR 

inhibitors. From this search, we found compound 3 which was designed as a PqsR antagonist (IC50 = 

26 M) with good activity on PA’s virulence factor pyocyanin (Figure 3) and a quite similar 

compound, 4, which was designed to target PqsD (IC50 = 1.7 M) based on SPR screening results 

recently reported by us (Figure 3).
27

 As for 1, compound 4 displayed no inhibitory activity on 

pyocyanin even at the maximum soluble concentration.  

 

 

Figure 3. Reduction of structurally related PqsR antagonist 3 and PqsD inhibitor 4 to the common 

molecular core resulting in the first dual-active compound 5 (red). In comparison to 3, 5 shows higher 

activity on pyocyanin, although being similarly active on PqsR, corroborating the findings of the 

combination experiments (Figure 2). Bioisosteric modification (blue) led to dual inhibitor 6 with 

improved physicochemical properties as shown by its increased ligand lipophilicity efficiency (LLE). 
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Figure 4. Effects of compounds 1, 2, and 6 on pyoverdine production. Compound 6 showed a 

prominent, significant decrease in pyoverdine levels in a concentration-dependent manner. At the 

highest concentration of 500 M, pyoverdine production was almost completely arrested (5% ± 8), 

and halved at the lowest inhibitor concentration of 100 M (58% ± 10). All values are relative to a 

control without inhibitors. Error bars represent standard deviation of three independent experiments (n 

= 3). * = p < 0.05, ** = p < 0.005. 

 

Although, both compounds are selective for their respective targets, they share the same molecular 

scaffold: a pyrimidine core decorated with a triazole and a sulfone moiety (Figure 3). Thus, we 

decided to synthesize compound 5 and assess its biological activity, as it represents a simplified 

molecule consisting only of the shared structural features. Notably, the obtained compound 5 showed 

inhibition of both targets. Moreover, in very good accordance to our conceptual studies (vide supra), 

compound 5 showed a stronger reduction of pyocyanin compared to the equipotent PqsR selective 

precursor 3 (Figure 3). These results indicate that the concept of dual inhibition with combination 

experiments and the observed synergism can be directly combined in one compound. With regard to 

ligand lipophilicity efficiency (LLE), a metric used in medicinal chemistry to evaluate the activity of a 

compound based on its molecular weight and lipophilicity for further drug design, 5 showed a LLE = 

0.56 on both targets which is above the suggested minimum score of 0.3.
28

 To further improve the 

potential of 5 based on its LLE we decided to modify it via a bioisosteric replacement of C4 at the 

triazole substituent. Introducing a nitrogen at this site yielded the tetrazole congener 6 (Figure 3). To 

confirm the regiochemistry of the introduced tetrazole moiety we crystallized intermediate 6a
29

 and 

verified the structure by X-ray analysis (CCDC-No.: 1432241, Supporting Information, section Ib.). 

As expected for the tetrazole substituent, lipophilicity of 6 dropped compared to 5 leading to an 

increase of the LLE score (PqsR = 0.67; PqsD = 0.66) and better solubility. Notably, activity on PqsR 

was slightly increased while activity on PqsD was retained resulting in an overall IC50 on pyocyanin of 

86 M (Figure 3). 

Dual inhibitor affects not only pyocyanin production, but also modulates the generation of a second 

virulence factor, pyoverdine (PVD). Pyoverdines are Pseudomonas’ primary siderophores. These 
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fluorescent signaling molecules are used by the bacterium in iron scavenging and metabolism, and are 

closely related to the production of other virulence factors in acute infections, as well as the correct 

architectural construction of biofilms.
30,31

 Since absence of PVD in deficient mutants has shown to 

drastically reduce infection ability,
32

 and iron acquisition in vitro is linked to biofilm formation,
33

 PVD 

metabolism provides a connection between acute pathogenicity and biofilm-related severe infections. 

The intrinsic relationship of PQS and PVD signaling pathways in iron metabolism and virulence has 

been shown to be mutual: on one hand PQS induces the expression of genes involved in the 

biosynthesis of PVD,
34

 on the other PvdS, one of the major regulators in the biosynthesis of PVD, 

controls the expression of PqsR.
35,36

 Hence, we investigated whether our PQS dual inhibitor would 

have a beneficial effect on PVD inhibition by targeting PQS biosynthesis. We grew PA14 wild-type 

cultures in the presence of increasing concentrations of 6 (Figure 4). In accordance with our 

assumption, 6 was able to decrease PVD significantly in all tested concentrations (500 M to 100 

M). Production of the siderophore was essentially blocked at the highest tested concentration of 6, 

while compounds 1 and 2 had only moderate or low effects in this assay (69.7% ± 1.3 and 

92.8% ± 8.2, respectively). Thus, dual inhibitor 6 is not only able to target pyocyanin biosynthesis, but 

also addresses PVD production, disrupting iron metabolism and virulence factor production, 

ultimately reducing the environmental competitive advantage of Pseudomonas, as well as its 

pathogenicity to lower levels that better respond to treatment. These beneficial cellular effects may 

contribute to attenuation of biofilm formation and establishment - a scenario that we further 

investigated in our next experiments. 

Compound 6 reduces biofilm formation and restores antibiotic efficacy. Biofilms are one of the 

major clinically relevant resistance mechanisms of PA against antibiotic treatment,
37

 immune 

responses,
38

 and antimicrobial petides
39

 in particular. Thus, reduction of biofilm mass holds the 

potential to enable immunological clearance of the pathogen and restore antibiotic activity, features of 

undoubtedly high interest. The development of biofilms is dependent on the PQS Quorum sensing 

network as shown in previous knock out studies.
40

 Recently we showed that PqsD inhibitor 1 reduces 

PA biofilms at high concentrations (reduction of biofilm volume to 62 % at 500 M).
19

 Furthermore, 

anti-biofilm activities have been reported for PqsR antagonists designed on the basis of the natural 

ligand HHQ,
41

 the biological precursor of PQS (Figure 1), and we observed a reduction in biofilm 

volume by compound 2 to 84.8% ± 4.7 at 15 M (see Supplementary Figure 5). These target-related 

effects and the reduction of the biofilm-associated virulence factor PVD (vide supra) motivated us to 

test whether our dual target compound 6 was also active on preventing biofilm formation. Indeed, 6 

displayed prominent effects on biofilm development with an IC50 of 100 M (Figure 5A, circles). This 

is in good accordance with previously obtained data regarding biofilm inhibition targeting either PqsR 

or PqsD.
19,41,42
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Figure 5. Dose-dependent reduction of biofilm in PA14 wild type cultures treated with compound 6 

(A). Pronounced reduction of extracellular DNA (eDNA), polysaccharides (PS) and proteins of the 

biofilm matrix (Volume) was found at 400 M of 6 (B). Activity of 1 M ciprofloxacin (CIPX) was 

increased by a combination of the antibiotic with 50 M of 6 under biofilm conditions (C). Error bars 

represent standard error of at least two independent experiments. ns = not significant, **** = p < 

0.0001. 

 

We concluded that the dual inhibition concept might not only pronouncedly reduce pyocyanin 

formation, but might also result in stronger inhibition of PA biofilm. To further validate the target of 6 

under biofilm-conditions we assessed whether the dual inhibitor is still active on a PqsR deficient 

mutant strain of PA. We observed a reduced activity of about 1 log unit of the pqsR mutant strain 

compared to wild type PA. This result on the one hand underlines the target-related activity but also 

shows that the compound has an additional target involved in biofilm formation. A biofilm is a 

heterogeneous matrix composed of different components e.g. polysaccharides (PS), proteins, 

lipopolysaccharides (LPS) and extracellular DNA (eDNA).
43

 The latter has been described as 

responsible for resistance development against aminoglycoside
44

 and fluoroquinolone antibiotics
45

 as 

well as increased tolerance against host defensins.
46

 Moreover, release of eDNA is directly regulated 

by the presence of pyocyanin
47

 and PQS.
48

 Hence, we were curious how 6 affects the components of 

the biofilm (Figure 5B). Our results demonstrate that 6 significantly inhibited eDNA release under 

biofilm conditions (7% ± 2 residual eDNA detected) which is in good accordance with the previous 

findings described above. Moreover, we observed a marked attenuation of PS and protein BF 

constituents down to 27% ± 20 and 25% ± 13, respectively. As a targeted decrease of eDNA might 

lead to higher efficacy of antibiotics on biofilm cultures of PA, we tested the susceptibility of PA14 

against the fluoroquinolone-based antibiotic ciprofloxacin, which activity has been described to be 

hindered in the presence of eDNA.
45

 Under biofilm conditions no significant inhibition of PA viability 

by ciprofloxacin was observed (Figure 5C). However, combination with 6, which alone had no effect 

on the viability of PA, antibiotic activity could be restored under biofilm conditions that mimic a 

chronic infection in vitro. Furthermore, these findings complement published data regarding the 

application of PqsR antagonists in acute infection models.
42

 Thus, therapy of QSIs in combination 

with antibiotic treatment in acute and chronic PA infections holds great promise for future anti-

infective drug discovery focusing on quorum sensing inhibition.  
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Compound 6 reduces pathogenicity of PA14 in vivo. Until today a variety of in vivo models to 

assess the pathogenicity of PA were developed. We chose an animal infection model employing 

Galleria mellonella larvae which has been previously shown to have a high correlation with mouse PA 

infection models
49

 and was also used by us to validate a PqsR antagonist in vivo.
17

 To determine 

efficacy of our dual-target compound 6, G. mellonella larvae were inoculated with the agent in the 

presence and absence of PA. Interestingly, 6 was able to increase the survival rate of larvae in a dose-

dependent manner with 53% survival at 1.25 nmol and 29% survival at 0.5 nmol applied dose (Figure 

6). The susceptibility of larvae was described to be 50% if infected by one cell of PA.
49

 Notably, in 

our experiments one larva was challenged with 10-13 PA cells, resulting in a very high bacterial load 

and hurdle to be taken by an anti-infective treatment. Regarding the average hemeolymph and body 

weight (450 l and 450 mg)
17

 of each larvae most beneficial protective effect was observed at a dosage 

of 1.25 nmol, correspondent to a final in vivo concentration of 2.7 M or 0.63 mg kg
-1

. 

Most interestingly, when assessing toxicity of 6 in G. mellonella we could show that even a 4 times 

higher concentration (5 nmol) than the effective dose was well tolerated with no observable disparity 

with PBS control. 

 

 

Figure 6. Dose-dependent in vivo protective effect of 6 on the survival of Pseudomonas aeruginosa 

PA14-challenged larvae of Galleria mellonella. Survival rate was significantly higher for treated 

larvae (0.5 nmol or 1.25 nmol) compared to the untreated control (0.5 and 1.25 nmol applied doses: p 

< 0.0001; log-rank test). 

 

CONCLUSION 

In this study, we demonstrated the applicability of dual synergistic inhibition within the frame of 

positive feedback auto-loop systems as a novel concept for the development of quorum sensing 

inhibitors. We chose the model PQS-QS system of Pseudomonas aeruginosa to demonstrate that an 

enzyme inhibitor 1 can increase the potency of the associated receptor antagonist 2 regarding virulence 

factor production. Presumably, this beneficial effect is due to lowered signal molecule levels and, 
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therefore, less competition at the receptor’s binding site. We successfully exploited this concept of 

dual inhibition in a rational design strategy to achieve the first dual-active inhibitor 5 targeting the 

PQS-QS system. This compound was further improved by bioisosteric replacement, culminating in 

inhibitor 6 with enhanced efficiency/lipophilicity profile. This compound effectively reduced 

pyocyanin and pyoverdine, two major virulence factors of PA, in a dose-dependent manner without 

affecting bacterial growth. Importantly, 6 had a strong effect on PA biofilm assembly and restored the 

efficacy of ciprofloxacin, presumably due to hindering of eDNA release. Finally, dual inhibitor 6 was 

also active in vivo protecting G. mellonella larvae from lethal PA infections. Taken together, the 

presented dual inhibition strategy holds great potential to effectively interfere with intricate cellular 

systems. Via this promising approach we achieved an enhanced bioactivity profile through synergistic 

action at two points-of-intervention (PqsD and PqsR) within a positive feedback loop (the PQS-QS 

system). Hence, this strategy might be a powerful tool for devising new treatment options for diseases 

related to complex or compensatory metabolic pathways similar to the one investigated in this study. 

METHODS 

Pyocyanin Assay. Pyocyanin formation was assessed as previously described
18,23,50

 with minor 

modifications. Single colony was removed from agar plates after 16 h of growth at 37 °C and 

transferred into 25 mL Erlenmeyer flasks with 10 mL of PPGAS medium. Following 19 h of aerobic 

growth with shaking at 200 rpm and 37 °C, cultures were centrifuged at 7.450 g, washed once with 10 

mL of fresh PPGAS medium, and resuspended to a final volume of 5 mL. Cultures were then diluted 

to a final OD600 of 0.02, and distributed into test tubes in 1.2 mL aliquots. Compounds 1 and 2 were 

added in 1:100 dilutions with a final DMSO concentration of 1% (v/v). Treated and untreated cultures 

were incubated for additional 17 h under aerobic conditions as mentioned above. Pyocyanin was 

extracted by adding 900 L of chloroform to 900 L of overnight culture, and subsequently re-

extracted with 250 L of 0.2 M HCl from the organic phase. OD520 was measured in the aqueous 

phase. Pyocyanin formation values were normalized to corresponding OD600 of respective sample. 

Pyoverdine Assay. For the analysis of pyoverdine formation, culture work-up and stock solution of 

compounds 1, 2, and 6 were performed as described above (Pyocyanin Assay). Treated and untreated 

cultures were incubated in 200 L PPGAS medium for 8 h under aerobic conditions in black 96-well 

plates with glass bottom. This allowed for the simultaneous measurements of pyoverdine (fluorescent 

light units with excitation at 400 ± 10 and emission at 460 ± 10) and bacterial growth at OD600. 

Inhibition of pyoverdine was normalized to OD600 values. 

Galleria mellonella virulence assay. An infection model of G. mellonella was used to determine 

disruption of virulence mechanisms in vivo as described in the works of Lu et al.
17

 Treatment 

conditions of larvae included: a) Sterile PBS solution; b) PA14 suspension; c) 0.50 nmol of compound 

6 in “b)”; d) 1.25 nmol of compound 6 in “b)”. For each treatment, data from at least three 

independent experiments were combined. 
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Biofilm Assay. Commonly used crystal violet (CV) assay procedures
51–53

 were adapted for 

determination of biofilm mass. For the cultivation of biofilm in 96 well plats biofilm, the protocol 

described by Frei et al.
53

 was slightly modified by replacement of medium and Pseudomonas strain 

used. The experiment was performed using P. aeruginosa PA14 strain (including pqsR mutant, 

kindly provided by S. Häussler) and M63 medium.
54

 CV staining was used to detect compound effects 

on the overall biofilm biomass. Impact on eDNA was assessed by incubation of biofilm with 

propidium iodine solution (0,05 mg ml
-1

) for 3 h and detection of specific florescence at 620 nm after a 

thorough washing step with 18M H2O.
55

 Polysaccharide levels in biofilm were specified by congo 

red staining described by Ghafoor et al.
56

 For this purpose, a 20 mg ml
-1

 congo red solution was 

incubated with the matured biofilm for 3 hours, followed by a washing step with water and the 

concentration measurement at 490 nm. For the detection of protein levels, Bradford reagent was 

diluted 1:5 (Roti®-Quant, Carl Roth) and incubated with the washed biofilm for 5 minutes.
57

 18M 

H2O was used to remove unbound dye. The amount of proteins was determined by absorbance 

measurement at 595 nm. To investigate killing efficacy of ciprofloxacin in combination with QS 

inhibitor on biofilm-encapsulated bacteria, biofilm was grown in the same conditions used for CV 

assay. At first, biofilm growth was initiated under QS inhibitor treatment (50 M) or DMSO control. 

After washing steps, matured biofilm was incubated with 4 g ml
-1

 ciprofloxacin dissolved in M63 

medium and grown for further 24 hours. Viability of bacteria in biofilm was determined by BacTiter-

Glo™ Assay using black plates.
58

  

Chemical Synthesis and Analytical Characterization. NMR spectra were recorded on a Avance AV 

300 or a Bruker DRX 500. The residual proton, 1H, or carbon 13C resonances of the >99 % deuterated 

solvents were used for internal reference of all spectra acquired. (CDCl3 
1
H 7.260 ppm, 

13
C 77.16 

ppm; DMSO-d6, 
1
H 2.500 ppm, 

13
C 39.52 ppm). Electrospray ionization (ESI) mass spectrometry and 

LC-UV purity determination were recorded with a Surveyor LC system MSQ electrospray mass 

spectrometer (ThermoFisher) LC-MS couple and acetonitrile/water gradient in positive mode (+), if 

not indicated otherwise. 1% TFA was added if necessary. Compound 6 was analyzed using a setup 

produced by Waters Corporation containing a 2767 Sample Manager, a 2545 binary gradient pump, a 

2998 PDA detector and a 3100 electron spray mass spectrometer. Water containing 0.1 % formic acid 

and acetonitrile containing 0.1 % formic acid were used as solvents for the analysis. A Waters X-

Bridge column (C18, 150 x 4.6 mm, 5 M) has been used with a flow of 1 mL min
-1

 starting with 10% 

acid containing acetonitrile to 95% acid containing acetonitrile. All final compounds were of ≥ 95% 

purity. Unless otherwise stated, all reagents used were purchased from commercial vendors and used 

without further purification. 

ASSOCIATED CONTENT  

Supporting Information Available. Spectra (
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curves, and IC50 determination on Pyocyanin with 6, LLE calculations, and antibiofilm effects of 2. 

This material is available free of charge via the Internet at http://pubs.acs.org.  
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4 Final Discussion 

A large number of concepts to evade antibacterial resistance are under discussion in the scientific 

community. The present work aimed at the identification and validation of compounds addressing new 

target systems. In this context, the main focus lies on three strategies. Firstly, resistance should be 

overcome by targeting new essential metabolic pathways (Mtb CYP121). Secondly, the host’s 

clearance mechanism should be supported via in vivo intoxication of the pathogen (Mtb CYP125). 

Third, the emergence of resistant mutants should be avoided by the usage of an anti-virulence strategy 

based on the interruption of bacterial communication systems (P. aeruginosa pqs system).  

 Targeting bacterial of CYP enzymes  4.1

Most prominent CYP enzymes in context of drug discovery are human subspecies involved in 

xenobiotics and steroid hormone metabolism 
[189,190]

 However, the targeting of bacterial P450 enzymes 

is a promising new strategy for discovery of new anti-infective agents. 
[29,191]

 Especially, in case of 

Mtb, where a high content of these enzymes is presented, this approach could be fruitful. Manuscript 

A and B describe the discovery of compounds that address CYP121 and CYP125 as new potential 

anti-Mtb drug targets.  

4.1.1 Targeting CYP121 as a new antimycobacterial strategy (Manuscript A) 

As described in the introduction CYP121 is essential for Mtb growth in vitro. 
[34]

 However, all 

compounds reported to bind to the enzyme have no in cellulo activity or show shortcomings in their 

pharmacokinetic or toxicity profile. 
[32,41,43,44,192]

 As A: econazole was shown to bind tightly to 

CYP121 and eradicate Mtb in vitro and in vivo it was used as a suitable positive control. Manuscript A 

aimed at the identification of compounds with an improved inhibitory profile compared to 

A:  econazole as a reliable starting point for the development of new antimycobacterial agents. For 

this purpose a screening of an in-house CYP inhibitor library was undertaken. This library originates 

from projects focusing on the development of CYP17, CYP19, CYP11B1, and CYP11B2 inhibitors 

which are important enzymes in the human steroid hormone synthesis. 
[130–146]

 The library should 

accelerate the screening progress as the included compounds have privileged structure for the 

inhibition of CYP enzymes. A structural key element is the heterocycle with a sp
2
 -hybridized

 
nitrogen 

that is essential to coordinate the heme iron and, thus, increase affinity. Such iron coordinators are 

known to inhibit first steps in enzyme activation. 
[30,128,129]

 Additionally, this library provides benefits 

for future drug optimization, namely established synthetic routes, known pharmacological profiles, 

and a given drug-likeness of the compounds. The experimental work was started with the heterologous 

expression of CYP121 in E. coli K12 BL21. The correct folding was confirmed by the so-called CO-

binding spectra. 
[193]

 This approach was used to identify a surrogate reductase system composed of 

Etp1fd (516-618) as ferrodoxin and Arh1_A18G as ferrodoxin reductase. The two proteins originate 
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from the fungi Schizosaccharomyces pombe. 
[194,195]

 However, the functional HPLC-MS/MS based 

enzyme assay was only suitable for a qualitative prediction because of an insufficient substrate 

conversion. As an alternative method for the screening of the library, SPR assay was chosen. To 

simplify hit finding steps the compounds were divided into six classes and examples for each 

compound class were picked under consideration of a broad structural diversity. A: econazole as a 

literature-described tight binder to CYP121 with activity against Mtb was applied as a positive control. 

[34]
 SPR screening resulted in 44 binders with a similar affinity to CYP121 than that of A: econazole, 

which is in accordance with a hit rate of 33%. (Manuscript A: Figure 2.) This high hit rate could be 

due to fact that CYP121 has a large substrate pocket (1350 Å
3
). 

[34]
 This favours the binding of a high 

diversity of structures. However, with this SPR screening, a binding outside of the pocket could not be 

excluded. To further characterize binding behaviour the heme binding assay was used. Only 

compounds out of classes I and II coordinated to the heme iron and showed a type II binding 

(Manuscript A: SI Table 1.). The results indicate a binding of the other classes in a different 

orientation to the enzyme. This could be used for future optimization e.g. linking of two classes. As 

heme coordination is correlated with an inhibition of the enzyme activation steps and high affinity 

further investigations are focused on heme coordinators. 
[30]

 This fact increases the chance of 

identifying an inhibitor in a more streamlined process. On top of that, this information was used in a 

docking of the best heme coordinator to gather information about the binding position in the pocket. 

The best compounds concerning affinity were identified in class I (A: I:16 KD = 1 µM). In class II, 

most compounds only showed a moderate KD. A more detailed look at the results guided a first 

prediction of the relationship between binding and ligand structure. In case of the linearized class I 

compounds, an exchange of the interconnecting phenyl groups by a pyridinyl ring resulted in a non-

binder (A: I:1). The same observation was made for the replacement of the heme-coordinating 

imidazolyl group by a benzimidazolyl (A: I:33). In addition, regioisomers show differences in their 

affinity (A: I:15, A: I:30, A: I:32). The para-benzodioxine substituent of A: I:48 and the para-

benzodioxole substituent of A: I:47 increased affinity. The same was true for the two phenyl 

substituents linked to the middle ring (A: I:16) (Figure 17.). Docking of A: I:47 suggested that the 

1,3-benzodioxol motif is oriented into a hydrophilic subpocket. A futher narrow subpocket near to the 

1,3-benzodioxol provides opportunity for a possible extension of the molecule (Manuscript A: Figure 

4.).These results can support further optimization as they give first information about the tolerated 

chemical space of CYP121. 

To check for in cellulo activity Mycobacterium bovis BCG (BCG) was chosen as a literature-described 

surrogate for Mtb. 
[196]

 Both organisms share 100% identity in the CYP121 amino acid sequence 

(Manuscript A: SI section 14). In the cellular setting, compound class II showed almost no activity. 

This could be due to unexpected problems with the penetration or efflux. These findings are in 

contrast to the results of class I, where a correlation between binding to CYP121 and activity towards 

BCG could be observed (Manuscript A: Table 1.). Non-binders show no (A: I:1, A: I:33), moderate 
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binders a moderate (A: I:15, A: I:30, A: I:32), and strong binders high antimycobacterial activity in 

the assay (A: I:16, A: I:47, A: I:48). This gave a first evidence for CYP121 as the main target for 

class I compounds. As the results for human pathogen Mtb and BCG surrogate correlated well, 

suitability of the model organism was confirmed. A: I:16, A: I:47 and A: I:48 were identified to be 

more active than the positive control A: econazole. The frontrunner compound A: I:47 was measured 

with an MIC (BCG assay: 50% inhibition) value on BCG of 0.3 µg/mL and an MIC (Mtb assay: 90% 

inhibition) value on Mtb of 0.3 µg/mL (Manuscript A: Table 1.). Furthermore, inhibition of CYP121 

enzyme reaction by A: I:47 could be confirmed in an LC-MS/MS-based assay strengthening CYP121 

inhibition as mode of action. 

A structural similarity between class I compounds and A: econazole is obvious. As I:47, I:48 and 

I: 16 have improved efficiency against Mtb it could be interesting whether there are additional 

advantages in the toxicity and selectivity profiles. A: I:47 showed a 45-fold decreased toxicity to 

HEK293 cells and Hep2G cells. This underlines the improved pharmacological profile of A: I:47 

towards A: econazole. To get more information about mode of action and selectivity, compounds 

were also examined for their antimicrobial activity on bacteria lacking CYP enzymes (E. coli TolC 

and S. aureus Newman). 
[30,33]

 Almost no activity was observed for A: I:47 and A: I:48. Here, 

selectivity for mycobacteria was demonstrated, which emphasises CYP-targeting strategy. The weak 

antibiotic effect of A: econazole and A: I:16 could be explained by a possible inhibition of 

flavohemoglobin and indicates a possible unselectivity of a space-demanding, lipophilic residue. 
[197]

 

As A: I:47 showed almost no inhibition of aromatase (CYP19) and only a moderate IC50 on CYP17 

the compound seems to be a good starting point for selectivity optimization towards human CYP 

enzymes. The combination of promising biological activities, high ligand efficiency (LE: value that 

correlates affinity with the size of a compound to predict the potential of this ligand for optimization 

[198]
), and physicochemical properties that fulfil “Lipinski” criteria makes A: I:47 a candidate for 

future development processes.  

 

 

Figure 17. Structures of important class I compounds used for the determination of simple structure-

binding-relationship and in vitro – in cellulo correlation. (Source code of the compounds - first: letter 

of publication/manuscript; second: structure description in the publication/manuscript) 
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4.1.2 Blockage of cholesterol metabolism induces in vivo intoxication (CYP125) (Manuscript B) 

CYP125 catalyses the coversion of B: cholest-4-en-3-one as a toxic intermediate in the cholesterol 

metabolism of Mtb. An inhibition of its conversion leads to an intoxication of Mtb inside of 

macrophages, which promotes a lower in vivo pathogenicity and persistence. 
[52]

 However, proof of 

principle for pharmacological intervention using a specific compound has not been reported until now. 

To support reliability of this strategy and identify antimycobacterials with a new mode of action the 

identification of the first compounds with high affinity to CYP125 is described in Manuscript B. This 

serves as a promising starting point for further studies. Initial SPR screening was performed using 

aforementioned in-house library and B: econazole as positive control. 
[131,133–138,142–146,199]

 The SPR 

screening resulted in a hit rat of 17% (Figure 18.).  

More detailed hit characterization (Binding mode and KD values) was made by UV/ Vis heme binding 

assay system. B: LP10 was included as a weak CYP125 inhibitor with a special reversed type I 

binding profile. Reversed type I spectra result from an increased low-spin absorbance band at 420 nm 

combined with an indirect compound-iron interaction. 
[148]

 In contrast to results observed for CYP121, 

so called “type I binders” were identified here as well. These are known to interact with heme iron via 

a water-bridged mechanism. 
[30]

 It was hard to differentiate between type II and reversed type I binders 

as only slight differences in absorbance maxima were observed. To facilitate discussion the 

compounds were named “type II binders”. Further studies should include necessarily X-ray 

crystallography or more sensitive spectroscopy to elucidate true binding mode of these compounds. 

Binders with the lowest KD values were obtained in the phenylethoxybenzene (B: C24: type I, KD = 

0.260 µM), 4-benzylpyridine (B: C127: type II, KD = 0.850 µM; B: C128: type II, KD = 0.084 µM; B: 

C130: type II, KD = 0.174 µM) and 1-benzyl-1H-benzo[d]imidazole (B: C60: type I, KD = 0.280 µM) 

class (Manuscript B; Table 1.). These compounds demonstrate a higher affinity than positive control 

B: LP10 (KD = 6.1 µM) and B: econazole (KD = 0.941 µM). Furthermore, there is also a tighter 

binding compared to natural substrate B: cholest-4-en-3-one (KD = 4.6 µM). This indicates a 

sufficient inhibition of enzyme reaction by these compounds. Having a look at the SPR and the heme 

assay data it is possible to define simple structure-binding-relationships for the different classes. 

(Manuscript B: SI Table 1.) The 4-(indolin-5-yl)isoquinoline/ 3-(indolin-5-yl)pyridine are non-

coordinators and seem to interact with the enzyme at a different binding site. In case of 3,4-

dihydroquinolin-2(1H)-one two SPR binders could be identified but only B: C 80 is a weak heme 

interactor. Isonicotinamide/ retroamide class compounds have certain similarity to B: LP10 but 

possess a lower affinity to CYP125. The imidazolyl head group of methylimidazole seems not to be 

favourable for a CYP125 interaction with exception of B: econazole (KD = 0.941µM). A comparison 

of B: C23 and B: C24 shows that a different position of the head group nitrogen results in a 5-fold 

increased activity of B: C24. It could be suggested that an unfavourable angle or distance to the 

interacting water leads to a loss of affinity in the phenylethoxybenzene class. In the 1-benzyl-1H-

benzo[d]imidazole class, the highest affinities were obtained for B: C60. The replacement of the 
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methyl substituent by a phenyl ring may introduce a new interaction or lead to an entropy gain by the 

release of unfavourable water molecules. B: C128 could be found as best binder in the 4-

benzylpyridine class. Here the p-hydroxyphenyl (B: C128: KD = 0.084 µM) showed increased binding 

affinity in comparison to p-fluorophenyl group (B: C129: KD = 1.340 µM). Probably, the hydroxyl 

group forms a new interaction or an electron-rich aromatic system is preferred.  

To get a reliable starting point for the proof of principle the compounds have to be selective for 

CYP125. However, in Mtb lab strain, a bypass enzyme, CYP142, was found. 
[49]

 In an experimental 

setup based on the the latter strain, this enzyme has to be included in the considerations and a dual 

inhibition of CYP125 and CYP142 would be desirable. A CYP121 inhibition could be interesting for a 

dual inhibitor strategy but is undesired for a proof of principle study. First of all, comparing the hits of 

CYP125 SPR screening with the results from the CYP121 project, differences in the structures are 

clearly recognizable. Hence, it could be concluded that CYP125 binding pocket accepts different 

structures as binders than CYP121 does. This offers a good starting point for a selectivity 

optimization. Furthermore, hit compounds tested in the UV/ Vis assay showed different selectivity 

profiles towards CYP142 and CYP121 (Manuscript B; Table 1.). Best hit B: C128 binds in the low 

nanomolar range to CYP142 (B: C128: KD = 0.008 µM), which most likely leads to complete 

inhibition of the cholesterol metabolism. For a prospective hit optimization process, it was important 

to compare the selectivity against human P450. B: C128 inhibits CYP17 (IC50 = 0.248 µM), CYP11B1 

(IC50 = 0.928 µM), CYP11B2 (IC50 = 0.515 µM), and CYP3A4 (IC50 = 0.668 µM) in the high 

nanomolar range. The KD values on the Mtb enzymes are lower than the IC50 values to the human 

P450 (Manuscript B; Table 2.). However, KD values are typically lower than IC50 and variations in the 

test systems must be taken into account. 
[200]

 The results should be treated as a first hint for selectivity 

and have to be investigated more intensively. As physicochemical properties of B: C128 are in 

accordance to Lipinski’s rule of five and the compound combines good LE with promising biological 

profile they could be a good starting point for a new therapeutic strategy. Nevertheless, it has to be 

mentioned that the proof of principle is still not finalized. 
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Figure 18. Hit compounds identified in the SPR screening of CYP125. The compounds are sorted in 8 

classes considering structural similarities (Source code of the compounds - first: letter of 

publication/manuscript; second: structure description in the publication/manuscript) 

 

 Interrupting pqs system as anti-virulence and -biofilm strategy (Publications: C-E) 4.2

Targeting the pqs system as a strategy to lower pathogenicity without affecting viability was widely 

discussed as a suitable approach to avoid and overcome P. aeruginosa resistance. PqsD is a key 

enzyme in the biosynthesis of the major pqs signalling molecules HHQ and PQS. 
[93]

 An interruption 

of the signal molecule production was shown to lower in vivo pathogenicity of P. aeruginosa. 
[201]

 

These findings motivated design of four PqsD inhibitors classes (2-benzamidoic acid derivatives, (2-

nitrophenyl)methanol derivatives, ureidothiophene-2-carboxylic acids; 2-sulfonylpyrimidines) 

(Figure 19a)). The (2-nitrophenyl)methanol derivatives as a prime example were shown to inhibit 

signal molecule production and biofilm formation without affecting cell viability. 
[91]

 In accordance to 

the latter group of PqsD inhibitors, the 2-sulfonylpyrimidines showed promising effects on P. 

aeruginosa biofilm. These are in vitro inhibitors of the enzyme reaction and block biofilm formation 

(Submitted to ChemMedChem.: Manuskript is not included in the Thesis).  
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An additional strategy to block the influence of the pqs system on virulence factor expression is to 

antagonize the receptor (PqsR) function (Figure 19c)). Here, three classes of antagonists were 

identified, which inhibit pyocyanin production and lower signal molecule biosynthesis. The 2-amino-

oxadiazoles originating from fragment screening showed effects on PQS signalling and interrupted 

pyocyanin production. 
[202]

 Same effects were observed for a second fragment derived from 

hydroxamic acid. 
[180]

 Both compound classes were potent antagonists of PqsR in a reporter gene assay 

indicating the receptor to be the main target. 
[180,202]

 The most potent compound was obtained by the 

modification of signal molecules. 
[203]

 This compound did not only inhibit virulence factor production 

in the low micro-molar range but also lowered the pathogenicity of P. aeruginosa in a Galleria 

mellonella infection model. 
[204]

 However, the quinolone derivatives suffer from a poor solubility. 
[205]

 

Results of other working groups demonstrated the efficiency of PqsR antagonists in mouse models 

achieving lower persister cell formation and blocking biofilm development. 
[74,92]

 Publication F depicts 

the development of first dual PqsD/PqsR inhibitors as compounds providing a broad spectrum of 

biological effects on P. aeruginosa. Those compounds derived from the 2-sulfonylpyrimidines class 

did not only inhibit pyocyanin production but also pyoverdin and biofilm formation (Figure 19b)). 

Furthermore, a decreased virulence of P. aeruginosa in the aforementioned G. mellonella infection 

model was observed.  

All these findings justify a more detailed investigation on PqsD, PqsR, and dual inhibitors. 

Publications contributing to this thesis described binding mode analysis of PqsD inhibitors (2-

benzamidoic acid derivatives, (2-nitrophenyl)methanol derivatives, ureidothiophene-2-carboxylic 

acids) in chapter 4.4.1 (Publication: C – E) and biofilm interference of dual inhibitors (2-

sulfonylpyrimidines) in chapter 4.4.2 (Publication: F). 
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Figure 19. Overview of compounds designed to interfere with the pqs system and discussed as a part 

of the thesis. (Source code of the compounds - first: letter of publication; second: structure description 

in the publication) 

 

4.2.1 Biophysical methods in the prediction of binding modes 

Publications C - E describe in detail, how a combination of biophysical methods and site-directed 

mutagenesis can be used to validate docking poses of PqsD inhibitors. Although crystal structures of 

PqsD, a PqsD (Cys112Ala) mutant and co-crystal structures with ACoA were available, it was not 

possible to co-crystallize the enzyme with an inhibitor. 
[95]

 This fact makes a structure-based 

optimization process more complicated. This prompted us to use the aforementioned combinatorial 

approach consisting of biophysical methods, site-directed mutagenesis, and molecular docking as an 

alternative solution. Similar approaches were already described in our working group. 
[180]

 Following 

chapters discuss the different PqsD inhibitor classes in detail with a focus on prediction of their 

binding modes. As these approaches helped to elucidate binding mode of 2-benzamidoic acid 

derivatives, (2-nitrophenyl)methanols, and ureidothiophene-2-carboxylic acids they could be used for 

further classes of PqsD inhibitors. Furthermore, the utilized techniques have a broad applicability (see 

Introduction) and thus, these studies can be exemplary for other target enzymes. Although such 

techniques cannot entirely replace a co-crystal structure, they have some advantages. For example in 

comparison to X-ray crystallography, all experiments are performed in solution, which is closer to the 

real biological state. 
[206,207]
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4.2.1.1 2-benzamidobenzoic acids (Publication: E) 

The benzoic acid derivatives were previously described to be inhibitors of FabH. 
[208]

 Thus, the 

aforementioned homology of PqsD and FabH assumed this compound class to inhibit both enzymes. 

This could be confirmed in an in vitro assay resulting in compound E: 34 as a starting point for 

optimization. 
[209]

 Here, binding mode was investigated by the combination of SPR, ITC, NMR, and 

site-directed mutagenesis. The starting point was a binding pose prediction of compound E: 2 

(unsubstituted derivative of E: 34) by molecular docking that suggested three possible orientations of 

the molecule in the PqsD substrate pocket. First binding pose defined a positioning of the benzoic acid 

moiety within the catalytic centre (pose 1), the second pushed this moiety more in the substrate 

channel (pose 2), and a third pose rotated the compound by 180 degrees in the pocket (pose 3) 

(Publication: E (Figure 16.)). To define the most probable position, a specific application of the 

aforementioned methods was necessary. First, PqsD was linked to an SPR chip. This was followed by 

incubation with substrate to form the covalent anthraniloyl-PqsD-complex, which blocks amino acid 

residues of the catalytic centre. As a result, the 2-benzamidobenzoic acids were still able to bind to this 

complex. The simple experiment excludes interactions with the amino acids near the catalytic residues 

and, therefore, the docking pose 1. In a second experiment, three derivatives (E: 34, E: 43, and E: 48) 

decorated with substituents differing in size at 5-position of the benzoic acid were tested for their 

affinity to three PqsD mutants (Ser317Phen, Cys112Ala, and His257Phe). The mutated amino acids 

include residues of the catalytic centre. Only for compounds with a space-demanding substituent (E: 

43: 5-Br, E: 48: 5-Phen), the SPR binding response decreased. This confirms the binding of benzoic 

acids in the substrate channel and excludes docking pose 3. The result was verified via a so-called 

saturation-transfer difference (STD)-NMR experiment, which determines distances from the ligand’s 

protons to the pocket. 
[210]

 The ethyl groups in R1 and R2 possess the weakest contacts to the enzyme 

pocket indicating an interaction of these groups with amino acids near the pocket edge. Altogether, 

these studies gave evidence for pose 2 to be the most likely one (Figure 20. c), d)). In the following 

optimization processes, this docking pose should facilitate compound derivatization. Furthermore, an 

ITC experiment using E: 48 showed a more pronounced entropic binding to PqsD (ΔG = −7.2 

kcal/mol, ΔH = −2.3 kcal/mol, −TΔS = −5.0 kcal/mol). The determined KD value (5.0 µM) correlates 

with the IC50 value (3.0 µM) of the compound and a confirmed 1:1 stoichiometry. This excludes a 

binding by, for example, an accumulation. All in all, 64 derivatives were synthesized in 2-benzamidoic 

acids class resulting in compound E: 52 as the frontrunner compound with an IC50 of 1.2 µM. 

However, this class was not able to efficiently reduce signal molecule production in cellulo. The 

observation could be explained by an insufficient cell penetration, a compound efflux, or an enzymatic 

modification by P. aeruginosa enzymes, as observed for other QSIs. 
[204]

 

4.2.1.2  (2-nitrophenyl)methanols (Publication: C)  

In contrast to the benzamidoic acids, the (2-nitrophenyl)methanol derivatives were shown to exhibit an 

in cellulo effect. The latter compounds arose from an approach, which aimed at the development of 
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transition state analogues. However, only compounds with a nitrophenyl moiety were able to inhibit 

PqsD enzyme reaction in vitro. Most efficient enzyme inhibitor C: 3 with an IC50 of 3.2 µM also 

showed a reduction of HHQ and PQS at 250 µM in a whole cell setup and block the formation of P. 

aeruginosa biofilm at a concentration of 500 µM without having an effect on cell viability. 
[91]

  

For a more straightforward optimization and to find an explanation for the different in cellulo profiles 

of the two PqsD inhibitor classes ((2-nitrophenyl)methanol, 2-benzamidoic acid derivatives) 

investigations on binding mode and inhibition kinetics were made. In the kinetic studies, C: 2, C: 1, 

and C: 3 were included to consider both classes. These selected structures only slightly differ in their 

in vitro IC50 values (C: 2 = 3 µM, C: 1 = 1.2 µM, and C: 3 = 3.2 µM), whereas only C: 3 possesses an 

in cellulo activity. Interestingly, the kinetic experiment demonstrated obvious differences in their 

inhibitory profiles. Compound C: 3 shows a time dependency of inhibition in contrast to C: 1 and 

C: 2. In detail, a longer pre-incubation period decreases its IC50 value. Furthermore, recovery of 

enzymatic activity via filtration experiment was not possible. Such profiles indicate an irreversible or a 

tight binding characteristic. To exclude a covalent complex between C: 3 and PqsD, an HPLC – ESI 

(electrospray ionization) – MS and a MALDI–TOF (Matrix-Assisted Laser Desorption/Ionization - 

Time Of Flight) experiment after tryptic digestion were performed. Both MS experiments excluded a 

covalent binding. The results could be important for further optimization as, in medicinal chemistry, 

there is always a concern about covalent inhibitors and a possible unselective binding to various 

biomolecular structures. This could lead to severe side effects of the compound depending on the 

reactivity of the functional groups. 
[211]

 Differences in the kinetic results give a hint that the (pseudo)-

irreversible behaviour of (2-nitrophenyl)methanols could be important for in cellulo activity. 

Literature reports indicate a good correlation between the residence time on the target and the 

pharmacological outcome. 
[150]

 Nevertheless, it has to be considered that the two inhibitor classes 

completely differ in physicochemical properties and structure, which can have influence, for example, 

on the cell permeability and metabolism. A tight binding mechanism could indicate a transition state 

binding mode. 
[212]

  

The determination of the C: 3 binding mode was a second part of Publication: C. Here, we primary 

focused on a combination of ITC, site-directed mutagenesis, and molecular docking. A previous SPR 

experiment using a covalent anthraniloyl – PqsD complex suggested (2-nitrophenyl)methanols to bind 

near the catalytic residues (Cys112 and His257). Therefore, the focus was set on amino acid mutants 

with polar side chains at the bottom of the pocket (Cys112Ala, Cys112Ser, Ser317Phe, Ser317Ala, 

Asn287Ala and His257Phe). The side chain is easier to target with mutagenesis approach as backbone 

interaction could only be blocked by the replacement through a proline. A negative effect of this 

mutation could be an influence on enzyme folding. Compound C: 3 was always considered as a 

racemate (ΔH = -3.47 kcal/mol
-1

 and -TΔS = -3.20 kcal/mol
-1

). As the respective enantiomers could 

bind in different ways we decided to separate them for the binding studies. 
[213]

 Earlier investigations 

concerning PqsD inhibition showed IC50 values of (R) - and (S) – enantiomers to be almost similar. 
[91]
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Surprisingly, the enantiomers differed in their thermodynamic profile. Here, we could distinguish 

between the more enthalpy-driven binding of the (R) – enantiomer (ΔH = -6.99 kcal/mol
-1

 and -TΔS = 

-0.43 kcal/mol
-1

) the entropy-driven binding of (S) – enantiomer (ΔH = -1.11 kcal/mol
-1

 and -TΔS = -

5.02 kcal/mol
-1

). However, the overall Gibbs free energy, which directly correlates with the KD, was 

similar for both compounds. This can explain comparability of the IC50 values. A detailed overview of 

the results gathered from the titration of the enantiomers and mutants can be seen in Publication C 

(Table 1.). For the (R) – enantiomer a significant loss of enthalpy and Gibbs free energy can be 

observed measuring the interaction with Cys112Ala, Cys112Ser, Ser317Phe and His257Phe mutant. In 

case of Cys112 and His257, the decreased affinity can be explained with a loss of interaction partner. 

A decrease of -4 to -5 kcal/mol
-1

 in enthalpy could be correlated with the interruption of approximately 

one H-bond. 
[175]

 However, such interpretations should be made carefully as these parameters are often 

influenced by multiple factors. 
[214]

 The low affinity in case of the Ser317Phe mutant could be 

explained with a sterical hindrance as the Ser317Ala mutant shows no significant difference in the 

interaction profile to the wild type. This result emphasizes binding close to the serine residue. 

Interestingly, for all mutants leading to differences in the interaction profile the phenomenon of 

enthalpy-entropy compensation was observed. In theory, it could be explained by a gain of degrees of 

freedom after loss of a binding partner. This goes along with the compensation of a decreased enthalpy 

by an increased entropy contribution. 
[215]

 Such a phenomenon is often reported in literature, but its 

significance is still under discussion. 
[214]

 Looking at the (S) – enantiomer more favourable entropy 

upon binding was observed. The interaction profile is hard to interpret as the only significant 

difference could be obtained for Ser317 mutants. Docking of the (S) – enantiomer gives a possible 

explanation for the experimental results (Figure 20. b), d)). The enantiomers occupy the same 

position in the pocket with a different orientation of the hydroxyl group (Publication: C (Figure 4.)). 

The nitro group forms an H-bond to the backbone of Ser317. This result is conclusive as the ITC study 

indicates a narrow orientation of the compound to this amino acid without having a direct interaction 

to the serine’s hydroxyl group. Respectively, both enantiomers form a weak H-bond network to 

Cys112 and His257 with their hydroxyl groups. 
[216,217]

 For the (R) – enantiomer this is in good 

correlation with the experimental results. The absence of thermodynamic differences in case of the (S) 

– enantiomer when binding to the Cys112 and His257 mutant can be explained by the docking pose. 

The orientation of the hydroxyl group favours a compensatory interaction with Asn287, if the other 

amino acids are mutated. With these models in hands, a binding mode similar to a transition state 

mimic can be excluded (Publication C (Figure 4.)). This offers a good starting point for a structure 

based optimization of (2-nitrophenyl)methanol derivatives. However, as the correlation of in vitro and 

in cellulo activities in this class seems to be difficult further investigations have to be done to figure 

out the best optimization strategy. 
[218]
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4.2.1.3 Ureidothiophene-2-carboxylic acids (Publication: D) 

Applicability of (2-nitrophenyl)methanol derivatives as a scientific tools was confirmed in the binding 

mode determination of the ureidothiophene-2-carboxylic acid class. This inhibitor class originates 

from compounds that were initially designed to inhibit RNA polymerase (RNAP). As in our anti-

virulence strategy an antimicrobial effect is not desirable compound D: 1 with R1 methoxymoiety was 

chosen being selective to PqsD (D: 1: IC50 (RNAP): 241 µM; IC50 (PqsD): 6 µM) 
[219]

. Binding in the 

substrate channel of PqsD was verified via SPR competition experiment with the ACoA. Furthermore, 

1:1 stoichiometry was confirmed by ITC. Both results suggested that a docking of D: 1 to catalytic 

pocket could help to predict a binding mode that might be useful for compound optimization. 

(Publication: D, Figure 1. b), c)) However, two docking poses with a similar score but reverse 

compound orientation were observed.  

At this point, a simple SPR competition experiment including two (2-nitrophenyl)methanol derivatives 

(D: B and D: A) and three ureidothiophene-2-carboxylic acid derivatives (D: 1, D: 2 and D: 3) 

elucidated the correct orientation (Publication: D, Figure 2). The ureidothiophene-2-carboxylic acid 

derivatives differ in the size of their substituents linked to methoxy or ureido moiety. As D: 3 showed 

a lowered affinity to the SPR-immobilized PqsD – D: A - complex in contrast to compounds D: 1 and 

D: 2, a clash of phenoxy group with D: A can be concluded. An additional experiment performed with 

the PqsD – D: B – complex gave more information on the distance of the methoxy - moiety to the 

bottom of the pocket. Competition experiment results confirm the docking pose indicating for 

methoxy moiety orientated towards pocket bottom. The pose was additionally validated by an SPR 

binding experiment with an Arg223Ala mutant indicating an interaction of this residue with the ureido 

moiety. Despite similarity to literature-described experiments, this approach is innovative in its 

particular design. 
[220]

 As co-crystal structures are not available for PqsD inhibitors this approach could 

help validating further docking poses of new compound classes. The validated docking pose of D: 1 

supported a structure-based optimization of this class.  

Compound D: 2 was chosen as a starting point due to promising LE. As the docking pose indicated 

possible interaction partners on the top of the channel, substituents linked to the ureido part of the 

molecule were subsequently introduced. Different (S)-configured α – amino acids showed decreased 

IC50 values in comparison to starting compound D: 1. This is especially observed in case of D: 7 with 

an IC50 of 0.5 µM (Figure 20. a), d)). Our docking pose revealed Arg262 as the possible interaction 

partner, which is positioned in close proximity to the ureido moiety. The introduction of a carboxylic 

acid with a methylene linker decreased IC50 from 170 µM (D: 2) to 7 µM (D: 5). Here, the docking 

pose confirmed the establishment of an interaction with Arg262. A narrow cleft provided potential to 

increase affinity using substituents that sufficiently occupy this part of the protein. As predicted in the 

docking pose, only (S) - amino acids were able to target this position leading to an affinity gain. The 

improved IC50 of compound D: 7 was most likely achieved by the formation of a sandwich complex 

between Arg223, Phe226, and the phenylalanine moiety (Publication: D, Figure 4. c)). In an STD-
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NMR experiment using compound D: B and D: 7, it was shown that the (2-nitrophenyl)methanol 

derivatives could be displaced by the ureidothiophene-2-carboxylic acid class confirming the initially 

determined binding mode also for the optimized compound. An additional benefit of the amino acid 

derivatives is the decreased clogD7,4 value (D: 7: clogD7,4 = 0.59), which could possibly improve 

permeation into Gram-negative bacterial cells. 
[221]

  

All in all, the experimentally validated docking pose supported a more straightforward improvement 

of this class. For example, a covalent binder that selectively targets Cys112 could be synthesised based 

on the docking. This could possibly help to gain in cellulo activity via optimized kinetic behaviour. 

Furthermore, a linkage of the (2-nitrophenyl)methanols and ureidothiophene-2-carboxylic acids 

increasing in vitro efficiency was possible due to detailed docking pose. However, all optimizations 

concerning in cellulo activity were not successful. 
[219]

  

 

 

Figure 20. All figures represent experimentally validated docking poses of different PqsD inhibitor 

classes. a) Ureidothiophene-2-carboxylic acids (Publication: D); b) (2-nitrophenyl)methanols 

(Publication: C); c) 2-benzamidobenzoic acids (Publication: E); d) Overlay of the three docking poses. 

4.2.2 Targeting biofilm as a bacterial lifestyle in chronic infections (Publication: F) 

Other in-house PqsD, PqsR, and dual PqsD/PqsR inhibitor classes showed improved in cellulo activity 

profiles. PqsR antagonists like F: II (IC50 (pyocyanin) = 2 µM), NPT: 1 (IC50 (pyocyanin) = 87 µM), 
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and NPT: 2 (IC50 (pyocyanin) ~ 250 µM) inhibit the production of pyocyanin, an important virulence 

factor. 
[180,202,204,222,223]

 Additionally, compound F: II blocks the formation of the signal molecules 

HHQ and PQS, which is in agreement with the auto loop theory. 
[204]

 However, influence on biofilm 

formation was only observed for F: I at a high concentration. 
[91]

 As described in the introduction, 

biofilm in combination with persister cell formation plays a crucial role in chronic P. aeruginosa 

infections. Furthermore, the pqs system is known to have a control function on biofilm development. 

[83,88–90]
 In preliminary studies, compounds F: II, NPT: 1, and NPT: 2 showed certain effects on 

biomass and eDNA (data not shown).  

However, here, the focus is on the 2-sulfonpyrimidine derivatives, which were described in 

Publications F and G. The development of dual PqsD/ PqsR inhibitors originated from the observation 

that a combination of F: I with F: II enhances the inhibitory efficiency on pyocyanin even though F: I 

displays no anti-pyocyanin effects. Two library compounds out of the 2-sulfonpyrimidine class 

selective for PqsR antagonism (F: III IC50 on  PqsR: 26 µM; 10% PqsD inhib. at 50 µM; 61% 

pyocyanin inhib. at 400 µM) and PqsD inhibition (F: IV: no  PqsR antagonism at 50 µM; IC50 on  

PqsD: 1.7 µM; no pyocyanin inhib. at 100 µM) were merged to a dual inhibitor (F: V: IC50 on  PqsR: 

25 µM; IC50 on  PqsD: 23 µM; 75% pyocyanin inhib. at 400 µM). A further optimization step resulted 

in compound F: VI (IC50 on PqsR: 15 µM; IC50 on PqsD: 21 µM; IC50 on  pyocyanin: 86 µM). Besides 

the inhibitory potential on pyocyanin, compound F: VI was also able to reduce production of 

pyoverdine, another virulence factor that plays a crucial role in iron acquisition and acute 

pathogenicity of P. aeruginosa. 
[79,224]

 In accordance to the reduced production of virulence factors in 

vitro, compound F: VI shows a concentration-dependent decrease of pathogenicity in an in vivo G. 

mellonella model. 
[225]

 The model is mostly correlated to the acute stage of P. aeruginosa infection. 

[226]
  

A second major issue is the chronic P. aeruginosa infection, which is linked to a biofilm lifestyle. That 

reason makes it interesting to see whether the compounds have an effect on biofilm. Thus, a crystal 

violet (CV) assay system was established to determine the whole biomass in a 96 well set-up. 
[227]

 

Both, the ΔPqsR and the ΔPqsA mutant, showed approximately 60% decreased biofilm volume (data 

not shown). For the best hit F: VI, an IC50 of 100 µM was observed on wild type biofilm (Publication 

F, Figure 5 A). The effects on a ΔPqsR mutant were determined to exclude a biofilm inhibition that is 

unspecifically triggered by a system other than pqs. A weak influence on the mutant’s biofilm 

confirmed that the major effect is pqs-dependent. CV assay was extended by selective staining 

approaches of polysaccharides using congo red, proteins by Bradford staining, and eDNA with 

propidium iodide, 
[83,168,228]

 as the major components of the biofilm. 
[84,85]

 As they have various roles in 

biofilm stability, immune evasion, and antibiotic resistance it could be interesting to see the influence 

of our compounds on every single constituent. 
[84]

 At a concentration of 100 µM, F: VI attenuated 

polysaccharide, protein, and eDNA formation in biofilm down to 27±20%; 25 ±13% and 7 ±2%. 

Polysaccharide components are known to protect the bacteria against the influence of antibiotics and 
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the immune system. 
[229–231]

 Proteins like lectins are important for stability of the biofilm structure. 
[232]

 

Apart from that, the most prominent effect of F: VI was observed on eDNA. This component shields 

the bacteria from an attack by antimicrobial peptides from the host, blocks aminoglycosides, and 

seems to play a role in fluoroquinolone resistance. 
[233–235]

 Similar effects on biomass and eDNA were 

shown for PqsD inhibitors of 2-sulfonpyrimidine derivatives class ((Submitted to ChemMedChem.: 

Manuskript is not included in the Thesis)). Furthermore, the results are in agreement with the 

described influence of pqs mutants on eDNA production. 
[83,90]

 As F: VI has a significant effect on all 

of the components, this strategy might bear the potential of making the biofilm more susceptible to 

environmental influences and, therefore, better to handle in a chronic infection scenario. Thus, the 

third variation of the assay was based on the determination of cell viability via an ATP-luciferase 

reaction. 
[236]

  The staining was used to check for susceptibility of biofilm to antibiotic compounds 

after treatment with the QS inhibitors. Bacterial life style represents a major challenge for antibiotic 

therapy as the biofilm is capable of decreasing the penetration rate of antibiotics. More importantly, 

the reduced rate of metabolism lowered the efficiency of the compounds to bacteria. For this reason an 

improvement of antibiotic susceptibility by a biofilm-blocking agent is desirable. 
[237]

 Ciprofloxacin 

(CIP) as a clinically used antibiotic to treat P. aeruginosa infections was included in our experimental 

set-up. 
[238]

 However, effects of this antibiotic on P. aeruginosa biofilms are controversially discussed. 

Gopal et al. observed a decreased effect of CIP against biofilm-encapsulated bacteria. 
[239]

 In contrast, 

Tanaka et al. reported a strong effect of CIP to bacteria inside of a biofilm. 
[240]

 Furthermore, there are 

additional results indicating a physical blockage of CIP by the biofilm. 
[241]

 In our experiment, CIP had 

no significant effect on P. aeruginosa biofilm at a concentration of 1 µM. The F: VI-pre-treated 

biofilm, which was shown to be hindered in maturation, turned out to be more susceptible to CIP. To 

decide, which factor is the most crucial one for these results, more experiments have to be performed. 

All in all, the strategy of targeting the pqs system to lower biofilm formation and support antibiotic 

treatment seems to be reasonable.  

 New antimicrobial targets and anti-virulence strategy 4.3

Apart from the fact that the fight against resistant bacteria should begin with a more careful use of 

antibiotics, several strategies can be used to evade already existing resistances. 
[8]

 Three strategies 

were applied and discussed in this thesis. The most common approach is focusing on new targets. The 

goal is to overcome target – related (e.g., mutations, bypass systems) and compound-dependent (e.g., 

efflux, metabolism, and penetration) resistances. 
[10]

 The development of CYP121 inhibitors deals with 

this strategy, although a proof of principle still has to be demonstrated. In future, such a compound has 

to be used more prudentially to circumvent rising of new resistant mutants. 
[8]

 An important criterion is 

already fulfilled as the CYP121 inhibitors are specific for mycobacteria. This prevents the transfer of 

resistance mechanisms between different bacterial species. Furthermore, toxicity to human cells and 

an adverse effect on symbiotic bacterial flora is excluded. 
[14]
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With the compounds targeting CYP125, a combined approach of viability reduction and anti-virulence 

effects is pursued. 
[52]

 However, there are no compounds with biological effects described for this 

target. To estimate the relevance of the system on the resistance development and persistence more 

intensive investigations have to be undertaken. 

 

The anti-pqs strategy aims at reducing the virulence of the bacteria without exerting a selection 

pressure. This approach should prevent development of new resistances. Two major problems 

occurred in the development of the PqsD inhibitors. These are related to phenomena often observed in 

anti-infective drug discovery. Firstly, compound discovery based on in vitro approaches can result in 

structures lacking in cellulo activity. As common rules for eukaryotic cells systems (e.g. “Lipinski’s 

rule of five”, which is used to estimate oral bioavailability) are not applicable to bacteria it is difficult 

to predict cell permeability based on physicochemical properties. Same observations were made in 

high throughput campaigns of pharmaceutical industry. 
[11]

 A second phenomenon was the missing 

effect on pyocyanin in case of the (2-nitrophenyl)methanol derivatives, although a knock-out mutant 

of PqsD was defective in pyocyanin production. 
[71]

 This can be explained by an insufficient activity or 

unknown pathways/bypass in the pqs system. 
[242]

 The PqsR antagonist or the dual target strategy 

seems to be more promising as the efficiency was proven in an in vivo scenario (Publication: F). 
[74,204]

 

Whether this strategy prevents resistance development or lowers the rate of resistant mutants remains 

to be seen. This is a widely discussed subject in different publications as, up to now, the results are 

ambivalent. Reports by Gerdt et al. support the theory that the strategy of targeting quorum sensing is 

robust to resistance. 
[243]

 In contrast, Maeda et al. reported resistance development to a quorum sensing 

inhibitor. 
[244]

 Further observations support the theories of a possible resistance to quorum sensing 

inhibition. Whether and if they do, to what extent such mutations influence a therapy in a clinical 

environment has to be clarified. 
[245]

 

 Outlook 4.4

With the CYP121 inhibitor A: I:47 of class I, an efficient anti-Mtb agent exhibiting a decreased 

toxicity and a selectivity against mycobacteria was identified. As a lot of derivatives of class I were 

not considered in the present study (Manuscript A) their efficiency to CYP121 and Mtb has to be 

tested. This should support the determination of a structure-activity-relationship and gather more 

information on the in vitro / in cellulo correlation. In this context, an advancement of the LC-MS/MS-

based functional assay can support this process. The results out of such studies could be used for 

compound optimization especially concerning selectivity towards human P450 and affinity to 

CYP121. Mutation studies on A: I:47 and other derivatives can further evaluate CYP121 as the main 

target and give information about the mutation rate. This could prove CYP121 as a target with 

beneficial properties. As first tests on A: I:47 toxicity were successful further in vitro pharmacokinetic 

and pharmacodynamic experiments, e.g. metabolic stability and permeability into macrophages, have 
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to be performed to get reliable starting points for a in vivo study with mice. In the beginning, the 

compounds should be tested for their efficiency to lower Mtb burden in mouse lungs as an initial 

experiment. Later, the compounds or an optimized derivative has to demonstrate reduction of the long 

term treatment in a chronic infection model. 

In case of CYP125, the best hits (B: C24, B: C60, B: C127, B: C128, and B: C130) have to be tested 

for their biological effects, i.e. an in vitro blockage of cholest-4-en-3-one conversion, an in cellulo 

intoxication by cholesterol, and an increased clearance in infected macrophages. Further 

pharmacokinetic and toxicity studies have to be performed before planning an in vivo proof of 

principle in a mouse model. Selectivity optimization towards human P450 enzymes and affinity to 

CYP125 could be supported by testing derivatives of these compounds and obtaining a structure–

activity-relationship. 

Since the PqsD inhibitors are not able to sufficiently block virulence factor production, further 

development does not seem to be promising. However, the efficacy of a dual inhibitor strategy (2-

sulfonylpyrimidines) justifies further investigations. Structural data of the different PqsD inhibitor 

classes can support optimization of the dual target compounds. More precisely, the approaches used 

for binding mode elucidation can be transferred to 2-sulfonylpyrimidines. The same applies to the 

biofilm assay, which can be used for testing other compound classes for activity in this important 

bacterial life style. Deeper investigations on the influence of biofilm blockers in chronic infection 

models should prove the relevance of the assay system and anti-biofilm agents.  
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Supplementary Data 

 

Chemical synthesis cYY and Mycocyclosin: 

Synthesis of cyclo-di-L-tyrosine (cYY) 

 

cyclo-di-L-thyrosine (cYY): 

cYY was synthesized as previously described.
1
 

 

cYY was synthesized as previously described.
1
 Spectral data is in accordance with the previously 

published results:
1
 

1
H NMR (300 MHz, DMSO-d6) δ 9.19 (s, 1H), 7.75 (d, J = 2.6 Hz, 1H), 7.05 – 6.78 (m, 2H), 6.78 – 

6.55 (m, 2H), 3.85 (s, 1H), 2.54 (dd, J = 4.6 Hz, 1H), 2.11 (dd, J = 13.7, 6.5 Hz, 1H); 
13

C NMR (75 

MHz, DMSO) δ 166.7, 156.5, 131.2, 127.0, 115.5, 56.2, 39.3; ESI-MS(+) = m/z 327.1 [M+H]
+
. 

1.2 Synthesis of mycocyclosine 

 

Mycocyclosine: 

 

Mycocyclosine was synthesized as previously described.
1,2

 Spectral data is in accordance with the 

previously published results:
1 
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1
H NMR (300 MHz, DMSO-d6) δ 7.98 (s, 1H), 6.84 (dd, J = 2.51, 7.9 Hz, 1H), 6.62 (d, J = 8.1 Hz, 

1H), 6.58 (d, J = 2.4 Hz, 1H), 4.32 (d, J = 4.8 Hz, 1H), 3.46 (d, J = 15.7 Hz, 1H), 2.64 (dd, J = 5.73, 

15.6 Hz, 1H). 

 

SDS-PAGE of His-tagged CYP121 

 

 

Figure S1. SDS-PAGE of Ni-NTA purified heterologous expressed CYP121. The band corresponds to 

a molecular mass of > 46000 Da which is in good accordance with the calculated protein mass of 

43256 Da. 
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Activity of CYP121/ CO Spectra 

 

Figure S2. UV-VIS carbonmonoxide difference spectra (COD) of CYP121 after treatment with 

sodium sulfide and carbonmonoxide. The characteristic band at ~420 nm shows CO coordination to 

the reduced iron-heme. 

 

Figure S3. UV-VIS carbonmonoxide difference spectra (COD) of CYP121 after incubation with 

reductase Arh1_A18G and ferrodoxin Etp1fd (516-618)followed by carbonmonoxide treatment. The 

characteristic band at ~420 nm shows CO coordination to the reduced iron-heme 
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LC-MS analysis of in vitro CYP121 enzyme reaction and effect of I:47  

 

 

Figure S4. LC-MS/MS quantification of CYP121 enzyme reaction: internal standard estrone tR = 4.05 

min (A); mycocyclosin tR = 1.30 min (B); cYY tR = 1.95 min (C).  
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Figure S5. LC-MS/MS based quantification of CYP121 in vitro enzyme reaction product 

mycocyclosin with addition of I:47 (100 µM, lower chromatogram) and without the presence of the 

inhibitor (upper chromatogram). 
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Surface Plasmon Resonance Sensorgramm of econazole 

 

Figure S6. Representative example for SPR binding curve of econazole to CYP121 injected from 100 

µM sample. 
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Screening overview 

 

Table S1. Overview of the results of SPR screening, Heme binding assay, BCG and Mtb 

growth inhibition and MIC determination 

Cmpd 
SPR 

[R/Rpos] 

Heme 

coord.a 

Heme-

KD [µM] 

BCGT 

Inhibition @ 

100 µM [%] 

MIC
BCGT 

[µM] 

MIC
Mtb 

[µM] 

I:1 0.4 N  10   

I:2 0      

I:3 0.1      

I:4 0.2      

I:5 0.1      

I:6 0.1      

I:7 0.5      

I:8 0.5      

I:9 0      

I:10 0      

I:11 0.6 N     

I:12 0.4      

I:13 0      

I:14 0.2      

I:15 0.3 Y (T-II) 34 87 41  

I:16 1.2 Y (T-II) 1 78 5 6 

I:17 1.9 Y (T-II) 3 65 38  

I:18 0.1      

I:19 0      

I:20 0.4      

I:21 0.1      

I:22 0.1      

I:23 0.1      

I:24 0.3      

I:25 0.5      

I:26 0.1      

I:27 1.0 Y (T-II) weak    

I:28 0.3      

I:29 0.4      
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I:30 1.4 Y (T-II) 11 94 11 48 

I:31 1.5 N     

I:32 1.1 Y (T-II) 14 85 30 41 

I:33 0.1 N  0   

I:34 0.7 Y (T-II) 29 25   

I:35 0.5      

I:36 0.1      

I:37 0.2      

I:38 0.2      

I:39 0.1      

I:40 0.3      

I:41 0.1      

I:42 0.1      

I:43 0.2      

I:44 0.2      

I:45 0.5      

I:46 0.1      

I:47 0.6 Y (T-II) 5 87 1 1 

I:48 0.8 Y (T-II) 5 88 7 12 

II:1 0.3      

II:2 0.3      

II:3 0.5      

II:4 0.2      

II:5 0.2      

II:6 0.1      

II:7 0.0      

II:8 0.3      

II:9 0.2      

II:10 0.1      

II:11 0.3      

II:12 0.2      

II:13 0.1      

II:14 0.5 N     

II:15 0.1      

II:16 0.2      

II:17 0.2      

II:18 0.2      
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II:19 0.2      

II:20 1.3 Y (T-II) 9 48   

II:21 0.7 Y (T-II) 31    

II:22 0.2      

II:23 0.6 N     

II:24 0.1      

II:25 0.2      

II:26 0.8 Y (T-II) 16    

II:27 0.9 Y (T-II) 20    

II:28 0.9 Y (T-II) 19    

II:29 0.7 Y (T-II) 62    

II:30 0.8 Y (T-II) weak    

II:31 0.6 Y (T-II) weak    

II:32 0.7 Y (T-II) weak    

II:33 0.3      

II:34 0.7 Y (T-II) 12 0   

II:35 1.0 Y (T-II) weak    

II:36 0.9 Y (T-II) 16    

II:37 1.4 Y (T-II) 50    

II:38 1.2 Y (T-II) weak    

II:39 1.4 N     

II:40 0.7 Y (T-II) 27    

II:41 0.9 Y (T-II) 13 7   

II:42 0.2      

III:1 0.3      

III:2 0.4      

III:3 1.7 Y (T-II) weak 20   

III:4 1.7 N  20   

III:5 0.5      

III:6 0.3      

III:7 1.8 N  18   

III:8 1.4 Y (T-II) weak 5   

III:9 0.6 Y (T-II) weak    

III:10 0.4      

III:11 0.3      

III:12 0.2      

III:13 0.1      
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III:14 0.3      

III:15 0.4      

III:16 0.2      

III:17 0.2      

III:18 0.4      

III:19 0.4      

III:20 0.2      

III:21 0.3      

IV:1 0.2      

IV:2 0.1      

IV:3 0.1      

IV:4 0.3      

IV:5 0.1 N     

IV:6 0.5      

IV:7 0.6 N     

IV:8 0.5      

IV:9 0.4      

IV:10 0.5   60   

IV:11 0.9 Y (T-II) weak    

IV:12 0.9 N     

IV:13 0.8 Y (T-II) 62    

V:1 0.0      

V:2 0.3      

V:3 0.2      

V:4 0.1      

V:5 0.2      

V:6 0.1      

V:7 0.3      

V:8 0.8 N     

V:9 0.8 N     

VI:1 0.6 N  50   

VI:2 1.2 N     

VI:3 1.5 N     

VI:4 1.3 N     

VI:5 0.4      

VI:6 1.3 N     

Ecob 1.0 Y (T-II) 3 71 14 11
3
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cYYc  Y (T-I) 12    

a
n= no, y= yes, T-I = type I binding profile, T-II = type II binding profile, 

b
 Eco = econazole, 

cYY = cyclo-di-L-tyrosine 
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KD determination by UV-VIS Heme coordination assay 

 

 

Figure S7. Determination of KD’s by titration of I:48 (A), I:47 (B), I:16 (C) and econazole (D) and 

monitoring the difference between the absorption at 430 nm minus absorption at 410 nm In the 

presence of CYP121. Graphs were plotted with SigmaPlot using Marquardt - Levenberg algorithm. 
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Protein Blast of Mtb H37RV CYP121 (Rv2276) and M. bovis BCG Pasteur CYP121 (BCG_2293) 

 

 

Figure S8. Results of the Protein Blast of Mtb CYP121 (upper sequence) and BCGT CYP121 (lower 

sequence) showing 100% amino acid identity between both proteins. 



Acknowledgment 194 

 

 

MICBCGT determination against Mycobacterium bovis  

 

Figure S9. Growth inhibition of BCG versus control (%) of econazole (A), I:15 (B), I:16 (C), I:30 

(D) of concentrations ranging from 100-1.56 µM of the respective compounds. Endpoint optical 

density was measured at 600 nm. MICBCGT were determined by GraphPad Prismn using OneSite Log 

IC50 model provided by the software. 
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Figure S10. Growth inhibition of BCG versus control (%) of I:32 (A), I:47 (B), I:48 (C) of 

concentrations ranging from 100-1.56 µM of the respective compounds. Endpoint optical density was 

measured at 600 nm. MICBCGT were determined by GraphPad Prismn using OneSite Log IC50 model 

provided by the software. 
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Calculation of antimicrobial efficiency 

 

𝐴𝑛𝑡𝑖𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = −𝑙𝑛 (
𝑀𝐼𝐶

𝑁𝐻𝐴
) 

Table S2. Antimicrobial efficiency 
4
 of I:16, I:30, I:32, I:47, I:48, econazole, isoniazide and 

rifampicine calculated for effects on Mycobacterium tuberculosis. 

Cmpd. MIC [mg/L] MW NHA
a
 Antibacterial Efficiency 

I:16 1.90 310 24 0.26 

I:30 11.20 234 18 0.25 

I:32 9.60 234 18 0.26 

I:47 0.30 278 21 0.39 

I:48 3.50 292 22 0.26 

Eco 4.20 382 23 0.24 

INH
b
 0.05 137 10 0.99 

Rif
c
 0.11 823 57 0.16 

a
NHA = number of heavy atoms, INH = isoniazide 

3
, Rif = rifampicine 

3
. 
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Toxicity assessment against human cancer cell lines HEK293 and HepG2 

 

SI Table 3. Toxicity data against human cancer cell lines HEK293 and HepG2 of I:47, I:16 and 

econazole (Eco). 

Compounds LD50 

HEK293 

[µM] 

SD LD50 

HEK293 

[mg/L] 

LD50 HepG2 

[µM] 

SD LD50 

HepG2 

[mg/L] 

I:47 66.9  5.3 18.6 47.5 8.1 17.1 

I:16 19.6 3.8 6.1 12.1 2.8 3.9 

Eco 15.6 3.8 6.0 11.8 4.3 3.1 
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MIC against Escherichia coli and Staphylococcus aureus in comparison to growth inhibition 

against Mycobacterium bovis BCG 

 

 

Figure S11. Comparison of growth inhibition of econazole (A), I:16 (B), I:47 (C) and I:48 (D) 

against M. bovis (▲, c = 1.56 - 100 µM), E. Coli (▪, c = 3.125 - 100 µM), S. aureus (●, c = 3.125 - 

100µM) of concentrations ranging from 100-0.725 µM of the respective compounds. Endpoint optical 

density was measured at 600 nm. Graphs were plotted with GraphPad Prismn using OneSite Log IC50 

model provided by the software. 
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Physicochemical data: 

I:16 
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Econazole 
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Bacterial strains and growth conditions.  

Bacterial strains used in this study were Mycobacterium bovis DSM-43990 (BCGT), Mycobacterium 

tuberculosis H37Rv (Mtb), Escherichia coli TolC acr A/B deficient, Staphyllococcus aureus (Newman 

strain) and E. coli K12 BL21. Mammalian cell lines for cytotoxicity evaluation were HEK293 (human 

embrionic kidney) and Hep2G (human liver carcinoma cells) cells. Mycobacteria were cultured in 

7H9GC-Tween
5
 or Middlebrook 7H9 broth complemented with ADC Enrichment (Middlebrook). 

E. coli TolC and S. aureus tests were performed in lysogenic broth (LB) and LB plus ADC 

Enrichment. 

 

Chemical synthesis and analytical characterization. Chemicals were purchased from commercial 

suppliers and used without further purification.  

Column flash chromatography was performed on silica gel (40−63 μm), and reaction progress was 

monitored by TLC on TLC Silica Gel 60 F254 plates (Merck, Darmstadt, Germany). All moisture-

sensitive reactions were performed under nitrogen atmosphere using anhydrous solvents. 
1
H and 

13
C 

NMR spectra were recorded on Bruker Fourier spectrometers (300 MHz) at ambient temperature with 

the chemical shifts recorded as δ values in ppm units by reference to the hydrogenated residues of 

deuterated solvent as internal standard. Coupling constants (J) are given in Hertz (Hz), and signal 

patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet, 

br, broad signal. The purity of the final compounds was >95% measured by HPLC with UV detection 

at 254 nm. The SpectraSystem LC system consisted of a pump, an autosampler, and a UV/Vis detector 

(ThermoFisher, Dreieich, Germany). Mass spectrometry was performed on an LC-coupled Surveyor 

MSQ electrospray mass spectrometer (ThermoFisher, Dreieich, Germany). The system was operated 

by the Xcalibur software. An RP C18 NUCLEODUR ec 100-5 125×3 mm 5 µm column (Macherey-

Nagel GmbH, Düren, Germany) was used as the stationary phase. All solvents were HPLC grade. In a 

gradient run, the percentage of acetonitrile (containing 0.1 % trifluoroacetic acid) was increased from 

an initial concentration of 0 % at 0 min to 100 % at 15 min and kept at 100 % for 5 min. The injection 

volume was 10 μL, and flow rate was set to 800 μL/min. MS analysis was carried out at a spray 

voltage of 3800 V, a source CID of 10 V and a capillary temperature of 350 °C. Spectra were acquired 

in positive mode from 100 to 1000 m/z. 

cYY and mycocyclosin were synthesized as described.
6–8

 Experimental details on modification of cYY 

and mycocyclosin synthesis and analytical data can be found in the Supplementary Data (Supp. Data, 

section 1). 

The synthesis of library compounds has been described previously: class I
9–14

, class II
15,16

, class III
17

, 

class IV
18

 , class V
19

, and class VI
20

. 
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Protein expression, purification and biotinylation.  

E. coli K12 BL21 (DE3) cells were transformed with plasmid harboring cyp121 gene 

(pHAT2/cyp121).
21

  

The previously described
22

 enzyme expression and purification method was slightly modified: His6-

tagged CYP121 (H6-CYP121) was expressed in E. coli K12 BL21 and purified using a single affinity 

chromatography step. Briefly, E. coli K12 BL21 cells containing the pHAT2/cyp121 were grown in 

terrific broth medium containing 100 μg/mL ampicillin at 37 °C until an OD600 of approximately 0.8 

units was reached, followed by induction with 0.5 mM IPTG and 0.5 mM δ-aminolevulinic acid for 

36 h at 25 °C and 200 rpm. The cells were harvested by centrifugation (5000 rpm, 10 min, 4 °C), and 

the cell pellet was resuspended in 100 mL of binding buffer containing 1% Triton-X-100 (50 mM tris-

HCl, 300 mM NaCl, 20 mM imidazole, 10% glycerol, pH = 7.2) and lysed by sonication for a total 

process time of 2.5 min. Cellular debris was removed by centrifugation (18,500 rpm, 40 min, 4 °C), 

and the supernatant was filtered through a syringe filter (0.2 μm). The clear lysate was immediately 

applied to a Ni-NTA affinity column, washed with binding buffer, and eluted with a one-step gradient 

of 500 mM imidazole. The protein containing fractions were buffer-exchanged into storage buffer 

(140 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4 and 10% glycerol (v/v), pH = 7.2), 

using a PD10 column (GE Healthcare, Little Chalfont, UK) and judged to be pure by SDS-PAGE 

analysis. Then protein was stored in aliquots at −80 °C in a final concentration of 50 µM. 
22

 

Before SPR streptavidin immobilization CYP121 was biotinylated. For biotinylation, Sulfo-NHS-LC-

LC-Biotin (Thermo Science, Waltham, US) was dissolved in storage buffer (140 mM NaCl, 10 mM 

Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4 and 10% glycerol (v/v)) with CYP121 in 1:1 molar ratio. 

The solution was incubated on ice for 2 h and mixed carefully every 30 min. The biotinylated CYP121 

was purified by size exclusion chromatography using the storage buffer and subsequently stored at -

80 °C at a final concentration of 10 µM.
23

  

 

In silico binding mode.  

In silico studies were performed with the X-ray co-crystal structure of a type II inhibitor and CYP121 

(PDB-ID: 4G44) using MOE software package (Chemical Computing Group).
24

 Prior to modelling, a 

pharmacophore model was created, placing a feature for an interacting metal on the heme iron (ML2, 

R = 1) and a second feature for a metal ligand (ML, R = 1) on the iron-coordinating nitrogen of the co-

crystalized ligand. Both features were set to be essential and constrained (Atoms/Projections). Before 

energy minimization with LigX the solvent and the ligand was deleted from the structure. For LigX, 

an AMBER10:EHT forcefield with the default parameters were used but the solvation model was 

changed to R-Field as recommended by the manufacturer. For docking experiments the following 

parameters were used: Protocols = induced fit, Receptor = Receptor+Solvent, Site = Selected Atoms 

(these consisted of the heme and the surrounding amino acids in 4.5 Å proximity), Pharmacophore = 
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File (as described above), Ligand = MDB File (Database file with I:47, energy minimized with 

MMFF94x), Placement = Pharmacophore, Rescoring 1 = London dG, Refinement = Forcefield, 

Rescoring 2 = GBVI/WSA dG. 30 poses were retained within the placement and refinement step. The 

resulting poses were sorted by their E_refine score and the first (best) pose was selected for further 

evaluation. 

 

Physicochemical properties.  

Physicochemical properties were calculated using ACD/Percepta version 2012 (Build 2203, 29 jan. 

2013), ACD/Labs. 

 

Cyp121 in vitro enzyme inhibition assay.  

The enzyme inhibition assay was performed in 200 mL PBS buffer pH 7.2. Compounds were used in a 

concentration of 100 µM and incubated with 1 µM CYP121 for 30 minutes at 30 °C. The final DMSO 

concentration did not exceed 2%. After incubation the electron transfer system Arh1_A18G (5 µM), 

Etp1fd (15 µM) and NADPH+H
+
 (200 µM) was added. The reaction was started with the addition of 

cYY (50 µM) and stopped after 30 min by addition of 200 µl methanol with internal standard estrone 

(1 µM final concentration, addition included). 

The characterization of CYP121 activity was conducted by a UHPLC-MS/MS analysis carried out on 

a TSQ Quantum Access Max mass spectrometer equipped with an HESI-II source and a triple 

quadrupole mass detector (Thermo Scientific, Dreieich, Germany). Compounds were separated on an 

Accucore RP-MS 150×2.1 mm 2.6 µm column (Thermo Fisher, Waltham, US) by a methanol/water 

gradient (from 1.4 min - 3.5 min 50% methanol to 3.5 min - 5.0 min 90% methanol) with a flow of 

550 µL/min. Compounds were ionized in negative mode by electrospray ionization. Ionization was 

assisted by a post-column addition of 2 mM ammonia in methanol with an automated syringe at 

1.25 µL/min. Monitored ions were (mother ion [m/z], product ion [m/z], scan time [s], scan width 

[m/z], collision energy [V], tube lens offset [V], polarity): mycocyclosin: 323.101, 111.100, 0.3, 0.7, 

28, negative; CYY: 325.129, 113.043, 0.3, 0.7. 29, negative; internal standard (estrone): 269.153, 

145.035, 0.3, 0.7, 42, negative. Samples were injected in a volume of 25 µL. Xcalibur software was 

used for data acquisition. For quantification, the ratios of the area under the curve of the educt and the 

product were used. 

 

 

 

 

 



Manuscript A 210 

 

 

Determination MICMtb using MABA.  

The assay for determination of minimal inhibition concentration against Mtb was performed as 

previously described.
5
  

 

MICEco E. coli TolC and MICSa S.aureus Newman 

MICEco /MICSa values were performed for econazole, I:16, I:47, I:48 in E. coli TolC and S. aureus 

Newman. A start OD600 of 0.03 was used in a total volume of 200 mL in lysogeny broth (LB) + ACD 

enrichment containing the compounds predissolved in DMSO. Final compound concentrations were 

prepared from serial dilutions ranging from 1.56 to 100 µM in duplicates. The maximal DMSO 

concentration in the experiment was 1%. The recorded OD600 values were determined after addition of 

the compounds and again after incubation for 18 h at 37 °C and 50 rpm in a 96-well plate (Sarstedt, 

Nümbrecht, Germany) using a FLUOStar Omega (BMG Labtech, Ortenberg, Germany). Given 

MICEco /MICSa values are means of two independent experiments (two different clones) and are 

defined as concentrations at which no bacterial growth was detectable. 

 

Spectroscopic characterization of enzyme activity.  

Recombinant CYP121 from Mycobacterium tuberculosis as well as ferredoxin Etp1fd (516-618) and 

ferredoxin reductase Arh1_A18G from the fission yeast Schizosaccharomyces pombe were expressed 

and purified as described previously.
25,26

  

Functionality of CYP121 and electron transfer were assayed by the occurrence of the characteristic 

absorbance maximum at 𝜆 ≅450 nm, related to the reduced, CO-bound heme complex. The assay was 

conducted following the method of Omura and Sato
27

 with slight modifications. CYP121 (2 µM) was 

reduced through the addition of a few grains of sodium dithionite or incubation with NADPH 

(100 µM), ferredoxin Etp1fd(516-618) (40 µM), and Arh1_A18G ferredoxin reductase (2 µM) and 

divided in two cuvettes to record a baseline. One of the samples was saturated with carbon monoxide 

for 60 s and difference spectra were recorded until the absorbance at 𝜆 ≅450 nm was constant. 
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SPR Response Curve of Econazole (positive control) 

 

 

SI Figure 1. SPR response curve of 100 µM econazole (eco, black, positive binder) and baseline 

(grey) recorded against biotin labeled CYP125 immobilized on a streptavidine coated sensorchip. 
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Comparison of CYP125 from M. tuberculosis and M. bovis BCG 

 

 

SI Figure 2. Result of the Protein BLAST of CYP125 from M. tuberculosis (gene-ID: Rv3545c) and 

M. bovis BCG (gene-ID: BCG_3609c) showing 100% amino acid identity of both proteins. 
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Representative KD Dose Response Curves and Difference Spectra 

 

 

SI Figure 3. Representative KD dose response curves (left) and difference spectra (right) of a type I 

(C24, lower spectra) and a type II (C128, upper spectra) CYP125 heme ligands.  
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Summary of Binding Constants, Profile and Ligand Efficency Indices of SPR Hits 

 

SI Table 1. Relative responses of SPR hits (R/Rpos) and their respective heme binding profiles, 

binding affinities (KD) and Ligand efficiency scores (LE) against CYP125. 

Compound 
SPR 

[R/R
pos

] 

Heme assay 

Binding Type
c
 

Heme assay 

K
D
 [µM] 

Ligand efficiency 

[kcal/HA] 

Econazole (Eco 

= Rpos) 
1.0 I 0.94 0.36 

CHN
a
 - I 4.6 - 

LP10
b
 - rI 6.1 0.24 

C3 1.3 II 19 0.35 

C5 1.0 II 28 0.29 

C16 1.1 I 16 0.32 

C23 1.0 I 1.5 0.37 

C24 1.1 I 0.26 0.42 

C25 0.9 no - - 

C36 2.8 I 1.3 0.46 

C37 3 I 1.1 0.49 

C42 0.0 no - - 

C43 1.2 II 13.1 0.26 

C52 2.8 no - - 

C53 0.5 - - - 

C55 1.2 II 38.7 0.29 

C59 0.8 - - - 

C60 1.1 I 0.28 0.42 

C68 1.0 II 38.7 0.34 

C80 1.6 II 39.6 0.22 
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C83 2.9 no - - 

C87 1.2 no - - 

C90 1.7 no - - 

C119 2.0 no - - 

C126 1.2 II 2.1 0.27 

C127 3.1 II 0.85 0.47 

C128 1.1 II 0.084 0.50 

C129 2.6 II 1.34 0.41 

C130 2.4 II 0.174 0.53 

a 
CHN = Cholest-4-en-3-one; 

b
 LP10 = α-[(4-methylcyclohexyl)carbonyl amino]-N-4-pyridinyl-1H-

indole-3-propanamide; 
c
 I = Type I binding profile, II = Type II binding profile, rI = reverse Type II 

binding profile no = no binding profile observed at the highest  tested concentration (100 µM).  

 

Absorbance maximum in Heme assay 

 

SI Table 2. Binding affinities (KD) and absorbance 

maxima of selected compounds against CYP125. 

Compound 
Heme assay 

KD [µM] 

Heme assay 

Absorbance 

maximum [nm] 

LP10 6.1 419 

C127 0.85 421 

C128 0.08 420 

C129 1.34 422 

C130 0.17 421 

 

Synthesis, analytical and biological data of the screening compounds and their derivatives 

 

C1,
[1]

 C2,
[1]

 , C3,
[2]

 C4,
[1]

 C5,
[3]

 C6,
[1]

 C7 - C10,
[5]

 C11 - C18,
[4]

 C19 - C27,
[5]

 C28 - C29,
[1]

 C30 - 

C33,
[6]

 C34 - C74,
[7]

 C75 - C121,
[8]

 C122 - C125,
[9]

 C127 - C130.
[10]
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1) Primer Sequence of Mutations 

 

Mutant 

Primer 

forward 5’  3’ reverse 3’ 5’  

S317F 
GCTGGTCCTGACCTACGGTTTTGGCG

CGACCTGGGGCG 

CGCCCCAGGTCGCGCCAAAACCGTA

GGTCAGGACCAGC 

C112A 
GCTGGATATCCGGGCACAGGCGAGC

GGGTTGCTGTACG 

CGTACAGCAACCCGCTCGCCTGTGCC

CGGATATCCAGC 

H257F 
CGACCATGTGATCTGCTTTCAACCGA

ACCTGC 

GCAGGTTCGGTTGAAAGCAGATCAC

ATGGTCG 

C112S 
GCTGGATATCCGGGCACAGAGCAGC

GGGTTGCTGTACG’ 

CGTACAGCAACCCGCTGCTCTGTGCC

CGGATATCCAGC 

S317A 
GCTGGTCCTGACCTACGGTGCGGGCG

CGACCTGGGGCG 

CGCCCCAGGTCGCGCCCGCACCGTA

GGTCAGGACCAGC 

N287A CGTCTGGGCGCGATGGCTTCGGCC GGCCGAAGCCATCGCGCCCAGACG 

 

 

 

 

2) Table S1: Catalytic Activity of PqsD Wild-type and Mutants
a 

 

 wild-type S317F C112A H257F
 

C112S
 

S317A
 

N287A 

Formed HHQ 

[nM] 
2154 15 1 18 171 2182 7 

 

a
Reactions were performed according to the screening assay procedure described in the Methods 

Section using 1.0 µM of P. aeruginosa PqsD.  
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3) Synthesis of Substrates Used in the Enzymatic Inhibition Assays 

Synthesis of anthraniloyl-S-CoA thioester (SI1). Anthraniloyl-CoA (ACoA) was synthesized from 

isatoic anhydride and coenzyme A (CoA) using a previously described method. ACoA was purified by 

HPLC (Agilent 1200 series consisting of a quaternary pump, a fraction collector and an MWD; 

Agilent Technologies) after freeze drying of the aqueous reaction mixture (25 ml) and resuspending of 

the dried residue in 3 ml of a mixture of 50% methanol and water (v/v). A 10 µm RP C18 150-30 

column (30 x 100 mm, Agilent) was used along with a mobile phase consisting of water containing 

1‰ TFA (A) and acetonitrile containing 1‰ TFA (B) with a flow rate of 5 ml min
–1

. The following 

gradient was used: 0–35 min, linear gradient 10% – 100% B (v/v); 35–42 min, 100% B; 42–43 min, 

10% B (v/v) (initial conditions). ACoA containing fractions were pooled and freeze dried. 

Synthesis of β-ketodecanoic acid (SI2). Ethyl 3-oxodecanoate (300 mg, 1.4 mmol) was stirred with 

NaOH (56 mg, 1.4 mmol) in 2 ml of water overnight. Any remaining ester was removed by washing 

with Et2O (10 ml). The aqueous layer was cooled and acidified with 32% HCl (w/v) to pH = 6. After 

filtration the 3-oxodecanoic acid was dried in vacuo and obtained as white solid (100 mg, 38%). 
1
H-

NMR (500 MHz, CDCl3) δ 0.86 (t, J = 7.0, 3H), 1.25–1.29 (m, 8H), 1.58 (m, 2H), 2.54 (t, J = 7.5, 

2H), 3.49 (s, 2H). LC/MS (ESI) m/z 242.0, 99% (UV). 

Synthesis of ethyl 3-oxodecanoate (SI3). To a THF solution of 2 M LDA (20 ml, 40 mmol) was 

added ethyl acetoacetate (2.16 g, 16.6 mmol) at 0°C. The deep yellow clear solution was stirred at 0°C 

for 1 h. To this solution the 1-iodohexane was added (4.20 g, 19.81 mmol) at -78°C. The temperature 

was allowed to reach an ambient temperature over 14 h and the solution was stirred at room 

temperature for 2 h. To the solution was added 200 ml of 10% HCl (v/v) and the mixture was 

extracted with Et2O (4 × 250 ml). The combined organic layers were dried over Na2SO4, filtered, and 

the filtrate was concentrated in vacuo. The residue was purified by column chromatography (n-

hexane/ethyl acetate, 30/1) to give ethyl 3-oxodecanoate as a yellow oil (1.98 g, 55%). 
1
H-NMR (500 

MHz, CDCl3) δ 0.84 (t, J = 7.0, 3H), 1.23–1.28 (m, 11H), 1.54 (m, 2H), 2.49 (t, J = 7.0, 2H), 3.39 (s, 

2H), 4.16 (m, 2H). LC/MS (ESI) m/z 458.0, 87% (UV). 
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4) Table S2: Comparison of IC50 Values Determined by Different Assay Procedures 

 

Compd IC50 [µM]
ab

 IC50,mod [µM]
ac 

IC50,ext [µM]
ad 

1 1.2 ± 0.1 1.1 ± 0.2 1.8 ± 0.4 

2 3.0 ± 0.7 4.2 ± 0.3 7.6 ± 1.5 

3 3.2 ± 0.1 24.6 ± 6.2 1.0 ± 0.4 

4 4.3 ± 1.0 19.7 ± 8.9 2.6 ± 0.5 

5 14.8 ± 2.9 >50 9.7 ± 1.4 

6 n.i. n.d. n.d. 

7 7.9 ± 0.7 n.d. n.d. 

 

a
P. aeruginosa PqsD (0.1 µM), recombinantly expressed in Escherichia coli; anthraniloyl-CoA (5 

μM), and β-ketodecanoic acid (70 μM); n.i. no inhibition (<10% at 50 µM); n.d. not determined. 

b
PqsD and inhibitor were preincubated for 10 min prior to addition of the substrates. 

c
Modified 

procedure including additional preincubation of enzyme and ACoA. 
d
Preincubation time of 

PqsD/inhibitors was extended to 30 min.  
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5) Percentages of Inhibition and Uncertainty of the Time Dependency Experiment 

 

Compound 2:  

time 
 control 

[%] 

 Cmpd. 2,  

3 µM [%] 

uncertainty 

[%] 

3 min  100  60.37 2.95 

6 min  100  59.36 8.27 

9 min  100  60.21 8.09 

12 min  100  58.95 8.34 

15 min  100  61.99 8.16 

20 min  100  72.15 5.19 

25 min  100  63.28 7.17 

30 min  100  64.18 10.05 

 

Compound 3:  

time 
 control 

[%] 

 Cmpd. 3,  

6 µM [%] 

uncertainty 

[%] 

3 min  100  71.17 4.33 

6 min  100  46.38 2.91 

9 min  100  41.85 4.49 

12 min  100  36.40 4.36 

15 min  100  31.98 4.58 

20 min  100  25.39 2.41 

25 min  100  27.01 3.60 

30 min  100  26.07 4.82 

 

Table S3. HHQ formation in presence of compounds 2 and 3 relative to untreated control. 
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6) Figure S1: Dose-response Curve of PqsD Inhibition by Compound 3 

 

 

 

Figure S1. Inhibition of PqsD by compound 3 is plotted against the concentration (log scale). Data 

were generated using the screening assay procedure for in vitro PqsD inhibition as described above. 

Compounds 4 and 5 show similar curve shapes (data not shown). 
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7) Further HPLC-ESI MS Experiments 

 

 

 

Figure S2. (A-D) PqsD containing a His6-tag was incubated in absence (A) or in presence (B) of 

compound 3. Thereby, no anti-oxidative reagent was present. Samples were subjected to HPLC-ESI 

MS analysis, whereas no relevant amounts of oxidation products were observed. Subsequent addition 

of an excess of maleimid resulted in a shift of +582 (corresponding to a 6-fold addition of the labeling 

agent regardless of the presence of compound 3 (C: PqsD; D: PqsD pretreated with compound 3). 

Maleimid labels all available cystein residues present in PqsD, indicating that no cystein was oxidized 

previously. (E-H) C112S mutant containing a His6-tag was treated in absence (E) or in presence (F) of 

compound 3 using the same procedure as described above. Subsequent addition of an excess of 

maleimid resulted in a shift of +485 (corresponding to a 5-fold addition of the labeling agent 

regardless of the presence of compound 3 (G: PqsD; H: PqsD pretreated with compound 3). In all 

spectra, signals with a shift of +178 Da were observed. This is probably due to spontaneous α-N-6-

Phosphogluconoylation of the His6-tag in E. coli (SI4).    
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8) Maldi-TOF Analysis 

 

Figure S3. Maldi-TOF spectra of PqsD after tryptic digestion. The blue labeled fragments bear one 

missed cleavage (MC). Fragments generated by complete digestion (MC=0) are labeled in black. 

Together, 334 of 340 amino acids are visible in at least one fragment.  
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Figure S4. Sequence of the PqsD construct used in the study. Green and blue letters represent amino 

acids, which are present in peptides (MC=0 and MC=1, respectively) observed by Maldi-TOF, when 

native PqsD has been digested. Together, 334 of 340 amino acids are visible in at least one fragment. 

Amino acids not observed in the experiment are Thr41, Gly42, Val43, Arg44, Gly156 and Arg157. 

(Numbering refers to the amino acid sequence used in the experiment; in the X-ray structure denoted 

as Thr37, Gly38, Val39, Arg40, Gly152, Arg153 (SI5).) 
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Figure S5. Molecular surface of the PqsD binding channel and side chains of the uncaptured amino 

acids Thr41, Gly42, Val43, Arg44, Gly156 and Arg157. The alkyl residues of Gly42, Val43 and 

Gly156 are unable to form covalent bonds. Thr41, Arg44 and Arg157 are located at the tunnel 

entrance, too far away from the binding site of compound 3, which is located deep in the active site 

near the catalytically active Cys116 (in the construct used for X-ray analysis denoted as Cys112).  
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Figure S6. Maldi-TOF spectra of PqsD/compound 3 after tryptic digestion. The blue labeled 

fragments bear one missed cleavage (MC). Fragments generated by complete digestion (MC=0) are 

labeled in black. Compared to untreated PqsD the only difference is the disappearance of the peptide 

m/z of 1071.   
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Figure S7. Amino acids observed after preincubation of PqsD with compound 3. Compared to 

untreated PqsD the red labeled peptide at the C-terminus disappeared, maybe because of an oxidation 

of the terminal Cys340.  
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m/z (PqsD) 

calculated 

m/z (PqsD) 

measured 

m/z (PqsD+ 

cmpd. 3) 

measured 

Position 

(Number of 

missed 

cleaves) 

peptide sequence 

4399.3329 4398.8813 4398.8477 65–105 

(MC=0) 

QAIEAAGLLPEDIDLLLVNTLSPDHH

DPSQACLIQPLLGLR
 

3155.5353 3155.1638 3155.1670 187–216 

(MC=0) 

LGADGNYFDLLMTAAPGSASPTFLD

ENVLR 
3052.5342 3052.1948 3052.1858 240–216 

(MC=0) 

IAGEMLVAHELTLDDIDHVICHQPN

LR
 

2853.5203 2853.1819 2853.1846 158–186 

(MC=0) 

NLSILLGDGAGAVVVSAGESLEDGL

LDLR 
2688.3272 2688.0015 2687.9995 289–313 

(MC=0) 

LGNMASASTPVTLAMFWPDIQPGQ

R
 

2225.1495 2224.8645 2224.8713 45–64 (MC=1) TRYHVEPEQAVSALMVPAAR 

1968.0007 1967.7450 1967.7517 47–64 (MC=0) YHVEPEQAVSALMVPAAR
 

1898.0170 1897.7700 1897.7756 314–331 

(MC=0) 

VLVLTYGSGATWGAALYR 

1795.9523 1795.7039 1795.7120 1–18 (MC=0) GSHMGNPILAGLGFSLPK
 

1688.9329 1688.6915 1688.6960 267–281 

(MC=0) 

ILDAVQEQLGIPQHK
 

1628.8325 1628.6193 1628.6277 226–239 

(MC=0) 

GRPMFEHASQTLVR
 

1510.7505 1510.5491 1510.5503 114–127 

(MC=0) 

AQCSGLLYGLQMAR
 

1438.8198 1438.6234 1438.6323 137–149 

(MC=1) 

HVLVVCGEVLSK 

1322.6586 1322.4747 1322.4774 30–40 (MC=0) INTSDEFIVER
 

1282.7187 - - 137–148 

(MC=0) 

HVLVVCGEVLSK
 

1280.6818 1280.4948 1280.5020 19–29 (MC=1) RQVSNHDLVGR 

1124.5807 1124.4222 1124.4231 60–69 (MC=0) QVSNHDLVGR 

1071.5251 1071.3695
 

- 332–340 

(MC=0) 

KPEEVNRPC
 

995.4615 995.3211 995.3254 217–225 

(MC=0) 

EGGGEFLMR
 

962.5781 962.4323 962.4278 106–113 

(MC=0) 

HIPVLDIR 

898.5468 898.4139 898.4203 128–136 

(MC=0) 

GQILAGLAR 

882.3556 882.2406 882.2174 149–155 

(MC=1) 

RMDCSDR 

807.4359 807.3143 807.3203 282–288 

(MC=0) 

FAVTVDR
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Table S4. Comparison of peptide masses (calculated and observed by Maldi-TOF analysis) formed by 

tryptic digestion of untreated PqsD and PqsD treated with compound 3. All fragments without missed 

cleavages (MC=0) with m/z >800 are listed. Fragments with MC=1 contributing to coverage of the 

amino acid sequence are added in blue.  
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9) Separation of 3 into the Enantiomers (R)-3 and (S)-3 by Chiral-HPLC 

The separation was performed using an Agilent 1200 HPLC system equipped with an MWD triggering 

an automated fraction collector (Agilent Technologies) in “time based” mode. ChemStation® 

software was used for control and report. The sample was manually injected. A Chiralpak IE® 5µm 

(250 / 10 mm) column (DAICEL Corporation) was used as stationary phase. The solvent system 

consisted of n-hexane (A) and iso-propanol (B). HPLC-Method: Flow rate 2.4 ml min
–1

. Isocratic run 

of 7% of B in A (v/v).  

Determination of enantiomeric excess was performed using a Chiralpak IE® 5µm (250 / 4.6 mm) 

column (DAICEL Corporation) as stationary phase. The solvent system consisted of n-heptane (A) 

and iso-propanol (B). HPLC-Method: Flow rate 1 ml min
–1

. Isocratic run of 7% of B in A (v/v). The 

% ee of (R)-9 and (S)-9 was determined using the relative peak areas in the MWD trace. 
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Figure S8. HPLC analysis of enantiomeric purity. (A) Racemic mixture 9, (B) S-enantiomer (–) of 9 

(>99.9% ee) and (C) R-enantiomer (+) of 9 (87.2% ee). Absolute configurations were derived from 

measurement of the optical rotation and comparison to literature (SI6).
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10) Figure S9: Binding site analysis of (R)-3 and (S)-3 by SPR 

 

Figure S9. SPR experiment using 250 and 125 µM of (R)-3 (blue) or (S)-3 (orange), respectively. 

Compounds were added to native PqsD and response curves (A) and (B) were recorded. No response 

was observed when identical concentrations of (R)-3 (C) or (S)-3 (D) were added to PqsD pretreated 

with ACoA. Furthermore, when (R)-3 was added until saturation of the SPR signal, subsequent 

addition of (S)-3 did not affect the observed response (E). The results indicate that the binding sites of 

both enantiomers are blocked by anthranilate. 
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11) Figure S10: Reversibility of PqsD inhibition by the Enantiomers (R)-3 and (S)-3 

 

Figure S10. PqsD was preincubated with enantiomers (R)-3 and (S)-3 and the remaining HHQ 

formation was quantified with and without removal of unbound inhibitor by diafiltration. Centrifugal 

filter devices with a molecular weight limit of 10k were used to remove at least 95% inhibitor by three 

diafiltration steps as controlled by HPLC analysis, while PqsD was retained. 
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12) Representative ITC Curves 

 

Figure S11 (above). Representative ITC titrations of R-enantiomer against PqsD wild-type and 

mutants. 3500 µM of compound against: a) PqsD wild-type (347µM), b) S317A (351µM), c) N287A 

(347µM), d) C112A (350µM), e) C112S (354µM), f) H257F (352µM), g) S317F (345µM). The 

recorded change in heat is shown in units of μcal sec
–1

 as a function of time for successive injections 

of the ligand (upper panel). Integrated heats (black squares) plotted against the molar ratio of the 

binding reaction. The continuous line represents the results of the non-linear least squares fitting of the 

data to a binding model (lower panel). 
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Figure S12 (below). Representative ITC titrations of S-enantiomer against PqsD wild-type and 

mutants. 3500 µM of compound against: a) PqsD wild-type (347µM), b) S317A (351µM), c) N287A 

(347µM), d) C112A (350µM), e) C112S (354µM), f) H257F (352µM), g) S317F (345µM). The 

recorded change in heat is shown in units of μcal sec
–1

 as a function of time for successive injections 

of the ligand (upper panel). Integrated heats (black squares) plotted against the molar ratio of the 

binding reaction. The continuous line represents the results of the non-linear least squares fitting of the 

data to a binding model (lower panel). 
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1.       Experimental procedures 

 

1.1.     Chemistry 

 

1.1.1      Synthesis and spectroscopic data of compounds 1–12 

 

 

Methyl 3-amino-5-(4’-methoxyphenyl)thiophene-2-carboxylate (IIa). 

 

 

 

 

 

 

 

The title compound was prepared from 4’-methoxyacetophenone according to general procedure A 

and used directly in the next step without further purification. 

 

1H NMR (DMSO-d , 500 MHz): δ = 7.56 (d, J = 8.8 Hz, 2 H), 7.00 (d, J = 8.8 Hz, 2 H), 6.86 (s, 1 

H), 6.56 (br. s, 2 H), 

3.79 (s, 3 H, OCH3), 3.72 (s, 3 H, OCH3) ppm. 

 

13C NMR (DMSO-d , 126 MHz): δ = 163.9, 160.0, 155.7, 147.7, 127.0, 125.3, 114.9, 114.6, 95.7, 

55.3, 50.8 ppm. 

 

 

 

Methyl 3-amino-5-(4’-phenoxyphenyl)thiophene-2-carboxylate (IIb). 

 

 

 

 

The title compound was prepared from 4’-phenoxyacetophenone according to general procedure A 

and used directly in the next step without further purification. 
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1H NMR (DMSO-d , 500 MHz): δ = 7.64 (d, J = 8.8 Hz, 2 H), 7.46−7.40 (m, 2 H), 7.22−7.17 (m, 1 

H), 7.11−7.06 (m, 

2 H), 7.04 (d, J = 8.8 Hz, 2 H), 6.91 (s, 1 H), 6.59 (br. s, 2 H), 3.72 (s, 3 H, OCH3) ppm. 

 

13C NMR (DMSO-d , 126 MHz): δ = 163.9, 157.7, 155.9, 147.0, 130.2, 127.8, 127.4, 124.1, 119.3, 

118.7, 115.7, 96.2, 

50.9 ppm. 

 

 

Methyl 3-amino-5-(4’-bromophenyl)thiophene-2-carboxylate (IIc). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from 4’-bromoacetophenone according to general procedure A. 

 

1H NMR (CDCl , 300 MHz): δ = 7.51 (d, J = 8.0 Hz, 2 H), 7.43 (d, J = 8.0 Hz, 2 H), 6.75 (s, 1 H), 

5.49 (br. s., 2 H), 

3.85 (s, 3 H, OCH3) ppm. 

 

13C NMR (CDCl , 75 MHz): δ = 164.8, 154.2, 147.6, 132.3, 132.1, 127.3, 123.0, 115.8, 100.7, 51.3 

ppm. 

6 
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3-Amino-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (IIIa). 

 

 

 

 

 

 

 

 

The title compound was prepared from IIa according to general procedure B. 

 

1H NMR (DMSO-d , 300 MHz): δ = 7.55 (d, J = 8.8 Hz, 2 H), 6.99 (d, J = 8.8 Hz, 2 H), 6.84 (s, 1 

H), 3.79 (s, 3 H, 

OCH3) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 165.3, 159.9, 155.3, 147.0, 127.0, 125.6, 115.0, 114.6, 97.1, 55.3 

ppm. 

 

 

3-Amino-5-(4’-phenoxyphenyl)thiophene-2-carboxylate (IIIb). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IIb according to general procedure B. 

 

1H NMR (DMSO-d , 500 MHz): δ = 7.63 (d, J = 8.8 Hz, 2 H), 7.47−7.38 (m, 2 H), 7.23−7.16 (m, 

1 H), 7.08 (d, J = 

8.8 Hz, 2 H), 7.06−6.99 (m, 2 H), 6.90 (s, 1 H) ppm. 

 

6 

6 
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13C NMR (DMSO-d , 126 MHz): δ = 165.2, 157.5, 155.9, 146.3, 130.2, 128.1, 127.3, 124.0, 119.2, 

118.7, 115.8, 97.7 

ppm. 

 

 

 

3-Amino-5-(4’-bromophenyl)thiophene-2-carboxylic acid (IIIc). 

 

 

 

 

 

 

 

 

The title compound was prepared from IIc according to general procedure B. 

 

1H NMR (DMSO-d , 500 MHz): δ = 7.63 (d, J = 8.8 Hz, 2 H), 7.57 (d, J = 8.8 Hz, 2 H), 6.98 (s, 1 H) 

ppm. 

 

 

13C NMR (DMSO-d , 126 MHz): δ = 165.2, 155.1, 145.3, 132.2, 132.1, 127.5, 122.0, 116.8, 98.5 

ppm. 

 

 

6-(4’-Methoxyphenyl)-2,4-dihydro-1H-thieno[3,2-d][1,3]oxazine-2,4-dione (IVa). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IIIa according to general procedure C. 

6 
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1H NMR (DMSO-d , 300 MHz): δ = 12.28 (s, 1 H), 7.74 (d, J = 8.9 Hz, 2 H), 7.12 (s, 1 H), 7.04 (d, 

J = 8.9 Hz, 2 H), 

3.82 (s, 3 H, OCH3) ppm. 

6 
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13C NMR (DMSO-d , 75 MHz): δ = 161.1, 155.5, 155.0, 149.6, 148.6, 127.9, 124.1, 114.8, 111.2, 

103.1, 55.4 ppm. 

 

 

6-(4’-Phenoxyphenyl)-2,4-dihydro-1H-thieno[3,2-d][1,3]oxazine-2,4-dione (IVb). 

 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IIIb according to general procedure C. 

 

1H NMR (DMSO-d , 500 MHz): δ = 12.33 (br. s., 1 H), 7.83 (d, J = 8.8 Hz, 2 H), 7.48−7.43 (m, 2 

H), 7.23 (t, J = 7.4 

Hz, 1 H), 7.18 (s, 1 H), 7.13−7.10 (m, 2 H), 7.08 (d, J = 8.8 Hz, 2 H) ppm. 

 

 

13C NMR (DMSO-d , 126 MHz): δ = 158.9, 155.4, 155.0, 154.8, 149.6, 148.5, 130.3, 128.4, 

126.4, 124.4, 119.6, 

118.6, 112.1, 103.8 ppm. 

 

 

6-(4’-Bromophenyl)-2,4-dihydro-1H-thieno[3,2-d][1,3]oxazine-2,4-dione (IVc). 

 

 

 

 

 

 

 

 

6 

6 

6 



251 SI Publication D 

 

 

 

The title compound was prepared from IIIc according to general procedure C. 

 

1H NMR (DMSO-d , 500 MHz): δ = 12.39 (br. s., 1 H), 7.77 (d, J = 8.8 Hz, 2 H), 7.70 (d, J = 8.8 

Hz, 2 H), 7.29 (s, 1 

H) ppm. 

 

 

13C NMR (DMSO-d , 126 MHz): δ = 155.1, 153.5, 149.7, 148.6, 132.4, 130.8, 128.3, 123.8, 113.4, 

104.7 ppm. 

 

 

3-(3’’-Benzyl-3’’-ethylureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (1). 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D. 

 

 

 

1H NMR (DMSO-d , 300 MHz): δ = 13.21 (br. s, 1 H, COOH ), 10.10 (s, 1 H), 8.17 (s, 1 H), 7.63 (d, 

J = 8.9 Hz, 2 H), 

7.38–7.29 (m, 5 H), 7.02 (d, J = 8.9 Hz, 2 H), 3.80 (s, 3 H, OCH3), 3.39 (q, J = 7.1 Hz, 2 H), 1.16 (t, 

J = 7.1, 3 H) ppm. 

 

13C NMR (DMSO-d , 75 MHz,): δ = 165.8, 160.2, 153.1, 147.9, 147.0, 138.1, 128.5, 127.2, 127.1, 

127.1, 125.3, 116.1 , 

114.7, 105.6, 55.3, 49.3, 41.8, 13.1 ppm. 

6 
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5-(4’-Methoxyphenyl)-3-ureidothiophene-2-carboxylic acid (2). 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.92 (br. s., 1 H, COOH), 9.30 (s, 1 H), 8.15 (s, 1 H), 7.60 (d, 

J = 8.8 Hz, 2 H), 

7.01 (d, J = 8.8 Hz, 2 H), 6.81 (br. s, 2 H), 3.76 (s, 3 H, OCH3) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 164.8, 160.0, 154.7, 147.1, 146.6, 127.1, 125.4, 116.7, 114.7, 

105.4, 55.3 ppm. 

 

 

5-(4’-Phenoxyphenyl)-3-ureidothiophene-2-carboxylic acid (3). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IVb according to general procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.99 (br. s., 1 H, COOH), 9.30 (s, 1 H), 8.21 (s, 1 H), 7.68 (d, 

J = 8.8 Hz, 2 H), 

7.49−7.38 (m, 2 H), 7.25−7.14 (m, 1 H), 7.13−7.02 (m, 4 H), 6.90−6.60 (m, 2 H) ppm. 

 

6 
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13C NMR (DMSO-d , 75 MHz): δ = 164.7, 157.7, 155.9, 154.6, 146.5, 146.4, 130.2, 127.9, 127.5, 

124.1, 119.3, 118.8, 

117.5, 106.1 ppm. 

 

 

3-(3’’-(Carboxymethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (4). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.79 (br. s., 2 H, COOH), 9.47 (s, 1 H), 8.13 (s, 1 H), 8.08 (t, 

J = 5.6 Hz, 1 H), 

7.61 (d, J = 8.8 Hz, 2 H), 7.01 (d, J = 8.8 Hz, 2 H), 3.83−3.77 (m, 2 H) 3.80 (s, 3 H, OCH3) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 171.9, 164.7, 160.1, 154.1, 147.2, 146.1, 127.1, 125.4, 116.7, 

114.7, 105.7, 55.3, 

41.3 ppm. 

 

 

3-(3’’-(2-Carboxyethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (5). 

 

 

 

 

 

 

 

 

 

6 

6 
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The title compound was prepared from IVa according to general procedure D. 

1H NMR (DMSO-d , 300 MHz): δ = 12.58 (br. s., 2 H, COOH), 9.34 (s, 1 H), 8.16 (s, 1 H), 7.90− 

7.72 (m, 1 H), 7.60 (d, J = 8.4 Hz, 2 H), 7.01 (d, J = 8.4 Hz, 2 H), 3.80 (s, 3 H, OCH3), 3.33−3.24 

(m, 2 H), 2.44 (t, J = 6.2 Hz, 2 H) ppm. 

 

 

13C NMR (DMSO-d , 75 MHz) δ = 173.0, 164.7, 160.1, 153.8, 147.1, 146.3, 127.1, 125.4, 116.7, 

114.7, 105.4, 55.3, 

35.6, 34.3 ppm. 

 

 

(S)-3-(3’’-(1-Carboxyethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (6). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.76 (br. s., 2 H, COOH), 9.43 (s, 1 H), 8.14 (s, 1 H), 8.09 (d, 

J = 7.1 Hz, 1 H), 

7.61 (d, J = 8.8 Hz, 2 H), 7.03 (d, J = 8.8 Hz, 2 H), 4.22−4.08 (m, 1 H), 3.81 (s, 3 H, OCH3), 1.32 

(d, J = 7.30 Hz, 3 H, CH3) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 174.7, 164.7, 160.1, 153.5, 147.2, 146.1, 127.1, 125.4, 116.6, 

114.7, 105.6, 55.3, 

48.3, 17.4 ppm. 

 

 

(S)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid 

(7). 

 

6 
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The title compound was prepared from IVa according to general procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.84 (br. s., 2 H, COOH), 9.42 (s, 1 H), 8.15 (d, J = 7.9 Hz, 1 

H), 8.09 (s, 1 H), 

7.69−7.51 (m, J = 8.8 Hz, 2 H), 7.37−7.25 (m, 4 H), 7.25−7.17 (m, 1 H), 7.03−6.97 (m, J = 8.8 Hz, 

2 H), 4.56−4.28 

(m, 1 H), 3.79 (s, 3 H, OCH3), 3.11 (dd, J = 13.9, 4.6 Hz, 1 H), 2.88 (dd, J = 13.9, 9.8 Hz, 1 H) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 173.6, 164.6, 160.1, 153.7, 147.1, 145.9, 137.7, 129.0, 128.2, 

127.1, 126.4, 125.4, 

116.7, 114.7, 105.8, 55.3, 54.4, 36.9 ppm. 

 

 

5-(4’-Methoxyphenyl)-3-(3’’-phenethylureido)thiophene-2-carboxylic acid (8). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general 

procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.96 (br. s., 1 H, CCOH), 9.33 (s, 1 H), 8.18 (s, 1 H), 

7.84−7.70 (m, 1 H), 7.61 (d, J = 8.3 Hz, 2 H), 7.39−7.13 (m, 5 H), 7.02 (d, J = 8.3 Hz, 2 H), 3.80 (s, 

3 H, OCH3), 3.42−3.26 (m, 2 H), 2.90−2.67 (m, 2 H) ppm. 

 

6 

6 
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13C NMR (DMSO-d , 75 MHz): δ = 164.8, 160.0, 153.8, 147.2, 146.5, 139.5, 128.6, 128.3, 127.1, 

126.1, 125.4, 116.7, 

114.7, 105.2, 55.3, 41.0, 

35.5 ppm. 

(R)-3-(3’’-(1-Carboxyethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (9). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.76 (br. s., 2 H, CCO), 9.43 (s, 1 H), 8.14 (s, 1 H), 8.09 (d, 

J = 7.1 Hz, 1 H), 

7.61 (d, J = 8.9 Hz, 2 H), 7.01 (d, J = 8.9 Hz, 2 H), 4.22−4.08 (m, 1 H), 3.80 (s, 3 H, OCH3), 1.31 

(d, J = 7.4 Hz, 3 H, CH3) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 174.7, 164.7, 160.1, 153.5, 147.2, 146.1, 127.1, 125.4, 116.6, 

114.7, 105.6, 55.3, 

48.3, 17.4 ppm. 

 

 

(R)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid 

(10). 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D. 

6 
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1H NMR (DMSO-d , 300 MHz): δ = 12.84 (br. s., 2 H, CCOH), 9.42 (s, 1 H), 8.15 (d, J = 7.9 Hz, 1 

H), 8.09 (s, 1 H), 

7.59 (d, J = 8.8 Hz, 2 H), 7.37−7.25 (m, 4 H), 7.25−7.17 (m, 1 H), 7.00 (d, J = 8.8 Hz, 2 H), 

4.56−4.28 (m, 1 H), 3.79 

(s, 3 H, OCH3), 3.11 (dd, J = 13.9, 4.6 Hz, 1H), 2.88 (dd, J = 13.9, 9.8 Hz, 1 H) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 173.6, 164.6, 160.1, 153.7, 147.1, 145.9, 137.7, 129.0, 128.2, 

127.1, 126.4, 125.4, 

116.7, 114.7, 105.8, 55.3, 54.4, 36.9 ppm. 

 

 

3-(3’’-(2-Carboxypropan-2-yl)ureido)-5-(4’-methoxyphenyl)thiophene-2-carboxylic acid (11). 

 

 

 

 

 

 

 

 

 

The title compound was prepared from IVa according to general procedure D. 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.59 (br. s., 2 H, CCOH), 9.37 (s, 1 H), 8.13 (s, 1 H), 8.01 (s, 

1 H), 7.61 (d, J = 

8.8 Hz, 2 H), 7.00 (d, J = 8.8 Hz, 2 H), 3.80 (s, 3 H, OCH3), 1.40 (s, 6 H, (CH3)2) ppm. 

 

13C NMR (DMSO-d , 75 MHz): δ = 176.0, 164.7, 160.0, 153.0, 147.2, 146.1, 127.1, 125.4, 116.5, 

114.7, 105.4, 55.3, 

54.9, 25.3 ppm. 

(S)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-(2-chloroacetamido)phenyl) thiophene-2-

carboxylic acid (12). 

 

 

 

6 
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Scheme S2: Synthesis of compound 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(S)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-bromophenyl)thiophene-2-carboxylic acid 

(12a) was prepared from IVc according to general procedure D. 

 

 

1H NMR (DMSO-d , 300 MHz): δ = 12.93 (br. s., 2 H, CCOH), 9.42 (s, 1 H), 8.23 (s, 1 H), 8.17 

(d, J = 7.9 Hz, 1 H), 

7.70−7.54 (m, 4 H), 7.38− 7.14 (m, 5 H), 4.47−4.30 (m, 1 H), 3.11 (dd, J = 13.9, 4.8 Hz, 1 H), 2.88 

(dd, J = 13.9, 9.7 

Hz, 1 H) 

ppm. 

 

 

13C NMR (DMSO-d , 75 MHz): δ = 173.5, 164.5, 153.7, 145.7, 145.4, 137.7, 132.2, 132.0, 129.0, 

128.2, 127.6, 126.4, 

122.3, 118.5, 107.3, 54.4, 

37.0 ppm. 
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(S)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-aminophenyl)thiophene-2-carboxylic acid 

(12b) was prepared from 12a according to the following procedure: 

 

 

CuI (10 mg, 5.30 µmol), 12a (127 mg, 0.26 mmol), Na3PO4∙12 H2O (100 mg, 0.26 mmol), 

25−28% aqueous ammonia (0.5 mL) and PEG-400 (1 mL) were added to a sealed tube. The reaction 

was stirred at 100 °C for 24 h, cooled to 0 °C and cautiously acidified with 1 M HCl to pH 4−5. 

The resulting mixture was extracted with EtOAc (3 x 50 mL). The combined organic layers were 

washed with water (50 mL) and brine (50 mL), dried over MgSO4 and concentrated to afford the 

title compound. The crude product was used in the next step without further purification. 

 

 

(S)-3-(3’’-(1-Carboxy-2-phenylethyl)ureido)-5-(4’-(2-chloroacetamido)phenyl) thiophene -2-

carboxylic acid (12) 

was prepared from 12b according to the following 

procedure: 

 

 

A solution of 12b (142 mg, 1.10 mmol) and triethylamine (142 mg, 1.10 mmol) in CH2Cl2  (6 

mL) was stirred at 

−78 °C under stream of nitrogen. 2-Chloroacetyl chloride in CH2Cl2  (4 mL) was added 

slowly and stirring was 

continued for 1 h at −78 °C, 1 h at 0 °C and 1 h at room temperature. The solution was diluted with 

ice water (30 mL) 

and acidified with a saturated solution of KHSO4. The resulting mixture was extracted with EtOAc 

(3 x 50 mL). The combined organic layers were then washed with water (50 mL) and brine (50 mL), 

dried over MgSO4 and concentrated in vacuo. The crude material was purified via preparative 

HPLC (RP18, acetonitrile/H2O 50% → 95%) to yield the title compound as a light green solid. 

(Purity: 90%) 
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1H NMR (DMSO-d , 300 MHz): δ = 12.89 (br. s., 2 H, CCOH), 10.48 (s, 1 H), 9.41 (s, 1 H), 8.16 (d, 

J = 7.8 Hz, 1 H), 

8.15 (s, 1 H), 7.73−7.62 (m, 4 H), 7.33−7.20 (m, 5 H), 4.43−4.34 (m, 1 H), 4.27 (s, 2 H, CH 2Cl), 

3.14−3.07 (m, 1 H), 

2.92−2.84 (m, 1 H) ppm. 

 

 

13C NMR (DMSO-d , 176 MHz): δ = 173.7, 164.9, 164.7, 153.8, 146.8, 145.9, 139.4, 137.8, 

129.1, 128.3, 128.2, 

126.5, 126.4, 119.8, 117.3, 106.3, 54.5, 43.6, 36.9 ppm. 
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1.1.2.     13C NMR spectra of compounds 1−12 

 

13C NMR spectrum of compound 1. 
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1.2      Biology and 

biophysics 

 

 

 

1.2.1.      SPR - studies with R223A 

mutant of PqsD 

 

 

Preparation of 

PqsD mutant 

R223A PqsD mutant was generated using the QuikChange Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA) according to the manufacturer’s instructions using the pET28b(+)/pqsD 

plasmid as a template. Briefly, pqsD gene was amplified through 16 cycles of PCR. After 

treatment with DpnI, the PCR product was transformed into E. coli strain XL1-Blue. Plasmid 

DNA was purified using the GenEluteTM HP Plasmid Miniprep Kit (Sigma-Aldrich, St. Louis, 

MO) and sequenced to confirm the site-directed mutations. The primer sequence of the mutations: 

Primer-

design: 

Arg223Ala-

Mutante: 

Wild: 5‘ 

GCGAGTTCCTCATGCGCGGCCGGCCGATGTTCGAG

C 3´ Mut:  5‘ 

GCGAGTTCCTCATGCGCGGCGCGCCGATGTTCGAG

C 3´ 

 

Sequence of the 

Primer: 

R223A_PqsD_Forward: 5' 

GCGAGTTCCTCATGCGCGGCGCGCCGATGTTCGAGC 3' 

R223A_PqsD_Reverse: 5' 

GCTCGAACATCGGCGCGCCGCGCATGAGGAACTCGC 3' 
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2. Selectivity data for hit compounds: PqsD vs. RNAP inhibition 

 

 

Table S1. Inhibitory activities of hit compounds against PqsD and RNAP and the derived 

selectivity factors. 

 

 

 

 

 

 

 

 

R IC50 PqsD [µM] IC50 RNAP [µM] Selectivity factor[a] 
4-

OCH

3 

6 24

1 

40 

3,4-

di-Cl 

4 2

2 

5.5 

3-CF3, 4-Cl 3 2

1 

7.0 

2,5-

di-Cl 

9 3

5 

4.0 

4-

NO

2 

1

0 

7

3 

7.3 

4-

CF

3 

8 5

1 

6.4 

4-

OCF

3 

9 4

5 

5.0 

H 5

0 

29

2 

6.0 

[a] Selectivity factor was calculated as IC50(RNAP) IC50(PqsD)−1 
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3.       Results from SPR experiments 

 

3.1      Competition experiments for identification of the binding mode 

 

Figure S1. SPR-competition experiments with model compounds 1–3 competitor compounds A 

(black) and B (red) from the 

2-nitrophenyl methanol class. Reference without competition is shown in blue. A reduced response 

in competition with A can be observed exclusively for compound 3. The reference signal is shown 

in grey. 
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Figure S2. Visualization of the SPR-competition results shown in Figure S1. Competitor A 

(yellow), competitor B (magenta) a) A does not affect the binding of 1 (green). b) B leads to sterical 

clash with methoxy group of 1 (green). c) A does not affect the binding of 2 (blue). d) B leads to 

sterical clash with methoxy group of 2 (blue). e) A leads to sterical clash with phenoxy group of 3 

(turquoise). f) B leads to sterical clash with phenoxy group of 3 (turquoise). 

 

 

 

 

 

Figure S3. SPR-competition experiments with compounds 7 and competitor compounds A (black) 

and B (red) from the 2- nitrophenyl methanol class. Reference without competition is shown in blue. 

The reference signal is shown in grey. 
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3.2      Experiment with R223A mutant and compound 2 

 

Figure S4. SPR-experiment with compound 2 revealed different responses with PqsD wildtype 

(blue) and the R223A mutant 

(green) 
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4.       STD-NMR spectrum of 7 

 

Figure S5. Reference (black) and STD NMR difference (red) spectra of compound 7 in complex with PqsD. Samples comprising 100:1 7/PqsD were 

prepared in 20 mM Na3PO4, 50 mM NaCl, and 

5 mM MgCl2, pH 7.0, and spectra were recorded at 298 K. Overlaid spectra were normalized to the signals for 2H-21, which gave the strongest 

enhancement. 
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5.       MALDI-ToF-MS spectra 

5.1     PqsD 

 

Figure S6. MALDI-ToF-MS analysis of tryptic digested PqsD. For the sake of clarity, only signals >15% intensity are labeled. 

 

 



281 SI Publication D 

 

 

 

 

5.2     PqsD + 12 

 

 

Figure S7. MALDI-ToF-MS analysis of tryptic digested PqsD after preincubation with 12. For the sake of clarity, only signals >15% intensity are labeled. 
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6.       LC-ESI-MS data 

 

Figure S8. LC-ESI-MS data. Top panel (red): Reference sample containing only PqsD. 

Bottom panel (blue): PqsD after 30 minutes preincubation with compound 12. Mass shift of 

465 Da indicates covalent binding of 12. 

 

 

 

 

7.       HPLC purities 
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Table S2. Purities and retention times of compounds 1−12. 

 

Compou

nd 

Purity 

[%] 

Retention time [min]a 

1 9

8 

13.5

1 2 9

7 

9.7

4 3 9

5 

12.3

2 4 9

7 

9.6

5 5 9

5 

9.8

2 6 9

5 

10.0

6 7 10

0 

10.8

6 8 9

6 

13.6

0 9 9

8 

10.0

1 1

0 

9

7 

11.9

7 1

1 

9

9 

10.4

4 1

2 

9

0 

10.7

6 a   In a gradient run the percentage of acetonitrile (containing 0.1% trifluoroacetic acid) was 

increased from an initial concentration of 0% at 0 min to 100% at 15 min and kept at 100% for 5 

min. 
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Elisabeth Weidel, Johannes C. de Jong, Christian Brengel, Michael P. Storz, Matthias Negri, Alberto 

Plaza, Anke Steinbach, Rolf Müller, and Rolf W. Hartmann 

J. Med Chem. 2013, 56, 6146-6155.
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Supporting Information 

Additional figures docking studies 

 

Figure S1 Two dimensional representation of the interaction between compounds 2 (A-C), 48 (D), 64 

(E), 52 (F) and 53 (G) and PqsD. Amino acids within 5.5 Å are shown and the key interactions are 

highlighted. Polar amino acids are colored in purple and hydrophobic amino acids in green circles 

(MOE). 
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Figure S2 Docking pose of compound 52. In presence of a structural water molecule (cyan ball) a 

hydrogen bond network is formed between the hydroxyl group and the carboxylic moiety of 52 and 

the catalytic residues Cys112, His257, and Asn287 bridged by the water molecule. 

 

 

 

Figure S3 Docking pose of compound 53 (orange sticks). 
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Additional figures STD NMR study 

 

Figure S4 Reference (red) and STD NMR difference (blue) spectra of 2 in complex with PqsD. 

Samples containing 80:1 2/PqsD were prepared in 20 mM sodium phosphate, 50 mM NaCl, 5 mM 

MgCl2, pH = 7.0, and spectra were recorded at 298 K. Overlaid spectra were normalized to the signal 

for H-6 (δ 7.90), which gave the strongest enhancement. 
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Figure S5. Reference (red) and STD NMR difference (blue) spectra of 52 in complex with PqsD. 

Samples containing 80:1 52/PqsD were prepared in 20 mM sodium phosphate, 50 mM NaCl, 5 mM 

MgCl2, pH = 7.0, and spectra were recorded at 298 K. Overlaid spectra were normalized to the signal 

for H-5 (δ 6.65), which gave the strongest enhancement. 
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Figure S6. Reference (red) and STD NMR difference (blue) spectra of 64 in complex with PqsD. 

Samples containing 80:1 64/PqsD were prepared in 20 mM sodium phosphate, 50 mM NaCl, 5 mM 

MgCl2, pH = 7.0, and spectra were recorded at 298 K. Overlaid spectra were normalized to the signal 

for H-6 (δ 7.90), which gave the strongest enhancement. 
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Figure S7. Reference (red) and STD NMR difference (blue) spectra of 48 in complex with PqsD. 

Samples containing 80:1 48/PqsD were prepared in 20 mM sodium phosphate, 50 mM NaCl, 5 mM 

MgCl2, pH = 7.0, and spectra were recorded at 298 K.  
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Figure S8. Docking pose of the 2-Benzamidobenzoic acid core structure (white sticks). Balls 

represent possible substituents that form specific interactions with amino acids of the active site.  
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Chemistry 

 

Syntheses of 3-(chlorosulfonyl)benzoic acids 18-20 

 

4-Bromo-3-(chlorosulfonyl)benzoic acid (18)
S1

 A solution of 4-bromobenzoic acid (15, 5.03 g, 25.0 

mmol) in chlorosulfonic acid (28 mL) was heated overnight at 100 °C. After cooling to room 

temperature the reaction mixture was added very slowly onto ice. The white solid was isolated by 

suction filtration, washed with water and dried under reduced pressure; 6.12 g, 82% yield. The 

material was used without further purification. 

3-(Chlorosulfonyl)-4-methylbenzoic acid (19)
S2

 A solution of 4-methylbenzoic acid (16, 3.00 g, 22.0 

mmol) in chlorosulfonic acid (25 mL) was heated overnight at 100 °C. After cooling to room 

temperature the reaction mixture was added very slowly onto ice. The white solid was isolated by 

suction filtration, washed with water and dried under reduced pressure; 6.12 g, 82% yield. The 

material was used without further purification. 

3-(Chlorosulfonyl)-4-ethylbenzoic acid (20)
S1,S3

 A solution of 4-ethylbenzoic acid (17, 3.00 g, 20.0 

mmol) in chlorosulfonic acid (25 mL) was heated overnight at 100 °C. After cooling to room 

temperature the reaction mixture was added very slowly onto ice. The white solid was isolated by 

suction filtration, washed with water and dried under reduced pressure; 4.57 g, 88% yield. The 

material was used without further purification. 

 

Syntheses of 3-sulfamoylbenzoic acids 22-33 

 

4-Bromo-3-(N,N-diethylsulfamoyl)benzoic acid (22)
S4

 The title compound was synthesized from 4-

bromo-3-(chlorosulfonyl)benzoic acid (18) and diethylamine according to General Procedure A: 1.22 

g, 91% yield. 
1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.33 (q, J = 7.1 Hz, 4H), 

7.97 (dd, J = 8.2 Hz, 1H), 8.00 (dd, J = 8.2, 1.9 Hz, 1H), 8.48 (d, J = 1.9 Hz, 1H). 

3-(N,N-Diethylsulfamoyl)-4-methylbenzoic acid (23) The title compound was synthesized from 3-

(chlorosulfonyl)-4-methylbenzoic acid (19) and diethylamine according to General Procedure A: 2.05 

g, 76% yield. 
1
H NMR (500 MHz, DMSO-d6): δ 1.04 (t, J = 7.1 Hz, 6H), 2.58 (s, 3H), 3.26 (q, J = 7.1 

Hz, 4H), 7.57 (d, J = 7.9 Hz, 1H), 8.05 (dd, J = 7.9, 1.9 Hz, 1H), 8.33 (d, J = 1.9 Hz, 1H), 13.34 (bs, 

1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.59, 19.82, 40.65, 128.97, 129.36, 133.03, 133.31, 138.78, 

141.95, 166.07; LC/MS: m/z = 271.83 [M + H]
+
, 312.87 [M + H + CH3CN]

+
, 542.54 [2M + H]

+
, tR = 

9.35 min, 98.9% pure (UV). 

3-(N,N-Diethylsulfamoyl)-4-ethylbenzoic acid (24) The title compound was synthesized from 3-

(chlorosulfonyl)-4-ethylbenzoic acid (20) and diethylamine according to General Procedure A and 

purified by flash column chromatography (silica gel, ethyl acetate/n-hexane): 1.11 g, 39% yield. 
1
H 

NMR (500 MHz, DMSO-d6): δ 1.20 (t, J = 7.1 Hz, 6H), 1.33 (t, J = 7.6 Hz, 3H), 3.12 (q, J = 7.5 Hz, 

2H), 3.39 (q, J = 7.1 Hz, 4H), 7.50 (d, J = 7.9 Hz, 1H), 8.18 (dd, J = 7.9, 1.6 Hz, 1H), 8.50 (d, J = 1.6 
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Hz, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.00, 14.89, 26.07, 41.49, 127.03, 130.11, 131.30, 

133.57, 139.46, 150.09, 170.61; LC/MS: m/z = 285.90 [M + H]
+
, 326.81 [M + H + CH3CN]

+
, 570.56 

[2M + H]
+
, tR = 10.11 min, 96.9% pure (UV). 

3-Sulfamoylbenzoic acid (25) The title compound was synthesized from 3-(chlorosulfonyl)benzoic 

acid and ammonium hydroxide (28-30%) according to a published procedure
S5

 and purified by 

crystallization from methanol/water: 1.25 g, 62% yield. 
1
H NMR (300 MHz, DMSO-d6): δ 7.48 (s, 

2H), 7.68 (t, J = 7.3 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 8.43 (s, 1H), 13.28 

(bs, 1H). 

3-(N,N-Dimethylsulfamoyl)benzoic acid (26)
S6

 A solution of dimethylamine (40% in water, 45.3 

mmol) was added to a stirred suspension of 3-(chlorosulfonyl)benzoic acid (21, 1.00 g, 4.53 mmol) in 

water (15 mL). After stirring overnight the solution was acidified with 1N HCl (aq.). The solid was 

isolated by suction filtration, washed thoroughly with water and dried under reduced pressure to yield 

the title compound: 637 mg, 61% yield. 
1
H NMR (500 MHz, DMSO-d6): δ 2.76 (s, 6H), 7.70 (dt, J = 

7.9, 0.6 Hz, 1H), 8.04 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.35 (dt, J = 7.9, 1.4 Hz, 1H), 8.51 (t, J = 1.6 Hz, 

1H). 

3-(N,N-Diethylsulfamoyl)benzoic acid (27)
S7

 The title compound was synthesized from 3-

(chlorosulfonyl)benzoic acid (21) and diethylamine according to General Procedure A: 2.19 g, 94% 

yield. 
1
H NMR (300 MHz, CDCl3): δ 1.15 (t, J = 7.1 Hz, 6H), 3.29 (q, J = 7.1 Hz, 4H), 7.64 (t, J = 7.7 

Hz, 1H), 8.07 (d, J = 7.5 Hz, 1H), 8.29 (d, J = 7.5 Hz, 1H), 8.53 (s, 1H), 10.44 (bs, 1H). 

3-(N,N-Di-n-propylsulfamoyl)benzoic acid (28) The title compound was synthesized from 3-

(chlorosulfonyl)benzoic acid (21) and di-n-propylamine according to General Procedure A: 2.78 g, 

97% yield. 
1
H NMR (300 MHz, DMSO-d6): δ 0.79 (t, J = 6.6 Hz, 1H), 1.46 (sextet, J = 7.0 Hz, 4H), 

3.04 (t, J = 6.6 Hz, 4H), 7.74 (t, J = 7.7 Hz, 1H), 8.04 (d, J = 7.6 Hz, 1H), 8.19 (d, J = 7.6 Hz, 1H), 

8.24 (s, 1H), 13.51 (bs, 1H). 

3-(Pyrrolidin-1-ylsulfonyl)benzoic acid (29) A solution of 3-(chlorosulfonyl)benzoic acid (21, 1.16 

g, 5.26 mmol) in dichloromethane (15 mL) was added to a stirred solution of pyrrolidine (3.74 g, 52.6 

mmol) in dichloromethane (10 mL) over a period of 30 minutes. After stirring overnight at room 

temperature 1N HCl (aq.) was added and the aqueous phase was extracted twice with 

dichloromethane. The combined organic layers were dried over sodium sulfate, filtered and evaporated 

under reduced pressure to yield the title compound: 1.10 g, 82% yield. 
1
H NMR (500 MHz, DMSO-

d6): δ 1.65 (m, 4H), 3.15 (m, 4H), 7.78 (dt, J = 7.7, 0.6 Hz, 1H), 8.05 (ddd, J = 7.7, 1.9, 1.3 Hz, 1H), 

8.22-8.25 (m, 2H), 13.55 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 24.68, 47.84, 127.60, 130.15, 

131.17, 131.88, 133.40, 136.75, 166.06; LC/MS: m/z = 296.92 [M + H + CH3CN]
+
, tR = 7.98 min, 

>95% pure (UV).  

3-(Piperidin-1-ylsulfonyl)benzoic acid (30)
S8

 The title compound was synthesized from 3-

(chlorosulfonyl)benzoic acid (21) and piperidine according to General Procedure A: 2.28 g, 85% yield. 

1
H NMR (500 MHz, DMSO-d6): δ 1.35 (m, 2H), 1.53 (m, 4H), 2.90 (m, 4H), 7.79 (t, J = 1.6 Hz, 1H), 
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7.97 (ddd, J = 7.6, 2.8, 1.6 Hz, 1H), 8.18 (t, J = 1.6 Hz, 1H), 8.23 (ddd, J = 7.6, 1.6, 0.9 Hz, 1H), 13.54 

(bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 22.69, 24.63, 46.50, 127.68, 130.08, 131.39, 131.89, 

133.46, 136.16; LC/MS: m/z = 270.09 [M + H]
+
, 310.57 [M + H + CH3CN]

+
, 538.43 [2M + H]

+
, tR = 

9.10 min, 97.3% pure (UV). 

3-(Azepan-1-ylsulfonyl)benzoic acid (31) The title compound was synthesized from 3-

(chlorosulfonyl)benzoic acid (21) and hexamethyleneimine according to General Procedure A: 2.55 g, 

90% yield. 
1
H NMR (300 MHz, DMSO-d6): δ 1.48 (m, 4H), 1.61 (m, 4H), 3.21 (m, 4H), 7.74 (t, J = 

7.6 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 8.19 (d, J = 7.7 Hz, 1H), 8.22 (s, 1H), 13.54 (bs, 1H). 

3-(Morpholinosulfonyl)benzoic acid (32)
S6

 The title compound was synthesized from 3-

(chlorosulfonyl)benzoic acid (7) and morpholine according to General Procedure A: 2.15 g, 79% 

yield. 
1
H NMR (300 MHz, DMSO-d6): δ 2.89 (m, 4H), 3.63 (m, 4H), 7.82 (dt, J = 7.9, 0.6 Hz, 1H), 

7.98 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.18 (dt, J = 1.6, 0.6 Hz, 1H), 8.27 (ddd, J = 7.9, 1.6, 0.9 Hz, 1H), 

13.57 (bs, 1H); LC/MS: m/z = 312.91 [M + H + CH3CN]
+
, 542.44 [2M + H]

+
, tR = 7.22 min, >99.9% 

pure (UV). 

3-(N-Benzyl-N-ethylsulfamoyl)benzoic acid (33) The title compound was synthesized from 3-

(chlorosulfonyl)benzoic acid (21) and N-ethylbenzylamine according to General Procedure A, 

followed by crystallization from toluene: 1.38 g, 43% yield. 
1
H NMR (500 MHz, DMSO-d6): δ 0.84 (t, 

J = 7.1 Hz, 3H), 3.15 (q, J = 7.1 Hz, 2H), 4.36 (s, 2H), 7.26-7.36 (m, 5H), 7.77 (t, J = 7.7 Hz, 1H), 

8.11 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.23 (dt, J = 7.9, 1.3 Hz, 1H), 8.30 (t, J = 1.7 Hz, 1H), 13.54 (bs, 

1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.35, 42.57, 50.52, 127.15, 127.53, 127.94, 128.43, 130.23, 

130.81, 131.97, 133.25, 136.80, 140.26; LC/MS: m/z = 319.71 [M + H]
+
, 360.69 [M + H + CH3CN]

+
, 

638.46 [2M + H]
+
, tR = 10.68 min, 96.7% pure (UV). 

 

Syntheses of 3-sulfamoylbenzoyl chlorides 22a-33a 

 

4-Bromo-3-(N,N-diethylsulfamoyl)benzoyl chloride (22a) The title compound was synthesized from 

4-bromo-3-(N,N-diethylsulfamoyl)benzoic acid (22, 1.20 g, 3.57 mmol) according to General 

Procedure B. The product was analyzed as the corresponding methyl ester; LC/MS: m/z = 349.50 and 

351.54 [M + H]
+
, tR = 11.68 min. 

3-(N,N-Diethylsulfamoyl)-4-methylbenzoyl chloride (23a) The title compound was synthesized 

from 3-(N,N-diethylsulfamoyl)-4-methylbenzoic acid (23, 2.04 g, 7.52 mmol) according to General 

Procedure B. The product was analyzed as the corresponding methyl ester; LC/MS: m/z = 285.85 [M + 

H]
+
, 326.84 [M + H + CH3CN]

+
, 570.49 [2M + H]

+
, tR = 11.28 min. 

3-(N,N-Diethylsulfamoyl)-4-ethylbenzoyl chloride (24a) The title compound was synthesized from 

3-(N,N-diethylsulfamoyl)-4-ethylbenzoic acid (24, 1.11 g, 3.92 mmol) according to General Procedure 

B. The product was analyzed as the corresponding methyl ester; LC/MS: m/z = 300.02 [M + H]
+
, 

341.05 [M + H + CH3CN]
+
, tR = 12.61 min. 
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3-Sulfamoylbenzoyl chloride (25a)
S9

 3-Sulfamoylbenzoic acid (25, 1.25 g, 6.21 mmol) was dissolved 

in thionyl chloride (10 mL), followed by the addition of 2 drops of DMF. The solution was heated to 

reflux overnight. After cooling to room temperature n-hexane was added and the white solid was 

isolated by suction filtration, washed with n-hexane and dried under reduced pressure at 50 °C. 
1
H 

NMR and LC-MS showed the title compound together with a small amount of 3-(N-

((dimethylamino)methylene)sulfamoyl)benzoyl chloride. The product was used without further 

purification. 
1
H NMR (300 MHz, DMSO-d6): δ 7.65 (t, J = 8.0 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 8.07 

(d, J = 7.6 Hz, 1H), 8.24 (s, 1H), 10.02 (bs, 1H). The product was analyzed as the corresponding 

methyl ester; LC/MS: m/z = 256.91 [M + H + CH3CN]
+
, 430.75 [2M + H]

+
, tR = 6.59 min. 

3-(N,N-Dimethylsulfamoyl)benzoyl chloride (26a) Thionyl chloride (915 mg, 7.69 mmol) was 

added slowly to a stirred suspension of 3-(N,N-dimethylsulfamoyl)benzoic acid (26, 630 mg, 2.75 

mmol) in toluene (6 mL), followed by 1 drop of DMF. The reaction mixture was heated at 80 °C for 4 

h. After stirring overnight at room temperature the solution was evaporated under reduced pressure. 

The residue was redissolved in dichloromethane (6 mL). Thionyl chloride (3.27 g, 27.5 mmol) and 1 

drop of DMF were added. After stirring overnight at room temperature the solution was evaporated 

under reduced pressure to yield the title compound. The product was analyzed as the corresponding 

methyl ester; LC/MS: m/z = 243.94 [M + H]
+
, 284.98 [M + H + CH3CN]

+
, tR = 9.46 min. 

3-(N,N-Diethylsulfamoyl)benzoyl chloride (27a) The title compound was synthesized from 3-(N,N-

diethylsulfamoyl)benzoic acid (27, 2.19 g, 8.51 mmol) according to General Procedure B. The product 

was analyzed as the corresponding methyl ester; LC/MS: m/z = 272.04 [M + H]
+
, 313.04 [M + H + 

CH3CN]
+
, 542.98 [2M + H]

+
, tR = 11.48 min.  

3-(N,N-Di-n-propylsulfamoyl)benzoyl chloride (28a) The title compound was synthesized from 3-

(N,N-di-n-propylsulfamoyl)benzoic acid (28, 1.14 g, 4.00 mmol) according to General Procedure B. 

The product was analyzed as the corresponding methyl ester; LC/MS: m/z = 300.11 [M + H]
+
, 340.78 

[M + H + CH3CN]
+
, 598.79 [2M + H]

+
, tR = 12.97 min. 

3-(Pyrrolidin-1-ylsulfonyl)benzoyl chloride (29a) Thionyl chloride (1.43 g, 12.1 mmol) was added 

slowly to a stirred suspension of 3-(pyrrolidin-1-ylsulfonyl)benzoic acid (29, 1.10 g, 4.31 mmol) in 

toluene (9 mL), followed by 1 drop of DMF. The reaction mixture was heated at 80 °C for 4 h. After 

stirring overnight at room temperature the solution was evaporated under reduced pressure to yield the 

title compound. The product was analyzed as the corresponding methyl ester; LC/MS: m/z = 269.95 

[M + H]
+
, 311.00 [M + H + CH3CN]

+
, 538.79 [2M + H]

+
, tR = 10.25 min. 

3-(Piperidin-1-ylsulfonyl)benzoyl chloride (30a) Thionyl chloride (2.81 g, 23.6 mmol) was added 

slowly to a stirred suspension of 3-(piperidin-1-ylsulfonyl)benzoic acid (30, 2.15 g, 8.42 mmol) in 

toluene (17 mL), followed by 1 drop of DMF. The reaction mixture was heated at 80 °C for 4 h. After 

stirring overnight at room temperature the solution was evaporated under reduced pressure. The 

residue was redissolved in dichloromethane (20 mL). Thionyl chloride (10.0 g, 84.2 mmol) and 1 drop 

of DMF were added. After stirring overnight at room temperature the solution was evaporated under 
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reduced pressure to yield the title compound. The product was analyzed as the corresponding methyl 

ester; LC/MS: m/z = 283.81 [M + H]
+
, 324.88 [M + H + CH3CN]

+
, 566.47 [2M + H]

+
, tR = 11.01 min. 

3-(Azepan-1-ylsulfonyl)benzoyl chloride (31a) The title compound was synthesized from 3-(azepan-

1-ylsulfonyl)benzoic acid (31, 1.13 g, 4.00 mmol) according to General Procedure B. The product was 

analyzed as the corresponding methyl ester; LC/MS: m/z = 297.86 [M + H]
+
, 338.84 [M + H + 

CH3CN]
+
, tR = 12.28 min. 

3-(Morpholinosulfonyl)benzoyl chloride (32a)
S10

 Thionyl chloride (2.80 g, 23.5 mmol) was added 

slowly to a stirred suspension of 3-(morpholinosulfonyl)benzoic acid (32, 2.28 g, 8.40 mmol) in 

toluene (17 mL), followed by 1 drop of DMF. The reaction mixture was heated at 80 °C for 4 h. After 

stirring overnight at room temperature the solution was evaporated under reduced pressure. The 

residue was redissolved in dichloromethane (20 mL). Thionyl chloride (9.99 g, 84.0 mmol) and 1 drop 

of DMF were added. After stirring overnight at room temperature the solution was evaporated under 

reduced pressure to yield the title compound. The product was analyzed as the corresponding methyl 

ester; LC/MS: m/z = 285.80 [M + H]
+
, 326.79 [M + H + CH3CN]

+
, 570.31 [2M + H]

+
, tR = 8.84 min. 

3-(N-Benzyl-N-ethylsulfamoyl)benzoyl chloride (33a) The title compound was synthesized from 3-

(N-benzyl-N-ethylsulfamoyl)benzoic acid (33, 1.35 g, 4.23 mmol) according to General Procedure B. 

The product was analyzed as the corresponding methyl ester; LC/MS: m/z = 334.01 [M + H]
+
, tR = 

12.85 min. 

 

Syntheses of methyl esters 2a, 4a, 9a-10a, 13a-14a, 35a-52a, 57a-64a 

 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (2a) The title compound was synthesized 

from methyl anthranilate (236 mg, 1.56 mmol) and 3-(N,N-diethylsulfamoyl)benzoyl chloride (27a, 

430 mg, 1.56 mmol) in pyridine (5 mL) according to General Procedure C1: 526 mg, 86% yield. 
1
H 

NMR (500 MHz, CDCl3): δ 1.17 (t, J = 7.1 Hz, 6H), 3.32 (q, J = 7.1 Hz, 4H), 3.96 (s, 3H), 7.15 (ddd, 

J = 7.9, 7.3, 1.3 Hz, 1H), 7.62 (ddd, J = 8.5, 7.3, 1.6 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 8.02 (ddd, J = 

7.9, 1.9, 1.3 Hz, 1H), 8.10 (dd, J = 7.9, 1.6 Hz, 1H), 8.21 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.47 (t, J = 

1.9 Hz, 1H), 8.89 (dd, J = 8.5, 0.9 Hz, 1H), 12.20 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.23, 

42.28, 52.51, 115.25, 120.36, 123.07, 125.91, 129.65, 130.08, 130.76, 131.01, 134.93, 136.08, 141.42, 

141.49, 163.95, 169.10; LC/MS: m/z = 390.79 [M + H]
+
, 431.79 [M + H + CH3CN]

+
, 780.76 [2M + 

H]
+
, tR = 14.16 min. 

Methyl 3-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (4a) The title compound was synthesized 

from methyl 3-aminobenzoate (151 mg, 1.00 mmol) and 3-(N,N-diethylsulfamoyl)benzoyl chloride 

(27a, 414 mg, 1.50 mmol) in acetonitrile (1 mL) according to General Procedure C2. After workup the 

product was filtered over a short pad of silica gel (ethyl acetate/n-hexane 1/1). The solvent was 

evaporated under reduced pressure and the residue was crystallized from MeOH: 113 mg, 29% yield. 

1
H NMR (500 MHz, CDCl3): δ 1.09 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H), 3.88 (s, 3H), 7.44 (t, 

J = 8.0 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 8.00 (d, J 



SI Publication E 298 

 

 

= 7.6 Hz, 1H), 8.09 (d, J = 7.9 Hz, 1H), 8.22 (s, 1H), 8.26 (s, 1H), 8.36 (bs, 1H); 
13

C NMR (125 MHz, 

CDCl3): δ 14.13, 42.18, 52.27, 121.45, 124.94, 125.27, 125.96, 129.24, 129.79, 129.94, 131.02, 

131.35, 137.83, 141.18, 164.41, 166.60; LC/MS: m/z = 358.86 [M – OMe]
+
, 390.81 [M + H + 

CH3CN]
+
, 780.97 [2M + H]

+
, tR = 11.99 min. 

Methyl 2-(4-(N,N-diethylsulfamoyl)benzamido)benzoate (9a) The title compound was synthesized 

from methyl anthranilate (151 mg, 1.00 mmol) and 4-(N,N-diethylsulfamoyl)benzoyl chloride (414 

mg, 1.50 mmol) in acetonitrile (4 mL) according to General Procedure C2. After stirring overnight and 

workup the product was heated with MeOH (2mL). After cooling to room temperature, the solids were 

isolated by filtration, washed with cold MeOH and dried under reduced pressure: 284 mg, 73% yield. 

1
H NMR (500 MHz, CDCl3): δ 1.13 (t, J = 7.1 Hz, 6H), 3.26 (q, J = 7.1 Hz, 4H), 3.96 (s, 3H), 7.15 

(ddd, J = 8.2, 7.6, 1.3 Hz, 1H), 7.61 (ddd, J = 8.8, 7.6, 1.6 Hz, 1H), 7.94 (AB-system, J = 8.5 Hz, 2H), 

8.09 (dd, J = 8.2, 1.9 Hz, 1H), 8.14 (AB-system, J = 8.5 Hz, 2H), 8.88 (dd, J = 8.5, 0.9 Hz, 1H), 12.16 

(bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.43, 42.38, 52.87, 115.53, 120.71, 123.40, 127.68, 128.36, 

131.29, 135.23, 138.51, 141.67, 143.78, 164.33, 169.45; LC/MS: m/z = 390.97 [M + H]
+
, tR = 13.72 

min. 

Methyl 5-bromo-2-(4-(N,N-diethylsulfamoyl)benzamido)benzoate (10a)
S11

 The title compound was 

synthesized from methyl 2-amino-5-bromobenzoate (230 mg, 1.00 mmol) and 4-(N,N-

diethylsulfamoyl)benzoyl chloride (414 mg, 1.50 mmol) in acetonitrile (3 mL) according to General 

Procedure C2. After stirring overnight and workup the product was heated with MeOH (2mL). After 

cooling to room temperature, the solids were isolated by filtration, washed with cold MeOH and dried 

under reduced pressure: 359 mg, 76% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.13 (t, J = 7.1 Hz, 6H), 

3.26 (q, J = 7.1 Hz, 4H), 3.97 (s, 3H), 7.70 (dd, J = 8.8, 2.5 Hz, 1H), 7.94 (AB-system, J = 8.8 Hz, 

2H), 8.12 (AB-system, J = 8.5 Hz, 2H), 8.21 (d, J = 2.5 Hz, 1H), 8.82 (d, J = 8.8 Hz, 1H), 12.07 (bs, 

1H); 
13

C NMR (125 MHz, CDCl3): δ 14.16, 42.12, 52.93, 115.60, 116.80, 122.11, 127.48, 128.10, 

133.60, 137.68, 137.84, 140.43, 143.77, 164.04, 168.06; LC/MS: m/z = 470.88 and 471.86 [M + H]
+
, 

tR = 15.11 min. 

Methyl 2-(3-(diethylcarbamoyl)benzamido)benzoate (13a) The title compound was synthesized 

from methyl anthranilate (151 mg, 1.00 mmol) and 3-(diethylcarbamoyl)benzoyl chloride (360 mg, 

1.50 mmol) in acetonitrile (3 mL) according to General Procedure C2. After stirring for 2 days and 

workup the product was crystallized from MeOH. After cooling to room temperature, the solids were 

isolated by filtration, washed with cold MeOH and dried under reduced pressure: 185 mg, 52% yield. 

1
H NMR (500 MHz, CDCl3): δ 1.14 (bs, 3H), 1.25 (bs, 3H), 3.27 (bs, 2H), 3.56 (bs, 2H), 3.94 (s, 3H), 

7.12 (ddd, J = 7.9, 7.3, 1.3 Hz, 1H), 7.54-7.61 (m, 3H), 8.03-8.08 (m, 3H), 8.89 (dd, J = 8.5, 0.9 Hz, 

1H), 12.07 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 12.85, 14.17, 39.33, 43.37, 52.49, 115.25, 

120.49, 122.81, 125.63, 127.61, 129.13, 130.04, 130.95, 134.83, 135.02, 137.96, 141.64, 164.90, 

169.01, 170.26; LC/MS: m/z = 355.40 [M + H]
+
, 709.07 [2M + H]

+
, tR = 12.34 min. 
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Methyl 5-bromo-2-(3-(diethylcarbamoyl)benzamido)benzoate (14a) The title compound was 

synthesized from methyl 2-amino-5-bromobenzoate (230 mg, 1.00 mmol) and 3-

(diethylcarbamoyl)benzoyl chloride (360 mg, 1.50 mmol) in acetonitrile (3 mL) according to General 

Procedure C2. After stirring overnight and workup the product was heated with MeOH (2mL). After 

cooling to room temperature, the solids were isolated by filtration, washed with cold MeOH and dried 

under reduced pressure: 360 mg, 83% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.13 (bs, 3H), 1.25 (bs, 

3H), 3.27 (bs, 2H), 3.56 (bs, 2H), 3.95 (s, 3H), 7.55 (dt, J = 7.6, 0.6 Hz, 1H), 7.58 (dt, J = 7.6, 1.6 Hz, 

1H), 7.68 (dd, J = 9.1, 2.5 Hz, 1H), 8.00-8.03 (m, 2H), 8.19 (d, J = 2.5 Hz, 1H), 8.82 (d, J = 9.1 Hz, 

1H), 11.99 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 13.14, 14.44, 39.61, 43.68, 53.07, 115.48, 

117.03, 122.41, 125.89, 127.85, 129.43, 130.48, 133.76, 134.93, 137.80, 138.29, 140.93, 165.12, 

168.13, 170.41; LC/MS: m/z = 432.90 and 434.39 [M + H]
+
, tR = 14.05 min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)-4-methylbenzamido)benzoate (35a) The title compound was 

synthesized from methyl anthranilate (151 mg, 1.00 mmol) and 3-(N,N-diethylsulfamoyl)-4-

methylbenzoyl chloride (23a, 290 mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure 

C1: 220 mg, 54% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.21 (t, J = 7.1 Hz, 6H), 2.71 (s, 3H), 3.43 (q, 

J = 7.1 Hz, 4H), 3.97 (s, 3H), 7.14 (ddd, J = 7.9, 7.3, 0.9 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.61 (m, 

1H), 8.08 (dd, J = 7.9, 2.2 Hz, 1H), 8.09 (dd, J = 7.9, 1.3 Hz, 1H), 8.46 (d, J = 1.9 Hz, 1H), 8.89 (dd, J 

= 8.5, 0.9 Hz, 1H), 12.13 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.19, 20.51, 41.69, 52.52, 115.21, 

120.40, 122.91, 127.36, 130.56, 130.99, 132.85, 133.34, 134.88, 139.87, 141.53, 141.82, 164.08, 

169.07; LC/MS: m/z = 404.57 [M + H]
+
, 445.72 [M + H + CH3CN]

+
, 808.44 [2M + H]

+
, tR = 13.75 

min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)-4-ethylbenzamido)benzoate (36a) The title compound was 

synthesized from methyl anthranilate (151 mg, 1.00 mmol) and 3-(N,N-diethylsulfamoyl)-4-

ethylbenzoyl chloride (24a, 304 mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure 

C1: 117 mg, 28% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.21 (t, J = 7.1 Hz, 6 Hz), 1.32 (t, J = 7.4 Hz, 

3H), 3.12 (q, J = 7.4 Hz, 2H), 3.43 (q, J = 7.1 Hz, 4H), 3.95 (s, 3H), 7.13 (ddd, J = 7.9, 7.3, 1.3 Hz, 

1H), 7.53 (d, J = 7.9 Hz, 1H), 7.60 (ddd, J = 8.5, 7.3, 1.6 Hz, 1H), 8.08 (dd, J = 8.5, 1.7 Hz, 1H), 8.11 

(dd, J = 7.9, 1.9 Hz, 1H), 8.39 (d, J = 1.9 Hz, 1H), 8.88 (dd, J = 8.5, 0.9 Hz, 1H), 12.11 (bs, 1H); 
13

C 

NMR (125 MHz, CDCl3): δ 14.41, 15.01, 25.98, 42.03, 52.52, 115.21, 120.42, 122.92, 127.02, 130.58, 

131.01, 131.59, 132.55, 134.90, 139.68, 141.56, 147.90, 164.13, 169.11; LC/MS: m/z = 418.70 [M + 

H]
+
, 459.72 [M + H + CH3CN]

+
, 836.60 [2M + H]

+
, tR = 14.40 min. 

Methyl 4-chloro-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (37a) The title compound was 

synthesized from methyl 2-amino-4-chlorobenzoate (289 mg, 1.56 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 430 mg, 1.56 mmol) in pyridine (5 mL) according to General 

Procedure C1: 340 mg, 51% yield. The material was used as such for the next step (hydrolysis of 

methyl ester). 
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Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-4-fluorobenzoate (38a) The title compound was 

synthesized from methyl 2-amino-4-fluorobenzoate (169 mg, 1.00 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 303 mg, 1.10 mmol) in pyridine (4 mL) according to General 

Procedure C1. Purification by flash column chromatography (silica gel, EtOAc/n-hexane 20/80 

followed by 30/70): 526 mg, 86% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.15 (t, J = 7.1 Hz, 6H), 3.30 

(q, J = 7.1 Hz, 4H), 3.94 (s, 3H), 6.82 (ddd, J = 10.1, 7.3, 2.5 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 8.01 

(ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.10 (dd, J = 8.8, 6.3 Hz, 1H), 8.18 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.44 

(dt, J = 1.9, 0.6 Hz, 1H), 8.69 (dd, J = 12.0, 2.8 Hz, 1H), 12.32 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): 

δ 14.24, 42.29, 52.60, 107.63 (d, JCF = 28 Hz), 110.42 (d, JCF = 22 Hz), 111.43 (d, JCF = 3 Hz), 129.75, 

130.33, 130.75, 133.34 (d, JCF = 11 Hz), 135.62, 141.60, 143.63 (d, JCF = 13 Hz), 164.10, 166.40 (d, 

JCF = 255 Hz), 168.47; LC/MS: m/z = 408.78 [M + H]
+
, 449.77 [M + H + CH3CN]

+
, 816.64 [2M + 

H]
+
, tR = 14.42 min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-4-nitrobenzoate (39a) The title compound was 

synthesized from methyl 2-amino-4-nitrobenzoate (110 mg, 0.56 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 232 mg, 0.84 mmol) in acetonitrile (2 mL) according to 

General Procedure C2. After stirring overnight at room temperature, workup was performed as 

described. The isolated product was heated with MeOH (6 mL), cooled to room temperature, filtered 

and the solids were dried under reduced pressure: 157 mg, 64% yield. 
1
H NMR (500 MHz, CDCl3): δ 

1.15 (t, J = 7.1 Hz, 6H), 3.30 (q, J = 7.1 Hz, 4H), 4.02 (s, 3H), 7.68 (t, J = 7.9 Hz, 1H), 7.93 (dd, J = 

8.8, 2.2 Hz, 1H), 8.03 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.44 (t, J = 1.6 Hz, 1H), 

9.76 (d, J = 2.5 Hz, 1H), 12.22 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.22, 42.27, 53.34, 115.32, 

117.12, 119.48, 125.92, 129.88, 130.61, 130.78, 132.19, 135.08, 141.76, 142.31, 151.38, 164.11, 

167.73; LC/MS: m/z = 435.85 [M + H]
+
, 476.76 [M + H + CH3CN]

+
, 870.51 [2M + H]

+
, tR = 13.80 

min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-methylbenzoate (40a) The title compound was 

synthesized from methyl 2-amino-5-methylbenzoate (165 mg, 1.00 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 414 mg, 1.50 mmol) in acetonitrile (1 mL) according to 

General Procedure C2. After stirring overnight at room temperature, workup was performed as 

described. The isolated product was heated with MeOH (3 mL), cooled to room temperature, filtered 

and the solids were dried under reduced pressure: 360 mg, 89% yield. 
1
H NMR (500 MHz, CDCl3): δ 

1.15 (t, J = 7.1 Hz, 6H), 2.35 (s, 3H), 3.30 (q, J = 7.1 Hz, 4H), 3.94 (s, 3H), 7.41 (dd, J = 8.5, 2.2 Hz, 

1H), 7.64 (t, J = 8.0 Hz, 1H), 7.88 (m, 1H), 7.99 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.18 (ddd, J = 7.9, 1.9, 

1.3 Hz, 1H), 8.44 (dt, J = 1.9, 0.6 Hz, 1H), 8.76 (d, J = 8.5 Hz, 1H), 12.07 (bs, 1H); 
13

C NMR (125 

MHz, CDCl3): δ 14.25, 20.74, 42.29, 52.45, 115.12, 120.33, 125.87, 129.62, 129.99, 130.72, 131.13, 

132.71, 135.64, 136.20, 139.04, 141.43, 163.76, 169.15; LC/MS: m/z = 372.86 [M – OMe]
+
, 445.82 

[M + H + CH3CN]
+
, 808.69 [2M + H]

+
, tR = 14.60 min. 
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Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-(trifluoromethyl)benzoate (41a) The title 

compound was synthesized from methyl 2-amino-5-trifluoromethylbenzoate
S12

 (219 mg, 1.00 mmol) 

and 3-(N,N-diethylsulfamoyl)benzoyl chloride (27a, 414 mg, 1.50 mmol) in acetonitrile (1 mL) 

according to General Procedure C2. After stirring for 2.5 h at room temperature, workup was 

performed as described. The isolated product was heated with MeOH (2 mL), cooled to room 

temperature, filtered and the solids were dried under reduced pressure: 296 mg, 65% yield. 
1
H NMR 

(500 MHz, CDCl3): δ 1.17 (q, J = 7.1 Hz, 6H), 3.32 (q, J = 7.1 Hz, 4H), 4.02 (s, 3H), 7.79 (t, J = 7.9 

Hz, 1H), 7.85 (dd, J = 8.8, 2.2 Hz, 1H), 8.04 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8..21 (ddd, J = 7.9, 1.9, 

0.9 Hz, 1H), 8.37 (dd, J = 1.6, 0.6 Hz, 1H), 8.58 (t, J = 1.9 Hz, 1H), 9.06 (d, J = 8.8 Hz, 1H), 12.33 

(bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.22, 42.27, 52.98, 115.10, 120.60, 123.54 (q, JCF = 272 

Hz), 125.00 (q, JCF = 33.9 Hz), 125.99, 128.35 (q, JCF = 3.4 Hz), 129.81, 130.48, 130.81, 131.49 (d, 

JCF = 3.7 Hz), 135.43, 141.70, 144.13, 164.20, 168.17; LC/MS: m/z = 458.75 [M + H]
+
, 499.70 [M + 

H + CH3CN]
+
, 916.64 [2M + H]

+
, tR = 14.93 min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-fluorobenzoate (42a) The title compound was 

synthesized from methyl 2-amino-5-fluorobenzoate (264 mg, 1.56 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 430 mg, 1.56 mmol) in pyridine (5 mL) according to General 

Procedure C1. The material was used as such for the next step (hydrolysis of methyl ester). 

Methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (43a) The title compound was 

synthesized from methyl 2-amino-5-bromobenzoate (362 mg, 1.57 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 414 mg, 1.50 mmol) in toluene (10 mL) according to General 

Procedure C3. After reflux for 2 h the solvent was evaporated under reduced pressure. The isolated 

product was heated with MeOH (3 mL), cooled to room temperature, filtered and the solids were dried 

under reduced pressure: 545 mg, 77% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.15 (t, J = 7.1 Hz, 6H), 

3.30 (q, J = 7.1 Hz, 4H), 3.96 (s, 3H), 7.65 (t, J = 8.2 Hz, 1H), 7.69 (dd, J = 8.8, 2.5 Hz, 1H), 8.00 

(ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.15 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.20 (d, J = 2.5 Hz, 1H), 8.43 (t, J 

= 1.9 Hz, 1H), 8.80 (d, J = 8.8 Hz, 1H), 12.09 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.23, 42.27, 

52.86, 115.54, 116.77, 122.02, 125.90, 129.73, 130.27, 130.74, 133.58, 135.70, 137.65, 140.44, 

141.59, 163.92, 167.98; LC/MS: m/z = 509.79 and 511.77 [M + H + CH3CN]
+
, 936.65, 938.73 and 

940.72 [2M + H]
+
, tR = 15.26 min. 

Methyl 5-cyano-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (44a) The title compound was 

synthesized from methyl 2-amino-5-cyanobenzoate
S13

 (176 mg, 1.00 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 414 mg, 1.50 mmol) in acetonitrile (1 mL) according to 

General Procedure C2. After stirring for 3 h at room temperature, workup was performed as described. 

The isolated product was heated with MeOH (3 mL), cooled to room temperature, filtered and the 

solids were dried under reduced pressure: 294 mg, 71% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.15 (t, 

J = 7.1 Hz, 6H), 3.30 (q, J = 7.1 Hz, 4H), 4.00 (s, 3H), 7.68 (t, J = 7.9 Hz, 1H), 7.84 (dd, J = 8.8, 2.2 

Hz, 1H), 8.03 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.18 (ddd, J = 7.9, 1.6, 0.9 Hz, 1H), 8.40 (d, J = 2.2 Hz, 
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1H), 8.45 (t, J = 1.6 Hz, 1H), 9.05 (d, J = 8.8 Hz, 1H), 12.36 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 

14.23, 42.26, 53.21, 106.54, 115.55, 117.83, 120.90, 126.02, 129.89, 130.67, 130.84, 135.13, 135.45, 

137.78, 141.82, 144.82, 164.26, 167.63; LC/MS: m/z = 416.06 [M + H]
+
, 456.85 [M + H + CH3CN]

+
, 

830.80 [2M + H]
+
, tR = 14.93 min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-nitrobenzoate (45a) The title compound was 

synthesized from methyl 2-amino-5-nitrobenzoate (196 mg, 1.00 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 276 mg, 1.00 mmol) in toluene (5 mL) according to General 

Procedure C3. After reflux for 1 h the solvent was evaporated under reduced pressure. The isolated 

product was stirred with MeOH (3 mL), filtered and the solids were dried under reduced pressure: 304 

mg, 70% yield. The material was used as such for the next step (hydrolysis of methyl ester). 

Methyl 2-(4-bromo-3-(N,N-diethylsulfamoyl)benzamido)-5-fluorobenzoate (46a) The title 

compound was synthesized from methyl 5-fluoro-2-aminobenzoate (169 mg, 1.00 mmol) and 4-

bromo-3-(N,N-diethylsulfamoyl)benzoyl chloride (22a, 400 mg, 1.13 mmol) in pyridine (5 mL) 

according to General Procedure C1: 130 mg, 27% yield. 
1
H NMR (500 MHz, DMSO-d6): δ 1.08 (q, J 

= 7.1 Hz, 6H), 3.38 (q, J = 7.1 Hz, 4H), 7.58 (ddd, J = 9.1, 8.2, 3.2 Hz, 1H), 7.70 (dd, J = 9.1, 3.2 Hz, 

1H), 8.03 (dd, J = 8.2, 2.2 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.25 (dd, J = 9.1, 5.4 Hz, 1H), 8.50 (d, J 

= 2.2 Hz, 1H), 11.28 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.78, 41.25, 52.77, 116.66 (d, JCF 

= 24.7 Hz), 120.75 (d, JCF = 21.2 Hz), 121.74 (d, JCF = 7.3 Hz), 123.56, 124.79 (d, JCF = 8.2 Hz), 

129.84, 132.00, 133.80, 135.14 (d, JCF = 2.7 Hz), 136.46, 139.98, 157.83, 162.95, 166.39; LC/MS: m/z 

= 527.41 and 529.40 [M + H + CH3CN]
+
, 974.22 [2M + H]

+
, tR = 14.10 min. 

Methyl 5-bromo-2-(4-bromo-3-(N,N-diethylsulfamoyl)benzamido)benzoate (47a) The title 

compound was synthesized from methyl 5-bromo-2-aminobenzoate (230 mg, 1.00 mmol) and 4-

bromo-3-(N,N-diethylsulfamoyl)benzoyl chloride (22a, 400 mg, 1.13 mmol) in pyridine (5 mL) 

according to General Procedure C1: 165 mg, 30% yield. 
1
H NMR (500 MHz, DMSO-d6): δ 1.08 (q, J 

= 7.1 Hz, 6H), 3.38 (q, J = 7.1 Hz, 4H), 3.85 (s, 3H), 7.88 (dd, J = 9.1, 2.5 Hz, 1H), 8.02 (dd, J = 8.2, 

2.2 Hz, 1H), 8.06 (d, J = 2.5 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H), 8.50 (d, J = 

2.2 Hz, 1H), 11.42 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.80, 41.28, 52.85, 115.74, 121.14, 

123.73, 124.00, 129.79, 131.97, 132.73, 133.68, 136.51, 136.53, 138.18, 140.03, 162.94, 166.39. 

Methyl 4-(3-(N,N-diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3-carboxylate (48a) The title 

compound was synthesized from methyl 4-amino-[1,1'-biphenyl]-3-carboxylate
S14

 (227 mg, 1.00 

mmol) and 3-(N,N-diethylsulfamoyl)benzoyl chloride (27a, 276 mg, 1.00 mmol) in pyridine (4 mL) 

according to General Procedure C1. Purification by flash column chromatography (silica gel, 

EtOAc/n-hexane 90/10 followed by MeOH/DCM). The isolated product was stirred with MeOH (3 

mL), filtered and the solids were dried under reduced pressure: 84 mg, 18% yield. 
1
H NMR (500 MHz, 

CDCl3): δ 1.16 (t, J = 7.1 Hz, 6H), 3.32 (q, J = 7.1 Hz, 4H), 3.99 (s, 3H), 7.36 (m, 1H), 7.45 (m, 2H), 

7.60 (dd, J = 8.5, 1.3 Hz, 2H), 7.67 (t, J = 7.7 Hz, 1H), 7.85 (dd, J = 8.8, 2.5 Hz, 1H), 8.02 (ddd, J = 

7.9, 1.9, 0.9 Hz, 1H), 8.21 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.33 (d, J = 2.2 Hz, 1H), 8.48 (t, J = 1.6 Hz, 
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1H), 12.20 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.26, 42.30, 52.65, 115.62, 120.84, 125.93, 

126.78, 127.61, 128.94, 129.37, 129.70, 130.15, 130.78, 133.35, 136.02, 136.03, 139.44, 140.52, 

141.51, 163.94, 169.10; LC/MS: m/z = 507.54 [M + H + CH3CN]
+
, 932.67 [2M + H]

+
, tR = 15.18 min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-6-methoxybenzoate (49a) The title compound was 

synthesized from methyl 2-amino-6-methoxybenzoate hydrochloride (218 mg, 1.00 mmol) and 3-

(N,N-diethylsulfamoyl)benzoyl chloride (27a, 303 mg, 1.10 mmol) in pyridine (8 mL) according to 

General Procedure C1. Purification by flash column chromatography (silica gel, EtOAc/n-hexane 

30/70 followed by 40/60) yielded an oil. The crude material was used as such for the next step 

(hydrolysis of methyl ester). 
1
H NMR (500 MHz, CDCl3): δ 1.14 (t, J = 7.1 Hz, 6H), 3.29 (q, J = 7.1 

Hz, 1H), 3.86 (s, 3H), 3.94 (s, 3H), 6.75 (d, J = 8.5, 1H), 7.46 (t, J = 8.5 Hz, 1H), 7.63 (t, J = 7.9 Hz, 

1H), 7.98 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.10 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 

8.36 (t, J = 1.7 Hz, 1H), 10.96 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 14.22, 42.26, 52.63, 56.35, 

107.70, 113.60, 120.04, 125.76, 129.67, 130.07, 130.70, 133.66, 135.96, 139.94, 141.46, 159.64, 

163.70, 169.14; LC/MS: m/z = 429.50 [M – OCH3 + CH3CN]
+
, 461.71 [M + H + CH3CN]

+
, 840.55 

[2M + H]
+
, tR = 11.38 min. Purity: 91% by UV (254 nm). 

Methyl 2-chloro-6-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (50a) The title compound was 

synthesized from methyl 2-amino-6-chlorobenzoate (186 mg, 1.00 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 414 mg, 1.50 mmol) in acetonitrile (2 mL) according to 

General Procedure C2. After stirring for 3 h at 0 °C, workup was performed as described, yielding an 

oil. Attempts to crystallize the product from MeOH failed to give a solid. Therefore the crude material 

was used as such for the next step (hydrolysis of methyl ester). LC/MS: m/z = 424.66 [M + H]
+
, 

465.71 [M + H + CH3CN]
+
, 848.52 [2M + H]

+
, tR = 12.31 min. Purity: 85% by UV (254 nm). 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-6-fluorobenzoate (51a) The title compound was 

synthesized from methyl 2-amino-6-fluorobenzoate (169 mg, 1.00 mmol) and 3-(N,N-

diethylsulfamoyl)benzoyl chloride (27a, 414 mg, 1.50 mmol) in acetonitrile (1 mL) according to 

General Procedure C2. After stirring overnight at room temperature, workup was performed as 

described. The isolated product was heated with MeOH (3 mL), cooled to room temperature, filtered 

and the solids were dried under reduced pressure: 340 mg, 83% yield. 
1
H NMR (500 MHz, CDCl3): δ 

1.15 (t, J = 7.1 Hz, 6H), 3.30 (q, J = 7.1 Hz, 4H), 3.98 (s, 3H), 6.89 (ddd, J = 11.0, 8.2, 0.9 Hz, 1H), 

7.53 (dt, J = 8.5, 6.0 Hz, 1H), 7.65 (t, J = 7.9 Hz, 1H), 8.00 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.15 (ddd, 

J = 7.9, 1.9, 1.3 Hz, 1H), 8.41 (t, J = 1.7 Hz, 1H), 8.62 (d, J = 8.5 Hz, 1H), 11.80 (bs, 1H); 
13

C NMR 

(125 MHz, CDCl3): δ 14.06, 41.87, 112.37 (d, JCF = 23 Hz), 113.52 (d, JCF = 16 Hz), 119.22 (d, JCF = 4 

Hz), 125.29, 129.82, 130.05, 131.32, 132.86 (d, JCF = 11 Hz), 135.05, 138.75 (d, JCF = 5 Hz), 160.46 

(d, JCF = 252 Hz), 163.70, 165.88; LC/MS: m/z = 376.84 [M – OMe]
+
, 449.83 [M + H + CH3CN]

+
, 

816.77 [2M + H]
+
, tR = 14.93 min. 

Methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-6-hydroxybenzoate (52a) The title compound was 

synthesized from methyl 2-amino-6-hydroxybenzoate (94 mg, 0.56 mmol) and 3-(N,N-
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diethylsulfamoyl)benzoyl chloride (27a, 171 mg, 0.62 mmol) in toluene (5 mL) according to General 

Procedure C3. After reflux for 1 h the solvent was evaporated under reduced pressure. The isolated 

product was stirred with MeOH (1 mL). The solids were filtered, washed with MeOH (1 mL) and 

dried under reduced pressure: 150 mg, 66% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.13 (t, J = 7.1 Hz, 

6H), 3.27 (q, J = 7.1 Hz, 4H), 4.15 (s, 3H), 6.76 (m, 1H), 7.45 (dt, J = 8.2, 3.2, 1H), 7.65 (dt, J = 7.9, 

1.6 Hz, 1H), 7.96 (m, 1H), 8.17 (m, 1H), 8.29 (m, 1H), 8.35 (m, 1H), 10.43 (bs, 1H), 11.13 (bs, 1H); 

13
C NMR (125 MHz, CDCl3): δ 14.16, 42.17, 53.47, 101.71, 111.84, 113.52, 124.81, 129.94, 131.47, 

136.15, 140.28, 141.35, 162.08, 163.59, 169.57; LC/MS: m/z = 447.77 [M + H + CH3CN]
+
, 813.01 

[2M + H]
+
, tR = 12.21 min. 

Methyl 2-(3-sulfamoylbenzamido)benzoate (57a) The title compound was synthesized from methyl 

anthranilate (302 mg, 2.00 mmol) and 3-sulfamoylbenzoyl chloride (25a, 659 mg, 3.00 mmol) in 

acetonitrile (2 mL) according to General Procedure C2. After stirring for 2 h at 0 °C, workup was 

performed as described. The isolated product was heated with MeOH (15 mL), cooled to room 

temperature, filtered and the solids were dried under reduced pressure: 350 mg, 52% yield. As the 

purity was below 95% the compound was heated for a second time with MeOH (5 mL): 220 mg, 33% 

yield. 
1
H NMR (500 MHz, DMSO-d6): δ 3.88 (s, 3H), 7.28 (m, 1H), 7.55 (bs, 2H), 7.70 (m, 1H), 7.83 

(t, J = 7.7 Hz, 1H), 8.00 (dd, J = 8.2, 1.6 Hz, 1H), 8.08 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.16 (ddd, J = 

7.9, 1.9, 0.9 Hz, 1H), 8.42-8.44 (m, 2H), 11.55 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 52.54, 

118.27, 121.47, 123.84, 124.78, 128.94, 129.70, 129.77, 130.60, 134.05, 134.97, 139.40, 144.88, 

163.62, 167.72; LC/MS: m/z = 389.71 [M + H]
+
, 430.65 [M + H + CH3CN]

+
, 778.24 [2M + H]

+
, tR = 

9.81 min. 

Methyl 2-(3-(N,N-dimethylsulfamoyl)benzamido)benzoate (58a) The title compound was 

synthesized from methyl anthranilate (151 mg, 1.00 mmol) and 3-(N,N-dimethylsulfamoyl)benzoyl 

chloride (26a, 303 mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure C1: 100 mg, 

28% yield. 
1
H NMR (500 MHz, CDCl3): δ 2.77 (s, 6H), 3.95 (s, 3H), 7.15 (ddd, J = 7.9, 7.3, 1.3 Hz, 

1H), 7.61 (ddd, J = 8.8, 7.6, 1.9 Hz, 1H), 7.70 (dt, J = 7.9, 0.6 Hz, 1H), 7.96 (ddd, J = 7.9, 1.9, 1.3 Hz, 

1H), 8.09 (dd, J = 6.3, 1.6 Hz, 1H), 8.24 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.43 (dt, J = 1.9, 0.6 Hz, 1H), 

8.88 (dd, J = 8.5, 0.9 Hz, 1H), 12.21 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 38.20, 52.81, 120.63, 

123.40, 126.86, 129.96, 131.00, 131.30, 131.47, 135.23, 136.46, 137.06, 141.65, 164.16, 169.39; 

LC/MS: m/z = 403.65 [M + H + CH3CN]
+
, 724.38 [2M + H]

+
, tR = 12.07 min. 

Methyl 2-(3-(N,N-dipropylsulfamoyl)benzamido)benzoate (59a) The title compound was 

synthesized from methyl anthranilate (151 mg, 1.00 mmol) and 3-(N,N-di-n-propylsulfamoyl)benzoyl 

chloride (28a, 303 mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure C1. The 

product was crystallized from MeOH: 232 mg, 55% yield. 
1
H NMR (500 MHz, CDCl3): δ 0.87 (t, J = 

7.4 Hz, 6H), 1.57 (sextet, J = 7.5 Hz, 4H), 3.14 (m, 4H), 3.94 (s, 3H), 7.14 (m, 1H), 7.60 (ddd, J = 8.8, 

7.6, 1.6 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.99 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.08 (dd, J = 8.2, 1.6 

Hz, 1H), 8.20 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.45 (t, J = 1.6 Hz, 1H), 8.88 (dd, J = 8.5, 1.3 Hz, 1H), 
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12.18 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 11.17, 22.14, 50.22, 52.55, 115.26, 120.38, 123.07, 

125.84, 129.62, 130.18, 130.82, 131.03, 134.93, 136.01, 141.27, 141.43, 163.97, 169.09; LC/MS: m/z 

= 418.76 [M + H]
+
, 459.78 [M + H + CH3CN]

+
, 836.75 [2M + H]

+
, tR = 15.18 min. 

Methyl 2-(3-(pyrrolidin-1-ylsulfonyl)benzamido)benzoate (60a) The title compound was 

synthesized from methyl anthranilate (217 mg, 1.44 mmol) and 3-(pyrrolidin-1-ylsulfonyl)benzoyl 

chloride (29a, 393 mg, 1.44 mmol) in pyridine (5 mL) according to General Procedure C1 The product 

was crystallized from MeOH: 108 mg, 27% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.77 (m, 4H), 3.31 

(m, 4H), 3.93 (s, 3H), 7.13 (m, 1H), 7.60 (ddd, J = 8.8, 7.3, 1.6 Hz, 1H), 7.68 (dt, J = 7.9, 0.6 Hz, 1H), 

8.00 (ddd, J = 7.6, 1.6, 0.9 Hz, 1H), 8.07 (dd, J = 7.9, 1.6 Hz, 1H), 8.21 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 

8.46 (t, J = 1.9 Hz, 1H), 8.86 (dd, J = 8.5, 0.9 Hz, 1H), 12.18 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 

25.28, 48.01, 52.52, 115.22, 120.31, 123.07, 126.29, 129.62, 130.51, 131.00, 134.91, 136.16, 138.20, 

141.36, 163.96, 169.08; LC/MS: m/z = 588.59 [M + H]
+
, 429.71 [M + H + CH3CN]

+
, 776.38 [2M + 

H]
+
, tR = 12.61 min. 

Methyl 2-(3-(piperidin-1-ylsulfonyl)benzamido)benzoate (61a) The title compound was 

synthesized from methyl anthranilate (151 mg, 1.00 mmol) and 3-(piperidin-1-ylsulfonyl)benzoyl 

chloride (30a, 287 mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure C1. The 

product was crystallized from MeOH: 100 mg, 26% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.42 (m, 

2H), 1.65 (quintet, J = 5.8 Hz, 4H), 3.06 (t, J = 5.5 Hz, 4H), 3.94 (s, 3H), 7.15 (m, 1H), 7.61 (ddd, J = 

8.5, 7.3, 1.6 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.94 (ddd, J = 7.6, 1.6, 0.9 Hz, 1H), 8.09 (dd, J = 8.0, 

1.7 Hz, 1H), 8.22 (dd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.39 (dt, J = 1.9, 0.6 Hz, 1H), 8.88 (dd, J = 8.5, 0.9 

Hz, 1H), 12.20 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 23.47, 25.18, 47.04, 52.54, 115.25, 120.36, 

123.12, 126.53, 129.62, 130.69, 131.04, 131.12, 134.97, 136.11, 137.48, 141.42, 163.99, 169.12; 

LC/MS: m/z = 443.59 [M + H + CH3CN]
+
, 804.43 [2M + H]

+
, tR = 13.56 min. 

Methyl 2-(3-(azepan-1-ylsulfonyl)benzamido)benzoate (62a) The title compound was synthesized 

from methyl anthranilate (151 mg, 1.00 mmol) and 3-(azepan-1-ylsulfonyl)benzoyl chloride (31a, 302 

mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure C1. The product was crystallized 

from MeOH: 247 mg, 59% yield. 
1
H NMR (500 MHz, CDCl3): δ 1.59 (m, 4H), 1.73 (m, 4H), 3.34 (t, J 

= 6.0 Hz, 4H), 3.94 (s, 3H), 7.14 (m, 1H), 7.60 (ddd, J = 8.8, 7.6, 1.6 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 

7.98 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.08 (dd, J = 8.2, 1.6, 1H), 8.19 (ddd, J = 7.6, 1.6, 0.9 Hz, 1H), 

8.43 (t, J = 1.7 Hz, 1H), 8.87 (dd, J = 8.5, 0.9 Hz, 1H), 12.18 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 

26.88, 29.19, 48.41, 52.53, 115.22, 120.34, 123.07, 125.71, 129.64, 130.06, 130.75, 131.02, 134.94, 

136.06, 140.62, 141.42, 164.00, 169.10; LC/MS: m/z = 416.73 [M + H]
+
, 457.75 [M + H + CH3CN]

+
, 

832.80 [2M + H]
+
, tR = 14.70 min. 

Methyl 2-(3-(morpholinosulfonyl)benzamido)benzoate (63a) The title compound was synthesized 

from methyl anthranilate (151 mg, 1.00 mmol) and 3-(morpholinosulfonyl)benzoyl chloride (32a, 290 

mg, 1.00 mmol) in pyridine (4 mL) according to General Procedure C1. The product was crystallized 

from MeOH: 146 mg, 36% yield. 
1
H NMR (500 MHz, CDCl3): δ 3.09 (m, 4H), 3.77 (m, 4H), 3.96 (s, 
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3H), 7.17 (m, 1H), 7.63 (m, 1H), 7.73 (t, J = 7.9 Hz, 1H), 7.96 (ddd, J = 7.6, 1.6, 0.9 Hz, 1H), 8.10 

(dd, J = 7.9, 1.6 Hz, 1H), 8.28 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.42 (t, J = 1.6 Hz, 1H), 8.89 (dd, J = 

8.5, 0.9 Hz, 1H), 12.23 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 46.08, 52.54, 66.08, 115.22, 120.33, 

123.18, 126.77, 129.83, 130.76, 131.05, 131.55, 134.99, 136.32, 141.35, 163.73, 169.17; LC/MS: m/z 

= 445.67 [M + H + CH3CN]
+
, 808.37 [2M + H]

+
, tR = 11.94 min. 

Methyl 2-(3-(N-benzyl-N-ethylsulfamoyl)benzamido)benzoate (64a) The title compound was 

synthesized from methyl anthranilate (151 mg, 1.00 mmol) and 3-(N-benzyl-N-

ethylsulfamoyl)benzoyl chloride (33a, 290 mg, 1.00 mmol) in pyridine (4 mL) according to General 

Procedure C1. The product was crystallized from MeOH: 118 mg, 26% yield. 
1
H NMR (500 MHz, 

CDCl3): δ 0.94 (t, J = 7.3 Hz, 3H), 3.27 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 4.44 (s, 2H), 7.15 (ddd, J = 

7.9, 7.3, 0.9 Hz, 1H), 7.25-7.33 (m, 5H), 7.62 (ddd, J = 8.5, 7.3, 1.3 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 

8.03 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.09 (dd, J = 8.2, 1.6 Hz, 1H), 8.23 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 

8.50 (t, J = 1.6 Hz, 1H), 8.89 (dd, J = 8.5, 0.9 Hz, 1H), 12.22 (bs, 1H); 
13

C NMR (125 MHz, CDCl3): δ 

13.42, 42.60, 51.31, 52.56, 115.25, 120.38, 123.12, 125.91, 127.81, 128.24, 128.59, 129.78, 130.17, 

131.05, 134.99, 136.21, 136.28, 141.44, 163.92, 169.16; LC/MS: m/z = 452.67 [M + H]
+
, 493.62 [M + 

H + CH3CN]
+
, 904.55 [2M + H]

+
, tR = 14.35 min. 

 

Syntheses of test compounds 2, 4, 6, 9-10, 13-14, 34-64 

 

2-(3-(N,N-Diethylsulfamoyl)benzamido)benzoic acid (2) The title compound was synthesized from 

methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (2a, 506 mg, 1.30 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (9 mL) and 1N NaOH (aq., 2.6 mL). The solution was 

acidified with 1N HCl (aq., 2.6 mL). The organic solvent was evaporated under reduced pressure The 

solid was isolated by suction filtration, washed with water, redissolved in MeOH and evaporated to 

dryness under reduced pressure: 394 mg, 81% yield; mp: 218.1-219.7 °C; 
1
H NMR (500 MHz, 

DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.24 (t, J = 7.6 Hz, 1H), 7.68 (dt, J = 

7.9, 1.6 Hz, 1H), 7.83 (t, J = 7.8 Hz, 1H), 8.06 (m, 2H), 8.22 (d, J = 7.9 Hz, 1H), 8.33 (s, 1H), 8.66 (d, 

J = 8.3 Hz, 1H), 12.3 (bs, 1H), 13.9 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.10, 41.95, 117.11, 

120.13, 123.37, 124.93, 129.96, 130.42, 131.06, 131.24, 134.26, 135.46, 140.63, 140.68, 163.17, 

170.04; LC/MS: m/z = 417.88 [M + H + CH3CN]
+
, 752.73 [2M + H]

+
, tR = 12.53 min, 99.8% pure 

(UV). 

3-(3-(N,N-Diethylsulfamoyl)benzamido)benzoic acid (4) The title compound was synthesized from 

methyl 3-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (4a, 486 mg, 1.24 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (6 mL) and 1N NaOH (aq., 2 mL). The solution was 

acidified with 1N HCl (aq., 4 mL). Water was added and the solid was isolated by suction filtration, 

washed with water and dried under reduced pressure: 379 mg, 81% yield; mp: 231.5-233.6 °C; 
1
H 

NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H),7.85 (t, J = 7.7 Hz, 

1H), 8.08 (d, J = 8.5 Hz, 1H), 8.11 (dd, J = 8.8, 2.2 Hz, 1H), 8.22 (d, J = 7.9 Hz, 1H), 8.33 (s, 1H), 
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8.41 (d, J = 1.9 Hz, 1H), 8.82 (d, J = 8.8 Hz, 1H), 12.53 (s, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 

14.11, 41.96, 105.46, 117.86, 120.52, 125.07, 130.39, 130.57, 131.26, 134.87, 135.36, 137.52, 140.75, 

144.17, 163.69, 168.60; LC/MS: m/z = 376.75 [M + H]
+
, 417.76 [M + H + CH3CN]

+
, 752.70 [2M + 

H]
+
, tR = 10.16 min, 95.7% pure (UV). 

N-(2-Carbamoylphenyl)-3-(N,N-diethylsulfamoyl)benzamide (6). A solution of 2-aminobenzamide 

(5, 136 mg, 1.00 mmol) and 3-(N,N-diethylsulfamoyl)benzoyl chloride (27a, 276 mg, 1.00 mmol) in 

toluene (5 mL) was heated at 88 °C for 30 minutes. After cooling to room temperature the solid was 

isolated by suction filtration. Purification by flash chromatography (ethyl acetate/n-hexane 60/40) 

yielded the title compound (78 mg, 21% yield); mp: 148.9-152.2 °C; 
1
H NMR (500 MHz, DMSO-d6): 

δ 1.13 (t, J = 7.1 Hz, 6H), 3.27 (q, J = 7.1 Hz, 4H), 6.88 (bs, 1H), 7.17 (ddd, J = 7.9, 7.3, 1.3 Hz, 1H), 

7.53 (bs, 1H), 7.57 (ddd, J = 7.6, 7.3, 1.6 Hz, 1H), 7.64 (t, J = 7.7 Hz, 1H), 7.67 (dd, J = 8.2, 1.6 Hz, 

1H), 7.97 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.27 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.43 (t, J = 1.6 Hz, 1H), 

8.89 (dd, J = 8.5, 1.1 Hz, 1H), 12.90 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.18, 42.25, 

118.14, 121.15, 123.27, 125.06, 127.65, 129.74, 129.88, 131.92, 133.69, 136.15, 140.67, 140.96, 

163.58, 172.38; LC/MS: m/z = 375.92 [M + H]
+
, 750.92 [2M + H]

+
 tR = 10.87 min, 98.2% pure (UV). 

2-(4-(N,N-Diethylsulfamoyl)benzamido)benzoic acid (9) The title compound was synthesized from 

methyl 2-(4-(N,N-diethylsulfamoyl)benzamido)benzoate (9a, 274 mg, 0.70 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (4 mL) and 1N NaOH (aq., 2 mL). The solution was 

acidified with 1N HCl (aq., 4 mL). Water was added and the solid was isolated by suction filtration, 

washed with water and dried under reduced pressure: 248 mg, 94% yield; mp: 219.4-220.8 °C; 
1
H 

NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.25 (ddd, J = 7.9, 

7.6, 1.3 Hz, 1H), 7.68 (ddd, J = 7.9, 7.6, 1.6 Hz, 1H), 8.01 (d, J = 8.8 Hz, 2H), 8.06 (dd, J = 8.2, 1.6 

Hz, 1H), 8.13 (d, J = 8.8 Hz, 1H), 8.64 (dd, J = 8.5, 0.9 Hz, 1H), 12.21 (bs, 1H), 13.81 (bs, 1H); 
13

C 

NMR (125 MHz, DMSO-d6): δ 4.13, 41.93, 117.17, 120.24, 123.43, 127.34, 128.11, 131.23, 134.26, 

137.97, 140.55, 142.79, 163.46, 169.88; LC/MS: m/z = 376.59 [M + H]
+
, tR = 11.80 min, 99.3% pure 

(UV). 

5-Bromo-2-(4-(N,N-diethylsulfamoyl)benzamido)benzoic acid (10)
S11

 The title compound was 

synthesized from methyl 5-bromo-2-(4-(N,N-diethylsulfamoyl)benzamido)benzoate (10a, 350 mg, 

0.75 mmol) according to General Procedure D, using THF/MeOH 2/1 (4 mL) and 1N NaOH (aq., 1.5 

mL). The solution was acidified with 1N HCl (aq., 3 mL). Water was added and the solid was isolated 

by suction filtration, washed with water and dried under reduced pressure: 318 mg, 94% yield; mp: 

232.8-235.6 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.21 (q, J = 7.1 Hz, 4H), 

7.87 (dd, J = 9.1, 2.5 Hz, 1H), 8.01 (d, J = 8.8 Hz, 2H), 8.12 (d, J = 8.5 Hz, 2H), 8.12 (d, J = 2.5 Hz, 

1H), 8.57 (d, J = 8.8 Hz, 1H), 12.11 (bs, 1H), 14.2 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.12, 

41.93, 114.92, 119.62, 122.47, 127.36, 128.17, 133.25, 136.67, 137.67, 139.65, 142.92, 163.55, 

168.49; LC/MS: m/z = 454.76 and 457.38 [M + H]
+
, tR = 13.20 min, 98.6% pure (UV). 
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2-(3-(Diethylcarbamoyl)benzamido)benzoic acid (13) The title compound was synthesized from 

methyl 2-(3-(diethylcarbamoyl)benzamido)benzoate (13a, 175 mg, 0.49 mmol) according to General 

Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). The solution was acidified 

with 1N HCl (aq., 2 mL). Water was added and the solid was isolated by suction filtration, washed 

with water and dried under reduced pressure: 155 mg, 92% yield; mp: 162.6-164.0 °C; 
1
H NMR (500 

MHz, DMSO-d6): δ 1.07 (bs, 3H), 1.17 (bs, 3H), 3.20 (bs, 2H), 3.46 (bs, 2H), 7.23 (dt, J = 7.7, 1.3 Hz, 

1H), 7.62 (dt, J = 7.6, 1.4 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.68 (m, 1H), 7.89 (t, J = 1.4 Hz, 1H), 

8.02 (dt, J = 7.9, 1.4 Hz, 1H), 8.06 (dd, J = 7.9, 1.6 Hz, 1H), 8.68 (dd, J = 8.5, 1.0 Hz, 1H), 12.20 (s, 

1H), 13.82 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 12.78 (bs), 14.00 (bs), 42.89 (bs), 116.81, 

120.05, 123.14, 124.61, 127.60, 129.26, 129.69, 131.24, 134.58, 137.90, 140.86, 163.98, 169.02, 

170.03; LC/MS: m/z = 340.98 [M + H]
+
, 382.00 [M + H + CH3CN]

+
, tR = 10.49 min, 99.0% pure 

(UV). Mp: 162.6-164.0 °C. 

5-Bromo-2-(3-(diethylcarbamoyl)benzamido)benzoic acid (14) The title compound was 

synthesized from methyl 5-bromo-2-(3-(diethylcarbamoyl)benzamido)benzoate (14a, 350 mg, 0.81 

mmol) according to General Procedure D, using THF/MeOH 2/1 (4.5 mL) and 1N NaOH (aq., 1.6 

mL). The solution was acidified with 1N HCl (aq., 3.2 mL). Water was added and the solid was 

isolated by suction filtration, washed with water and dried under reduced pressure: 298 mg, 88% yield; 

mp: 169.6-170.3 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.07 (bs, 3H), 1.17 (bs, 3H), 3.20 (bs, 2H), 

3.46 (bs, 2H), 7.62 (dt, J = 7.6, 1.6 Hz, 1H), 7.66 (dt, J = 7.6, 0.6 Hz, 1H), 7.86 (dd, J = 8.8, 2.5 Hz, 

1H), 7.88 (t, J = 1.6 Hz, 1H), 8.00 (dt, J = 7.9, 1.6 Hz, 1H), 8.11 (d, J = 2.5 Hz, 1H), 8.62 (d, J = 8.8 

Hz, 1H), 12.09 (s, 1H), 14.19 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 12.79 (bs), 14.01 (bs), 

42.91 (bs), 114.58, 119.24, 122.29, 124.68, 127.63, 129.29, 129.83, 133.23, 134.31, 136.68, 137.91, 

139.95, 164.05, 168.63, 168.98; LC/MS: m/z = 418.84 and 420.85 [M + H]
+
, 459.92 and 461.88 [M + 

H + CH3CN]
+
, tR = 12.04 min, 99.2% pure (UV). 

 

2-(4-Bromo-3-(N,N-diethylsulfamoyl)benzamido)benzoic acid (34) The title compound was 

synthesized as described by Nie et al. ; mp: 190.9-192.4 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.08 (t, 

J = 7.1 Hz, 6H), 3.38 (q, J = 7.1 Hz, 4H), 7.25 (ddd, J = 7.9, 7.6, 1.3 Hz, 1H), 7.68 (ddd, J = 8.2, 7.6, 

1.9 Hz, 1H), 8.04 (dd, J = 8.2, 2.2 Hz, 1H), 8.06 (dd, J = 7.9, 1.6 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 

8.64 (d, J = 2.1 Hz, 1H), 8.76 (dd, J = 8.5, 1.0 Hz, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.78, 

41.25, 117.20, 120.24, 123.50, 123.58, 129.48, 131.22, 131.96, 134.10, 134.28, 136.58, 140.09, 

140.47, 162.60, 170.00; LC/MS: m/z = 453.17 and 455.18 [M + H]
+
, tR = 12.48 min, >99% pure (UV).  

2-(3-(N,N-Diethylsulfamoyl)-4-methylbenzamido)benzoic acid (35) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)-4-methylbenzamido)benzoate (35a, 220 mg, 

0.54 mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 

mL). The solution was acidified with 1N HCl (aq., 2 mL). The organic solvent was evaporated under 

reduced pressure The solid was isolated by suction filtration, washed with water and dried under 
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reduced pressure: 197 mg, 93% yield; mp: 170.4-171.0 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.07 (t, 

J = 7.1 Hz, 6H), 2.61 (s, 3H), 3.31 (q, J = 7.1 Hz, 4H), 7.23 (m, 1H), 7.67 (m, 2H), 8.06 (dd, J = 8.0, 

1.7 Hz, 1H), 8.08 (dd, J = 7.9, 2.2 Hz, 1H), 8.37 (d, J = 2.2 Hz, 1H), 8.68 (dd, J = 8.5, 1.0 Hz, 1H), 

12.28 (bs, 1H), 13.87 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.79, 19.80, 40.90, 116.78, 

120.01, 123.22, 127.10, 130.77, 131.25, 132.48, 133.60, 134.32, 139.17, 140.80, 141.18, 163.16, 

170.08; LC/MS: m/z = 431.72 [M + H + CH3CN]
+
, 781.12 [2M + H]

+
, tR = 11.98 min, 98.0% pure 

(UV). 

2-(3-(N,N-Diethylsulfamoyl)-4-ethylbenzamido)benzoic acid (36) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)-4-ethylbenzamido)benzoate (36a, 103 mg, 0.25 

mmol) according to General Procedure D, using THF/MeOH 2/1 (1 mL) and 1N NaOH (aq., 0.3 mL). 

The solution was acidified with 1N HCl (aq., 2 mL). The organic solvent was evaporated under 

reduced pressure The solid was isolated by suction filtration, washed with water and dried under 

reduced pressure: 79 mg, 80% yield; mp: 135.5-138.5 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.08 (t, J 

= 7.1 Hz, 6H), 1.24 (t, J = 7.4 Hz, 3H), 3.00 (q, J = 7.4 Hz, 2H), 3.34 (q, J = 7.1 Hz, 4H), 7.15 (dt, J = 

7.6, 1.3 Hz, 1H), 7.54 (dt, J = 7.9, 1.7 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 8.09 (dd, J = 7.9, 1.6 Hz, 1H), 

8.16 (dd, J = 7.9, 2.0 Hz, 1H), 8.31 (d, J = 1.9 Hz, 1H), 8.69 (dd, J = 8.4, 0.8 Hz, 1H), 13.85 (bs, 1H); 

13
C NMR (125 MHz, DMSO-d6): δ 14.24, 15.13, 25.26, 41.56, 119.21, 122.57, 126.40, 130.74, 

131.27, 131.97, 132.48, 132.70, 138.98, 140.84, 146.76, 162.84, 170.26; LC/MS: m/z = 445.70 [M + 

H + CH3CN]
+
, 808.42 [2M + H]

+
, tR = 12.86 min, 96.5% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-4-fluorobenzoic acid (37) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-4-fluorobenzoate (37a, 141 mg, 

0.35 mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 

mL). The solution was acidified with 1N HCl (aq., 2 mL). Water was added and the solid was isolated 

by suction filtration, washed with water and dried under reduced pressure. As the hydrolysis was 

incomplete the procedure as described above was repeated: 108 mg, 79% yield; mp: 241.2-243.7 °C; 

1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.08 (ddd, J = 

16.7, 8.8, 2.8 Hz, 1H), 7.84 (t, J = 7.9 Hz, 1H), 8.07 (m, 1H), 8.14 (dd, J = 8.8, 6.6 Hz, 1H), 8.21 (m, 

1H), 8.32 (t, J = 1.6 Hz, 1H), 8.52 (dd, J = 12.0, 2.8 Hz, 1H), 12.54 (bs, 1H), 14.04 (bs, 1H); 
13

C NMR 

(125 MHz, DMSO-d6): δ 14.10, 41.96, 106.54 (d, JCF = 28 Hz), 110.31 (d, JCF = 22 Hz), 113.19 (d, JCF 

= 3 Hz), 124.91, 130.24, 130.54, 131, 11, 134.01 (d, JCF = 11 Hz), 140.72, 142.88, (d, JCF = 13 Hz), 

164.99 (d, JCF = 250 Hz), 169.44; LC/MS: m/z = 435.67 [M + H + CH3CN]
+
, 788.65 [2M + H]

+
, tR = 

12.62 min, 97.1% pure (UV). 

4-Chloro-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoic acid (38) The title compound was 

synthesized from methyl 4-chloro-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (38a, 340 mg, 

0.80 mmol) according to General Procedure D, using THF/MeOH 2/1 (9 mL) and 1N NaOH (aq., 3 

mL). The solution was acidified with 1N HCl. The organic solvent was evaporated under reduced 

pressure The solid was isolated by suction filtration, washed with water, dried under reduced pressure 



SI Publication E 310 

 

 

and crystallized from MeOH: 102 mg, 31% yield; mp: 222.0-223.5 °C; 
1
H NMR (500 MHz, DMSO-

d6): δ 1.07 (t, J = 7.2 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.29 (dd, J = 8.5, 2.2 Hz, 1H), 7.84 (t, J = 7.7 

Hz, 1H), 8.06 (m, 2H), 8.20 (d, J = 7.9 Hz, 1H), 8.31 (s, 1H), 8.76 (d, J = 2.2 Hz, 1H), 12.38 (s, 1H), 

14.1 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.09, 41.95, 115.66, 119.40, 123.22, 124.93, 

130.21, 130.50, 131.12, 132.90, 135.00, 138.64, 140.72, 141.71, 163.44, 169.38; LC/MS: m/z = 

451.79 [M + H + CH3CN]
+
, 820.69 and 822.76 [2M + H]

+
, tR = 12.72 min, >99.9% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-4-nitrobenzoic acid (39) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-4-nitrobenzoate (39a, 157 mg, 0.36 

mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). 

The solution was acidified with 1N HCl (aq., 2 mL). Water was added and the solid was isolated by 

suction filtration, washed with water and dried under reduced pressure: 119 mg, 78% yield; mp: 229-

231.5 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H), 7.86 (t, 

J = 7.7 Hz, 1H), 8.03 (dd, J = 8.8, 2.5 Hz, 1H), 8.08 (m, 1H), 8.22 (m, 1H), 8.26 (d, J = 8.8 Hz, 1H), 

8.34 (t, J = 1.6 Hz, 1H), 9.43 (d, J = 2.5 Hz, 1H), 12.33 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 

14.12, 41.98, 114.66, 117.64, 122.88, 125.03, 130.34, 130.54, 131.23, 132.65, 134.79, 140.72, 140.98, 

150.11, 163.70, 168.56; LC/MS: m/z = 462.78 [M + H + CH3CN]
+
, 842.38 [2M + H]

+
, tR = 12.27 min, 

99.0% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-5-methylbenzoic acid (40) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-methylbenzoate (40a, 360 mg, 

0.89 mmol) according to General Procedure D, using THF/MeOH 2/1 (6 mL) and 1N NaOH (aq., 2 

mL). The solution was acidified with 1N HCl (aq., 4 mL). Water (10 mL) was added and the solid was 

isolated by suction filtration, washed with water and dried under reduced pressure: 330 mg, 95% yield; 

mp: 226.8-228.6 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 2.33 (s, 3H), 3.22 (q, 

J = 7.1 Hz, 4H), 7.49 (d, J = 8.2 Hz, 1H), 7.82 (t, J = 7.9 Hz, 1H), 7.87 (s, 1H), 8.04 (d, J = 7.6 Hz, 

1H), 8.20 (d, J = 7.9 Hz, 1H), 8.31 (s, 1H), 8.54 (d, J = 8.5 Hz, 1H), 12.17 (s, 1H), 13.79 (bs, 1H); 
13

C 

NMR (125 MHz, DMSO-d6): δ 14.10, 20.24, 41.94, 120.24, 124.87, 129.88, 130.40, 131.00, 131.27, 

132.59, 134.78, 135.52, 138.22, 140.63, 162.95, 170.03; LC/MS: m/z = 390.75 [M + H]
+
, 431.90 [M + 

H + CH3CN]
+
, 780.63 [2M + H]

+
, tR = 12.64 min, 99.4% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-5-(trifluoromethyl)benzoic acid (41) The title compound 

was synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-(trifluoromethyl)benzoate 

(41a, 157 mg, 0.36 mmol) according to General Procedure D, using THF/MeOH 2/1 (6 mL) and 1N 

NaOH (aq., 2 mL). The solution was acidified with 1N HCl (aq., 4 mL). The solid was isolated by 

suction filtration, washed with water and dried under reduced pressure: 232 mg, 81% yield; mp: 192.5-

193.8 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.84 (t, 

J = 7.7 Hz, 1H), 8.01 (dd, J = 8.8, 1.9 Hz, 1H), 8.07 (d, J = 7.9 Hz, 1H), 8.23 (m, 1H), 8.29 (d, J = 1.9 

Hz, 1H), 8.34 (m, 1H), 8.86 (d, J = 8.8 Hz, 1H), 12.79 (br.s, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 

14.03, 41.91, 18.08, 120.42, 123.04 (q, JCF = 32 Hz), 123.73 (q, JCF = 272 Hz), 125.02, 127.81 (q, JCF 



311 Appendix 

 

 

= 4 Hz), 130.18, 130.43, 131.09, 134.99, 140.66, 143.73, 163.51, 168.77; LC/MS: m/z = 444.59 [M + 

H]
+
, 485.65 [M + H + CH3CN]

+
, 888.77 [2M + H]

+
, tR = 13.28 min, 96.1% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-5-fluorobenzoic acid (42) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-fluorobenzoate (42a, 337 mg, 

0.83 mmol) according to General Procedure D, using THF/MeOH 2/1 (9 mL) and 1N NaOH (aq., 3 

mL). The solution was acidified with 1N HCl. The organic solvent was evaporated under reduced 

pressure The solid was isolated by suction filtration, washed with water, dried under reduced pressure 

and crystallized from MeOH: 86 mg, 26% yield; mp: 212.5-213.9 °C; 
1
H NMR (500 MHz, DMSO-

d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.56 (dt, J = 8.5, 3.2 Hz, 1H), 7.76 (dd, J = 9.1, 

3.2 Hz, 1H), 7.82 (t, J = 7.9 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 8.32 (s, 1H), 

8.61 (dd, J = 9.1, 5.0 Hz, 1H). 12.03 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.1, 41.9, 117.0 (d, 

JCF = 23.8 Hz), 119.7 (d, JCF = 6.4 Hz), 121.0 (d, JCF = 2.2 Hz), 122.7 (d, JCF = 8.2 Hz), 125.0, 130.0, 

130.4, 131.1, 135.3, 136.9, 140.7, 157.2 (d, JCF = 242 Hz), 163.1, 168.7; LC/MS: m/z = 435.83 [M + 

H + CH3CN]
+
, 788.64 [2M + H]

+
, tR = 11.68 min, 100% pure (UV). 

5-Bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoic acid (43) The title compound was 

synthesized from methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (43a, 368 mg, 

0.78 mmol) according to General Procedure D, using THF/MeOH 2/1 (9 mL) and 1N NaOH (aq., 3 

mL). The organic solvent was evaporated under reduced pressure. 1N HCl (aq., 4 mL) was added and 

the solid was isolated by suction filtration, washed with water, dried under reduced pressure and 

crystallized from MeOH: 70 mg, 20% yield; mp: 206.5-209.0 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 

1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.81 (m, 2H), 7.82 (m, 1H), 8.13 (d, J = 2.5 Hz, 1H), 

8.21 (m, 1H), 8.32 (t, J = 1.7 Hz, 1H), 8.60 (d, J = 8.8 Hz, 1H), 12.8 (bs, 1H); 
13

C NMR (125 MHz, 

DMSO-d6): δ 14.11, 41.96, 114.70, 120.78, 122.09, 125.03, 130.00, 130.41, 131.04, 133.31, 135.36, 

136.04, 139.76, 140.66, 163.18, 168.53; LC/MS: m/z = 495.76 and 497.48 [M + H + CH3CN]
+
, 910.86 

[2M + H]
+
, tR = 12.69 min, 100% pure (UV). 

5-Cyano-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoic acid (44) The title compound was 

synthesized from methyl 5-cyano-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (44a, 237 mg, 0.59 

mmol) according to General Procedure D, using THF/MeOH 2/1 (4 mL) and 1N NaOH (aq., 1 mL). 

The solution was acidified with 1N HCl (aq., 2 mL). Water (10 mL) was added and the solid was 

isolated by suction filtration, washed with water, dried under reduced pressure and crystallized from 

MeOH: 137 mg, 60% yield; mp: 195.3-196.6 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 

Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 7.85 (t, J = 7.7 Hz, 1H), 8.08 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.12 

(dd, J = 8.8, 2.2 Hz, 1H), 8.22 (ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.33 (t, J = 1.6 Hz, 1H), 8.41 (d, J = 2.5 

Hz, 1H), 8.82 (d, J = 9.1 Hz, 1H), 12.54 (bs, 1H). 
13

C NMR (125 MHz, DMSO-d6): δ 14.11, 41.96, 

105.46, 117.90, 118.07, 120.54, 125.08, 130.40, 130.58, 131.28, 134.89, 135.37, 137.52, 140.75, 

144.17, 163.71, 168.61. LC/MS: m/z = 401.63 [M + H]
+
, 442.73 [M + H + CH3CN]

+
, 802.54 [2M + 

H]
+
, tR = 11.77 min, 96.2% pure (UV). 
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2-(3-(N,N-Diethylsulfamoyl)benzamido)-5-nitrobenzoic acid (45) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-5-nitrobenzoate (45a, 304 mg, 0.70 

mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 0.7 mL). 

The solution was acidified with 1N HCl (aq., 4 mL). Water was added and the solid was isolated by 

suction filtration, washed with water, dried under reduced pressure and crystallized from MeOH: 115 

mg, 39% yield; mp: 216.6-218.8 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.23 

(q, J = 7.1 Hz, 4H), 7.86 (t, J = 7.8 Hz, 1H), 8.09 (dt, J = 8.3, 1.5 Hz, 1H), 8.24 (dt, J = 7.9, 1.6 Hz, 

1H), 8.34 (t, J = 1.6 Hz, 1H), 8.53 (dd, J = 9.3, 2.9 Hz, 1H), 8.78 (d, J = 2.8 Hz, 1H), 8.90 (d, J = 9.3 

Hz, 1H), 12.67 (s, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.12, 41.98, 48.56, 117.44, 120.34, 

125.11, 126.52, 129.12, 130.50, 130.61, 131.32, 134.76, 140.77, 141.70, 145.87, 163.77, 168.55; 

LC/MS: m/z = 421.89 [M + H]
+
, 462.94 [M + H+ CH3CN]

+
, 842.83 [2M + H]

+
, tR = 12.31 min, 99.5% 

pure (UV). 

2-(4-Bromo-3-(N,N-diethylsulfamoyl)benzamido)-5-fluorobenzoic acid (46) The title compound 

was synthesized from methyl 2-(4-bromo-3-(N,N-diethylsulfamoyl)benzamido)-5-fluorobenzoate 

(46a, 110 mg, 0.23 mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N 

NaOH (aq., 1 mL). The solution was acidified with 1N HCl (aq., 2 mL). The organic solvent was 

evaporated under reduced pressure The solid was isolated by suction filtration, washed with water and 

dried under reduced pressure: 88 mg, 82% yield; mp 226.7-228.7 °C; 
1
H NMR (500 MHz, DMSO-d6): 

δ 1.07 (t, J = 7.1 Hz, 6H), 3.37 (q, J = 7.1 Hz, 4H), 7.56 (ddd, J = 9.1, 8.2, 3.2 Hz, 1H), 7.75 (dd, J = 

9.5, 3.2 Hz, 1H), 8.03 (dd, J = 8.2, 2.2 Hz, 1H), 8.10 (d, J = 8.2 Hz, 1H), 8.52 (d, J = 2.2 Hz, 1H), 8.56 

(dd, J = 9.1, 5.0 Hz, 1H), 12.02 (bs, 1H), 14.14 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.77, 

41.24, 117.04 (d, JCF = 23.8 Hz), 119.89 (d, JCF = 6.4 Hz), 120.95 (d, JCF = 22.0 Hz), 122.85 (d, JCF = 

7.3 Hz), 123.58, 129.54, 131.99, 133.96, 136.54, 136.69, 140.06, 157.30 (d, JCF = 241.91Hz), 162.59, 

168.65; LC/MS: m/z = 472.45 and 474.47 [M + H]
+
, 513.44 and 515.35 [M + H + CH3CN]

+
, 946.30 

and 948.34 [2M + H]
+
, tR = 12.40 min, 99.7% pure (UV). 

5-Bromo-2-(4-bromo-3-(N,N-diethylsulfamoyl)benzamido)benzoic acid (47) The title compound 

was synthesized from methyl 5-bromo-2-(4-bromo-3-(N,N-diethylsulfamoyl)benzamido)benzoate 

(47a, 145 mg, 0.26 mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N 

NaOH (aq., 1 mL). The solution was acidified with 1N HCl (aq., 2 mL). The organic solvent was 

evaporated under reduced pressure The solid was isolated by suction filtration, washed with water and 

dried under reduced pressure: 110 mg, 78% yield; mp: 218.6-220.0 °C; 
1
H NMR (500 MHz, DMSO-

d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.37 (q, J = 7.1 Hz, 4H), 7.85 (dd, J = 9.1, 2.5 Hz, 1H), 8.02 (dd, J = 

8.2, 2.5 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 2.5 Hz), 8.51 (d, J = 2.2 Hz, 1H), 8.55 (d, J = 

8.8 Hz, 1H), 12.18 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.78, 41.25, 114.99, 119.59, 122.44, 

123.75, 129.52, 131.99, 133.23, 133.82, 136.60, 136.68, 139.57, 140.10, 162.67, 168.62; LC/MS: m/z 

= 532.38 and 534.07 [M + H]
+
, 575.22 and 577.26 [M + H + CH3CN]

+
, tR = 13.36 min, 98.7% pure 

(UV). 
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4-(3-(N,N-Diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3-carboxylic acid (48) The title compound 

was synthesized from methyl 4-(3-(N,N-diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3-carboxylate 

(48a, 84 mg, 0.18 mmol) according to General Procedure D, using THF/MeOH 2/1 (1.5 mL) and 1N 

NaOH (aq., 0.42 mL). The solution was acidified with 1N HCl (aq., 1 mL). The organic solvent was 

evaporated under reduced pressure. The solid was isolated by suction filtration, washed with water and 

dried under reduced pressure: 60 mg, 74% yield; mp: 217.6-219.2 °C; 
1
H NMR (500 MHz, DMSO-

d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H), 7.39 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 

2H), 7.70 (d, J = 7.3 Hz, 2H), 7.84 (t, J = 7.9 Hz, 1H), 8.01 (dd, J = 8.7, 2.5 Hz, 1H), 8.06 (m, 1H), 

8.23 (m, 1H), 8.30 (d, J = 2.5 Hz, 1H), 8.35 (m, 1H), 8.76 (d, J = 8.8 Hz, 1H), 12.32 (s, 1H); 
13

C NMR 

(125 MHz, DMSO-d6): δ 14.12, 41.97, 117.64, 120.77, 124.95, 126.36, 127.63, 128.91, 129.07, 

130.02, 130.47, 131.08, 132.28, 134.96, 135.39, 138.60, 139.86, 140.67, 163.16, 169.95; LC/MS: m/z 

= 493.75 [M + H + CH3CN]
+
, 904.57 [2M + H]

+
, tR = 13.49 min, 99.8% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-6-methoxybenzoic acid (49) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-6-methoxybenzoate (49a) according 

to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). 1N HCl (aq., 2 mL) 

was added and the organic solvent was evaporated under reduced pressure. The precipitate was 

isolated by suction filtration and crystallized from MeOH (2 mL) containing a small amount of water 

(0.5 mL). The white solid was isolated by suction filtration, washed with cold MeOH/water 1/1 and 

dried under reduced pressure:110 mg, 27% yield over 2 steps; mp: 133.8-136.4 °C; 
1
H NMR (500 

MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.21 (q, J = 7.1 Hz, 4H), 3.83 (s, 3H), 7.01 (d, J = 8.2 Hz, 

1H), 7.29 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 8.2 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 8.01 (d, J = 7.9 Hz, 

1H), 8.17 (d, J = 7.9 Hz, 1H), 8.29 (s, 1H), 10.58 (s, 1H), 12.99 (bs, 1H); 
13

C NMR (125 MHz, 

DMSO-d6): δ 14.16, 41.95, 56.04, 109.14, 117.60, 118.58, 125.50, 129.63, 129.90, 130.95, 131.42, 

135.29, 136.40, 140.30, 157.24, 163.92, 167.25; LC/MS: m/z = 406.64 [M + H]
+
, 429.69 [M - OH + 

CH3CN]
+
, 812.53 [2M + H]

+
, tR = 11.05 min, 96.1% pure (UV). 

2-Chloro-6-(3-(N,N-diethylsulfamoyl)benzamido)benzoic acid (50) The title compound was 

synthesized from methyl 2-chloro-6-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (50a) according to 

General Procedure D, using THF/MeOH 2/1 (6 mL) and 1N NaOH (aq., 2 mL). The organic solvent 

was evaporated under reduced pressure. 1N HCl (aq., 4 mL) was added. A thick gum was formed. The 

water was decanted and MeOH (2 mL) was added to the residue. The mixture was stirred at room 

temperate yielding a white solid, which was crystallized from EtOH: 31 mg, 8% yield over 2 steps; 

mp: 184.3-186.3 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.06 (t, J = 7.1 Hz, 6H), 3.21 (q, J = 7.1 Hz, 

4H), 7.22 (dd, J = 8.0, 1.1 Hz, 1H), 7.33 (t, J = 8.2 Hz, 1H), 7.78 (t, J = 7.7 Hz, 1H), 8.01 (m, 1H), 

8.06 (br.d, 1H), 8.18 (m, 1H), 8.30 (t, J = 1.6 Hz, 1H), 12.17 (bs, 1H); 
13

C NMR (125 MHz, DMSO-

d6): δ 14.13, 41.96, 120.62, 125.53, 125.75, 129.17, 129.68, 130.07, 130.87, 131.21, 135.42, 137.51, 

140.52, 163.10, 166.80; LC/MS: m/z = 410.61 and 412.66 [M + H]
+
, 822.55 [2M + H]

+
, tR = 10.90 

min, 96.1% pure (UV). 
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2-(3-(N,N-Diethylsulfamoyl)benzamido)-6-fluorobenzoic acid (51) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-6-fluorobenzoate (51a, 170 mg, 

0.42 mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 

mL). The solution was acidified with 1N HCl (aq., 2 mL). Water was added and the solid was isolated 

by suction filtration, washed with water and dried under reduced pressure: 152 mg, 93% yield; mp: 

213.1-215.5 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 

7.15 (dd, J = 9.8, 8.8 Hz, 1H), 7.60 (dd, J = 8.2, 6.3 Hz, 1H), 7.80 (t, J = 7.9 Hz, 1H), 7.83 (d, J = 8.5 

Hz, 1H), 8.04 (d, J = 7.9 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 8.31 (s, 1H), 11.23 (s, 1H), 13.70 (bs, 1H); 

13
C NMR (125 MHz, DMSO-d6): δ 14.06, 41.87, 112.37 (d, JCF = 23 Hz), 113.52 (d, JCF = 16 Hz), 

119.22 (d, JCF = 4 Hz), 125.29, 130.05, 131.32, 132.86 (JCF = 11 Hz), 135.05, 138.75 (d, JCF = 5 Hz), 

160.46 (d, JCF = 252 Hz), 163.70, 165.88; LC/MS: m/z = 394.71 [M + H]
+
, 788.78 [2M + H]

+
, tR = 

11.79 min, 99.6% pure (UV). 

2-(3-(N,N-Diethylsulfamoyl)benzamido)-6-hydroxybenzoic acid (52) The title compound was 

synthesized from methyl 2-(3-(N,N-diethylsulfamoyl)benzamido)-6-hydroxybenzoate (52a, 120 mg, 

0.42 mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 

mL). The solution was acidified with 1N HCl (aq., 3 mL) and extracted with dichloromethane (three 

times). The combined organic extracts were dried over sodium sulfate, filtered and evaporated under 

reduced pressure, yielding a slightly yellow oil that solidified upon standing. The product was 

crystallized from MeOH: 75 mg, 65% yield; mp: 175.8-176.7 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 

1.06 (t, J = 7.1 Hz, 6H), 3.22 (q, J = 7.1 Hz, 4H), 6.71 (dd, J = 8.2, 0.9 Hz, 1H), 7.39 (t, J = 8.2 Hz, 

1H), 7.79 (t, J = 7.9 Hz, 1H), 7.82 (dd, J = 8.2, 1.3 Hz, 1H), 8.02 (ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 8.19 

(ddd, J = 7.9, 1.9, 1.3 Hz, 1H), 8.30, (t, J = 1.7 Hz, 1H), 10.87 (bs, 2H), 12.14 (s, 1H); 
13

C NMR (125 

MHz, DMSO-d6): δ 14.12, 41.93, 106.98, 112.13, 112.80, 125.20, 129.69, 130.16, 130.99, 133.38, 

135.84, 139.84, 140.53, 160.93, 163.20, 171.45; LC/MS: m/z = 392.88 [M + H]
+
, 433.92 [M + H + 

CH3CN]
+
, 784.83 [2M + H]

+
, tR = 10.51 min, 97.5% pure (UV). 

3'-Carbamoyl-4-(3-(N,N-diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3-carboxylic acid (53) A 

solution of methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (45a, 219 mg, 0.48 

mmol), (3-carbamoylphenyl)boronic acid (119 mg, 0.72 mmol) and cesium carbonate (470 mg, 1.44 

mmol) in a mixture of DME/water 1/1 (20 mL) was degassed. A catalytic amount of 

tetrakis(triphenylphosphine)palladium was added. The reaction flask was put into a pre-heated oil bath 

(120 °C) and heated for 3.5 h under a nitrogen atmosphere. After cooling to room temperature water 

was added and the solution was acidified with 1N HCl (aq.). The white solid was isolated by suction 

filtration, washed with water and briefly heated to reflux with a few mL’s of methanol. The solids 

were isolated by suction filtration, washed with a small amount of methanol and dried under reduced 

pressure to yield the title compound (182 mg, 76% yield); mp: 259.3-259.8 °C (dec.); 
1
H NMR (500 

MHz, DMSO-d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H), 7.46 (bs, 1H), 7.57 (t, J = 7.7 

Hz, 1H), 7.83-7.90 (m, 3H), 8.06-8.09 (m, 2H), 8.17 (bs, 1H), 8.21 (t, J = 1.6 Hz, 1H), 8.24 (dt, J = 
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7.6, 1.3 Hz, 1H), 8.35 (t, J = 1.7 Hz, 1H), 8.38 (d, J = 2.2 Hz, 1H), 8.78 (d, J = 8.8 Hz, 1H), 12.37 (bs, 

1H), 14.06 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.12, 41.97, 117.80, 120.80, 124.97, 125.31, 

126.75, 129.07, 129.10, 130.04, 130.46, 131.09, 132.40, 134.35, 135.03, 135.38, 138.58, 140.07, 

140.67, 163.19, 167.67, 169.95; LC/MS: m/z = 495.99 [M + H]
+
, 436.84 [M + H + CH3CN]

+
, 990.95 

[2M + H]
+
, tR = 11.23 min, 95.7% pure (UV). 

4'-Carbamoyl-4-(3-(N,N-diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3-carboxylic acid (54) A 

solution of methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (43a, 341 mg, 0.75 

mmol), (4-carbamoylphenyl)boronic acid (186 mg, 1.13 mmol) and cesium carbonate (733 mg, 2.25 

mmol) in a mixture of DME/water 1/1 (15 mL) was degassed. A catalytic amount of 

tetrakis(triphenylphosphine)palladium was added. The reaction flask was put into a pre-heated oil bath 

(100 °C) and heated for 3.5 h under a nitrogen atmosphere. After cooling to room temperature water 

(15 mL) was added and the solution was filtered over a thin layer of Celite. The filtrate was acidified 

with 1N HCl (aq.). The white solid was isolated by suction filtration, washed twice with water and 

heated to reflux with methanol (30 mL). After cooling to room temperature the solids were isolated by 

centrifugation and dried under reduced pressure to yield the title compound (224 mg, 60% yield); mp: 

282-285 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 1.07 (t, J = 7.1 Hz, 6H), 3.24 (q, J = 7.1 Hz, 4H), 7.40 

(bs, 1H), 7.81 (d, J = 8.5 Hz, 2H), 7.85 (t, J = 7.9 Hz, 1H), 7.99 (d, J = 8.5 Hz, 2H), 8.04 (bs, 1H), 

8.08 (m, 2H), 8.24 (ddd, J = 7.6, 1.9, 1.0 Hz, 1H), 8.35 (t, J = 1.6 Hz, 1H), 8.37 (d, J = 2.5 Hz, 1H), 

8.78 (d, J = 8.8 Hz, 1H), 12.41 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.61, 42.46, 118.24, 

121.28, 125.46, 126.60, 128.79, 129.61, 130.56, 130.97, 131.59, 132.94, 133.70, 134.43, 135.84, 

140.79, 141.18, 141.61, 163.70, 167.92, 170.38; LC/MS: m/z = 495.97 [M + H]
+
, 536.89 [M + H + 

CH3CN]
+
, 991.01 [2M + H]

+
, tR = 11.12 min, 97.8% pure (UV). 

4-(3-(N,N-diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3,3'-dicarboxylic acid (55) A solution of 

methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate (43a, 341 mg, 0.75 mmol), (3-

carboxyphenyl)boronic acid (187 mg, 1.13 mmol) and cesium carbonate (733 mg, 2.25 mmol) in a 

mixture of DME/water 1/1 (15 mL) was degassed. A catalytic amount of 

tetrakis(triphenylphosphine)palladium was added. The reaction flask was put into a pre-heated oil bath 

(100 °C) and heated for 3.5 h under a nitrogen atmosphere. After cooling to room temperature water 

(15 mL) was added and the solution was filtered over a thin layer of Celite. The filtrate was acidified 

with 1N HCl (aq.). The white solid was isolated by suction filtration, washed twice with water and 

heated to reflux with methanol (30 mL). After cooling to room temperature the solids were isolated by 

centrifugation and dried under reduced pressure to yield the title compound (235 mg, 63% yield); mp: 

265.8-267.3 °C; 
1
H NMR (500 MHz, DMSO-d6): δ = 1.07 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H), 

7.62 (t, J = 7.7 Hz, 1H), 7.84 (t, J = 7.7 Hz, 1H), 7.94-7.98 (m, 2H), 8.04-8.07 (m, 2H), 8.21 (t, J = 1.7 

Hz, 1H), 8.23 (m, 1H), 8.32 (d, J = 2.2 Hz, 1H), 8.35 (t, J = 1.6 Hz, 1H), 8.78 (d, J = 8.8 Hz, 1H), 

12.33 (s, 1H), 13.15 (bs, 1H), 14.04 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ = 14.12, 41.97, 

117.69, 120.87, 124.96, 126.87, 128.40, 128.99, 129.48, 130.04, 130.46, 130.76, 131.09, 131.59, 
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132.39, 133.93, 135.35, 138.91, 140.23, 140.67, 163.19, 167.13, 169.85; LC/MS: m/z = 496.90 [M + 

H]
+
, 537.77 [M + H + CH3CN]

+
, 992.79 [2M + H]

+
, tR = 12.02 min, 95.1% pure (UV). 

4-(3-(N,N-diethylsulfamoyl)benzamido)-[1,1'-biphenyl]-3,4'-dicarboxylic acid (56) The title 

compound was synthesized from methyl 5-bromo-2-(3-(N,N-diethylsulfamoyl)benzamido)benzoate 

(43a, 341 mg, 0.75 mmol) and (4-carboxyphenyl)boronic acid (187 mg, 1.13 mmol) using the same 

procedure as described for compound 55. The product was purified by heating with methanol, filtered 

and isolated as a white solid: 251 mg, 67%; mp: 282.4-283.3 °C; 
1
H NMR (500 MHz, DMSO-d6): δ = 

1.07 (t, J = 7.1 Hz, 6H), 3.23 (q, J = 7.1 Hz, 4H), 7.83-7.87 (m, 3H), 8.03-8.09 (m, 4H), 8.23 (d, J = 

7.9 Hz, 1H), 8.34 (d, J = 1.7 Hz, 1H), 8.39 (d, J = 2.2 Hz, 1H), 8.79 (d, J = 8.5 Hz, 1H), 12.37 (s, 1H), 

13.02 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 14.12, 41.97, 117.64, 120.76, 124.95, 126.42, 

129.23, 129.70, 130.07, 130.46, 131.09, 132.52, 133.62, 135.30, 140.53, 140.67, 142.61, 163.20, 

167.03, 169.85; LC/MS: m/z = 537.70 [M + H
+
 CH3CN], 992.84 [2M+ H

+
), tR = 11.07 min, 96.6% 

pure (UV).  

2-(3-Sulfamoylbenzamido)benzoic acid (57) The title compound was synthesized from methyl 2-(3-

sulfamoylbenzamido)benzoate (57a, 220 mg, 0.66 mmol) according to General Procedure D, using 

THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). After stirring for 2 days at room temperature 1N 

HCl (aq., 4 mL) was added and stirring continued overnight. The solid was isolated by suction 

filtration, washed with water and dried under reduced pressure: 176 mg, 84% yield; mp: 224-234 °C; 

1
H NMR (500 MHz, DMSO-d6): δ 7.24 (m, 1H), 7.36 (s, 2H), 7.69 (m, 1H), 7.82 (t, J = 7.9 Hz, 1H), 

8.07 (m, 2H), 8.16 (m, 1H), 8.44 (t, J = 1.7 Hz, 1H), 8.67 (dd, J = 8.5, 1.0 Hz, 1H), 12.28 (s, 1H); 
13

C 

NMR (125 MHz, DMSO-d6): δ 117.01, 120.19, 123.37, 124.51, 129.06, 129.90, 129.93, 131.24, 

134.31, 135.11, 140.65, 144.95, 163.44, 170.02; LC/MS: m/z = 361.78 [M + H + CH3CN]
+
, 640.62 

[2M + H]
+
, tR = 8.75 min, 95.3% pure (UV). 

2-(3-(N,N-Dimethylsulfamoyl)benzamido)benzoic acid (58) The title compound was synthesized 

from methyl 2-(3-(N,N-dimethylsulfamoyl)benzamido)benzoate (58a, 100 mg, 0.28 mmol) according 

to General Procedure D, using THF/MeOH 2/1 (1.5 mL) and 1N NaOH (aq., 0.5 mL). The solution 

was acidified with 1N HCl (aq., 1 mL). Water was added and the solution was extracted with ethyl 

acetate (three times). The combined organic extracts were washed with 1N HCl (aq.), dried over 

sodium sulfate, filtered and evaporated under reduced pressure. The residue was stirred with a small 

amount of water. The solid was isolated by suction filtration, washed with water and dried under 

reduced pressure: 44 mg, 46% yield; mp: 226.6-229.5°C; 
1
H NMR (500 MHz, DMSO-d6): δ 2.68 (s, 

6H), 7.25 (dt, J = 7.6, 1.3 Hz, 1H), 7.69 (dt, J = 7.9, 1.6 Hz, 1H), 7.89 (t, J = 8.0 Hz, 1H), 8.01 (dd, 

7.9, 1.4 Hz, 1H), 8.06 (dd, J = 7.9, 1.6 Hz, 1H), 8.26 (m, 2H), 8.67 (dd, J = 8.5, 0.9 Hz, 1H), 12.31 

(bs, 1H), 13.89 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 37.55, 117.08, 120.13, 123.41, 125.64, 

130.42, 130.77, 131.27, 131.58, 134.31, 135.51, 135.65, 140.62, 163.18, 170.06; LC/MS: m/z = 

389.69 [M + H + CH3CN]
+
, 696.57 [2M + H]

+
, tR = 10.35 min, 98.4% pure (UV). 
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2-(3-(N,N-Dipropylsulfamoyl)benzamido)benzoic acid (59) The title compound was synthesized 

from methyl 2-(3-(N,N-dipropylsulfamoyl)benzamido)benzoate (59a, 217 mg, 0.52 mmol) according 

to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). The solution was 

acidified with 1N HCl (aq., 2 mL). Water was added and the solid was isolated by suction filtration, 

washed with water and dried under reduced pressure: 195 mg, 93% yield; mp: 213.0-213.8 °C; 
1
H 

NMR (500 MHz, DMSO-d6): δ 0.81 (t, J = 7.4 Hz, 6H), 1.49 (sextet, J = 7.4 Hz, 4H), 3.08 (t, J = 7.6 

Hz, 4H), 7.24 (t, J = 7.6 Hz, 1H), 7.68 (dt, J = 7.7, 1.4 Hz, 1H), 7.84 (t, J = 7.9 Hz, 1H), 8.06 (, 2H), 

8.22 (d, J = 7.9 Hz, 1H), 8.33 (s, 1H), 8.67 (d, J = 8.2 Hz, 1H), 12.30 (bs, 1H), 13.86 (bs, 1H); 
13

C 

NMR (125 MHz, DMSO-d6): δ 10.94, 21.57, 49.61, 117.06, 120.15, 123.38, 125.02, 130.04, 130.40, 

131.00, 131.24, 134.29, 135.40, 140.42, 140.63, 163.18, 170.03. LC/MS: m/z = 445.78 [M + H + 

CH3CN]
+
, 808.72 [2M + H]

+
,tR = 13.20 min, 98.8% pure (UV). 

2-(3-(Pyrrolidin-1-ylsulfonyl)benzamido)benzoic acid (60)
S15

 The title compound was synthesized 

from methyl 2-(3-(pyrrolidin-1-ylsulfonyl)benzamido)benzoate (60a, 82 mg, 0.21 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (1.5 mL) and 1N NaOH (aq., 0.42 mL). The solution was 

acidified with 1N HCl (aq., 1 mL). The solid was isolated by suction filtration, washed with water and 

dried under reduced pressure: 33 mg, 42% yield; mp: 226.6-227.8 °C; 
1
H NMR (500 MHz, DMSO-

d6): δ 1.67 (m, 4H), 3.20 (m, 4H), 7.25 (m, 1H), 7.69 (m, 1H), 7.87 (t, J = 7.9 Hz, 1H), 8.06 (m, 1H), 

8.08 (m, 1H), 8.26 (m, 1H), 8.33 (m, 1H), 8.67 (dd, J = 8.5, 0.9 Hz, 1H), 12.3 (bs, 1H); 
13

C NMR (125 

MHz, DMSO-d6): δ 29.96, 53.14, 122.40, 125.36, 128.64, 130.67, 135.67, 135.76, 136.50, 136.70, 

139.52, 140.69, 142.35 145.87, 168.46, 175.29; LC/MS: m/z = 415.67 [M + H + CH3CN]
+
, 748.42 

[2M + H]
+
, tR = 10.85 min, >99% pure (UV). 

2-(3-(Piperidin-1-ylsulfonyl)benzamido)benzoic acid (61)
S15

 The title compound was synthesized 

from methyl 2-(3-(piperidin-1-ylsulfonyl)benzamido)benzoate (61a, 146 mg, 0.36 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (1.5 mL) and 1N NaOH (aq., 0.40 mL). The solution was 

acidified with 1N HCl (aq., 1 mL). The solid was isolated by suction filtration, washed with water and 

dried under reduced pressure: 50 mg, 48% yield; mp: 224.4-227.0 °C; 
1
H NMR (500 MHz, DMSO-

d6): δ 1.34 (m, 2H), 1.55 (m, 4H), 2.95 (m, 4H), 7.25 (dt, J = 7.6, 1.3 Hz, 1H), 7.69 (dt, J = 7.9, 1.6 

Hz, 1H), 7.88 (t, J = 8.0 Hz, 1H), 7.99 (dd, 7.9, 1.4 Hz, 1H), 8.07 (dd, J = 7.9, 1.6 Hz, 1H), 8.26 (m, 

2H), 8.67 (dd, J = 8.5, 0.9 Hz, 1H), 12.32 (bs, 1H), 13.88 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 

22.72, 24.65, 46.58, 117.10, 120.12, 123.41, 125.61, 130.39, 130.66, 131.27, 131.47, 134.31, 135.45, 

136.45, 140.61, 163.16, 170.04; LC/MS: m/z = 429.72 [M + H + CH3CN]
+
, 776.56 [2M + H]

+
, tR = 

11.72 min, 99.3% pure (UV). 

2-(3-(Azepan-1-ylsulfonyl)benzamido)benzoic acid (62) The title compound was synthesized from 

methyl 2-(3-(azepan-1-ylsulfonyl)benzamido)benzoate (62a, 230 mg, 0.55 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). The solution was 

acidified with 1N HCl (aq., 2 mL). Water was added and the solid was isolated by suction filtration, 

washed with water and dried under reduced pressure: 209 mg, 94% yield; mp: 210.7-211.8 °C; 
1
H 
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NMR (500 MHz, DMSO-d6): δ 1.50 (m, 4H), 1.64 (m, 4H), 3.26 (t, J = 5.8 Hz, 4H), 7.24 (dt, J = 7.6, 

1.3 Hz, 1H), 7.68 (m, 1H), 7.84 (t, J = 7.7 Hz, 1H), 8.04 (m, 1H), 8.07 (dd, J = 7.9 Hz, 1H), 1.6 Hz, 

1H), 8.22 (m, 1H), 8.31 (t, J = 1.7 Hz, 1H), 8.66 (dd, J = 8.5, 0.9 Hz, 1H),12.30 (bs, 1H), 13.87 (bs, 

1H); 
13

C NMR (125 MHz, DMSO-d6): δ 26.28, 28.52, 47.79, 117.09, 120.14, 123.38, 124.83, 129.91, 

130.42, 131.07, 131.25, 134.28, 135.44, 139.85, 140.63, 163.19, 170.04; LCMS: m/z = 443.79 [M + H 

+ CH3CN]
+
, 804.62 [2M + H]

+
, tR = 12.66 min, 97.8% pure (UV). 

2-(3-(Morpholinosulfonyl)benzamido)benzoic acid (63)
S15

 The title compound was synthesized 

from methyl 2-(3-(morpholinosulfonyl)benzamido)benzoate (63a, 146 mg, 0.36 mmol) according to 

General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). The solution was 

acidified with 1N HCl (aq., 1 mL). Water was added and the solution was extracted with ethyl acetate 

(three times). The combined organic extracts were washed with 1N HCl (aq.), dried over sodium 

sulfate, filtered and evaporated under reduced pressure. The residue was stirred with a small amount of 

water. The solid was isolated by suction filtration, washed with water and dried under reduced 

pressure: 85 mg, 60% yield; mp: 245-248 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 2.94 (m, 4H), 3.65 

(m, 4H), 7.25 (dt, J = 7.6, 1.3 Hz, 1H), 7.69 (dt, J = 7.9, 1.6 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 8.00 

(dd, 7.9, 1.4 Hz, 1H), 8.07 (dd, J = 7.9, 1.6 Hz, 1H), 8.27 (m, 2H), 8.66 (dd, J = 8.5, 0.9 Hz, 1H), 

12.34 (bs, 1H), 13.89 (bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 45.88, 65.23, 117.24, 120.13, 

123.42, 125.92, 130.51, 130.84, 131.26, 131.81, 134.25, 135.35, 135.68, 140.59, 163.15, 170.00; 

LC/MS: m/z = 431.70 [M + H + CH3CN]
+
, 780.44 [2M + H]

+
, tR = 10.23 min, >99.9% pure (UV). 

2-(3-(N-Benzyl-N-ethylsulfamoyl)benzamido)benzoic acid (64) The title compound was 

synthesized from methyl 2-(3-(N-benzyl-N-ethylsulfamoyl)benzamido)benzoate (64a, 118 mg, 0.26 

mmol) according to General Procedure D, using THF/MeOH 2/1 (3 mL) and 1N NaOH (aq., 1 mL). 

The solution was acidified with 1N HCl (aq., 1 mL). Water was added and the solution was extracted 

with ethyl acetate (three times). The combined organic extracts were washed with 1N HCl (aq.), dried 

over sodium sulfate, filtered and evaporated under reduced pressure. The residue was stirred with a 

small amount of water. The solid was isolated by suction filtration, washed with water and dried under 

reduced pressure: 70 mg, 61% yield; mp: 182.0-183.9 °C; 
1
H NMR (500 MHz, DMSO-d6): δ 0.86 (t, J 

= 7.1 Hz, 3H), 3.19 (q, J = 7.1 Hz, 2H), 4.40 (s, 2H), 7.25 (dt, J = 7.6, 1.3 Hz, 1H), 7.29 (m, 1H), 7.34 

(m, 4H), 7.69 (dt, J = 7.9, 1.6 Hz, 1H), 7.86 (t, J = 8.0 Hz, 1H), 8.06 (dd, J = 7.9, 1.6 Hz, 1H), 8.13 

(m, 1H), 8.25 (m, 1H), 8.38 (t, J = 1.7 Hz, 1H), 8.67 (dd, J = 8.5, 0.9 Hz, 1H), 12.31 (bs, 1H), 13.87 

(bs, 1H); 
13

C NMR (125 MHz, DMSO-d6): δ 13.49, , 42.74, 50.68, 117.17, 120.19, 123.42, 124.99, 

127.54, 128.00, 128.43, 130.12, 130.52, 131.26, 131.31, 134.29, 135.54, 136.89, 140.52, 140.61, 

163.16, 170.03. LC/MS: m/z = 438.73 [M + H]
+
, 479.66 [M + H + CH3CN]

+
, 876.53 [2M + H]

+
, tR = 

12.71 min, 99.7% pure (UV). 
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Biological Methods 

Expression and purification of recombinant PqsD from E. coli for STD NMR analysis. Following 

the expression procedure described above, the cell pellet was resuspended in 80 mL binding buffer (20 

mM sodium phosphate, pH 7.0, 50 mM NaCl, 5 mM MgCl2, 20 mM imidazole) and lysed by 

sonication for a total process time of 4.0 min. Cell debris were removed by centrifugation (18500 rpm, 

40 min, 4 °C) and the supernatant was filtered through a syringe filter (0.20 μm). The clarified 

supernatant was immediately applied to a Ni-NTA column, washed with binding buffer and eluted 

with 20 mM sodium phosphate, pH 7.0, 50 mM NaCl and 250 mM imidazole. The protein containing 

fractions were buffer-exchanged into storage buffer (20 mM sodium phosphate, pH 7.0, 50 mM NaCl, 

5 mM MgCl2) using a PD10 column. Subsequently the His-tag was removed by thrombin cleavage 

using 1 unit thrombin per mg protein in presence of 2.5 mM CaCl2 for 16 h at 16 °C. The protein was 

separated from any uncleaved or His-containing protein by running the mixture through another Ni-

NTA column under the same conditions as the first time. The cleaved protein was buffer-exchanged 

into storage buffer using a PD10 column and further purified by a HiLoad 16/600 Superdex 200 

column and storage buffer as eluent. The protein containing fractions were pooled, concentrated using 

a Vivaspin 20, 10K MWCO to a final concentration of 377 µM and stored in aliquots at -80 °C.  

  

Synthesis of ethyl 3-oxodecanoate
S17

 At 0 °C octanoyl chloride (24 mL, 141 mmol) was added 

slowly by means of a syringe to a stirred solution of Meldrum’s acid (20.0 g, 139 mmol), 4-

dimethylaminopyridine (4.0 g, 32.7 mmol) in a mixture of pyridine (150 mL) and dichloromethane 

(350 mL). The cooling bath was removed and the reaction was stirred for 5½ h at room temperature. 

Dichloromethane (50 mL) was added and the solution was extracted with 2N aqueous HCl (4 x 250 

mL). The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The 

residue was dissolved in ethanol (150 mL) and refluxed overnight. The solvent was evaporated under 

reduced pressure. The product was purified by column chromatography (SiO2, petroleum ether/ethyl 

acetate 20/1) to give the title compound as a yellow oil: 25 g, 83% yield. 
1
H NMR (500 MHz, CDCl3): 

δ 0.84 (t, J = 7.0 Hz, 3H), 1.23-1.28 (m, 11H), 1.54 (quintet, J = 7.0 Hz, 2H), 2.49 (t, J = 7.0 Hz, 2H), 

3.39 (s, 2H), 4.16 (m, 2H). 
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Primer sequence of mutations 

Mut

ant 

Primer 

forward 5’  3’ reverse 3’ 5’  

S317

F 

GCTGGTCCTGACCTACGGTTTTGGCGC

GACCTGGGGCG 

CGCCCCAGGTCGCGCCAAAACCGTAG

GTCAGGACCAGC 

C112

A 

GCTGGATATCCGGGCACAGGCGAGCG

GGTTGCTGTACG 

CGTACAGCAACCCGCTCGCCTGTGCC

CGGATATCCAGC 

H25

7F 

CGACCATGTGATCTGCTTTCAACCGA

ACCTGC 

GCAGGTTCGGTTGAAAGCAGATCACA

TGGTCG 
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LC/MS chromatograms (UV, 254 nm) of test compounds 
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Compound 42 
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Compound 48 
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Compound 54 
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Compound 60 

 

Compound 61 
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1H and 13C spectra of test compounds 

 

Compound 2 
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I. General experimental information - Chemistry 

 

a. Chemical Synthesis of compounds 3–6  

 

 

Scheme S1. a) see reference 1b; b) See reference 1a; c) TMS-Acetylene, CuSO4, sodium ascorbate, 

tertBuOH:H2O, r.t.; d) Oxone, EtOAc:H2O, r.t.; e) heptane-1-thiol, DMF, K2CO3, 0°C; f) 1-

cyclopentylprop-2-yn-1-ol, CuSO4, sodium ascorbate, tertBuOH:H2O, r.t.  

 

Compounds 3a, 3b and 6a were synthesized as reported before.
1,2

 

 

2-(methylthio)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (5a): To a solution of 3a (1.0 eq) and TMS-

acetylene (2.0 eq) in tertBuOH:water (1:1) was added CuSO4*5H2O (0.02 eq) and sodium ascorbate 

(0.1 eq). The mixture was stirred at room temperature for 16 h. Brine was added and the aqueous layer 

was extracted three times with ethyl acetate. The combined organic layers were concentrated in 

vacuum and purified by flash chromatography (petroleum ether/ethyl acetate 8:2) to yield 5a as a 

white solid (58% yield). 
1
H NMR (300 MHz, CDCl3)  2.64 (s, 3H), 7.84 (d, J = 5.5, 1H), 7.87 (s, 

1H), 8.62 (s, 1H), 8.71 (d, J = 5.4 Hz, 1H). 
13

C NMR (75 MHz, CDCl3)  14.3, 104.9, 121.1, 134.6, 

154.9, 159.8, 173.7. MS (ESI) m/z: 194.1 [M+H]
+
. 

 

cyclopentyl(1-(2-(methylsulfonyl)pyrimidin-4-yl)-1H-1,2,3-triazol-4-yl)methanol (3): To a 

solution of 3b (1.0 eq) and 1-cyclopentylprop-2-yn-1-ol (1.0 eq) in tertBuOH:water (1:1) was added 

CuSO4*5H2O (0.02 eq) and sodium ascorbate (0.1 eq). The mixture was stirred at room temperature 

for 16 h. Brine was added and the aqueous layer was extracted three times with ethyl acetate. The 

combined organic layers were concentrated in vacuum and purified by flash chromatography 

(hexane/ethyl acetate 7:3) to yield 3 as a white solid (49% yield). 
1
H NMR (300 MHz, DMSO-d6)  

1.63 - 2.19 (m, 9 H), 3.51 (s, 3H), 5.29 (s, 1H), 8.42 (d, J = 5.6 Hz, 1H), 8.80 (s, 1H), 9.26 (d, J = 5.6 
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Hz, 1H). 
13

C NMR (75 MHz, DMSO-d6)  23.9 (2C), 24.1, 39.7, 41.1, 41.4, 77.2, 112.7, 118.8, 155.4, 

156.5, 162.0, 165.4. MS (ESI) m/z: not found [M+H]
+
. Purity 96%. 

 

2-(heptylsulfonyl)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (4): To a solution of 5 (1.0 eq) in anhydrous 

DMF was added K2CO3 (3.0 eq) at 0°C. To the vigorously stirred suspension was added heptane-1-

thiol (0.9 eq). The reaction was allowed to proceed for 20 min at 0°C and then quenched with an 

excess of water. Brine was added and the mixture was extracted three times with ethyl acetate. The 

combined organic layers were concentrated in vacuum and residual DMF was removed by azeotropic 

distillation using heptane. The crude product was purified by flash chromatography (petroleum 

ether/ethyl acetate 9:1) to yield 2-(heptylthio)-4-(1H-1,2,3-triazol-1-yl)pyrimidine as white solid (45% 

yield). 
1
H NMR (300 MHz, CDCl3)  0.89 (t, J = 6.5 Hz, 3H), 1.19 - 1.41 (m, 6H), 1.41 - 1.58 (m, 

2H), 1.78 (quin, J = 7.4 Hz, 2H), 3.20 (t, J = 7.4 Hz, 2 H), 7.80 (d, J = 5.4 Hz, 1H), 7.85 (d, J = 1.1 Hz, 

1H), 8.57 (d, J = 1.0 Hz, 1H), 8.68 (d, J = 5.4 Hz, 1H). 
13

C NMR (75 MHz, CDCl3)  14.0, 22.5, 28.8, 

28.9, 29.0, 31.2, 31.7, 104.8, 121.0, 134.5, 154.9, 159.8, 173.5. MS (ESI) m/z: 278.1 [M+H]
+
. 2-

(heptylthio)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (1.0 eq) was dissolved in ethyl acetate and Oxone
R
 

(3.0 eq) dissolved in water was added. The biphasic system was vigorously stirred until TLC showed 

full conversion. Water was added and the aqueous layer was extracted three times with ethyl acetate. 

The combined organic layers were concentrated and the crude material was purified by flash 

chromatography (hexane/ethyl acetate 1:1) to yield 4 as a white solid (72% yield). 
1
H NMR (300 

MHz, CDCl3)  0.88 (t, J = 6.9 Hz, 3H), 1.21 - 1.40 (m, 6H), 1.41 - 1.56 (m, 2H), 1.91 (quin, J = 7.8 

Hz, 2H), 3.58 (t, J = 7.7 Hz, 2H), 7.92 (d, J = 1.3 Hz, 1H), 8.41 (d, J = 5.5 Hz, 1H), 8.75 (d, J = 1.4 Hz, 

1H), 9.09 (d, J = 5.5 Hz, 1H). 
13

C NMR (75 MHz, CDCl3)  14.0, 22.0, 22.5, 28.4, 28.6, 31.4, 51.3, 

112.6, 121.9, 135.2, 156.4, 160.9, 166.0. MS (ESI) m/z: 351.1 [M+ACN+H]
+
. Purity 97%. 

 

2-(methylsulfonyl)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (5): 5a (1.0 eq) was dissolved in ethyl 

acetate and Oxone
R
 (3.0 eq) dissolved in water was added. The biphasic system was vigorously stirred 

for 1 h. Water was added and the aqueous layer was extracted three times with ethyl acetate. The 

combined organic layers were concentrated and the crude material was purified by flash 

chromatography (hexane/ethyl acetate 8:2) to yield 5 as a white solid (19% yield). 
1
H NMR (300 

MHz, CDCl3)  3.43 (d, J = 0.9 Hz, 3H), 7.92 (s, 1H), 8.42 (dd, J = 5.5, 0.9 Hz, 1H), 8.74 (s, 1H), 

9.08 (dd, J = 5.5, 0.9 Hz, 1H). 
13

C NMR (75 MHz, CDCl3)  39.2, 112.7, 121.9, 135.2, 156.4, 160.8, 

166.2. MS (ESI) m/z: 226.1 [M+H]
+
. Purity >99%. 

 

2-(methylsulfonyl)-4-(1H-tetrazol-1-yl)pyrimidine (6): 6a (1.0 eq) was dissolved in ethyl acetate 

and Oxone
R
 (3.0 eq) dissolved in water was added. The biphasic system was vigorously stirred until 

TLC showed full conversion. Water was added and the aqueous layer was extracted three times with 

ethyl acetate. The combined organic layers were concentrated and filtered over a pad of silica to yield 
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6 as a white solid (99% yield). 
1
H NMR (300 MHz, CDCl3)  3.46 (s, 3 H), 8.33 (d, J=5.4 Hz, 1 H), 

9.20 (d, J=5.4 Hz, 1 H), 9.74 (s, 1 H). 
13

C NMR (126 MHz, CDCl3)  39.2, 113.3, 140.6, 154.4, 161.9, 

166.5. MS (ESI) m/z: 227.0 [M+H]
+
, 199.1 [M-N2+H]

+
. Purity 98%. 

b. Crystallization of 6a for X-ray crystallography 

 

Figure S1. X-ray crystal structure of compound 6a (green = nitrogen, grey = carbon, yellow = sulfur, 

white = hydrogen). 

6a was dissolved in hot chloroform and left standing open to atmosphere to allow evaporation. 

Colorless needles formed after 3 weeks. CCDC 1432241 contains the supplementary crystallographic 

data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/getstructures.  

http://www.ccdc.cam.ac.uk/getstructures


379 Appendix 

 

 

c. 13
C-NMR spectra 

13
C NMR of compound 3 

 

 

 

HSQC NMR of compound 3 



SI Publication F 380 

 

 

 
  



381 Appendix 

 

 

13
C NMR of compound 4 

 

 

13
C NMR of compound 5
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13
C NMR compound 6 
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d. LC purity of compounds 3–6 
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Compound 3 
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Compound 4 
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Compound 5 
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Compound 6 

 

 

 



 

 

II. General experimental information – Biology 

 

a. Chemicals, bacterial strains, and media 

Yeast extract was obtained from Fluka, peptone and casein from Merck, Bacto™ Tryptone from BD 

Biosciences, and Gibco® PBS from Life Technologies. Salts and organic solvents of analytical grade 

were obtained from VWR. 

P. aeruginosa PA14 strain, and isogenic pqsR knockout mutant were stored in glycerol stocks at –80 

°C. 

Minimal medium PPGAS
3
 and Luria Bertani (LB) were used. 

 

b. Pyocyanin assay 

 

Figure S2. IC50 curve of the improved inhibitory effect of 6 on pyocyanin production, an 

indicative of PqsR antagonism. Error bars represent standard error of three independent 

experiments (n = 3). 
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c. Prolonged Pyocyanin Assay. 

Effect of long-term PqsD inhibition on pyocyanin formation was assessed as previously described 

(pyocyanin assay) with slight modifications. Initially, treated (compound 1) and untreated cultures 

were incubated for 24 h under aerobic conditions. pyocyanin levels and bacterial density were 

determined from extracted culture aliquots. Obtained OD600 values were used to re-calculate the 

necessary dilution factors of each replicate for a final density of 0.02, transferred into a new plate with 

fresh PPGAS medium and dimethyl sulfoxide (DMSO) or compound 1 for additional 24 h, 

accordingly. Pyocyanin formation and cell growth were again assessed as previously described, 

making up for a total of 48 h of incubation with treated samples under constant, long-term PqsD 

inhibition. 

 

Figure S3. Long-term effect of PqsD inhibitor 1 on pyocyanin production in PA14 wild type. 

Treatment with 500 M of 1 led to a reduction of pyocyanin levels to 83.5% ± 3.2 after 48 h of 

incubation. The differences in values (compared to control) determined for 17 h and 24 h were not 

significant. All values are relative to a DMSO control without addition of inhibitors. Error bars 

represent the standard deviation of three independent experiments (n = 3). * = p < 0.05. 
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d. Growth curves of P. aeruginosa PA14  

Cultures of PA14 were diluted in PPGAS medium, adjusted to an initial OD600 of 0.02, and 1.5 mL 

added in triplicates into 24-well plates (Greiner Bio-One). Cultivation conditions as described above 

(SI, section IIa). Stock solutions of compound 6 in DMSO were diluted 1:100 to a final DMSO 

concentration of 1% (v/v), DMSO alone was used as control. Bacterial growth was measured over 48 h 

as a function of OD600 using FLUOstar Omega (BMG LabTech). 

 

Figure S4. Growth curves of PA14 in PPGAS minimal medium in the absence (control) and presence 

of varying concentrations (100 M to 500 M) of compound 6. 
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e. Antibiofilm effects of compound 2 

 

Figure S5. Effects of compound 2 (15 M; solubility maximum) on volume of P. aeruginosa strain 

PA14 biofilm. Experiment was performed as described in the experimental section of the main text. 

Error bars represent standard error of at least two independent experiments. 

 

f. PqsD in vitro assay 

The assay was performed as reported before.
4
 

 

g. PqsR in vitro assay 

The assay was performed in E. coli DH5 as reported before.
5 
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